Fish, Richard H.
1998-01-01
The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K.sub.m) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe.sup.3+ ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, and Mg.sup.2+, than either PS-CATS or PS-3,3-LICAMS. However, Fe.sup.3+ ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe.sup.3+, the polymer ligand is selective for Al.sup.3+, Cu.sup.2+ or Hg.sup.2+. The changing of the cavity size from two CH.sub.2 groups to six CH.sub.2 groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity.
Fish, Richard H.
1997-01-01
The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+,Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads use determined are useful as well as equilibrium selectivity coefficient (K.sub.m) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe.sup.3+ ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2-6-Mn.sup.2+, Ni.sup.2+, and Mg.sup.2+, than either PS-CATS or PS-3,3-LICAMS. However, Fe.sup.3+ ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe.sup.3+, the polymer ligand is selective for Al.sup.3+, Cu.sup.2+ or Hg.sup.2+. The changing of the cavity size from two CH.sub.2 groups to six CH.sub.2 groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity.
Fish, R.H.
1997-04-22
The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads use determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2-6-Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity. 9 figs.
Fish, R.H.
1998-11-10
The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity. 9 figs.
Iverson, Chad D; Zhang, Ya; Lucy, Charles A
2015-11-27
Porous graphitic carbon (PGC) is an increasingly popular and attractive phase for HPLC on account of its chemical and thermal stability, and its unique separation mechanism. However, native PGC is strongly hydrophobic and in some instances excessively retentive. As part of our effort to build a library of hydrophilic covalently modified PGC phases, we functionalized PGC with catechol and amide groups by means of aryl diazonium chemistry to produce two new phases. Successful grafting was confirmed by X-ray photoelectron spectroscopy (XPS). Under HILIC conditions, the Catechol-PGC showed up to 5-fold increased retention relative to unmodified PGC and selectivity that differed from four other HILIC phases. Under reversed phase conditions, the Amide-PGC reduced the retentivity of PGC by almost 90%. The chromatographic performance of Catechol-PGC and Amide-PGC is demonstrated by separations of nucleobases, nucleosides, phenols, alkaline pharmaceuticals, and performance enhancing stimulants. These compounds had retention factors (k) ranging from 0.5 to 13. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhou, Zhong-Zhen; Ge, Bing-Chen; Chen, Yu-Fang; Shi, Xiu-Dong; Yang, Xue-Mei; Xu, Jiang-Ping
2015-11-15
In this study, a series of catechol-based amides (8a-n) with different amide linkers linking the catecholic moiety to the terminal phenyl ring was designed and synthesized as potent phosphodiesterase (PDE) 4D inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4B1 and PDE4D7 enzymes, and other PDE family members. The results indicated the majority of compounds 8a-n displayed moderate to good inhibitory activities against PDE4CAT. Among these compounds, compound 8 j with a short amide linker (-CONHCH2-) displayed comparable PDE4CAT inhibitory activity (IC50=410 nM) with rolipram. More interestingly, compound 8 g, a potent and selective PDE4D inhibitor (IC50=94 nM), exhibited a 10-fold selectivity over the PDE4B subtypes and an over 1000-fold selectivity against other PDE family members. Docking simulations suggested that 8 g forms three extra H-bonds with the N-H of residue Asn487 and two water molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.
Magoulas, George E; Rigopoulos, Andreas; Piperigkou, Zoi; Gialeli, Chrysostomi; Karamanos, Nikos K; Takis, Panteleimon G; Troganis, Anastassios N; Chrissanthopoulos, Athanassios; Maroulis, George; Papaioannou, Dionissios
2016-06-01
Two new diastereomeric lignan amides (4 and 5) serving as dimeric caffeic acid-l-DOPA hybrids were synthesized. The synthesis involved the FeCl3-mediated phenol oxidative coupling of methyl caffeate to afford trans-diester 1a as a mixture of enantiomers, protection of the catechol units, regioselective saponification, coupling with a suitably protected l-DOPA derivative, separation of the two diastereomers thus obtained by flash column chromatography and finally global chemoselective deprotection of the catechol units. The effect of hybrids 4 and 5 and related compounds on the proliferation of two breast cancer cell lines with different metastatic potential and estrogen receptor status (MDA-MB-231 and MCF-7) and of one epithelial lung cancer cell line, namely A-549, was evaluated for concentrations ranging from 1 to 256μM and periods of treatment of 24, 48 and 72h. Both hybrids showed interesting and almost equipotent antiproliferative activities (IC50 64-70μM) for the MDA-MB-231 cell line after 24-48h of treatment, but they were more selective and much more potent (IC50 4-16μM) for the MCF-7 cells after 48h of treatment. The highest activity for both hybrids and both breast cancer lines was observed after 72h of treatment (IC50 1-2μM), probably as the result of slow hydrolysis of their methyl ester functions. Copyright © 2016 Elsevier Inc. All rights reserved.
Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki
2017-01-01
A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.
Tashkhourian, J; Daneshi, M; Nami-Ana, F; Behbahani, M; Bagheri, A
2016-11-15
A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0μM-1.0mM range for hydroquinone with the detection limit of 1.2μM and from 30.0μM-1.0mM for catechol with the detection limit of 1.1μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Catechol-Cation Synergy in Wet Adhesive Materials
NASA Astrophysics Data System (ADS)
Maier, Gregory Peter
In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is impaired by high salt, pH, and hydration. However, mussels have evolved effective strategies for wet adhesion despite these impediments. Inspection of mussel foot proteins (Mfps) provides insights into adhesive adaptations. Catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues are present in high mole percent in the interfacial Mfps. The siderophore cyclic trichrysobactin also contains high mole percent of catechol and lysine and serves as a simplified mimic of Mfps. This work is focused on use of Mfp-mimetic siderophores and synthetic siderophore analogs as model systems for dissecting the chemical and physical interactions that enable wet adhesion. Variation in number and identity of functional groups appended to the synthetic siderophore analogs allows identification of the specific contributions of those functional groups to wet adhesion. Both catechol and amine functional groups are critical to strong wet adhesion. The primary amine of lysine and catechol cooperatively displace interfacial hydration and bind to the underlying substrate. Variation in the amine identity as well as the amine to catechol ratio within siderophore analogs also has a significant impact on wet adhesive performance. Catechol undergoes a pH-dependent autoxidation in which higher pH leads to faster oxidation by dioxygen. This oxidation abolishes all adhesion of Mfps to mica by pH 7.5, yet many applications of synthetic wet adhesives require adhesion at physiological or oceanic pH. A better understanding of catechol redox chemistry is critical to the design of wet adhesives. To this end, the pH-dependent autoxidation of catechol and substituted catechols was investigated and results are consistent with a mechanism in which O2 oxidizes both the mono-deprotonated and di-deprotonated catechol. A linear Hammett correlation for the pH-independent second order rate constants for catechol autoxidation indicates that catechols become resistant to autoxidation when functionalized with electron withdrawing groups and more susceptible to autoxidation when functionalized with electron donating groups. Analysis of substituent effects through Hammett correlation allows for selection of functionalized catechols with redox properties ideally suited for a given application.
Wang, Hailong; Hu, Quanqin; Meng, Yuan; Jin, Zier; Fang, Zilin; Fu, Qinrui; Gao, Wenhua; Xu, Liang; Song, Yibing; Lu, Fushen
2018-02-19
Reduced graphite oxide (rGO) was incorporated into a metal organic framework (MOF) MIL-101(Cr) for the modification of carbon paste electrode. Taking advantages of the large surface area of MOF and the electrical conductivity of rGO, the resulted electrodes exhibited high sensitivity and reliability in the simultaneous electrochemical identification and quantification of catechol (CC) and hydroquinone (HQ). Specifically, in the mixture solution of catechol and hydroquinone (constant concentration of an analyte), the linear response ranges for catechol and hydroquinone were 10-1400 μM and 4-1000 μM, and detection limits were 4 μM and 0.66 μM (S/N = 3) for individual catechol and hydroquinone, respectively. Therefore, the relatively easy fabrication of modified CPE and its fascinating reliability towards HQ and CC detection may simulate more research interest in the applications of MIL-101(Cr)-rGO composites for electrochemical sensors. Copyright © 2018 Elsevier B.V. All rights reserved.
Quantitative structure-cytotoxicity relationship of piperic acid amides.
Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Miyashiro, Takaki; Sugita, Yoshiaki; Sakagami, Hiroshi
2014-09-01
A total of 12 piperic acid amides, including piperine, were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to find new biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of the CC50 to 50% HIV infection-cytoprotective concentration (EC50). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by LowModeMD method followed by density functional theory method. All compounds showed low-to-moderate tumor selectivity, but no anti-HIV activity. N-Piperoyldopamine ( 8: ) which has a catechol moiety, showed the highest tumor selectivity, possibly due to its unique molecular shape and electrostatic interaction, especially its largest partial equalization of orbital electronegativities and vsurf descriptors. The present study suggests that molecular shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of piperic acid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Sol-Gel Synthesis of Carbon Xerogel-ZnO Composite for Detection of Catechol
Li, Dawei; Zang, Jun; Zhang, Jin; Ao, Kelong; Wang, Qingqing; Dong, Quanfeng; Wei, Qufu
2016-01-01
Carbon xerogel-zinc oxide (CXZnO) composites were synthesized by a simple method of sol-gel condensation polymerization of formaldehyde and resorcinol solution containing zinc salt followed by drying and thermal treatment. ZnO nanoparticles were observed to be evenly dispersed on the surfaces of the carbon xerogel microspheres. The as-prepared CXZnO composites were mixed with laccase (Lac) and Nafion to obtain a mixture solution, which was further modified on an electrode surface to construct a novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect the environmental pollutant, catechol. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards catechol with high sensitivity (31.2 µA·mM−1), a low detection limit (2.17 µM), and a wide linear range (6.91–453 µM). Moreover, the biosensor also displayed favorable repeatability, reproducibility, selectivity, and stability besides being successfully used in the trace detection of catechol existing in lake water environments. PMID:28773407
New synthetic catecholate-type siderophores with triamine backbone.
Heinisch, Lothar; Gebhardt, Peter; Heidersbach, Renate; Reissbrodt, Rolf; Möllmann, Ute
2002-06-01
New analogues of triscatecholate siderophores based on linear or tripodal triamines with or without spacer groups or lipophilic and hydrophilic substituents were synthesized. The catecholate moieties were prepared in OH-forms, as acetylated compounds or masked as 8-methoxycarbonyloxy-2,4-dioxo-1,3-benzoxazine derivatives. Some of the new compounds were active as siderophores tested by growth promotion assays using various gram-negative bacteria and mycobacteria under iron limitation and by CAS-assay. Structure-activity-correlations have been studied.
NASA Astrophysics Data System (ADS)
Guo, Meiqing; Wang, Hefeng; Huang, Di; Han, Zhijun; Li, Qiang; Wang, Xiaojun; Chen, Jing
2014-06-01
A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assembled on a composite film of a N-OMC/PVA modified Au electrode and the electrochemical behavior was investigated. The results indicated that the N-OMC modified electrode exhibits electrical properties towards catechol. The optimum experimental conditions of a biosensor for the detection of catechol were studied in detail. Under the optimal conditions, the sensitivity of the biosensor was 0.29 A*M-1 with a detection limit of 0.31 μM and a linear detection range from 0.39 μM to 8.98 μM for catechol. The calibration curve followed the Michaelis-Menten kinetics and the apparent Michaelis-Menten \\left( K_{M}^{app} \\right) was 6.28 μM. This work demonstrated that the N-OMC/PVA composite provides a suitable support for laccase immobilization and the construction of a biosensor.
Lakshmi, Dhana; Bossi, Alessandra; Whitcombe, Michael J; Chianella, Iva; Fowler, Steven A; Subrahmanyam, Sreenath; Piletska, Elena V; Piletsky, Sergey A
2009-05-01
One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 microM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (< or = 3%) on the detection of either analyte. Non-imprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics.
Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2016-10-04
Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
FT-IR and computer modeling study of hydrogen bonding in N-alkyl acrylamide-toluene binary mixtures
NASA Astrophysics Data System (ADS)
Rumyantsev, Misha; Kazantsev, Oleg A.; Kamorina, Sofia I.; Kamorin, Denis M.; Sivokhin, Alexey P.
2016-10-01
Degree of hydrogen bonding driven self-association of N-(n-butyl)acrylamide, N-(n-octyl)acrylamide, N-(sec-octyl)acrylamide and N-(tert-octyl)acrylamide in toluene was investigated using IR spectroscopy and computer modeling methods. Consistent results were demonstrated in the treatment of the Amide-I (νC=O), Amide-II (δN-H and νC-N) and Amide-A (νN-H) absorption bands in IR spectra. Thus, the content of non-bonded (free) amide groups decreases from 83-98% to 8-20% and the content of linear polyassociates increases to 80-90% with an increase in monomer concentration from 0.5 wt% to 50 wt%. The content of cyclic dimers was equal to the value between 5 and 10% regardless of the initial monomer concentration. Dependences of the association degree and the content of the linear polyassociates on the concentration were found to be similar for all of the studied amides.
NASA Astrophysics Data System (ADS)
Ibrahim, I. M.; Jai, J.; Daud, M.; Hashim, Md A.
2018-03-01
The inhibition effect demonstrates an increase in the inhibition performance in presence of a secondary compound in the inhibited solution. This study introduces fatty amides as corrosion inhibitor and oxygen scavenger, namely, sodium sulphite as a secondary compound. The main objective is to determine the synergistic inhibition effect of a system by using fatty amides together with sodium sulphite in hydrodynamic condition. The synergistic inhibition of fatty amides and sodium sulphite on corrosion of carbon steel in 3.5 wt% sodium chloride solution had been studied using linear polarization resistance method and scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX). Electrochemical measurement was carried out using rotating cylinder electrode at different flow regimes (static, laminar, transition and turbulent). Linear polarization resistance experiments showed the changes in polarization resistance when the rotation speed increased. It found that, by addition of fatty amides together with sodium sulphite in test solution, the inhibition efficiency increased when rotation speed increased. The results collected from LPR experiment correlated with results from SEM-EDX. The results showed inhibition efficiency of system was enhanced when fatty amides and oxygen scavengers were present together.
NASA Astrophysics Data System (ADS)
Fuse, Shinichiro; Mifune, Yuto; Nakamura, Hiroyuki; Tanaka, Hiroshi
2016-11-01
Feglymycin is a naturally occurring, anti-HIV and antimicrobial 13-mer peptide that includes highly racemizable 3,5-dihydroxyphenylglycines (Dpgs). Here we describe the total synthesis of feglymycin based on a linear/convergent hybrid approach. Our originally developed micro-flow amide bond formation enabled highly racemizable peptide chain elongation based on a linear approach that was previously considered impossible. Our developed approach will enable the practical preparation of biologically active oligopeptides that contain highly racemizable amino acids, which are attractive drug candidates.
Lee, Kyungtae; Gu, Geun Ho; Mullen, Charles A; Boateng, Akwasi A; Vlachos, Dionisios G
2015-01-01
Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted-Evans-Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x<3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P
2016-10-15
The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Chen, Jun; Cai, Ye; Zhang, Yi; Yang, Guide; Liu, Yuanyuan; Zhang, Chen; Tang, Wangwang
2014-11-15
Herein, we reported here a promising biosensor by taking advantage of the unique ordered mesoporous carbon nitride material (MCN) to convert the recognition information into a detectable signal with enzyme firstly, which could realize the sensitive, especially, selective detection of catechol and phenol in compost bioremediation samples. The mechanism including the MCN based on electrochemical, biosensor assembly, enzyme immobilization, and enzyme kinetics (elucidating the lower detection limit, different linear range and sensitivity) was discussed in detail. Under optimal conditions, GCE/MCN/Tyr biosensor was evaluated by chronoamperometry measurements and the reduction current of phenol and catechol was proportional to their concentration in the range of 5.00 × 10(-8)-9.50 × 10(-6)M and 5.00 × 10(-8)-1.25 × 10(-5)M with a correlation coefficient of 0.9991 and 0.9881, respectively. The detection limits of catechol and phenol were 10.24 nM and 15.00 nM (S/N=3), respectively. Besides, the data obtained from interference experiments indicated that the biosensor had good specificity. All the results showed that this material is suitable for load enzyme and applied to the biosensor due to the proposed biosensor exhibited improved analytical performances in terms of the detection limit and specificity, provided a powerful tool for rapid, sensitive, especially, selective monitoring of catechol and phenol simultaneously. Moreover, the obtained results may open the way to other MCN-enzyme applications in the environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.
Hsieh, Yu-Chi; Chir, Jiun-Ly; Zou, Wei; Wu, Hsiu-Han; Wu, An-Tai
2009-05-26
A short and highly efficient route to the alpha-anomer of a furanoid sugar-aza-crown ether was developed by a one-pot reductive amination of an alpha-anomer C-ribosyl azido aldehyde. In addition, the beta-anomer furanoid sugar-aza-crown ether was synthesized from a linear disaccharide precursor via amidation and then followed by microwave-assisted amide reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriguga,; Li, Xiao-Fei; Li, Yang
2013-12-15
Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependentmore » increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.« less
Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun
2013-12-15
Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. © 2013.
Mazloum-Ardakani, Mohammad; Barazesh, Behnaz; Khoshroo, Alireza; Moshtaghiun, Mohammad; Sheikhha, Mohammad Hasan
2018-06-01
In this work we report the synthesis of a stable composite with excellent electrical properties, on the surface of a biosensor. Conductive polymers offer both high electrical conductivity and mechanical strength. Many reports have focused on synthesizing conductive polymers with the aid of high-cost enzymes. In the current work we introduce a novel electrochemical, one-step, facile and cost effective procedure for synthesizing poly (catechol), without using expensive enzymes. The poly (catechol) conductivity was enhanced by modification with graphene sheets and biosynthesized gold nanoparticles. Four different robust methods, DPV, EIS, CV and chronoamperometry, were used to monitor the biosensor modifications. The peak currents of the catechol (an electroactive probe) were linearly related to the logarithm of the concentrations of target DNA in the range 100.0 μM to 10.0 pM, with a detection limit of 1.0 pM for the DNA strand. The current work investigates a new, stable composite consisting of conductive polymers and nanoparticles, which was applied to the detection of acute lymphoblastic leukemia. Copyright © 2018 Elsevier B.V. All rights reserved.
Nitrogen-Doped Three Dimensional Graphene for Electrochemical Sensing.
Yan, Jing; Chen, Ruwen; Liang, Qionglin; Li, Jinghong
2015-07-01
The rational assembly and doping of graphene play an crucial role in the improvement of electrochemical performance for analytical applications. Covalent assembly of graphene into ordered hierarchical structure provides an interconnected three dimensional conductive network and large specific area beneficial to electrolyte transfer on the electrode surface. Chemical doping with heteroatom is a powerful tool to intrinsically modify the electronic properties of graphene due to the increased free charge-carrier densities. By incorporating covalent assembly and nitrogen doping strategy, a novel nitrogen doped three dimensional reduced graphene oxide nanostructure (3D-N-RGO) was developed with synergetic enhancement in electrochemical behaviors. The as prepared 3D-N-RGO was further applied for catechol detection by differential pulse voltammetry. It exhibits much higher electrocatalytic activity towards catechol with increased peak current and decreased potential difference between the oxidation and reduction peaks. Owing to the improved electro-chemical properties, the response of the electrochemical sensor varies linearly with the catechol concentrations ranging from 5 µM to 100 µM with a detection limit of 2 µM (S/N = 3). This work is promising to open new possibilities in the study of novel graphene nanostructure and promote its potential electrochemical applications.
Chatterjee, Pabitra B.; Goncharov-Zapata, Olga; Quinn, Laurence L.; Hou, Guangjin; Hamaed, Hiyam; Schurko, Robert W.; Polenova, Tatyana; Crans, Debbie C.
2012-01-01
51V solid-state NMR (SSNMR) studies of a series of non-innocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that 51V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic 51V NMR chemical shifts cover a wide range from −200 ppm to 400 ppm in solution and from −219 to 530 ppm in the solid state. A linear correlation of 51V NMR isotropic solution and solid-state chemical shifts of complexes containing non-innocent ligands is observed. These experimental results provide the information needed for the application of 51V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems, and in particular those containing non-innocent ligands and that have chemical shifts outside the populated range of −300 ppm to −700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from 51V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (DFT) calculations of NMR parameters for [VO(hshed)(Cat)] yield 51V CSA tensor in reasonable agreement with the experimental results, but surprisingly, the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because the 51V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox active complexes that exhibit similar coordination chemistry as the vanadium catechol complexes. PMID:21842875
2013-01-01
Leu-enkephalin analogues, in which the amide bonds were sequentially and systematically replaced either by ester or N-methyl amide bonds, were prepared using classical organic chemistry as well as solid phase peptide synthesis (SPPS). The peptidomimetics were characterized using competition binding, ERK1/2 phosphorylation, receptor internalization, and contractility assays to evaluate their pharmacological profile over the delta opioid receptor (DOPr). The lipophilicity (LogD7.4) and plasma stability of the active analogues were also measured. Our results revealed that the last amide bond can be successfully replaced by either an ester or an N-methyl amide bond without significantly decreasing the biological activity of the corresponding analogues when compared to Leu-enkephalin. The peptidomimetics with an N-methyl amide function between residues Phe and Leu were found to be more lipophilic and more stable than Leu-enkephalin. Findings from the present study further revealed that the hydrogen-bond donor properties of the fourth amide of Leu-enkephalin are not important for its biological activity on DOPr. Our results show that the systematic replacement of amide bonds by isosteric functions represents an efficient way to design and synthesize novel peptide analogues with enhanced stability. Our findings further suggest that such a strategy can also be useful to study the biological roles of amide bonds. PMID:23650868
NASA Astrophysics Data System (ADS)
Shen, Xuan; Xia, Xiaohong; Du, Yongling; Wang, Chunming
2017-09-01
An electrochemical sensor for determination of hydroquinone (HQ) and catechol (CC) was developed using Au nanoparticles (AuNPs) fabricated on reduced graphene oxide/polyimide (PI/RGO) film by electroless deposition. The electrochemical behaviors of HQ and CC at PI/RGO-AuNPs electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized condition, the current responses at PI/RGO-AuNPs electrode were linear over ranges from 1 to 654 mol/L for HQ and from 2 to 1289 mol/L for CC, with the detection limits of 0.09 and 0.2 mol/L, respectively. The proposed electrode exhibited good reproducibility, stability and selectivity. In addition, the proposed electrode was successfully applied in the determination of HQ and CC in tap water and the Yellow River samples.
Evaluation of an amide-based stationary phase for supercritical fluid chromatography
Borges-Muñoz, Amaris C.; Colón, Luis A.
2017-01-01
A relatively new stationary phase containing a polar group embedded in a hydrophobic backbone (i.e., ACE® C18-amide) was evaluated for use in supercritical fluid chromatography. The amide-based column was compared with columns packed with bare silica, C18 silica, and a terminal-amide silica phase. The system was held at supercritical pressure and temperature with a mobile phase composition of CO2 and methanol as cosolvent. The linear solvation energy relationship model was used to evaluate the behavior of these stationary phases, relating the retention factor of selected probes to specific chromatographic interactions. A five-component test mixture, consisting of a group of drug-like molecules was separated isocratically. The results show that the C18-amide stationary phase provided a combination of interactions contributing to the retention of the probe compounds. The hydrophobic interactions are favorable; however, the electron donating ability of the embedded amide group shows a large positive interaction. Under the chromatographic conditions used, the C18-amide column was able to provide baseline resolution of all the drug-like probe compounds in a text mixture, while the other columns tested did not. PMID:27396487
Chitosan-catechol: a writable bioink under serum culture media.
Lee, Daiheon; Park, Joseph P; Koh, Mi-Young; Kim, Pureum; Lee, Junhee; Shin, Mikyung; Lee, Haeshin
2018-05-01
Mussel-inspired adhesive coatings on biomedical devices have attracted significant interest due to their unique properties such as substrate independency and high efficiency. The key molecules for mussel-inspired adhesive coatings are catechol and amine groups. Along with the understanding of catechol chemistry, chitosan-catechol has also been developed as a representative mussel-inpired adhesive polymer that contains catechol and amine groups for adhesiveness. Herein, we demonstrated the direct writability of chitosan-catechol as a bioink for 3D printing, one of the additive techniques. The use of chitosan-catechol bioink results in the formation of 3D constructs in normal culture media via rapid complexation of this bioink with serum proteins; in addition, the metal/catechol combination containing tiny amounts of vanadyl ions, in which the ratio of metal to catechol is 0.0005, dramatically enhances the mechanical strength and printability of the cell-encapsulated inks, showing a cell viability of approximately 90%. These findings for mussel-inspired bioinks will be a promising way to design a biocompatible 3D bioink cross-linked without any external stimuli.
Verma, Anand Mohan; Kishore, Nanda
2017-11-01
The unprocessed bio-oil obtained by the pyrolysis of lignocellulosic biomass comprises hundreds of oxy-components which vitiate its quality in terms of low heating value, low stability, low pH, etc. Therefore, it has to be upgraded prior to its use as transportation fuel. In this work, guaiacol, a promising compound of the phenolic fraction of unprocessed bio-oil, is considered as a model component for studying its hydrodeoxygenation over a Pt 3 catalyst cluster. The production of catechol, 3-methylcatechol, m -cresol and o -cresol from guaiacol over a Pt 3 cluster is numerically investigated using density functional theory. Further, the kinetic parameters are obtained over a wide range of temperature, i.e. 473-673 K at an interval of 50 K. Briefly, results indicate that O─H and C─H bond scissions determine the reaction rates of 'guaiacol to catechol' and 'catechol to 3-methylcatechol' reactions with activation energies of 30.32 and 41.3 kcal mol -1 , respectively. On the other hand, C─O bond scissions determine the rates of 3-methylcatechol to m - and o -cresol production reactions, respectively. The kinetics of all reactions indicate that ln k versus 1/ T plots are linear over the entire range of temperature considered herein.
The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming
2012-11-15
Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catecholmore » enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.« less
Ali, Hussein M; Ali, Isra H
2018-03-15
Antioxidant activity of anthocyanidins is greatly affected by the 3-hydroxyl group and/or a catecholic moiety. The two-hydrogen atom donation process is frequently used to explain the high antioxidant activity of polyphenolic compounds leading to the formation of stable diketones e.g. 1,2-quinones. Thermodynamic parameters, HOMO and spin density were computed to identify the favoured path, either through the 3-hydroxyl group or through the catecholic moiety in a series of catecholic and non-catecholic 3-oxy- (and deoxy)-anthocyanidins. DFT calculations showed that the donation process in non-catecholic anthocyanidins depended on the substituents on ring B. Anthocyanidins with 3',5'-diOMe groups showed donation through 3,4'-OH or, otherwise, through 3,5-OH groups. Catecholic 3-oxyanthocyanidins, on the other hand, showed donation through the 3,4'-OH path rather than the catecholic path (4',3'-path). The 3,4'-path was favoured by the formation of planar 3-radicals in the first step and the stabilization of 4'-radicals in the second step by H-bonding with the 3'-OH group. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alshahrani, Lina Abdullah; Li, Xi; Luo, Hui; Yang, Linlin; Wang, Mengmeng; Yan, Songling; Liu, Peng; Yang, Yuqin; Li, Quanhua
2014-01-01
A glassy carbon electrode was modified with a copper(II) complex [Cu(Sal-β-Ala) (3,5-DMPz)2] (Sal = salicylaldehyde, β-Ala = β-alanine, 3,5-DMPz = 3,5-dimethylpyrazole) and single-walled carbon nanotubes (SWCNTs). The modified electrode was used to detect catechol (CT) and hydroquinone (HQ) and exhibited good electrocatalytic activities toward the oxidation of CT and HQ. The peak currents were linear with the CT and HQ concentrations over the range of 5–215 μmol·L−1 and 5–370 μmol·L−1 with corresponding detection limits of 3.5 μmol·L−1 and 1.46 μmol·L−1 (S/N = 3) respectively. Moreover, the modified electrode exhibited good sensitivity, stability and reproducibility for the determination of CT and HQ, indicating the promising applications of the modified electrode in real sample analysis. PMID:25429411
Phenol and Benzoate Metabolism by Pseudomonas putida: Regulation of Tangential Pathways
Feist, Carol F.; Hegeman, G. D.
1969-01-01
Catechol occurs as an intermediate in the metabolism of both benzoate and phenol by strains of Pseudomonas putida. During growth at the expense of benzoate, catechol is cleaved ortho (1,2-oxygenase) and metabolized via the β-ketoadipate pathway; during growth at the expense of phenol or cresols, the catechol or substituted catechols formed are metabolized by a separate pathway following meta (2,3-oxygenase) cleavage of the aromatic ring of catechol. It is possible to explain the mutually exclusive occurrence of the meta and ortho pathway enzymes in phenol- and benzoate-grown cells of P. putida on the basis of differences in the mode of regulation of these two pathways. By use of both nonmetabolizable inducers and blocked mutants, gratuitous synthesis of some of the meta pathway enzymes was obtained. All four enzymes of the meta pathway are induced by the primary substrate, cresol or phenol, or its analogue. Three enzymes of the ortho pathway that catalyze the conversion of catechol to β-ketoadipate enol-lactone are induced by cis,cis-muconate, produced from catechol by 1,2-oxygenase-mediated cleavage. Observations on the differences in specificity of induction and function of the two pathways suggest that they are not really either tangential or redundant. The meta pathway serves as a general mechanism for catabolism of various alkyl derivatives of catechol derived from substituted phenolic compounds. The ortho pathway is more specific and serves primarily in the catabolism of precursors of catechol and catechol itself. PMID:5354952
Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi
2016-01-01
A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.
Heo, Jinhwa; Kang, Taegon; Jang, Se Gyu; Hwang, Dong Soo; Spruell, Jason M.; Killops, Kato L.; Waite, J. Herbert; Hawker, Craig J.
2012-01-01
A facile synthetic strategy for introducing catecholic moieties into polymeric materials based on a readily available precursor – eugenol – and efficient chemistries – tris(pentafluorophenyl)borane catalyzed silation and thiol-ene coupling is reported. Silyl-protection is shown to be critical for the oxidative stability of catecholic moieties during synthesis and processing which allows functionalized polysiloxane derivatives to be fabricated into 3-D microstructures as well as 2-D patterned surfaces. Deprotection gives stable catechol surfaces with adhesion to a variety of oxide surfaces being precisely tuned by the level of catechol incorporation. The advantage of silyl-protection for catechol functionalized polysiloxanes is demonstrated and represents a promising and versatile new platform for underwater surface treatments. PMID:23181614
Adsorption of catechol and comparative solutes on hydroxyapatite.
Chirdon, William M; O'Brien, William J; Robertson, Richard E
2003-08-15
Contemporary medical and dental adhesives often have difficulty sticking to wet surfaces or weaken with long-term exposure to water. Substantial research has been dedicated to finding a means of achieving adhesion in an aqueous environment. A study evaluates the adsorption of catechol relative to other chemical groups as means of gauging how effective they may be as adsorptive groups in adhesives. Contact angle and surface-tension measurements of solutions of catechols and other chemical groups were used to determine their works of adhesion. Adsorption isotherms were also constructed to ascertain Langmuir constants. Solutes containing catechol groups were compared to solutes containing other polar groups to see how well catechol adsorbs to hydroxyapatite, the mineral component of bones and teeth, relative to other chemical groups found in adhesives. The results of this study show that catechol and molecules containing catechol groups have higher rates and energies of adsorption to hydroxyapatite than do groups such as alcohols, amines, and carboxylic acids. Copyright 2003 Wiley Periodicals, Inc.
Scozzafava, Andrea; Passaponti, Maurizio; Supuran, Claudiu T; Gülçin, İlhami
2015-01-01
Carbonic anhydrases (CAs) are widespread metalloenzymes in higher vertebrates including humans. A series of phenolic compounds, including guaiacol, 4-methylguaiacol, 4-propylguaiacol, eugenol, isoeugenol, vanillin, syringaldehyde, catechol, 3-methyl catechol, 4-methyl catechol and 3-methoxy catechol were investigated for their inhibition of all the catalytically active mammalian isozymes of the Zn(2+)-containing CA (EC 4.2.1.1). All the phenolic compounds effectively inhibited human carbonic anhydrase isoenzymes (hCA I, II, IX and XII), with Kis in the range of 2.20-515.98 μM. The various isozymes showed diverse inhibition profiles. Among the tested phenolic derivatives, compounds 4-methyl catechol and 3-methoxy catechol showed potent activity as inhibitors of the tumour-associated transmembrane isoforms (hCA IX and XII) in the submicromolar range, with high selectivity. The results obtained from this research may lead to the design of more effective carbonic anhydrase isoenzyme inhibitors (CAIs) based on such phenolic compound scaffolds.
Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates.
Lee, Hyukjin; Lee, Kang Dae; Pyo, Kyung Bo; Park, Sung Young; Lee, Haeshin
2010-03-16
We report on catechol-grafted poly(ethylene) glycol (PEG-g-catechol) for the preparation of nonfouling surfaces on versatile substrates including adhesion-resistant PTFE. PEG-g-catechol was prepared by the step-growth polymerization of PEO to which dopamine, a mussel-derived adhesive molecule, was conjugated. The immersion of substrates into an aqueous solution of PEG-g-catechol resulted in robust PEGylation on versatile surfaces of noble metals, oxides, and synthetic polymers. Surface PEGylation was unambiguously confirmed by various surface analytical tools such as ellipsometry, goniometry, infrared spectroscopy, and X-ray photoelectron spectroscopy. Contrary to existing PEG derivatives that are difficult-to-modify synthetic polymer surfaces, PEG-g-catechol can be considered to be a new class of PEGs for the facile surface PEGylation of various types of surfaces.
Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R.
2015-01-01
Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.613 α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.613/10-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding. PMID:25894612
Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R
2015-01-01
Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding.
Diphenylmethane-containing dianhydride and polyimides prepared therefrom
NASA Technical Reports Server (NTRS)
St.clair, Anne K. (Inventor); Boston, Harold G. (Inventor); Pratt, J. Richard (Inventor)
1993-01-01
A high temperature stable, highly optically transparent-to-colorless, low dielectic linear aromatic polyimide is prepared by reacting an aromatic diamine with 3,3'bis (3,4-dicarboxyphenoxy) diphenylmethane dianhydride in an amide solvent to form a linear aromatic polyamic acid. This polyamic acid is then cyclized to form the corresponding polyimide.
Bioinspired Catecholic Primers for Rigid and Ductile Dental Resin Composites.
Shin, Eeseul; Ju, Sung Won; An, Larry; Ahn, Eungjin; Ahn, Jin-Soo; Kim, Byeong-Su; Ahn, B Kollbe
2018-01-17
In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.
Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B
2004-06-01
Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.
Benhaim, Deborah; Grushka, Eli
2010-01-01
This study investigates lipophilicity determination by chromatographic measurements using the polar embedded Ascentis RP-Amide stationary phase. As a new generation of amide-functionalized silica stationary phase, the Ascentis RP-Amide column is evaluated as a possible substitution to the n-octanol/water partitioning system for lipophilicity measurements. For this evaluation, extrapolated retention factors, log k'w, of a set of diverse compounds were determined using different methanol contents in the mobile phase. The use of n-octanol enriched mobile phase enhances the relationship between the slope (S) of the extrapolation lines and the extrapolated log k'w (the intercept of the extrapolation),as well as the correlation between log P values and the extrapolated log k'w (1:1 correlation, r2 = 0.966).In addition, the use of isocratic retention factors, at 40% methanol in the mobile phase, provides a rapid tool for lipophilicity determination. The intermolecular interactions that contribute to the retention process in the Ascentis RP-Amide phase are characterized using the solvation parameter model of Abraham.The LSER system constants for the column are very similar to the LSER constants of the n-octanol/water extraction system. Tanaka radar plots are used for quick visual comparison of the system constants of the Ascentis RP-Amide column and the n-octanol/water extraction system. The results all indicate that the Ascentis RP-Amide stationary phase can provide reliable lipophilic data. Copyright 2009 Elsevier B.V. All rights reserved.
Zeyer, J; Kocher, H P; Timmis, K N
1986-01-01
Pseudomonas putida B2 is able to grow on o-nitrophenol (ONP) as the sole source of carbon and nitrogen. ONP was converted by a nitrophenol oxygenase to nitrite and catechol. Catechol was then attacked by a catechol 1,2-dioxygenase and further degraded through an ortho-cleavage pathway. ONP derivatives which were para-substituted with a methyl-, chloro-, carboxy-, formyl- or nitro-group failed to support growth of strain B2. Relevant catabolic enzymes were characterized to analyze why these derivatives were not mineralized. Nitrophenol oxygenase of strain B2 is a soluble, NADPH-dependent enzyme that is stimulated by magnesium, manganese, and calcium ions. It is active toward ONP, 4-methyl-, 4-chloro-, and to a lesser extent, 4-formyl-ONP but not toward 4-carboxy- or 4-nitro-ONP. In addition, 4-formyl-, 4-carboxy-, and 4-nitro-ONP failed to induce the formation of nitrophenol oxygenase. Catechol 1,2-dioxygenase of strain B2 is active toward catechol and 4-methyl-catechol but only poorly active toward chlorinated catechols. 4-Methyl-catechol is likely to be degraded to methyl-lactones, which are often dead-end metabolites in bacteria. Thus, of the compounds tested, only unsubstituted ONP acts as an inducer and substrate for all of the enzymes of a productive catabolic pathway. PMID:3752997
Maerten, Clément; Garnier, Tony; Lupattelli, Paolo; Chau, Nguyet Trang Thanh; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia
2015-12-15
Inspired by the strong chemical adhesion mechanism of mussels, we designed a catechol-based electrochemically triggered self-assembly of films based on ethylene glycol molecules bearing catechol groups on both sides and denoted as bis-catechol molecules. These molecules play the role of morphogens and, in contrast to previously investigated systems, they are also one of the constituents, after reaction, of the film. Unable to interact together, commercially available poly(allylamine hydrochloride) (PAH) chains and bis-catechol molecules are mixed in an aqueous solution and brought in contact with an electrode. By application of defined potential cycles, bis-catechol molecules undergo oxidation leading to molecules bearing "reactive" quinone groups which diffuse toward the solution. In this active state, the quinones react with amino groups of PAH through Michael addition and Schiff's base condensation reaction. The application of cyclic voltammetry (CV) between 0 and 500 mV (vs Ag/AgCl, scan rate of 50 mV/s) of a PAH/bis-catechol solution results in a fast self-construction of a film that reaches a thickness of 40 nm after 60 min. The films present a spiky structure which is attributed to the use of bis-functionalized molecules as one component of the films. XPS measurements show the presence of both PAH and bis-catechol cross-linked together in a covalent way. We show that the amine/catechol ratio is an important parameter which governs the film buildup. For a given amine/catechol ratio, it does exist an optimum CV scan rate leading to a maximum of the film thickness as a function of the scan rate.
Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.
Burke, Kelly A; Roberts, Dane C; Kaplan, David L
2016-01-11
Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.
Recent Advances in Synthetic Bioelastomers
Shi, Rui; Chen, Dafu; Liu, Quanyong; Wu, Yan; Xu, Xiaochuan; Zhang, Liqun; Tian, Wei
2009-01-01
This article reviews the degradability of chemically synthesized bioelastomers, mainly designed for soft tissue repair. These bioelastomers involve biodegradable polyurethanes, polyphosphazenes, linear and crosslinked poly(ether/ester)s, poly(ε-caprolactone) copolymers, poly(1,3-trimethylene carbonate) and their copolymers, poly(polyol sebacate)s, poly(diol-citrates) and poly(ester amide)s. The in vitro and in vivo degradation mechanisms and impact factors influencing degradation behaviors are discussed. In addition, the molecular designs, synthesis methods, structure properties, mechanical properties, biocompatibility and potential applications of these bioelastomers were also presented. PMID:20057942
Zhang, Jingxian; Guan, Shuhong; Sun, Jianghao; Liu, Tian; Chen, Pei; Feng, Ruihong; Chen, Xin; Wu, Wanying; Yang, Min; Guo, De-An
2015-01-01
Cortex Lycii, the root bark of Lycium chinense Mill. or Lycium barbarum L., is a frequently used traditional Chinese medicine. Phytochemical studies have shown that phenolic amides are not only characteristic compounds but also abundant ones in this plant. In the present study, an effective method was developed for structural characterization of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with linear ion trap Orbitrap tandem mass spectrometry. The fragmentation of 14 compounds including six cinnamic acid amides, six neolignanamides, and two lignanamides were studied systematically for the first time. It was found that, in the positive ion mode, neutral loss of the tyramide moiety (137 Da) or N-(4-aminobutyl)acetamide moiety (130 Da) were characteristic for these compounds. At least 54 phenolic amides were detected in the extract and 48 of them were characterized, among which 14 known compounds were identified unambiguously by comparing the retention time and mass spectra with those of reference compounds, and 34 components were tentatively identified based on the fragmentation patterns, exact mass, UV spectra, as well as retention time. Fifteen compounds were characterized as potential new ones. Additionally, the developed method was applied to analyze eight batches of samples collected from the northwest of China, and it was found that cinnamic acid amides were the main type of phenolic amides in Cortex Lycii. In conclusion, the identification of these chemicals provided essential data for further phytochemical studies, metabolites identification, and the quality control of Cortex Lycii.
Detection of Catechol by Potentiometric-Flow Injection Analysis in the Presence of Interferents
ERIC Educational Resources Information Center
Lunsford, Suzanne K.; Widera, Justyna; Zhang, Hong
2007-01-01
This article describes an undergraduate analytical chemistry experiment developed to teach instrumental lab skills while incorporating common interferents encountered in the real-world analysis of catechol. The lab technique incorporates potentiometric-flow injection analysis on a dibenzo-18-crown-6 dual platinum electrode to detect catechol in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Keisuke; Matsufuzi, Kazuki; Ohnuma, Hiroaki
2006-02-01
PheB, an extradiol-cleaving catecholic dioxygenase, was crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The crystal belongs to the orthorhombic system, space group P2{sub 1}2{sub 1}2{sub 1}, and diffracts to 2.3 Å resolution. Class II extradiol-cleaving catecholic dioxygenase, a key enzyme of aromatic compound degradation in bacteria, cleaves the aromatic ring of catechol by adding two O atoms. PheB is one of the class II extradiol-cleaving catecholic dioxygenases and shows a high substrate specificity for catechol derivatives, which have one aromatic ring. In order to reveal the mechanism of the substrate specificity of PheB, PheB hasmore » been crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The space group of the obtained crystal was P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 65.5, b = 119.2, c = 158.7 Å. The crystal diffracted to 2.3 Å resolution.« less
Lee, Sang-Bae; González-Cabezas, Carlos; Kim, Kwang-Mahn; Kim, Kyoung-Nam; Kuroda, Kenichi
2015-08-10
This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe(3+) additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe-catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives.
2015-01-01
This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe3+ additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe–catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives. PMID:26176305
High-performance mussel-inspired adhesives of reduced complexity.
Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert
2015-10-19
Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.
Shan, Jun; Wang, Yongfeng; Gu, Jianqiang; Zhou, Wenqiang; Ji, Rong; Yan, Xiaoyuan
2014-07-01
Both biochar and earthworms can exert influence on behaviors of soil-borne monomeric phenols in soil; however, little was known about the combined effects of biochar and earthworm activities on fate of these chemicals in soil. Using (14)C-catechol as a representative, the mineralization, transformation and residue distribution of phenolic humus monomer in soil amended with different amounts of biochar (0%, 0.05%, 0.5%, and 5%) without/with the geophagous earthworm Metaphire guillelmi were investigated. The results showed biochar at amendment rate <0.5% did not affect (14)C-catechol mineralization, whereas 5% biochar amendment significantly inhibited the mineralization. Earthworms did not affect the mineralization of (14)C-catechol in soil amended with <0.5% biochar, but significantly enhanced the mineralization in 5% biochar amended soil when they were present in soil for 9 d. When earthworms were removed from the soil, the mineralization of (14)C-catechol was significantly lower than that of in earthworm-free soil indicating that (14)C-catecholic residues were stabilized during their passage through earthworm gut. The assimilation of (14)C by earthworms was low (1.2%), and was significantly enhanced by biochar amendment, which was attributed to the release of biochar-associated (14)C-catecholic residues during gut passage of earthworm. Copyright © 2014 Elsevier Ltd. All rights reserved.
Keil, Harry; Wasserman, David; Dawson, Charles R.
1944-01-01
1. Additional evidence is presented in support of the view which postulates a close chemical and biologic relation between the active ingredients in poison ivy and Japan lac. 2. Biologic evidence, based on the use of the patch test in man, is presented in support of the view that the active ingredient in poison ivy is a catechol derivative with a long, unsaturated side-chain in the 3-position. 3. Of the catechol compounds and derivatives studied, group reactions in patients sensitive to poison ivy leaves or extract were exhibited by the following compounds: 3-pentadecyl catechol (100 per cent of 21 cases), 4-pentadecyl catechol (38 per cent of 21 cases), "urushiol" dimethyl ether (33 per cent of 33 cases), 3-pentadecenyl-1'-veratrole (21 per cent of 14 cases), 3-methyl catechol (14 per cent of 21 cases), and hydrourushiol dimethyl ether (10 per cent of 20 cases). It has been found that 3-geranyl catechol shows a practically constant group reactivity in persons sensitive to poison ivy. 4. The uniformly positive group reaction to 3-pentadecyl catechol is notable since this substance possesses a saturated side-chain, whereas the active ingredient in poison ivy is known to have an unsaturated side-chain. 5. The group reactivity was not restricted to the 3-position, for in some instances 4-pentadecyl catechol also gave group reactions which, however, were less intense and less frequent than those shown by 3-pentadecyl catechol. This indicates that in some cases a long side-chain in the 4 position may be effective in producing group specific reactions. 6. Only an occasional person showed sensitiveness to 3-methyl catechol (short side-chain), and in one instance the group reactivity appeared to be specific for the 3-position. 7. The position of the side-chain in the catechol configuration has some bearing on the degree and incidence of group reactions in persons hypersensitive to poison ivy. 8. Evidence is presented to indicate that the introduction of double bonds in the alkyl side-chain increases the incidence and intensity of group reactions. 9. Methylating the hydroxyl groups in the catechol configuration diminishes strongly the incidence of group reactivity but does not eliminate it entirely in persons hypersensitive to poison ivy. Thus, "urushiol" dimethyl ether (3-pentadecadienyl veratrole) gave group reactions in 33 per cent of 33 persons. 10. Methylating the hydroxyl groups as well as saturating the double bonds in the alkyl side-chain still further diminishes the group reactions but an occasional person hypersensitive to poison ivy may still show positive reaction to such a substance as 3-pentadecyl veratrole (hydrourushiol dimethyl ether). In this respect our results are not in full agreement with those recorded by Toyama who stated that hydrourushiol dimethyl ether is entirely harmless. 11. The significance of the group reactivity displayed by certain veratrole compounds is discussed, and several possible explanations of their behavior are advanced. 12. The group reactions discussed in this paper relate only to various catechol and veratrole compounds. Preliminary studies by us indicate that this sensitiveness extends to other phenolic derivatives. 13. Among the veratrole compounds showing positive reactions, the order of frequency and intensity was: (1) "urushiol" dimethyl ether (average of two double bonds); (2) S-pentadecenyl-1'-veratrole (one double bond); (3) hydrourushiol dimethyl ether (saturated side-chain). It may be noted that 4-pentadecyl veratrole was inactive. PMID:19871415
Keil, H; Wasserman, D; Dawson, C R
1944-10-01
1. Additional evidence is presented in support of the view which postulates a close chemical and biologic relation between the active ingredients in poison ivy and Japan lac. 2. Biologic evidence, based on the use of the patch test in man, is presented in support of the view that the active ingredient in poison ivy is a catechol derivative with a long, unsaturated side-chain in the 3-position. 3. Of the catechol compounds and derivatives studied, group reactions in patients sensitive to poison ivy leaves or extract were exhibited by the following compounds: 3-pentadecyl catechol (100 per cent of 21 cases), 4-pentadecyl catechol (38 per cent of 21 cases), "urushiol" dimethyl ether (33 per cent of 33 cases), 3-pentadecenyl-1'-veratrole (21 per cent of 14 cases), 3-methyl catechol (14 per cent of 21 cases), and hydrourushiol dimethyl ether (10 per cent of 20 cases). It has been found that 3-geranyl catechol shows a practically constant group reactivity in persons sensitive to poison ivy. 4. The uniformly positive group reaction to 3-pentadecyl catechol is notable since this substance possesses a saturated side-chain, whereas the active ingredient in poison ivy is known to have an unsaturated side-chain. 5. The group reactivity was not restricted to the 3-position, for in some instances 4-pentadecyl catechol also gave group reactions which, however, were less intense and less frequent than those shown by 3-pentadecyl catechol. This indicates that in some cases a long side-chain in the 4 position may be effective in producing group specific reactions. 6. Only an occasional person showed sensitiveness to 3-methyl catechol (short side-chain), and in one instance the group reactivity appeared to be specific for the 3-position. 7. The position of the side-chain in the catechol configuration has some bearing on the degree and incidence of group reactions in persons hypersensitive to poison ivy. 8. Evidence is presented to indicate that the introduction of double bonds in the alkyl side-chain increases the incidence and intensity of group reactions. 9. Methylating the hydroxyl groups in the catechol configuration diminishes strongly the incidence of group reactivity but does not eliminate it entirely in persons hypersensitive to poison ivy. Thus, "urushiol" dimethyl ether (3-pentadecadienyl veratrole) gave group reactions in 33 per cent of 33 persons. 10. Methylating the hydroxyl groups as well as saturating the double bonds in the alkyl side-chain still further diminishes the group reactions but an occasional person hypersensitive to poison ivy may still show positive reaction to such a substance as 3-pentadecyl veratrole (hydrourushiol dimethyl ether). In this respect our results are not in full agreement with those recorded by Toyama who stated that hydrourushiol dimethyl ether is entirely harmless. 11. The significance of the group reactivity displayed by certain veratrole compounds is discussed, and several possible explanations of their behavior are advanced. 12. The group reactions discussed in this paper relate only to various catechol and veratrole compounds. Preliminary studies by us indicate that this sensitiveness extends to other phenolic derivatives. 13. Among the veratrole compounds showing positive reactions, the order of frequency and intensity was: (1) "urushiol" dimethyl ether (average of two double bonds); (2) S-pentadecenyl-1'-veratrole (one double bond); (3) hydrourushiol dimethyl ether (saturated side-chain). It may be noted that 4-pentadecyl veratrole was inactive.
High-performance mussel-inspired adhesives of reduced complexity
Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert
2015-01-01
Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m−2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule. PMID:26478273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz Vieira, I. da; Fatibello-Filho, O.
An amperometric biosensor for the determination of phenols is proposed using a crude extract of sweet potato (Ipomoea batatas (L.) Lam.) as an enzymatic source of polyphenol oxidase (PPO; tyrosinase; catechol oxidase; EC 1.14.18.1). The biosensor is constructed by the immobilization of sweet potato crude extract with glutaraldehyde and bovine serum albumin onto an oxygen membrane. This biosensor provides a linear response for catechol, pyrogallol, phenol and p-cresol in the concentration ranges of 2.0 x 10{sup -5} -4.3 x 10{sup -4} mol L{sup -1}, 2.0 x 10{sup -5} -4.3 x 10{sup -4} mol L{sup -1}, 2.0 x 10{sup -5} -4.5more » x 10{sup -4} mol L{sup -1} and 2.0 x 10{sup -5} -4.5 x 10{sup -4} mol L{sup -1}, respectively. The response time was about 3-5 min for the useful response range, and the lifetime of this electrode was excellent for fifteen days (over 220 determinations for each enzymatic membrane). Application of this biosensor for the determination of phenols in industrial wastewaters is presented.« less
Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation.
Elder, Thomas; Berstis, Laura; Beckham, Gregg T; Crowley, Michael F
2016-06-15
The catechol alcohols, caffeyl and 5-hydroxyconiferyl alcohol, may be incorporated into lignin either naturally or through genetic manipulation. Due to the presence of o-OH groups, these compounds form benzodioxanes, a departure from the interunit connections found in lignins derived from the cinnamyl alcohols. In nature, lignins composed of caffeyl and 5-hydroxyconiferyl alcohol are linear homopolymers and, as such, may have properties that make them amenable for use in value-added products, such as lignin-based carbon fibers. In the current work, results from density functional theory calculations for the reactions of 5-hydroxyconiferyl alcohol, taking stereochemistry into account, are reported. Dehydrogenation and quinone methide formation are found to be thermodynamically favored for 5-hydroxyconiferyl alcohol, over coniferyl alcohol. The comparative energetics of the rearomatization reactions suggest that the formation of the benzodioxane linkage is under kinetic control. Ring-opening reactions of the benzodioxane groups show that the bond dissociation enthalpy of the α-O cleavage reaction is lower than that of the β-O reaction. The catechol lignins represent a novel form of the polymer that may offer new opportunities for bioproducts and genetic targets.
García-Hernández, Celia; García-Cabezón, Cristina; Martín-Pedrosa, Fernando; De Saja, José Antonio
2016-01-01
The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs), copper phthalocyanine (PEDOT/PSS/CuPc) or lutetium bisphthalocyanine (PEDOT/PSS/LuPc2). Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc2, which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α) confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10−4 to 4.0 × 10−6 mol·L−1 with a limit of detection on the scale of μmol·L−1. The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10−7 mol·L−1 to be attained. PMID:28144543
Vanadium Requirements and Uptake Kinetics in the Dinitrogen-Fixing Bacterium Azotobacter vinelandii▿
Bellenger, J. P.; Wichard, T.; Kraepiel, A. M. L.
2008-01-01
Vanadium is a cofactor in the alternative V-nitrogenase that is expressed by some N2-fixing bacteria when Mo is not available. We investigated the V requirements, the kinetics of V uptake, and the production of catechol compounds across a range of concentrations of vanadium in diazotrophic cultures of the soil bacterium Azotobacter vinelandii. In strain CA11.70, a mutant that expresses only the V-nitrogenase, V concentrations in the medium between 10−8 and 10−6 M sustain maximum growth rates; they are limiting below this range and toxic above. A. vinelandii excretes in its growth medium micromolar concentrations of the catechol siderophores azotochelin and protochelin, which bind the vanadate oxoanion. The production of catechols increases when V concentrations become toxic. Short-term uptake experiments with the radioactive isotope 49V show that bacteria take up the V-catechol complexes through a regulated transport system(s), which shuts down at high V concentrations. The modulation of the excretion of catechols and of the uptake of the V-catechol complexes allows A. vinelandii to precisely manage its V homeostasis over a range of V concentrations, from limiting to toxic. PMID:18192412
Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana
2012-01-01
An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).
Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana
2012-01-01
An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237
Reddy, S Thirupathi; Swamy, Musti J
2017-11-01
N-Acylglycines (NAGs), the endogenous single-tailed lipids present in rat brain and other mammalian tissues, play significant roles in cell physiology and exhibit interesting pharmacological properties. In the present study, a homologous series of N-acylglycine alkyl esters (NAGEs) with matched chains were synthesized and characterized. Results of differential scanning calorimetric studies revealed that all NAGEs exhibit a single sharp phase transition and that the transition enthalpy and entropy show a linear dependence on the N-acyl and ester alkyl chain length. The structure of N-myristoylglycine myristyl ester (NMGME), solved by single-crystal X-ray diffraction, showed that the molecule adopts a linear geometry and revealed that the structure of N-myristoyl glycyl moiety in NMGME is identical to that in N-myristoylglycine. The molecules are packed in layers with the polar functional groups of the ester and amide functionalities located at the center of the layer. The crystal packing is stabilized by NH⋯O hydrogen bonds between the amide CO and NH groups of adjacent molecules as well as by CH⋯O hydrogen bonds between the amide carbonyl and the methylene CH adjacent to the ester carbonyl of neighboring molecules as well as between ester carbonyl and methylene group of the glycine moiety of adjacent molecules. Powder X-ray diffraction studies showed a linear dependence of the d-spacings on the acyl chain length, suggesting that all NAGEs adopt a structure similar to the packing exhibited in the crystal lattice of NMGME. Copyright © 2017 Elsevier B.V. All rights reserved.
Mesarch, Matthew B.; Nakatsu, Cindy H.; Nies, Loring
2000-01-01
Benzene, toluene, xylenes, phenol, naphthalene, and biphenyl are among a group of compounds that have at least one reported pathway for biodegradation involving catechol 2,3-dioxygenase enzymes. Thus, detection of the corresponding catechol 2,3-dioxygenase genes can serve as a basis for identifying and quantifying bacteria that have these catabolic abilities. Primers that can successfully amplify a 238-bp catechol 2,3-dioxygenase gene fragment from eight different bacteria are described. The identities of the amplicons were confirmed by hybridization with a 238-bp catechol 2,3-dioxygenase probe. The detection limit was 102 to 103 gene copies, which was lowered to 100 to 101 gene copies by hybridization. Using the dioxygenase-specific primers, an increase in catechol 2,3-dioxygenase genes was detected in petroleum-amended soils. The dioxygenase genes were enumerated by competitive quantitative PCR with a 163-bp competitor that was amplified using the same primers. Target and competitor sequences had identical amplification kinetics. Potential PCR inhibitors that could coextract with DNA, nonamplifying DNA, soil factors (humics), and soil pollutants (toluene) did not impact enumeration. Therefore, this technique can be used to accurately and reproducibly quantify catechol 2,3-dioxygenase genes in complex environments such as petroleum-contaminated soil. Direct, non-cultivation-based molecular techniques for detecting and enumerating microbial pollutant-biodegrading genes in environmental samples are powerful tools for monitoring bioremediation and developing field evidence in support of natural attenuation. PMID:10653735
Mesarch, M B; Nakatsu, C H; Nies, L
2000-02-01
Benzene, toluene, xylenes, phenol, naphthalene, and biphenyl are among a group of compounds that have at least one reported pathway for biodegradation involving catechol 2,3-dioxygenase enzymes. Thus, detection of the corresponding catechol 2,3-dioxygenase genes can serve as a basis for identifying and quantifying bacteria that have these catabolic abilities. Primers that can successfully amplify a 238-bp catechol 2,3-dioxygenase gene fragment from eight different bacteria are described. The identities of the amplicons were confirmed by hybridization with a 238-bp catechol 2,3-dioxygenase probe. The detection limit was 10(2) to 10(3) gene copies, which was lowered to 10(0) to 10(1) gene copies by hybridization. Using the dioxygenase-specific primers, an increase in catechol 2, 3-dioxygenase genes was detected in petroleum-amended soils. The dioxygenase genes were enumerated by competitive quantitative PCR with a 163-bp competitor that was amplified using the same primers. Target and competitor sequences had identical amplification kinetics. Potential PCR inhibitors that could coextract with DNA, nonamplifying DNA, soil factors (humics), and soil pollutants (toluene) did not impact enumeration. Therefore, this technique can be used to accurately and reproducibly quantify catechol 2, 3-dioxygenase genes in complex environments such as petroleum-contaminated soil. Direct, non-cultivation-based molecular techniques for detecting and enumerating microbial pollutant-biodegrading genes in environmental samples are powerful tools for monitoring bioremediation and developing field evidence in support of natural attenuation.
Zhou, Jian; Li, Xi; Yang, Linlin; Yan, Songlin; Wang, Mengmeng; Cheng, Dan; Chen, Qi; Dong, Yulin; Liu, Peng; Cai, Weiquan; Zhang, Chaocan
2015-10-29
A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L(-1) (RHQ = 0.9999) for HQ and 0.1-1150 μmol L(-1) (RCT = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L(-1), respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results. Copyright © 2015 Elsevier B.V. All rights reserved.
Silva, Daniel R.; Brenzan, Mislaine A.; Kambara, Lauro M.; Cortez, Lucia E. R.; Cortez, Diógenes A. G.
2013-01-01
Background: Piper ovatum (Piperaceae) has been used in traditional medicine for the treatment of inflammations and as an analgesic. Previous studies have showed important biological activities of the extracts and amides from P. ovatum leaves. Objective: In this study, a high-performance liquid chromatographic (HPLC) method was developed and validated for quantitative determination of the amides in different parts of Piper ovatum. Materials and Methods: The analysis was carried out on a Metasil ODS column (150 × 4.6 mm, 5μm) at room temperature. HPLC conditions were as follows: acetonitrile (A), and water (B), 1.0% acetic acid. The gradient elution used was 0–30 min, 0-60% A; 30–40 min, 60% A. Flow rate used was 1.0mL/min, and detection at 280nm. Results: The validation using piperlonguminine, as the standard, demonstrated that the method shows linearity (linear correlation coefficient = 0.998), precision (relative standard deviation <5%) and accuracy (mean recovery = 103.78%) in the concentration range 31.25 – 500μg/mL. The limit of detection and quantification were 1.21 and 4.03μg/mL, respectively. This method allowed the identification and quantification of piperlonguminine and piperovatine in the hydroethanolic extracts of P. ovatum obtained from the leaves, stems and roots. All the extracts showed the same chromatographic profile. The leaves and roots contained the highest concentrations of piperlonguminine and the stems and leaves showed the most concentrations of piperovatine. Conclusion: This HPLC method is suitable for routine quantitative analysis of amides in extracts of Piper ovatum and phytopharmaceuticals containing this herb. PMID:24174818
Syed, Sabrina; Halim, Siti Nadiah Abdul; Jotani, Mukesh M; Tiekink, Edward R T
2016-01-01
The title 2:1 co-crystal, 2C7H5NO4·C14H14N4O2, in which the complete di-amide mol-ecule is generated by crystallographic inversion symmetry, features a three-mol-ecule aggregate sustained by hydroxyl-O-H⋯N(pyrid-yl) hydrogen bonds. The p-nitro-benzoic acid mol-ecule is non-planar, exhibiting twists of both the carb-oxy-lic acid and nitro groups, which form dihedral angles of 10.16 (9) and 4.24 (4)°, respectively, with the benzene ring. The di-amide mol-ecule has a conformation approximating to a Z shape, with the pyridyl rings lying to either side of the central, almost planar di-amide residue (r.m.s. deviation of the eight atoms being 0.025 Å), and forming dihedral angles of 77.22 (6)° with it. In the crystal, three-mol-ecule aggregates are linked into a linear supra-molecular ladder sustained by amide-N-H⋯O(nitro) hydrogen bonds and orientated along [10-4]. The ladders are connected into a double layer via pyridyl- and benzene-C-H⋯O(amide) inter-actions, which, in turn, are connected into a three-dimensional architecture via π-π stacking inter-actions between pyridyl and benzene rings [inter-centroid distance = 3.6947 (8) Å]. An evaluation of the Hirshfeld surfaces confirm the importance of inter-molecular inter-actions involving oxygen atoms as well as the π-π inter-actions.
Ye, Shuji; Li, Hongchun; Yang, Weilai; Luo, Yi
2014-01-29
Accurate determination of protein structures at the interface is essential to understand the nature of interfacial protein interactions, but it can only be done with a few, very limited experimental methods. Here, we demonstrate for the first time that sum frequency generation vibrational spectroscopy can unambiguously differentiate the interfacial protein secondary structures by combining surface-sensitive amide I and amide III spectral signals. This combination offers a powerful tool to directly distinguish random-coil (disordered) and α-helical structures in proteins. From a systematic study on the interactions between several antimicrobial peptides (including LKα14, mastoparan X, cecropin P1, melittin, and pardaxin) and lipid bilayers, it is found that the spectral profiles of the random-coil and α-helical structures are well separated in the amide III spectra, appearing below and above 1260 cm(-1), respectively. For the peptides with a straight backbone chain, the strength ratio for the peaks of the random-coil and α-helical structures shows a distinct linear relationship with the fraction of the disordered structure deduced from independent NMR experiments reported in the literature. It is revealed that increasing the fraction of negatively charged lipids can induce a conformational change of pardaxin from random-coil to α-helical structures. This experimental protocol can be employed for determining the interfacial protein secondary structures and dynamics in situ and in real time without extraneous labels.
Role of catechol in the radical reduction of B-alkylcatecholboranes in presence of methanol.
Povie, Guillaume; Villa, Giorgio; Ford, Leigh; Pozzi, Davide; Schiesser, Carl H; Renaud, Philippe
2010-02-07
Mechanistic investigations on the previously reported reduction of B-alkylcatecholboranes in the presence of methanol led to the disclosure of a new mechanism involving catechol as a reducing agent. More than just revising the mechanism of this reaction, we disclose here the surprising role of catechol, a chain breaking antioxidant, which becomes a source of hydrogen atoms in an efficient radical chain process.
New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG
Arora, Pankaj K.; Sharma, Ashutosh
2015-01-01
Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography–mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate, whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis,cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10–12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil. PMID:26082768
Kashyap, Hemant K; Santos, Cherry S; Murthy, N Sanjeeva; Hettige, Jeevapani J; Kerr, Kijana; Ramati, Sharon; Gwon, JinHee; Gohdo, Masao; Lall-Ramnarine, Sharon I; Wishart, James F; Margulis, Claudio J; Castner, Edward W
2013-12-12
X-ray scattering and molecular dynamics simulations have been carried out to investigate structural differences and similarities in the condensed phase between pyrrolidinium-based ionic liquids paired with the bis(trifluoromethylsulfonyl)amide (NTf2(-)) anion where the cationic tail is linear, branched, or cyclic. This is important in light of the charge and polarity type alternations that have recently been shown to be present in the case of liquids with cations of moderately long linear tails. For this study, we have chosen to use the 1-alkyl-1-methylpyrrolidinium, Pyrr(1,n(+)) with n = 5 or 7, as systems with linear tails, 1-(2-ethylhexyl)-1-methylpyrrolidinium, Pyrr(1,EtHx(+)), as a system with a branched tail, and 1-(cyclohexylmethyl)-1-methylpyrrolidinium, Pyrr(1,ChxMe(+)), as a system with a cyclic tail. We put these results into context by comparing these data with recently published results for the Pyrr(1,n(+))/NTf2(-) ionic liquids with n = 4, 6, 8, and 10.1,2 General methods for interpreting the structure function S(q) in terms of q-dependent natural partitionings are described. This allows for an in-depth analysis of the scattering data based on molecular dynamics (MD) trajectories that highlight the effect of modifying the cationic tail.
Lipase-catalyzed synthesis of palmitanilide: Kinetic model and antimicrobial activity study.
Liu, Kuan-Miao; Liu, Kuan-Ju
2016-01-01
Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus. Copyright © 2015 Elsevier Inc. All rights reserved.
Storr, Thomas E; Cully, Sarah J; Rawling, Michael J; Lewis, William; Hamza, Daniel; Jones, Geraint; Stockman, Robert A
2015-06-01
The application of a tandem condensation/cyclisation/[3+2]-cycloaddition/elimination reaction gives an sp(3)-rich tricyclic pyrazoline scaffold with two ethyl esters in a single step from a simple linear starting material. The successive hydrolysis and cyclisation (with Boc anhydride) of these 3-dimensional architectures, generates unprecedented 16-membered macrocyclic bisanhydrides (characterised by XRD). Selective amidations could then be achieved by ring opening with a primary amine followed by HATU-promoted amide coupling to yield an sp(3)-rich natural product-like library. Copyright © 2015 Elsevier Ltd. All rights reserved.
George C. Chen
2008-01-01
N-methyl amino catechol borate (1), N-methyl amino-4-methyl catechol borate (2), N-methyl amino-4-t-butyl catechol borate (3), and N-methyl amino-2, 3-naphthyl borate (4) were synthesized by reflux of boric acid with a diol in solvent N,N-dimethyl formamide. The aminoborates were characterized by proton nuclear magnetic resonance spectroscopy, FTIR spectroscopy and...
Liu, Xinyue; Deng, Jie; Ma, Lang; Cheng, Chong; Nie, Chuanxiong; He, Chao; Zhao, Changsheng
2014-12-16
In this study, we proposed a catechol chemistry inspired approach to construct surface self-cross-linked polymer nanolayers for the design of versatile biointerfaces. Several representative biofunctional polymers, P(SS-co-AA), P(SBMA-co-AA), P(EGMA-co-AA), P(VP-co-AA), and P(MTAC-co-AA), were first synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and then the catecholic molecules (dopamine, DA) were conjugated to the acrylic acid (AA) units by the facile carbodiimide chemistry. Then, the catechol (Cat) group conjugated biofunctional polymers, named PSS-Cat, PSBMA-Cat, PEGMA-Cat, PVP-Cat, and PMTAC-Cat, were applied for the construction of self-cross-linked nanolayers on polymeric substrates via the pH induced catechol cross-linking and immobilization. The XPS spectra, surface morphology, and wettability gave robust evidence that the catechol conjugated polymers were successfully coated, and the coated substrates possessed increased surface roughness and hydrophilicity. Furthermore, the systematic in vitro investigation of protein adsorption, platelet adhesion, activated partial thromboplastin time (APTT), thrombin time (TT), cell viability, and antibacterial ability confirmed that the coated nanolayers conferred the substrates with versatile biological performances. The PSS-Cat coated substrate had low blood component activation and excellent anticoagulant activity; while the PEGMA-Cat and PSBMA-Cat showed ideal resistance to protein fouling and inhibition of platelet activation. The PSS-Cat and PVP-Cat coated substrates exhibited promoted endothelial cell proliferation and viability. The PMTAC-Cat coated substrate showed an outstanding activity on bacterial inhibition. In conclusion, the catechol chemistry inspired approach allows the self-cross-linked nanolayers to be easily immobilized on polymeric substrates with the stable conformation and multiple biofunctionalities. It is expected that this low-cost and facile bioinspired coating system will present great potential in creating novel and versatile biointerfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasan, Koroush; Brady, Patrick; Krumhansl, James L.
Fresh water scarcity is going to be a global great challenge in the near future because of the increasing population. Our water resources are limited and, hence, water treatment and recycling methods are the only alternatives for fresh water procurement in the upcoming decades. Water treatment and recycling methods serve to remove harmful or problematic constituents from ground, surface and waste waters prior to its consumption, industrial supply, or other uses. Scale formation in industrial and domestic installations is still an important problem during water treatment. In water treatment, silica scaling is a real and constant concern for plant operations.more » The focus of this study is on the viability of using a combination of catechol and active carbon to remove dissolved silica from concentrated cooling tower water (CCTW). Various analytical methods, such as ICP-MS and UV-vis, were used to understand the structure-property relationship between the material and the silica removal results. UV-Vis indicates that catechol can react with silica ions and form a silica-catecholate complex. The speciation calculation of catechol and silica shows that catechol and silica bind in the pH range of 8 – 10; there is no evidence of linkage between them in neutral and acidic pHs. The silica removal results indicate that using ~4g/L of catechol and 10g/L active carbon removes up to 50% of the dissolved silica from the CCTW.« less
Karim, Md Nurul; Lee, Ji Eun; Lee, Hye Jin
2014-11-15
A novel amperometric biosensor for catechol was developed using the layer-by-layer (LbL) self-assembly of positively charged hexadecyltrimethylammonium stabilized gold nanocubes (AuNCs), negatively charged poly(sodium 4-styrenesulfonate) and tyrosinase on a screen printed carbon electrode (SPCE). A carboxylic acid terminated alkanethiol assembled on electrochemically deposited Au nanoparticles on a SPCE was used as a platform for LbL assembly. Each SPCE sensor surface was terminated with tyrosinase and the electrocatalytic response due to the tyrosinase reaction with catechol was measured using cyclic voltammetry and square wave voltammetry (SWV). The effect of introducing AuNCs into the LbL assembly to further enhance the catechol detection performance was then investigated by comparing the SWV results to those from biosensors created using both the tyrosinase modified LbL assembly in the absence of NCs and the covalent attachment of tyrosinase. A wide dynamic range from 10nM to 80 µM of catechol with an excellent sensitivity of 13.72 A/M and a detection limit of 0.4 nM were both achieved alongside a good selectivity and reproducibility for the AuNC-modified electrodes. As a demonstration, the optimized biosensor design was applied to determine catechol concentrations in tea samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Processing for maximizing the level of crystallinity in linear aromatic polyimides
NASA Technical Reports Server (NTRS)
St.clair, Terry L. (Inventor)
1991-01-01
The process of the present invention includes first treating a polyamide acid (such as LARC-TPI polyamide acid) in an amide-containing solvent (such as N-methyl pyrrolidone) with an aprotic organic base (such as triethylamine), followed by dehydrating with an organic dehydrating agent (such as acetic anhydride). The level of crystallinity in the linear aromatic polyimide so produced is maximized without any degradation in the molecular weight thereof.
Amić, Ana; Lučić, Bono; Stepanić, Višnja; Marković, Zoran; Marković, Svetlana; Dimitrić Marković, Jasmina M; Amić, Dragan
2017-03-01
Reaction energetics of the double (2H + /2e - ), i.e., the first 1H + /1e - (catechol→ phenoxyl radical) and the second 1H + /1e - (phenoxyl radical→ quinone) free radical scavenging mechanisms of quercetin and its six colonic catecholic metabolites (caffeic acid, hydrocaffeic acid, homoprotocatechuic acid, protocatechuic acid, 4-methylcatechol, and catechol) were computationally studied using density functional theory, with the aim to estimate the antiradical potency of these molecules. We found that second hydrogen atom transfer (HAT) and second sequential proton loss electron transfer (SPLET) mechanisms are less energy demanding than the first ones indicating 2H + /2e - processes as inherent to catechol moiety. The Gibbs free energy change for reactions of inactivation of selected free radicals indicate that catecholic colonic metabolites constitute an efficient group of more potent scavengers than quercetin itself, able to deactivate various free radicals, under different biological conditions. They could be responsible for the health benefits associated with regular intake of flavonoid-rich diet. Copyright © 2016 Elsevier Ltd. All rights reserved.
Organic impurity profiling of 3,4-methylenedioxymethamphetamine (MDMA) synthesised from catechol.
Heather, Erin; Shimmon, Ronald; McDonagh, Andrew M
2015-03-01
This work examines the organic impurity profile of 3,4-methylenedioxymethamphetamine (MDMA) that has been synthesised from catechol (1,2-dihydroxybenzene), a common chemical reagent available in industrial quantities. The synthesis of MDMA from catechol proceeded via the common MDMA precursor safrole. Methylenation of catechol yielded 1,3-benzodioxole, which was brominated and then reacted with magnesium allyl bromide to form safrole. Eight organic impurities were identified in the synthetic safrole. Safrole was then converted to 3,4-methylenedioxyphenyl-2-propanone (MDP2P) using two synthetic methods: Wacker oxidation (Route 1) and an isomerisation/peracid oxidation/acid dehydration method (Route 2). MDMA was then synthesised by reductive amination of MDP2P. Thirteen organic impurities were identified in MDMA synthesised via Route 1 and eleven organic impurities were identified in MDMA synthesised via Route 2. Overall, organic impurities in MDMA prepared from catechol indicated that synthetic safrole was used in the synthesis. The impurities also indicated which of the two synthetic routes was utilised. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Aghapour, Ali Ahmad; Moussavi, Gholamreza; Yaghmaeian, Kamyar
2015-07-01
The effect of ozonation catalyzed with MgO/granular activated carbon (MgO/GAC) composite as a pretreatment process on the performance of cyclic rotating-bed biological reactor (CRBR) for the catechol removal from wastewater has been investigated. CRBR with acclimated biomasses could efficiently remove catechol and its related COD from wastewater at organic loading rate (OLR) of 7.82 kg COD/m(3).d (HRT of 9 h). Then, OLR increased to 15.64 kg COD/m(3).d (HRT of 4.5 h) and CRBR failed. Catalytic ozonation process (COP) used as a pre-treatment and could improve the performance of the failed CRBR. The overall removal efficiency of the combined process attained respective steady states of 91% and 79% for degradation and COD removal of catechol. Therefore, the combined process is more effective in degradation and COD removal of catechol; it is also a viable alternative for upgrading industrial wastewater treatment plant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inactivation of urease by catechol: Kinetics and structure.
Mazzei, Luca; Cianci, Michele; Musiani, Francesco; Lente, Gábor; Palombo, Marta; Ciurli, Stefano
2017-01-01
Urease is a Ni(II)-containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbamate at a rate 10 15 times higher than the uncatalyzed reaction. Urease is a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Therefore, efficient urease inhibitors are actively sought. In this study, we describe a molecular characterization of the interaction between urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) with catechol, a model polyphenol. In particular, catechol irreversibly inactivates both SPU and JBU with a complex radical-based autocatalytic multistep mechanism. The crystal structure of the SPU-catechol complex, determined at 1.50Å resolution, reveals the structural details of the enzyme inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.
PEM Anchorage on Titanium Using Catechol Grafting
Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence
2012-01-01
Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262
Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elder, Thomas; Berstis, Laura; Beckham, Gregg T.
The catechol alcohols, caffeyl and 5-hydroxyconiferyl alcohol, may be incorporated into lignin either naturally or through genetic manipulation. Due to the presence of o-OH groups, these compounds form benzodioxanes, a departure from the interunit connections found in lignins derived from the cinnamyl alcohols. In nature, lignins composed of caffeyl and 5-hydroxyconiferyl alcohol are linear homopolymers and, as such, may have properties that make them amenable for use in value-added products, such as lignin-based carbon fibers. In the current work, results from density functional theory calculations for the reactions of 5-hydroxyconiferyl alcohol, taking stereochemistry into account, are reported. Dehydrogenation and quinone methide formation are found to be thermodynamically favored for 5-hydroxyconiferyl alcohol, over coniferyl alcohol. The comparative energetics of the rearomatization reactions suggest that the formation of the benzodioxane linkage is under kinetic control. Ring-opening reactions of the benzodioxane groups show that the bond dissociation enthalpy of themore » $$\\alpha$$-O cleavage reaction is lower than that of the $$\\beta$$-O reaction. In conclusion, the catechol lignins represent a novel form of the polymer that may offer new opportunities for bioproducts and genetic targets.« less
Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation
Elder, Thomas; Berstis, Laura; Beckham, Gregg T.; ...
2016-05-28
The catechol alcohols, caffeyl and 5-hydroxyconiferyl alcohol, may be incorporated into lignin either naturally or through genetic manipulation. Due to the presence of o-OH groups, these compounds form benzodioxanes, a departure from the interunit connections found in lignins derived from the cinnamyl alcohols. In nature, lignins composed of caffeyl and 5-hydroxyconiferyl alcohol are linear homopolymers and, as such, may have properties that make them amenable for use in value-added products, such as lignin-based carbon fibers. In the current work, results from density functional theory calculations for the reactions of 5-hydroxyconiferyl alcohol, taking stereochemistry into account, are reported. Dehydrogenation and quinone methide formation are found to be thermodynamically favored for 5-hydroxyconiferyl alcohol, over coniferyl alcohol. The comparative energetics of the rearomatization reactions suggest that the formation of the benzodioxane linkage is under kinetic control. Ring-opening reactions of the benzodioxane groups show that the bond dissociation enthalpy of themore » $$\\alpha$$-O cleavage reaction is lower than that of the $$\\beta$$-O reaction. In conclusion, the catechol lignins represent a novel form of the polymer that may offer new opportunities for bioproducts and genetic targets.« less
Synthesis and Catalytic Hydrogenation Reactivity of a Chromium Catecholate Porous Organic Polymer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camacho-Bunquin, Jeffrey; Siladke, Nathan A.; Zhang, Guanghui
2015-03-09
A single-site chromium catecholate POP (catPOP A(2)B(1)) was synthesized and characterized via AT-IR, XAS, and EPR spectroscopy. The well-defined, four-coordinate, 11-electron Cr(III) centers bound to catecholate POP were demonstrated to be active hydrogenation catalysts for nonpolar unsaturated organic substrates under mild conditions (5 mol % of Cr, 200 psi of H-2, 60 degrees C). This material constitutes the first example of a well-defined, supported organometallic chromium hydrogenation precatalyst.
George C. Chen
2004-01-01
N,N-dimethyl amino carbinol catechol borate(1). N,N-dimethyl amino carbinol-4-methyl catechol borate(2), N,N-dimethyl amino carbinol-4-t- butyl catechol borate(3). N,N-dimethyl amino carbinol-2,3-naphthyl borate 4) were synthesized by refluxing boric acid and diol in DMF(N,N-dimethyl formamide). The borates were characterized by NMR. Wood impregnated with borate 1,2 or...
Mechanistic aspects of the tyrosinase oxidation of hydroquinone.
Ramsden, Christopher A; Riley, Patrick A
2014-06-01
Contradictory reports on the behaviour of hydroquinone as a tyrosinase substrate are reconciled in terms of the ability of the initially formed ortho-quinone to tautomerise to the thermodynamically more stable para-quinone isomer. Oxidation of phenols by native tyrosinase requires activation by in situ formation of a catechol formed via an enzyme generated ortho-quinone. In the special case of hydroquinone, catechol formation is precluded by rapid tautomerisation of the ortho-quinone precursor to catechol formation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Novel 3-nitrotriazole-based amides and carbinols as bifunctional anti-Chagasic agents
Papadopoulou, Maria V.; Bloomer, William D.; Lepesheva, Galina I.; Rosenzweig, Howard S.; Kaiser, Marcel; Aguilera-Venegas, Benjamín; Wilkinson, Shane R.; Chatelain, Eric; Ioset, Jean-Robert
2015-01-01
3-Nitro-1H-1,2,4-triazole-based amides with a linear, rigid core and 3-nitrotriazole-based fluconazole analogs were synthesized as dual functioning antitrypanosomal agents. Such compounds are excellent substrates for type I nitroreductase (NTR) located in the mitochondrion of trypanosomatids and, at the same time, act as inhibitors of the sterol 14α-demethylase (T. cruzi CYP51) enzyme. Because combination treatments against parasites are often superior to monotherapy, we believe that this emerging class of bifunctional compounds may introduce a new generation of antitrypanosomal drugs. In the present work, the synthesis and in vitro and in vivo evaluation of such compounds is discussed. PMID:25580906
Modification of the effects of guanethidine on cardiac catechol amines by various agents
Bhagat, B.
1964-01-01
A study has been made of the effect of injections of guanethidine in rats, in depleting catechol amines from the whole cardiac ventricles and from various subcellular fractions. Unlike reserpine, guanethidine first affected the concentration of the amines in the soluble fraction of the cell. Neither [2-(2,6-dimethylphenoxy)-propyl]trimethylammonium chloride monohydrate (β-methyl xylocholine) nor hemicholinium affected the endogenous catechol amines or the uptake of injected noradrenaline, but each significantly reduced the action of guanethidine in depleting catechol amines. Administration of choline chloride after hemicholinium reversed its influence on guanethidine depletion. In cats, cocaine potentiated the pressor response to noradrenaline, but antagonized the response to tyramine and guanethidine, while bretylium and N-o-chlorobenzyl-N'N”-dimethylguanidine sulphate (BW392C60) potentiated the responses to noradrenaline, tyramine and guanethidine. PMID:14190459
Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer
Fish, R.H.
1987-04-21
Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.
Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer
Fish, Richard H.
1987-01-01
Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.
Preparation of activated carbon monolith by application of phenolic resins as carbon precursors
NASA Astrophysics Data System (ADS)
Sajad, Mehran; Kazemzad, Mahmood; Hosseinnia, Azarmidokht
2014-04-01
In the current work, activated carbon monoliths have been prepared by application of different phenolic hydrocarbons namely catechol and resorcinol as carbon precursors. For synthesis of carbon monolith, the precursors have been mixed with Genapol PF-10 as template and then polymerized in the presence of lysine as catalyst. Then the polymerized monolith carbonized in inert atmosphere at 700°C and activated by water steam at 550°C. It was found that resorcinol polymerization is easier than catechol and occurred at 90°C while for polymerization of catechol elevated temperature of 120°C at hydrothermal condition is necessary. The prepared activated carbon samples have been characterized by various analysis methods including scanning electron microscopy (SEM), surface area measurement, and transmission electron microscopy (TEM). The adsorptions of three different aromatic hydrocarbons by the prepared activated carbon samples have also been investigated by high performance liquid chromatography (HPLC) and UV-Vis spectroscopy. It was found that carbon monolith prepared by catechol as carbon precursor has higher adsorpability and strength in comparison with the other sample. The higher performance of carbon monolith prepared by catechol can be associated with its higher active sites in comparison with resorcinol.
Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors.
El-Maiss, Janwa; Cuccarese, Marco; Maerten, Clément; Lupattelli, Paolo; Chiummiento, Lucia; Funicello, Maria; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia
2018-06-06
In medical diagnosis and environmental monitoring, enzymatic biosensors are widely applied because of their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Enzyme immobilization is a critical process in the development of this type of biosensors with the necessity to avoid the denaturation of the enzymes and ensuring their accessibility toward the analyte. Electrodeposition of macromolecules is increasingly considered to be the most suitable method for the design of biosensors. Being simple and attractive, it finely controls the immobilization of enzymes on electrode surfaces, usually by entrapment or adsorption, using an electrical stimulus. Performed manually, enzyme immobilization by cross-linking prevents enzyme leaching and was never done using an electrochemical stimulus. In this work, we present a mussel-inspired electro-cross-linking process using glucose oxidase (GOX) and a homobifunctionalized catechol ethylene oxide spacer as a cross-linker in the presence of ferrocene methanol (FC) acting as a mediator of the buildup. Performed in one pot, the process takes place in three steps: (i) electro-oxidation of FC, by the application of cyclic voltammetry, creating a gradient of ferrocenium (FC + ); (ii) oxidation of bis-catechol into a bis-quinone molecule by reaction with the electrogenerated FC + ; and (iii) a chemical reaction of bis-quinone with free amino moieties of GOX through Michael addition and a Schiff's base condensation reaction. Employed for the design of a second-generation glucose biosensor using ferrocene methanol (FC) as a mediator, this new enzyme immobilization process presents several advantages. The cross-linked enzymatic film (i) is obtained in a one-pot process with nonmodified GOX, (ii) is strongly linked to the metallic electrode surface thanks to catechol moieties, and (iii) presents no leakage issues. The developed GOX/bis-catechol film shows a good response to glucose with a quite wide linear range from 1.0 to 12.5 mM as well as a good sensitivity (0.66 μA/mM cm 2 ) and a high selectivity to glucose. These films would distinguish between healthy (3.8 and 6.5 mM) and hyperglycemic subjects (>7 mM). Finally, we show that this electro-cross-linking process allows the development of miniaturized biosensors through the functionalization of a single electrode out of a microelectrode array. Elegant and versatile, this electro-cross-linking process can also be used for the development of enzymatic biofuel cells.
Ajao, At; Kannan, M; Yakubu, Se; Vj, Umoh; Jb, Ameh
2012-01-01
Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate.
Ajao, AT; Kannan, M; Yakubu, SE; VJ, Umoh; JB, Ameh
2012-01-01
Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate. PMID:23144539
Tejero, Ismael; Gonzalez-García, Núria; Gonzalez-Lafont, Angels; Lluch, José M
2007-05-09
The catechol functionality present in the catechins is responsible for the protective effects exerted by green tea against a wide range of human diseases. High-level electronic structure calculations and canonical variational transition-state theory including multidimensional tunneling corrections have allowed us to understand the key factors of the antioxidant effectiveness of the catechol group. This catechol group forms two hydrogen bonds with the two oxygen atoms of the lipid peroxyl radical, leading to a very compact reactant complex. This fact produces an extremely narrow adiabatic potential-energy profile corresponding to the hydrogen abstraction by the peroxyl radical, which makes it possible for a huge tunneling contribution to take place. So, quantum-mechanical tunneling highly increases the corresponding rate constant value, in such a way that catechins become able to trap the lipid peroxyl radicals in a dominant competition with the very damaging free-radical chain-lipid peroxidation reaction.
Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp.
Grund, E; Knorr, C; Eichenlaub, R
1990-01-01
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains. PMID:2339895
Removal of arsenic compounds from spent catecholated polymer
Fish, Richard H.
1985-01-01
Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves: a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and, b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.
Hot-hole extraction from quantum dot to molecular adsorbate.
Singhal, Pallavi; Ghosh, Hirendra N
2015-03-09
Ultrafast thermalized and hot-hole-transfer processes have been investigated in CdSe quantum dot (QD)/catechol composite systems in which hole transfer from photoexcited QDs to the catechols is thermodynamically favorable. A series of catechol derivatives were selected with different electron-donating and -withdrawing groups, and the effect of these groups on hole transfer and charge recombination (CR) dynamics has been investigated. The hole-transfer time was determined using the fluorescence upconversion technique and found to be 2-10 ps depending on the molecular structure of the catechol derivatives. The hot-hole-transfer process was followed after monitoring 2S luminescence of CdSe QDs. Interestingly, hot-hole extraction was observed only in the CdSe/3-methoxycatechol (3-OCH3) composite system owing to the higher electron-donating property of the 3-methoxy group. To confirm the extraction of the hot hole and to monitor the CR reaction in CdSe QD/catechol composite systems, ultrafast transient absorption studies have been carried out. Ultrafast transient-absorption studies show that the bleach recovery kinetics of CdSe QD at the 2S excitonic position is much faster in the presence of 3-OCH3. This faster bleach recovery at the 2S position in CdSe/3-OCH3 suggests hot-hole transfer from CdSe QD to 3-OCH3. CR dynamics in CdSe QD/catechol composite systems was followed by monitoring the excitonic bleach at the 1S position and was found to decrease with free energy of the CR reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tao, Ying; Fishman, Ayelet; Bentley, William E.; Wood, Thomas K.
2004-01-01
Aromatic hydroxylations are important bacterial metabolic processes but are difficult to perform using traditional chemical synthesis, so to use a biological catalyst to convert the priority pollutant benzene into industrially relevant intermediates, benzene oxidation was investigated. It was discovered that toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1, toluene 3-monooxygenase (T3MO) of Ralstonia pickettii PKO1, and toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 convert benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by successive hydroxylations. At a concentration of 165 μM and under the control of a constitutive lac promoter, Escherichia coli TG1/pBS(Kan)T4MO expressing T4MO formed phenol from benzene at 19 ± 1.6 nmol/min/mg of protein, catechol from phenol at 13.6 ± 0.3 nmol/min/mg of protein, and 1,2,3-trihydroxybenzene from catechol at 2.5 ± 0.5nmol/min/mg of protein. The catechol and 1,2,3-trihydroxybenzene products were identified by both high-pressure liquid chromatography and mass spectrometry. When analogous plasmid constructs were used, E. coli TG1/pBS(Kan)T3MO expressing T3MO formed phenol, catechol, and 1,2,3-trihydroxybenzene at rates of 3 ± 1, 3.1 ± 0.3, and 0.26 ± 0.09 nmol/min/mg of protein, respectively, and E. coli TG1/pBS(Kan)TOM expressing TOM formed 1,2,3-trihydroxybenzene at a rate of 1.7 ± 0.3 nmol/min/mg of protein (phenol and catechol formation rates were 0.89 ± 0.07 and 1.5 ± 0.3 nmol/min/mg of protein, respectively). Hence, the rates of synthesis of catechol by both T3MO and T4MO and the 1,2,3-trihydroxybenzene formation rate by TOM were found to be comparable to the rates of oxidation of the natural substrate toluene for these enzymes (10.0 ± 0.8, 4.0 ± 0.6, and 2.4 ± 0.3 nmol/min/mg of protein for T4MO, T3MO, and TOM, respectively, at a toluene concentration of 165 μM). PMID:15240250
Bapst, Jean-Philippe; Eberle, Alex N
2017-01-01
A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [ 111 In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro , good tumor uptake in vivo , but they may suffer from relatively high kidney uptake and retention in vivo . We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C -terminal end (overall net charge of the molecule -2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH 2 (DOTA-Phospho-MSH 2-9 ) with two negative charges in the N -terminal region (net charge -1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [ 111 In]DOTA-Phospho-MSH 2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [ 111 In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [ 111 In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [ 111 In]DOTA-Phospho-MSH 2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH 2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and -2, we now demonstrate that a net charge of -1, with the extra negative charges preferably placed in the N -terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or -2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH 2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide.
Bapst, Jean-Philippe; Eberle, Alex N.
2017-01-01
A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [111In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro, good tumor uptake in vivo, but they may suffer from relatively high kidney uptake and retention in vivo. We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C-terminal end (overall net charge of the molecule −2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH2 (DOTA-Phospho-MSH2-9) with two negative charges in the N-terminal region (net charge −1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [111In]DOTA-Phospho-MSH2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [111In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [111In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [111In]DOTA-Phospho-MSH2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and −2, we now demonstrate that a net charge of −1, with the extra negative charges preferably placed in the N-terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or −2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide. PMID:28491052
Llinás, M; Klein, M P; Wüthrich, K
1978-12-01
The proton nuclear magnetic resonance (NMR) spin-lattice relaxation of all six amides of deferriferrichrome and of various alumichromes dissolved in hexadeutero-dimethylsulfoxide have been investigated at 100, 220, and 360 MHz. We find that, depending on the type of residue (glycyl or ornithyl), the amide proton relaxation rates are rather uniform in the metal-free cyclohexapeptide. In contrast, the (1)H spinlattice relaxation times (T(1)'s) are distinct in the Al(3+)-coordination derivative. Similar patterns are observed in a number of isomorphic alumichrome homologues that differ in single-site residue substitutions, indicating that the spin-lattice relaxation rate is mainly determined by dipole-dipole interactions within a rigid molecular framework rather than by the specific primary structures. Analysis of the data in terms of (1)H-(1)H distances (r) calculated from X-ray coordinates yields a satisfactory linear fit between T(1) (-1) and Sigmar(-6) at the three magnetic fields. Considering the very sensitive r-dependence of T(1), the agreement gives confidence, at a quantitative level, both on the fitness of the crystallographic model to represent the alumichromes' solution conformation and on the validity of assuming isotropic rotational motion for the globular metallopeptides. An extra contribution to the amide proton T(1) (-1) is proposed to mainly originate from the (1)H-(14)N dipolar interaction: this was supported by comparison with measurements on an (15)N-enriched peptide. The nitrogen dipolar contribution to the peptide proton relaxation is discussed in the context of {(1)H}-(1)H nuclear Overhauser enhancement (NOE) studies because, especially at high fields, it can be dominant in determining the amide proton relaxation rates and hence result in a decreased effectiveness for the (1)H-(1)H dipolar mechanism to cause NOE's. From the slope and intersect values of T(1) (-1) vs. Sigmar(-6) linear plots, a number of independent estimates of tau(r), the rotational correlation time, were derived. These and the field-dependence of the T(1)'s yield a best estimate
Synthesis, molecular structure and magnetic properties of a rhenium(IV) compound with catechol
NASA Astrophysics Data System (ADS)
Cuevas, A.; Geis, L.; Pintos, V.; Chiozzone, R.; Sanchíz, J.; Hummert, M.; Schumann, H.; Kremer, C.
2009-03-01
A novel Re(IV) complex containing catechol as ligand has been prepared and characterized. The crystal structure of (HNEt 3)(NBu 4)[ReCl 4(cat)]·H 2cat was determined. The rhenium ion presents a distorted octahedral geometry, being bonded to a bidentate catecholate group and four chloride anions. The magnetic properties of the complex were studied, a /2 D/ (the energy gap between ±3/2 and ±1/2 Kramers doublets) value of 190(10) cm -1. This is the largest /2 D/ value reported for Re(IV) up to now.
Smith, Parker J; Goeltz, John C
2017-12-07
The 1,2-diol moiety in a variety of substituted catechols allows formation of room temperature ionic melts in a 2:1 ratio with choline chloride or choline dihydrogen citrate. These deep eutectic solvents were 4.3-6.6 M in redox active catechols. Substituents on 3- and 4-substituted catechols shift both E° and pK a such that Hammett parameters predict the observed E p for oxidation in square wave voltammetry. The proton acceptor for the proton-coupled oxidation shifts the observed E p more strongly than the substituents within the substituents and acceptors reported here. The shift is predicted well by the pK a of the conjugate acid of the proton acceptor, i.e., water in aqueous solutions or chloride or dihydrogen citrate in the DESs in this study. Together, the substituent and the proton acceptor allow gross and fine-tuning of the oxidation potential for catechol over 750 mV, the first demonstration of control of the thermodynamics of proton-coupled electron transfer in deep eutectic solvents. Changing the substituents on the HBD affords fine control in tens of millivolts, while changing the base strength of the anion of the organic salt affords gross control across hundreds of millivolts.
Shan, Jun; Ji, Rong; Yu, Yongjie; Xie, Zubin; Yan, Xiaoyuan
2015-10-30
This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of (14)C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of (14)C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of (14)C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of (14)C-catechol and microbial community in soil.
Shan, Jun; Ji, Rong; Yu, Yongjie; Xie, Zubin; Yan, Xiaoyuan
2015-01-01
This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of 14C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of 14C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of 14C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of 14C-catechol and microbial community in soil. PMID:26515132
Physical attributes of some clouds amid a forest ecosystem's trees
DeFelice, Thomas P.
2002-01-01
Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy–cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m−3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.
Li, Yuan-Ting; Li, Da-Wei; Song, Wei; Long, Yi-Tao
2011-02-01
A disposable electrode, multi-walled carbon nanotube modified screen printed electrode (MWCNT/SPE), had been fabricated using screen printing technology and drop-coating method to determine dihydroxybenzene isomers (hydroquinone, catechol and resorcinol). The cyclic voltammetry behavior of dihydroxybenzene isomers had been investigated with the MWCNT/SPE. The results reveal that MWCNT/SPE, which shows a strong electrocatalytic activity for the oxidation of dihydroxybenzenes, can entirely separate the oxidation peaks of them. According to differential pulse voltammetry tests, the peak currents of dihydroxybenzene isomers are linear to their concentrations at the range of 8.20 x 10(-6) -1.00 x 10(-3), 8.20 x 10(-6) -1.00 x 10(-3) and 1.64 x 10(-5) -1.16 x 10(-3) mol x L(-1), with the detection limits of 4.34 x 10(-6), 3.42 x 10(-6) and 6.70 x 10(-6) mol x L(-1) for hydroquinone, catechol and resorcinol, respectively. For the determination of dihydroxybenzene isomers in water samples, the value of recovery found by standard addition method was in the range of 96.2%-104.9%. These results indicate MWCNT/SPE can be applied to rapid in-situ determination of dihydroxybenzenes-polluted water samples.
Kishore, Nanda
2017-01-01
The unprocessed bio-oil obtained by the pyrolysis of lignocellulosic biomass comprises hundreds of oxy-components which vitiate its quality in terms of low heating value, low stability, low pH, etc. Therefore, it has to be upgraded prior to its use as transportation fuel. In this work, guaiacol, a promising compound of the phenolic fraction of unprocessed bio-oil, is considered as a model component for studying its hydrodeoxygenation over a Pt3 catalyst cluster. The production of catechol, 3-methylcatechol, m-cresol and o-cresol from guaiacol over a Pt3 cluster is numerically investigated using density functional theory. Further, the kinetic parameters are obtained over a wide range of temperature, i.e. 473–673 K at an interval of 50 K. Briefly, results indicate that O─H and C─H bond scissions determine the reaction rates of ‘guaiacol to catechol’ and ‘catechol to 3-methylcatechol’ reactions with activation energies of 30.32 and 41.3 kcal mol−1, respectively. On the other hand, C─O bond scissions determine the rates of 3-methylcatechol to m- and o-cresol production reactions, respectively. The kinetics of all reactions indicate that ln k versus 1/T plots are linear over the entire range of temperature considered herein. PMID:29291058
40 CFR 721.10711 - Alkyl substituted catechol (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10711 Alkyl substituted catechol (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...
Fukin, Georgy K; Baranov, Evgenii V; Jelsch, Christian; Guillot, Benoît; Poddel'sky, Andrey I; Cherkasov, Vladimir K; Abakumov, Gleb A
2011-07-28
The experimental distribution of electron density in Ph(3)(4,5-OMe-3,6-Bu(t)-Cat)Sb·MeCN (1*) and Ph(3)(4,5-N(2)C(4)H(6)-3,6-Bu(t)-Cat)Sb·MeOH (2*) complexes was studied. According to atoms in molecules theory, the Sb-C(Ph), Sb-O(catecholate), and Sb···N(O) bonds are intermediate, whereas the O-C and C-C bonds are covalent, respectively. The energy of the Sb···N(MeCN) and Sb···O(MeOH) bonds are 7.0 and 11.3 kcal/mol according to the Espinosa equation. Density functional theory and Hartree-Fock calculations were carried out for a series of catecholate and amidophenolate complexes of antimony(V). It was shown that such calculations reliably reproduce geometrical and topological parameters and therefore can be used for a criterion search of dioxygen reversible binding by the catecholate and amidophenolate complexes of antimony(V). It was found that the "critical" value of the HOMO energy vary in the range from -5.197 to -5.061 eV for reversible binding of dioxygen complexes. This can serve as a thermodynamic criterion to predict the possibility of the dioxygen reversible binding by the catecholate and amidophenolate complexes of Sb(V). The HOMO energies correlate with the conversion of the catecholate and amidophenolate complexes in corresponding spiroendoperoxide derivatives as well. The contribution of the atom orbitals of the carbon atoms in the five-membered metallocycle to HOMO in complexes with different substitutes in the 4- and 5-positions of the catecholate ligand allows predicting the place of dioxygen addition. © 2011 American Chemical Society
Lih, Eugene; Choi, Seul Gi; Ahn, Dong June; Joung, Yoon Ki; Han, Dong Keun
2016-01-01
Although endovascular stenting has been used as an interventional therapy to treat cardio- and cerebro-vascular diseases, it is associated with recurrent vascular diseases following stent thrombosis and in-stent restenosis. In this study, a metallic stent was coated with dopamine-conjugated hyaluronic acid with different ratios of catechol group to improve hemocompatibility and re-endothelialization. Especially, we were interested in how much amount of catechol group is appropriate for the above-mentioned purposes. Therefore, a series of dopamine-conjugated hyaluronic acid conjugates with different ratios of catechol group were synthesized via a carbodiimide coupling reaction. Dopamine-conjugated hyaluronic acid conjugates were characterized with 1 H-nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the amount of catechol group in dopamine-conjugated hyaluronic acid was measured by ultraviolet spectrometer. Co-Cr substrates were polished and coated with various dopamine-conjugated hyaluronic acid conjugates under pH 8.5. Dopamine-conjugated hyaluronic acid amounts on the substrate were quantified by micro-bicinchoninic acid assay. Surface characteristics of dopamine-conjugated hyaluronic-acid-coated Co-Cr were evaluated by water contact angle, scanning electron microscopy, and atomic force microscopy. The hemocompatibility of the surface-modified substrates was assessed by protein adsorption and platelet adhesion tests. Adhesion and activation of platelets were confirmed with scanning electron microscopy and lactate dehydrogenase assay. Human umbilical vein endothelial cells were cultured on the substrates, and the viability, adhesion, and proliferation were investigated through cell counting kit-8 assay and fluorescent images. Obtained results demonstrated that optimal amounts of catechol group (100 µmol) in the dopamine-conjugated hyaluronic acid existed in terms of various properties such as hemocompatibility and cellular responses.
Variable Effect during Polymerization
ERIC Educational Resources Information Center
Lunsford, S. K.
2005-01-01
An experiment performing the polymerization of 3-methylthiophene(P-3MT) onto the conditions for the selective electrode to determine the catechol by using cyclic voltammetry was performed. The P-3MT formed under optimized conditions improved electrochemical reversibility, selectivity and reproducibility for the detection of the catechol.
Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M.
2012-01-01
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis. PMID:23162467
Windschuh, Johannes; Siero, Jeroen C.W.; Zaiss, Moritz; Luijten, Peter R.; Klomp, Dennis W.J.; Hoogduin, Hans
2017-01-01
High field MRI is beneficial for chemical exchange saturation transfer (CEST) in terms of high SNR, CNR, and chemical shift dispersion. These advantages may, however, be counter‐balanced by the increased transmit field inhomogeneity normally associated with high field MRI. The relatively high sensitivity of the CEST contrast to B 1 inhomogeneity necessitates the development of correction methods, which is essential for the clinical translation of CEST. In this work, two B 1 correction algorithms for the most studied CEST effects, amide‐CEST and nuclear Overhauser enhancement (NOE), were analyzed. Both methods rely on fitting the multi‐pool Bloch‐McConnell equations to the densely sampled CEST spectra. In the first method, the correction is achieved by using a linear B 1 correction of the calculated amide and NOE CEST effects. The second method uses the Bloch‐McConnell fit parameters and the desired B 1 amplitude to recalculate the CEST spectra, followed by the calculation of B 1‐corrected amide and NOE CEST effects. Both algorithms were systematically studied in Bloch‐McConnell equations and in human data, and compared with the earlier proposed ideal interpolation‐based B 1 correction method. In the low B 1 regime of 0.15–0.50 μT (average power), a simple linear model was sufficient to mitigate B 1 inhomogeneity effects on a par with the interpolation B 1 correction, as demonstrated by a reduced correlation of the CEST contrast with B 1 in both the simulations and the experiments. PMID:28111824
Farsa, Oldřich
2013-01-01
The log BB parameter is the logarithm of the ratio of a compound's equilibrium concentrations in the brain tissue versus the blood plasma. This parameter is a useful descriptor in assessing the ability of a compound to permeate the blood-brain barrier. The aim of this study was to develop a Hansch-type linear regression QSAR model that correlates the parameter log BB and the retention time of drugs and other organic compounds on a reversed-phase HPLC containing an embedded amide moiety. The retention time was expressed by the capacity factor log k'. The second aim was to estimate the brain's absorption of 2-(azacycloalkyl)acetamidophenoxyacetic acids, which are analogues of piracetam, nefiracetam, and meclofenoxate. Notably, these acids may be novel nootropics. Two simple regression models that relate log BB and log k' were developed from an assay performed using a reversed-phase HPLC that contained an embedded amide moiety. Both the quadratic and linear models yielded statistical parameters comparable to previously published models of log BB dependence on various structural characteristics. The models predict that four members of the substituted phenoxyacetic acid series have a strong chance of permeating the barrier and being absorbed in the brain. The results of this study show that a reversed-phase HPLC system containing an embedded amide moiety is a functional in vitro surrogate of the blood-brain barrier. These results suggest that racetam-type nootropic drugs containing a carboxylic moiety could be more poorly absorbed than analogues devoid of the carboxyl group, especially if the compounds penetrate the barrier by a simple diffusion mechanism.
Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M
2016-03-08
The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.
NASA Astrophysics Data System (ADS)
Sarma, Bani Kanta
2013-09-01
The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by nO → σ*S-OH orbital interactions, which force the -OH group to adopt a position trans to the S⋯O interaction, leading to an almost linear arrangement of the O⋯S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S⋯N or S⋯O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.
Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery.
Xu, Jinke; Strandman, Satu; Zhu, Julian X X; Barralet, Jake; Cerruti, Marta
2015-01-01
Drug administration via buccal mucosa is an attractive drug delivery strategy due to good patient compliance, prolonged localized drug effect, and avoidance of gastrointestinal drug metabolism and first-pass elimination. Buccal drug delivery systems need to maintain an intimate contact with the mucosa lining in the wet conditions of the oral cavity for long enough to allow drug release and absorption. For decades, mucoadhesive polymers such as chitosan (CS) and its derivatives have been explored to achieve this. In this study, inspired by the excellent wet adhesion of marine mussel adhesive protein, we developed a buccal drug delivery system using a novel catechol-functionalized CS (Cat-CS) hydrogel. We covalently bonded catechol functional groups to the backbone of CS, and crosslinked the polymer with a non-toxic crosslinker genipin (GP). We achieved two degrees of catechol conjugation (9% and 19%), forming Cat9-CS/GP and Cat19-CS/GP hydrogels, respectively. We confirmed covalent bond formation during the catechol functionalization and GP crosslinking during the gel formation. The gelation time and the mechanical properties of Cat-CS hydrogels are similar to those of CS only hydrogels. Catechol groups significantly enhanced mucoadhesion in vitro (7 out of the 10 Cat19-CS hydrogels were still in contact with porcine mucosal membrane after 6 h, whereas all of the CS hydrogels lost contact after 1.5 h). The new hydrogel systems sustained the release of lidocaine for about 3 h. In-vivo, we compared buccal patches made of Cat19-CS/GP and CS/GP adhered to rabbit buccal mucosa. We were able to detect lidocaine in the rabbit's serum at concentration about 1 ng/ml only from the Cat19-CS patch, most likely due to the intimate contact provided by mucoadhesive Cat19-CS/GP systems. No inflammation was observed on the buccal tissue in contact with any of the patches tested. These results show that the proposed catechol-modified CS hydrogel is a promising mucoadhesive and biocompatible hydrogel system for buccal drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Salicylate and catechol levels are maintained in nahG transgenic poplar
Alison M. Morse; Timothy J. Tschaplinski; Christopher Dervinis; Paula M. Pijut; Eric A. Schmelz; Wendy Day; John M. Davis
2007-01-01
Metabolic profiling was used to investigate the molecular phenotypes of a transgenic Populus tremula × P. alba hybrid expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reduce...
Benedict, Jason B; Coppens, Philip
2010-03-10
The crystalline nanocluster phase, in which nanoscale metal oxide clusters are self-assembled in three-dimensional periodic arrays, is described. The crystalline assembly of nanoparticles functionalized with technologically relevant ligands offers the opportunity to obtain unambiguous structural information that can be combined with theoretical calculations based on the known geometry and used to interpret spectroscopic and other information. A series of Ti/O clusters up to approximately 2.0 nm in diameter have been synthesized and functionalized with the adsorbents catechol and isonicotinic acid. Whereas the isonicotinate is always adsorbed in a bridging monodentate mode, four different adsorption modes of catechol have been identified. The particles show a significantly larger variation of the Ti-O distances than observed in the known TiO(2) phases and exhibit both sevenfold overcoordination and five- and fourfold undercoordination of the Ti atoms. Theoretical calculations show only a moderate dependence of the catecholate net charge on the geometry of adsorption. All of the catechol-functionalized clusters have a deep-red color due to penetration of the highest occupied catechol levels into the band gap of the Ti/O particles. Spectroscopic measurements of the band gap of the Ti(17) cluster are in good agreement with the theoretical values and show a blue shift of approximately 0.22 eV relative to those reported for anatase nanoparticles.
Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan
2016-04-15
Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was <1 μg/mg but increased when SCT was >1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035-2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals.
Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan
2016-01-01
Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was <1 μg/mg but increased when SCT was >1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035–2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals. PMID:27079263
Rainbow trout (Oncorhynchus mykiss) liver microsomes were used to study the rate of ring-hydroxylation of phenol PH) by directly measuring the production of hydroquinone (HQ), the primary metabolite, and catechol (CAT), a secondary metabolite. An HPLC method with integrated ultra...
The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...
Rainbow trout liver microsomes were used to study the rate of ring-hydroxylation of phenol (PH) by directly measuring the production of hydroquinone (HQ), the primary metabolite, and catechol (CAT), a secondary metabolite. An HPLC method with integrated ultroviolet (UV) and elect...
Miyaji, Akimitsu; Gabe, Yu; Kohno, Masahiro; Baba, Toshihide
2017-03-01
The generation of hydroxyl radicals and singlet oxygen during the oxidation of 4-(4-hydroxyphenyl)-2-butanol (rhododendrol) and 4-(3,4-dihydroxyphenyl)-2-butanol (rhododendrol-catechol) with mushroom tyrosinase in a phosphate buffer (pH 7.4) was examined as the model for the reactive oxygen species generation via the two rhododendrol compounds in melanocytes. The reaction was performed in the presence of 5,5-dimethyl-1-pyrroline- N -oxide (DMPO) spin trap reagents for hydroxyl radical or 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen, and their electron spin resonances were measured. An increase in the electron spin resonances signal attributable to the adduct of DMPO reacting with the hydroxyl radical and that of 4-oxo-TEMP reacting with singlet oxygen was observed during the tyrosinase-catalyzed oxidation of rhododendrol and rhododendrol-catechol, indicating the generation of hydroxyl radical and singlet oxygen. Moreover, hydroxyl radical generation was also observed in the autoxidation of rhododendrol-catechol. We show that generation of intermediates during tyrosinase-catalyzed oxidation of rhododendrol enhances oxidative stress in melanocytes.
Suresh, S; Srivastava, V C; Mishrab, I M
2012-01-01
In the present paper, the removal of aniline by adsorption process onto granular activated carbon (GAC) is reported from aqueous solutions containing catechol and resorcinol separately. The Taguchi experimental design was applied to study the effect of such parameters as the initial component concentrations (C(0,i)) of two solutes (aniline and catechol or aniline and resorcinol) in the solution, temperature (T), adsorbent dosage (m) and contact time (t). The L27 orthogonal array consisting of five parameters each with three levels was used to determine the total amount of solutes adsorbed on GAC (q(tot), mmol/g) and the signal-to-noise ratio. The analysis of variance (ANOVA) was used to determine the optimum conditions. Under these conditions, the ANOVA shows that m is the most important parameter in the adsorption process. The most favourable levels of process parameters were T = 303 K, m = 10 g/l and t = 660 min for both the systems, qtot values in the confirmation experiments carried out at optimum conditions were 0.73 and 0.95 mmol/g for aniline-catechol and aniline-resorcinol systems, respectively.
Gray, David L; Allen, John A; Mente, Scot; O'Connor, Rebecca E; DeMarco, George J; Efremov, Ivan; Tierney, Patrick; Volfson, Dmitri; Davoren, Jennifer; Guilmette, Edward; Salafia, Michelle; Kozak, Rouba; Ehlers, Michael D
2018-02-14
Selective activation of dopamine D1 receptors (D1Rs) has been pursued for 40 years as a therapeutic strategy for neurologic and psychiatric diseases due to the fundamental role of D1Rs in motor function, reward processing, and cognition. All known D1R-selective agonists are catechols, which are rapidly metabolized and desensitize the D1R after prolonged exposure, reducing agonist response. As such, drug-like selective D1R agonists have remained elusive. Here we report a novel series of selective, potent non-catechol D1R agonists with promising in vivo pharmacokinetic properties. These ligands stimulate adenylyl cyclase signaling and are efficacious in a rodent model of Parkinson's disease after oral administration. They exhibit distinct binding to the D1R orthosteric site and a novel functional profile including minimal receptor desensitization, reduced recruitment of β-arrestin, and sustained in vivo efficacy. These results reveal a novel class of D1 agonists with favorable drug-like properties, and define the molecular basis for catechol-specific recruitment of β-arrestin to D1Rs.
NASA Astrophysics Data System (ADS)
Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu
2008-11-01
Dynamic properties of a diruthenium complex with ligand-unsupported Ru-Ru triple bonds, Na 2[Ru 2(3,6-DTBCat) 4] ( 1), were studied using variable-temperature 1H NMR. Structural freedom derived from the ligand-unsupported structure leads to torsional motion about the Ru-Ru bonds in THF and in DMF. The observed solvent dependency corresponds to the electrostatic interactions between the diruthenium complex and Na + counter cations, which are sensitive to the polarity of solvents. In addition, a new diruthenium complex, [{Na(THF) 2(H 2O)}{Na(THF) 0.5(H 2O)}{Ru 2(3,6-DTBCat) 2(H 4Cat) 2}] ( 2·2.5THF·2H 2O), with a ligand-unsupported Ru-Ru bond surrounded by two different kinds of catecholate derivatives, has been synthesized and crystallographically characterized. The complex, which was characterized by single-crystal structural analysis, will provide an opportunity to investigate not only static molecular structures but also dynamic physicochemical properties in comparison with analogues containing four identical catecholate derivatives.
NASA Astrophysics Data System (ADS)
Chang, Ying; Yuan, Conghui; Liu, Cheng; Mao, Jie; Li, Yuntong; Wu, Haiyang; Wu, Yuzhe; Xu, Yiting; Zeng, Birong; Dai, Lizong
2017-10-01
A novel strategy has been developed to generate B, N co-doped carbon materials (CNBs) through the pyrolysis of boronate polymer nanoparticles (BPNs) derived from the condensation reaction between catechol and boronic monomers. The morphology, surface area and heteroatom (viz. B and N) content of the CNBs can be easily adjusted by altering the molar ratio between catechol and boronic monomers. The supercapacitor and oxygen reduction reaction (ORR) performance of the CNBs are optimized. CNBs derived from equal molar ratio of catechol and boronic monomers exhibit favorable performance for supercapacitor, featuring a specific capacitance of up to 299.4 F/g at 0.2 A/g, an improved rate capability and excellent cycle stability. Notably, CNBs prepared using 1/2 molar ratio of catechol to boronic monomers show excellent ORR performance, as they demonstrate good electrocatalytic activity, high tolerance for methanol and long durability. Our findings may be of interest in the design of carbon materials with optimized electrochemical properties through the control over surface area and the content of heteroatom.
Catechol polymers for pH-responsive, targeted drug delivery to cancer cells.
Su, Jing; Chen, Feng; Cryns, Vincent L; Messersmith, Phillip B
2011-08-10
A novel cell-targeting, pH-sensitive polymeric carrier was employed in this study for delivery of the anticancer drug bortezomib (BTZ) to cancer cells. Our strategy is based on facile conjugation of BTZ to catechol-containing polymeric carriers that are designed to be taken up selectively by cancer cells through cell surface receptor-mediated mechanisms. The polymer used as a building block in this study was poly(ethylene glycol), which was chosen for its ability to reduce nonspecific interactions with proteins and cells. The catechol moiety was exploited for its ability to bind and release borate-containing therapeutics such as BTZ in a pH-dependent manner. In acidic environments, such as in cancer tissue or the subcellular endosome, BTZ dissociates from the polymer-bound catechol groups to liberate the free drug, which inhibits proteasome function. A cancer-cell-targeting ligand, biotin, was presented on the polymer carriers to facilitate targeted entry of drug-loaded polymer carriers into cancer cells. Our study demonstrated that the cancer-targeting drug-polymer conjugates dramatically enhanced cellular uptake, proteasome inhibition, and cytotoxicity toward breast carcinoma cells in comparison with nontargeting drug-polymer conjugates. The pH-sensitive catechol-boronate binding mechanism provides a chemoselective approach for controlling the release of BTZ in targeted cancer cells, establishing a concept that may be applied in the future toward other boronic acid-containing therapeutics to treat a broad range of diseases. © 2011 American Chemical Society
Thermodynamics of Molybdate Binding to Humic Acid
NASA Astrophysics Data System (ADS)
Thalhammer, K.; Gilbert, B.
2016-12-01
Molybdenum is an essential nutrient for diazotrophic bacteria that use nitrogenase I to fix atmospheric nitrogen in soils into bioavailable forms such as ammonia. This metalloid is released during rock weathering processes and at neutral pH it exists primarily as the soluble oxyanion molybdate, MoO42-. It has been established that molybdate mobility and bioavailability in soils is influenced by sorption to mineral surfaces and complexation by natural organic matter (NOM). The molybdate ion is readily bound by ortho dihydroxybenzene molecules such as catechol and catechol groups in siderophores. Humic acids (HA) found in NOM contain abundant phenolic groups and extended X-ray absorption fine structure (EXAFS) spectroscopy demonstrated that molybdate is bound by catechol-containing molecules in soil organic matter1. However, to our knowledge no quantitative determination of the affinity of molybdate to HA has been reported. We studied the interactions of molybdate with Suwannee River HA using ultraviolet-visible (UV-vis) absorption spectroscopy and isothermal titration calorimetry (ITC) to determine the conditional equilibrium constant for complexation at neutral pH. We further used ITC to investigate the thermodynamic contributions to complexation and the interaction kinetics. Addition of molybdate to HA caused the formation of complexes with UV-vis absorption spectra in good agreement with molybdate-catechol species indicating catechol groups to be the primary ligands in HA. ITC data revealed that binding enthalpies and kinetics were strongly influenced by ionic strength, suggesting a role for macromolecular reorganization driven by metalloid addition. 1. Wichard et al., Nature Geoscience 2, 625 - 629 (2009).
ERIC Educational Resources Information Center
Sztokman, Elana Maryles
2009-01-01
The religious school, where young people are brought into religious life and practice, the development of a religious belief system is often neglected. Religiousness is often instilled as a linear end product, a monolithic corpus of ideas to be singularly transmitted and subsequently owned by youth. However, educational research by Gareth…
NASA Astrophysics Data System (ADS)
de Aguiar, Kelen R.; Rischka, Klaus; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Cavalcanti, Welchy Leite; Rodrigues-Filho, Ubirajara P.
2018-01-01
The aim of this work was to synthesize a non-isocyanate poly(dimethylsiloxane) hydroxyurethane with biomimetic terminal catechol moieties, as a candidate for inorganic and metallic surface modification. Such surface modifier is capable to strongly attach onto metallic and inorganic substrates forming layers and, in addition, providing water-repellent surfaces. The non-isocyanate route is based on carbon dioxide cycloaddition into bis-epoxide, resulting in a precursor bis(cyclic carbonate)-polydimethylsiloxane (CCPDMS), thus fully replacing isocyanate in the manufacture process. A biomimetic approach was chosen with the molecular composition being inspired by terminal peptides present in adhesive proteins of mussels, like Mefp (Mytilus edulis foot protein), which bear catechol moieties and are strong adhesives even under natural and saline water. The catechol terminal groups were grafted by aminolysis reaction into a polydimethylsiloxane backbone. The product, PDMSUr-Dopamine, presented high affinity towards inhomogeneous alloy surfaces terminated by native oxide layers as demonstrated by quartz crystal microbalance (QCM-D), as well as stability against desorption by rinsing with ethanol. As revealed by QCM-D, X-ray photoelectron spectroscopy (XPS) and computational studies, the thickness and composition of the resulting nanolayers indicated an attachment of PDMSUr-Dopamine molecules to the substrate through both terminal catechol groups, with the adsorbate exposing the hydrophobic PDMS backbone. This hypothesis was investigated by classical molecular dynamic simulation (MD) of pure PDMSUr-Dopamine molecules on SiO2 surfaces. The computationally obtained PDMSUr-Dopamine assembly is in agreement with the conclusions from the experiments regarding the conformation of PDMSUr-Dopamine towards the surface. The tendency of the terminal catechol groups to approach the surface is in agreement with proposed model for the attachment PDMSUr-Dopamine. Remarkably, the versatile PDMSUr-Dopamine modifier facilitates such functionalization for various substrates such as titanium alloy, steel and ceramic surfaces.
Farsa, Oldřich
2013-01-01
The log BB parameter is the logarithm of the ratio of a compound’s equilibrium concentrations in the brain tissue versus the blood plasma. This parameter is a useful descriptor in assessing the ability of a compound to permeate the blood-brain barrier. The aim of this study was to develop a Hansch-type linear regression QSAR model that correlates the parameter log BB and the retention time of drugs and other organic compounds on a reversed-phase HPLC containing an embedded amide moiety. The retention time was expressed by the capacity factor log k′. The second aim was to estimate the brain’s absorption of 2-(azacycloalkyl)acetamidophenoxyacetic acids, which are analogues of piracetam, nefiracetam, and meclofenoxate. Notably, these acids may be novel nootropics. Two simple regression models that relate log BB and log k′ were developed from an assay performed using a reversed-phase HPLC that contained an embedded amide moiety. Both the quadratic and linear models yielded statistical parameters comparable to previously published models of log BB dependence on various structural characteristics. The models predict that four members of the substituted phenoxyacetic acid series have a strong chance of permeating the barrier and being absorbed in the brain. The results of this study show that a reversed-phase HPLC system containing an embedded amide moiety is a functional in vitro surrogate of the blood-brain barrier. These results suggest that racetam-type nootropic drugs containing a carboxylic moiety could be more poorly absorbed than analogues devoid of the carboxyl group, especially if the compounds penetrate the barrier by a simple diffusion mechanism. PMID:23641330
Matos, Juan; Llano, Biviana; Montaña, Ricmary; Poon, Po S; Hidalgo, Maria C
2018-05-01
The design of hybrid mesoporous TiO 2 -SiO 2 (TS1) materials decorated with Ag and Pt nanoparticles was performed. The photocatalytic degradation of phenol under artificial solar irradiation was studied and the activity and selectivity of the intermediate products were verified. TiO 2 -SiO 2 was prepared by sol-gel method while Ag- and Pt-based photocatalysts (TS1-Ag and TS1-Pt) were prepared by photodeposition of the noble metals on TS1. Two series of photocatalysts were prepared varying Ag and Pt contents (0.5 and 1.0 wt%). An increase in the photocatalytic activity up to two and five times higher than TS1 was found on TS1-Ag-1.0 and TS1-Pt-1.0, respectively. Changes in the intermediate products were detected on Ag- and Pt-based photocatalysts with an increase in the catechol formation up to 3.3 and 6.6 times higher than that observed on TS1, respectively. A two-parallel reaction mechanism for the hydroquinone and catechol formation is proposed. A linear correlation between the photocatalytic activity and the surface concentration of noble metals was found indicating that the electron affinity of noble metals is the driven force for both the increase in the photoactivity and for the remarkable changes in the selectivity of products.
Li, Zhen; Yue, Yuhua; Hao, Yanjun; Feng, Shun; Zhou, Xianli
2018-03-12
A nafion film containing cerium phosphate nanotubes was pasted onto a glassy carbon electrode (GCE) to obtain a sensor for hydroquinone (HQ). The morphologies and components of the coating were characterized by transmission electron microscopy, scanning electron microscopy and energy-dispersive spectroscopy. Cyclic voltammetry and differential pulse voltammetry (DPV) showed the specific surface of the electrode to be significantly increased and the electron transfer rate to be accelerated. The modified GCE was applied to the determination of hydroquinone (HQ) via DPV. The oxidation current increases linearly in the 0.23 μM to 16 mM HQ concentration range which is as wide as five orders of magnitude. The limit of detection is 0.12 μM (based on a signal-to-noise ratio of 3), and the sensitivity is 1.41 μA·μM -1 cm -2 . The method was further applied to the simultaneous determination of HQ, catechol and resorcinol. The potentials for the three species are well separated (20, 134, and 572 mV vs SCE). Average recoveries from (spiked) real water samples are between 95.2 and 107.0%, with relative standard deviations of 0.9~2.7% (for n = 3) at three spiking levels. The method was validated by independent assays using HPLC. Graphical abstract ᅟ.
Lopa, Nasrin Siraj; Rahman, Md Mahbubur; Jang, Hohyoun; Sutradhar, Sabuj Chandra; Ahmed, Faiz; Ryu, Taewook; Kim, Whangi
2017-12-06
2,4-Dinitrophenylhydrazine (DNPH) was electropolymerized on the surface of an anodized glassy carbon electrode by cyclic voltammetry. The anodized electrode has a highly electroactive surface due to the creation of chemically functionalized graphitic nanoparticles, and this facilitates the formation of poly-DNPH via radical polymerization. Poly-DNPH displays excellent redox activity due to the presence of nitro groups on its backbone. These catalyze the electro-oxidation of hydroquinone (HQ) and catechol (CT). The peak-to-peak separation is around 109 mV, while a bare GCE cannot resolve the peaks (located at 165 and 274 mV vs. Ag/AgCl). Sensitivity is also enhanced to ∼1.20 and 1.19 μA·cm -2 ·μM -1 , respectively. The sensor has a linear response that covers the 20-250 μM concentration range for both HQ and CT, with 0.75 and 0.76 μM detection limits, respectively, at simultaneous detection. Commonly present species do not interfere. Graphical abstract A novel conducting poly(2,4-dinitrophenylhydrazine)-modified anodized glassy carbon electrode (pDNPH/AGCE) was developed by electrochemical method. The electro-catalytic activity of pDNPH/AGCE sensor was investigated for the selective and simultaneous electrochemical detection of hydroquinone (HQ) and catechol (CT), which revealed high sensitivities and low detection limits with excellent stability.
Alves, Maria de Fátima; Corrêa, Ricardo Augusto Moreira de Souza; da Cruz, Filipe Soares; Franco, Diego Leoni; Ferreira, Lucas Franco
2018-07-15
This paper reports the electrosynthesis and characterisation of a polymeric film derived from 2-hydroxybenzamide over a graphite electrode and its application as an enzymatic biosensor for the determination and quantification of the pesticide fenitrothion. The material was analysed by scanning electron microscopy and its electrochemical properties characterised by cyclic voltammetry and electrochemical impedance spectroscopy. The enzyme tyrosinase was immobilised over the modified electrode by the drop and dry technique. Catechol was determined by direct reduction of biocatalytically formed o-quinone by employing the flow injection analysis technique. The analytical characteristics of the proposed sensor were optimised as follows: phosphate buffer 0.050 M at pH 6.5, flow rate 5.0 mL min -1 , sample injection volume 150 μL, catechol concentration 1.0 mM and maximum inhibition time by fenitrothion of 6 min. The biosensors showed a linear response to pesticide concentration from 0.018 to 3.60 μM. The limit of detection and limit of quantification were calculated as 4.70 nM and 15.9 nM (RSD < 2.7%), respectively. The intra- and inter-electrode RSDs were 3.35% (n = 15) and 8.70% (n = 7), respectively. In addition, water samples spiked with the pesticide showed an average recovery of 97.6% (±1.53). Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Yeh, Ting-Kuang; Chang, Chun-Yen; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Ming-Yeh
2009-01-01
Catechol-O-methyltransferase (COMT) is a methylation enzyme that catalyzes the degradation pathway and inactivation of dopamine. It is accepted widely as being involved in the modulation of dopaminergic physiology and prefrontal cortex (PFC) function. The COMT Val158Met polymorphism is associated with variation in COMT activity. COMT 158Met allele…
Molecular Recognition in the Oxidation of Catechols by Dicobalt-BISDIEN Dioxygen Complexes
1992-01-30
Recognition in the Oxidation of Catechols by Dicobalt-RISDIEN Dioxygen Complexes Lizete F S Cezar and Bruno Szpoganicz Departamento de Quimica ...bridged bi- nuclear Co(II)-BISDIEN dioxygen complexes; Co20 2 LCat2 + is the bivalent form, and Co20 2 (OH)LCat + and Co 20 2 (OH)2 Cat° are hydroxo
Mutti, Francesco G.; Pievo, Roberta; Sgobba, Maila; Gullotti, Michele; Santagostini, Laura
2008-01-01
The biomimetic catalytic oxidations of the dinuclear and trinuclear copper(II) complexes versus two catechols, namely, D-(+)-catechin and L-( − )-epicatechin to give the corresponding quinones are reported. The unstable quinones were trapped by the nucleophilic reagent, 3-methyl-2-benzothiazolinone hydrazone (MBTH), and have been calculated the molar absorptivities of the different quinones. The catalytic efficiency is moderate, as inferred by kinetic constants, but the complexes exhibit significant enantio-differentiating ability towards the catechols, albeit for the dinuclear complexes, this enantio-differentiating ability is lower. In all cases, the preferred enantiomeric substrate is D-(+)-catechin to respect the other catechol, because of the spatial disposition of this substrate. PMID:18825268
Fluoride sensing by catechol-based π-electron systems.
An, Byeong-Kwan; Wang, Xin; Burn, Paul L; Meredith, Paul
2010-11-15
We have developed new catechol-based sensors that can detect fluoride via fluorescence or optical absorption even in the presence of other halides. The level and sensitivity of detection of the sensing molecules is dependent on the chromophore length, which is controlled by the number of thiophene units (one to three) within the chromophore. The sensor with three thiophene units, (E)-2-(2,2'-terthiophen-5-yl)-3-(3,4-dihydroxyphenyl)acrylonitrile, gives the best response to fluoride. By using fluorescence measurements fluoride is detectable over the concentration range 1.7 μM to 200 μM. Importantly, when adsorbed onto a solid support the fluorescent catechol dye can be used to detect the presence of fluoride in aqueous solution.
Ozcan, Hakki Mevlut; Sagiroglu, Ayten
2010-08-01
In this study the biosensor was constructed by immobilizing tissue homogenate of banana peel onto a glassy carbon electrode surface. Effects of immobilization materials amounts, effects of pH, buffer concentration and temperature on biosensor response were studied. In addition, the detection ranges of 13 phenolic compounds were obtained with the help of the calibration graphs. Storage stability, repeatability of the biosensor, inhibitory effect and sample applications were also investigated. A typical calibration curve for the sensor revealed a linear range of 10-80 microM catechol. In reproducibility studies, variation coefficient and standard deviation were calculated as 2.69%, 1.44 x 10(-3) microM, respectively.
Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2018-01-17
Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.
Molitor, Christian; Mauracher, Stephan Gerhard
2016-01-01
Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze the o-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme’s interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate–enzyme complexes were performed, and a key residue was identified that influences the plant PPO’s acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their—so far unknown—natural substrates in vivo. PMID:26976571
Toward engineering E. coli with an autoregulatory system for lignin valorization
Wu, Weihua; Liu, Fang; Singh, Seema
2018-01-01
Efficient lignin valorization could add more than 10-fold the value gained from burning it for energy and is critical for economic viability of future biorefineries. However, lignin-derived aromatics from biomass pretreatment are known to be potent fermentation inhibitors in microbial production of fuels and other value-added chemicals. In addition, isopropyl-β-d-1-thiogalactopyranoside and other inducers are routinely added into fermentation broth to induce the expression of pathway enzymes, which further adds to the overall process cost. An autoregulatory system that can diminish the aromatics’ toxicity as well as be substrate-inducible can be the key for successful integration of lignin valorization into future lignocellulosic biorefineries. Toward that goal, in this study an autoregulatory system is demonstrated that alleviates the toxicity issue and eliminates the cost of an external inducer. Specifically, this system is composed of a catechol biosynthesis pathway coexpressed with an active aromatic transporter CouP under induction by a vanillin self-inducible promoter, ADH7, to effectively convert the lignin-derived aromatics into value-added chemicals using Escherichia coli as a host. The constructed autoregulatory system can efficiently transport vanillin across the cell membrane and convert it to catechol. Compared with the system without CouP expression, the expression of catechol biosynthesis pathway with transporter CouP significantly improved the catechol yields about 30% and 40% under promoter pTrc and ADH7, respectively. This study demonstrated an aromatic-induced autoregulatory system that enabled conversion of lignin-derived aromatics into catechol without the addition of any costly, external inducers, providing a promising and economically viable route for lignin valorization. PMID:29500185
ERIC Educational Resources Information Center
Laucht, Manfred; Blomeyer, Dorothea; Buchmann, Arlette F.; Treutlein, Jens; Schmidt, Martin H.; Esser, Gunter; Jennen-Steinmetz, Christine; Rietschel, Marcella; Zimmermann, Ulrich S.; Banaschewski, Tobias
2012-01-01
Background: Recently, first evidence has been reported for a gene-parenting interaction (G x E) with regard to adolescent alcohol use. The present investigation set out to extend this research using the catechol-O-methyltransferase ("COMT") "Val[superscript 158]Met" polymorphism as a genetic susceptibility factor. Moreover, the current study…
Induction of uterine adenocarcinoma in CD-1 mice by catechol estrogens.
Newbold, R R; Liehr, J G
2000-01-15
Catechol estrogens may mediate estrogen-induced carcinogenesis because 4-hydroxyestradiol induces DNA damage and renal tumors in hamsters, and this metabolite is formed in the kidney and estrogen target tissues by a specific estrogen 4-hydroxylase. We examined the carcinogenic potential of catechol estrogen in an experimental model previously reported to result in a high incidence of uterine adenocarcinoma after neonatal exposure to diethylstilbestrol. Outbred female CD-1 mice were treated with 2- or 4-hydroxyestradiol, 17beta-estradiol, or 17alpha-ethinyl estradiol on days 1-5 of neonatal life (2 microg/pup/day) and sacrificed at 12 or 18 months of age. Mice treated with 17beta-estradiol or 17a-ethinyl estradiol had a total uterine tumor incidence of 7% or 43%, respectively. 2-Hydroxyestradiol induced tumors in 12% of the mice, but 4-hydroxyestradiol was the most carcinogenic estrogen, with a 66% incidence of uterine adenocarcinoma. Both 2- and 4-hydroxylated catechols were estrogenic and increased uterine wet weights in these neonates. These data demonstrate that both 2- and 4-hydroxyestradiol are carcinogenic metabolites. The high tumor incidence induced by 4-hydroxyestradiol supports the postulated role of this metabolite in hormone-associated cancers.
Liberato, D J; Byers, V S; Dennick, R G; Castagnoli, N
1981-01-01
Attempts to characterize potential biologically important covalent interactions between electrophilic quinones derived from catechols present in poison oak/ivy (urushiol) and biomacromolecules have led to the analysis of model reactions involving sulfur and amino nucleophiles with 3-heptadecylbenzoquinone. Characterization of the reaction products indicates that this quinone undergoes regiospecific attack by (S)-N-acetylcysteine at C-6 and by 1-aminopentane at C-5. The red solid obtained with 1-aminopentane proved to be 3-heptadecyl-5-(pentylamino)-1,2-benzoquinone. Analogous aminobenzoquinones were obtained with the quinones derived from the 4- and 6-methyl analogues of 3-pentadecylcatechol. All three adducts absorbed visible light at different wavelengths. When the starting catechols were incubated with human serum albumin almost identical chromophores were formed. These results establish that cathechols responsible for the production of the poison oak/ivy contact dermatitis in humans undergo a sequence of reactions in the presence of human serum albumin that lead to covalent attachment of the catechols to the protein via carbon-nitrogen bonds. Estimations of the extent of this binding indicate that, at least with human serum albumin, the reaction is quantitative.
Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids
Fish, Richard H.
1986-01-01
Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.
Lakić, Mladen; Vukadinović, Aleksandar; Kalcher, Kurt; Nikolić, Aleksandar S; Stanković, Dalibor M
2016-12-01
This work presents the simultaneous determination of catechol (CC) and hydroquinone (HQ), employing a modified carbon paste electrode (CPE) with ferrite nanomaterial. Ferrite nanomaterial was doped with different amount of cobalt and this was investigated toward simultaneous oxidation of CC and HQ. It was shown that this modification strongly increases electrochemical characteristics of the CPE. Also, electrocatalytic activity of such materials strongly depends on the level of substituted Co in the ferrite nanoparticles. The modified electrodes, labeled as CoFerrite/CPE, showed two pairs of well-defined redox peaks for the electrochemical processes of catechol and hydroquinone. Involving of ferrite material in the structure of CPE, cause increase in the potentials differences between redox couples of the investigated compounds, accompanied with increases in peaks currents. Several important parameters were optimized and calibration curves, with limits of detection (LOD) of 0.15 and 0.3µM for catechol and hydroquinone, respectively, were constructed by employing amperometric detection. Effect of possible interfering compounds was also studied, and proposed method was successfully applied for CC and HQ quantification in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Golchoubian, Hamid; Moayyedi, Golasa; Reisi, Neda
2015-03-05
This study investigates chromotropism of newly synthesized 3,3'-(ethane-1,2-diylbis(benzylazanediyl))dipropanamide copper(II) perchlorate complex. The compound was structurally characterized by physico-chemical and spectroscopic methods. X-ray crystallography of the complex showed that the copper atom achieved a distorted square pyramidal environment through coordination of two amine N atoms and two O atoms of the amide moieties. The pH effect on the visible absorption spectrum of the complex was studied which functions as pH-induced "off-on-off" switches through protonation and deprotonation of amide moieties along with the CuO to CuN bond rearrangement at room temperature. The complex was also observed to show solvatochromism and ionochromism. The distinct solution color changes mainly associated with hemilability of the amide groups. The solvatochromism of the complex was investigated with different solvent parameter models using stepwise multiple linear regression method. The results suggested that the basicity power of the solvent has a dominant contribution to the shift of the d-d absorption band of the complex. Density functional theory, DFT calculations were performed in order to study the electronic structure of the complex, the relative stabilities of the CuN/CuO isomers, and to understand the nature of the halochromism processes taking place. DFT computational results buttressed the experimental observations indicating that in the natural pH (5.8) the CuO isomer is more stable than its linkage isomer and conversely in alkaline aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Gopishetty, Bhaskar; Zhang, Suhong; Kharkar, Prashant S.; Antonio, Tamara; Reith, Maarten; Dutta, Aloke K.
2013-01-01
The goal of the present study was to explore, in our previously developed hybrid template, the effect of introduction of additional heterocyclic rings (mimicking catechol hydroxyl groups as bioisosteric replacement) on selectivity and affinity for the D3 versus D2 receptor. In addition, we wanted to explore the effect of derivatization of functional groups of the agonist binding moiety in compounds developed by us earlier from the hybrid template. Binding affinity (Ki) of the new compounds was measured with tritiated spiperone as the radioligand and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed in the GTPγS binding assay. In the imidazole series, compound 10a exhibited the highest D3 affinity whereas the indole derivative 13 exhibited similar high D3 affinity. Functionalization of the amino group in agonist (+)-9d with different sulfonamides derivatives improved the D3 affinity significantly with (+)-14f exhibiting the highest affinity. However, functionalization of the hydroxyl and amino groups of 15 and (+)-9d, known agonist and partial agonist, to sulfonate ester and amide in general modulated the affinity. In both cases loss of agonist potency resulted from such derivatization. PMID:23623679
IroN, a Novel Outer Membrane Siderophore Receptor Characteristic of Salmonella enterica
Bäumler, Andreas J.; Norris, Tracy L.; Lasco, Todd; Voigt, Wolfgang; Reissbrodt, Rolf; Rabsch, Wolfgang; Heffron, Fred
1998-01-01
Speciation in enterobacteria involved horizontal gene transfer. Therefore, analysis of genes acquired by horizontal transfer that are present in one species but not its close relatives is expected to give insights into how new bacterial species were formed. In this study we characterize iroN, a gene located downstream of the iroBC operon in the iroA locus of Salmonella enterica serotype Typhi. Like iroBC, the iroN gene is present in all phylogenetic lineages of S. enterica but is absent from closely related species such as Salmonella bongori or Escherichia coli. Comparison of the deduced amino acid sequence of iroN with other proteins suggested that this gene encodes an outer membrane siderophore receptor protein. Mutational analysis in S. enterica and expression in E. coli identified a 78-kDa outer membrane protein as the iroN gene product. When introduced into an E. coli fepA cir fiu aroB mutant on a cosmid, iroN mediated utilization of structurally related catecholate siderophores, including N-(2,3-dihydroxybenzoyl)-l-serine, myxochelin A, benzaldehyde-2,3-dihydroxybenzhydrazone, 2-N,6-N-bis(2,3-dihydroxybenzoyl)-l-lysine, 2-N,6-N-bis(2,3-dihydroxybenzoyl)-l-lysine amide, and enterochelin. These results suggest that the iroA locus functions in iron acquisition in S. enterica. PMID:9515912
Ag-doped CdO nanocatalysts: Preparation, characterization and catechol oxidase activity
NASA Astrophysics Data System (ADS)
El-Kemary, Maged; El-Mehasseb, Ibrahim; El-Shamy, Hany
2018-06-01
Silver doped cadmium oxide (Ag/CdO) nanoparticles with an average size of 41 nm have been successfully synthesized via thermal decomposition and liquid impregnation technique. The structural characterization has been performed by using several spectroscopic techniques, e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM) and fourier-transform infrared (FT-IR). The catechol oxidase has been studied by UV-visible absorption spectroscopy and fourier-transform infrared as well as the mechanism has been assured by cyclic voltammetry and fluorescence spectroscopy. The results indicate that the oxidation does not occur in the presence of unsupported cadmium oxide particles by silver and in the same time, the catechol oxidase activity of silver doped CdO nanoparticles were improved by about three orders of magnitude than silver ions.
Mussel-inspired tough hydrogels with self-repairing and tissue adhesion
NASA Astrophysics Data System (ADS)
Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui
2018-01-01
The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.
Fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds.
Ozcan, Hakki Mevlut; Sagiroglu, Ayten
2014-08-01
In this study, a novel fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds was developed. The biosensor was constructed by immobilizing tissue homogenate of fresh broad (Vicia faba) on to glassy carbon electrode. For the stability of the biosensor, general immobilization techniques were used to secure the fresh broad tissue homogenate in gelatin-glutaraldehyde cross-linking matrix. In the optimization and characterization studies, the amount of fresh broad tissue homogenate and gelatin, glutaraldehyde percentage, optimum pH, optimum temperature and optimum buffer concentration, thermal stability, interference effects, linear range, storage stability, repeatability and sample applications (Wine, beer, fruit juices) were also investigated. Besides, the detection ranges of thirteen phenolic compounds were obtained with the help of the calibration graphs. A typical calibration curve for the sensor revealed a linear range of 5-60 μM catechol. In reproducibility studies, variation coefficient (CV) and standard deviation (SD) were calculated as 1.59%, 0.64×10(-3) μM, respectively.
GhavamiNejad, Amin; Park, Chan Hee; Kim, Cheol Sang
2016-03-14
A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.
Toward engineering E. coli with an autoregulatory system for lignin valorization.
Wu, Weihua; Liu, Fang; Singh, Seema
2018-03-20
Efficient lignin valorization could add more than 10-fold the value gained from burning it for energy and is critical for economic viability of future biorefineries. However, lignin-derived aromatics from biomass pretreatment are known to be potent fermentation inhibitors in microbial production of fuels and other value-added chemicals. In addition, isopropyl-β-d-1-thiogalactopyranoside and other inducers are routinely added into fermentation broth to induce the expression of pathway enzymes, which further adds to the overall process cost. An autoregulatory system that can diminish the aromatics' toxicity as well as be substrate-inducible can be the key for successful integration of lignin valorization into future lignocellulosic biorefineries. Toward that goal, in this study an autoregulatory system is demonstrated that alleviates the toxicity issue and eliminates the cost of an external inducer. Specifically, this system is composed of a catechol biosynthesis pathway coexpressed with an active aromatic transporter CouP under induction by a vanillin self-inducible promoter, ADH7, to effectively convert the lignin-derived aromatics into value-added chemicals using Escherichia coli as a host. The constructed autoregulatory system can efficiently transport vanillin across the cell membrane and convert it to catechol. Compared with the system without CouP expression, the expression of catechol biosynthesis pathway with transporter CouP significantly improved the catechol yields about 30% and 40% under promoter pTrc and ADH7, respectively. This study demonstrated an aromatic-induced autoregulatory system that enabled conversion of lignin-derived aromatics into catechol without the addition of any costly, external inducers, providing a promising and economically viable route for lignin valorization. Copyright © 2018 the Author(s). Published by PNAS.
Strategy of Pseudomonas pseudoalcaligenes C70 for effective degradation of phenol and salicylate
Heinaru, Eeva; Naanuri, Eve; Mehike, Maris; Leito, Ivo; Heinaru, Ain
2017-01-01
Phenol- and naphthalene-degrading indigenous Pseudomonas pseudoalcaligenes strain C70 has great potential for the bioremediation of polluted areas. It harbours two chromosomally located catechol meta pathways, one of which is structurally and phylogenetically very similar to the Pseudomonas sp. CF600 dmp operon and the other to the P. stutzeri AN10 nah lower operon. The key enzymes of the catechol meta pathway, catechol 2,3-dioxygenase (C23O) from strain C70, PheB and NahH, have an amino acid identity of 85%. The metabolic and regulatory phenotypes of the wild-type and the mutant strain C70ΔpheB lacking pheB were evaluated. qRT-PCR data showed that in C70, the expression of pheB- and nahH-encoded C23O was induced by phenol and salicylate, respectively. We demonstrate that strain C70 is more effective in the degradation of phenol and salicylate, especially at higher substrate concentrations, when these compounds are present as a mixture; i.e., when both pathways are expressed. Moreover, NahH is able to substitute for the deleted PheB in phenol degradation when salicylate is also present in the growth medium. The appearance of a yellow intermediate 2-hydroxymuconic semialdehyde was followed by the accumulation of catechol in salicylate-containing growth medium, and lower expression levels and specific activities of the C23O of the sal operon were detected. However, the excretion of the toxic intermediate catechol to the growth medium was avoided when the growth medium was supplemented with phenol, seemingly due to the contribution of the second meta pathway encoded by the phe genes. PMID:28257519
Selifonov, S A; Starozoĭtov, I I
1990-12-01
It was shown that two different enzymes of aromatic ring oxidative meta-cleavage (2,3-dihydroxybiphenyl-1,2-dioxygenase), DBO and catechol-2,3-dioxygenase, C230) function in Pseudomonas strains with a plasmid and chromosomal genetic control of biphenyl and toluate catabolism. A comparative analysis of DBO's and C230's expressed by the pBS241 biphenyl degradative plasmid in P. putida BS893, pBS311 in P. putida U83, chromosomal genes in P. putida BF and C230 from P. putida PaW160 (pWWO) was carried out. It was found that the DBO's of all strains under study are highly specialized enzymes in respect of 2,3-dihydroxybiphenyl cleavage and are also able to cleave 3-methyl-catechol and catechol (but not 4-methylcatechol) at low rates. In contrast with DBO's, in Pseudomonas strains the substrate specificities of all C230's are variable. The C230's expressed by the D-plasmids pBS241 and pBC311 have a moderate affinity for catechol, 3-methyl- and 4-methylcatechol, but are unable to cleave 2,3-dihydroxybiphenyl. The C230 which is encoded by the chromosomal structure gene from P. putida BF is very similar to C230 which codes for the TOL-plasmid pWWO. These plasmid differ from C230's expressed by biphenyl D-plasmids due to their capability to cleave 2,3-dihydroxybiphenyl in addition to catechol cleavage. All DBO's and C230's under study possess a number of properties that are typical for the enzymes having an oxidative meta-cleaving effect. The different roles of these enzymes in biphenyl and toluate catabolism in Pseudomonas strains are discussed.
Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr
2013-08-22
We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.
Milstien, S; Kaufman, S
1987-03-19
It has been reported by Shen et al. (Shen, R.-S., Smith, R.V., Davis, P.J. and Abell, C.W. (1984) J. Biol. Chem. 259, 8894-9000) that apomorphine and dopamine are potent, non-competitive inhibitors of quinonoid dihydropteridine reductase. In this paper we show that apomorphine, dopamine and other catechol-containing compounds are oxidized rapidly to quinones by the horseradish peroxidase-H2O2 system which is used to generate the quinonoid dihydropterin substrate. These quinones react non-enzymatically with reduced pyridine nucleotides, depleting the other substrate of dihydropteridine reductase. When true initial rates of dihydropteridine reductase-dependent reduction of quinonoid dihydropterins are measured, neither apomorphine nor any other catechol-containing compound that has been tested has been found to inhibit dihydropteridine reductase.
ERIC Educational Resources Information Center
Colzato, Lorenza S.; Waszak, Florian; Nieuwenhuis, Sander; Posthuma, Danielle; Hommel, Bernhard
2010-01-01
Genetic variability related to the catechol-O-methyltransferase (COMT) gene Val[superscript 128]Met polymorphism) has received increasing attention as a possible modulator of cognitive control functions. Recent evidence suggests that the Val[superscript 128]Met genotype may differentially affect cognitive stability and flexibility, in such a way…
Bio-inert interfaces via biomimetic anchoring of a zwitterionic copolymer on versatile substrates.
Dizon, Gian Vincent; Chou, Ying-Nien; Yeh, Lu-Chen; Venault, Antoine; Huang, James; Chang, Yung
2018-05-22
Bio-inert biomaterial design is vital for fields like biosensors, medical implants, and drug delivery systems. Bio-inert materials are generally hydrophilic and electrical neutral. One limitation faced in the design of bio-inert materials is that most of the modifiers used are specific to their substrate. In this work, we synthesized a novel zwitterionic copolymer containing a catechol group, a non-substrate dependent biomimetic anchoring segment, that can form a stable coating on various materials. No previous study was conducted using a grafting-to approach and determined the critical amount of catechol groups needed to effectively modify a material. The synthesized copolymers of sulfobetaine acrylamide (SBAA) and dopamine methacrylamide (DMA) in this work contains varying numbers of catechol groups, in which the critical number of catechol groups that had effectively modified substrates to have the bio-inert property was determined. The bio-inert property and capability to do coating on versatile substrates were evaluated in contact with human blood by coating different material groups such as ceramic, metallic, and polymeric groups. The novel structure and the simple grafting-to approach provides bio-inert property on various materials, giving them non-specific adsorption and attachment of biomolecules such as plasma proteins, erythrocytes, thrombocytes, bacteria, and tissue cells (85-95% reduction). Copyright © 2018 Elsevier Inc. All rights reserved.
Sebei, Haroun; Pham Minh, Doan; Lyczko, Nathalie; Sharrock, Patrick; Nzihou, Ange
2017-10-01
Hydroxyapatite (HAP) is highly considered as good sorbent for the removal of metals from the aqueous phase. However, soluble metals co-exist with organic pollutants in wastewaters. But little work has been devoted to investigate the reactivity of HAP for the removal of organic compounds. The main objective of this work is to study the reactivity of HAP-based sorbents for the removal of catechol as a model organic pollutant from an aqueous solution. Thus, HAP sorbents were firstly synthesized using calcium carbonate and potassium dihydrogen phosphate under moderate conditions (25-80°C, atmospheric pressure). A zinc-doped HAP was also used as sorbent, which was obtained from the contact of HAP with an aqueous solution of zinc nitrate. All the sorbents were characterized by different standard physico-chemical techniques. The sorption of catechol was carried out in a batch reactor under stirring at room temperature and pressure. Zinc-doped HAP sorbent was found to be more reactive than non-doped HAP sorbents for the fixation of catechol. The highest sorption capacity was of 15 mg of C per gram of zinc-doped HAP sorbent. The results obtained suggest the reaction scheme of HAP sorbents with metals and organic pollutants when HAP sorbents were used for the treatment of complex wastewaters.
Slikboer, Samantha; Grandy, Lindsay; Blair, Sandra L; Nizkorodov, Sergey A; Smith, Richard W; Al-Abadleh, Hind A
2015-07-07
Transition metals such as iron are reactive components of environmentally relevant surfaces. Here, dark reaction of Fe(III) with catechol and guaiacol was investigated in an aqueous solution at pH 3 under experimental conditions that mimic reactions in the adsorbed phase of water. Using UV-vis spectroscopy, liquid chromatography, mass spectrometry, elemental analysis, dynamic light scattering, and electron microscopy techniques, we characterized the reactants, intermediates, and products as a function of reaction time. The reactions of Fe(III) with catechol and guaiacol produced significant changes in the optical spectra of the solutions due to the formation of light absorbing secondary organics and colloidal organic particles. The primary steps in the reaction mechanism were shown to include oxidation of catechol and guaiacol to hydroxy- and methoxy-quinones. The particles formed within a few minutes of reaction and grew to micron-size aggregates after half an hour reaction. The mass-normalized absorption coefficients of the particles were comparable to those of strongly absorbing brown carbon compounds produced by biomass burning. These results could account for new pathways that lead to atmospheric secondary organic aerosol formation and abiotic polymer formation on environmental surfaces mediated by transition metals.
Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.
Liu, Yi; Wu, Haohao; Chong, Yu; Wamer, Wayne G; Xia, Qingsu; Cai, Lining; Nie, Zhihong; Fu, Peter P; Yin, Jun-Jie
2015-09-09
Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols.
Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids
Fish, R.H.
1985-05-17
Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids (shale oil, SRC, etc.) by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20/sup 0/ to 100/sup 0/C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.
2014-01-01
Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012
Characterization of a high-affinity iron transport system in Acinetobacter baumannii.
Echenique, J R; Arienti, H; Tolmasky, M E; Read, R R; Staneloni, R J; Crosa, J H; Actis, L A
1992-01-01
Analysis of a clinical isolate of Acinetobacter baumannii showed that this bacterium was able to grow under iron-limiting conditions, using chemically defined growth media containing different iron chelators such as human transferrin, ethylenediaminedi-(o-hydroxyphenyl)acetic acid, nitrilotriacetic acid, and 2,2'-bipyridyl. This iron uptake-proficient phenotype was due to the synthesis and secretion of a catechol-type siderophore compound. Utilization bioassays using the Salmonella typhimurium iron uptake mutants enb-1 and enb-7 proved that this siderophore is different from enterobactin. This catechol siderophore was partially purified from culture supernatants by adsorption chromatography using an XAD-7 resin. The purified component exhibited a chromatographic behavior and a UV-visible light absorption spectrum different from those of 2,3-dihydroxybenzoic acid and other bacterial catechol siderophores. Furthermore, the siderophore activity of this extracellular catechol was confirmed by its ability to stimulate energy-dependent uptake of 55Fe(III) as well as to promote the growth of A. baumannii bacterial cells under iron-deficient conditions imposed by 60 microM human transferrin. Polyacrylamide gel electrophoresis analysis showed the presence of iron-regulated proteins in both inner and outer membranes of this clinical isolate of A. baumannii. Some of these membrane proteins may be involved in the recognition and internalization of the iron-siderophore complexes. Images PMID:1447137
Ali, Hussein M; El-Gizawy, Ahmed M; El-Bassiouny, Rawia E I; Saleh, Mahmoud A
2015-06-01
The titled compounds were examined as PPO inhibitors and antibrowning agents; their various mechanisms were investigated and discussed. All compounds reduced significantly both the browning process and PPO activity. Browning index gave strong correlation with PPO activity (r(2) = 0.96, n = 19) indicating that the browning process is mainly enzymatic. Ascorbic acid could reduce the formed quinone instantly to the original substrate (catechol) at high concentration (>1.5 %) while at lower concentrations acted as competitive inhibitor (KI = 0.256 ± 0.067 mM). Cysteine, at higher concentrations (≥1.0 %), reacted with the resulted quinone to give a colorless products while at the low concentrations, cysteine worked as competitive inhibitor (KI = 1.113 ± 0.176 mM). Citric acid acted only as PPO non-competitive inhibitor with KI = 2.074 ± 0.363 mM. The products of PPO-catechole-cysteine reaction could be separation and identification by LC-ESI-MS. Results indicated that the product of the enzymatic oxidation of catechol, quinone, undergoes two successive nucleophilic attacks by cysteine thiol group. Cysteine was condensed with the resulted mono and dithiocatechols to form peptide side chains.
Palanisamy, Selvakumar; Ramaraj, Sayee Kannan; Chen, Shen-Ming; Yang, Thomas C. K.; Yi-Fan, Pan; Chen, Tse-Wei; Velusamy, Vijayalakshmi; Selvam, Sonadevi
2017-01-01
In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared with laccase immobilized GR and CMF modified SPCEs, a well-defined redox couple of CuI/CuII for laccase was observed at laccase immobilized GR-CMF composite modified SPCE. Cyclic voltammetry results show that the as-prepared biosensor has 7 folds higher catalytic activity with lower oxidation potential towards CC than SPCE modified with GR-CMF composite. Under optimized conditions, amperometric i-t method was used for the quantification of CC, and the amperometric response of the biosensor was linear over the concertation of CC ranging from 0.2 to 209.7 μM. The sensitivity, response time and the detection limit of the biosensor for CC is 0.932 μMμA−1 cm−2, 2 s and 0.085 μM, respectively. The biosensor has high selectivity towards CC in the presence of potentially active biomolecules and phenolic compounds. The biosensor also accessed for the detection of CC in different water samples and shows good practicality with an appropriate repea. PMID:28117357
Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile
Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji
2014-01-01
Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield. PMID:25316145
Synthesis of nitriles via palladium-catalyzed water shuffling from amides to acetonitrile.
Zhang, Wandi; Haskins, Christopher W; Yang, Yang; Dai, Mingji
2014-12-07
Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.
1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.
Abraham, Raymond J; Griffiths, Lee; Perez, Manuel
2014-07-01
The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). Copyright © 2014 John Wiley & Sons, Ltd.
Brain catechol synthesis - Control by brain tyrosine concentration
NASA Technical Reports Server (NTRS)
Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.
1974-01-01
Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.
Zhang, Xuan; Vermeulen, Nicolaas A.; Huang, Zhiyuan; ...
2017-12-26
Two new UiO-68 type of Zr-MOFs featuring redox non-innocent catechol-based linkers of different redox activities have been synthesized through a de novo mixed-linker strategy. Also, metalation of the MOFs with Cu(II) precursors triggers the reduction of Cu(II) by the phenyl-catechol groups to Cu(I) with the concomitant formation of semiquinone radicals as evidenced by EPR and XPS characterization. The MOF-supported catalysts are selective toward the allylic oxidation of cyclohexene and it is found that the presence of in situ-generated Cu(I) species exhibits enhanced catalytic activity as compared to a similar MOF with Cu(II) metalated naphthalenyl-dihydroxy groups. Here, this work unveils themore » importance of metal-support redox interactions in the catalytic activity of MOF-supported catalysts which are not easily accessible in traditional metal oxide supports.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuan; Vermeulen, Nicolaas A.; Huang, Zhiyuan
Two new UiO-68 type of Zr-MOFs featuring redox non-innocent catechol-based linkers of different redox activities have been synthesized through a de novo mixed-linker strategy. Also, metalation of the MOFs with Cu(II) precursors triggers the reduction of Cu(II) by the phenyl-catechol groups to Cu(I) with the concomitant formation of semiquinone radicals as evidenced by EPR and XPS characterization. The MOF-supported catalysts are selective toward the allylic oxidation of cyclohexene and it is found that the presence of in situ-generated Cu(I) species exhibits enhanced catalytic activity as compared to a similar MOF with Cu(II) metalated naphthalenyl-dihydroxy groups. Here, this work unveils themore » importance of metal-support redox interactions in the catalytic activity of MOF-supported catalysts which are not easily accessible in traditional metal oxide supports.« less
Covalent chemical functionalization enhances the biodegradation of graphene oxide
NASA Astrophysics Data System (ADS)
Kurapati, Rajendra; Bonachera, Fanny; Russier, Julie; Rajukrishnan Sureshbabu, Adukamparai; Ménard-Moyon, Cécilia; Kostarelos, Kostas; Bianco, Alberto
2018-01-01
Biodegradation of the graphene-based materials is an emerging issue due to their estimated widespread usage in different industries. Indeed, a few concerns have been raised about their biopersistence. Here, we propose the design of surface-functionalized graphene oxide (GO) with the capacity to degrade more effectively compared to unmodified GO using horseradish peroxidase (HRP). For this purpose, we have functionalized the surface of GO with two well-known substrates of HRP namely coumarin and catechol. The biodegradation of all conjugates has been followed by Raman, dynamic light scattering and electron microscopy. Molecular docking and gel electrophoresis have been carried out to gain more insights into the interaction between GO conjugates and HRP. Our studies have revealed better binding when GO is functionalized with coumarin or catechol compared to control GOs. All results prove that GO functionalized with coumarin and catechol moieties display a faster and more efficient biodegradation over GO.
Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin
2014-12-01
Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hydrogen-bonded structures from adamantane-based catechols
NASA Astrophysics Data System (ADS)
Kawahata, Masatoshi; Matsuura, Miku; Tominaga, Masahide; Katagiri, Kosuke; Yamaguchi, Kentaro
2018-07-01
Adamantane-based bis- and tris-catechols were synthesized to examine the effect of hydrogen bonds on the arrangement and packing of the components in the crystalline state. Single-crystal X-ray crystallographic analysis revealed that hydrogen bonds formed by the hydroxyl groups of catechol groups play essential roles in the production of various types of unique structures. 1,3-Bis(3,4-dihydroxyphenyl)adamantane (1) provided hydrogen-bonded network structures composed of helical chains in crystal from chloroform/methanol, and layer structures in crystal from ethyl acetate/hexane. The complexation of 1 with 1,3,5-trinitrobenzene or 1,2,4,5-tetracyanobenzene resulted in the formation of co-crystals, respectively. One-dimensional hydrogen-bonded structures were constructed from the adamantane-based molecules, which participated in charge-transfer interactions with guests. 1,3,5-Tris(3,4-dihydroxyphenyl)adamantane also afforded crystal, and the components were assembled into infinite polymers.
Removal of arsenic compounds from petroliferous liquids
Fish, Richard H.
1985-01-01
Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves: a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and, b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.
Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.
Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels
2016-01-26
Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.
Hamada, A; Yaden, E L; Horng, J S; Ruffolo, R R; Patil, P N; Miller, D D
1985-09-01
A series of N-substituted imidazolines and ethylenediamines were synthesized and examined for their activity in alpha- and beta-adrenergic systems. The length of the intermediate side chain between the catechol and imidazoline ring or the amine of the ethylenediamine segment was shown to affect the adrenergic activity. N-[2-(3,4-Dihydroxyphenyl)ethyl]imidazoline hydrochloride (2) and N-[2-(3,4-dihydroxyphenyl)ethyl]ethylenediamine dihydrochloride (4), both with two methylene groups between the catechol and amine segment, were found to be somewhat selective for alpha 2-adrenergic receptors while 1-(3,4-dihydroxybenzyl)imidazoline hydrochloride (1) and N-2-(3,4-dihydroxybenzyl)ethylenediamine dihydrochloride (3), both with one methylene group between the catechol and amine segment, were more selective for alpha1-adrenergic receptors in a pithed rat model. Of the four compounds examined, only compound 2 showed significant direct activity on beta1- and beta2-adrenergic receptors.
Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2017-09-01
Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.
Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds.
Hie, Liana; Fine Nathel, Noah F; Shah, Tejas K; Baker, Emma L; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K N; Garg, Neil K
2015-08-06
Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.
Utilization of aromatic compounds by the Penicillium strain Bi 7/2.
Hofrichter, M; Scheibner, K
1993-01-01
The Penicillium strain Bi 7/2 utilized phenol, catechol, resorcinol, hydroquinone, pyrogallol, hydroxyhydroquinone, phloroglucinol, m- and p-cresol, orcinol, 4-methylcatechol, 4-methoxyphenol, 4-aminophenol, benzyl alcohol, benzoic acid, 2-, 3- and 4-hydroxybenzoic acid, anthranilic acid, protocatechuic acid and gallic acid as sole sources of carbon and energy. The central metabolites catechol, protocatechuic acid and hydroxyquinone could be determined by HPLC with diode-array detection. Pathways for the degradation of aromatic substances were proposed.
Polydopamine-like Coatings as Payload Gatekeepers for Mesoporous Silica Nanoparticles.
Moreno-Villaécija, Miguel-Ángel; Sedó-Vegara, Josep; Guisasola, Eduardo; Baeza, Alejandro; Regí, María Vallet; Nador, Fabiana; Ruiz-Molina, Daniel
2018-03-07
We report the use of bis-catecholic polymers as candidates for obtaining effective, tunable gatekeeping coatings for mesoporous silica nanoparticles (MSNs) intended for drug release applications. In monomers, catechol rings act as adhesive moieties and reactive sites for polymerization, together with middle linkers which may be chosen to tune the physicochemical properties of the resulting coating. Stable and low-toxicity coatings (pNDGA and pBHZ) were prepared from two bis-catechols of different polarity (NDGA and BHZ) on MSN carriers previously loaded with rhodamine B (RhB) as a model payload, by means of a previously reported synthetic methodology and without any previous surface modification. Coating robustness and payload content were shown to depend significantly on the workup protocol. The release profiles in a model physiological PBS buffer of coated systems (RhB@MSN@pNDGA and RhB@MSN@pBHZ) showed marked differences in the "gatekeeping" behavior of each coating, which correlated qualitatively with the chemical nature of their respective linker moieties. While the uncoated system (RhB@MSN) lost its payload almost completely after 2 days, release from RhB@MSN@pNDGA was virtually negligible, likely due to the low polarity of the parent bis-catechol (NDGA). As opposed to these extremes, RhB@MSN@pBHZ presented the most promising behavior, showing an intermediate release of 50% of the payload in the same period of time.
Gelber, C; Gemmell, L; McAteer, D; Homola, M; Swain, P; Liu, A; Wilson, K J; Gefter, M
1997-03-01
Immune regulation of contact sensitivity to the poison ivy/oak catechol was studied at the level of class II MHC-restricted T cell recognition of hapten:peptide conjugates. In this study we have shown that 1) T cells from C3H/HeN (H-2k) mice, immunized with a synthetic I-Ak binding peptide coupled to 3-pentadecyl-catechol (PDC; a representative catechol in urushiol), recognized peptides derived from syngeneic cells linked to the same catechol; 2) T cells from draining lymph nodes of C3H/HeN mice skin-painted with PDC proliferated in response to a peptide carrier:PDC conjugate only when it was linked at the 7th, but not the 4th or the 10th, position on the peptide carrier; and 3) tolerization studies confirmed down-regulation of PDC-induced delayed-type hypersensitivity following treatment with a single I-Ak binding peptide carrying PDC covalently bound to a lysine residue at the middle (7th) TCR contact position. Tolerization with peptide:PDC conjugate resulted in abrogation of hapten-specific T cell proliferative responses that correlated with diminished IL-2 secretion. On the basis of these data we propose that it may be sufficient to couple the hapten at a single, well-chosen position on a carrier peptide to target a relevant population of T cells involved in contact sensitivity.
Catechol-O-methyltransferase as a target for melanoma destruction?
Smit, N P; Latter, A J; Naish-Byfield, S; Westerhof, W; Pavel, S; Riley, P A
1994-08-17
Catechols may interfere in melanogenesis by causing increased levels of toxic quinones. Several catechols and known inhibitors of the enzyme catechol-O-methyltransferase (COMT) were therefore tested for their toxicity towards a pigmented melanoma cell line, UCLA-SO-(M14). The inhibition of thymidine incorporation as a result of exposure to the compounds was measured. All agents were compared to 4-hydroxyanisole (4HA), a depigmenting agent extensively studied as an antimelanoma drug. The compounds were also tested on the epithelial cell line, CNCM-I-(221) in the presence and absence of tyrosinase. All the compounds were more effective than 4HA towards the M14-cells at either 10(-4) M or 10(-5) M. The toxicity of 4HA towards the 221-cells was shown to be completely dependent on the presence of tyrosinase. Effects of the test agents on the 221-cells were also observed in the absence of tyrosinase. Although some of them were shown to be good substrates for tyrosinase only small changes in toxicity were observed as a result of the presence of the enzyme in comparison with 4HA. No direct correlation of the toxicity of the agents and COMT inhibition was observed. The possible mode of action of the compounds through inhibition of COMT and interference in melanogenesis is discussed together with other possibilities and factors involved.
NASA Astrophysics Data System (ADS)
Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui
2015-12-01
Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0-30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.
Synthesis and structure-activity relationships of fenbufen amide analogs.
Lin, Kun-I; Yang, Chao-Hsun; Huang, Chia-Wen; Jian, Jhen-Yi; Huang, Yu-Chun; Yu, Chung-Shan
2010-12-02
The previous discoveries of butyl fenbufen amide analogs with antitumor effects were further examined. The amide analogs with 1, 3, 4 and 8 carbons chains were prepared in 70-80% yield. Fenbufen had no cytotoxic effects at concentrations ranging from 10 to 100 μM. Methyl fenbufen amide had significant cytotoxic effects at a concentration of 100 μM. As the length of the alkyl amide side chain increased, the cytotoxic effects increased, and the octyl fenbufen amide had the greatest cytotoxic effect. After treatment with 30 μM octyl fenbufen amide, nearly seventy percent of the cells lost their viability. At the concentration of 10 μM, fenbufen amide analogs did not show cytotoxicity according to the MTT assay results. The NO scavenging activities of the fenbufen amide analogs were not significantly different from those of fenbufen.
Amalian, Jean-Arthur; Trinh, Thanh Tam; Lutz, Jean-François; Charles, Laurence
2016-04-05
Tandem mass spectrometry was evaluated as a reliable sequencing methodology to read codes encrypted in monodisperse sequence-coded oligo(triazole amide)s. The studied oligomers were composed of monomers containing a triazole ring, a short ethylene oxide segment, and an amide group as well as a short alkyl chain (propyl or isobutyl) which defined the 0/1 molecular binary code. Using electrospray ionization, oligo(triazole amide)s were best ionized as protonated molecules and were observed to adopt a single charge state, suggesting that adducted protons were located on every other monomer unit. Upon collisional activation, cleavages of the amide bond and of one ether bond were observed to proceed in each monomer, yielding two sets of complementary product ions. Distribution of protons over the precursor structure was found to remain unchanged upon activation, allowing charge state to be anticipated for product ions in the four series and hence facilitating their assignment for a straightforward characterization of any encoded oligo(triazole amide)s.
Patra, Niladri; Ioannidis, Efthymios I.
2016-01-01
Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21–22 kcal/mol, in good agreement with experiment (18–19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are accessible, for example in other transferases. PMID:27564542
Kubicki, James D; Halada, Gary P; Jha, Prashant; Phillips, Brian L
2009-01-01
Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI), U(V), U(IV), U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG), and U-2-Keto-3-doxyoctanoate (KDO) with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI) to U(IV) is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V)- and U(IV)-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI) and U(IV) rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules) are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids. PMID:19689800
Terkawi, Abdullah S; Jackson, William M; Hansoti, Shehnaz; Tabassum, Rabeena; Flood, Pamela
2014-07-01
Variability in labor pain has been associated with demographic, clinical, and psychological factors. Polymorphisms of the β2-adrenergic receptor gene (ADRB2) influence sensitivity to experimental pain in humans and are a risk factor for chronic pain. The authors hypothesized that polymorphisms in ADRB2 may influence labor pain. After Institutional Review Board approval and written informed consent, the authors prospectively obtained hourly pain reports from 233 nulliparous parturients during the first stage of labor, of which 199 were included in the current analysis. DNA from blood samples was genotyped at polymorphisms in the genes for the β2-adrenergic receptor, the μ opioid receptor subtype 1, catechol-O-methyltransferase, fatty acid amide hydrolase, and the oxytocin receptor. Labor pain as a function of cervical dilation was modeled with previously described methods. Patient covariates, ADRB2 genotype, and obstetrical and anesthesia treatment were evaluated as covariates in the model. Labor pain more rapidly became severe in parturients heterozygous or homozygous for the G allele at rs1042714 in the ADRB2 gene. Labor pain increased more rapidly after artificial rupture of membranes, augmentation with oxytocin, and in younger women. Inclusion of covariates explained approximately 10% of the variability between subjects. ADRB2 genotype explained less than 1% of the intersubject variability. ADRB2 genotype correlates with labor pain but explained less than 1% of the intersubject variance in the model.
Evolution of camel CYP2E1 and its associated power of binding toxic industrial chemicals and drugs.
Kandeel, Mahmoud; Altaher, Abdullah; Kitade, Yukio; Abdelaziz, Magdi; Alnazawi, Mohamed; Elshazli, Kamal
2016-10-01
Camels are raised in harsh desert environment for hundreds of years ago. By modernization of live and the growing industrial revolution in camels rearing areas, camels are exposed to considerable amount of chemicals, industrial waste, environmental pollutions and drugs. Furthermore, camels have unique gene evolution of some genes to withstand living in harsh environments. In this work, the camel cytochrome P450 2E1 (CYP2E1) is compromised to detect its evolution rate and its power to bind with various chemicals, protoxins, procarcinogens, industrial toxins and drugs. In comparison with human CYP2E1, camel CYP2E1 more efficiently binds to small toxins as aniline, benzene, catechol, amides, butadiene, toluene and acrylamide. Larger compounds were more preferentially bound to the human CYP2E1 in comparison with camel CYP2E1. The binding of inhalant anesthetics was almost similar in both camel and human CYP2E1 coinciding with similar anesthetic effect as well as toxicity profiles. Furthermore, evolutionary analysis indicated the high evolution rate of camel CYP2E1 in comparison with human, farm and companion animals. The evolution rate of camel CYP2E1 was among the highest evolution rate in a subset of 57 different organisms. These results indicate rapid evolution and potent toxin binding power of camel CYP2E1. Copyright © 2016. Published by Elsevier Ltd.
Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting
2006-08-01
aryl iodide to the Grignard reagent . Treatment of the magnesium compound with allyl bromide and CuCN·2LiCl afforded benzoate 4-11, which was then...cyclization of a linear peptide by conventional coupling agents to form a new amide bond (Scheme 1-12)36,44 Some common reagents are...dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), and expensive reagents such as HATU or PyBroP, which are more efficient.44 Racemization of the chiral
Nonextensive GES instability with nonlinear pressure effects
NASA Astrophysics Data System (ADS)
Gohain, Munmi; Karmakar, Pralay Kumar
2018-03-01
We herein analyze the instability dynamics associated with the nonextensive nonthermal gravito-electrostatic sheath (GES) model for the perturbed solar plasma portraiture. The usual neutral gas approximation is herewith judiciously relaxed and the laboratory plasma-wall interaction physics is procedurally incorporated amid barotropic nonlinearity. The main motivation here stems from the true nature of the solar plasma system as a set of concentric nonlocal nonthermal sub-layers as evidenced from different multi-space satellite probes and missions. The formalism couples the solar interior plasma (SIP, bounded) and solar wind plasma (SWP, unbounded) via the diffused solar surface boundary (SSB) formed due to an exact long-range gravito-electrostatic force-equilibration. A linear normal mode ansatz reveals both dispersive and non-dispersive features of the modified GES collective wave excitations. It is seen that the thermostatistical GES stability depends solely on the electron-to-ion temperature ratio. The damping behavior on both the scales is more pronounced in the acoustic domain, K → ∞ , than the gravitational domain, K → 0 ; where, K is the Jeans-normalized angular wave number. It offers a unique quasi-linear coupling of the gravitational and acoustic fluctuations amid the GES force action. The results may be useful to see the excitation dynamics of natural normal modes in bounded nonextensive astero-environs from a new viewpoint of the plasma-wall coupling mechanism.
Liu, Chengwei; Szostak, Michal
2017-05-29
The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Maity, Prantik; Zabel, Manfred; König, Burkhard
2007-10-12
The synthesis of tetrahydrofuran Calpha-tetrasubstituted amino acids (TAAs) and their effect on the conformation in small peptides are reported. The synthesis starts from the protein amino acid methionine, which is protected at the C and N terminus and converted into the corresponding sulfonium salt by alkylation. Simple base treatment in the presence of an aryl aldehyde leads to the formation of tetrahydrofuran tetrasubstituted Calpha-amino acids in a highly diastereoselective (trans/cis ratio up to 97:3) reaction with moderate to good yields (35-78%) depending on the aldehyde used. Palladium-catalyzed coupling reactions allow a subsequent further functionalization of the TAA. The R,S,S-TAA-Ala dipeptide amide adopts a beta-turn type I conformation, whereas its S,R,S isomer does not. The R,S,S-Gly-TAA-Ala tripeptide amide shows in the solid state and in solution a conformation of two consecutive beta-turn type III structures, stabilized by i+3-->i intramolecular hydrogen bonds.
Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming
2014-04-07
Most homogenous gold catalyses demand ≥ 0.5 mol% catalyst loading. Owing to the high cost of gold, these reactions are unlikely to be applicable in medium- or large-scale applications. Here we disclose a novel ligand design based on the privileged (1,1'-biphenyl)-2-ylphosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3'-position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogenous gold catalysis considering the spatial challenge of using ligand to reach anti-approaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalysing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding.
Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming
2014-01-01
Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803
Micro-Raman spectroscopy of tissue samples for oral pathology follow-up monitoring
NASA Astrophysics Data System (ADS)
Delfino, I.; Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G. M.; Lepore, M.
2010-04-01
An "in vitro" study of Raman spectra from oral human tissues is reported in order to the develop a diagnostic method suitable for "in vivo" oral pathology follow-up. The investigated pathology is Pemphigus Vulgaris (PV) for which new techniques for guiding and monitoring therapy would be particularly useful. Raman spectra were obtained in the wavenumber regions from 1000 to 1800 cm-1 and 2700 to 3200 cm-1 from tissues from patients at different stages of pathology (active PV, under therapy and in PV remission stage) as confirmed by histopathological and immunofluorescence analysis. Differences in the spectra depending on tissue illness stage arise in 1150-1250 cm-1 (amide III) and 1420-1450 cm-1 (CH3 deformation) regions and around 1650 cm-1 (amide I) and 2930 cm-1 (CH3 symmetric stretch). A wavelet deconvolution procedure was applied to the spectra for better discriminating among the three different stages of illness and a linear regression analysis was used to fully exploit the content of information of Raman spectra.
2006-03-31
chlorogenic acid , and rosmari- nic acid did not display any cytoprotective effect in this assay at 15 lM (data not shown). Within the same pas- sage of HUVEC...Cytoprotective effect of caffeic acid phenethyl ester (CAPE) and catechol ring-fluorinated CAPE derivatives against menadione-induced oxidative...accepted 13 March 2006 Available online 31 March 2006 Abstract—Caffeic acid phenethyl ester (CAPE), a natural polyphenolic compound with many
Preparation of insect-cuticle-like biomimetic materials.
Miessner, M; Peter, M G; Vincent, J F
2001-01-01
A model system of tanning of a protein matrix within a fibrous structure, such as most commonly found in insect cuticle, was developed, using the cellulose of paper in place of chitin. The paper was impregnated with a tripeptide, DOPA-Gly-Gly, or a protein (BSA) plus catechol and treated with tyrosinase to oxidize the catechol. The resulting material was waterproof and had very high wet strength. If the material was wetted and dried repeatedly its water retention decreased by a factor of at least 2.
Estrogen-DNA Adducts as Novel Biomarkers for Ovarian Cancer Risk and for Use in Prevention
2013-03-01
genes for four selected estrogen-metabolizing enzymes : cytochrome P450 (CYP)1A1 (I462V), CYP1B1 (V432L),catechol-O-methyltransferase (COMT) (V158M...homozygous for the catechol-O-methyltransferase allele and the cytochrome P450 1B1 high activity allele had significantly increased DNA adduct ratios and... enzyme polymorphisms to serve as biomarkers to screen for ovarian cancer . Task 1. Obtain approval of the protocol from the OCRP Human Research
Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.
2014-01-01
A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293
Liu, Hua; Na, Weidan; Liu, Ziping; Chen, Xueqian; Su, Xingguang
2017-06-15
In this paper, a facile and rapid fluorescence turn-on assay for fluorescent detection of ascorbic acid (AA) was developed by using the orange emission graphene quantum dots (GQDs). In the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H 2 O 2 ), catechol can be oxidized by hydroxyl radicals and converted to o-benzoquinone, which can significantly quench the fluorescence of GQDs. However, when AA present in the system, it can consume part of H 2 O 2 and hydroxyl radicals to inhibit the generation of o-benzoquinone, resulting in fluorescence recovery. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of H 2 O 2 in the range of 3.33-500µM with a detection limit of 1.2µM. The linear detection for AA was in the range from 1.11 to 300µM with a detection limit of 0.32µM. The proposed method was applied to the determination of AA in human serum samples with satisfactory results. Copyright © 2017. Published by Elsevier B.V.
Lupu, Stelian; Lete, Cecilia; Balaure, Paul Cătălin; Caval, Dan Ion; Mihailciuc, Constantin; Lakard, Boris; Hihn, Jean-Yves; del Campo, Francisco Javier
2013-01-01
Bio-composite coatings consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and tyrosinase (Ty) were successfully electrodeposited on conventional size gold (Au) disk electrodes and microelectrode arrays using sinusoidal voltages. Electrochemical polymerization of the corresponding monomer was carried out in the presence of various Ty amounts in aqueous buffered solutions. The bio-composite coatings prepared using sinusoidal voltages and potentiostatic electrodeposition methods were compared in terms of morphology, electrochemical properties, and biocatalytic activity towards various analytes. The amperometric biosensors were tested in dopamine (DA) and catechol (CT) electroanalysis in aqueous buffered solutions. The analytical performance of the developed biosensors was investigated in terms of linear response range, detection limit, sensitivity, and repeatability. A semi-quantitative multi-analyte procedure for simultaneous determination of DA and CT was developed. The amperometric biosensor prepared using sinusoidal voltages showed much better analytical performance. The Au disk biosensor obtained by 50 mV alternating voltage amplitude displayed a linear response for DA concentrations ranging from 10 to 300 μM, with a detection limit of 4.18 μM. PMID:23698270
Tušek, Ana Jurinjak; Šalić, Anita; Zelić, Bruno
2017-08-01
Laccase belongs to the group of enzymes that are capable to catalyze the oxidation of phenols. Since the water is only by-product in laccase-catalyzed phenol oxidations, it is ideally "green" enzyme with many possible applications in different industrial processes. To make the oxidation process more sustainable in terms of biocatalyst consumption, immobilization of the enzyme is implemented in to the processes. Additionally, when developing a process, choice of a reactor type plays a significant role in the total outcome.In this study, the use of immobilized laccase from Trametes versicolor for biocatalytic catechol oxidation was explored. Two different methods of immobilization were performed and compared using five different reactor types. In order to compare different systems used for catechol oxidation, biocatalyst turnover number and turnover frequency were calculated. With low consumption of the enzyme and good efficiency, obtained results go in favor of microreactors with enzyme covalently immobilized on the microchannel surface.
Li, Hao; Pan, Bo; Liao, Shaohua; Zhang, Di; Xing, Baoshan
2014-05-01
Iron is rich in soils, and is recently reported to form stable complexes with organic free radicals, generating environmentally persistent free radicals (EPFRs). The observation may challenge the common viewpoint that iron is an effective catalyst to facilitate the degradation of various organic chemicals. But no study was specifically designed to investigate the possible inhibited degradation of organic chemicals because of the formation of EPFRs in dry environment. We observed that catechol degradation under UV irradiation was decreased over 20% in silica particles coated with 1% hematite in comparison to uncoated silica particles. Stabilized semiquinone or quinine and phenol radicals were involved in HMT-silica system. EPFR formation was thus the reason for the reduced catechol degradation on HMT-silica surface under UV irradiation at ambient temperature. EPFRs should be incorporated in the studies of organic contaminants geochemical behavior, and will be a new input in their environmental fate modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Meng, Xu; Wang, Yanmin; Wang, Yuanguang; Chen, Baohua; Jing, Zhenqiang; Chen, Gexin; Zhao, Peiqing
2017-07-07
In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH) x /OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH) x /OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH) x /OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.
Mechanics of metal-catecholate complexes: The roles of coordination state and metal types
Xu, Zhiping
2013-01-01
There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799
Zhou, Jinjun; Bhagat, Vrushali; Becker, Matthew L
2016-12-14
The adhesive nature of mussels arises from the catechol moiety in the 3,4-dihydroxyphenylalanine (DOPA) amino acid, one of the many proteins that contribute to the unique adhesion properties of mussels. Inspired by these properties, many biomimetic adhesives have been developed over the past few years in an attempt to replace adhesives such as fibrin, cyanoacrylate, and epoxy glues. In the present work, we synthesized ethanol soluble but water insoluble catechol functionalized poly(ester urea) random copolymers that help facilitate delivery and adhesion in wet environments. Poly(propylene glycol) units incorporated into the polymer backbone impart ethanol solubility to these polymers, making them clinically relevant. A catechol to cross-linker ratio of 10:1 with a curing time of 4 h exceeded the performance of commercial fibrin glue (4.8 ± 1.4 kPa) with adhesion strength of 10.6 ± 2.1 kPa. These adhesion strengths are significant with the consideration that the adhesion studies were performed under wet conditions.
Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C–N Bonds
Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.
2015-01-01
Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis. PMID:26200342
2016-01-01
Exposure to polycyclic aromatic hydrocarbons (PAHs) is the major human health hazard associated with the Deepwater Horizon oil spill. C2-Chrysenes are representative PAHs present in crude oil and could contaminate the food chain. We describe the metabolism of a C2-chrysene regioisomer, 6-ethylchrysene (6-EC), in human HepG2 cells. The structures of the metabolites were identified by HPLC-UV-fluorescence detection and LC-MS/MS. 6-EC-tetraol isomers were identified as signature metabolites of the diol-epoxide pathway. O-Monomethyl-O-monosulfonated-6-EC-catechol, its monohydroxy products, and N-acetyl-l-cysteine(NAC)-6-EC-ortho-quinone were discovered as signature metabolites of the ortho-quinone pathway. Potential dual metabolic activation of 6-EC involving the formation of bis-electrophiles, i.e., a mono-diol-epoxide and a mono-ortho-quinone within the same structure, bis-diol-epoxides, and bis-ortho-quinones was observed as well. The identification of 6-EC-tetraol, O-monomethyl-O-monosulfonated-6-EC-catechol, its monohydroxy products, and NAC-6-EC-ortho-quinone supports potential metabolic activation of 6-EC by P450 and AKR enzymes followed by metabolic detoxification of the ortho-quinone through interception of its redox cycling capability by catechol-O-methyltransferase and sulfotransferase enzymes. The tetraols and catechol conjugates could be used as biomarkers of human exposure to 6-EC resulting from oil spills. PMID:27054409
Wu, Hsin-Pin; Cheng, Tian-Lu; Tseng, Wei-Lung
2007-07-03
For the first time, an aqueous solution, comprising 6-nm phosphate-modified titanium dioxide (P-TiO2) nanoparticles (NPs) and fluorescein, has been used for sensing dopamine (DA), levodopa (L-DOPA), adrenaline, and catechol. The complexes obtained by means of chelation of surface Ti(IV) ions with an enediol group exhibit strong absorption at 428 nm; thus, they can be designed as efficient quenchers for fluorescein. The fluorescence of a fluorescein solution containing 1.4 mM P-TiO2 NPs at pH 8.0 decreases if the solution comprises DA, L-DOPA, adrenaline, and catechol, but not noradrenaline, ascorbic acid, and salicylic acid. We consider that P-TiO2 NPs have a number of advantages over bare TiO2 NPs, such as ease of preparation, high selectivity, and high stability. By measuring fluorescence quenching, the limits of detection at a signal-to-noise ratio of 3 are calculated as 33.5, 81.8, 20.3, and 92.1 nM for DA, L-DOPA, adrenaline, and catechol, respectively. In contrast, UV-vis absorption reveals the relatively poor sensitivity of these compounds. We have validated the applicability of our method by means of analyses of DA in urine samples. High-performance liquid chromatography in combination with an electrochemical cell has been used to further confirm our results. We believe that this approach has great potential for diagnostic purposes.
Shackleford, Jessica P.; Shen, Bo; Johnston, Jeffrey N.
2012-01-01
The mechanism of umpolung amide synthesis was probed by interrogating potential sources for the oxygen of the product amide carbonyl that emanates from the α-bromo nitroalkane substrate. Using a series of 18O-labeled substrates and reagents, evidence is gathered to advance two pathways from the putative tetrahedral intermediate. Under anaerobic conditions, a nitro-nitrite isomerization delivers the amide oxygen from nitro oxygen. The same homolytic nitro-carbon fragmentation can be diverted by capture of the carbon radical intermediate with oxygen gas (O2) to deliver the amide oxygen from O2. This understanding was used to develop a straightforward protocol for the preparation of 18O-labeled amides in peptides by simply performing the umpolung amide synthesis reaction under an atmosphere of . PMID:22184227
Geerts, Roy; Kuijer, Patrick; van Ginkel, Cornelis G; Plugge, Caroline M
2014-07-01
To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.
Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal
2016-09-02
Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.
Microwave Assisted Synthesis of Py-Im Polyamides
2012-01-01
Microwave synthesis was utilized to rapidly build Py-Im polyamides in high yields and purity using Boc-protection chemistry on Kaiser oxime resin. A representative polyamide targeting the 5′-WGWWCW-3′ (W = A or T) subset of the consensus Androgen and Glucocorticoid Response Elements was synthesized in 56% yield after 20 linear steps and HPLC purification. It was confirmed by Mosher amide derivatization of the polyamide that a chiral α-amino acid does not racemize after several additional coupling steps. PMID:22578091
Babu, N Jagadeesh; Reddy, L Sreenivas; Nangia, Ashwini
2007-01-01
The carboxamide-pyridine N-oxide heterosynthon is sustained by syn(amide)N-H...O-(oxide) hydrogen bond and auxiliary (N-oxide)C-H...O(amide) interaction (Reddy, L. S.; Babu, N. J.; Nangia, A. Chem. Commun. 2006, 1369). We evaluate the scope and utility of this heterosynthon in amide-containing molecules and drugs (active pharmaceutical ingredients, APIs) with pyridine N-oxide cocrystal former molecules (CCFs). Out of 10 cocrystals in this study and 7 complexes from previous work, amide-N-oxide heterosynthon is present in 12 structures and amide dimer homosynthon occurs in 5 structures. The amide dimer is favored over amide-N-oxide synthon in cocrystals when there is competition from another H-bonding functional group, e.g., 4-hydroxybenzamide, or because of steric factors, as in carbamazepine API. The molecular organization in carbamazepine.quinoxaline N,N'-dioxide 1:1 cocrystal structure is directed by amide homodimer and anti(amide)N-H...O-(oxide) hydrogen bond. Its X-ray crystal structure matches with the third lowest energy frame calculated in Polymorph Predictor (Cerius(2), COMPASS force field). Apart from generating new and diverse supramolecular structures, hydration is controlled in one substance. 4-Picoline N-oxide deliquesces within a day, but its cocrystal with barbital does not absorb moisture at 50% RH and 30 degrees C up to four weeks. Amide-N-oxide heterosynthon has potential utility in both amide and N-oxide type drug molecules with complementary CCFs. Its occurrence probability in the Cambridge Structural Database is 87% among 27 structures without competing acceptors and 78% in 41 structures containing OH, NH, H(2)O functional groups.
Liu, Xuemei; Zhang, Fagen; Liu, Hong; Burdette, Joanna E; Li, Yan; Overk, Cassia R; Pisha, Emily; Yao, Jiaqin; van Breemen, Richard B; Swanson, Steven M; Bolton, Judy L
2003-06-01
Estrogen replacement therapy has been correlated with an increased risk for developing breast and endometrial cancers. One potential mechanism of estrogen carcinogenesis involves metabolism of estrogens to 2- and 4-hydroxylated catechols, which are further oxidized to electrophilic/redox active o-quinones that have the potential to both initiate and promote the carcinogenic process. Previously, we showed that the equine estrogens, equilin and equilenin, which are major components of the estrogen replacement formulation Premarin (Wyeth-Ayerst), are primarily metabolized to the catechol, 4-hydroxyequilenin. This catechol was found to autoxidize to an o-quinone causing oxidation and alkylation of DNA in vitro and in vivo. To block catechol formation from equilenin, 4-halogenated equilenin derivatives were synthesized. These derivatives were tested for their ability to bind to the estrogen receptor, induce estrogen sensitive genes, and their potential to form catechol metabolites. We found that the 4-fluoro derivatives were more estrogenic than the 4-chloro and 4-bromo derivatives as demonstrated by a higher binding affinity for estrogen receptors alpha and beta, an enhanced induction of alkaline phosphatase activity in Ishikawa cells, pS2 expression in S30 cells, and PR expression in Ishikawa cells. Incubation of these compounds with tyrosinase in the presence of GSH showed that the halogenated equilenin compounds formed less catechol GSH conjugates than the parent compounds, equilenin and 17beta-hydroxyequilenin. In addition, these halogenated compounds showed less cytotoxicity in the presence of tyrosinase than the parent compounds in S30 cells. Also, as stated above, the 4-fluoro derivatives showed similar estrogenic effects as compared with parent compounds; however, they were less toxic in S30 cells as compared to equilenin and 17beta-equilenin. Because 17beta-hydroxy-4-halogenated equilenin derivatives showed higher estrogenic effects than the halogenated equilenin derivatives in vitro, we studied the relative ability of the 17beta-hydroxy-4-halogenated equilenin derivatives to induce estrogenic effects in the ovariectomized rat model. The 4-fluoro derivative showed higher activity than 4-chloro and 4-bromo derivatives as demonstrated by inducing higher vaginal cellular differentiation, uterine growth, and mammary gland branching. However, 17beta-hydroxy-4-fluoroequilenin showed a lower estrogenic activity than 17beta-hydroxyequilenin and estradiol, which could be due to alternative pharmacokinetic properties for these compounds. These data suggest that the 4-fluoroequilenin derivatives have promise as alternatives to traditional estrogen replacement therapy due to their similar estrogenic properties with less overall toxicity.
Szostak, Roman; Aubé, Jeffrey
2015-01-01
N-protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding, as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C–N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology. PMID:25766378
Facile solvolysis of a surprisingly twisted tertiary amide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomfield, Aaron J.; Chaudhuri, Subhajyoti; Mercado, Brandon Q.
2016-01-05
In this study, a bicyclo[2.2.2]octane derivative containing both a tertiary amide and a methyl ester was shown crystallographically to adopt a conformation in which the amide is in the cis configuration, which is sterically disfavored, but electronically favored. The steric strain induces a significant torsion (15.9°) of the amide, thereby greatly increasing the solvolytic lability of the amide to the extent that we see competitive amide solvolysis in the presence of the normally more labile methyl ester also present in the molecule.
Amides in Nature and Biocatalysis.
Pitzer, Julia; Steiner, Kerstin
2016-10-10
Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the quest for novel biocatalysts. Several mechanisms for carboxylate activation involving mainly acyl-adenylate, acyl-phosphate or acyl-enzyme intermediates have been discovered, but also completely different pathways to amides are found. In addition to ribosomes, selected enzymes of almost all main enzyme classes are able to synthesize amides. In this review we give an overview about amide synthesis in Nature, as well as biotechnological applications of these enzymes. Moreover, several examples of biocatalytic amide synthesis are given. Copyright © 2016 Elsevier B.V. All rights reserved.
Emmanuel, E S Challaraj; Ananthi, T; Anandkumar, B; Maruthamuthu, S
2012-03-01
In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.
NASA Astrophysics Data System (ADS)
Baldassarre, L.; Giliberti, V.; Rosa, A.; Ortolani, M.; Bonamore, A.; Baiocco, P.; Kjoller, K.; Calvani, P.; Nucara, A.
2016-02-01
Infrared (IR) nanospectroscopy performed in conjunction with atomic force microscopy (AFM) is a novel, label-free spectroscopic technique that meets the increasing request for nano-imaging tools with chemical specificity in the field of life sciences. In the novel resonant version of AFM-IR, a mid-IR wavelength-tunable quantum cascade laser illuminates the sample below an AFM tip working in contact mode, and the repetition rate of the mid-IR pulses matches the cantilever mechanical resonance frequency. The AFM-IR signal is the amplitude of the cantilever oscillations driven by the thermal expansion of the sample after absorption of mid-IR radiation. Using purposely nanofabricated polymer samples, here we demonstrate that the AFM-IR signal increases linearly with the sample thickness t for t \\gt 50 nm, as expected from the thermal expansion model of the sample volume below the AFM tip. We then show the capability of the apparatus to derive information on the protein distribution in single cells through mapping of the AFM-IR signal related to the amide-I mid-IR absorption band at 1660 cm-1. In Escherichia Coli bacteria we see how the topography changes, observed when the cell hosts a protein over-expression plasmid, are correlated with the amide I signal intensity. In human HeLa cells we obtain evidence that the protein distribution in the cytoplasm and in the nucleus is uneven, with a lateral resolution better than 100 nm.
Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka
2012-06-21
Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF < NMA < DMF < NMP. Thus, the evolution of HFIP clusters around amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.
Otani, Yuko; Watanabe, Satoshi; Ohwada, Tomohiko; Kitao, Akio
2017-01-12
In this study, the solution structures of the homooligomers of a conformationally constrained bicyclic proline-type β-amino acid were studied by means of molecular dynamics (MD) calculations in explicit methanol and water using the umbrella sampling method. The ratio of trans-amide and cis-amide was estimated by NMR and the rotational barrier of the amide of acetylated bicyclic amino acid monomer was estimated by two-dimensional (2D) exchange spectroscopy (EXSY) or line-shape analysis. A bias potential was introduced with respect to the amide torsion angle ω to enhance conformational exchange including isomerization of amide bonds by lowering the rotation energy barrier. After determination of reweighting parameters to best reproduce the experimental results of the monomer amide, the free energy profile around the amide torsion angle ω was obtained from the MD trajectory by reweighting of the biased probability density. The MD simulation results support the existence of invertomers of nitrogen-pyramidalized amide. Furthermore, extended structures with a high fraction of trans-amide conformation appear to be increasingly stabilized as the oligomer is elongated, both in methanol and in water. Our conformational analysis of natural and non-natural tertiary-amide-based peptide oligomers indicates that these oligomers preferentially adopt a limited number of conformations.
Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI.
Akasaka, K.; Li, H.; Yamada, H.; Li, R.; Thoresen, T.; Woodward, C. K.
1999-01-01
The effect of pressure on amide 15N chemical shifts was studied in uniformly 15N-labeled basic pancreatic trypsin inhibitor (BPTI) in 90%1H2O/10%2H2O, pH 4.6, by 1H-15N heteronuclear correlation spectroscopy between 1 and 2,000 bar. Most 15N signals were low field shifted linearly and reversibly with pressure (0.468 +/- 0.285 ppm/2 kbar), indicating that the entire polypeptide backbone structure is sensitive to pressure. A significant variation of shifts among different amide groups (0-1.5 ppm/2 kbar) indicates a heterogeneous response throughout within the three-dimensional structure of the protein. A tendency toward low field shifts is correlated with a decrease in hydrogen bond distance on the order of 0.03 A/2 kbar for the bond between the amide nitrogen atom and the oxygen atom of either carbonyl or water. The variation of 15N shifts is considered to reflect site-specific changes in phi, psi angles. For beta-sheet residues, a decrease in psi angles by 1-2 degrees/2 kbar is estimated. On average, shifts are larger for helical and loop regions (0.553 +/- 0.343 and 0.519 +/- 0.261 ppm/2 kbar, respectively) than for beta-sheet (0.295 +/- 0.195 ppm/2 kbar), suggesting that the pressure-induced structural changes (local compressibilities) are larger in helical and loop regions than in beta-sheet. Because compressibility is correlated with volume fluctuation, the result is taken to indicate that the volume fluctuation is larger in helical and loop regions than in beta-sheet. An important aspect of the volume fluctuation inferred from pressure shifts is that they include motions in slower time ranges (less than milliseconds) in which many biological processes may take place. PMID:10548039
Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier
2006-08-03
We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.
Szostak, Roman; Aubé, Jeffrey; Szostak, Michal
2015-08-21
Twisted amides containing nitrogen at the bridgehead position are attractive practical prototypes for the investigation of the electronic and structural properties of nonplanar amide linkages. Changes that occur during rotation around the N-C(O) axis in one-carbon-bridged twisted amides have been studied using ab initio molecular orbital methods. Calculations at the MP2/6-311++G(d,p) level performed on a set of one-carbon-bridged lactams, including 20 distinct scaffolds ranging from [2.2.1] to [6.3.1] ring systems, with the C═O bond on the shortest bridge indicate significant variations in structures, resonance energies, proton affinities, core ionization energies, frontier molecular orbitals, atomic charges, and infrared frequencies that reflect structural changes corresponding to the extent of resonance stabilization during rotation along the N-C(O) axis. The results are discussed in the context of resonance theory and activation of amides toward N-protonation (N-activation) by distortion. This study demonstrates that one-carbon-bridged lactams-a class of readily available, hydrolytically robust twisted amides-are ideally suited to span the whole spectrum of the amide bond distortion energy surface. Notably, this study provides a blueprint for the rational design and application of nonplanar amides in organic synthesis. The presented findings strongly support the classical amide bond resonance model in predicting the properties of nonplanar amides.
Shavaleev, Nail M; Davies, E Stephen; Adams, Harry; Best, Jonathan; Weinstein, Julia A
2008-03-03
A series of catechols with attached imide functionality (imide = phthalimide PHT, 1,8-naphthalimide NAP, 1,4,5,8-naphthalenediimide NDI, and NAP-NDI) has been synthesized and coordinated to the Pt (II)(bpy*) moiety, yielding Pt(bpy*)(cat-imide) complexes (bpy* = 4,4'-di- tert-butyl-2,2'-bipyridine). X-ray crystal structures of PHT and NAP complexes show a distorted square-planar arrangement of ligands around the Pt center. Both complexes form "head-to-tail" dimers in the solid state through remarkably short unsupported Pt...Pt contacts of 3.208 (PHT) and 3.378 A (NAP). The Pt(bpy*)(cat-imide) complexes are shown to combine optical (absorption) and electrochemical properties of the catecholate (electron-donor) and imide (electron-acceptor) groups. The complexes show a series of reversible reduction processes in the range from -0.5 to -1.9 V vs Fc (+)/Fc, which are centered on either bpy* or imide groups, and a reversible oxidation process at +0.07 to +0.14 V, which is centered on the catecholate moiety. A combination of UV-vis absorption spectroscopy, cyclic voltammetry, UV-vis spectroelectrochemistry, and EPR spectroscopy has allowed assignment of the nature of frontier orbitals in Pt(bpy*)(cat-imide) complexes. The HOMO in Pt(bpy*)(cat-imide) is centered on the catechol ligand, while the LUMO is localized either on bpy* or on the imide group, depending on the nature of the imide group involved. Despite the variations in the nature of the LUMO, the lowest-detectable electronic transition in all Pt(bpy*)(cat-imide) complexes has predominantly ligand-to-ligand (catechol-to-diimine) charge-transfer nature (LLCT) and involves a bpy*-based unoccupied molecular orbital in all cases. The LLCT transition in all Pt(bpy*)(cat-imide) complexes appears at 530 nm in CH2Cl2 and is strongly negatively solvatochromic. The energy of this transition is remarkably insensitive to the imide group present, indicating lack of electronic communication between the imide and the catechol moieties within the cat-imide ligand. The high extinction coefficient, approximately 6 x 10(3) L mol(-1) cm(-1) of this predominantly LLCT transition is the result of the Pt orbital contribution, as revealed by EPR spectroscopy of the complexes in various redox states. The CV profile of the oxidation process of Pt(bpy*)(cat-imide) in CH2Cl2 and DMF is concentration dependent, as was shown for NDI and PHT complexes as typical examples. Oxidation appears as a simple diffusion-limited process at low concentrations, with an increasing anodic-to-cathodic peak separation eventually resolving as two independent consecutive waves as the concentration of the complex increases. It is suggested that aggregation of the complexes in the diffusion layer in the course of oxidation is responsible for the observed concentration dependence. Overall, the Pt(bpy*)(cat-imide) complexes are electrochromic compounds in which a series of stepwise reversible redox processes in the potential range from 0.2 to -2 V (vs Fc (+)/Fc) leads to tuneable absorbencies between 300 and 850 nm.
Characterization and purification of polyphenol oxidase from artichoke (Cynara scolymus L.).
Dogan, Serap; Turan, Yusuf; Ertürk, Hatibe; Arslan, Oktay
2005-02-09
In this study, the polyphenol oxidase (PPO) of artichoke (Cynara scolymus L.) was first purified by a combination of (NH(4))(2)SO(4) precipitation, dialysis, and a Sepharose 4B-L-tyrosine-p-aminobenzoic acid affinity column. At the end of purification, 43-fold purification was achieved. The purified enzyme migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis indicated that PPO had a 57 kDa molecular mass. Second, the contents of total phenolic and protein of artichoke head extracts were determined. The total phenolic content of artichoke head was determined spectrophotometrically according to the Folin-Ciocalteu procedure and was found to be 425 mg 100 g(-1) on a fresh weight basis. Protein content was determined according to Bradford method. Third, the effects of substrate specificity, pH, temperature, and heat inactivation were investigated on the activity of PPO purified from artichoke. The enzyme showed activity to 4-methylcatechol, pyrogallol, catechol, and L-dopa. No activity was detected toward L-tyrosine, resorsinol, and p-cresol. According to V(max)/K(m) values, 4-methylcatechol (1393 EU min(-1) mM(-1)) was the best substrate, followed by pyrogallol (1220 EU min(-1) mM(-1)), catechol (697 EU min(-1) mM(-1)), and L-dopa (102 EU min(-1) mM(-1)). The optimum pH values for PPO were 5.0, 8.0, and 7.0 using 4-methylcatechol, pyrogallol, and catechol as substrate, respectively. It was found that optimum temperatures were dependent on the substrates studied. The enzyme activity decreased due to heat denaturation of the enzyme with increasing temperature and inactivation time for 4-methylcatechol and pyrogallol substrates. However, all inactivation experiments for catechol showed that the activity of artichoke PPO increased with mild heating, reached a maximum, and then decreased with time. Finally, inhibition of artichoke PPO was investigated with inhibitors such as L-cysteine, EDTA, ascorbic acid, gallic acid, d,L-dithiothreitol, tropolone, glutathione, sodium azide, benzoic acid, salicylic acid, and 4-aminobenzoic acid using 4-methylcatechol, pyrogallol, and catechol as substrate. The presence of EDTA, 4-aminobenzoic acid, salicylic acid, gallic acid, and benzoic acid did not cause the inhibition of artichoke PPO. A competitive-type inhibition was obtained with sodium azide, L-cysteine, and d,L-dithiothreitol inhibitors using 4-methylcatechol as substrate; with L-cysteine, tropolone, d,L-dithiothreitol, ascorbic acid, and sodium azide inhibitors using pyrogallol as substrate; and with L-cysteine, tropolone, d,L-dithiotreitol, and ascorbic acid inhibitors using catechol as a substrate. A mixed-type inhibition was obtained with glutathione inhibitor using 4-methylcatechol as a substrate. A noncompetitive inhibition was obtained with tropolone and ascorbic acid inhibitors using 4-methylcatechol as substrate, with glutathione inhibitor using pyrogallol as substrate, and with glutathione and sodium azide inhibitors using catechol as substrate. From these results, it can be said that the most effective inhibitor for artichoke PPO is tropolone. Furthermore, it was found that the type of inhibition depended on the origin of the PPO studied and also on the substrate used.
Nikitas, P; Pappa-Louisi, A
2005-09-01
The original work carried out by Freiling and Drake in gradient liquid chromatography is rewritten in the current language of reversed-phase liquid chromatography. This allows for the rigorous derivation of the fundamental equation for gradient elution and the development of two alternative expressions of this equation, one of which is free from the constraint that the holdup time must be constant. In addition, the above derivation results in a very simple numerical solution of the various equations of gradient elution under any gradient profile. The theory was tested using eight catechol-related solutes in mobile phases modified with methanol, acetonitrile, or 2-propanol. It was found to be a satisfactory prediction of solute gradient retention behavior even if we used a simple linear description for the isocratic elution of these solutes.
Hu, Feng; Lalancette, Roger; Szostak, Michal
2016-04-11
Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Senger, Donald R.; Li, Dan; Jaminet, Shou-Ching; Cao, Shugeng
2016-01-01
The Nrf2 (NFE2L2) cell defense pathway protects against oxidative stress and disorders including cancer and neurodegeneration. Although activated modestly by oxidative stress alone, robust activation of the Nrf2 defense mechanism requires the additional presence of co-factors that facilitate electron exchange. Various molecules exhibit this co-factor function, including sulforaphane from cruciferous vegetables. However, natural co-factors that are potent and widely available from dietary sources have not been identified previously. The objectives of this study were to investigate support of the Nrf2 cell defense pathway by the alkyl catechols: 4-methylcatechol, 4-vinylcatechol, and 4-ethylcatechol. These small electrochemicals are naturally available from numerous sources but have not received attention. Findings reported here illustrate that these compounds are indeed potent co-factors for activation of the Nrf2 pathway both in vitro and in vivo. Each strongly supports expression of Nrf2 target genes in a variety of human cell types; and, in addition, 4-ethylcatechol is orally active in mice. Furthermore, findings reported here identify important and previously unrecognized sources of these compounds, arising from biotransformation of common plant compounds by lactobacilli that express phenolic acid decarboxylase. Thus, for example, Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus collinoides, which are consumed from a diet rich in traditionally fermented foods and beverages, convert common phenolic acids found in fruits and vegetables to 4-vinylcatechol and/or 4-ethylcatechol. In addition, all of the alkyl catechols are found in wood smoke that was used widely for food preservation. Thus, the potentially numerous sources of alkyl catechols in traditional foods suggest that these co-factors were common in ancient diets. However, with radical changes in food preservation, alkyl catechols have been lost from modern foods. The absence of alkyl catechols from the modern Western diet suggests serious negative consequences for Nrf2 cell defense, resulting in reduced protection against multiple chronic diseases associated with oxidative stress. PMID:26885667
40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... amide (generic). 721.10063 Section 721.10063 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under this...
Liu, Zhuqing; Huang, Fei; Wu, Ping; Wang, Quannan; Yu, Zhengkun
2018-05-18
Amide bond formation is one of the most important transformations in organic synthesis, drug development, and materials science. Efficient construction of amides has been among the most challenging tasks for organic chemists. Herein, we report a concise methodology for amide bond (-CONH-) formation assisted by vicinal group migration in alkylthio-functionalized enaminones (α-oxo ketene N, S-acetals) under mild conditions. Simple treatment of such enaminones with PhI(OAc) 2 at ambient temperature in air afforded diverse multiply functionalized α,β-unsaturated amides including β-cyclopropylated acrylamides, in which a wide array of functional groups such as aryl, (hetero)aryl, alkenyl, and alkyl can be conveniently introduced to a ketene moiety. The reaction mechanism was investigated by exploring the origins of the amide oxygen and carbon atoms as well as isolation and structural characterization of the reaction intermediates. The amide bond formation reactions could also be efficiently performed under solventless mechanical milling conditions.
Frerot, Eric; Neirynck, Nathalie; Cayeux, Isabelle; Yuan, Yoyo Hui-Juan; Yuan, Yong-Ming
2015-08-19
A series of aromatic amides were synthesized from various acids and amines selected from naturally occurring structural frameworks. These synthetic amides were evaluated for umami taste in comparison with monosodium glutamate. The effect of the substitution pattern of both the acid and the amine parts on umami taste was investigated. The only intensely umami-tasting amides were those made from 3,4-dimethoxycinnamic acid. The amine part was more tolerant to structural changes. Amides bearing an alkyl- or alkoxy-substituted phenylethylamine residue displayed a clean umami taste as 20 ppm solutions in water. Ultraperformance liquid chromatography coupled with a high quadrupole-Orbitrap mass spectrometer (UPLC/MS) was subsequently used to show the natural occurrence of these amides. (E)-3-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide was shown to occur in the roots and stems of Zanthoxylum piperitum, a plant of the family Rutaceae growing in Korea, Japan, and China.
Controlling toughness and dynamics of polymer networks via mussel-inspired dynamical bonds
NASA Astrophysics Data System (ADS)
Filippidi, Emmanouela
For dry, thermoset, polymer systems increasing the degree of cross-linking increases the elastic modulus. However, it simultaneously compromises the elongation under tension, usually reducing the overall total energy dissipated before fracture (toughness). Dynamic reformable bonds and complex network topologies have been used to circumnavigate this issue with moderate success, mainly in hydrated network systems. Hydration, however, which swells these networks limits how far one could increase the modulus, while their chemistry prevents improvement of the mechanics upon drying. Employing the mussel byssus-inspired strategy of iron-catechol coordination bonds, we have synthesized and studied epoxy networks comprising covalently attached catechol moieties capable of forming additional iron-catechol complex cross-links that still function in dry conditions. In such a fashion, we create a high modulus, high elongation, high toughness material. The iron-catechol coordination bonds play multiple roles that enhance the mechanical performance of the system: at low strain and fast strain rates, they act like permanent cross-links with bonding strength similar to covalent bonds, but start disassociating at high elongation. They are also reformable, enabling material self-healing in a matter of minutes in the absence of load. Finally, the dissociative crosslink cleavage alters the local chain topology, creating length scales that unfold upon elongation. The elegance of this system lies on its general versatility. Both the polymer and metal ion can be used as control parameters to study the interplay of covalent and dynamical bonds as well as explore the limits of the design of elastomers with enhanced toughness. MRSEC of NSF Award No. DMR-1121053.
NASA Astrophysics Data System (ADS)
Wang, Zhong; Zhao, Shujun; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang
2018-03-01
Achieving flexible and stretchable biobased nanocomposites combining high strength and toughness is still a very challenging endeavor. Herein, we described a novel and versatile biomimetic design for tough and high-performance TEMPO-oxidized nanofibrillated cellulose (TONFC)/soy protein isolate (SPI) nanocomposites, which are triggered by catechol-mimetic carbon nanotubes (PCT) and iron ions (Fe(III)) to yield a strong yet sacrificial metal-ligand motifs into a chemically cross-linked architecture network. Taking advantage of self-polymerization of catechol-inspired natural tannic acid, PCT nanohybrid was prepared through adhering reactive poly-(tannic acid) (PTA) layer onto surfaces of carbon nanotubes via a simple dip-coating process. The high-functionality PCT induced the formation of the metal-ligand bonds through the ionic coordinates between the catechol groups in PCT and -COOH groups of TONFC skeleton with Fe(III) mediation that mimicked mussel byssus. Upon stretching, this tailored TONFC-Fe(III)-catechol coordination bonds served as sacrificial bonds that preferentially detach prior to the covalent network, which gave rise to efficient energy dissipation that the nanocomposites integrity was survived. As a result of these kind of synergistic interfacial interactions (sacrificial and covalent bonding), the optimal nanocomposite films processed high tensile strength (ca. 11.5 MPa), large elongation (ca. 79.3%), remarkable toughness (ca. 6.9 MJ m-3), and favorable water resistance as well as electrical conductivity. The proposed bioinspired strategy for designing plant protein-based materials enables control over their mechanical performance through the synergistic engineering of sacrificial bonds into the composite interface.
Ayers, Benjamin J; Glawar, Andreas F G; Martínez, R Fernando; Ngo, Nigel; Liu, Zilei; Fleet, George W J; Butters, Terry D; Nash, Robert J; Yu, Chu-Yi; Wormald, Mark R; Nakagawa, Shinpei; Adachi, Isao; Kato, Atsushi; Jenkinson, Sarah F
2014-04-18
All 16 stereoisomeric N-methyl 5-(hydroxymethyl)-3,4-dihydroxyproline amides have been synthesized from lactones accessible from the enantiomers of glucuronolactone. Nine stereoisomers, including all eight with a (3R)-hydroxyl configuration, are low to submicromolar inhibitors of β-N-acetylhexosaminidases. A structural correlation between the proline amides is found with the ADMDP-acetamide analogues bearing an acetamidomethylpyrrolidine motif. The proline amides are generally more potent than their ADMDP-acetamide equivalents. β-N-Acetylhexosaminidase inhibition by an azetidine ADMDP-acetamide analogue is compared to an azetidine carboxylic acid amide. None of the amides are good α-N-acetylgalactosaminidase inhibitors.
Semi-catalytic reduction of secondary amides to imines and aldehydes.
Lee, Sun-Hwa; Nikonov, Georgii I
2014-06-21
Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.
Handa, Sumit; Spradling, Tyler J.; Dempsey, Daniel R.; Merkler, David J.
2013-01-01
Most mammalian bioactive peptides possess a C-terminal amino acid amide moiety. The presence of the C-terminal amide is a significant impediment to the recombinant production of α-amidated peptides. α-Amidated peptides are produced in vivo by the enzymatic cleavage of a precursor with a C-terminal glycine residue. Peptidylglycine α-hydroxylating monooxygenase catalyzes the key step in the oxidation of the glycine-extended precursors to the α-amidated peptide. Herein, we detail the production of the catalytic core of human peptidylglycine α-hydroxylating monooxygenase (hPHMcc) in Escherichia coli possessing a N-terminal fusion to thioredoxin (Trx). Trx was fused to hPHMcc to enhance the yield of the resulting 52 kDa protein as a soluble and catalytically active enzyme. The Trx-hPHMcc-His6 fusion was purified to homogeneity and exhibited steady-state kinetic parameters that were similar to purified rat PHMcc. The bacterial production of recombinant hPHMcc will foster efforts to generate α-amidated peptides by the co-expression of hPHMcc and the α-amidated peptide precursors in E. coli or the in vitro amidation of recombinantly expressed α-amidated peptide precursors. PMID:22554821
40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fluorinated alkylaryl amide. 721.9075 Section 721.9075 Protection of Environment ENVIRONMENTAL PROTECTION... amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688) is...
Aoki, K; Koga, K
2000-04-01
Enantioselective deprotonation of 4-tert-butylcyclohexanone was examined using 1-phenylethylamine- and 1-(1-naphthyl)ethylamine-derived chiral lithium amides having an alkyl or a fluoroalkyl substituent at the amide nitrogen. The lithium amides having a 2,2,2-trifluoroethyl group on the amide nitrogen are easily accessible in both enantiomeric forms, and were found to induce good enantioselectivity in the present reaction.
The Influence of Varied Amide Bond Positions on Hydraphile Ion Channel Activity
Weber, Michelle E.; Wang, Wei; Steinhardt, Sarah E.; Gokel, Michael R.; Leevy, W. Matthew; Gokel, George W.
2008-01-01
Hydraphile compounds have been prepared in which certain of the amine nitrogens have been replaced by amide residues. The amide bonds are present either in the sidearm, the side chain, or the central relay. Sodium cation transport through phospholipid vesicles mediated by each hydraphile was assessed. All of the amide-containing hydraphiles showed increased levels of Na+ transport compared to the parent compound, but the most dramatic rate increase was observed for sidearm amine to amide replacement. We attribute this enhancement to stabilization of the sidearm in the bilayer to achieve a better conformation for ion conduction. Biological studies of the amide hydraphiles with E. coli and B. subtilis showed significant toxicity only with the latter. Further, the consistency between the efficacies of ion transport and toxicity previously observed for non-amidic hydraphiles was not in evidence. PMID:19169369
Stathopoulos, Panagiotis; Papas, Serafim; Tsikaris, Vassilios
2006-03-01
Decomposition of the resin linkers during TFA cleavage of the peptides in the Fmoc strategy leads to alkylation of sensitive amino acids. The C-terminal amide alkylation, reported for the first time, is shown to be a major problem in peptide amides synthesized on the Rink amide resin. This side reaction occurs as a result of the Rink amide linker decomposition under TFA treatment of the peptide resin. The use of 1,3-dimethoxybenzene in a cleavage cocktail prevents almost quantitatively formation of C-terminal N-alkylated peptide amides. Oxidized by-product in the tested Cys- and Met-containing peptides were not observed, even if thiols were not used in the cleavage mixture. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.
Nakajima, Minami; Oda, Yukiko; Wada, Takamasa; Minamikawa, Ryo; Shirokane, Kenji; Sato, Takaaki; Chida, Noritaka
2014-12-22
As the complexity of targeted molecules increases in modern organic synthesis, chemoselectivity is recognized as an important factor in the development of new methodologies. Chemoselective nucleophilic addition to amide carbonyl centers is a challenge because classical methods require harsh reaction conditions to overcome the poor electrophilicity of the amide carbonyl group. We have successfully developed a reductive nucleophilic addition of mild nucleophiles to tertiary amides, secondary amides, and N-methoxyamides that uses the Schwartz reagent [Cp2 ZrHCl]. The reaction took place in a highly chemoselective fashion in the presence of a variety of sensitive functional groups, such as methyl esters, which conventionally require protection prior to nucleophilic addition. The reaction will be applicable to the concise synthesis of complex natural alkaloids from readily available amide groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai
2016-04-01
Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations.
NASA Astrophysics Data System (ADS)
Li, Qiaochu; Barret, Devin G.; Messersmith, Phillip B.; Holten-Andersen, Niels
2014-03-01
Polymer-nanoparticle (NP) composites have attracted renewed attention due to enhanced mechanical strength combined with various functionalities, but controlling the interfacial chemistry between NPs and polymer matrix, which is crucial for the composite's mechanical behavior, remains a major challenge. Inspired by the adhesion chemistry of mussel fibers, we investigated a novel approach to incorporate Fe3O4 NPs into hydrogel matrix. A polyethylene glycol polymer is designed with both ends conjugated by catechol groups, which have strong coordination affinity to Fe. The polymer network is crosslinked via coordination bonding at the surface of Fe3O4 NPs, yielding a stiff nanocomposite hydrogel. Due to the reversible nature of coordination bonding, the hydrogel presents self-healing behavior. Oscillatory rheology allows comparative kinetic studies of self-healing driven by catechol bonding at Fe3O4 NP interfaces and by catechol-Fe3+ coordination complexes. Furthermore, the superparamagnetic property of Fe3O4 NP is preserved after gelation, allowing for response to external stimuli. This gelation motif can serve as a versatile platform for tuning functional and mechanical properties for future polymer nanocomposite materials.
Stephen, Zachary R; Dayringer, Christopher J; Lim, Josh J; Revia, Richard A; Halbert, Mackenzie V; Jeon, Mike; Bakthavatsalam, Arvind; Ellenbogen, Richard G; Zhang, Miqin
2016-03-01
Surface functionalization of theranostic nanoparticles (NPs) typically relies on lengthy, aqueous postsynthesis labeling chemistries that have limited ability to fine-tune surface properties and can lead to NP heterogeneity. The need for a rapid, simple synthesis approach that can provide great control over the display of functional moieties on NP surfaces has led to increased use of highly selective bioorthoganol chemistries including metal-affinity coordination. Here we report a simple approach for rapid production of a superparamagnetic iron oxide NPs (SPIONs) with tunable functionality and high reproducibility under aqueous conditions. We utilize the high affinity complex formed between catechol and Fe((III)) as a means to dock well-defined catechol modified polymer modules on the surface of SPIONs during sonochemical coprecipitation synthesis. Polymer modules consisted of chitosan and poly(ethylene glycol) (PEG) copolymer (CP) modified with catechol (CCP), and CCP functionalized with cationic polyethylenimine (CCP-PEI) to facilitate binding and delivery of DNA for gene therapy. This rapid synthesis/functionalization approach provided excellent control over the extent of PEI labeling, improved SPION magnetic resonance imaging (MRI) contrast enhancement and produced an efficient transfection agent.
Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu
2005-05-30
The molecular structures and physicochemical properties of diruthenium complexes with ligand-unsupported Ru-Ru bonds, generally formulated as [A2{Ru2(DTBCat)4}] (DTB = 3,5- or 3,6-di-tert-butyl; Cat(2-) = catecholate), were studied in detail by changing the countercations. First, the binding structures of the cations in a family of [{A(DME)n}2{Ru2(3,5-DTBCat)4}] (n = 2 for A+ = Li+ and Na+ and n = 1 for A+ = K+ and Rb+) were systematically examined to reveal the effects of the cations on the molecular structures and electrochemical properties. Second, the complex (n-Bu4N)2[Ru2(3,6-DTBCat)4] with a cation-free structure was synthesized using tetra-n-butylammonium cations. The complex clearly demonstrates first that the ligand-unsupported Ru-Ru bonds are essentially stabilized by the dianionic nature of the catecholate derivatives without any other bridging or supporting species. In contrast, the redox potentials and absorption spectra of the complexes can sensitively respond to the countercations depending upon the polarity of the solvents.
NASA Astrophysics Data System (ADS)
Ptak, Tomasz; Młynarz, Piotr; Dobosz, Agnieszka; Rydzewska, Agata; Prokopowicz, Monika
2013-05-01
Boronic acids are a class of intensively explored compounds, which according to their specific properties have been intensively explored in last decades. Among them phenylboronic acids and their derivatives are most frequently examined as receptors for diverse carbohydrates. In turn, there is a large gap in basic research concerning complexation of catecholamines by these compounds. Therefore, we decided to undertake studies on interaction of chosen catecholamines, namely: noradrenaline (norephinephrine), dopamine, L-DOPA, DOPA-P (phosphonic analog of L-DOPA) and catechol, with simple phenyl boronic acid PBA by means of potentiometry and NMR spectroscopy. For comparison, the binding properties of recently synthesized phenylboronic receptor 1 bearing aminophosphonate function in meta-position were investigated and showed promising ability to bind catecholamines. The protonation and stability constants of PBA and receptor 1 complexes were examined by potentiometry. The obtained results demonstrated that PBA binds the catecholamines with the following affinity order: noradrenaline ⩾ dopamine ≈ L-DOPA > catechol > DOPA-P, while its modified analog 1 reveals slightly different preferences: dopamine > noradrenaline > catechol > L-DOPA > DOPA-P.
Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto
2017-02-20
Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H₂O₂)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells ( NF-κB ) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H₂O₂-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H₂O₂-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.
Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit.
Bravo, Karent; Osorio, Edison
2016-04-15
Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued, however it is a very rich source of polyphenol oxidase (PPO). In this study, Cape gooseberry PPO was isolated and biochemically characterized. The enzyme was extracted and purified using acetone and aqueous two-phase systems. The data indicated that PPO had the highest substrate affinity for chlorogenic acid, 4-methylcatechol and catechol. Chlorogenic acid was the most suitable substrate (Km=0.56±0.07 mM and Vmax=53.15±2.03 UPPO mL(-1) min(-1)). The optimal pH values were 5.5 for catechol and 4-methylcatechol and 5.0 for chlorogenic acid. Optimal temperatures were 40°C for catechol, 25°C for 4-methylcatechol and 20°C for chlorogenic acid. In inhibition tests, the most potent inhibitor was found to be ascorbic acid followed by L-cysteine and quercetin. This study shows possible treatments that can be implemented during the processing of Cape gooseberry fruits to prevent browning. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl].
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N-[3-(dibutylamino... Specific Chemical Substances § 721.10191 Amides, coco, N-[3-(dibutylamino)propyl]. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco...
40 CFR 721.3720 - Fatty amide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty amide. 721.3720 Section 721.3720... Fatty amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a fatty amide (PMN P-91-87) is subject to reporting under this section...
40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N-[3-(dibutylamino... Specific Chemical Substances § 721.10192 Amides, coco, N-[3-(dibutylamino)propyl], acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides...
40 CFR 721.2120 - Cyclic amide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cyclic amide. 721.2120 Section 721... Cyclic amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a cyclic amide (PMN P-92-131) is subject to reporting under this section for the...
40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...
40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...
Genetic influences on cognitive decline in Parkinson's disease
Morley, J.F.; Xie, S.X.; Hurtig, H.I.; Stern, M.B.; Colcher, A.; Horn, S.; Dahodwala, N.; Duda, J.E.; Weintraub, D.; Chen-Plotkin, A.S.; Van Deerlin, V.; Falcone, D.; Siderowf, A.
2012-01-01
Background The role of genetic factors in cognitive decline associated with Parkinson's disease is unclear. We examined whether variations in apolipoprotein E, microtubule-associated protein tau or catechol-O-methytransferase genotypes are associated with cognitive decline in Parkinson's disease. Methods We performed a prospective cohort study of 212 patients with a clinical diagnosis of Parkinson's disease. The primary outcome was change in Mattis Dementia Rating Scale version 2 score. Linear mixed-effects models and survival analysis were used to test for associations between genotypes and change in cognitive function over time. Results The ε4 allele of apoliporotein E was associated with more rapid decline (loss of 2.9 (95% CI, 1.7–4.1) more points/year, p<0.001) in total score and an increased risk of a ≥10 pointdrop during the follow-up period (HR 2.8, 95% CI 1.4–5.4, p=0.003). Microtubule-associated protein tau haplotype and catechol-O-methytransferase genotype were associated with measures of memory and attention, respectively, over the entire followup period but not with the overall rate of cognitive decline. Conclusion These results confirm and extend previously described genetic associations with cognitive decline in Parkinson's disease and imply that individual genes may exert effects on specific cognitive domains or at different disease stages. Carrying at least one apolipoprotein E ε4 allele is associated with more rapid cognitive decline in Parkinson's disease, supporting the idea of a component of shared etiology between Parkinson's disease dementia and Alzheimer disease. Clinically, these results suggest genotyping can provide information about the risk of future cognitive decline for Parkinson's disease patients. PMID:22344634
Catechol-O-methyltransferase gene variation: impact on amygdala response to aversive stimuli.
Domschke, Katharina; Baune, Bernhard T; Havlik, Linda; Stuhrmann, Anja; Suslow, Thomas; Kugel, Harald; Zwanzger, Peter; Grotegerd, Dominik; Sehlmeyer, Christina; Arolt, Volker; Dannlowski, Udo
2012-05-01
The functional catechol-O-methyltransferase (COMT) val158met polymorphism has been found to be associated with anxiety disorders and depression as well as with neural correlates of emotional processing, with, however, contradictory results. Thus, the aim of the present study was to re-evaluate the impact of the COMT val158met variant on neural activation correlates of emotional face processing in a sample of healthy probands. In 85 healthy subjects genotyped for the COMT val158met polymorphism, amygdala responses were assessed by means of fMRI. Participants were presented with anger- and fear-relevant faces in a robust emotion-processing paradigm. For exploratory reasons, a supplementary whole-brain analysis of the allele-dose model and a gender-stratified analysis were conducted. The COMT 158val allele showed an allele-dose effect on increased predominantly left-sided amygdala activity in response to fearful/angry facial stimuli (p(uncorrected)=.00004). This effect was independent from the distribution of the frequently studied 5-HTTLPR polymorphism for which a linear effect of S-alleles on amygdala responsiveness was replicated. The influence of COMT 158val alleles was only discerned in the female subgroup of probands. The whole-brain analysis suggested associations of the COMT 158val allele with increased activity in areas of the ventral visual stream and the lateral prefrontal cortex. The present results provide further support for a-potentially female-specific-role of the COMT val158met polymorphism in the genetic and neural underpinnings of anxiety- and depression-related intermediate phenotypes and may aid in further clarifying the differential role of COMT genotype driven dopaminergic tonus in the processing of emotionally salient stimuli. Copyright © 2012 Elsevier Inc. All rights reserved.
Borzova, Vera A.; Markossian, Kira A.; Kara, Dmitriy A.; Chebotareva, Natalia A.; Makeeva, Valentina F.; Poliansky, Nikolay B.; Muranov, Konstantin O.; Kurganov, Boris I.
2013-01-01
The methodology for quantification of the anti-aggregation activity of protein and chemical chaperones has been elaborated. The applicability of this methodology was demonstrated using a test-system based on dithiothreitol-induced aggregation of bovine serum albumin at 45°C as an example. Methods for calculating the initial rate of bovine serum albumin aggregation (v agg) have been discussed. The comparison of the dependences of v agg on concentrations of intact and cross-linked α-crystallin allowed us to make a conclusion that a non-linear character of the dependence of v agg on concentration of intact α-crystallin was due to the dynamic mobility of the quaternary structure of α-crystallin and polydispersity of the α-crystallin–target protein complexes. To characterize the anti-aggregation activity of the chemical chaperones (arginine, arginine ethyl ester, arginine amide and proline), the semi-saturation concentration [L]0.5 was used. Among the chemical chaperones studied, arginine ethyl ester and arginine amide reveal the highest anti-aggregation activity ([L]0.5 = 53 and 58 mM, respectively). PMID:24058554
Wang, Yonghui; Cai, Wei; Zhang, Guifeng; Yang, Ting; Liu, Qian; Cheng, Yaobang; Zhou, Ling; Ma, Yingli; Cheng, Ziqiang; Lu, Sijie; Zhao, Yong-Gang; Zhang, Wei; Xiang, Zhijun; Wang, Shuai; Yang, Liuqing; Wu, Qianqian; Orband-Miller, Lisa A; Xu, Yan; Zhang, Jing; Gao, Ruina; Huxdorf, Melanie; Xiang, Jia-Ning; Zhong, Zhong; Elliott, John D; Leung, Stewart; Lin, Xichen
2014-01-15
Novel series of N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides were discovered as potent retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitors. SAR studies of the RORγt HTS hit 6a led to identification of thiazole ketone amide 8h and thiophene ketone amide 9g with high binding affinity and inhibitory activity of Th17 cell differentiation. Compound 8h showed in vivo efficacy in both mouse experimental autoimmune encephalomyelitis (EAE) and collagen induced arthritis (CIA) models via oral administration. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Water-Borne Adhesive Modeled after the Sandcastle Glue of P. californicaa
Shao, Hui; Bachus, Kent N.
2010-01-01
Polyacrylate glue protein analogs of the glue secreted by Phragmatopoma californica, a marine polycheate, were synthesized with phosphate, primary amine, and catechol sidechains with molar ratios similar to the natural glue proteins. Aqueous mixtures of the mimetic polyelectrolytes condensed into liquid complex coacervates around neutral pH. Wet cortical bone specimens bonded with the coacervates, oxidatively crosslinked through catechol sidechains, had bond strengths nearly 40% of the strength of a commercial cyanoacrylate. The unique material properties of complex coacervates may be ideal for development of clinically useful adhesives and other biomaterials. PMID:19040222
Irie, S; Doi, S; Yorifuji, T; Takagi, M; Yano, K
1987-01-01
The nucleotide sequence of the genes from Pseudomonas putida encoding oxidation of benzene to catechol was determined. Five open reading frames were found in the sequence. Four corresponding protein molecules were detected by a DNA-directed in vitro translation system. Escherichia coli cells containing the fragment with the four open reading frames transformed benzene to cis-benzene glycol, which is an intermediate of the oxidation of benzene to catechol. The relation between the product of each cistron and the components of the benzene oxidation enzyme system is discussed. Images PMID:3667527
Matsuda, Hisashi; Ninomiya, Kiyofumi; Morikawa, Toshio; Yasuda, Daisuke; Yamaguchi, Itadaki; Yoshikawa, Masayuki
2009-10-15
The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.
Direct amidation of esters with nitroarenes
NASA Astrophysics Data System (ADS)
Cheung, Chi Wai; Ploeger, Marten Leendert; Hu, Xile
2017-03-01
Esters are one of the most common functional groups in natural and synthetic products, and the one-step conversion of the ester group into other functional groups is an attractive strategy in organic synthesis. Direct amidation of esters is particularly appealing due to the omnipresence of the amide moiety in biomolecules, fine chemicals, and drug candidates. However, efficient methods for direct amidation of unactivated esters are still lacking. Here we report nickel-catalysed reductive coupling of unactivated esters with nitroarenes to furnish in one step a wide range of amides bearing functional groups relevant to the development of drugs and agrochemicals. The method has been used to expedite the syntheses of bio-active molecules and natural products, as well as their post-synthetic modifications. Preliminary mechanistic study indicates a reaction pathway distinct from conventional amidation methods using anilines as nitrogen sources. The work provides a novel and efficient method for amide synthesis.
Naß, Janine; Efferth, Thomas
2017-01-01
Background: Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. Methods: We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. Results: SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. Conclusion: The combination of genetic and pharmacological research may lead to novel target-based drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population. PMID:27834145
Reduced-Amide Inhibitor of Pin1 Binds in a Conformation Resembling a Twisted-Amide Transition State†
Xu, Guoyan G.; Zhang, Yan; Mercedes-Camacho, Ana Y.; Etzkorn, Felicia A.
2011-01-01
The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R–pSer–Ψ[CH2N]–Pro–2-(indol-3-yl)-ethylamine, 1 (R = fluorenylmethoxycarbonyl, Fmoc), and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC50 value of 6.3 μM, which is 4.5-fold better inhibition for Pin1 than our comparable ground state analogue, a cis-amide alkene isostere containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination, and resulted in an IC50 value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser, and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1. PMID:21980916
Xu, Guoyan G; Zhang, Yan; Mercedes-Camacho, Ana Y; Etzkorn, Felicia A
2011-11-08
The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R-pSer-Ψ[CH(2)N]-Pro-2-(indol-3-yl)ethylamine, 1 [R = fluorenylmethoxycarbonyl (Fmoc)] and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC(50) value of 6.3 μM, which is 4.5-fold better for Pin1 than our comparable ground-state analogue, a cis-amide alkene isostere-containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination and resulted in an IC(50) value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1.
A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides
Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.
2014-01-01
Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422
NASA Astrophysics Data System (ADS)
Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang
2016-03-01
The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.
Christie, Andrew E; Miller, Alexandra; Fernandez, Rebecca; Dickinson, Evyn S; Jordan, Audrey; Kohn, Jessica; Youn, Mina C; Dickinson, Patsy S
2018-01-13
The crustacean stomatogastric nervous system (STNS) is a well-known model for investigating neuropeptidergic control of rhythmic behavior. Among the peptides known to modulate the STNS are the C-type allatostatins (AST-Cs). In the lobster, Homarus americanus, three AST-Cs are known. Two of these, pQIRYHQCYFNPISCF (AST-C I) and GNGDGRLYWRCYFNAVSCF (AST-C III), have non-amidated C-termini, while the third, SYWKQCAFNAVSCFamide (AST-C II), is C-terminally amidated. Here, antibodies were generated against one of the non-amidated peptides (AST-C I) and against the amidated isoform (AST-C II). Specificity tests show that the AST-C I antibody cross-reacts with both AST-C I and AST-C III, but not AST-C II; the AST-C II antibody does not cross-react with either non-amidated peptide. Wholemount immunohistochemistry shows that both subclasses (non-amidated and amidated) of AST-C are distributed throughout the lobster STNS. Specifically, the antibody that cross-reacts with the two non-amidated peptides labels neuropil in the CoGs and the stomatogastric ganglion (STG), axons in the superior esophageal (son) and stomatogastric (stn) nerves, and ~ 14 somata in each commissural ganglion (CoG). The AST-C II-specific antibody labels neuropil in the CoGs, STG and at the junction of the sons and stn, axons in the sons and stn, ~ 42 somata in each CoG, and two somata in the STG. Double immunolabeling shows that, except for one soma in each CoG, the non-amidated and amidated peptides are present in distinct sets of neuronal profiles. The differential distributions of the two AST-C subclasses suggest that the two peptide groups are likely to serve different modulatory roles in the lobster STNS.
Honohan, T; Fitzpatrick, F A; Booth, D G; McGrath, J P; Morton, D R; Nishizawa, E
1980-01-01
The prostanoid 3-oxa-4,5,6-trinor-3,7-inter-m-phenylene-PGE1-amide (OI-PGE1-amide) has a prolonged duration of oral platelet aggregation inhibitory activity when compared to the parent free acid (OI-PGE1) in the rat. When incubated in rat plasma at 1 microgram/ml for 30 seconds prior to addition of ADP, OI-PGE1-amide inhibits in vitro rat platelet aggregation approximately 50%. OI-PGE1 inhibits at 1 ng/ml. Inhibition of platelet aggregation by plasma incubated with OI-PGE1-amide (1 microgram/ml) increases with time and the rate of this increase differs with species. Incubation of OI-PGE1 in plasma does not result in an increase of platelet inhibitory activity with time. The increase of platelet inhibitory activity was assumed to indicate hydrolysis of OI-PGE1-amide to the more active OI-PGE1. A compound, different from OI-PGE1-amide, was isolated by an ion exchange/silica gel separation sequence from an incubation of OI-PGE1-amide in rat plasma. It had potent platelet aggregation inhibitory activity. This material was shown to be OI-PGE1 by thin-layer chromatography, gas chromatography and mass spectral analysis. Studies with [3H]-OI-PGE1-amide confirmed the formation of OI-PGE1 in plasma incubations. Amide hydrolytic activity was significantly different between species, the rank order being: rat greater than guine pig greater than monkey = human greater than dog. This relationship corresponded with that determined by measuring the increase in platelet inhibitory activity with time in plasma incubations of OI-PGE1-amide reported above. Present data indicate that (a) OI-PGE1-amide is hydrolyzed to the parent acid by plasma enzymes of several species and (b) hydrolytic activity of plasma varies widely between species.
Coyne, CP; Jones, Toni; Bear, Ryan
2015-01-01
Aims Delineate the feasibility of simultaneous, dual selective “targeted” chemotherapeutic delivery and determine if this molecular strategy can promote higher levels anti-neoplastic cytotoxicity than if only one covalent immunochemotherapeutic is selectively “targeted” for delivery at a single membrane associated receptor over-expressed by chemotherapeutic-resistant mammary adenocarcinoma. Methodology Gemcitabine and epirubicin were covalently bond to anti-EGFR and anti-HER2/neu utilizing a rapid multi-phase synthetic organic chemistry reaction scheme. Determination that 96% or greater gemcitabine or epirubicin content was covalently bond to immunoglobulin fractions following size separation by micro-scale column chromatography was established by methanol precipitation analysis. Residual binding-avidity of gemcitabine-(C4-amide)-[anti-EG-FR] applied in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu] was determined by cell-ELIZA utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) populations. Lack of fragmentation or polymerization was validated by SDS-PAGE/immunodetection/chemiluminescent autoradiography. Anti-neoplastic cytotoxic potency was determined by vitality stain analysis of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) monolayers known to uniquely over-express EGFR (2 × 105/cell) and HER2/neu (1 × 106/cell) receptor complexes. The covalent immunochemotherapeutics gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were applied simultaneously in dual-combination to determine their capacity to collectively evoke elevated levels of anti-neoplastic cytotoxicity. Lastly, the tubulin/microtubule inhibitor mebendazole evaluated to determine if it’s potential to complemented the anti-neoplastic cytotoxic properties of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. Results Dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced greater levels of anti-neoplastic cytotoxicity than either of the covalent immunochemotherapeutics alone. The benzimidazole microtubule/tubulin inhibitor, mebendazole complemented the anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. Conclusions The dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced higher levels of selectively “targeted” anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) than either covalent immunochemotherapeutic alone. The benzimidazole tubulin/microtubule inhibitor, mebendazole also possessed anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) and complemented the potency and efficacy of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. PMID:25844392
Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus
2017-06-16
A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.
40 CFR 721.10410 - Polyether ester acid compound with a polyamine amide (generic) (P-05-714).
Code of Federal Regulations, 2014 CFR
2014-07-01
... polyamine amide (generic) (P-05-714). 721.10410 Section 721.10410 Protection of Environment ENVIRONMENTAL... polyamine amide (generic) (P-05-714). (a) Chemical substance and significant new uses subject to reporting... amide (PMN P-05-714) is subject to reporting under this section for the significant new uses described...
Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.
Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N
2012-09-19
α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.
Kukor, J J; Olsen, R H
1991-01-01
Plasmid pRO1957 contains a 26.5-kb BamHI restriction endonuclease-cleaved DNA fragment cloned from the chromosome of Pseudomonas pickettii PKO1 that allows P. aeruginosa PAO1c to grow on toluene, benzene, phenol, or m-cresol as the sole carbon source. The genes encoding enzymes for meta cleavage of catechol or 3-methylcatechol, derived from catabolism of these substrates, were subcloned from pRO1957 and were shown to be organized into a single operon with the promoter proximal to tbuE. Deletion and analysis of subclones demonstrated that the order of genes in the meta cleavage operon was tbuEFGKIHJ, which encoded catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde hydrolase, 2-hydroxymuconate semialdehyde dehydrogenase, 4-hydroxy-2-oxovalerate aldolase, 4-oxalocrotonate decarboxylase, 4-oxalocrotonate isomerase, and 2-hydroxypent-2,4-dienoate hydratase, respectively. The regulatory gene for the tbuEFGKIHJ operon, designated tbuS, was subcloned into vector plasmid pRO2317 from pRO1957 as a 1.3-kb PstI fragment, designated pRO2345. When tbuS was not present, meta pathway enzyme expression was partially derepressed, but these activity levels could not be fully induced. However, when tbuS was present in trans with tbuEFGKIHJ, meta pathway enzymes were repressed in the absence of an effector and were fully induced when an effector was present. This behavior suggests that the gene product of tbuS acts as both a repressor and an activator. Phenol and m-cresol were inducers of meta pathway enzymatic activity. Catechol, 3-methylcatechol, 4-methylcatechol, o-cresol, and p-cresol were not inducers but could be metabolized by cells previously induced by phenol or m-cresol. PMID:1856161
Function of a Glutamine Synthetase-Like Protein in Bacterial Aniline Oxidation via γ-Glutamylanilide
Ohara, Akira; Sakae, Shinji; Okamoto, Yasuhiro; Kitamura, Chitoshi; Kato, Dai-ichiro; Negoro, Seiji
2013-01-01
Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell. PMID:23893114
Takeo, Masahiro; Ohara, Akira; Sakae, Shinji; Okamoto, Yasuhiro; Kitamura, Chitoshi; Kato, Dai-ichiro; Negoro, Seiji
2013-10-01
Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell.
Wegner, Rainer; Dubs, Manuela; Görls, Helmar; Robl, Christian; Schönecker, Bruno; Jäger, Ernst-G
2002-09-01
Copper is next to iron the most important element in the biological transport, storage and in redox reactions of dioxygen. A bioanalogous activation of dioxygen with copper complexes is used for catalytical epoxidation, allylic hydroxylation and oxidative coupling of aromatic substrates, for example. With stereochemical information in form of chiral ligands, enantioselective reactions may be possible. Another aspect of interest on copper catalyzed reactions with dioxygen is that the exact mechanism and biological function of some enzymes (especially catechol oxidase) is yet not fully clear. For studies mimicking the copper-containing catechol oxidase appropriate chiral steroid ligands with defined stereochemistry and conformation have been synthesized. The four diastereomeric 16,17-aminoalcohols of the 3-methoxy-estra-1,3,5(10)-triene series have been condensed with salicylic aldehyde and different beta-ketoenols to the chiral ligand types 1-5. These compounds with different steric and electronic properties and different arrangements of the neighboring hydroxy and nitrogen functions were reacted with copper(II) acetate to copper complexes. The structure of these complexes will be discussed. The bioanalogous oxidation of 3,5-di-tbutyl-catechol (dtbc) to the corresponding quinone was catalyzed by most of the complexes, indicating their ability to activate dioxygen. The trans configurations c and d showed an activity one magnitude higher than the cis configurations a and b. Comparing compounds with the same diastereomeric configuration, the main influence was that of the peripheral R(1-3) substituents at the beta-ketoenaminic group which are useful for the fine-tuning of the properties of the copper atoms like redox potential and Lewis acidity.
Setsungnern, Arnon; Treesubsuntorn, Chairat; Thiravetyan, Paitip
2017-11-01
Benzene, a carcinogenic compound, has been reported as a major indoor air pollutant. Chlorophytum comosum (C. comosum) was reported to be the highest efficient benzene removal plant among other screened plants. Our previous studies found that plants under light conditions could remove gaseous benzene higher than under dark conditions. Therefore, C. comosum exposure to airborne benzene was studied under different light quality at the same light intensity. C. comosum could remove 500 ppm gaseous benzene with the highest efficiency of 68.77% under Blue:Red = 1:1 LED treatments and the lowest one appeared 57.41% under white fluorescent treatment within 8 days. After benzene was uptaken by C. comosum, benzene was oxidized to be phenol in the plant cells by cytochrome P450 monooxygenase system. Then, phenol was catalyzed to be catechol that was confirmed by the up-regulation of phenol 2-monooxygenase (PMO) gene expression. After that, catechol was changed to cic, cis-muconic acid. Interestingly, cis,cis-muconic acid production was found in the plant tissues higher than phenol and catechol. The result confirmed that NADPH-cytochrome P450 reductase (CPR), cytochrome b5 (cyt b5), phenol 2-monooxygenase (PMO) and cytochrome P450 90B1 (CYP90B1) in plant cells were involved in benzene degradation or detoxification. In addition, phenol, catechol, and cis,cis-muconic acid production were found under the Blue-Red LED light conditions higher than under white fluorescent light conditions due to under LED light conditions gave higher NADPH contents. Hence, C. comosum under the Blue-Red LED light conditions had a high potential to remove benzene in a contaminated site. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Probing the Production of Amidated Peptides following Genetic and Dietary Copper Manipulations
Yin, Ping; Bousquet-Moore, Danielle; Annangudi, Suresh P.; Southey, Bruce R.; Mains, Richard E.; Eipper, Betty A.; Sweedler, Jonathan V.
2011-01-01
Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM+/−) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM+/− mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM+/− mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides. PMID:22194882
HIGH TEMPERATURE POLAMINE RESINS.
A literature search was conducted to investigate work done with aromatic amine-organic chloride reactions and organo- sodium amide preparations from...synthesized by the diamine/dichloride route. Extensive investigations of polyamine synthesis from sodium salts of amides and amines, and chlorides were...conducted. Apparently successful methods were found for preparing sodium derivatives of amides and amines from both solid sodium amide and sodium /ammonia
Characteristic conformation of Mosher's amide elucidated using the cambridge structural database.
Ichikawa, Akio; Ono, Hiroshi; Mikata, Yuji
2015-07-16
Conformations of the crystalline 3,3,3-trifluoro-2-methoxy-2-phenylpropanamide derivatives (MTPA amides) deposited in the Cambridge Structural Database (CSD) were examined statistically as Racid-enantiomers. The majority of dihedral angles (48/58, ca. 83%) of the amide carbonyl groups and the trifluoromethyl groups ranged from -30° to 0° with an average angle θ1 of -13°. The other conformational properties were also clarified: (1) one of the fluorine atoms was antiperiplanar (ap) to the amide carbonyl group, forming a staggered conformation; (2) the MTPA amides prepared from primary amines showed a Z form in amide moieties; (3) in the case of the MTPA amide prepared from a primary amine possessing secondary alkyl groups (i.e., Mosher-type MTPA amide), the dihedral angles between the methine groups and the carbonyl groups were syn and indicative of a moderate conformational flexibility; (4) the phenyl plane was inclined from the O-Cchiral bond of the methoxy moiety with an average dihedral angle θ2 of +21°; (5) the methyl group of the methoxy moiety was ap to the ipso-carbon atom of the phenyl group.
Structural study of salt forms of amides; paracetamol, benzamide and piperine
NASA Astrophysics Data System (ADS)
Kennedy, Alan R.; King, Nathan L. C.; Oswald, Iain D. H.; Rollo, David G.; Spiteri, Rebecca; Walls, Aiden
2018-02-01
Single crystal x-ray diffraction has been used to investigate the structures of six complexes containing O-atom protonated cations derived from the pharmaceutically relevant amides benzamide (BEN), paracetamol (PAR) and piperine (PIP). The structures of the salt forms [PAR(H)][SO3C6H4Cl], [BEN(H)][O3SC6H4Cl] and [BEN(H)][Br]·H2O are reported along with those of the hemi-halide salt forms [PAR(H)][I3]. PAR, [PIP(H)][I3]·PIP and [PIP(H)][I3]0·5[I]0.5. PIP. The structure of the cocrystal BEN. HOOCCH2Cl is also presented for comparison. The geometry of the amide group is found to systematically change upon protonation, with the Cdbnd O distance increasing and the Csbnd N distance decreasing. The hemi-halide species all feature strongly hydrogen bonded amide(H)/amide pairs. The amide group Cdbnd O and Csbnd N distances for both elements of each such pair are intermediate between those found for simple neutral amide and protonated amide forms. It was found that crystallising paracetamol from aqueous solutions containing Ba2+ ions gave orthorhombic paracetamol.
Raman spectra of crystalline secondary amides
NASA Astrophysics Data System (ADS)
Kolesov, Boris A.
2017-05-01
We present a Raman-spectroscopic study of secondary amides (acetanilide, methacetin, phenacetine, orthorhombic and monoclinic polymorphs of paracetamol) as well as simple amides formanilide and benzanilide. The study was carried out on single crystals and in the temperature range of 5-300 K. The series of compounds with the same molecular fragment - acetamide group - can serve as a model system to study the interrelation between this group and the properties of the intermolecular "peptide-type" NH ⋯ Odbnd C hydrogen bonds. For all of the "acetamide family" of the compounds, similar changes in the Raman spectra were observed upon cooling of the samples: emergence of new Amide I(-) and Amide I(+) bands, which are red and blue shifted, respectively, from the conventional Amide-I band by around of 5-10 cm- 1. Corresponding changes in the same temperature range were observed for the Nsbnd H out-of-plane bending (Amide V) and Nsbnd H stretching vibrations of the Nsbnd H ⋯ Odbnd C hydrogen bond. All of the spectral changes observed upon cooling of the samples can be presumed to result from a delocalization of the Amide-I and Nsbnd H modes and appearance of dynamical (Davydov's) splitting at low temperature.
VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.
Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György
2015-09-01
The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.
Electrochemical reduction of nitrate in the presence of an amide
Dziewinski, Jacek J.; Marczak, Stanislaw
2002-01-01
The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.
Enantioselective Synthesis of α-Oxy Amides via Umpolung Amide Synthesis
Leighty, Matthew W.; Shen, Bo
2012-01-01
α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes, and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids. PMID:22967461
Borate esters: Simple catalysts for the sustainable synthesis of complex amides
Sabatini, Marco T.; Boulton, Lee T.; Sheppard, Tom D.
2017-01-01
Chemical reactions for the formation of amide bonds are among the most commonly used transformations in organic chemistry, yet they are often highly inefficient. A novel protocol for amidation using a simple borate ester catalyst is reported. The process presents significant improvements over other catalytic amidation methods in terms of efficiency and safety, with an unprecedented substrate scope including functionalized heterocycles and even unprotected amino acids. The method was used to access a wide range of functionalized amide derivatives, including pharmaceutically relevant targets, important synthetic intermediates, a catalyst, and a natural product. PMID:28948222
Zhang, Xuejun; Zhang, Yanshi; Huang, Jian; Hsung, Richard P; Kurtz, Kimberly C M; Oppenheimer, Jossian; Petersen, Matthew E; Sagamanova, Irina K; Shen, Lichun; Tracey, Michael R
2006-05-26
A general and efficient method for the coupling of a wide range of amides with alkynyl bromides is described here. This novel amidation reaction involves a catalytic protocol using copper(II) sulfate-pentahydrate and 1,10-phenanthroline to direct the sp-C-N bond formation, leading to a structurally diverse array of ynamides including macrocyclic ynamides via an intramolecular amidation. Given the surging interest in ynamide chemistry, this atom economical synthesis of ynamides should invoke further attention from the synthetic organic community.
Coyne, C. P.; Jones, Toni; Bear, Ryan
2015-01-01
The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes these limitations is the molecular design and synthetic production of covalent gemcitabine immunochemotherapeutics that possess properties of selective “targeted” delivery. The simultaneous dual selective “targeted” delivery of gemcitabine at two separate sites on the external surface membrane of a single cancer cell types represents a therapeutic approach that can increase cytosol chemotherapeutic deposition; prolong chemotherapeutic plasma half-life (reduces administration frequency); minimize innocent exposure of normal tissues and healthy organ systems; and ultimately enhance more rapid and thorough resolution of neoplastic cell populations. Materials and Methods: A light-reactive gemcitabine intermediate synthesized utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent immunochemotherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] between gemcitabine-equivalent concentrations of 10−12 M and 10−6 M was determined utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine immunochemotherapeutics. Results: Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] all had anti-neoplastic cytotoxic potency against mammary adenocarcinoma. Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] produced progressive increases in anti-neoplastic cytotoxicity that were greatest between gemcitabine-equivalent concentrations of 10−9 M and 10−6 M. Dual simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] produced levels of anti-neoplastic cytotoxicity intermediate between each of the individual covalent gemcitabine immunochemotherapeutics. Total anti-neoplastic cytotoxicity of the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was substantially higher when formulated with [Se]-methylsele-nocysteine. PMID:25821636
Coyne, C P; Jones, Toni; Bear, Ryan
2012-11-01
Immunochemotherapeutics, epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ] with an internal disulfide bond, and epirubicin-(C 3 - amide )-[anti-HER2/ neu ] were synthesized utilizing succinimidyl 2-[(4,4'-azipentanamido) ethyl]-1,3'-dithioproprionate or succinimidyl 4,4-azipentanoate respectively. Western blot analysis was used to determine the presence of any immunoglobulin fragmentation or IgG-IgG polymerization. Retained HER2/ neu binding characteristics of epirubicin-(C 3 - amide )-[anti-HER2/ neu ] and epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ] were validated by cell-ELISA using a mammary adenocarcinoma (SKBr-3) population that highly over-expresses trophic HER2/ neu receptor complexes. Cytotoxic anti-neoplastic potency of epirubicin-(C 3 - amide )-[anti-HER2/ neu ] and epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ] between epirubicin-equivalent concentrations of 10 -10 M and 10 -6 M was determined by measuring the vitality/proliferation of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3 cell type). Cytotoxic anti-neoplastic potency of benzimidazoles (albendazole, flubendazole, membendazole) and griseofulvin were assessed between 0-to-2 μg/ml and 0-to-100 μg/ml respectively while mebendazole and griseofulvin were analyzed at fixed concentrations of 0.35 μg/ml and 35 g/ml respectively in dual combination with gradient concentrations of epirubicin-(C 3 - amide )-[anti-HER2/ neu ] and epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ]. Cytotoxic anti-neoplastic potency for epirubicin-(C 3 - amide )-[anti-HER2/ neu ] and epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was nearly identical at epirubicin-equivalent concentrations of 10 -10 M and 10 -6 M. The benzimadazoles also possessed cytotoxic anti-neoplastic activity with flubendazole and albendazole being the most and least potent respectively. Similarly, griseofulvin had cytotoxic anti-neoplastic activity and was more potent than methylselenocysteine. Both mebendazole and griseofulvin when applied in dual combination with either epirubicin-(C 3 - amide )-[anti-HER2/ neu ] or epirubicin-(C 3 - amide )-SS-[anti-HER2/ neu ] produced enhanced levels of cytotoxic anti-neoplatic potency.
Chang, Amy Y; Mann, Tracy S; McFawn, Peter K; Han, Liang; Dong, Xinzhong; Henry, Peter J
2016-05-23
The hexapeptide SLIGRL-amide activates protease-activated receptor-2 (PAR-2) and mas-related G protein-coupled receptor C11 (MRGPRC11), both of which are known to be expressed on populations of sensory nerves. SLIGRL-amide has recently been reported to inhibit influenza A (IAV) infection in mice independently of PAR-2 activation, however the explicit roles of MRGPRC11 and sensory nerves in this process are unknown. Thus, the principal aim of this study was to determine whether SLIGRL-amide-induced inhibition of influenza infection is mediated by MRGPRC11 and/or by capsaicin-sensitive sensory nerves. The inhibitory effect of SLIGRL-amide on IAV infection observed in control mice in vivo was compared to effects produced in mice that did not express MRGPRC11 (mrgpr-cluster∆ (-/-) mice) or had impaired sensory nerve function (induced by chronic pre-treatment with capsaicin). Complementary mechanistic studies using both in vivo and ex vivo approaches investigated whether the anti-IAV activity of SLIGRL-amide was (1) mimicked by either activators of MRGPRC11 (BAM8-22) or by activators (acute capsaicin) or selected mediators (substance P, CGRP) of sensory nerve function, or (2) suppressed by inhibitors of sensory nerve function (e.g. NK1 receptor antagonists). SLIGRL-amide and BAM8-22 dose-dependently inhibited IAV infection in mrgpr-cluster∆ (-/-) mice that do not express MRGPRC11. In addition, SLIGRL-amide and BAM8-22 each inhibited IAV infection in capsaicin-pre-treated mice that lack functional sensory nerves. Furthermore, the anti-IAV activity of SLIGRL-amide was not mimicked by the sensory neuropeptides substance P or CGRP, nor blocked by either NK1 (L-703,606, RP67580) and CGRP receptor (CGRP8-37) antagonists. Direct stimulation of airway sensory nerves through acute exposure to the TRPV1 activator capsaicin also failed to mimic SLIGRL-amide-induced inhibition of IAV infectivity. The anti-IAV activity of SLIGRL-amide was mimicked by the purinoceptor agonist ATP, a direct activator of mucus secretion from airway epithelial cells. Additionally, both SLIGRL-amide and ATP stimulated mucus secretion and inhibited IAV infectivity in mouse isolated tracheal segments. SLIGRL-amide inhibits IAV infection independently of MRGPRC11 and independently of capsaicin-sensitive, neuropeptide-releasing sensory nerves, and its secretory action on epithelial cells warrants further investigation.
Pintori, Didier G; Greaney, Michael F
2010-01-01
Insertion of benzene rings into the amide bond using the reactive intermediate benzyne is described. Aromatic amides undergo smooth insertion when treated with O-triflatophenyl silane benzyne precursors, producing versatile aminobenzophenone products in good to excellent yield. The process is entirely metal-free and has been exemplified on the synthesis of biologically active acridones and acridines.
Tamura, Masazumi; Ishikawa, Susumu; Betchaku, Mii; Nakagawa, Yoshinao; Tomishige, Keiichi
2018-06-20
CeO2-supported Ru (Ru/CeO2) worked as an effective and reusable heterogeneous catalyst for the selective dissociation of the C-N bond in amides, particularly primary amides, with H2 in water solvent at low reaction temperature of 333 K, and high yields of the corresponding alcohols were obtained from primary amides.
Metal-free one-pot oxidative amination of aldehydes to amides.
Ekoue-Kovi, Kekeli; Wolf, Christian
2007-08-16
Metal-free oxidative amination of aromatic aldehydes in the presence of TBHP provides convenient access to amides in 85-99% under mild reaction conditions within 5 h. This method avoids free carboxylic acid intermediates and integrates aldehyde oxidation and amide bond formation, which are usually accomplished separately, into a single operation. Proline-derived amides can be prepared in excellent yields without noticeable racemization.
Coyne, C. P.; Jones, Toni; Bear, Ryan
2015-01-01
Immunochemotherapeutics, epirubicin-(C3-amide)-SS-[anti-HER2/neu] with an internal disulfide bond, and epirubicin-(C3-amide)-[anti-HER2/neu] were synthesized utilizing succinimidyl 2-[(4,4′-azipentanamido) ethyl]-1,3′-dithioproprionate or succinimidyl 4,4-azipentanoate respectively. Western blot analysis was used to determine the presence of any immunoglobulin fragmentation or IgG-IgG polymerization. Retained HER2/neu binding characteristics of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] were validated by cell-ELISA using a mammary adenocarcinoma (SKBr-3) population that highly over-expresses trophic HER2/neu receptor complexes. Cytotoxic anti-neoplastic potency of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10−10 M and 10−6 M was determined by measuring the vitality/proliferation of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3 cell type). Cytotoxic anti-neoplastic potency of benzimidazoles (albendazole, flubendazole, membendazole) and griseofulvin were assessed between 0-to-2 μg/ml and 0-to-100 μg/ml respectively while mebendazole and griseofulvin were analyzed at fixed concentrations of 0.35 μg/ml and 35 g/ml respectively in dual combination with gradient concentrations of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency for epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was nearly identical at epirubicin-equivalent concentrations of 10−10 M and 10−6 M. The benzimadazoles also possessed cytotoxic anti-neoplastic activity with flubendazole and albendazole being the most and least potent respectively. Similarly, griseofulvin had cytotoxic anti-neoplastic activity and was more potent than methylselenocysteine. Both mebendazole and griseofulvin when applied in dual combination with either epirubicin-(C3-amide)-[anti-HER2/neu] or epirubicin-(C3-amide)-SS-[anti-HER2/neu] produced enhanced levels of cytotoxic anti-neoplatic potency. PMID:26225190
Antón Palma, Benito; Leff Gelman, Philippe; Medecigo Ríos, Mayra; Calva Nieves, Juan Carlos; Acevedo Ortuño, Rodolfo; Matus Ortega, Maura Epifanía; Hernández Calderón, Jorge Alberto; Hernández Miramontes, Ricardo; Flores Zamora, Anabel; Salazar Juárez, Alberto
2015-10-13
Alpha (α)-amidation of peptides is a mechanism required for the conversion of prohormones into functional peptide sequences that display biological activities, receptor recognition and signal transduction on target cells. Alpha (α)-amidation occurs in almost all species and amino acids identified in nature. C-terminal valine amide neuropeptides constitute the smallest group of functional peptide compounds identified in neurosecretory structures in vertebrate and invertebrate species. The α-amidated isoform of valine residue (Val-CONH2) was conjugated to KLH-protein carrier and used to immunize mice. Hyperimmune animals displaying high titers of valine amide antisera were used to generate stable hybridoma-secreting mAbs. Three productive hybridoma (P15A4, P17C11, and P18C5) were tested against peptides antigens containing both the C-terminal α-amidated (-CONH2) and free α-carboxylic acid (-COO(-)) isovariant of the valine residue. P18C5 mAb displayed the highest specificity and selectivity against C-terminal valine amidated peptide antigens in different immunoassays. P18C5 mAb-immunoreactivity exhibited a wide distribution along the neuroaxis of the rat brain, particularly in brain areas that did not cross-match with the neuronal distribution of known valine amide neuropeptides (α-MSH, adrenorphin, secretin, UCN1-2). These brain regions varied in the relative amount of putative novel valine amide peptide immunoreactive material (nmol/μg protein) estimated through a fmol-sensitive solid-phase radioimmunoassay (RIA) raised for P18C5 mAb. Our results demonstrate the versatility of a single mAb able to differentiate between two structural subdomains of a single amino acid. This mAb offers a wide spectrum of potential applications in research and medicine, whose uses may extend from a biological reagent (used to detect valine amidated peptide substances in fluids and tissues) to a detoxifying reagent (used to neutralize exogenous toxic amide peptide compounds) or as a specific immunoreagent in immunotherapy settings (used to reduce tumor growth and tumorigenesis) among many others.
Kou, Changgui; Meng, Xiangfei; Xie, Bing; Shi, Jieping; Yu, Qiong; Yu, Yaqin; D'Arcy, Carl
2012-07-30
This study investigates the genetic association between catechol-O-methyltransferase (COMT) gene polymorphisms and neurotic disorders. Data were derived from a case-control association study of 255 undergraduates affected by neurotic disorders and 269 matched healthy undergraduate controls. The polymorphisms of eight tag single nucleotide polymorphisms (SNPs) on the COMT gene were tested using polymerase chain reaction (PCR)-based Ligase Detection Reaction (PCR-LDR). The eight tag SNPs on the COMT gene assessed were not associated with neurotic disorders. Our finding suggests that the COMT gene may not be a susceptibility gene for neurotic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties.
Li, Lin; Yan, Bin; Yang, Jingqi; Huang, Weijuan; Chen, Lingyun; Zeng, Hongbo
2017-03-22
Microbial adhesion, biofilm formation and associated microbial infection are common challenges faced by implanted biomaterials (e.g., hydrogels) in bioengineering applications. In this work, an injectable self-healing hydrogel with antimicrobial and antifouling properties was prepared through self-assembly of an ABA triblock copolymer employing catechol functionalized polyethylene glycol (PEG) as A block and poly{[2-(methacryloyloxy)-ethyl] trimethylammonium iodide}(PMETA) as B block. This hydrogel exhibits excellent thermosensitivity, and can effectively inhibit the growth of E. coli (>99.8% killing efficiency) and prevent cell attachment. It can also heal autonomously from repeated damage, through mussel-inspired catechol-mediated hydrogen bonding and aromatic interactions, exhibiting great potential in bioengineering applications.
Preparation of Cu@Cu₂O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol.
Jang, Seongwan; Yoon, Chohye; Lee, Jae Myung; Park, Sungkyun; Park, Kang Hyun
2016-11-02
HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe₃O₄@HKUST-1 by layer-by layer assembly strategy and Cu@Cu₂O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu₂O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di- tert -butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.
NASA Astrophysics Data System (ADS)
Al-Abadleh, Hind; Tofan-Lazar, Julia; Situm, Arthur; Slikboer, Samantha
2014-05-01
Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.
NASA Astrophysics Data System (ADS)
Al-abadleh, H. A.; Tofan-Lazar, J.; Situm, A.; Ruffolo, J.; Slikboer, S.
2013-12-01
Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.
Köksal, Ekrem; Gülçin, Ilhami
2008-01-01
Peroxidases (EC 1.11.1.7; donor: hydrogen peroxide oxidoreductase) are part of a large group of enzymes. In this study, peroxidase, a primer antioxidant enzyme, was purified with 19.3 fold and 0.2% efficiency from cauliflower (Brassica oleracea L.) by ammonium sulphate precipitation, dialysis, CM-Sephadex ion-exchange chromatography and Sephadex G-25 purification steps. The substrate specificity of peroxidase was investigated using 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulphonic acid) (ABTS), 2-methoxyphenol (guaiacol), 1,2-dihydroxybenzene (catechol), 1,2,3-trihyidroxybenzene (pyrogallol) and 4-methylcatechol. Also, optimum pH, optimum temperature, optimum ionic strength, stable pH, stable temperature, thermal inactivation conditions were determined for guaiacol/H(2)O(2), pyrogallol/H(2)O(2), ABTS/H(2)O(2), catechol/H(2)O(2) and 4-methyl catechol/H(2)O(2) substrate patterns. The molecular weight (M(w)) of this enzyme was found to be 44 kDa by gel filtration chromatography method. Native polyacrylamide gel electrophoresis (PAGE) was performed for isoenzyme determination and a single band was observed. K(m) and V(max) values were calculated from Lineweaver-Burk graph for each substrate patterns.
NASA Astrophysics Data System (ADS)
Nagaraja, Vani; Kumar, M. Kiran; Giddappa, Nagendrappa
2017-02-01
Spectrophotometric method with three systems were developed here for the determination of gold(III) using o-dianisidine, aniline sulphate and catechol. Gold(III),in the system 1 it oxidizes o-dianisidine, in the system 2 it oxidizes catechol followed by its coupling with o-dianisidine, in the system 3 it oxidizes catechol followed by its coupling with aniline sulphate forming dye products with respective λmax 446 nm, 540 nm, and 505 nm. All the three systems were optimized and analytical parameters were calculated. The molar absorptivity values were 9.27 × 104, 1.97 × 104 and 1.62 × 104 respectively for the systems 1, 2 and 3 with the corresponding Sandell sensitivity values (μg cm- 2), 0.0021, 0.0096 and 0.011. The optimized systems were used for the determination of gold present in some forensic jewellery and pharmaceutical samples and the results obtained were compared with the results of all samples determined by Inductively Coupled Plasma - Atomic Emission Spectrometric method and a few of them were also complemented by Energy Dispersive X-Ray Fluorescent spectral analysis.
Production of o-diphenols by immobilized mushroom tyrosinase.
Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio
2009-01-15
The o-diphenols 4-tert-butyl-catechol, 4-methyl-catechol, 4-methoxy-catechol, 3,4-dihydroxyphenylpropionic acid and 3,4-dihydroxyphenylacetic acid were produced from the corresponding monophenols (4-tert-butyl-phenol, 4-methyl-phenol, 4-methoxy-phenol, p-hydroxyphenylpropionic acid and p-hydroxyphenylacetic acid) using immobilized mushroom tyrosinase from Agaricus bisporus. In all cases the yield was R(diphenol)> or =88-96%, which, according to the literature, is the highest yield so far, obtained using tyrosinase. The reaction was carried out in 0.5M borate buffer pH 9.0 which was used to minimize the diphenolase activity of tyrosinase by complexing the o-diphenols generated. Hydroxylamine and ascorbic acid were also present in the reaction medium, the former being used to reduce mettyrosinase to deoxytyrosinase, closing the catalytic cycle, and the latter to reduce the o-quinone produced to o-diphenol. Inactivation of the tyrosinase by ascorbic acid was also minimized due to the formation of an ascorbic acid-borate complex. Concentrations of the o-diphenolic compounds obtained at several reaction times were determined by gas chromatography-mass spectrometry (GC-MS) and UV-vis spectroscopy. The experimental results are discussed.
NASA Astrophysics Data System (ADS)
Choi, Jaewon; Yang, MinHo; Kim, Sung-Kon
2017-11-01
Bio-inspired and environmentally friendly chemical functionalization is a successful way to a new class of hybrid electrode materials for applications in energy storage. Quinone (Q)-hydroquinone (QH2) couples, a prototypical example of organic redox systems, provide fast and reversible proton-coupled electron-transfer reactions which lead to increased capacity. To achieve high capacitance and rate performance, constructing three-dimensional (3D) continuous porous structure is highly desirable. Here we report the hybrid electrodes (GA-C) consisting of 3D graphene aerogel (GA) functionalized with organic redox-active material, catechol derivative, for application to high-performance supercapacitors. The catechol derivative is adsorbed on the surface of GA through non-covalent interactions and promotes fast and reversible Q/QH2 faradaic reactions, providing large specific capacitance of 188 F g-1 at a current of 1 A g-1 and a specific energy of ∼25 Wh kg-1 at a specific power of ∼18,000 W kg-1. 3D continuous porous structure of GA electrode facilitates ion and electron transports, resulting in high rate performance (∼140 F g-1 at a current of 10 A g-1).
Reduction of estrogen-induced transformation of mouse mammary epithelial cells by N-acetylcysteine
Venugopal, Divya; Zahid, Muhammad; Mailander, Paula C; Meza, Jane L.; Rogan, Eleanor G.; Cavalieri, Ercole L.; Chakravarti, Dhrubajyoti
2009-01-01
A growing number of studies indicate that breast cancer initiation is related to abnormal estrogen oxidation to form an excess of estrogen-3,4-quinones, which react with DNA to form depurinating adducts and induce mutations. This mechanism is often called estrogen genotoxicity. 4-catechol estrogens, precursors of the estrogen-3,4-quinones, were previously shown to account for most of the transforming and tumorigenic activity. We examined whether estrogen-induced transformation can be reduced by inhibiting the oxidation of a 4-catechol estrogen to its quinone. We demonstrate that E6 cells (a normal mouse epithelial cell line) can be transformed by a single treatment with a catechol estrogen or its quinone. The transforming activities of 4-hydroxyestradiol and estradiol-3,4-quinone were comparable. N-acetylcysteine, a common antioxidant, inhibited the oxidation of 4-hydroxyestradiol to the quinone and consequent formation of DNA adducts. It also drastically reduced estrogen-induced transformation of E6 cells. These results strongly implicate estrogen genotoxicity in mammary cell transformation. Since N-acetylcysteine is well-tolerated in clinical studies, it may be a promising candidate for breast cancer prevention. PMID:18226522
NASA Astrophysics Data System (ADS)
Kanungo, B. K.; Sahoo, Suban K.; Baral, Minati
2008-12-01
A novel multidentate tripodal ligand, cis, cis-1,3,5-tris[(2,3-dihydroxybenzylidene)aminomethyl]cyclohexane (TDBAC, L) containing one catechol unit in each arms of a tripodal amine, cis, cis-1,3,5-tris(aminomethyl)cyclohexane was investigated as a chelator for iron(III) through potentiometric and spectrophotometric methods in an aqueous medium of 0.1N ionic strength and 25 ± 1 °C as well as in ethanol by continuous variation method. From pH metric in water, three protonation constants characterized for the three-hydroxyl groups of the catechol units at ortho were used as input data to evaluate the stability constants of the complexes. Formation of monomeric complexes FeLH 3, FeLH 2, FeLH and FeL were depicted. In ethanol, formation of complexes FeL, Fe 2L and Fe 3L were characterized. Structures of the complexes were explained by using the experimental evidences and predicted through molecular modeling calculations. The ligand showed potential to coordinate iron(III) through three imine nitrogens and three catecholic oxygens at ortho to form a tris(iminocatecholate) type complex.
Degradation of Phenolic Compounds and Ring Cleavage of Catechol by Phanerochaete chrysosporium
Leatham, Gary F.; Crawford, R. L.; Kirk, T. Kent
1983-01-01
POL-88, a mutant of the white-rot fungus Phanerochaete chrysosporium, was selected for diminished phenol-oxidizing enzyme activity. A wide variety of phenolic compounds were degraded by ligninolytic cultures of this mutant. With several o-diphenolic substrates, degradation intermediates were produced that had UV spectra consistent with muconic acids. Extensive spectrophotometric and polarographic assays failed to detect classical ring-cleaving dioxygenases in cell homogenates or in extracts from ligninolytic cultures. Even so, a sensitive carrier-trapping assay showed that intact cultures degraded [U-14C]catechol to [14C]muconic acid, establishing the presence of a system capable of 1,2-intradiol fission. Significant accumulation of [14C]muconic acid into carrier occurred only when evolution of 14CO2 from [14C]catechol was inhibited by treating cultures with excess nutrient nitrogen (e.g., l-glutamic acid) or with cycloheximide. l-Glutamic acid is known from past work to repress the ligninolytic system in P. chrysosporium and to mimic the effect of cycloheximide. The results here indicate, therefore, that the enzyme system responsible for degrading ring-cleavage products to CO2 turns over faster than does the system responsible for ring cleavage. PMID:16346340
Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu
2005-05-30
A family of diruthenium complexes with ligand-unsupported Ru-Ru bonds has been systematically synthesized, and their crystal structures and physical properties have been examined. A simple, useful reaction between Ru2(OAc)4Cl (OAc- = acetate) and catechol derivatives in the presence of bases afforded a variety of diruthenium complexes, generally formulated as [Na(n){Ru2(R4Cat)4}] (n = 2 or 3; R4 = -F4, -Cl4, -Br4, -H4, -3,5-di-t-Bu, and -3,6-di-t-Bu; Cat(2-) = catecholate). The most characteristic feature of the complexes is the formation of short ligand-unsupported Ru-Ru bonds (2.140-2.273 A). These comprehensive studies were carried out to evaluate the effects of the oxidation states and the substituents governing the molecular structures and physicochemical properties. The Ru-Ru bond distances, rotational conformations, and bending structures of the complexes were successfully varied. The results presented in this manuscript clearly demonstrate that the complexes with ligand-unsupported Ru-Ru bonds can sensitively respond to redox reactions and ligand substituents on the basis of the greater degree of freedom in their molecular structures.
Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto
2017-01-01
Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H2O2)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H2O2-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H2O2-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells. PMID:28230729
Nagaraja, Vani; Kumar, M Kiran; Giddappa, Nagendrappa
2017-02-15
Spectrophotometric method with three systems were developed here for the determination of gold(III) using o-dianisidine, aniline sulphate and catechol. Gold(III),in the system 1 it oxidizes o-dianisidine, in the system 2 it oxidizes catechol followed by its coupling with o-dianisidine, in the system 3 it oxidizes catechol followed by its coupling with aniline sulphate forming dye products with respective λ max 446nm, 540nm, and 505nm. All the three systems were optimized and analytical parameters were calculated. The molar absorptivity values were 9.27×10 4 , 1.97×10 4 and 1.62×10 4 respectively for the systems 1, 2 and 3 with the corresponding Sandell sensitivity values (μgcm -2 ), 0.0021, 0.0096 and 0.011. The optimized systems were used for the determination of gold present in some forensic jewellery and pharmaceutical samples and the results obtained were compared with the results of all samples determined by Inductively Coupled Plasma - Atomic Emission Spectrometric method and a few of them were also complemented by Energy Dispersive X-Ray Fluorescent spectral analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Hirose, M; Takesada, Y; Tanaka, H; Tamano, S; Kato, T; Shirai, T
1998-01-01
The carcinogenicity of low dietary levels of the antioxidants butylated hydroxyanisole (BHA), caffeic acid, sesamol, 4-methoxyphenol (4-MP) and catechol, known to target the forestomach or glandular stomach, were examined alone or in combination in a 2-year long-term experiment and their modifying effects assessed in a medium-term multiorgan model. In the carcinogenicity study, groups of 30-31 male F344 rats were treated with 0.4% BHA, 0.4% caffeic acid, 0.4% sesamol, 0.4% 4-MP and 0.16% catechol either alone or in combination for up to 104 weeks and then killed. In the medium-term multi-organ model, groups of 10 to 15 male F344 rats were given diethylnitrosamine (DEN), N-methylnitrosourea (MNU), 1,2-dimethylhydrazine (DMH), N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) and 2,2'-dihydroxy-di-n-propylnitrosamine (DHPN) for a total multiple initiation period of 4 weeks (DMBDD treatment). BHA, caffeic acid, sesamol and 4-MP, each at doses of 0.4% or 0.08%, and catechol at doses of 0.16% or 0.032% were administered in the diet either alone or in combination after completion of the initiation regimen. All surviving animals were killed at the end of week 28, and major organs were examined histopathologically. In the carcinogenicity study, slightly increased incidences of forestomach papillomas were found in the sesamol- (15.8%), caffeic acid- (14.8%), catechol- (3%) and 4-MP- (11.5%) treated groups as compared with basal diet (0%), and a significant increase was observed with the five antioxidants in combination (42.9%, P < 0.001). In a medium-term multiorgan carcinogenesis model, incidences of forestomach papillomas and/or carcinomas were increased in each high dose group, but additive or synergistic effects were not found in the combination group. In the low dose case, the incidence of forestomach papillomas was significantly increased only in the combination group. With regard to other organs, the incidence of colon tumors was significantly decreased only in the high dose combination group. The results indicate that even at low dose levels phenolic compounds can exert additive/synergistic effect on carcinogenesis.
Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang
2016-03-05
The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Bhatt, Vinod; Sharma, Sushila; Kumar, Neeraj; Sharma, Upendra; Singh, Bikram
2017-01-05
The current study presents isolation and characterization of twelve compounds including catechin (1), isovitexin (2), hesperidin (3), psoralin (4), eudesmin (5), kobusin (6), fargesin (7), sesamin (8), asarinin (9), planispine-A (10), α-sanshool (11) and vitexin (12), from the leaves of Zanthoxylum armatum. Further, two rapid and simple ultra performance liquid chromatography-diode array detection (UPLC-DAD) methods were developed for the simultaneous quantitative determination of isolated compounds from Z. armatum leaves. These analytical methods were validated for linearity, precision, accuracy, limit of detection (LOD) and limit of quantification (LOQ). The LOD and LOQ were in the range of 0.06-0.21μg/mL and 0.19-0.69μg/mL, respectively. The validated method was linear (R 2 ≥0.9906), precise in terms of peak area (intra-day RSDs <3.8% and inter-day RSDs <2.7%), and accurate (109.6-92.5%). This is the first report on the isolation and quantification of 1, 2, 4 and 12 in Z. armatum and 3 in Zanthoxylum genus. The methods: were successfully applied to assess the quality of samples collected from different locations of Himachal Pradesh during summer and winter season. The results demonstrated that flavonoids and furofuran lignans were the major constituents in Z. armatum leaves. The developed methods: were further applied for tandem electrospray ionization-mass spectrometry (UPLC-DAD-ESI-MS/MS) and total eighteen compounds were identified including phenolic acid, flavonoids, furofuran lignans, coumarin and isobutyl amides. Copyright © 2016 Elsevier B.V. All rights reserved.
Vollhardt, D
2015-08-01
For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.
Tan, Tricia M.; Salem, Victoria; Troke, Rachel C.; Alsafi, Ali; Field, Benjamin C. T.; De Silva, Akila; Misra, Shivani; Baynes, Kevin C. R.; Donaldson, Mandy; Minnion, James; Ghatei, Mohammad A.; Godsland, Ian F.
2014-01-01
Context: The combination of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) has been proposed as a potential treatment for diabetes and obesity. However, the combined effects of these hormones, PYY3–36 and GLP-17–36 amide, on glucose homeostasis are unknown. Objective: This study sought to investigate the acute effects of PYY3–36 and GLP-17–36 amide, individually and in combination, on insulin secretion and sensitivity. Setting and Design: Using a frequently sampled iv glucose tolerance test (FSIVGTT) and minimal modeling, this study measured the effects of PYY3–36 alone, GLP-17–36 amide alone, and a combination of PYY3–36 and GLP-17–36 amide on acute insulin response to glucose (AIRg) and insulin sensitivity index (SI) in 14 overweight human volunteers, studied in a clinical research facility. Results: PYY3–36 alone caused a small but nonsignificant increase in AIRg. GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide did increase AIRg significantly. No significant differences in SI were observed with any intervention. Conclusions: PYY3–36 lacks any significant acute effects on first-phase insulin secretion or SI when tested using an FSIVGTT. Both GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide increase first-phase insulin secretion. There does not seem to be any additive or synergistic effect between PYY3–36 and GLP-17–36 amide on first-phase insulin secretion. Neither hormone alone nor the combination had any significant effects on SI. PMID:25144632
Elguindy, Mahmoud M.; Nakamaru-Ogiso, Eiko
2015-01-01
Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells. PMID:26063804
Hongpattarakere, Tipparat; Komeda, Hidenobu; Asano, Yasuhisa
2005-12-01
The D-amino acid amidase-producing bacterium was isolated from soil samples using an enrichment culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. The strain exhibiting the strongest activity was identified as Delftia acidovorans strain 16. This strain produced intracellular D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity and its molecular mass was estimated to be about 50 kDa, on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides rather than their L-counterparts. It exhibited strong amino acid amidase activity toward aromatic amino acid amides including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low-molecular-weight D-amino acid amides such as D-alanine amide, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40 degrees C and pH 8.5 and appeared to be very stable, with 92.5% remaining activity after the reaction was performed at 45 degrees C for 30 min. However, it was mostly inactivated in the presence of phenylmethanesulfonyl fluoride or Cd2+, Ag+, Zn2+, Hg2+ and As3+ . The NH2 terminal and internal amino acid sequences of the enzyme were determined; and the gene was cloned and sequenced. The enzyme gene damA encodes a 466-amino-acid protein (molecular mass 49,860.46 Da); and the deduced amino acid sequence exhibits homology to the D-amino acid amidase from Variovorax paradoxus (67.9% identity), the amidotransferase A subunit from Burkholderia fungorum (50% identity) and other enantioselective amidases.
Pregna-5,17(20)-dien-21-oyl amides affecting sterol and triglyceride biosynthesis in Hep G2 cells.
Stulov, Sergey V; Mankevich, Olga V; Dugin, Nikita O; Novikov, Roman A; Timofeev, Vladimir P; Misharin, Alexander Yu
2013-04-01
Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cytotoxic Amides from Fruits of Kawakawa, Macropiper excelsum.
Lei, Jeremy; Burgess, Elaine J; Richardson, Alistair T B; Hawkins, Bill C; Baird, Sarah K; Smallfield, Bruce M; van Klink, John W; Perry, Nigel B
2015-08-01
Cytotoxic amides have been isolated from the fruits of the endemic New Zealand medicinal plant kawakawa, Macropiper excelsum (Piperaceae). The main amide was piperchabamide A and this is the first report of this rare compound outside the genus Piper. Eleven other amides were purified including two new compounds with the unusual 3,4-dihydro-1(2H)-pyridinyl group. The new compounds were fully characterized by 2D NMR spectroscopy, which showed a slow exchange between two rotamers about the amide bond, and they were chemically synthesized. In view of the antitumor activity of the related piperlongumine, all of these amides plus four synthetic analogs were tested for cytotoxicity. The most active was the piperine homolog piperdardine, with an IC50 of 14 µM against HT 29 colon cancer cells. Georg Thieme Verlag KG Stuttgart · New York.
Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials
Cortes-Concepcion, Jose A.; Anton, Donald L.
2016-04-26
A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.
Hosoya, Masahiro; Otani, Yuko; Kawahata, Masatoshi; Yamaguchi, Kentaro; Ohwada, Tomohiko
2010-10-27
Helical structures of oligomers of non-natural β-amino acids are significantly stabilized by intramolecular hydrogen bonding between main-chain amide moieties in many cases, but the structures are generally susceptible to the environment; that is, helices may unfold in protic solvents such as water. For the generation of non-hydrogen-bonded ordered structures of amides (tertiary amides in most cases), control of cis-trans isomerization is crucial, even though there is only a small sterical difference with respect to cis and trans orientations. We have established methods for synthesis of conformationally constrained β-proline mimics, that is, bridgehead-substituted 7-azabicyclo[2.2.1]heptane-2-endo-carboxylic acids. Our crystallographic, 1D- and 2D-NMR, and CD spectroscopic studies in solution revealed that a bridgehead methoxymethyl substituent completely biased the cis-trans equilibrium to the cis-amide structure along the main chain, and helical structures based on the cis-amide linkage were generated independently of the number of residues, from the minimalist dimer through the tetramer, hexamer, and up to the octamer, and irrespective of the solvent (e.g., water, alcohol, halogenated solvents, and cyclohexane). Generality of the control of the amide equilibrium by bridgehead substitution was also examined.
Mild and Selective Hydrozirconation of Amides to Aldehydes Using Cp2Zr(H)Cl
Spletstoser, Jared T.; White, Jonathan M.; Tunoori, Ashok Rao; Georg, Gunda I.
2008-01-01
An investigation of the use of Cp2Zr(H)Cl (Schwartz’s reagent) to reduce a variety of amides to the corresponding aldehydes under very mild reaction conditions and in high yields is reported. A range of tertiary amides, including Weinreb’s amide, can be converted directly to the corresponding aldehydes with remarkable chemoselectivity. Primary and secondary amides proved to be viable substrates for reduction as well, although the yields were somewhat diminished compared to the corresponding tertiary amides. Results from NMR experiments suggested the presence of a stable, 18-electron zirconacycle intermediate that presumably affords the aldehyde upon water or silica gel workup. A series of competition experiments revealed a preference of the reagent for substrates in which the lone pair of the nitrogen is electron releasing and thus more delocalized across the amide bond by resonance. This trend accounts for the observed excellent selectivity for tertiary amides versus esters. Experiments regarding the solvent dependence of the reaction suggested a kinetic profile similar to that postulated for the hydrozirconation of alkenes and alkynes. Addition of p-anisidine to the reaction intermediate resulted in the formation of the corresponding imine mimicking the addition of water that forms the aldehyde. PMID:17315870
NASA Astrophysics Data System (ADS)
Cai, Kaicong; Zheng, Xuan; Du, Fenfen
2017-08-01
The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.
Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji
2013-07-01
To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.
Predicting protein amidation sites by orchestrating amino acid sequence features
NASA Astrophysics Data System (ADS)
Zhao, Shuqiu; Yu, Hua; Gong, Xiujun
2017-08-01
Amidation is the fourth major category of post-translational modifications, which plays an important role in physiological and pathological processes. Identifying amidation sites can help us understanding the amidation and recognizing the original reason of many kinds of diseases. But the traditional experimental methods for predicting amidation sites are often time-consuming and expensive. In this study, we propose a computational method for predicting amidation sites by orchestrating amino acid sequence features. Three kinds of feature extraction methods are used to build a feature vector enabling to capture not only the physicochemical properties but also position related information of the amino acids. An extremely randomized trees algorithm is applied to choose the optimal features to remove redundancy and dependence among components of the feature vector by a supervised fashion. Finally the support vector machine classifier is used to label the amidation sites. When tested on an independent data set, it shows that the proposed method performs better than all the previous ones with the prediction accuracy of 0.962 at the Matthew's correlation coefficient of 0.89 and area under curve of 0.964.
How amide hydrogens exchange in native proteins.
Persson, Filip; Halle, Bertil
2015-08-18
Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N-H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N-H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion.
How amide hydrogens exchange in native proteins
Persson, Filip; Halle, Bertil
2015-01-01
Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N–H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N–H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion. PMID:26195754
Meng, Guangrong; Szostak, Michal
2016-06-15
The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().
Tong, Wenting; Cao, Pei; Liu, Yanhong; Chen, Jianxin
2017-11-03
Using N-methoxymethyl-N-organylcarbamoyl(trimethyl)silanes as secondary amides source, the direct transformation of aryl halides into the corresponding secondary aromatic amides via palladium-catalyzed aminocarbonylation is described. The reactions tolerated a broad range of functional groups on the aryl ring except big steric hindrance of substituent. The types and the relative position of substituents on the aryl ring impact the coupling efficiency.
Rhodium-catalyzed asymmetric hydroboration of γ,δ-unsaturated amide derivatives: δ-borylated amides.
Hoang, G L; Zhang, S; Takacs, J M
2018-05-08
γ,δ-Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodium-catalyzed δ-borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the γ-borylation of γ,δ-unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regiochemistry is coupled with a reversal in the sense of π-facial selectivity.
Asymmetric Synthesis of β-Amino Amides by Catalytic Enantioconvergent 2-Aza-Cope Rearrangement
Goodman, C. Guy; Johnson, Jeffrey S.
2015-01-01
Dynamic kinetic resolutions of α-stereogenic-β-formyl amides in asymmetric 2-aza-Cope rearrangements are described. Chiral phosphoric acids catalyze this rare example of a non-hydrogenative DKR of a β-oxo acid derivative. The [3,3]-rearrangement occurs with high diastereo- and enantiocontrol, forming β-imino amides that can be deprotected to the primary β-amino amide or reduced to the corresponding diamine. PMID:26561873
Quillet, Raphaëlle; Ayachi, Safia; Bihel, Frédéric; Elhabazi, Khadija; Ilien, Brigitte; Simonin, Frédéric
2016-04-01
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed. Copyright © 2016 Elsevier Inc. All rights reserved.
Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.
Meng, Xiangtao; Edgar, Kevin J
2015-11-05
Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biosynthesis and function of simple amides in Xenorhabdus doucetiae.
Bode, Edna; He, Yue; Vo, Tien Duy; Schultz, Roland; Kaiser, Marcel; Bode, Helge B
2017-11-01
Xenorhabdus doucetiae, the bacterial symbiont of the entomopathogenic nematode Steinernema diaprepesi produces several different fatty acid amides. Their biosynthesis has been studied using a combination of analysis of gene deletions and promoter exchanges in X. doucetiae and heterologous expression of candidate genes in E. coli. While a decarboxylase is required for the formation of all observed phenylethylamides and tryptamides, the acyltransferase XrdE encoded in the xenorhabdin biosynthesis gene cluster is responsible for the formation of short chain acyl amides. Additionally, new, long-chain and cytotoxic acyl amides were identified in X. doucetiae infected insects and when X. doucetiae was grown in Galleria Instant Broth (GIB). When the bioactivity of selected amides was tested, a quorum sensing modulating activity was observed for the short chain acyl amides against the two different quorum sensing systems from Chromobacterium and Janthinobacterium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Catalytic synthesis of amides via aldoximes rearrangement.
Crochet, Pascale; Cadierno, Victorio
2015-02-14
Amide bond formation reactions are among the most important transformations in organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method to generate secondary amides from ketoximes. However, under the acidic conditions commonly employed, aldoximes RHC=NOH rarely rearrange into the corresponding primary amides RC(=O)NH2. In recent years, it was demonstrated that this atom-economical transformation can be carried out efficiently and selectively with the help of metal catalysts. Several homogeneous and heterogenous systems have been described. In addition, protocols offering the option to generate the aldoximes in situ from the corresponding aldehydes and hydroxylamine, or even from alcohols, have also been developed, as well as a series of tandem processes allowing the access to N-substituted amide products. In this Feature article a comprehensive overview of the advances achieved in this particular research area is presented.
Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A
2017-07-19
Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.
Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu
2002-12-11
The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.
Brown, Jessie L; Batista, Enrique R; Boncella, James M; Gaunt, Andrew J; Reilly, Sean D; Scott, Brian L; Tomson, Neil C
2015-08-05
The discovery that imido analogs of actinyl dioxo cations can be extended beyond uranium into the transuranic elements is presented. Synthesis of the Np(V) complex, Np(NDipp)2((t)Bu2bipy)2Cl (1), is achieved through treatment of a Np(IV) precursor with a bipyridine coligand and lithium-amide reagent. Complex 1 has been structurally characterized, analyzed by (1)H NMR and UV-vis-NIR spectroscopies, and the electronic structure evaluated by DFT calculations.
Zhang, Guoying; Gao, Bao; Huang, Hanmin
2015-06-22
A novel and efficient palladium-catalyzed hydroaminocarbonylation of alkenes with aminals has been developed under mild reaction conditions, and allows the synthesis of a wide range of N-alkyl linear amides in good yields with high regioselectivity. On the basis of this method, a cooperative catalytic system operating by the synergistic combination of palladium, paraformaldehyde, and acid was established for promoting the hydroaminocarbonylation of alkenes with both aromatic and aliphatic amines, which do not react well under conventional palladium-catalyzed hydroaminocarbonylation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gas-phase conformation-specific photofragmentation of proline-containing peptide ions.
Kim, Tae-Young; Valentine, Stephen J; Clemmer, David E; Reilly, James P
2010-08-01
Singly-protonated proline-containing peptides with N-terminal arginine are photodissociated with vacuum ultraviolet (VUV) light in an ESI linear ion trap/orthogonal-TOF (LIT/o-TOF). When proline is the nth residue from the N-terminus, unusual b(n) + 2 and a(n) + 2 ions are observed. Their formation is explained by homolytic cleavage of the C(alpha)-C bond in conjunction with a rearrangement of electrons and an amide hydrogen. The latter is facilitated by a proline-stabilized gas-phase peptide conformation. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
Brown, Jessie L.; Batista, Enrique R.; Boncella, James M.; ...
2015-07-22
We present the discovery that imido analogs of actinyl dioxo cations can be extended beyond uranium into the transuranic elements. Synthesis of the Np(V) complex, Np(NDipp) 2( tBu 2bipy) 2Cl (1), is achieved through treatment of a Np(IV) precursor with a bipyridine co-ligand and lithium-amide reagent. Complex 1 has been structurally characterized, analyzed by 1H NMR and UV/vis/NIR spectroscopies, and the electronic structure evaluated by DFT calculations.
Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.
2014-01-01
For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591
Phase-separable aqueous amide solutions as a thermal history indicator.
Kitsunai, Makoto; Miyajima, Kentaro; Mikami, Yuzuru; Kim, Shokaku; Hirasawa, Akira; Chiba, Kazuhiro
2008-12-01
Aqueous solutions of several new amide compounds for use as simple thermal history indicators in the low-temperature transport of food and other products were synthesized. The phase transition temperatures of the aqueous solutions can be freely adjusted by changing the amide-water ratio in solution, the sodium chloride concentration of the water, and the type of amide compound. It is expected that these aqueous solutions can be applied as new thermal history indicators.
Aminofluorene-Mediated Biomimetic Domino Amination-Oxygenation of Aldehydes to Amides.
Ghosh, Santanu; Jana, Chandan K
2016-11-18
A conceptually novel biomimetic strategy based on a domino amination-oxygenation reaction was developed for direct amidation of aldehydes under metal-free conditions employing molecular oxygen as the oxidant. 9-Aminofluorene derivatives acted as pyridoxamine-5'-phosphate equivalents for efficient, chemoselective, and operationally simple amine-transfer oxygenation reaction. Unprecedented RNH transfer involving secondary amine to produce secondary amides was achieved. In the presence of 18 O 2 , 18 O-amide was formed with excellent (95%) isotopic purity.
Orientation and Order of the Amide Group of Sphingomyelin in Bilayers Determined by Solid-State NMR
Matsumori, Nobuaki; Yamaguchi, Toshiyuki; Maeta, Yoshiko; Murata, Michio
2015-01-01
Sphingomyelin (SM) and cholesterol (Chol) are considered essential for the formation of lipid rafts; however, the types of molecular interactions involved in this process, such as intermolecular hydrogen bonding, are not well understood. Since, unlike other phospholipids, SM is characterized by the presence of an amide group, it is essential to determine the orientation of the amide and its order in the lipid bilayers to understand the nature of the hydrogen bonds in lipid rafts. For this study, 1′-13C-2-15N-labeled and 2′-13C-2-15N-labeled SMs were prepared, and the rotational-axis direction and order parameters of the SM amide in bilayers were determined based on 13C and 15N chemical-shift anisotropies and intramolecular 13C-15N dipole coupling constants. Results revealed that the amide orientation was minimally affected by Chol, whereas the order was enhanced significantly in its presence. Thus, Chol likely promotes the formation of an intermolecular hydrogen-bond network involving the SM amide without significantly changing its orientation, providing a higher order to the SM amide. To our knowledge, this study offers new insight into the significance of the SM amide orientation with regard to molecular recognition in lipid rafts, and therefore provides a deeper understanding of the mechanism of their formation. PMID:26083921
Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D.; Pallan, Pradeep S.; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks
2014-01-01
RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3′-CH2-CO-NH-5′ amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P–OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5′-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. PMID:24813446
Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.
Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong
2013-02-01
Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Cai, Kaicong; Zheng, Xuan; Du, Fenfen
2017-08-05
The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Yuan, Hao; Yoo, Woo-Jin; Miyamura, Hiroyuki; Kobayashi, Shū
2012-08-29
We have discovered a new class of cooperative catalytic system, consisting of heterogeneous polymer-immobilized bimetallic Pt/Ir alloyed nanoclusters (NCs) and 4-tert-butylcatechol, for the aerobic oxidation of amines to imines under ambient conditions. After optimization, the desired imines were obtained in good to excellent yields with broad substrate scope. The reaction rate was determined to be first-order with respect to the substrate and catechol and zero-order for the alloyed Pt/Ir NC catalyst. Control studies revealed that both the heterogeneous NC catalyst and 4-tert-butylcatechol are essential and act cooperatively to facilitate the aerobic oxidation under mild conditions.
Abraham, Raymond J; Griffiths, Lee; Perez, Manuel
2013-03-01
The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons. Copyright © 2013 John Wiley & Sons, Ltd.
Elguindy, Mahmoud M; Nakamaru-Ogiso, Eiko
2015-08-21
Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O₂ activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC₅₀ = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O₂ activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O₂ activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Reppert, Michael; Tokmakoff, Andrei
The structural characterization of intrinsically disordered peptides (IDPs) presents a challenging biophysical problem. Extreme heterogeneity and rapid conformational interconversion make traditional methods difficult to interpret. Due to its ultrafast (ps) shutter speed, Amide I vibrational spectroscopy has received considerable interest as a novel technique to probe IDP structure and dynamics. Historically, Amide I spectroscopy has been limited to delivering global secondary structural information. More recently, however, the method has been adapted to study structure at the local level through incorporation of isotope labels into the protein backbone at specific amide bonds. Thanks to the acute sensitivity of Amide I frequencies to local electrostatic interactions-particularly hydrogen bonds-spectroscopic data on isotope labeled residues directly reports on local peptide conformation. Quantitative information can be extracted using electrostatic frequency maps which translate molecular dynamics trajectories into Amide I spectra for comparison with experiment. Here we present our recent efforts in the development of a rigorous approach to incorporating Amide I spectroscopic restraints into refined molecular dynamics structural ensembles using maximum entropy and related approaches. By combining force field predictions with experimental spectroscopic data, we construct refined structural ensembles for a family of short, strongly disordered, elastin-like peptides in aqueous solution.
Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S
2016-06-15
Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melánová, Klára, E-mail: klara.melanova@upce.cz; Beneš, Ludvík; Trchová, Miroslava
2013-06-15
A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparationmore » of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate. - Graphical abstract: Ester and amide derivatives of layered titanium carboxymethylphosphonate were prepared by solvothermal treatment of amorphous solid with alkanol or alkylamine. - Highlights: • Ester and amide derivatives of titanium carboxymethylphosphonate. • Solvothermal treatment of amorphous solid with alkanol or alkylamine. • Ester and amide formation confirmed by IR spectroscopy.« less
Facile access to amides and hydroxamic acids directly from nitroarenes.
Jain, Shreyans K; Aravinda Kumar, K A; Bharate, Sandip B; Vishwakarma, Ram A
2014-09-07
A new method for synthesis of amides and hydroxamic acids from nitroarenes and aldehydes is described. The MnO2 catalyzed thermal deoxygenation of nitrobenzene resulted in formation of a reactive nitroso intermediate which on reaction with aldehydes provided amides and hydroxamic acids. The thermal neat reaction in the presence of 0.01 mmol KOH predominantly led to formation of hydroxamic acid whereas reaction in the presence of 1 mmol acetic acid produced amides as the only product.
Naß, Janine; Efferth, Thomas
2017-01-01
Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. The combination of genetic and pharmacological research may lead to novel targetbased drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Parikh, Sanjai J.; Mukome, Fungai N.D.; Zhang, Xiaoming
2014-01-01
Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to probe the binding of bacteria to hematite (α-Fe2O3) and goethite (α-FeOOH). In situ ATR-FTIR experiments with bacteria (Pseudomonas putida, P. aeruginosa, Escherichia coli), mixed amino acids, polypeptide extracts, deoxyribonucleic acid (DNA), and a suite of model compounds were conducted. These compounds represent carboxyl, catecholate, amide, and phosphate groups present in siderophores, amino acids, polysaccharides, phospholipids, and DNA. Due in part to the ubiquitous presence of carboxyl groups in biomolecules, numerous IR peaks corresponding to outer-sphere or unbound (1400 cm−1) and inner-sphere (1310-1320 cm−1) coordinated carboxyl groups are noted following reaction of bacteria and biomolecules with α-Fe2O3 and α-FeOOH. However, the data also reveal that the presence of low-level amounts (i.e., 0.45-0.79%) of biomolecular phosphorous groups result in strong IR bands at ~1043 cm−1, corresponding to inner-sphere Fe-O-P bonds, underscoring the importance of bacteria associated P-containing groups in biomolecule and cell adhesion. Spectral comparisons also reveal slightly greater P-O-Fe contributions for bacteria (Pseudomonad, E. coli) deposited on α-FeOOH, as compared to α-Fe2O3. This data demonstrates that slight differences in bacterial adhesion to Fe oxides can be attributed to bacterial species and Fe-oxide minerals. However, more importantly, the strong binding affinity of phosphate in all bacteria samples to both Fe-oxides results in the formation of inner-sphere Fe-O-P bonds, signifying the critical role of biomolecular P in the initiation of bacterial adhesion. PMID:24859052
A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors
NASA Astrophysics Data System (ADS)
Sandhiya, L.; Senthilkumar, K.
2014-09-01
A detailed analysis of the interaction between an antimalarial drug sulfadoxine and four pi-acceptors, tetrachloro-catechol, picric acid, chloranil, and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is presented in this study. The interaction of the amine, amide, methoxy, Csbnd H groups and π electron density of the drug molecule with the acceptors are studied using DFT method at M06-2X level of theory with 6-31G(d,p) basis set. The interaction energy of the complexes is calculated using M06-2X, M06-HF, B3LYP-D and MP2 methods with 6-31G(d,p) basis set. The role of weak interactions on the formation and stability of the complexes is discussed in detail. The two aromatic platforms of sulfadoxine play a major role in determining the stability of the complexes. The electron density difference maps have been plotted for the most stable drug interacting complexes to understand the changes in electron density delocalization upon the complex formation. The nature of the non-covalent interaction has been addressed from NCI plot. The infrared spectra calculated at M06-2X/6-31G(d,p) level of theory is used to characterize the most stable complexes. The SDOX-pi acceptor complexation leads to characteristic changes in the NMR spectra. The 13C, 1H, 17O and 15N NMR chemical shifts have been calculated using GIAO method at M06-2X/6-311+G(d,p)//M06-2X/6-31G(d,p) level of theory. The results obtained from this study confirm the role of non-covalent interactions on the function of the sulfadoxine drug.
The hydration of amides in helices; a comprehensive picture from molecular dynamics, IR, and NMR
Walsh, Scott T.R.; Cheng, Richard P.; Wright, Wayne W.; Alonso, Darwin O.V.; Daggett, Valerie; Vanderkooi, Jane M.; DeGrado, William F.
2003-01-01
We examined the hydration of amides of α3D, a simple, designed three-helix bundle protein. Molecular dynamics calculations show that the amide carbonyls on the surface of the protein tilt away from the helical axis to interact with solvent water, resulting in a lengthening of the hydrogen bonds on this face of the helix. Water molecules are bonded to these carbonyl groups with partial occupancy (∼50%–70%), and their interaction geometries show a large variation in their hydrogen bond lengths and angles on the nsec time scale. This heterogeneity is reflected in the carbonyl stretching vibration (amide I′ band) of a group of surface Ala residues. The surface-exposed amides are broad, and shift to lower frequency (reflecting strengthening of the hydrogen bonds) as the temperature is decreased. By contrast, the amide I′ bands of the buried 13C-labeled Leu residues are significantly sharper and their frequencies are consistent with the formation of strong hydrogen bonds, independent of temperature. The rates of hydrogen-deuterium exchange and the proton NMR chemical shifts of the helical amide groups also depend on environment. The partial occupancy of the hydration sites on the surface of helices suggests that the interaction is relatively weak, on the order of thermal energy at room temperature. One unexpected feature that emerged from the dynamics calculations was that a Thr side chain subtly disrupted the helical geometry 4–7 residues N-terminal in sequence, which was reflected in the proton chemical shifts and the rates of amide proton exchange for several amides that engage in a mixed 310/α/π-helical conformation. PMID:12592022
Palardy, Oliver; Behnke, Craig; Laurens, Lieve M. L.
2017-07-05
Even though hydrothermal liquefaction (HTL) is a promising route to produce crude oils (referred to as 'green crude'), the molecular composition of the nitrogen fraction of such green crude oils is not fully understood. The goal of this work was to identify and quantify the fraction of fatty amides in green crude oils obtained from five different samples derived from Desmodesmus armatus, Tetraselmis sp., and Chlorella sp. biomass treated under different HTL conditions (260 or 340 degrees C as batch or continuous processes). The goal of this work was to elucidate the nature of the high nitrogen content of themore » green crude oils. We identified at least 19 distinct fatty amides present in green crude oils and quantified them based on relevant standards in purified fractions after functional group-based separation and enrichment. It was not known how much these compounds contributed to the oils or which molecular fraction they are associated with. We found that fatty amides exclusively partitioned with the neutral fraction of the oils and belonged mainly to one of five categories, based on their functional group substitution, i.e., fatty amides, monomethyl, dimethyl, monoethanolamide, and diethanolamide. The quantification of fatty amides in the neutral oil fraction was based on respective fatty amide standards, after verification of consistency in response factors between molecules with different substitutions of the amide group. Here, we found that the amount of fatty amides found in each of the five samples varied considerably and ranged between 1.4 and 3.0% of the green crude oils, with the highest levels detected in the sample with the highest oil content, after HTL of biomass derived from a nutrient deprived Chlorella sp. culture.« less
Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides
Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.
2009-01-01
The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233
AMIDE: a free software tool for multimodality medical image analysis.
Loening, Andreas Markus; Gambhir, Sanjiv Sam
2003-07-01
Amide's a Medical Image Data Examiner (AMIDE) has been developed as a user-friendly, open-source software tool for displaying and analyzing multimodality volumetric medical images. Central to the package's abilities to simultaneously display multiple data sets (e.g., PET, CT, MRI) and regions of interest is the on-demand data reslicing implemented within the program. Data sets can be freely shifted, rotated, viewed, and analyzed with the program automatically handling interpolation as needed from the original data. Validation has been performed by comparing the output of AMIDE with that of several existing software packages. AMIDE runs on UNIX, Macintosh OS X, and Microsoft Windows platforms, and it is freely available with source code under the terms of the GNU General Public License.
Accelerating pathway evolution by increasing the gene dosage of chromosomal segments.
Tumen-Velasquez, Melissa; Johnson, Christopher W; Ahmed, Alaa; Dominick, Graham; Fulk, Emily M; Khanna, Payal; Lee, Sarah A; Schmidt, Alicia L; Linger, Jeffrey G; Eiteman, Mark A; Beckham, Gregg T; Neidle, Ellen L
2018-06-18
Experimental evolution is a critical tool in many disciplines, including metabolic engineering and synthetic biology. However, current methods rely on the chance occurrence of a key step that can dramatically accelerate evolution in natural systems, namely increased gene dosage. Our studies sought to induce the targeted amplification of chromosomal segments to facilitate rapid evolution. Since increased gene dosage confers novel phenotypes and genetic redundancy, we developed a method, Evolution by Amplification and Synthetic Biology (EASy), to create tandem arrays of chromosomal regions. In Acinetobacter baylyi , EASy was demonstrated on an important bioenergy problem, the catabolism of lignin-derived aromatic compounds. The initial focus on guaiacol (2-methoxyphenol), a common lignin degradation product, led to the discovery of Amycolatopsis genes ( gcoAB ) encoding a cytochrome P450 enzyme that converts guaiacol to catechol. However, chromosomal integration of gcoAB in Pseudomonas putida or A. baylyi did not enable guaiacol to be used as the sole carbon source despite catechol being a growth substrate. In ∼1,000 generations, EASy yielded alleles that in single chromosomal copy confer growth on guaiacol. Different variants emerged, including fusions between GcoA and CatA (catechol 1,2-dioxygenase). This study illustrates the power of harnessing chromosomal gene amplification to accelerate the evolution of desirable traits.
A study of antagonists of 5-hydroxytryptamine and catechol amines on the rat's blood pressure.
OUTSCHOORN, A S; JACOB, J
1960-03-01
The effects of 5-hydroxytryptamine on the blood pressure of anaesthetized rats depended on the dose and the initial level of blood pressure. At medium blood pressure levels, 5-hydroxytryptamine gave a depressor response and sometimes a pressor response which was more evident with large doses. The depressor effect was less apparent or even absent at low, and more pronounced at high, blood pressure levels, and the converse applied to the pressor components. Adenosine also gave a depressor and pressor response. Lysergic acid diethylamide, dihydroergotamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol (a dichloro analogue of isoprenaline), dibenamine and 1-benzyl-5-methoxy-2-methyltryptamine antagonized 5-hydroxytryptamine and catechol amines. Lysergic acid diethylamide and 1-benzyl-5-methoxy-2-methyltryptamine were more effective against 5-hydroxytryptamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol and dibenamine against catechol amines; dihydroergotamine was equally effective against both groups. These antagonists fell into two groups according to their action against the two types of effects (depressor and pressor) of 5-hydroxytryptamine: lysergic acid diethylamide and 1-(3,4-dichlorophenyl)2-isopropylaminoethanol acted preferentially against depressor effects; 1-benzyl-5-methoxy-2-methyltryptamine and dibenamine preferentially against pressor; dihydroergotamine was not assignable to either group. Adenosine was affected similarly, but less than 5-hydroxytryptamine.
Lu, Yunhao; Dong, Yanzuo; Li, Xueli; He, Qiang
2016-10-14
The nitration and nitrosation reactions of catechol, resorcinol, and hydroquinone (0.05 mmol/L) with sodium nitrite (0.05 mmol/L) at pH 3 and 37 °C were studied by using liquid chromatography and mass spectrometry (LC-MS) and atom charge analysis, which was aimed to provide chemical insight into the nitrite-scavenging behavior of polyphenols. The 3 benzenediols showed different mechanisms to scavenge nitrite due to their differences in hydroxyl position. Catechol was nitrated with 1 NO 2 group at the hydroxyl oxygen, and resorcinol was nitrosated with 2 NO groups at the C 2 and C 4 (or C 6 ) positions of the benzene ring. Hydroquinone could scavenge nitrite through both nitration and nitrosation mechanisms. The nitrated hydroquinone had 1 NO 2 group at the hydroxyl oxygen in the molecule, while the nitrosated 1 containing 2 NO groups at the benzene ring might have 3 structure probabilities. The results may provide a structure-activity understanding on the nitrite-scavenging property of polyphenols, so as to promote their application in the food industry for the removal of possibly toxic nitrites found in many vegetables and often in processed meat products. © 2016 Institute of Food Technologists®.
A study of antagonists of 5-hydroxytryptamine and catechol amines on the rat's blood pressure
Outschoorn, A. S.; Jacob, J.
1960-01-01
The effects of 5-hydroxytryptamine on the blood pressure of anaesthetized rats depended on the dose and the initial level of blood pressure. At medium blood pressure levels, 5-hydroxytryptamine gave a depressor response and sometimes a pressor response which was more evident with large doses. The depressor effect was less apparent or even absent at low, and more pronounced at high, blood pressure levels, and the converse applied to the pressor components. Adenosine also gave a depressor and pressor response. Lysergic acid diethylamide, dihydroergotamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol (a dichloro analogue of isoprenaline), dibenamine and 1-benzyl-5-methoxy-2-methyltryptamine antagonized 5-hydroxytryptamine and catechol amines. Lysergic acid diethylamide and 1-benzyl-5-methoxy-2-methyltryptamine were more effective against 5-hydroxytryptamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol and dibenamine against catechol amines; dihydroergotamine was equally effective against both groups. These antagonists fell into two groups according to their action against the two types of effects (depressor and pressor) of 5-hydroxytryptamine: lysergic acid diethylamide and 1-(3,4-dichlorophenyl)2-isopropylaminoethanol acted preferentially against depressor effects; 1-benzyl-5-methoxy-2-methyltryptamine and dibenamine preferentially against pressor; dihydroergotamine was not assignable to either group. Adenosine was affected similarly, but less than 5-hydroxytryptamine. PMID:14429484
Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartels, I.; Knackmuss, H.J.; Reineke, W.
The inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-chloro- and 3-fluorocatechol and the iron-chelating agent Tiron (catechol-3,5-disulfonate) was studied. Whereas inactivation by Tiron is an oxygen-independent and mostly reversible process, inactivation by the 3-halocatechols was only observed in the presence of oxygen and was largely irreversible. The rate constants for inactivation (K/sub 2/) were 1.62 x 10/sup -3/ sec/sup -1/ for 3-chlorocatechol and 2.38 x 10/sup -3/ sec/sup -1/ for 3-fluorocatechol. The inhibitor constants (K/sub i/) were 23 ..mu..M for 3-chlorocatechol and 17 ..mu..M for 3-fluorocatechol. The kinetic data for 3-fluorocatechol could only be obtained in the presencemore » of 2-mercaptoethanol. Besides inactivated enzyme, some 2-hydroxyhexa-2,4-dienoic acid as the actual suicide product of meta-cleavage. A side product of 3-fluorocatechol cleavage is a yellow compound with the spectral characteristics of a 2-hydroxy-6-oxohexa-2,4-dienoci acid indicating 1,6-cleavage. Rates of inactivation by 3-fluorocatechol were reduced in the presence of superoxide dismutase, catalase, formate, and mannitol, which implies that superoxide anion, hydrogen peroxide, and hydroxyl radical exhibit additional inactivation. 64 references.« less
New Porous Crystals of Extended Metal-Catecholates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hmadeh, Mohamad; Lu, Zheng; Liu, Zheng
To date, the links of robust and highly porous metal organic frameworks (MOFs) have been largely limited to carboxylate,(1) imidazolate,(2) other azolates,(3) or sulfonate.(4) Although catecholate organic units are well-known and are employed heavily for metal chelation in biology,(5) only the simple 1,2,4,5-tetrahydroxybenzene (H6C6O4)(6) or 1,4-dihydroxy-benzoquinone and their homologues (H2C6X2O4, e.g., X = Cl, Br, NO2 and CH3) have been explored and incorporated into extended frameworks (Scheme S1 in the Supporting Information).(7) Herein, we describe linking the highly conjugated tricatecholate, 2,3,6,7,10,11-hexahydroxytriphenylene (H12C18O6, HHTP), with Co(II) and Ni(II) ions into two-dimensional porous extended frameworks. These new crystalline materials, termed metal-catecholates (M-CATs),more » were characterized by X-ray diffraction techniques (single crystal for Co-CAT-1, and powder for Ni-CAT-1) and high-resolution transmission electron microscopy (HR-TEM) studies (for Ni-CAT-1). We demonstrate their high chemical stability (in aqueous and non-aqueous media), thermal stability, and porosity. Cu-CAT-1 microcrystalline material showed high electrical conductivity and charge storage capacity.« less
Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening.
Ciui, Bianca; Martin, Aida; Mishra, Rupesh K; Brunetti, Barbara; Nakagawa, Tatsuo; Dawkins, Thomas J; Lyu, Mengjia; Cristea, Cecilia; Sandulescu, Robert; Wang, Joseph
2018-04-01
Wearable bendable bandage-based sensor and a minimally invasive microneedle biosensor are described toward rapid screening of skin melanoma. These wearable electrochemical sensors are capable of detecting the presence of the tyrosinase (TYR) enzyme cancer biomarker in the presence of its catechol substrate, immobilized on the transducer surface. In the presence of the surface TYR biomarker, the immobilized catechol is rapidly converted to benzoquinone that is detected amperometrically, with a current signal proportional to the TYR level. The flexible epidermal bandage sensor relies on printing stress-enduring inks which display good resiliency against mechanical deformations, whereas the hollow microneedle device is filled with catechol-coated carbon paste for assessing tissue TYR levels. The bandage sensor can thus be used directly on the skin whereas microneedle device can reach melanoma tissues under the skin. Both wearable sensors are interfaced to an ultralight flexible electronic board, which transmits data wirelessly to a mobile device. The analytical performance of the resulting bandage and microneedle sensing systems are evaluated using TYR-containing agarose phantom gel and porcine skin. The new integrated conformal portable sensing platforms hold considerable promise for decentralized melanoma screening, and can be extended to the screening of other key biomarkers in skin moles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui
2016-06-01
Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin.
Weber, Christian; Brückner, Christine; Weinreb, Sheila; Lehr, Claudia; Essl, Christine; Boles, Eckhard
2012-12-01
Adipic acid is a high-value compound used primarily as a precursor for the synthesis of nylon, coatings, and plastics. Today it is produced mainly in chemical processes from petrochemicals like benzene. Because of the strong environmental impact of the production processes and the dependence on fossil resources, biotechnological production processes would provide an interesting alternative. Here we describe the first engineered Saccharomyces cerevisiae strain expressing a heterologous biosynthetic pathway converting the intermediate 3-dehydroshikimate of the aromatic amino acid biosynthesis pathway via protocatechuic acid and catechol into cis,cis-muconic acid, which can be chemically dehydrogenated to adipic acid. The pathway consists of three heterologous microbial enzymes, 3-dehydroshikimate dehydratase, protocatechuic acid decarboxylase composed of three different subunits, and catechol 1,2-dioxygenase. For each heterologous reaction step, we analyzed several potential candidates for their expression and activity in yeast to compose a functional cis,cis-muconic acid synthesis pathway. Carbon flow into the heterologous pathway was optimized by increasing the flux through selected steps of the common aromatic amino acid biosynthesis pathway and by blocking the conversion of 3-dehydroshikimate into shikimate. The recombinant yeast cells finally produced about 1.56 mg/liter cis,cis-muconic acid.
Potential biological activities and bioavailability of alfrutamide and caffedymine
USDA-ARS?s Scientific Manuscript database
Alfrutamide and caffedymine are clovamide-type phenolic amides whose analogues are found in numerous plants including garlic and cocoa. However, potential health effects of the amides are largely unknown. For last ten years, several amides have been synthesized and their potential biological activi...
Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Rushdi, Ahmed I.; Simoneit, Bernd R. T.
2004-06-01
Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.
Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions
Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.
2015-01-01
Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (wrk) in both positive and negative mode. Woodward’s reagent K, N-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide. PMID:26122523
Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D; Pallan, Pradeep S; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks
2014-06-01
RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3'-CH2-CO-NH-5' amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P-OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5'-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Neuronal effects of 4-t-Butylcatechol: A model for catechol-containing antioxidants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Y.-C.; Liu Yuxin; Lin, Y.-C.
2008-04-15
Many herbal medicines and dietary supplements sold as aids to improve memory or treat neurodegenerative diseases or have other favorable effects on the CNS contain a catechol or similar 1,2-dihydroxy aromatic moiety in their structure. As an approach to isolate and examine the neuroprotective properties of catechols, a simple catechol 4-t-Butylcatechol (TBC) has been used as a model. In this study, we investigated the effects of TBC on lipopolysaccharide (LPS)-activated microglial-induced neurotoxicity by using the in vitro model of coculture murine microglial-like cell line HAPI with the neuronal-like human neuroblastoma cell line SH-SY5Y. We also examined the effects of TBCmore » on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. TBC at concentrations from 0.1-10 {mu}M had no toxic effect on HAPI cells and SH-SY5Y cells, and it inhibited LPS (100 ng/ml)-induced increases of superoxide, intracellular ROS, gp91{sup Phox}, iNOS and a decrease of HO-1 in HAPI cells. Under coculture condition, TBC significantly reduced LPS-activated microglia-induced dopaminergic SH-SY5Y cells death. Moreover, TBC (0.1-10 {mu}M) inhibited 6-OHDA-induced increases of intracellular ROS, iNOS, nNOS, and a decrease of mitochondria membrane potential, and cell death in SH-SY5Y cells. However, the neurotoxic effects of TBC (100 {mu}M) on SH-SY5Y cells were also observed including the decrease in mitochondria membrane potential and the increase in COX-2 expression and cell death. TBC-induced SH-SY5Y cell death was attenuated by pretreatment with NS-398, a selective COX-2 inhibitor. In conclusion, this study suggests that TBC might possess protective effects on inflammation- and oxidative stress-related neurodegenerative disorders. However, the high concentration of TBC might be toxic, at least in part, for increasing COX-2 expression.« less
Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.
Dembitsky, V M; Shkrob, I; Rozentsvet, O A
2000-08-01
Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).
NASA Astrophysics Data System (ADS)
Kurtoglu, Yunus Emre
The drug release characteristics of G4-polyamidoamine (PAMAM) dendrimer-ibuprofen conjugates with ester, amide, and peptide linkers were investigated, in addition to a linear PEG-ibuprofen conjugate to understand the effect of architecture and linker on drug release. Ibuprofen was directly conjugated to NH2 -terminated dendrimer by an amide bond and OH-terminated dendrimer by an ester bond. A tetra-peptide linked dendrimer conjugate and a linear mPEG-ibuprofen conjugate were also studied for comparison to direct linked dendrimer conjugates. It is demonstrated that the 3-D nanoscale architecture of PAMAM dendrimer-drug conjugates, along with linking chemistry govern the drug release mechanisms as well as kinetics. Understanding these structural effects on their drug release characteristics is crucial for design of dendrimer conjugates with high efficacy such as poly(amidoamine) dendrimer-N-Acetylcysteine conjugates with disulfide linkages. N-Acetylcysteine (NAC) is an anti-inflammatory agent with significant potential for clinical use in the treatment of neuroinflammation, stroke and cerebral palsy. A poly(amidoamine) dendrimer-NAC conjugate that contains a disulfide linkage was synthesized and evaluated for its release kinetics in the presence of glutathione (GSH), Cysteine (Cys), and bovine serum albumin (BSA) at both physiological and lysosomal pH. FITC-labeled conjugates showed that they enter cells rapidly and localize in the cytoplasm of lipopolysaccharide (LPS)-activated microglial cells. The efficacy of the dendrimer-NAC conjugate was measured in activated microglial cells using reactive oxygen species (ROS) assays. The conjugates showed an order of magnitude increase in anti-oxidant activity compared to free drug. When combined with intrinsic and ligand-based targeting with dendrimers, these types of GSH sensitive nanodevices can lead to improved drug release profiles and in vivo efficacy.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...
ERIC Educational Resources Information Center
Fennie, Michael W.; Roth, Jessica M.
2016-01-01
In this laboratory experiment, upper-division undergraduate chemistry and biochemistry majors investigate amide-bond-forming reactions from a green chemistry perspective. Using hydrocinnamic acid and benzylamine as reactants, students perform three types of amide-forming reactions: an acid chloride derivative route; a coupling reagent promoted…
Biosynthesis, degradation and pharmacological importance of the fatty acid amides.
Farrell, Emma K; Merkler, David J
2008-07-01
The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics.
Detection of amide I signals of interfacial proteins in situ using SFG.
Wang, Jie; Even, Mark A; Chen, Xiaoyun; Schmaier, Alvin H; Waite, J Herbert; Chen, Zhan
2003-08-20
In this Communication, we demonstrate the novel observation that it is feasible to collect amide signals from polymer/protein solution interfaces in situ using sum frequency generation (SFG) vibrational spectroscopy. Such SFG amide signals allow for acquisition of more detailed molecular level information of entire interfacial protein structures. Proteins investigated include bovine serum albumin, mussel protein mefp-2, factor XIIa, and ubiquitin. Our studies indicate that different proteins generate different SFG amide signals at the polystyrene/protein solution interface, showing that they have different interfacial coverage, secondary structure, or orientation.
Protecting‐Group‐Free Amidation of Amino Acids using Lewis Acid Catalysts
Sabatini, Marco T.; Karaluka, Valerija; Lanigan, Rachel M.; Boulton, Lee T.; Badland, Matthew
2018-01-01
Abstract Amidation of unprotected amino acids has been investigated using a variety of ‘classical“ coupling reagents, stoichiometric or catalytic group(IV) metal salts, and boron Lewis acids. The scope of the reaction was explored through the attempted synthesis of amides derived from twenty natural, and several unnatural, amino acids, as well as a wide selection of primary and secondary amines. The study also examines the synthesis of medicinally relevant compounds, and the scalability of this direct amidation approach. Finally, we provide insight into the chemoselectivity observed in these reactions. PMID:29505683
Chelate effects in sulfate binding by amide/urea-based ligands.
Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin
2015-07-07
The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.
Biosynthesis, degradation, and pharmacological importance of the fatty acid amides
Farrell, Emma K.; Merkler, David J.
2008-01-01
The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically-occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics. PMID:18598910
New organic semiconductors with imide/amide-containing molecular systems.
Liu, Zitong; Zhang, Guanxin; Cai, Zhengxu; Chen, Xin; Luo, Hewei; Li, Yonghai; Wang, Jianguo; Zhang, Deqing
2014-10-29
Due to their high electron affinities, chemical and thermal stabilities, π-conjugated molecules with imide/amide frameworks have received considerable attentions as promising candidates for high-performance optoelectronic materials, particularly for organic semiconductors with high carrier mobilities. The purpose of this Research News is to give an overview of recent advances in development of high performance imide/amide based organic semiconductors for field-effect transistors. It covers naphthalene diimide-, perylene diimide- and amide-based conjugated molecules and polymers for organic semiconductors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.
Quan, Zheng-Jun; Wang, Xi-Cun
2016-02-01
The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C
2015-07-15
Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.
2015-01-01
Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain. PMID:26120870
Hayashi, Tomoyuki; Mukamel, Shaul
2006-11-21
The coherent nonlinear response of the entire amide line shapes of N-methyl acetamide to three infrared pulses is simulated using an electrostatic density functional theory map. Positive and negative cross peaks contain signatures of correlations between the fundamentals and the combination state. The amide I-A and I-III cross-peak line shapes indicate positive correlation and anticorrelation of frequency fluctuations, respectively. These can be ascribed to correlated hydrogen bonding at C[double bond]O and N-H sites. The amide I frequency is negatively correlated with the hydrogen bond on carbonyl C[double bond]O, whereas the amide A and III are negatively and positively correlated, respectively, with the hydrogen bond on amide N-H.
Specificity in cationic interaction with poly(N-isopropylacrylamide).
Du, Hongbo; Wickramasinghe, Sumith Ranil; Qian, Xianghong
2013-05-02
Classical molecular dynamics (MD) simulations were conducted for PNIPAM in 1 M monovalent alkali chloride salt solutions as well as in 0.5 M divalent Mg(2+) and Ca(2+) chloride salt solutions. It was found that the strength for the direct alkali ion-amide O binding is strongly correlated with the size of the ionic radius. The smallest Li(+) ion binds strongest to amide O, and the largest Cs(+) ion has the weakest interaction with the amide bond. For the divalent Mg(2+) and Ca(2+) ions, their interactions with the amide bond are weak and appear to be mediated by the water molecules, particularly in the case of Mg(2+), resulting from their strong hydration. The direct binding between the cations and amide O requires partial desovlation of the ions that is energetically unfavorable for Mg(2+) and also to a great extent for Ca(2+). The higher cation charge makes the electrostatic interaction more favorable but the dehydration process less favorable. This competition between electrostatic interaction and the dehydration process largely dictates whether the direct binding between the cation and amide O is energetically preferred or not. For monovalent alkali ions, it is energetically preferred to bind directly with the amide O. Moreover, Li(+) ion is also found to associate strongly with the hydrophobic residues on PNIPAM.
An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.
Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J
2015-07-30
Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.
Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.
Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin
2016-12-30
Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.
Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol
Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin
2016-01-01
Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components. PMID:28042825
Powell, Joshua; Luh, Jeanne; Coronell, Orlando
2015-10-20
The volume-averaged amide link scission in the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine was quantified at a variety of free chlorine exposure times, concentrations, and pH and rinsing conditions. The results showed that (i) hydroxyl ions are needed for scission to occur, (ii) hydroxide-induced amide link scission is a strong function of exposure to hypochlorous acid, (iii) the ratio between amide links broken and chlorine atoms taken up increased with the chlorination pH and reached a maximum of ∼25%, (iv) polyamide disintegration occurs when high free chlorine concentrations, alkaline conditions, and high exposure times are combined, (v) amide link scission promotes further chlorine uptake, and (vi) scission at the membrane surface is unrepresentative of volume-averaged scission in the active layer. Our observations are consistent with previously proposed mechanisms describing amide link scission as a result of the hydrolysis of the N-chlorinated amidic N-C bond due to nucleophilic attack by hydroxyl ions. This study increases the understanding of the physicochemical changes that could occur for membranes in treatment plants using chlorine as an upstream disinfectant and the extent and rate at which those changes would occur.
Mussel-Inspired Adhesives and Coatings
Lee, Bruce P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H.
2011-01-01
Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications. PMID:22058660
Goetz, G; Meschkat, E; Lepoittevin, J P
1999-04-19
A 13-C labeled water soluble derivative of alkylcatechol was synthesized and reacted with human serum albumin in phosphate buffer at pH 7.4 in air to allow a slow oxidation of the catechol into orthoquinone. The formation of several adducts was evidenced by a combination of 13C and 1H-13C correlation NMR. Although some adducts could result from a classical o-quinone formation - Michael type addition, our results suggest that a second pathway, involving a direct reaction of a carbon centered radical with proteins could be an important mechanism in the formation of modified proteins.
Lebedev, A V; Ivanova, M V; Timoshin, A A; Ruuge, E K
2008-01-01
Ca2+-induced increase in the rate of pyrocatechol and dopamine oxidation by dioxygen and Ca2+-dependent acid-base properties of the catechols were studied by potentiometric titration, UV/Vis-spectrophotometry, EPR-spectroscopy, and by measurement of oxygen consumption. The effect of Ca2+ on the chain reactions of oxidation can be explained by additional deprotonation (decrease in pKai) of the catechols that accelerates one electron transport to dioxygen and formation of calcium semiquinonate, undergoing further oxidation. The described Ca2+-dependent redox-conversion of ortho-phenols proposes that an additional function of calcium in the cell can be its involvement in free radical oxidoreductive reactions at pH > pKai.
O'Harte, Finbarr P M; Parthsarathy, Vadivel; Hogg, Christopher; Flatt, Peter R
2017-12-15
The adipokine, apelin has many biological functions but its activity is curtailed by rapid plasma degradation. Fatty acid derived apelin analogues represent a new and exciting avenue for the treatment of obesity-diabetes. This study explores four novel fatty acid modified apelin-13 analogues, namely, (Lys 8 GluPAL)apelin-13 amide, pGlu(Lys 8 GluPAL)apelin-13 amide, Lys 8 GluPAL(Tyr 13 )apelin-13 and Lys 8 GluPAL(Val 13 )apelin-13. Fatty acid modification extended the half-life of native apelin-13 to >24 h in vitro. pGlu(Lys 8 GluPAL)apelin-13 amide was the most potent insulinotropic analogue in BRIN-BD11 cells and isolated islets with maximal stimulatory effects of up to 2.7-fold (p < .001). (Lys 8 GluPAL)apelin-13 amide (1.9-fold) and Lys 8 GluPAL(Tyr 13 )apelin-13 (1.7-fold) were less effective, whereas Lys 8 GluPAL(Val 13 )apelin-13 had an inhibitory effect on insulin secretion. Similarly, pGlu(Lys 8 GluPAL)apelin-13 amide was most potent in increasing beta-cell intracellular Ca 2+ concentrations (1.8-fold, p < .001) and increasing glucose uptake in 3T3-L1 adipocytes (2.3-fold, p < .01). Persistent biological action was observed with both pGlu(Lys 8 GluPAL)apelin-13 amide and (Lys 8 GluPAL)apelin-13 amide significantly reducing blood glucose (39-43%, p < .01) and enhancing insulin secretion (43-56%, p < .001) during glucose tolerance tests in diet-induced obese mice. pGlu(Lys 8 GluPAL)apelin-13 amide and (Lys 8 GluPAL)apelin-13 amide also inhibited feeding (28-40%, p < .001), whereas Lys 8 GluPAL(Val 13 )apelin-13 increased food intake (8%, p < .05) in mice. These data indicate that novel enzymatically stable analogues of apelin-13 may be suitable for future development as therapeutic agents for obesity-diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.
Bittner, Andrea; Cramer, Benedikt; Harrer, Henning; Humpf, Hans-Ulrich
2015-05-01
The mycotoxin ochratoxin A is a secondary metabolite occurring in a wide range of commodities. During the exposure of ochratoxin A to white and blue light, a cleavage between the carbon atom C-14 and the nitrogen atom was described. As a reaction product, the new compound ochratoxin α amide has been proposed based on mass spectrometry (MS) experiments. In the following study, we observed that this compound is also formed at high temperatures such as used for example during coffee roasting and therefore represents a further thermal ochratoxin A degradation product. To confirm the structure of ochratoxin α amide, the compound was prepared in large scale and complete structure elucidation via nuclear magnetic resonance (NMR) and MS was performed. Additionally, first studies on the toxicity of ochratoxin α amide were performed using immortalized human kidney epithelial (IHKE) cells, a cell line known to be sensitive against ochratoxin A with an IC50 value of 0.5 μM. Using this system, ochratoxin α amide revealed no cytotoxicity up to concentrations of 50 μM. Thus, these results propose that the thermal degradation of ochratoxin A to ochratoxin α amide might be a detoxification process. Finally, we present a sample preparation and a HPLC-tandem mass spectrometry (HPLC-MS/MS) method for the analysis of ochratoxin α amide in extrudates and checked its formation during the extrusion of artificially contaminated wheat grits at 150 and 180 °C, whereas no ochratoxin α amide was detectable under these conditions.
Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.
Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel
2015-09-01
An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.
Nakane, Atsushi; Gotoh, Yusuke; Ichihara, Junji; Nagata, Hidetaka
2015-12-15
The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide. Copyright © 2015 Elsevier Inc. All rights reserved.
Zheng, Y; Wang, X-M
2017-04-01
As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton transfer imaging. From 58 healthy neonatal piglets (3-5 days after birth; weight, 1-1.5 kg) selected initially, 9 piglets remained in the control group and 43 piglets, in the hypoxic-ischemic brain injury group. Single-section amide proton transfer imaging was performed at the coronal level of the basal ganglia. Amide proton transfer values of the bilateral basal ganglia were measured in all piglets. The ROI of MR spectroscopy imaging was the right basal ganglia, and the postprocessing was completed with LCModel software. After hypoxic-ischemic insult, the amide proton transfer values immediately decreased, and at 0-2 hours, they remained at their lowest level. Thereafter, they gradually increased and finally exceeded those of the control group at 48-72 hours. After hypoxic-ischemic insult, the lactate content increased immediately, was maximal at 2-6 hours, and then gradually decreased to the level of the control group. The amide proton transfer values were negatively correlated with lactate content ( r = -0.79, P < .05). This observation suggests that after hypoxic-ischemic insult, the recovery of pH was faster than that of lactate homeostasis. © 2017 by American Journal of Neuroradiology.
Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis
Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.
2015-01-01
An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680
Phenolic amides are potent inhibitors of De Novo nucleotide biosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.
An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposuremore » leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [ 15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. Furthermore, the results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals.« less
Phenolic amides are potent inhibitors of De Novo nucleotide biosynthesis
Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; ...
2015-06-12
An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposuremore » leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [ 15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. Furthermore, the results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals.« less
40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, peanut-oil, N-[3... Specific Chemical Substances § 721.10176 Amides, peanut-oil, N-[3-(dimethylamino)propyl]. (a) Chemical..., peanut-oil, N-[3-(dimethylamino)propyl] (PMN P-04-144; CAS No. 691400-76-7) is subject to reporting under...
40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amides, peanut-oil, N-[3... Specific Chemical Substances § 721.10176 Amides, peanut-oil, N-[3-(dimethylamino)propyl]. (a) Chemical..., peanut-oil, N-[3-(dimethylamino)propyl] (PMN P-04-144; CAS No. 691400-76-7) is subject to reporting under...
Mzhelskaya, M M; Klinnikova, M G; Koldysheva, E V; Lushnikova, E L
2017-10-01
The expression of VEGFR2 (Flk-1, according to immunohistochemistry) and of cyclin D2 mRNA (according to real-time PCR) in the myocardium of rats is studied in doxorubicin-induced cardiomyopathy and in response to betulonic acid amide. Doxorubicin alone and in combination with betulonic acid amide causes after 3 days a manifest reduction of cyclin D2 mRNA expression (by 38 and 63%, respectively), while injection of betulonic acid amide alone causes a 23-fold increase of cyclin D2 mRNA expression. An increase of cyclin D2 mRNA expression has been detected in all experimental groups after 14 days of experiment, the most pronounced in response to betulonic acid amide (63 times). The expression of Flk-1 in cardiomyocytes increases significantly in response to both chemical agents starting from day 3 of experiment. These results indicate that doxorubicin and betulonic acid amide induce cytoprotective reactions in the myocardium, first at the intracellular, then at the cellular levels.
Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N
2013-01-01
Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.
Zhang, Huihui; Li, Jie; Yang, Bei; Ji, Tao; Long, Zhouting; Xing, Qiquan; Shao, Di; Bai, Huayu; Sun, Jiwei; Cao, Fenglin
2018-02-01
Catechol-O-methyltransferase (COMT) Val 158 Met functional polymorphisms play a crucial role in the development of executive function (EF), but their effect may be moderated by environmental factors such as childhood adversity. The present study aimed at testing the divergent impact of the COMT Val 158 Met genotype on EF in non-clinical adolescents with discrete patterns of childhood adversity. A total of 341 participants completed the Childhood Trauma Questionnaire, the self-reported version of the Behavior Rating Inventory of Executive Function, and self-administered questionnaires on familial function. The participants' COMT Val 158 Met genotype was determined. Associations among the variables were explored using latent class analysis and general linear models. We found that Val/Val homozygotes showed significantly worse performance on behavioral shift, relative to Met allele carriers (F=5.921, p=0.015, Partial η 2 =0.018). Moreover, three typical patterns of childhood adversity, namely, low childhood adversity (23.5%), childhood neglect (59.8%), and high childhood adversity (16.7%), were found. Both childhood neglect and high childhood adversity had a negative impact on each aspect of EF and on global EF performance. Importantly, these results provided evidence for significant interaction effects, as adolescents with the Val/Val genotype showed inferior behavioral shift performance than Met carriers (F=6.647, p=0.010, Partial η 2 =0.020) in the presence of high childhood adversity. Furthermore, there were no differences between the genotypes for childhood neglect and low childhood adversity. Overall, this is the first study to show that an interaction between the COMT genotype and childhood adversity affects EF in non-clinical adolescents. These results suggest that the COMT genotype may operate as a susceptibility gene vulnerable to an adverse environment. Copyright © 2017 Elsevier Inc. All rights reserved.
Microfluidic Device with Tunable Post Arrays and Integrated Electrodes for Studying Cellular Release
Selimovic, Asmira; Erkal, Jayda L.; Spence, Dana M.; Martin, R. Scott
2015-01-01
In this paper, we describe the development of a planar, pillar array device that can be used to image either side of a tunable membrane, as well as sample and detect small molecules in a cell-free region of the microchip. The pores are created by sealing two parallel PDMS microchannels (a cell channel and a collector channel) over a gold pillar array (5 or 10 µm in height), with the device being characterized and optimized for small molecule cross-over while excluding a flowing cell line (here, red blood cells, RBCs). The device was characterized in terms of the flow rate dependence of cross-over of analyte and cell exclusion as well as the ability to perform amperometric detection of catechol and nitric oxide (NO) as they cross-over into the collector channel. Using catechol as the test analyte, the limits of detection (LOD) of the cross-over for the 10 µm and 5 µm pillar array heights were shown to be 50 nM and 106 nM, respectively. Detection of NO was made possible with a glassy carbon detection electrode (housed in the collector channel) modified with Pt-black and Nafion, to enhance sensitivity and selectivity, respectively. Reproducible cross-over of NO as a function of concentration resulted in a linear correlation (r2 = 0.995, 7.6 µM - 190 µM), with an LOD for NO of 230 nM on the glassy carbon-Pt-black-0.05% Nafion electrode. The applicability of the device was demonstrated by measuring the NO released from hypoxic RBCs, with the device allowing the released NO to cross-over into a cell free channel where it was detected in close to real-time. This type of device is an attractive alternative to the use of 3-dimensional devices with polycarbonate membranes, as either side of the membrane can be imaged and facile integration of electrochemical detection is possible. PMID:25105251
Kurowski, Brad G; Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L
To examine catechol-O-methyltransferase (COMT) rs4680 genotypes as moderators of the effects of parenting style on postinjury changes in parent behavior ratings of executive dysfunction following moderate to severe early childhood traumatic brain injury. Research was conducted in an outpatient setting. Participants included children admitted to hospital with moderate to severe traumatic brain injury (n = 55) or orthopedic injuries (n = 70) between ages 3 and 7 years. Prospective cohort followed over 7 years postinjury. Parenting Practices Questionnaire and the Behavior Rating Inventory of Executive Functioning obtained at baseline, 6, 12, and 18 months, and 3.5 and 6.8 years postinjury. DNA was collected from saliva samples, purified using the Oragene (DNA Genotek, Ottawa, Ontario, Canada) OG-500 self-collection tubes, and analyzed using TaqMan (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts) assay protocols to identify the COMT rs4680 polymorphism. Linear mixed models revealed a significant genotype × parenting style × time interaction (F = 5.72, P = .02), which suggested that the adverse effects of authoritarian parenting on postinjury development of executive functioning were buffered by the presence of the COMT AA genotype (lower enzyme activity, higher dopamine levels). There were no significant associations of executive functioning with the interaction between genotype and authoritative or permissive parenting ratings. The lower activity COMT rs4680 genotype may buffer the negative effect of authoritarian parenting on long-term executive functioning following injury in early childhood. The findings provide preliminary evidence for associations of parenting style with executive dysfunction in children and for a complex interplay of genetic and environmental factors as contributors to decreases in these problems after traumatic injuries in children. Further investigation is warranted to understand the interplay among genetic and environmental factors related to recovery after traumatic brain injury in children.
Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin
2016-11-16
An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.
Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying
2015-01-01
A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.
Hicks, Jacqueline D.; Hyde, Alan M.; Cuezva, Alberto Martinez; Buchwald, Stephen L.
2009-01-01
We report the efficient N-arylation of acyclic secondary amides and related nucleophiles with aryl nonaflates, triflates, and chlorides. This method allows for easy variation of the aromatic component in tertiary aryl amides. A new biaryl phosphine with P-bound 3,5-(bis)trifluoromethylphenyl groups was found to be uniquely effective for this amidation. The critical aspects of the ligand were explored through synthetic, mechanistic, and computational studies. Systematic variation of the ligand revealed the importance of (1) a methoxy group on the aromatic carbon of the “top ring” ortho to the phosphorus and (2) two highly electron-withdrawing P-bound 3,5-(bis)trifluoromethylphenyl groups. Computational studies suggest the electron-deficient nature of the ligand is important in facilitating amide binding to the LPd(II)(Ph)(X) intermediate. PMID:19886610
Pira, S L; El Mahdi, O; Raibaut, L; Drobecq, H; Dheur, J; Boll, E; Melnyk, O
2016-07-26
The bis(2-sulfanylethyl)amide (SEA) N,S-acyl shift thioester surrogate has found a variety of useful applications in the field of protein total synthesis. Here we present novel insights into the SEA amide/thioester equilibrium in water which is an essential step in any reaction involving the thioester surrogate properties of the SEA group. We also show that the SEA amide thioester equilibrium can be efficiently displaced at neutral pH for accessing peptide alkylthioesters, i.e. the key components of the native chemical ligation (NCL) reaction.
Triaspartate: a model system for conformationally flexible DDD motifs in proteins.
Duitch, Laura; Toal, Siobhan; Measey, Thomas J; Schweitzer-Stenner, Reinhard
2012-05-03
Understanding the interactions that govern turn formation in the unfolded state of proteins is necessary for a complete picture of the role that these turns play in both normal protein folding and functionally relevant yet disordered linear motifs. It is still unclear, however, whether short peptides can adopt stable turn structures in aqueous environments in the absence of any nonlocal interactions. To explore the effect that nearest-neighbor interactions and the local peptide environment have on the turn-forming capability of individual amino acid residues in short peptides, we combined vibrational (IR, Raman, and VCD), UV-CD, and (1)H NMR spectroscopies in order to probe the conformational ensemble of the central aspartic acid residue of the triaspartate peptide (DDD). The study was motivated by the recently discovered turn propensities of aspartic acid in GDG (Hagarman; et al. Chem.-Eur. J. 2011, 17, 6789). We investigated the DDD peptide under both acidic and neutral conditions in order to elucidate the effect that side-chain protonation has on the conformational propensity of the central aspartic acid residue. Amide I' profiles were analyzed in terms of two-dimensional Gaussian distributions representing conformational subdistributions in Ramachandran space. Interestingly, our results show that while the protonated form of the DDD peptide samples various turn-like conformations similar to GDG, deprotonation of the peptide eliminates this propensity for turns, causing the fully ionized peptide to exclusively sample pPII and β-strand-like structures. To further explore the factors stabilizing these more extended conformations in fully ionized DDD, we analyzed the temperature dependence of both the UV-CD spectrum and the (3)J(H(N),H(α)) coupling constants of the two amide protons (N- and C-terminal) in terms of a simple two-state (pPII-β) thermodynamic model. Thus, we were able to obtain the enthalpic and entropic differences between the pPII and β-strand conformations of the central and C-terminal residue. For the central residue, we obtained ΔH(3) = -12.0 kJ/mol and ΔS(3) = -73.8 J/mol·K, resulting in a much larger room-temperature Gibbs free energy of 10.0 kJ/mol, which effectively locks the C-terminal in a β-like conformation. A comparison of the temperature dependence of the chemical shifts reveals that there is indeed some type of protection of the amide protons from solvent in ionized DDD. This finding and several other lines of evidence suggest that both conformations of ionized DDD are stabilized by hydrogen bonding between the carboxylate groups of the central and C-terminal residue and the respective amide protons. These hydrogen bonds can be expected to be eliminated by side-chain protonation and substituted by hydrogen bonds between the N-terminal amide proton and the C-terminal carbonyl group as well as between the central aspartate side chain and the N-terminal amide proton. Hence, our results are indicative of a pH-induced switch in hydrogen-bonding patterns of aspartic acid motifs.
Mutisya, Daniel; Hardcastle, Travis; Cheruiyot, Samwel K.; Pallan, Pradeep S.; Kennedy, Scott D.; Egli, Martin; Kelley, Melissa L.; Smith, Anja van Brabant
2017-01-01
Abstract While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA–DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs. PMID:28854734
Synthesis and biological activity of pyridazine amides, hydrazones and hydrazides.
Buysse, Ann M; Yap, Maurice Ch; Hunter, Ricky; Babcock, Jonathan; Huang, Xinpei
2017-04-01
Optimization studies on compounds initially designed to be herbicides led to the discovery of a series of [6-(3-pyridyl)pyridazin-3-yl]amides exhibiting aphicidal properties. Systematic modifications of the amide moiety as well as the pyridine and pyridazine rings were carried out to determine if these changes could improve insecticidal potency. Structure-activity relationship (SAR) studies showed that changes to the pyridine and pyridazine rings generally resulted in a significant loss of insecticidal potency against green peach aphids [Myzus persicae (Sulzer)] and cotton aphids [(Aphis gossypii (Glover)]. However, replacement of the amide moiety with hydrazines, hydrazones, or hydrazides appeared to be tolerated, with small aliphatic substituents being especially potent. A series of aphicidal [6-(3-pyridyl)pyridazin-3-yl]amides were discovered as a result of random screening of compounds that were intially investigated as herbicides. Follow-up studies of the structure-activity relationship of these [6-(3-pyridyl)pyridazin-3-yl]amides showed that biosteric replacement of the amide moiety was widely tolerated suggesting that further opportunities for exploitation may exist for this new area of insecticidal chemistry. Insecticidal efficacy from the original hit, compound 1, to the efficacy of compound 14 produced greater than 10-fold potency improvement against Aphis gossypii and greater than 14-fold potency improvement against Myzus persicae. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hwang, Joo Tae; Kim, Yesol; Jang, Hyun-Jae; Oh, Hyun-Mee; Lim, Chi-Hwan; Lee, Seung Woong; Rho, Mun-Chual
2016-06-30
Two new feruloyl amides, N-cis-hibiscusamide (5) and (7'S)-N-cis-feruloylnormetanephrine (9), and eight known feruloyl amides were isolated from Portulaca oleracea L. and the geometric conversion of the ten isolated feruloyl amides by UV light was verified. The structures of the feruloyl amides were determined based on spectroscopic data and comparison with literature data. The NMR data revealed that the structures of the isolated compounds showed cis/trans-isomerization under normal laboratory light conditions. Therefore, cis and trans-isomers of feruloyl amides were evaluated for their convertibility and stability by UV light of a wavelength of 254 nm. After 96 h of UV light exposure, 23.2%-35.0% of the cis and trans-isomers were converted to trans-isomers. Long-term stability tests did not show any significant changes. Among all compounds and conversion mixtures collected, compound 6 exhibited the strongest inhibition of IL-6-induced STAT3 activation in Hep3B cells, with an IC50 value of 0.2 μM. This study is the first verification of the conversion rates and an equilibrium ratio of feruloyl amides. These results indicate that this natural material might provide useful information for the treatment of various diseases involving IL-6 and STAT3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutisya, Daniel; Hardcastle, Travis; Cheruiyot, Samwel K.
While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 andmore » 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA–DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs.« less
Benzene metabolite levels in blood and bone marrow of B6C3F{sub 1} mice after low-level exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtold, W.E.; Strunk, M.R.; Thornton-Manning, J.R.
1995-12-01
Studies at the Inhalation Toxicology Research Institute (ITRI) have explored the species-specific uptake and metabolism of benzene. Results have shown that metabolism is dependent on both dose and route of administration. Of particular interest were shifts in the major metabolic pathways as a function of exposure concentration. In these studies, B6C3F{sub 1} mice were exposed to increasing levels of benzene by either gavage or inhalation. As benzene internal dose increased, the relative amounts of muconic acid and hydroquinone decreased. In contrast, the relative amount of catechol increased with increasing exposure. These results show that the relative levels of toxic metabolitesmore » are a function of exposure level. Based on these results and assuming a linear relationship between exposure concentration and levels of bone marrow metabolites, it would be difficult to detect an elevation of any phenolic metabolites above background after occupational exposures to the OSHA Permissible Exposure Limit of 1 ppm benzene.« less
NASA Astrophysics Data System (ADS)
Cheng, Wei-Qin; Li, Guo-Ling; Zhang, Ran; Ni, Zhong-Hai; Wang, Wen-Feng; Sato, Osamu
2015-05-01
A linear-chain cobalt coordination polymer, [Co(2,3-LH2)2(4,4‧-bipy)]ṡ2H2Oṡ4,4‧-bipy]n (1) (2,3-LH2 = 2,3-tetrahydroxy-9,10-dimethyl-9,10-dihydro- 9,10-ethanoanthracene, 4,4‧-bipy = 4,4‧-bipyridine), has been synthesized and structurally characterized. Single-crystal X-ray analysis reveals that complex 1 is a chiral polymer assemblied from achiral components. The complex 1 crystallizes in the chiral space group P3221 and the central Co ion has a slightly distorted octahedral coordination environment. The temperature dependence of magnetic susceptibility indicates that the complex 1 undergoes valence tautomeric interconversion between low-spin ls-[CoIII(2,3-LH2Cat)(2,3-LH2SQ)] and high-spin hs-[CoII(2,3-LH2SQ)2] (2,3-LH2Cat = 2,3-LH2catecholate, 2,3-LH2SQ = 2,3-LH2semiquinone).
Contreras, David; Rodríguez, Jaime; Freer, Juanita; Schwederski, Brigitte; Kaim, Wolfgang
2007-09-01
Brown rot fungi degrade wood, in initial stages, mainly through hydroxyl radicals (.OH) produced by Fenton reactions. These Fenton reactions can be promoted by dihydroxybenzenes (DHBs), which can chelate and reduce Fe(III), increasing the reactivity for different substrates. This mechanism allows the extensive degradation of carbohydrates and the oxidation of lignin during wood biodegradation by brown rot fungi. To understand the enhanced reactivity in these systems, kinetics experiments were carried out, measuring .OH formation by the spin-trapping technique of electron paramagnetic resonance spectroscopy. As models of the fungal DHBs, 1,2-dihydroxybenzene (catechol), 2,3-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid were utilized as well as 1,2-dihydroxy-3,5-benzenedisulfonate as a non-Fe(III)-reducing substance for comparison. Higher amounts and maintained concentrations of .OH were observed in the driven Fenton reactions versus the unmodified Fenton process. A linear correlation between the logarithms of complex stability constants and the .OH production was observed, suggesting participation of such complexes in the radical production.
Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid.
Oh, Dongyeop X; Shin, Sara; Lim, Chanoong; Hwang, Dong Soo
2013-09-06
Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin's poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e. , catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.
Draghi, Patrícia Ferrante; Fernandes, Julio Cesar Bastos
2017-03-01
We developed a label-free potentiometric biosensor using tyrosinase extracted from Musa acuminata and immobilized by covalent bond on a surface of a solid-contact transducer. The transducer was manufactured containing two layers. The first layer contained a blend of poly(vinyl) chloride carboxylated (PVC-COOH), graphite and potassium permanganate. On this layer, we deposited a second layer containing just a mixture of poly(vinyl chloride) carboxylated and graphite. On the last layer of the transducer, we immobilized the tyrosinase enzyme by reaction with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride. The solid-contact potentiometric biosensor presented at low detection limit of 7.3×10 -7 M and a linear range to catechol concentration between 9.3×10 -7 M and 8.3×10 -2 M. This biosensor was applied to determine the amount of total phenols in different samples of honey and propolis. The results agreed with the Folin-Ciocalteu method. Copyright © 2016 Elsevier B.V. All rights reserved.
He, Yaping; Yang, Xiaohui; Han, Quan; Zheng, Jianbin
2017-06-23
A novel catechol (CA) biosensor was developed by embedding tyrosinase (Tyr) onto in situ electrochemical reduction graphene (EGR) on choline-functionalized gold nanoparticle (AuNPs-Ch) film. The results of UV-Vis spectra indicated that Tyr retained its original structure in the film, and an electrochemical investigation of the biosensor showed a pair of well-defined, quasi-reversible redox peaks with E pa = -0.0744 V and E pc = -0.114 V (vs. SCE) in 0.1 M, pH 7.0 sodium phosphate-buffered saline at a scan rate of 100 mV/s. The transfer rate constant k s is 0.66 s -1 . The Tyr-EGR/AuNPs-Ch showed a good electrochemical catalytic response for the reduction of CA, with the linear range from 0.2 to 270 μM and a detection limit of 0.1 μM (S/N = 3). The apparent Michaelis-Menten constant was estimated to be 109 μM.
Tang, Fen; Xie, Yixi; Cao, Hui; Yang, Hua; Chen, Xiaoqing; Xiao, Jianbo
2017-03-15
Fetal bovine serum (FBS) is a universal growth supplement of cell and tissue culture media. Herein, the influences of FBS on the stability and antioxidant activity of 21 resveratrol analogues were investigated using a polyphenol-protein interaction approach. The structure-stability relationships of resveratrol analogues in FBS showed a clear decrease in the stability of hydroxylated resveratrol analogues in the order: resorcinol-type>pyrogallol-type>catechol-type. The glycosylation and methoxylation of resveratrol analogues enhanced their stability. A linear relationship between the stability of resveratrol analogues in FBS and the affinity of resveratrol analogues-FBS interaction was found. The oxidation process is not the only factor governing the stability of resveratrol analogues in FBS. These results facilitated the insightful investigation of the role of polyphenol-protein interactions in serum, thereby providing some fundamental clues for future clinical research and pharmacological studies on natural small molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.
A case study on the myth of emission from aliphatic amides
NASA Astrophysics Data System (ADS)
Singh, Avinash Kumar; Das, Sreyashi; Datta, Anindya
2016-12-01
For several decades, aliphatic amidic compounds have been believed to be emissive. We report that this contention is incorrect and that the anomalous emission from amides originates in fluorescent impurities generated during their synthesis. In order to make this point, we have synthesized fluorescent compounds and have compared the absorption spectra with excitation spectra.
Wang, Chongyang; Huang, Yong; Zhang, Zuotao; Wang, Hui
2018-04-25
With the close relationship between saline environments and industry, polycyclic aromatic hydrocarbons (PAHs) accumulate in saline/hypersaline environments. Therefore, PAHs degradation by halotolerant/halophilic bacteria has received increasing attention. In this study, the metabolic pathway of phenanthrene degradation by halophilic consortium CY-1 was first studied which showed a single upstream pathway initiated by dioxygenation at the C1 and C2 positions, and at several downstream pathways, including the catechol pathway, gentisic acid pathway and protocatechuic acid pathway. The effects of salinity on the community structure and expression of catabolic genes were further studied by a combination of high-throughput sequencing, catabolic gene clone library and real-time PCR. Pure cultures were also isolated from consortium CY-1 to investigate the contribution made by different microbes in the PAH-degrading process. Marinobacter is the dominant genus that contributed to the upstream degradation of phenanthrene especially in high salt content. Genus Halomonas made a great contribution in transforming intermediates in the subsequent degradation of catechol by using catechol 1,2-dioxygenase (C12O). Other microbes were predicted to be mediating bacteria that were able to utilize intermediates via different downstream pathways. Salinity was investigated to have negative effects on both microbial diversity and activity of consortium CY-1 and consortium CY-1 was found with a high degree of functional redundancy in saline environments.
Wang, Ming; Schoettner, Matthias; Xu, Shuqing; Paetz, Christian; Wilde, Julia; Baldwin, Ian T; Groten, Karin
2017-03-01
Nicotiana attenuata germinates from long-lived seedbanks in native soils after fires. Although smoke signals have been known to break seed dormancy, whether they also affect seedling establishment and root development remains unclear. In order to test this, seedlings were treated with smoke solutions. Seedlings responded in a dose-dependent manner with significantly increased primary root lengths, due mainly to longitudinal cell elongation, increased numbers of lateral roots and impaired root hair development. Bioassay-driven fractionations and NMR were used to identify catechol as the main active compound for the smoke-induced root phenotype. The transcriptome analysis revealed that mainly genes related to auxin biosynthesis and redox homeostasis were altered after catechol treatment. However, histochemical analyses of reactive oxygen species (ROS) and the inability of auxin applications to rescue the phenotype clearly indicated that highly localized changes in the root's redox-status, rather than in levels of auxin, are the primary effector. Moreover, H 2 O 2 application rescued the phenotype in a dose-dependent manner. Chemical cues in smoke not only initiate seed germination, but also influence seedling root growth; understanding how these cues work provides new insights into the molecular mechanisms by which plants adapt to post-fire environments. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Catecholaminergic effects of prolonged head-down bed rest
NASA Technical Reports Server (NTRS)
Goldstein, D. S.; Vernikos, J.; Holmes, C.; Convertino, V. A.
1995-01-01
Prolonged head-down bed rest (HDBR) provides a model for examining responses to chronic weightlessness in humans. Eight healthy volunteers underwent HDBR for 2 wk. Antecubital venous blood was sampled for plasma levels of catechols [norepinephrine (NE), epinephrine, dopamine, dihydroxyphenylalanine, dihydroxyphenylglycol, and dihydroxyphenylacetic acid] after supine rest on a control (C) day and after 4 h and 7 and 14 days of HDBR. Urine was collected after 2 h of supine rest during day C, 2 h before HDBR, and during the intervals 1-4, 4-24, 144-168 (day 7), and 312-336 h (day 14) of HDBR. All subjects had decreased plasma and blood volumes (mean 16%), atriopeptin levels (31%), and peripheral venous pressure (26%) after HDBR. NE excretion on day 14 of HDBR was decreased by 35% from that on day C, without further trends as HDBR continued, whereas plasma levels were only variably and nonsignificantly decreased. Excretion rates of dihydroxyphenylglycol and dihydroxyphenylalanine decreased slightly during HDBR; excretion rates of epinephrine, dopamine, and dihydroxyphenylacetic acid and plasma levels of catechols were unchanged. The results suggest that HDBR produces sustained inhibition of sympathoneural release, turnover, and synthesis of NE without affecting adrenomedullary secretion or renal dopamine production. Concurrent hypovolemia probably interferes with detection of sympathoinhibition by plasma levels of NE and other catechols in this setting. Sympathoinhibition, despite decreased blood volume, may help to explain orthostatic intolerance in astronauts returning from spaceflights.
Fozard, J. R.
1971-01-01
1. Blood pressure and heart rate responses to adrenaline, noradrenaline, tyramine, 5-hydroxytryptamine and stimulation of the spinal sympathetic outflow were measured in pithed rats pretreated either with progesterone (20 mg/kg daily for 14 days) or the vehicle solution of ethyl oleate. 2. Pretreatment with progesterone increased the durations but not the magnitudes of the blood pressure and heart rate responses to adrenaline and that phase of the response to sympathetic stimulation attributable to amine release from the adrenal medulla. 3. Responses to noradrenaline, tyramine, 5-hydroxytryptamine and that phase of the response to sympathetic stimulation associated with amine release from the sympathetic nerves were not significantly different in the two groups. 4. Pyrogallol (5 mg/kg) increased the duration but not the magnitude of responses to adrenaline, noradrenaline and sympathetic stimulation in both experimental groups. The increases in duration were consistently less in animals pretreated with progesterone than in controls. 5. Pretreatment with progesterone did not affect the total amount of radioactivity nor the proportion of catechol to non-catechol metabolites excreted in the urine during a period of 7·25 h following an intraperitoneal injection of (±) isoprenaline-7-3H. 6. It is concluded that the effects of progesterone may result from a localized decrease in catechol O-methyl transferase activity within the cardiovascular system. PMID:5280141
NASA Astrophysics Data System (ADS)
Chi, Zixiang; Zhu, Linli; Lu, Xiaoming
2011-08-01
Two binuclear vanadium-catecholate complexes [Et 3NH] 2[V VO 2(μ-cat)] 2( 1) and [Et 3NH] 2[V VO 2(μ-N-2,3-D)] 2( 2) (cat = catechol, N-2,3-D = naphthalene-2,3-diol) have been synthesized and characterized by X-ray diffraction, IR, UV-vis spectroscopy and cyclic voltammetry (CV). X-ray analysis reveals that the structures of complexes 1 and 2 are both in the anion form of V. Et 3N works as counter-ions and connects the main frame by hydrogen bonding. The electrochemical behavior of the two complexes is studied in comparison to that of the free ligands and the two complexes display different redox potentials. Pharmaceutical screenings of complexes 1 and 2 have been made against two representative cancer cell-lines A-549 (lung cancer) and Bel-7402 (liver cancer) by MTT assay. The inhibition of cell proliferation was determined 72 h after cells were exposed to the tested compounds at a concentration of 5 μg/mL. Complex 1 exhibits well inhibition ratio against both two cell-lines (76.28% and 75.94%), while 2 displays positive and negative effect (65.36% and -68.82%) respectively. In association with X-ray and electrochemistry, a preliminary analysis about the possible inhibitory mechanism is provided.
Berti, Francesca; Todros, Silvia; Lakshmi, Dhana; Whitcombe, Michael J; Chianella, Iva; Ferroni, Matteo; Piletsky, Sergey A; Turner, Anthony P F; Marrazza, Giovanna
2010-10-15
Recent advances in nanotechnology have allowed significant progress in utilising cutting-edge techniques associated with nanomaterials and nano-fabrication to expand the scope and capability of biosensors to a new level of novelty and functionality. The aim of this work was the development and characterisation of conductive polyaniline (PANI) nanostructures for applications in electrochemical biosensing. We explore a simple, inexpensive and fast route to grow PANI nanotubes, arranged in an ordered structure directly on an electrode surface, by electrochemical polymerisation using alumina nanoporous membranes as a 'nano-mould'. The deposited nanostructures have been characterised electrochemically and morphologically prior to grafting with a molecularly imprinted polymer (MIP) receptor in order to create a model sensor for catechol detection. In this way, PANI nanostructures resulted in a conductive nanowire system which allowed direct electrical connection between the electrode and the synthetic receptor (MIP). To our knowledge, this is the first example of integration between molecularly imprinted polymers and PANI nanostructured electrodes. The advantages of using nanostructures in this particular biosensing application have been evaluated by comparing the analytical performance of the sensor with an analogous non-nanostructured MIP-sensor for catechol detection that was previously developed. A significantly lower limit of detection for catechol has been obtained (29 nM, one order of magnitude), thus demonstrating that the nanostructures are capable of improving the analytical performance of the sensor. Copyright © 2010 Elsevier B.V. All rights reserved.
Xu, Zhi-Sheng; Lin, Ya-Qiu; Xu, Jing; Zhu, Bo; Zhao, Wei; Peng, Ri-He; Yao, Quan-Hong
2013-01-01
Phenols are present in the environment and commonly in contact with humans and animals because of their wide applications in many industries. In a previous study, we reported that uridine diphosphate-glucose-dependent glucosyltransferase PtUGT72B1 from Populus trichocarpa has high activity in detoxifying trichlorophenol by conjugating glucose. In this study, more experiments were performed to determine the substrate specificity of PtUGT72B1 towards phenolic compounds. Among seven phenols tested, three were glucosylated by PtUGT72B1 including phenol, hydroquinone, and catechol. Transgenic Arabidopsis plants expressing the enzyme PtUGT72B1 showed higher resistance to hydroquinone and catechol but more sensitivity to phenol than wild type plants. Transgenic Pichia pastoris expressing PtUGT72B1 showed enhanced resistance to all three phenols. Compared with wild type Arabidopsis plants, transgenic Arabidopsis plants showed higher removal efficiencies and exported more glucosides of phenol, phenyl β-D-glucopyranoside, to the medium after cultured with the three phenols. Protein extracts from transgenic Arabidopsis plants showed enhanced conjugating activity towards phenol, hydroquinone and catechol. PtUGT72B1 showed much higher expression level in Pichia pastoris than in Arabidopsis plants. Kinetic analysis of the PtUGT72B1 was also performed. PMID:23840543
Removal of arsenic compounds from petroliferous liquids
Fish, R.H.
1984-04-06
The present invention in one aspect comprises a process for removing arsenic from petroliferous-derived liquids by contacting said liquid with a divinylbenzene-crosslinked polystyrene polymer (i.e. PS-DVB) having catechol ligands anchored to said polymer, said contacting being at an elevated temperature. In another aspect, the invention is a process for regenerating spent catecholated polystyrene polymer by removal of the arsenic bound to it from contacting petroliferous liquid in accordance with the aspect described above which regenerating process comprises: (a) treating said spent catecholated polystyrene polymer with an aqueous solution of at least one member selected from the group consisting of carbonates and bicarbonates of ammonium, alkali metals, and alkaline earth metals, said solution having a pH between about 8 and 10, and said treating being at a temperature in the range of about 20/sup 0/ to 100/sup 0/C; (b) separating the solids and liquids from each other. In a preferred embodiment the regeneration treatment is in two steps wherein step: (a) is carried out with an aqueous alcoholic carbonate solution which includes at least one lower alkyl alcohol, and, steps (c) and (d) are added. Steps (c) and (d) comprise: (c) treating the solids with an aqueous alcoholic solution of at least one ammonium, alkali or alkaline earth metal bicarbonate at a temperature in the range of about 20 to 100/sup 0/C; and (d) separating the solids from the liquids.
Salt forms of the pharmaceutical amide dihydrocarbamazepine.
Buist, Amanda R; Kennedy, Alan R
2016-02-01
Carbamazepine (CBZ) is well known as a model active pharmaceutical ingredient used in the study of polymorphism and the generation and comparison of cocrystal forms. The pharmaceutical amide dihydrocarbamazepine (DCBZ) is a less well known material and is largely of interest here as a structural congener of CBZ. Reaction of DCBZ with strong acids results in protonation of the amide functionality at the O atom and gives the salt forms dihydrocarbamazepine hydrochloride {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride, C15H15N2O(+)·Cl(-)}, dihydrocarbamazepine hydrochloride monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride monohydrate, C15H15N2O(+)·Cl(-)·H2O} and dihydrocarbamazepine hydrobromide monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium bromide monohydrate, C15H15N2O(+)·Br(-)·H2O}. The anhydrous hydrochloride has a structure with two crystallographically independent ion pairs (Z' = 2), wherein both cations adopt syn conformations, whilst the two hydrated species are mutually isostructural and have cations with anti conformations. Compared to neutral dihydrocarbamazepine structures, protonation of the amide group is shown to cause changes to both the molecular (C=O bond lengthening and C-N bond shortening) and the supramolecular structures. The amide-to-amide and dimeric hydrogen-bonding motifs seen for neutral polymorphs and cocrystalline species are replaced here by one-dimensional polymeric constructs with no direct amide-to-amide bonds. The structures are also compared with, and shown to be closely related to, those of the salt forms of the structurally similar pharmaceutical carbamazepine.
Hamuro, Yoshitomo
2017-03-01
A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Hamuro, Yoshitomo
2017-03-01
A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification.
Zhang, Jun; Yin, Jin-Gang; Hang, Bao-Jian; Cai, Shu; Li, Shun-Peng
2012-01-01
The bacterial isolate Paracoccus sp. strain FLN-7 hydrolyzes amide pesticides such as diflubenzuron, propanil, chlorpropham, and dimethoate through amide bond cleavage. A gene, ampA, encoding a novel arylamidase that catalyzes the amide bond cleavage in the amide pesticides was cloned from the strain. ampA contains a 1,395-bp open reading frame that encodes a 465-amino-acid protein. AmpA was expressed in Escherichia coli BL21 and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. AmpA is a homodimer with an isoelectric point of 5.4. AmpA displays maximum enzymatic activity at 40°C and a pH of between 7.5 and 8.0, and it is very stable at pHs ranging from 5.5 to 10.0 and at temperatures up to 50°C. AmpA efficiently hydrolyzes a variety of secondary amine compounds such as propanil, 4-acetaminophenol, propham, chlorpropham, dimethoate, and omethoate. The most suitable substrate is propanil, with Km and kcat values of 29.5 μM and 49.2 s−1, respectively. The benzoylurea insecticides (diflubenzuron and hexaflumuron) are also hydrolyzed but at low efficiencies. No cofactor is needed for the hydrolysis activity. AmpA shares low identities with reported arylamidases (less than 23%), forms a distinct lineage from closely related arylamidases in the phylogenetic tree, and has different biochemical characteristics and catalytic kinetics with related arylamidases. The results in the present study suggest that AmpA is a good candidate for the study of the mechanism for amide pesticide hydrolysis, genetic engineering of amide herbicide-resistant crops, and bioremediation of amide pesticide-contaminated environments. PMID:22544249
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palardy, Oliver; Behnke, Craig; Laurens, Lieve M. L.
Even though hydrothermal liquefaction (HTL) is a promising route to produce crude oils (referred to as 'green crude'), the molecular composition of the nitrogen fraction of such green crude oils is not fully understood. The goal of this work was to identify and quantify the fraction of fatty amides in green crude oils obtained from five different samples derived from Desmodesmus armatus, Tetraselmis sp., and Chlorella sp. biomass treated under different HTL conditions (260 or 340 degrees C as batch or continuous processes). The goal of this work was to elucidate the nature of the high nitrogen content of themore » green crude oils. We identified at least 19 distinct fatty amides present in green crude oils and quantified them based on relevant standards in purified fractions after functional group-based separation and enrichment. It was not known how much these compounds contributed to the oils or which molecular fraction they are associated with. We found that fatty amides exclusively partitioned with the neutral fraction of the oils and belonged mainly to one of five categories, based on their functional group substitution, i.e., fatty amides, monomethyl, dimethyl, monoethanolamide, and diethanolamide. The quantification of fatty amides in the neutral oil fraction was based on respective fatty amide standards, after verification of consistency in response factors between molecules with different substitutions of the amide group. Here, we found that the amount of fatty amides found in each of the five samples varied considerably and ranged between 1.4 and 3.0% of the green crude oils, with the highest levels detected in the sample with the highest oil content, after HTL of biomass derived from a nutrient deprived Chlorella sp. culture.« less
Uppu, Divakara S S M; Samaddar, Sandip; Hoque, Jiaul; Konai, Mohini M; Krishnamoorthy, Paramanandham; Shome, Bibek R; Haldar, Jayanta
2016-09-12
Cationic-amphiphilic antibacterial polymers with optimal amphiphilicity generally target the bacterial membranes instead of mammalian membranes. To date, this balance has been achieved by varying the cationic charge or side chain hydrophobicity in a variety of cationic-amphiphilic polymers. Optimal hydrophobicity of cationic-amphiphilic polymers has been considered as the governing factor for potent antibacterial activity yet minimal mammalian cell toxicity. However, the concomitant role of hydrogen bonding and hydrophobicity with constant cationic charge in the interactions of antibacterial polymers with bacterial membranes is not understood. Also, degradable polymers that result in nontoxic degradation byproducts offer promise as safe antibacterial agents. Here we show that amide- and ester (degradable)-bearing cationic-amphiphilic polymers with tunable side chain hydrophobicity can modulate antibacterial activity and cytotoxicity. Our results suggest that an amide polymer can be a potent antibacterial agent with lower hydrophobicity whereas the corresponding ester polymer needs a relatively higher hydrophobicity to be as effective as its amide counterpart. Our studies reveal that at higher hydrophobicities both amide and ester polymers have similar profiles of membrane-active antibacterial activity and mammalian cell toxicity. On the contrary, at lower hydrophobicities, amide and ester polymers are less cytotoxic, but the former have potent antibacterial and membrane activity compared to the latter. Incorporation of amide and ester moieties made these polymers side chain degradable, with amide polymers being more stable than the ester polymers. Further, the polymers are less toxic, and their degradation byproducts are nontoxic to mice. More importantly, the optimized amide polymer reduces the bacterial burden of burn wound infections in mice models. Our design introduces a new strategy of interplay between the hydrophobic and hydrogen bonding interactions keeping constant cationic charge density for developing potent membrane-active antibacterial polymers with minimal toxicity to mammalian cells.
‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis
Shen, Bo; Makley, Dawn M.; Johnston, Jeffrey N.
2010-01-01
The amide functional group is one of Nature’s key functional and structural elements, most notably within peptides. Amides are also key intermediates in the preparation of a diverse range of therapeutic small molecules. Its construction using available methods focuses principally upon dehydrative approaches, although oxidative and radical-based methods are representative alternatives. During the carbon-nitrogen bond forming step in most every example, the carbon and nitrogen bear electrophilic and nucleophilic character, respectively. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source in wet THF can lead directly to amide products. Preliminary observations support a mechanistic construct in which reactant polarity is reversed (umpolung) during C-N bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods. PMID:20577205
Synthesis of amide isosteres of schweinfurthin-based stilbenes.
Stockdale, David P; Beutler, John A; Wiemer, David F
2017-10-15
The schweinfurthins are plant-derived stilbenes with an intriguing profile of anti-cancer activity. To obtain analogues of the schweinfurthins that might preserve the biological activity but have greater water solubility, a formal replacement of the central olefin with an amide has been explored. Two pairs of amides have been prepared, each containing the same hexahydroxanthene "left half" joined through an amide linkage to two different "right halves." In each series, the amide has been inserted in both possible orientations, placing the carbonyl group on the tricyclic ABC ring system and the amine on the D-ring, or placing the amine on the hexahydroxanthene and the carbonyl group on the D-ring. The four new schweinfurthin analogues have been tested in the NCI 60 cell line screen, and in both cases the more active isomer carried the carbonyl group on the C-ring. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stability of Medium-Bridged Twisted Amides in Aqueous Solutions
Szostak, Michal; Yao, Lei; Aubé, Jeffrey
2012-01-01
“Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141
First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides.
Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu
2016-03-01
The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.
Alkaloids of Stipa robusta (sleepygrass) infected with an Acremonium endophyte.
Petroski, R J; Powell, R G; Clay, K
1992-01-01
Stipa robusta (= Stipa vaseyi) is a perennial grass found in certain areas of the southwestern United States. It is commonly known as sleepygrass, as horses that ingest this grass may become profoundly somnolent or stuporous for periods of time lasting up to several days. In an attempt to determine the active principle(s), fractionation of a methanolic extract of sleepygrass infected with an Acremonium endophyte has yielded lysergic acid amide (20 micrograms/g dry wt), isolysergic amide (8), 8-hydroxylsergic acid amide (0.3), ergonovine (7), chanoclavine-I (15), and N-formylloline (18). Related alkaloids have been found in many endophyte-infected grasses. The dominant alkaloid constituent in sleepygrass, lysergic acid amide, has not previously been identified in a grass in such high concentration. Lysergic acid amide is likely to be the basis for the extreme sedative effects on animals, given past pharmacological work on the compound from the ergot fungus Claviceps paspali.
Bolla, Geetha; Nangia, Ashwini
2016-01-01
A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1). PMID:27006778
Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah
2016-03-01
Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.
2016-01-01
An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g–1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest–host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties. PMID:27665845
DNA-Catalyzed Amide Hydrolysis.
Zhou, Cong; Avins, Joshua L; Klauser, Paul C; Brandsen, Benjamin M; Lee, Yujeong; Silverman, Scott K
2016-02-24
DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.
Kakuchi, Ryohei; Theato, Patrick
2014-03-01
A Mitsunobu reaction of trifluoroacetamide (TFA amide) and alcohols is used in a postpolymerization modification process. The reaction is conducted on polystyrene (PSt) bearing 20 mol% TFA amide groups with 4-methyl benzyl alcohol in the presence of a N,N,N′,N ′-tetramethylazodicarboxamide and tributylphosphine as mediators. The Mitsunobu reaction on polymer proceeds efficiently, as confirmed by the obvious precipitation generation during the reaction and the conversion of TFA amide moiety reached 88.6% confirmed by 19 F NMR measurement, yielding PSt bearing tertiary TFA amide moieties. The obtained polymers featuring tertiary TFA amide moieties are deprotected in the presence of tetrabutylammonium hydroxide as a base to afford corresponding polymers featuring functionalized polyamine scaffolds with 92.5% conversion. In addition, the precise structural assignment is proven by synthesis and analysis of the model monomeric compounds and the respective model polymers.
Bolla, Geetha; Nangia, Ashwini
2016-03-01
A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).
H-localized mode in chains of hydrogen-bonded amide groups
NASA Astrophysics Data System (ADS)
Barthes, Mariette; Kellouai, Hassan; Page, Gabriel; Moret, Jacques; Johnson, Susanna W.; Eckert, Juergen
1993-09-01
New infrared measurements of the anomalous amide modes in acetanilide and its derivatives are presented. Preliminary results of structural data obtained by neutron diffraction at low temperature are also described. Besides the well-known anomalous amide-1 mode (1650 cm -1), it is shown that the NH out-of-plane bend (770 cm -1) and the “H-bond strain” (at about 105 cm -1) exhibit an anomalous increase of intensity proportional to the law exp(- T2/ Θ2), suggesting that the amide proton bears a significant electronic distribution as formerly observed for H - localized modes. Structural data, moreover, show that the thermal ellips of the amide proton has an increasing anisotropy at 15 K. Considering these new results, the theoretical model of a self-trapped “polaronic” state seems to be the most consistent with the whole set of observed anomalies in this family of crystals.
Granafei, Sara; Losito, Ilario; Trotta, Massimo; Italiano, Francesca; de Leo, Vincenzo; Agostiano, Angela; Palmisano, Francesco; Cataldi, Tommaso R I
2016-01-15
Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MS(n), n = 2-4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M-H](-) at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M-H](-) ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic generation of this ester-linked chain in R. sphaeroides. Copyright © 2015 Elsevier B.V. All rights reserved.
Pietiäinen, Milla; François, Patrice; Hyyryläinen, Hanne-Leena; Tangomo, Manuela; Sass, Vera; Sahl, Hans-Georg; Schrenzel, Jacques; Kontinen, Vesa P
2009-01-01
Background Understanding how pathogens respond to antimicrobial peptides, and how this compares to currently available antibiotics, is crucial for optimizing antimicrobial therapy. Staphylococcus aureus has several known resistance mechanisms against human cationic antimicrobial peptides (CAMPs). Gene expression changes in S. aureus strain Newman exposed to linear CAMPs were analyzed by DNA microarray. Three antimicrobial peptides were used in the analysis, two are derived from frog, temporin L and dermaseptin K4-S4(1-16), and the ovispirin-1 is obtained from sheep. Results The peptides induced the VraSR cell-wall regulon and several other genes that are also up-regulated in cells treated with vancomycin and other cell wall-active antibiotics. In addition to this similarity, three genes/operons were particularly strongly induced by the peptides: vraDE, SA0205 and SAS016, encoding an ABC transporter, a putative membrane-bound lysostaphin-like peptidase and a small functionally unknown protein, respectively. Ovispirin-1 and dermaseptin K4-S4(1-16), which disrupt lipid bilayers by the carpet mechanism, appeared to be strong inducers of the vraDE operon. We show that high level induction by ovispirin-1 is dependent on the amide modification of the peptide C-terminus. This suggests that the amide group has a crucial role in the activation of the Aps (GraRS) sensory system, the regulator of vraDE. In contrast, temporin L, which disrupts lipid bilayers by forming pores, revealed a weaker inducer of vraDE despite the C-terminal amide modification. Sensitivity testing with CAMPs and other antimicrobials suggested that VraDE is a transporter dedicated to resist bacitracin. We also showed that SA0205 belongs to the VraSR regulon. Furthermore, VraSR was shown to be important for resistance against a wide range of cell wall-active antibiotics and other antimicrobial agents including the amide-modified ovispirin-1, bacitracin, teicoplanin, cefotaxime and 10 other β-lactam antibiotics, chlorpromazine, thioridazine and EGTA. Conclusion Defense against different CAMPs involves not only general signaling pathways but also CAMP-specific ones. These results suggest that CAMPs or a mixture of CAMPs could constitute a potential additive to standard antibiotic treatment. PMID:19751498
Normal Mode Analysis of Polytheonamide B
NASA Astrophysics Data System (ADS)
Mori, Takaharu; Kokubo, Hironori; Shimizu, Hirofumi; Iwamoto, Masayuki; Oiki, Shigetoshi; Okamoto, Yuko
2007-09-01
Polytheonamide B is a linear 48-residue peptide which forms a single β-helix structure with alternating d- and l-amino acids and contains methylated and hydroxy variants of proteinogenic amino acids. To investigate the dynamical properties of polytheonamide B we perform the normal mode analysis. Root-mean-square displacements of all backbone atoms, root-mean-square fluctuations of the backbone dihedral angles (φ,\\psi), and correlation factors for the Cα atom fluctuations and for the dihedral angle fluctuations are calculated. The normal mode analysis reveals that polytheonamide B shows the elastic rod behavior in the very low-frequency regions and that librational motions of backbone amide planes have the modes with relatively low frequencies, which is relevant to the function of polytheonamide B. In addition, these librational motions occur almost independently and weakly anticorrelate with those of the hydrogen-bonded neighboring amide planes. Calculations of the backbone fluctuations show that the flexibility of polytheonamide B is roughly uniform over the entire helix. We compare our results with those of gramicidin A, the analogue of polytheonamide B, to discuss the structures and functions, and obtain some common features in the flexibilities and dynamics of the backbone atoms. These results present important clues for clarifying the function of polytheonamide B at the atomic level.
Novel synthesis of cyclic amide-linked analogues of angiotensins II and III.
Matsoukas, J M; Hondrelis, J; Agelis, G; Barlos, K; Gatos, D; Ganter, R; Moore, D; Moore, G J
1994-09-02
Cyclic amide-linked angiotension II (ANGII) analogues have been synthesized by novel strategies, in an attempt to test the ring clustering and the charge relay bioactive conformation recently suggested. These analogues were synthesized by connecting side chain amino and carboxyl groups at positions 1 and 8, 2 and 8, 3 and 8, and 3 and 5, N-terminal amino and C-terminal carboxyl groups at positions 1 and 8, 2 and 8, and 4 and 8, and side chain amino to C-terminal carboxyl group at positions 1 and 8. All these analogues were biologically inactive, except for cyclic [Sar1, Asp3, Lys5]ANGII (analogue 10) which had high contractile activity in the rat uterus assay (30% of ANGII) and [Lys1, Tyr(Me)4, Glu8]ANGII (analogue 7) which had weak antagonist activity (PA2 approximately 6). Precyclic linear peptides synthesized using 2-chlorotrityl chloride resin and N alpha-Fmoc-amino acids with suitable side chain protection were obtained in high yield and purity and were readily cyclized with benzotriazol-1-yloxytris(dimethylamino)-phosphonium hexafluorophosphate as coupling reagent. Molecular modeling suggests that the ring structure of the potent analogue can be accommodated in the charge relay conformation proposed for ANGII.
New pathway for the biodegradation of indole in Aspergillus niger.
Kamath, A V; Vaidyanathan, C S
1990-01-01
Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid, 2,3-dihydroxybenzoic acid, and catechol, which was further degraded by ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system. PMID:2310183
Qayyum, Arqam; Zai, Clement C.; Hirata, Yuko; Tiwari, Arun K.; Cheema, Sheraz; Nowrouzi, Behdin; Beitchman, Joseph H.; Kennedy, James L.
2015-01-01
Aggressive behaviors have become a major public health problem, and early-onset aggression can lead to outcomes such as substance abuse, antisocial personality disorder among other issues. In recent years, there has been an increase in research in the molecular and genetic underpinnings of aggressive behavior, and one of the candidate genes codes for the catechol-O-methyltransferase (COMT). COMT is involved in catabolizing catecholamines such as dopamine. These neurotransmitters appear to be involved in regulating mood which can contribute to aggression. The most common gene variant studied in the COMT gene is the Valine (Val) to Methionine (Met) substitution at codon 158. We will be reviewing the current literature on this gene variant in aggressive behavior. PMID:26630958
Diabetic Wound Healing and Activation of Nrf2 by Herbal Medicine
Senger, Donald R.; Cao, Shugeng
2016-01-01
Nrf2 defense is a very important cellular mechanism to control oxidative stress, which is implicated in wound healing. Nrf2 can induce many cytoprotective genes, including HO-1, NQO1 and G6PD. Among many natural products that have been reported as Nrf2 activators, sulforaphane and curcumin have been studied more widely than any others, and both are in clinical trials for non-cancerous disorders. Recently, we reported 4-ethyl catechol and 4-vinyl catechol as Nrf2 co-factors that can induce Nrf2 as potently as sulforaphane and curcumin. These new Nrf2 co-factors were identified in hot aqueous extract of an herbal medicine Barleria lupulina, and fermented Noni (Morinda citrifolia) juice, which are used traditionally for diabetic wound healing. PMID:27868087
Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate.
Monticello, D J; Bakker, D; Schell, M; Finnerty, W R
1985-01-01
Plasmid-borne Tn5 insertion mutants of a Pseudomonas species which accumulated 2,5-dihydroxybenzoate (gentisate) following growth on 2-hydroxybenzoate (salicylate) were obtained from a pool of mutants that were unable to grow on naphthalene. One such mutant was characterized further. The ability of this mutant to oxidize gentisate was 100-fold less than the ability of a Nah+ Sal+ strain harboring the unmutagenized plasmid, although both strains oxidized and grew on salicylate. These bacteria were presumably able to metabolize salicylate via catechol, since they possessed an inducible, plasmid-encoded catechol 2,3-dioxygenase. Our results suggest that there is an alternate, plasmid-encoded route of salicylate degradation via gentisate and that some plasmid-associated relationship between this pathway and naphthalene oxidation exists. PMID:2988437
Liquid precursor inks for deposition of In--Se, Ga--Se and In--Ga--Se
Curtis, Calvin J.; Hersh, Peter A.; Miedaner, Alexander; Habas, Susan; van Hest, Maikel; Ginley, David S.
2015-08-11
An ink includes a solution of selenium in ethylene diamine solvent and a solution of at least one metal salt selected from the group consisting of an indium salt or a gallium salt in at least one solvent including an organic amide. The organic amide can include dimethylformamide. The organic amide can include N-methylpyrrolidone.
Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides.
Patricelli, M P; Cravatt, B F
2001-01-01
Fatty acid amides (FAAs) represent a growing family of biologically active lipids implicated in a diverse range of cellular and physiological processes. At present, two general types of fatty acid amides, the N-acylethanolamines (NAEs) and the fatty acid primary amides (FAPAs), have been identified as potential physiological neuromodulators/neurotransmitters in mammals. Representative members of these two subfamilies include the endocannabinoid NAE anandamide and the sleep-inducing FAPA oleamide. In this Chapter, molecular mechanisms proposed for the biosynthesis and inactivation of FAAs are critically evaluated, with an emphasis placed on the biochemical and cell biological properties of proteins thought to mediate these processes.
GDC-0449-a potent inhibitor of the hedgehog pathway.
Robarge, Kirk D; Brunton, Shirley A; Castanedo, Georgette M; Cui, Yong; Dina, Michael S; Goldsmith, Richard; Gould, Stephen E; Guichert, Oivin; Gunzner, Janet L; Halladay, Jason; Jia, Wei; Khojasteh, Cyrus; Koehler, Michael F T; Kotkow, Karen; La, Hank; Lalonde, Rebecca L; Lau, Kevin; Lee, Leslie; Marshall, Derek; Marsters, James C; Murray, Lesley J; Qian, Changgeng; Rubin, Lee L; Salphati, Laurent; Stanley, Mark S; Stibbard, John H A; Sutherlin, Daniel P; Ubhayaker, Savita; Wang, Shumei; Wong, Susan; Xie, Minli
2009-10-01
SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.
NASA Astrophysics Data System (ADS)
Pichumani, Kumar; George, Gijo; Hebbar, Sankeerth; Chatterjee, Bhaswati; Raghothama, Srinivasarao
2015-05-01
Longitudinal relaxation due to cross-correlation between dipolar (1HN-1Hα) and amide-proton chemical shift anisotropy (1HN CSA) has been measured in a model tripeptide Piv-LPro-LPro-LPhe-OMe. The peptide bond across diproline segment is known to undergo cis/trans isomerization and only in the cis form does the lone Phe amide-proton become involved in intramolecular hydrogen bonding. The strength of the cross correlated relaxation interference is found to be significantly different between cis and trans forms, and this difference is shown as an influence of intramolecular hydrogen bonding on the amide-proton CSA.
Cluster Bean—A Ureide- or Amide-Producing Legume? 1
Sheoran, Inder S.; Luthra, Yash P.; Kuhad, Mohinder S.; Singh, Randhir
1982-01-01
Xylem sap of cluster bean (Cyamopsis tetragonoloba L. cv FS-277) and pigeonpea (Cajanus cajan cv UPAS-120) were analyzed for total nitrogen, amide nitrogen, and ureide nitrogen at flowering stage. Nitrogenase, uricase, and allantoinase were compared in nodules of cluster bean and pigeonpea. Xylem sap of cluster bean exhibited higher amounts of amides as compared to ureides, and the activities of uricase and allantoinase (ureide-producing enzymes) in nodules were also low, whereas the reverse was the case for pigeonpea. Based on these investigations, it has been concluded that cluster bean is an amide-producing legume rather than ureide-producing as had been reported earlier. PMID:16662600
Conversion of Weinreb amides into benzene rings incorporating the amide carbonyl carbon.
Clive, Derrick L J; Pham, Mai P
2009-02-20
Esters, acids and acid chlorides can be converted via the intermediacy of their corresponding Weinreb amides into benzene derivatives that incorporate the original carbonyl carbon as part of the benzene ring. The process involves treatment of the derived Weinreb amides with 3-butenylmagnesium bromide and an allylic Grignard reagent, followed by ring-closing metathesis, dehydration and dehydrogenation. The dehydration-dehydrogenation can be done under acidic conditions with a mixture of TsOH x H(2)O and DDQ or in two steps with SOCl(2)/pyridine, followed by treatment with DDQ. Application of the method to carbohydrates provides a convenient route to C-5 aryl pyranosides.
Rhodium(III)-Catalyzed Amidation of Unactivated C(sp(3) )-H Bonds.
Wang, He; Tang, Guodong; Li, Xingwei
2015-10-26
Nitrogenation by direct functionalization of C-H bonds represents an important strategy for constructing C-N bonds. Rhodium(III)-catalyzed direct amidation of unactivated C(sp(3) )-H bonds is rare, especially under mild reaction conditions. Herein, a broad scope of C(sp(3) )-H bonds are amidated under rhodium catalysis in high efficiency using 3-substituted 1,4,2-dioxazol-5-ones as the amide source. The protocol broadens the scope of rhodium(III)-catalyzed C(sp(3) )-H activation chemistry, and is applicable to the late-stage functionalization of natural products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke
2015-11-15
Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun
2017-01-24
Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.