Study of a Large Prototype TPC for the ILC using Micro-Pattern Gas Detectors
NASA Astrophysics Data System (ADS)
Münnich, A.; LCTPC Collaboration
2016-04-01
In the last decade, R&D for detectors for the future International Linear Collider (ILC) has been performed by the community. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its tracking system consists of a Si vertex detector, forward tracking disks and a large volume Time Projection Chamber (TPC). Within the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. Its endplate is able to house up to seven identical modules with Micro-Pattern Gas Detectors (MPGD) amplification. Recently, the LP has been equipped with resistive anode Micromegas (MM) or Gas Electron Multiplier (GEM) modules. Both the MM and GEM technologies have been studied with an electron beam up to 6 GeV in a 1 Tesla solenoid magnet. After introducing the current R&D status, recent results will be presented including field distortions, ion gating and spatial resolution as well as future plans of the LCTPC R&D.
NASA Astrophysics Data System (ADS)
Bhattacharya, Purba; Bhattacharya, Deb Sankar; Mukhopadhyay, Supratik; Majumdar, Nayana; Bhattacharya, Sudeb; Colas, Paul; Attié, David
2018-02-01
The R&D activities for the linear collider TPC (LC-TPC) are currently working on the adoption of the micro pattern devices for the gaseous amplification stage. Several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. We worked on a large prototype TPC with an end-plate that was built, for the first time, using seven resistive bulk Micromegas modules. During experiments, reduced signal sensitivity was observed at the boundary of these modules. Electrostatic field distortion near the module boundaries was considered to be the possible major reason behind these observations. In the present work, we will explore this hypothesis through numerical simulation. Our aim has been to understand the origin of distortions observed close to the edges of the test beam modules and to explore the possibility of using the Garfield simulation framework for investigating a phenomenon as complex as distortion.
NASA Astrophysics Data System (ADS)
Castro, Andrew; Alice-Usa Collaboration; Alice-Tpc Collaboration
2017-09-01
The Time Projection Chamber (TPC) currently used for ALICE (A Large Ion Collider Experiment at CERN) is a gaseous tracking detector used to study both proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) In order to accommodate the higher luminosit collisions planned for the LHC Run-3 starting in 2021, the ALICE-TPC will undergo a major upgrade during the next LHC shut down. The TPC is limited to a read out of 1000 Hz in minimum bias events due to the intrinsic dead time associated with back ion flow in the multi wire proportional chambers (MWPC) in the TPC. The TPC upgrade will handle the increase in event readout to 50 kHz for heavy ion minimum bias triggered events expected with the Run-3 luminosity by switching the MWPCs to a stack of four Gaseous Electron Multiplier (GEM) foils. The GEM layers will combine different hole pitches to reduce the dead time while maintaining the current spatial and energy resolution of the existing TPC. Undertaking the upgrade of the TPC represents a massive endeavor in terms of design, production, construction, quality assurance, and installation, thus the upgrade is coordinated over a number of institutes worldwide. The talk will go over the physics motivation for the upgrade, the ALICE-USA contribution to the construction of Inner Read Out Chambers IROCs, and QA from the first chambers built in the U.S
Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipton, R.
2013-01-01
Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCbmore » Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.« less
MWPC prototyping and testing for STAR inner TPC upgrade
NASA Astrophysics Data System (ADS)
Shen, F.; Wang, S.; Yang, C.; Xu, Q.
2017-06-01
STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is upgrading the inner sectors of the Time Projection Chamber (iTPC). The iTPC upgrade project will increase the segmentation on the inner pad plane from 13 to 40 pad rows and renew the inner sector wire chambers. The upgrade will expand the TPC's acceptance from |η|<=1.0 to |η|<=1.5. Furthermore, the detector will have better acceptance for tracks with low momentum, as well as better resolution in both momentum and dE/dx for tracks of all momenta. The enhanced measurement capabilities of STAR-iTPC upgrade are crucial to the physics program of the Phase II of Beam Energy Scan (BES-II) at RHIC during 2019-2020, in particular the QCD phase transition study. In this proceedings, I will discuss the iTPC MWPC module fabrication and testing results from the first full size iTPC MWPC pre-prototype made at Shandong University.
TPC status for MPD experiment of NICA project
NASA Astrophysics Data System (ADS)
Averyanov, A.; Bazhazhin, A.; Chepurnov, V. F.; Chepurnov, V. V.; Cheremukhina, G.; Chernenko, S.; Fateev, O.; Kiriushin, Yu.; Kolesnikov, A.; Korotkova, A.; Levchanovsky, F.; Lukstins, J.; Movchan, S.; Pilyar, A.; Razin, S.; Ribakov, A.; Samsonov, V.; Vereschagin, S.; Zanevsky, Yu.; Zaporozhets, S.; Zruev, V.
2017-06-01
In a frame of the JINR scientific program on study of hot and dense baryonic matter a new accelerator complex Ion Collider fAcility (NICA) based on the Nuclotron-M is under realization. It will operate at luminosity up to 1027 cm-2s-1 for Au79+ ions. Two interaction points are foreseen at NICA for two detectors which will operate simultaneously. One of these detectors, the Multi-Purpose Detector (MPD), is optimized for investigations of heavy-ion collisions. The Time-Projection Chamber (TPC) is the main tracking detector of the MPD central barrel. It is a well-known detector for 3-dimensional tracking and particle identification for high multiplicity events. The conceptual layout of MPD and detailed description of the design and main working parameters of TPC, the readout system based on MWPC and readout electronics as well as the TPC subsystems and tooling for assembling and integration TPC into MPD are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbareschi, Daniele; et al.
We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less
3D simulation of electron and ion transmission of GEM-based detectors
NASA Astrophysics Data System (ADS)
Bhattacharya, Purba; Mohanty, Bedangadas; Mukhopadhyay, Supratik; Majumdar, Nayana; da Luz, Hugo Natal
2017-10-01
Time Projection Chamber (TPC) has been chosen as the main tracking system in several high-flux and high repetition rate experiments. These include on-going experiments such as ALICE and future experiments such as PANDA at FAIR and ILC. Different R&D activities were carried out on the adoption of Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The requirement of low ion feedback has been established through these activities. Low ion feedback minimizes distortions due to space charge and maintains the necessary values of detector gain and energy resolution. In the present work, Garfield simulation framework has been used to study the related physical processes occurring within single, triple and quadruple GEM detectors. Ion backflow and electron transmission of quadruple GEMs, made up of foils with different hole pitch under different electromagnetic field configurations (the projected solutions for the ALICE TPC) have been studied. Finally a new triple GEM detector configuration with low ion backflow fraction and good electron transmission properties has been proposed as a simpler GEM-based alternative suitable for TPCs for future collider experiments.
Characterization of Two-Pore Channel 2 by Nuclear Membrane Electrophysiology
Lee, Claire Shuk-Kwan; Tong, Benjamin Chun-Kit; Cheng, Cecily Wing-Hei; Hung, Harry Chun-Hin; Cheung, King-Ho
2016-01-01
Lysosomal calcium (Ca2+) release mediated by NAADP triggers signalling cascades that regulate many cellular processes. The identification of two-pore channel 2 (TPC2) as the NAADP receptor advances our understanding of lysosomal Ca2+ signalling, yet the lysosome is not amenable to traditional patch-clamp electrophysiology. Previous attempts to record TPC2 single-channel activity put TPC2 outside its native environment, which not reflect TPC2’s true physiological properties. To test the feasibility of using nuclear membrane electrophysiology for TPC2 channel characterization, we constructed a stable human TPC2-expressing DT40TKO cell line that lacks endogenous InsP3R and RyR (DT40TKO-hTPC2). Immunostaining revealed hTPC2 expression on the ER and nuclear envelope. Intracellular dialysis of NAADP into Fura-2-loaded DT40TKO-hTPC2 cells elicited cytosolic Ca2+ transients, suggesting that hTPC2 was functionally active. Using nuclear membrane electrophysiology, we detected a ~220 pS single-channel current activated by NAADP with K+ as the permeant ion. The detected single-channel recordings displayed a linear current-voltage relationship, were sensitive to Ned-19 inhibition, were biphasically regulated by NAADP concentration, and regulated by PKA phosphorylation. In summary, we developed a cell model for the characterization of the TPC2 channel and the nuclear membrane patch-clamp technique provided an alternative approach to rigorously investigate the electrophysiological properties of TPC2 with minimal manipulation. PMID:26838264
Next Linear Collider Home Page
Welcome to the Next Linear Collider NLC Home Page If you would like to learn about linear colliders in general and about this next-generation linear collider project's mission, design ideas, and Linear Collider. line | NLC Home | NLC Technical | SLAC | mcdunn Tuesday, February 14, 2006 01:32:11 PM
The Next Linear Collider Program-News
The Next Linear Collider at SLAC Navbar The Next Linear Collider In The Press The Secretary of Linear Collider is a high-priority goal of this plan. http://www.sc.doe.gov/Sub/Facilities_for_future/20 -term projects in conceputal stages (the Linear Collider is the highest priority project in this
Online Calibration of the TPC Drift Time in the ALICE High Level Trigger
NASA Astrophysics Data System (ADS)
Rohr, David; Krzewicki, Mikolaj; Zampolli, Chiara; Wiechula, Jens; Gorbunov, Sergey; Chauvin, Alex; Vorobyev, Ivan; Weber, Steffen; Schweda, Kai; Lindenstruth, Volker
2017-06-01
A Large Ion Collider Experiment (ALICE) is one of the four major experiments at the Large Hadron Collider (LHC) at CERN. The high level trigger (HLT) is a compute cluster, which reconstructs collisions as recorded by the ALICE detector in real-time. It employs a custom online data-transport framework to distribute data and workload among the compute nodes. ALICE employs subdetectors that are sensitive to environmental conditions such as pressure and temperature, e.g., the time projection chamber (TPC). A precise reconstruction of particle trajectories requires calibration of these detectors. Performing calibration in real time in the HLT improves the online reconstructions and renders certain offline calibration steps obsolete speeding up offline physics analysis. For LHC Run 3, starting in 2020 when data reduction will rely on reconstructed data, online calibration becomes a necessity. Reconstructed particle trajectories build the basis for the calibration making a fast online-tracking mandatory. The main detectors used for this purpose are the TPC and Inner Tracking System. Reconstructing the trajectories in the TPC is the most compute-intense step. We present several improvements to the ALICE HLT developed to facilitate online calibration. The main new development for online calibration is a wrapper that can run ALICE offline analysis and calibration tasks inside the HLT. In addition, we have added asynchronous processing capabilities to support long-running calibration tasks in the HLT framework, which runs event-synchronously otherwise. In order to improve the resiliency, an isolated process performs the asynchronous operations such that even a fatal error does not disturb data taking. We have complemented the original loop-free HLT chain with ZeroMQ data-transfer components. The ZeroMQ components facilitate a feedback loop that inserts the calibration result created at the end of the chain back into tracking components at the beginning of the chain, after a short delay. All these new features are implemented in a general way, such that they have use-cases aside from online calibration. In order to gather sufficient statistics for the calibration, the asynchronous calibration component must process enough events per time interval. Since the calibration is valid only for a certain time period, the delay until the feedback loop provides updated calibration data must not be too long. A first full-scale test of the online calibration functionality was performed during 2015 heavy-ion run under real conditions. Since then, online calibration is enabled and benchmarked in 2016 proton-proton data taking. We present a timing analysis of this first online-calibration test, which concludes that the HLT is capable of online TPC drift time calibration fast enough to calibrate the tracking via the feedback loop. We compare the calibration results with the offline calibration and present a comparison of the residuals of the TPC cluster coordinates with respect to offline reconstruction.
The Next Linear Collider Program
text only International Study Group (ISG) Meetings NLC Home Page NLC Technical SLAC Eleventh Linear Collider International Study Group at KEK, December 16 - 19, 2003 Tenth (X) Linear Collider International Study Group at SLAC, June, 2003 Nineth Linear Collider ,International Study Group at KEK, December 10-13
Intense beams at the micron level for the Next Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1991-08-01
High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies.
The Next Linear Collider Program
The Next Linear Collider at SLAC Navbar NLC Playpen Warning: This page is provided as a place for Comments & Suggestions | Desktop Trouble Call | Linear Collider Group at FNAL || This page was updated
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Heuer, Rolf-Dieter
2018-06-15
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Stapnes, Steinar
2017-12-18
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
International Workshop on Linear Colliders 2010
Lebrun, Ph.
2018-06-20
IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.
International Workshop on Linear Colliders 2010
Yamada, Sakue
2018-05-24
IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN
WW Physics at Future e{sup +}e{sup -} Linear Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barklow, Timothy L
Measurements of triple gauge boson couplings and strong electroweak symmetry breaking effects at future e{sup +}e{sup -} linear colliders are reviewed. The results expected from a future e{sup +}e{sup -} linear collider are compared with LHC expectations.
NASA Astrophysics Data System (ADS)
Woody, Craig; Azmoun, Babak; Majka, Richard; Phipps, Michael; Purschke, Martin; Smirnov, Nikolai
2018-02-01
A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ˜ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.
Luminosity Limitations of Linear Colliders Based on Plasma Acceleration
Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei
2016-01-01
Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.
Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)
NASA Astrophysics Data System (ADS)
Doebert, Steffen; Sicking, Eva
2018-02-01
The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.
LCFIPlus: A framework for jet analysis in linear collider studies
NASA Astrophysics Data System (ADS)
Suehara, Taikan; Tanabe, Tomohiko
2016-02-01
We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, T.; et al.
This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phinney, N.
The SLAC Linear Collider (SLC) is the first example of an entirely new type of lepton collider. Many years of effort were required to develop the understanding and techniques needed to approach design luminosity. This paper discusses some of the key issues and problems encountered in producing a working linear collider. These include the polarized source, techniques for emittance preservation, extensive feedback systems, and refinements in beam optimization in the final focus. The SLC experience has been invaluable for testing concepts and developing designs for a future linear collider.
The future of the Large Hadron Collider and CERN.
Heuer, Rolf-Dieter
2012-02-28
This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.
Vanilla technicolor at linear colliders
NASA Astrophysics Data System (ADS)
Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco
2011-08-01
We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.
Tsai, Hsiu-Hui; Huang, Chih-Hung; Tessmer, Ingrid; Erie, Dorothy A.; Chen, Carton W.
2011-01-01
Linear chromosomes and linear plasmids of Streptomyces possess covalently bound terminal proteins (TPs) at the 5′ ends of their telomeres. These TPs are proposed to act as primers for DNA synthesis that patches the single-stranded gaps at the 3′ ends during replication. Most (‘archetypal’) Streptomyces TPs (designated Tpg) are highly conserved in size and sequence. In addition, there are a number of atypical TPs with heterologous sequences and sizes, one of which is Tpc that caps SCP1 plasmid of Streptomyces coelicolor. Interactions between the TPs on the linear Streptomyces replicons have been suggested by electrophoretic behaviors of TP-capped DNA and circular genetic maps of Streptomyces chromosomes. Using chemical cross-linking, we demonstrated intramolecular and intermolecular interactions in vivo between Tpgs, between Tpcs and between Tpg and Tpc. Interactions between the chromosomal and plasmid telomeres were also detected in vivo. The intramolecular telomere interactions produced negative superhelicity in the linear DNA, which was relaxed by topoisomerase I. Such intramolecular association between the TPs poses a post-replicational complication in the formation of a pseudo-dimeric structure that requires resolution by exchanging TPs or DNA. PMID:21109537
Possible limits of plasma linear colliders
NASA Astrophysics Data System (ADS)
Zimmermann, F.
2017-07-01
Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.
Of Linear Colliders, the GDE Workshop at Bangalore, Mughals, Camels, Elephants and Sundials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loew, Greg
In this colloquium, the speaker will give a summary of the recent International Linear Collider (ILC) Global Design Effort (GDE) Workshop at Bangalore and how the High Energy Physics community converged to this meeting after many years of electron-positron linear collider design and experimental work. Given that this workshop for the first time took place in India, the speaker will also show a few pictures and talk briefly about what he learned in that fascinating country.
Laser-plasma-based linear collider using hollow plasma channels
Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...
2016-03-03
A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.
NASA Astrophysics Data System (ADS)
Palmer, R. B.; Gallardo, J. C.
INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION
Reinventing the Accelerator for the High Energy Frontier
Rosenzweig, James [UCLA, Los Angeles, California, United States
2017-12-09
The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.
Alternate approaches to future electron-positron linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loew, G.A.
1998-07-01
The purpose of this article is two-fold: to review the current international status of various design approaches to the next generation of e{sup +}e{sup {minus}} linear colliders, and on the occasion of his 80th birthday, to celebrate Richard B. Neal`s many contributions to the field of linear accelerators. As it turns out, combining these two tasks is a rather natural enterprise because of Neal`s long professional involvement and insight into many of the problems and options which the international e{sup +}e{sup {minus}} linear collider community is currently studying to achieve a practical design for a future machine.
2009 Linear Collider Workshop of the Americas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidel, Sally
The 2009 Linear Collider Workshop of the Americas was held on the campus of the University of New Mexico from 29 September to 3 October, 2009. This was a joint meeting of the American Linear Collider Physics Group and the ILC Global Design Effort. Two hundred fifty people attended. The number of scientific contributions was 333. The complete agenda, with links to all of the presentations, is available at physics.unm.edu/LCWA09/. The meeting brought together international experts as well as junior scientists, to discuss the physics potential of the linear collider and advances in detector technology. The validation of detector designsmore » was announced, and the detector design groups planned the next phase of the effort. Detector R&D teams reported on progress on many topics including calorimetry and tracking. Recent accelerator design considerations were discussed in a special session for experimentalists and theorists.« less
Fundamental Physics in the Non-Linear Regime 3:30 p.m. Director's Coffee Break - 2nd Flr X-Over 4:00 p.m. All Week archive Fermilab Safety Tip of the Week archive Linear Collider News archive Fermilab Today Committee ECFA Study of Physics and Detectors for a Linear Collider" and GDE member, explained the
Crab cavities: Past, present, and future of a challenging device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.
2015-05-03
In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience inmore » earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).« less
Working Group Report: Higgs Boson
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Sally; Gritsan, Andrei; Logan, Heather
2013-10-30
This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities frommore » detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).« less
Torun, Mehmet; Dincer, Cuneyt; Topuz, Ayhan; Sahin-Nadeem, Hilal; Ozdemir, Feramuz
2015-05-01
In the present study, aqueous extraction kinetics of total soluble solids (TSS), total phenolic content (TPC) and total flavonoid content (TFC) from Salvia fruticosa leaves were investigated throughout 150 min. of extraction period against temperature (60-80 °C), particle size (2-8 mm) and loading percentage (1-4 %). The extract yielded 25 g/100 g TSS which contained 30 g/100 g TPC and 25 g/100 g TFC. The extraction data in time course fit with reversible first order kinetic model. All tested variables showed significant effect on the estimated kinetic parameters except equilibrium concentration. Increasing the extraction temperature resulted high extraction rate constants and equilibrium concentrations of the tested variables notably above 70 °C. By using the Arrhenius relationship, activation energy of the TSS, TPC and TFC were determined as 46.11 ± 5.61, 36.80 ± 3.12 and 33.52 ± 2.23 kj/mol, respectively. By decreasing the particle size, the extraction rate constants and diffusion coefficients exponentially increased whereas equilibrium concentrations did not change significantly. The equilibrium concentrations of the tested parameters showed linear behavior with increasing the loading percentage of the sage, however; the change in extraction rates did not show linear behavior due to submerging effect of 4 % loading.
GPU-accelerated track reconstruction in the ALICE High Level Trigger
NASA Astrophysics Data System (ADS)
Rohr, David; Gorbunov, Sergey; Lindenstruth, Volker;
2017-10-01
ALICE (A Large Heavy Ion Experiment) is one of the four major experiments at the Large Hadron Collider (LHC) at CERN. The High Level Trigger (HLT) is an online compute farm which reconstructs events measured by the ALICE detector in real-time. The most compute-intensive part is the reconstruction of particle trajectories called tracking and the most important detector for tracking is the Time Projection Chamber (TPC). The HLT uses a GPU-accelerated algorithm for TPC tracking that is based on the Cellular Automaton principle and on the Kalman filter. The GPU tracking has been running in 24/7 operation since 2012 in LHC Run 1 and 2. In order to better leverage the potential of the GPUs, and speed up the overall HLT reconstruction, we plan to bring more reconstruction steps (e.g. the tracking for other detectors) onto the GPUs. There are several tasks running so far on the CPU that could benefit from cooperation with the tracking, which is hardly feasible at the moment due to the delay of the PCI Express transfers. Moving more steps onto the GPU, and processing them on the GPU at once, will reduce PCI Express transfers and free up CPU resources. On top of that, modern GPUs and GPU programming APIs provide new features which are not yet exploited by the TPC tracking. We present our new developments for GPU reconstruction, both with a focus on the online reconstruction on GPU for the online offline computing upgrade in ALICE during LHC Run 3, and also taking into account how the current HLT in Run 2 can profit from these improvements.
1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less
Tracking Detectors in the STAR Experiment at RHIC
NASA Astrophysics Data System (ADS)
Wieman, Howard
2015-04-01
The STAR experiment at RHIC is designed to measure and identify the thousands of particles produced in 200 Gev/nucleon Au on Au collisions. This talk will focus on the design and construction of two of the main tracking detectors in the experiment, the TPC and the Heavy Flavor Tracker (HFT) pixel detector. The TPC is a solenoidal gas filled detector 4 meters in diameter and 4.2 meters long. It provides precise, continuous tracking and rate of energy loss in the gas (dE/dx) for particles at + - 1 units of pseudo rapidity. The tracking in a half Tesla magnetic field measures momentum and dE/dX provides particle ID. To detect short lived particles tracking close to the point of interaction is required. The HFT pixel detector is a two-layered, high resolution vertex detector located at a few centimeters radius from the collision point. It determines origins of the tracks to a few tens of microns for the purpose of extracting displaced vertices, allowing the identification of D mesons and other short-lived particles. The HFT pixel detector uses detector chips developed by the IPHC group at Strasbourg that are based on standard IC Complementary Metal-Oxide-Semiconductor (CMOS) technology. This is the first time that CMOS pixel chips have been incorporated in a collider application.
Proceedings of the 2005 International Linear Collider Workshop (LCWS05)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hewett, JoAnne,; /SLAC
2006-12-18
Exploration of physics at the TeV scale holds the promise of addressing some of our most basic questions about the nature of matter, space, time, and energy. Discoveries of the Electroweak Symmetry Breaking mechanism, Supersymmetry, Extra Dimensions of space, Dark Matter particles, and new forces of nature are all possible. We have been waiting and planning for this exploration for over 20 years. In 2007 the Large Hadron Collider at CERN will begin its operation and will break into this new energy frontier. A new era of understanding will emerge as the LHC data maps out the Terascale. With themore » LHC discoveries, new compelling questions will arise. Responding to these questions will call for a new tool with greater sensitivity--the International Linear Collider. Historically, the most striking progress in the exploration of new energy frontiers has been made from combining results from hadron and electron-positron colliders. The precision measurements possible at the ILC will reveal the underlying theory which gave rise to the particles discovered at the LHC and will open the window to even higher energies. The world High Energy Physics community has reached an accord that an e+e- linear collider operating at 0.5-1.0 TeV would provide both unique and essential scientific opportunities; the community has endorsed with highest priority the construction of such a machine. A major milestone toward this goal was reached in August 2004 when the International Committee on Future Accelerators approved a recommendation for the technology of the future International Linear Collider. A global research and design effort is now underway to construct a global design report for the ILC. This endeavor is directed by Barry Barrish of the California Institute of Technology. The offer, made by Jonathan Dorfan on the behalf of ICFA, and acceptance of this directorship took place during the opening plenary session of this workshop. The 2005 International Linear Collider Workshop was held at Stanford University from 18 March through 22 March, 2005. This workshop was hosted by the Stanford Linear Accelerator Center and sponsored by the World Wide Study for future e+e- linear colliders. It was the eighth in a series of International Workshops (the first was held in Saariselka, Finland in 1991) devoted to the physics and detectors associated with high energy e+e- linear colliders. 397 physicists from 24 countries participated in the workshop. These proceedings represent the presentations and discussions which took place during the workshop. The contributions are comprised of physics studies, detector specifications, and accelerator design for the ILC. These proceedings are organized in two Volumes and include contributions from both the plenary and parallel sessions.« less
Bobo-García, Gloria; Davidov-Pardo, Gabriel; Arroqui, Cristina; Vírseda, Paloma; Marín-Arroyo, María R; Navarro, Montserrat
2015-01-01
Total phenolic content (TPC) and antioxidant activity (AA) assays in microplates save resources and time, therefore they can be useful to overcome the fact that the conventional methods are time-consuming, labour intensive and use large amounts of reagents. An intra-laboratory validation of the Folin-Ciocalteu microplate method to measure TPC and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) microplate method to measure AA was performed and compared with conventional spectrophotometric methods. To compare the TPC methods, the confidence intervals of a linear regression were used. In the range of 10-70 mg L(-1) of gallic acid equivalents (GAE), both methods were equivalent. To compare the AA methodologies, the F-test and t-test were used in a range from 220 to 320 µmol L(-1) of Trolox equivalents. Both methods had homogeneous variances, and the means were not significantively different. The limits of detection and quantification for the TPC microplate method were 0.74 and 2.24 mg L(-1) GAE and for the DPPH 12.07 and 36.58 µmol L(-1) of Trolox equivalents. The relative standard deviation of the repeatability and reproducibility for both microplate methods were ≤ 6.1%. The accuracy ranged from 88% to 100%. The microplate and the conventional methods are equals in a 95% confidence level. © 2014 Society of Chemical Industry.
Higgs, SUSY and the standard model at /γγ colliders
NASA Astrophysics Data System (ADS)
Hagiwara, Kaoru
2001-10-01
In this report, I surveyed physics potential of the γγ option of a linear e +e - collider with the following questions in mind: What new discovery can be expected at a γγ collider in addition to what will be learned at its ' parent' e +e -linear collider? By taking account of the hard energy spectrum and polarization of colliding photons, produced by Compton back-scattering of laser light off incoming e - beams, we find that a γγ collider is most powerful when new physics appears in the neutral spin-zero channel at an invariant mass below about 80% of the c.m. energy of the colliding e -e - system. If a light Higgs boson exists, its properties can be studied in detail, and if its heavier partners or a heavy Higgs boson exists in the above mass range, they may be discovered at a γγ collider. CP property of the scalar sector can be explored in detail by making use of linear polarization of the colliding photons, decay angular correlations of final state particles, and the pattern of interference with the Standard Model amplitudes. A few comments are given for SUSY particle studies at a γγ collider, where a pair of charged spinless particles is produced in the s-wave near the threshold. Squark-onium may be discovered. An e ±γ collision mode may measure the Higgs- Z-γ coupling accurately and probe flavor oscillations in the slepton sector. As a general remark, all the Standard Model background simulation tools should be prepared in the helicity amplitude level, so that simulation can be performed for an arbitrary set of Stokes parameters of the incoming photon beams.
The International Linear Collider
NASA Astrophysics Data System (ADS)
List, Benno
2014-04-01
The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.
A plasma lens for a linear collider final focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norem, J.; Cline, D.B.; Cole, B.
High density relativistic beams propagating in a plasma are affected by fields induced by plasma motion. We consider the possible use of a plasma cell very close to the interaction point of a linear collider where the self-pinch induced in the relativistic beams can be used to increase the luminosity of colliding beams. We describe the benefits of this self-pinch, as well as some engineering details on the production of the required plasma. 18 refs., 5 figs., 1 tab.
Organelle-specific Subunit Interactions of the Vertebrate Two-pore Channel Family*
Ogunbayo, Oluseye A.; Zhu, Yingmin; Shen, Bing; Agbani, Ejaife; Li, Jie; Ma, Jianjie; Zhu, Michael X.; Evans, A. Mark
2015-01-01
The organellar targeting of two-pore channels (TPCs) and their capacity to associate as homo- and heterodimers may be critical to endolysosomal signaling. A more detailed understanding of the functional association of vertebrate TPC1–3 is therefore necessary. We report here that when stably expressed in HEK293 cells, human (h) TPC1 and chicken (c) TPC3 were specifically targeted to different subpopulations of endosomes, hTPC2 was specifically targeted to lysosomes, and rabbit (r) TPC3 was specifically targeted to both endosomes and lysosomes. Intracellular dialysis of NAADP evoked a Ca2+ transient in HEK293 cells that stably overexpressed hTPC1, hTPC2, and rTPC3, but not in cells that stably expressed cTPC3. The Ca2+ transients induced in cells that overexpressed endosome-targeted hTPC1 were abolished upon depletion of acidic Ca2+ stores by bafilomycin A1, but remained unaffected following depletion of endoplasmic reticulum stores by thapsigargin. In contrast, Ca2+ transients induced via lysosome-targeted hTPC2 and endolysosome-targeted rTPC3 were abolished by bafilomycin A1 and markedly attenuated by thapsigargin. NAADP induced marked Ca2+ transients in HEK293 cells that stably coexpressed hTPC2 with hTPC1 or cTPC3, but failed to evoke any such response in cells that coexpressed interacting hTPC2 and rTPC3 subunits. We therefore conclude that 1) all three TPC subtypes may support Ca2+ signaling from their designate acidic stores, and 2) lysosome-targeted (but not endosome-targeted) TPCs support coupling to the endoplasmic reticulum. PMID:25451935
Tuning the ion selectivity of two-pore channels
Guo, Jiangtao; Zeng, Weizhong; Jiang, Youxing
2017-01-01
Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate that AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs. PMID:28096396
Tuning the ion selectivity of two-pore channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jiangtao; Zeng, Weizhong; Jiang, Youxing
Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate thatmore » AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs.« less
On the cellular site of two-pore channel TPC1 action in the Poaceae.
Dadacz-Narloch, Beata; Kimura, Sachie; Kurusu, Takamitsu; Farmer, Edward E; Becker, Dirk; Kuchitsu, Kazuyuki; Hedrich, Rainer
2013-11-01
The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Linear Collider Physics Resource Book Snowmass 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronan
The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and built in a few years, it would make sense to wait for the results of each accelerator before planning the next one. Thus, we would wait for the results from the Tevatron before planning the LHC experiments, and wait for the LHC before planning any later stage. In reality accelerators require a long time to construct, and they require such specialized resources and human talent that delay can cripple what would be promising opportunities. In any event, we believe that the case for the linear collider is so compelling and robust that we can justify this facility on the basis of our current knowledge, even before the Tevatron and LHC experiments are done. The physics prospects for the linear collider have been studied intensively for more than a decade, and arguments for the importance of its experimental program have been developed from many different points of view. This book provides an introduction and a guide to this literature. We hope that it will allow physicists new to the consideration of linear collider physics to start from their own personal perspectives and develop their own assessments of the opportunities afforded by a linear collider.« less
Development of semiconductor tracking: The future linear collider case
NASA Astrophysics Data System (ADS)
Savoy-Navarro, Aurore
2011-04-01
An active R&D on silicon tracking for the linear collider, SiLC, is pursued since several years to develop the new generation of large area silicon trackers for the future linear collider(s). The R&D objectives on new sensors, new front end processing of the signal, and the related mechanical and integration challenges for building such large detectors within the proposed detector concepts are described. Synergies and differences with the LHC construction and upgrades are explained. The differences between the linear collider projects, namely the international linear collider, ILC, and the compact linear collider, CLIC, are discussed as well. Two final objectives are presented for the construction of this important sub-detector for the future linear collider experiments: a relatively short term design based on micro-strips combined or not with a gaseous central tracker and a longer term design based on an all-pixel tracker.The R&D objectives on sensors include single sided micro-strips as baseline for the shorter term with the strips from large wafers (at least 6 in), 200 μm thick, 50 μm pitch and the edgeless and alignment friendly options. This work is conducted by SiLC in collaboration with three technical research centers in Italy, Finland, and Spain and HPK. SiLC is studied as well, using advanced Si sensor technologies for higher granularity trackers especially short strips and pixels all based on 3D technology. New Deep Sub-Micron CMOS mix mode (analog and digital) FE and readout electronics are developed to fully process the detector signals currently adapted to the ILC cycle. It is a high-level processing and a fully programmable ASIC; highly fault tolerant. In its latest version, handling 128 channels will equip these next coming years larger size silicon tracking prototypes at test beams. Connection of the FEE chip on the silicon detector especially in the strip case is a major issue. Very preliminary results with inline pitch adapter based on wiring were just achieved. Bump-bonding or 3D vertical interconnect is the other SiLC R&D objective. The goal is to simplify the overall architecture and decrease the material budget of these devices. Three tracking concepts are briefly discussed, two of which are part of the ILC Letter of Intent of the ILD and SiD detector concepts. These last years, SiLC successfully performed beam tests to experience and test these R&D lines.
Reilly‐O'Donnell, Benedict; Sitsapesan, Rebecca
2016-01-01
Abstract Nicotinic acid adenine dinucleotide phosphate (NAADP) potently releases Ca2+ from acidic intracellular endolysosomal Ca2+ stores. It is widely accepted that two types of two‐pore channels, termed TPC1 and TPC2, are responsible for the NAADP‐mediated Ca2+ release but the underlying mechanisms regulating their gating appear to be different. For example, although both TPC1 and TPC2 are activated by NAADP, TPC1 appears to be additionally regulated by cytosolic Ca2+. Ion conduction and permeability also differ markedly. TPC1 and TPC2 are permeable to a range of cations although biophysical experiments suggest that TPC2 is slightly more selective for Ca2+ over K+ than TPC1 and hence capable of releasing greater quantities of Ca2+ from acidic stores. TPC1 is also permeable to H+ and therefore may play a role in regulating lysosomal and cytosolic pH, possibly creating localised acidic domains. The significantly different gating and ion conducting properties of TPC1 and TPC2 suggest that these two ion channels may play complementary physiological roles as Ca2+‐release channels of the endolysosomal system. PMID:26872338
Polarized γ source based on Compton backscattering in a laser cavity
NASA Astrophysics Data System (ADS)
Yakimenko, V.; Pogorelsky, I. V.
2006-09-01
We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC), and the Compact Linear Collider (CLIC). This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO2 laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.
Lin-Moshier, Yaping; Keebler, Michael V.; Hooper, Robert; Boulware, Michael J.; Liu, Xiaolong; Churamani, Dev; Abood, Mary E.; Walseth, Timothy F.; Brailoiu, Eugen; Patel, Sandip; Marchant, Jonathan S.
2014-01-01
The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca2+ homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca2+ release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease. PMID:25157141
Lin-Moshier, Yaping; Keebler, Michael V; Hooper, Robert; Boulware, Michael J; Liu, Xiaolong; Churamani, Dev; Abood, Mary E; Walseth, Timothy F; Brailoiu, Eugen; Patel, Sandip; Marchant, Jonathan S
2014-09-09
The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca(2+) homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca(2+) release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease.
How to Advance TPC Benchmarks with Dependability Aspects
NASA Astrophysics Data System (ADS)
Almeida, Raquel; Poess, Meikel; Nambiar, Raghunath; Patil, Indira; Vieira, Marco
Transactional systems are the core of the information systems of most organizations. Although there is general acknowledgement that failures in these systems often entail significant impact both on the proceeds and reputation of companies, the benchmarks developed and managed by the Transaction Processing Performance Council (TPC) still maintain their focus on reporting bare performance. Each TPC benchmark has to pass a list of dependability-related tests (to verify ACID properties), but not all benchmarks require measuring their performances. While TPC-E measures the recovery time of some system failures, TPC-H and TPC-C only require functional correctness of such recovery. Consequently, systems used in TPC benchmarks are tuned mostly for performance. In this paper we argue that nowadays systems should be tuned for a more comprehensive suite of dependability tests, and that a dependability metric should be part of TPC benchmark publications. The paper discusses WHY and HOW this can be achieved. Two approaches are introduced and discussed: augmenting each TPC benchmark in a customized way, by extending each specification individually; and pursuing a more unified approach, defining a generic specification that could be adjoined to any TPC benchmark.
Double elementary Goldstone Higgs boson production in future linear colliders
NASA Astrophysics Data System (ADS)
Guo, Yu-Chen; Yue, Chong-Xing; Liu, Zhi-Cheng
2018-03-01
The Elementary Goldstone Higgs (EGH) model is a perturbative extension of the Standard Model (SM), which identifies the EGH boson as the observed Higgs boson. In this paper, we study pair production of the EGH boson in future linear electron positron colliders. The cross-sections in the TeV region can be changed to about ‑27%, 163% and ‑34% for the e+e‑→ Zhh, e+e‑→ νν¯hh and e+e‑→ tt¯hh processes with respect to the SM predictions, respectively. According to the expected measurement precisions, such correction effects might be observed in future linear colliders. In addition, we compare the cross-sections of double SM-like Higgs boson production with the predictions in other new physics models.
Analysis of b quark pair production signal from neutral 2HDM Higgs bosons at future linear colliders
NASA Astrophysics Data System (ADS)
Hashemi, Majid; MahdaviKhorrami, Mostafa
2018-06-01
In this paper, the b quark pair production events are analyzed as a source of neutral Higgs bosons of the two Higgs doublet model type I at linear colliders. The production mechanism is e+e- → Z^{(*)} → HA → b{\\bar{b}}b{\\bar{b}} assuming a fully hadronic final state. The analysis aim is to identify both CP-even and CP-odd Higgs bosons in different benchmark points accommodating moderate boson masses. Due to pair production of Higgs bosons, the analysis is most suitable for a linear collider operating at √{s} = 1 TeV. Results show that in selected benchmark points, signal peaks are observable in the b-jet pair invariant mass distributions at integrated luminosity of 500 fb^{-1}.
Endolysosomal two‐pore channels regulate autophagy in cardiomyocytes
García‐Rúa, Vanessa; Feijóo‐Bandín, Sandra; Rodríguez‐Penas, Diego; Mosquera‐Leal, Ana; Abu‐Assi, Emad; Beiras, Andrés; María Seoane, Luisa; Lear, Pamela; Parrington, John; Portolés, Manuel; Roselló‐Lletí, Esther; Rivera, Miguel; Gualillo, Oreste; Parra, Valentina; Hill, Joseph A.; Rothermel, Beverly; González‐Juanatey, José Ramón
2016-01-01
Key points Two‐pore channels (TPCs) were identified as a novel family of endolysosome‐targeted calcium release channels gated by nicotinic acid adenine dinucleotide phosphate, as also as intracellular Na+ channels able to control endolysosomal fusion, a key process in autophagic flux.Autophagy, an evolutionarily ancient response to cellular stress, has been implicated in the pathogenesis of a wide range of cardiovascular pathologies, including heart failure.We report direct evidence indicating that TPCs are involved in regulating autophagy in cardiomyocytes, and that TPC knockout mice show alterations in the cardiac lysosomal system. TPC downregulation implies a decrease in the viability of cardiomyocytes under starvation conditions. In cardiac tissues from both humans and rats, TPC transcripts and protein levels were higher in females than in males, and correlated negatively with markers of autophagy.We conclude that the endolysosomal channels TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes, and also that they are differentially expressed in male and female hearts. Abstract Autophagy participates in physiological and pathological remodelling of the heart. The endolysosomal two‐pore channels (TPCs), TPC1 and TPC2, have been implicated in the regulation of autophagy. The present study aimed to investigate the role of TPC1 and TPC2 in basal and induced cardiac autophagic activity. In cultured cardiomyocytes, starvation induced a significant increase in TPC1 and TPC2 transcripts and protein levels that paralleled the increase in autophagy identified by increased LC3‐II and decreased p62 levels. Small interfering RNA depletion of TPC2 alone or together with TPC1 increased both LC3II and p62 levels under basal conditions and in response to serum starvation, suggesting that, under conditions of severe energy depletion (serum plus glucose starvation), changes in the autophagic flux (as assessed by use of bafilomycin A1) occurred either when TPC1 or TPC2 were downregulated. The knockdown of TPCs diminished cardiomyocyte viability under starvation and simulated ischaemia. Electron micrographs of hearts from TPC1/2 double knockout mice showed that cardiomyocytes contained large numbers of immature lysosomes with diameters significantly smaller than those of wild‐type mice. In cardiac tissues from humans and rats, TPC1 and TPC2 transcripts and protein levels were higher in females than in males. Furthermore, transcript levels of TPCs correlated negatively with p62 levels in heart tissues. TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes (i.e. there is a negative effect on cell viability under stress conditions in their absence) and they are differentially expressed in male and female human and murine hearts, where they correlate with markers of autophagy. PMID:26757341
Overview of TPC Benchmark E: The Next Generation of OLTP Benchmarks
NASA Astrophysics Data System (ADS)
Hogan, Trish
Set to replace the aging TPC-C, the TPC Benchmark E is the next generation OLTP benchmark, which more accurately models client database usage. TPC-E addresses the shortcomings of TPC-C. It has a much more complex workload, requires the use of RAID-protected storage, generates much less I/O, and is much cheaper and easier to set up, run, and audit. After a period of overlap, it is expected that TPC-E will become the de facto OLTP benchmark.
Two Pore Channel 2 (TPC2) Inhibits Autophagosomal-Lysosomal Fusion by Alkalinizing Lysosomal pH*
Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W. M.; Wu, Wu-Tian; Yue, Jianbo
2013-01-01
Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca2+ mobilizing messengers, elicits Ca2+ release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca2+ signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression. PMID:23836916
LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ABE,T.; DAWSON,S.; HEINEMEYER,S.
The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.« less
Linear Collider Physics Resource Book for Snowmass 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peskin, Michael E
The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.« less
NASA Astrophysics Data System (ADS)
2016-11-01
Officials at the International Linear Collider (ILC) - a proposed successor to the Large Hadron Collider at CERN - have turned to Hello Kitty to help promote the project, which is set to be built in Japan.
TPC2 controls pigmentation by regulating melanosome pH and size.
Ambrosio, Andrea L; Boyle, Judith A; Aradi, Al E; Christian, Keith A; Di Pietro, Santiago M
2016-05-17
Melanin is responsible for pigmentation of skin and hair and is synthesized in a specialized organelle, the melanosome, in melanocytes. A genome-wide association study revealed that the two pore segment channel 2 (TPCN2) gene is strongly linked to pigmentation variations. TPCN2 encodes the two-pore channel 2 (TPC2) protein, a cation channel. Nevertheless, how TPC2 regulates pigmentation remains unknown. Here, we show that TPC2 is expressed in melanocytes and localizes to the melanosome-limiting membrane and, to a lesser extent, to endolysosomal compartments by confocal fluorescence and immunogold electron microscopy. Immunomagnetic isolation of TPC2-containing organelles confirmed its coresidence with melanosomal markers. TPCN2 knockout by means of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 gene editing elicited a dramatic increase in pigment content in MNT-1 melanocytic cells. This effect was rescued by transient expression of TPC2-GFP. Consistently, siRNA-mediated knockdown of TPC2 also caused a substantial increase in melanin content in both MNT-1 cells and primary human melanocytes. Using a newly developed genetically encoded pH sensor targeted to melanosomes, we determined that the melanosome lumen in TPC2-KO MNT-1 cells and primary melanocytes subjected to TPC2 knockdown is less acidic than in control cells. Fluorescence and electron microscopy analysis revealed that TPC2-KO MNT-1 cells have significantly larger melanosomes than control cells, but the number of organelles is unchanged. TPC2 likely regulates melanosomes pH and size by mediating Ca(2+) release from the organelle, which is decreased in TPC2-KO MNT-1 cells, as determined with the Ca(2+) sensor tyrosinase-GCaMP6. Thus, our data show that TPC2 regulates pigmentation through two fundamental determinants of melanosome function: pH and size.
Transaction Processing Performance Council (TPC): State of the Council 2010
NASA Astrophysics Data System (ADS)
Nambiar, Raghunath; Wakou, Nicholas; Carman, Forrest; Majdalany, Michael
The Transaction Processing Performance Council (TPC) is a non-profit corporation founded to define transaction processing and database benchmarks and to disseminate objective, verifiable performance data to the industry. Established in August 1988, the TPC has been integral in shaping the landscape of modern transaction processing and database benchmarks over the past twenty-two years. This paper provides an overview of the TPC's existing benchmark standards and specifications, introduces two new TPC benchmarks under development, and examines the TPC's active involvement in the early creation of additional future benchmarks.
A Total Pleural Covering for Lymphangioleiomyomatosis Prevents Pneumothorax Recurrence
Kurihara, Masatoshi; Mizobuchi, Teruaki; Kataoka, Hideyuki; Sato, Teruhiko; Kumasaka, Toshio; Ebana, Hiroki; Yamanaka, Sumitaka; Endo, Reina; Miyahashira, Sumika; Shinya, Noriko; Seyama, Kuniaki
2016-01-01
Background Spontaneous pneumothorax is a major and frequently recurrent complication of lymphangioleiomyomatosis (LAM). Despite the customary use of pleurodesis to manage pnenumothorax, the recurrence rate remains high, and accompanying pleural adhesions cause serious bleeding during subsequent lung transplantation. Therefore, we have developed a technique of total pleural covering (TPC) for LAM to wrap the entire visceral pleura with sheets of oxidized regenerated cellulose (ORC) mesh, thereby reinforcing the affected visceral pleura and preventing recurrence. Methods Since January 2003, TPC has been applied during video-assisted thoracoscopic surgery for the treatment of LAM. The medical records of LAM patients who had TPC since that time and until August 2014 are reviewed. Results TPC was performed in 43 LAM patients (54 hemithoraces), 11 of whom required TPC bilaterally. Pneumothorax recurred in 14 hemithoraces (25.9%) from 11 patients (25.6%) after TPC. Kaplan-Meier estimates of recurrence-free hemithorax were 80.8% at 2.5 years, 71.7% at 5 years, 71.7% at 7.5 years, and 61.4% at 9 years. The recurrence-free probability was significantly better when 10 or more sheets of ORC mesh were utilized for TPC (P = 0.0018). TPC significantly reduced the frequency of pneumothorax: 0.544 ± 0.606 episode/month (mean ± SD) before TPC vs. 0.008 ± 0.019 after TPC (P<0.0001). Grade IIIa postoperative complications were found in 13 TPC surgeries (24.1%). Conclusions TPC successfully prevented the recurrence of pneumothorax in LAM, was minimally invasive and rarely caused restrictive ventilatory impairment. PMID:27658250
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raimondi, Pantaleo
The design of the Stanford Linear Collider (SLC) called for a beam intensity far beyond what was practically achievable. This was due to intrinsic limitations in many subsystems and to a lack of understanding of the new physics of linear colliders. Real progress in improving the SLC performance came from precision, non-invasive diagnostics to measure and monitor the beams and from new techniques to control the emittance dilution and optimize the beams. A major contribution to the success of the last 1997-98 SLC run came from several innovative ideas for improving the performance of the Final Focus (FF). This papermore » describes some of the problems encountered and techniques used to overcome them. Building on the SLC experience, we will also present a new approach to the FF design for future high energy linear colliders.« less
NASA Astrophysics Data System (ADS)
Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin
2012-04-01
To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, D.L.
1998-07-01
There are important goals in particle physics to be addressed by a TeV-scale electron-positron linear collider. Recent developments in accelerator physics and technologies aimed for the realization of such a collider are discussed in this paper.
TPC2 controls pigmentation by regulating melanosome pH and size
Ambrosio, Andrea L.; Boyle, Judith A.; Aradi, Al E.; Christian, Keith A.; Di Pietro, Santiago M.
2016-01-01
Melanin is responsible for pigmentation of skin and hair and is synthesized in a specialized organelle, the melanosome, in melanocytes. A genome-wide association study revealed that the two pore segment channel 2 (TPCN2) gene is strongly linked to pigmentation variations. TPCN2 encodes the two-pore channel 2 (TPC2) protein, a cation channel. Nevertheless, how TPC2 regulates pigmentation remains unknown. Here, we show that TPC2 is expressed in melanocytes and localizes to the melanosome-limiting membrane and, to a lesser extent, to endolysosomal compartments by confocal fluorescence and immunogold electron microscopy. Immunomagnetic isolation of TPC2-containing organelles confirmed its coresidence with melanosomal markers. TPCN2 knockout by means of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 gene editing elicited a dramatic increase in pigment content in MNT-1 melanocytic cells. This effect was rescued by transient expression of TPC2-GFP. Consistently, siRNA-mediated knockdown of TPC2 also caused a substantial increase in melanin content in both MNT-1 cells and primary human melanocytes. Using a newly developed genetically encoded pH sensor targeted to melanosomes, we determined that the melanosome lumen in TPC2-KO MNT-1 cells and primary melanocytes subjected to TPC2 knockdown is less acidic than in control cells. Fluorescence and electron microscopy analysis revealed that TPC2-KO MNT-1 cells have significantly larger melanosomes than control cells, but the number of organelles is unchanged. TPC2 likely regulates melanosomes pH and size by mediating Ca2+ release from the organelle, which is decreased in TPC2-KO MNT-1 cells, as determined with the Ca2+ sensor tyrosinase-GCaMP6. Thus, our data show that TPC2 regulates pigmentation through two fundamental determinants of melanosome function: pH and size. PMID:27140606
Chen, Xiaoqiang; Song, Wei; Zhao, Jin; Zhang, Zhifa; Zhang, Yuntian
2017-05-31
Polysaccharide conjugates were alkali-extracted from green tea (TPC-A). Although it contained 11.80% covalently binding proteins, TPC-A could not bind to the Coomassie Brilliant Blue dyes G250 and R250. TPC-A had no expected characteristic absorption peak of protein in the UV-vis spectrum scanning in the range of 200-700 nm. The UV-vis wavelength of 280 nm was not suitable to detect the presence of the protein portion of TPC-A. The zeta potential of TPC-A merely presented the negative charge properties of polysaccharides instead of the acid-base property of its protein section across the entire pH range. Furthermore, TPC-A was more stable when the pH of solution exceeded 4.0. In addition, no precipitation or haze was generated in the TPC-A/(-)-epigallocatechin gallate (EGCG) mixtures during 12 h storage. TPC-A has emulsifying activity, which indicated that its protein moiety formed hydrophobic groups. Thus, it was proposed that some physical properties of TPC-A protein were shielded by its olysaccharide, since the protein moiety was wrapped by its polysaccharide chains.
R&D status of linear collider technology at KEK
NASA Astrophysics Data System (ADS)
Urakawa, Junji
1992-02-01
This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.
Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)
Battaglia, Marco
2018-01-12
How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.
Jennifer, Samson Jegan; Muthiah, Packianathan Thomas
2014-01-01
The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C-H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. In all the compounds (1a-14b) either neutral O-H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The structure of each compound depends on the dihedral angle between the carboxyl group and the nitrogenous base. All these compounds indicate three main synthons that regularly occur, namely linear heterodimer (HD), heterotrimer (HT) and heterotetramer (LHT).
Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells
Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo
2013-01-01
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607
Physicochemical properties and cell-based bioactivity of Pu'erh tea polysaccharide conjugates.
Chen, Xiao-Qiang; Zhang, Zhi-Fa; Gao, Zhi-Ming; Huang, Yi; Wu, Zheng-Qi
2017-11-01
Polysaccharide conjugates were prepared from Pu'erh tea and fractionated by DEAE-cellulose DE-52 column chromatography to yield one unexplored polysaccharide-conjugate fraction termed TPC-P with a molecular weight of 251,200Da. DVS (dynamic vapour sorption) result discovered that the humidity condition of long-term preservation for TPC-P is below 70% RH. Although it contained proteins, TPC-P could not bind to the Coomassie Brilliant Blue dyes G250 and R250. The "shoulder-shaped" ultroviolet absorption peak in TPC-P UV-vis scanning spectum ascribe theabrownins that inevitably adsorbed the polysaccharide conjugate. Zeta potential results demonstrated TPC-P aqueous solution merely presented the negative charge properties of polysaccharides instead of acid-base property of its protein section, and had more stability in greater than pH 5.5. No precipitation or haze occurred in the three TPC-P/EGCG aqueous mixtures during their being stored for 12h. The phase separation was observed in aqueous mixtures of TPC-P and type B gelatin. TPC-P possessed the fine stability as a function of temperature heating and cooling between 0 and 55°C. It is proposed that some properties of the covalent binding protein of TPC-P were "shielded" by its polysaccharide chains. Copyright © 2017 Elsevier B.V. All rights reserved.
White, Scott C; Hostler, David
2017-08-01
Fire suppression wearing thermal protective clothing (TPC) and self-contained breathing apparatus (SCBA) challenges a firefighter's balance and may explain firefighter falls. Postural control based on force plate centre of pressure (COP) was compared for healthy subjects wearing TPC and SCBA before and after 20 min of heavy physical exertion in hot conditions. Baseline measures with and without TPC and SCBA (two different SCBA cylinder masses) were compared before and after exertion that included elements of fire suppression activities in an environmental chamber. COP excursion and variability increased with exertion for TPC and SCBA conditions compared to non-stressed conditions. The two different cylinder masses had no significant effect. Wearing TPC and SCBA when physically stressed in a hot environment increases postural sway and exacerbates postural control. Subjects compensated for the extra mass and adjusted to control postural sway with the addition of TPC and SCBA, but the stress protocol amplified these adjustments. Practitioner Summary: Firefighters wear thermal protective clothing (TPC) and self-contained breathing apparatus (SCBA) when heat-stressed and fatigued. Wearing TPC and SCBA was found to negatively impact balance when stressed, but not for non-stressed or two different sized SCBA tanks. Simulating fire-ground conditions wearing TPC and SCBA should be considered for improving balance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assmann, R
2004-06-08
The feasibility of future linear colliders depends on achieving very tight alignment and steering tolerances. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently require a total emittance growth in the main linac of less than 30-100% [1]. This should be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major advances in alignment and beam steering techniques beyond those used in the SLC are necessary for the next generation of linear colliders. In this paper, we present an experimental study of quadrupole alignment with a dispersion-free steering algorithm. A closely related method (wakefield-free steering) takesmore » into account wakefield effects [3]. However, this method can not be studied at the SLC. The requirements for future linear colliders lead to new and unconventional ideas about alignment and beam steering. For example, no dipole correctors are foreseen for the standard trajectory correction in the NLC [4]; beam steering will be done by moving the quadrupole positions with magnet movers. This illustrates the close symbiosis between alignment, beam steering and beam dynamics that will emerge. It is no longer possible to consider the accelerator alignment as static with only a few surveys and realignments per year. The alignment in future linear colliders will be a dynamic process in which the whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes, while the required accuracy of about 5 pm for the NLC quadrupole alignment [4] is a factor of 20 higher than in existing accelerators. The major task in alignment and steering is the accurate determination of the optimum beam-line position. Ideally one would like all elements to be aligned along a straight line. However, this is not practical. Instead a ''smooth curve'' is acceptable as long as its wavelength is much longer than the betatron wavelength of the accelerated beam. Conventional alignment methods are limited in accuracy by errors in the survey and the fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution and generally provide much better precision. Many of those techniques are described in other contributions to this workshop. In this paper we describe our experiences with a dispersion-free steering algorithm for linacs. This algorithm was first suggested by Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5], TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique can be applied to the whole linac at once and returns the alignment (or trajectory) that minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast alignment of the beam-line. As we will show dispersion-free steering is only sensitive to quadrupole misalignments. Wakefield-free steering [3] as mentioned before is a closely related technique that minimizes the emittance growth caused by both dispersion and wakefields. Due to hardware limitations (i.e. insufficient relative range of power supplies) we could not study this method experimentally in the SLC. However, its systematics are very similar to those of dispersion-free steering. The studies of dispersion-free steering which are presented made extensive use of the unique potential of the SLC as the only operating linear collider. We used it to study the performance and problems of advanced beam-based optimization tools in a real beam-line environment and on a large scale. We should mention that the SLC has utilized beam-based alignment for years [9], using the difference of electron and positron trajectories. This method, however, cannot be used in future linear colliders. The goal of our work is to demonstrate the performance of advanced beam-based alignment techniques in linear colliders and to anticipate possible reality-related problems. Those can then be solved in the design state for the next generation of linear colliders.« less
Some Alignment Considerations for the Next Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruland, R
Next Linear Collider type accelerators require a new level of alignment quality. The relative alignment of these machines is to be maintained in an error envelope dimensioned in micrometers and for certain parts in nanometers. In the nanometer domain our terra firma cannot be considered monolithic but compares closer to jelly. Since conventional optical alignment methods cannot deal with the dynamics and cannot approach the level of accuracy, special alignment and monitoring techniques must be pursued.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
Ruas, Margarida; Rietdorf, Katja; Arredouani, Abdelilah; Davis, Lianne C.; Lloyd-Evans, Emyr; Koegel, Heidi; Funnell, Timothy M.; Morgan, Anthony J.; Ward, John A.; Watanabe, Keiko; Cheng, Xiaotong; Churchill, Grant C.; Zhu, Michael X.; Platt, Frances M.; Wessel, Gary M.; Parrington, John; Galione, Antony
2010-01-01
Summary Intracellular Ca2+ signals constitute key elements in signal transduction. Of the three major Ca2+ mobilizing messengers described, the most potent, nicotinic acid adenine dinucleotide phosphate (NAADP) is the least well understood in terms of its molecular targets [1]. Recently, we showed that heterologous expression of two-pore channel (TPC) proteins enhances NAADP-induced Ca2+ release, whereas the NAADP response was abolished in pancreatic beta cells from Tpcn2 gene knockout mice [2]. However, whether TPCs constitute native NAADP receptors is unclear. Here we show that immunopurified endogenous TPC complexes possess the hallmark properties ascribed to NAADP receptors, including nanomolar ligand affinity [3–5]. Our study also reveals important functional differences between the three TPC isoforms. Thus, TPC1 and TPC2 both mediate NAADP-induced Ca2+ release, but the subsequent amplification of this trigger Ca2+ by IP3Rs is more tightly coupled for TPC2. In contrast, TPC3 expression suppressed NAADP-induced Ca2+ release. Finally, increased TPC expression has dramatic and contrasting effects on endolysosomal structures and dynamics, implicating a role for NAADP in the regulation of vesicular trafficking. We propose that NAADP regulates endolysosomal Ca2+ storage and release via TPCs and coordinates endoplasmic reticulum Ca2+ release in a role that impacts on Ca2+ signaling in health and disease [6]. PMID:20346675
Ruas, Margarida; Rietdorf, Katja; Arredouani, Abdelilah; Davis, Lianne C; Lloyd-Evans, Emyr; Koegel, Heidi; Funnell, Timothy M; Morgan, Anthony J; Ward, John A; Watanabe, Keiko; Cheng, Xiaotong; Churchill, Grant C; Zhu, Michael X; Platt, Frances M; Wessel, Gary M; Parrington, John; Galione, Antony
2010-04-27
Intracellular Ca(2+) signals constitute key elements in signal transduction. Of the three major Ca(2+) mobilizing messengers described, the most potent, nicotinic acid adenine dinucleotide phosphate (NAADP) is the least well understood in terms of its molecular targets [1]. Recently, we showed that heterologous expression of two-pore channel (TPC) proteins enhances NAADP-induced Ca(2+) release, whereas the NAADP response was abolished in pancreatic beta cells from Tpcn2 gene knockout mice [2]. However, whether TPCs constitute native NAADP receptors is unclear. Here we show that immunopurified endogenous TPC complexes possess the hallmark properties ascribed to NAADP receptors, including nanomolar ligand affinity [3-5]. Our study also reveals important functional differences between the three TPC isoforms. Thus, TPC1 and TPC2 both mediate NAADP-induced Ca(2+) release, but the subsequent amplification of this trigger Ca(2+) by IP(3)Rs is more tightly coupled for TPC2. In contrast, TPC3 expression suppressed NAADP-induced Ca(2+) release. Finally, increased TPC expression has dramatic and contrasting effects on endolysosomal structures and dynamics, implicating a role for NAADP in the regulation of vesicular trafficking. We propose that NAADP regulates endolysosomal Ca(2+) storage and release via TPCs and coordinates endoplasmic reticulum Ca(2+) release in a role that impacts on Ca(2+) signaling in health and disease [6]. Copyright © 2010 Elsevier Ltd. All rights reserved.
Physics at the e⁺e⁻ linear collider
Moortgat-Picka, G.; Kronfeld, A. S.
2015-08-14
A comprehensive review of physics at an e⁺e⁻ linear collider in the energy range of √s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.
Castonguay, Jan; Orth, Joachim H C; Müller, Thomas; Sleman, Faten; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Mallmann, Robert Theodor; Bildl, Wolfgang; Schulte, Uwe; Klugbauer, Norbert
2017-08-30
Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca 2+ concentrations required for SNARE-mediated vesicle fusion.
Improved formalism for precision Higgs coupling fits
NASA Astrophysics Data System (ADS)
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Karl, Robert; List, Jenny; Ogawa, Tomohisa; Peskin, Michael E.; Tian, Junping
2018-03-01
Future e+e- colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e+e- data, based on the effective field theory description of corrections to the Standard Model. We apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e+e- colliders.
Optimized iterative decoding method for TPC coded CPM
NASA Astrophysics Data System (ADS)
Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei
2018-05-01
Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.
Design of a 6 TeV muon collider
Wang, M-H.; Nosochkov, Y.; Cai, Y.; ...
2016-09-09
Here, a preliminary design of a muon collider ring with the center of mass (CM) energy of 6 TeV is presented. The ring circumference is 6.3 km, and themore » $$\\beta$$ functions at collision point are 1 cm in each plane. The ring linear optics, the non-linear chromaticity compensation in the Interaction Region (IR), and the additional non-linear orthogonal correcting knobs are described. Magnet specifications are based on the maximum pole-tip field of 20T in dipoles and 15T in quadrupoles. Careful compensation of the non-linear chromatic and amplitude dependent effects provide a sufficiently large dynamic aperture for the momentum range of up to $$\\pm$$0.5% without considering magnet errors.« less
Pulse-by-pulse energy measurement at the Stanford Linear Collider
NASA Astrophysics Data System (ADS)
Blaylock, G.; Briggs, D.; Collins, B.; Petree, M.
1992-01-01
The Stanford Linear Collider (SLC) collides a beam of electrons and positrons at 92 GeV. It is the first colliding linac, and produces Z(sup 0) particles for High-Energy Physics measurements. The energy of each beam must be measured to one part in 10(exp 4) on every collision (120 Hz). An Energy Spectrometer in each beam line after the collision produces two stripes of high-energy synchrotron radiation with critical energy of a few MeV. The distance between these two stripes at an imaging plane measures the beam energy. The Wire-Imaging Synchrotron Radiation Detector (WISRD) system comprises a novel detector, data acquisition electronics, readout, and analysis. The detector comprises an array of wires for each synchrotron stripe. The electronics measure secondary emission charge on each wire of each array. A Macintosh II (using THINK C, THINK Class Library) and DSP coprocessor (using ANSI C) acquire and analyze the data, and display and report the results for SLC operation.
Linear polarization of gluons and photons in unpolarized collider experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pisano, Cristian; Boer, Daniël; Brodsky, Stanley J.
2013-10-01
We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed by positivity, for both charm and bottom quark pair production. The upper bounds on the asymmetries are shown to be very large depending on the transverse momentum of the heavy quarks, which is promising especially for their measurements at a possible future Electron-Ion Collider or a Large Hadron electron Collider. We also study the analogous processes and asymmetries in muon pairmore » production as a means to probe linearly polarized photons inside unpolarized protons. For increasing invariant mass of the muon pair the asymmetries become very similar to the heavy quark pair ones. Finally, we discuss the process dependence of the results that arises due to differences in color flow and address the problem with factorization in case of proton-proton collisions.« less
Yamaguchi, Soichiro; Jha, Archana; Li, Qin; Soyombo, Abigail A.; Dickinson, George D.; Churamani, Dev; Brailoiu, Eugen; Patel, Sandip; Muallem, Shmuel
2011-01-01
NAADP is a potent second messenger that mobilizes Ca2+ from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca2+ release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca2+-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near complete colocalization with TPC2 and partial colocalization with TPC1. TRPML3 overlap with TPC2 was more modest. TRPML1 and to some extent TRPML3 co-immunoprecipitated with TPC2 but less so with TPC1. Current recording, however, showed that TPC1 and TPC2 did not affect the activity of wild-type TRPML1 or constitutively active TRPML1(V432P). N-terminally truncated TPC2 (TPC2delN), which is targeted to the plasma membrane, also failed to affect TRPML1 and TRPML1(V432P) channel function or TRPML1(V432P)-mediated Ca2+ influx. Whereas overexpression of TPCs enhanced NAADP-mediated Ca2+ signals, overexpression of TRPML1 did not, and the dominant negative TRPML1(D471K) was without affect on endogenous NAADP-mediated Ca2+ signals. Furthermore, the single channel properties of NAADP-activated TPC2delN were not affected by TRPML1. Finally, NAADP-evoked Ca2+ oscillations in pancreatic acinar cells were identical in wild-type and TRPML1−/− cells. We conclude that although TRPML1 and TPCs are present in the same complex, they function as two independent organellar ion channels and that TPCs, not TRPMLs, are the targets for NAADP. PMID:21540176
Testing the scalar sector of the twin Higgs model at colliders
NASA Astrophysics Data System (ADS)
Chacko, Zackaria; Kilic, Can; Najjari, Saereh; Verhaaren, Christopher B.
2018-03-01
We consider mirror twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the twin Higgs mechanism. We find that, although the reach of the LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the twin Higgs framework.
Design study of an optical cavity for a future photon collider at ILC
NASA Astrophysics Data System (ADS)
Klemz, G.; Mönig, K.; Will, I.
2006-08-01
Hard photons well above 100 GeV have to be generated in a future photon collider which essentially will be based on the infrastructure of the planned International Linear Collider (ILC). The energy of near-infrared laser photons will be boosted by Compton backscattering against a high-energy relativistic electron beam. For high effectiveness, a very powerful laser system is required that exceeds today's state-of-the-art capabilities. In this paper a design of an auxiliary passive cavity is discussed that resonantly enhances the peak-power of the laser. The properties and prospects of such a cavity are addressed on the basis of the specifications for the European TeV Energy Superconducting Linear Accelerator (TESLA) proposal. Those of the ILC are expected to be similar.
Zeroth-order design report for the next linear collider. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raubenheimer, T.O.
1996-05-01
This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that themore » NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs.« less
Throckmorton, Kurt; Lim, Fang Yun; Kontoyiannis, Dimitrios P.; Zheng, Weifa; Keller, Nancy P.
2016-01-01
Summary Filamentous fungi are renowned for the production of bioactive secondary metabolites. Typically, one distinct metabolite is generated from a specific secondary metabolite cluster. Here, we characterize the newly described trypacidin (tpc) cluster in the opportunistic human pathogen Aspergillus fumigatus. We find that this cluster as well as the previously characterized endocrocin (enc) cluster both contribute to the production of the spore metabolite endocrocin. Whereas trypacidin is eliminated when only tpc cluster genes are deleted, endocrocin production is only eliminated when both the tpc and enc non-reducing polyketide synthase-encoding genes, tpcC and encA, respectively, are deleted. EncC, an anthrone oxidase, converts the product released from EncA to endocrocin as a final product. In contrast, endocrocin synthesis by the tpc cluster likely results from incomplete catalysis by TpcK (a putative decarboxylase), as its deletion results in a nearly 10-fold increase in endocrocin production. We suggest endocrocin is likely a shunt product in all related non-reducing polyketide synthase clusters containing homologues of TpcK and TpcL (a putative anthrone oxidase), e.g. geodin and monodictyphenone. This finding represents an unusual example of two physically discrete secondary metabolite clusters generating the same natural product in one fungal species by distinct routes. PMID:26242966
Improved formalism for precision Higgs coupling fits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon
Future e +e – colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e +e – data, based on the effective field theory description of corrections to the Standard Model. Lastly, we apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e +e – colliders.
Improved formalism for precision Higgs coupling fits
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; ...
2018-03-20
Future e +e – colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e +e – data, based on the effective field theory description of corrections to the Standard Model. Lastly, we apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e +e – colliders.
Characteristic W-ino signals in a linear collider from anomaly mediated supersymmetry breaking
NASA Astrophysics Data System (ADS)
Ghosh, Dilip Kumar; Kundu, Anirban; Roy, Probir; Roy, Sourov
2001-12-01
Though the minimal model of anomaly-mediated supersymmetry breaking has been significantly constrained by recent experimental and theoretical work, there are still allowed regions of the parameter space for moderate to large values of tan β. We show that these regions will be comprehensively probed in a s=1 TeV e+e- linear collider. Diagnostic signals to this end are studied by zeroing in on a unique and distinct feature of a large class of models in this genre: a neutral W-ino-like lightest supersymmetric particle closely degenerate in mass with a W-ino-like chargino. The pair production processes e+e--->e+/-Le-/+L, e+/-Re-/+R, e+/-Le-/+R, ν~νbar, χ~01χ~02, χ~02χ~02 are all considered at s=1 TeV corresponding to the proposed DESY TEV Energy Superconducting Linear Accelerator linear collider in two natural categories of mass ordering in the sparticle spectra. The signals analyzed comprise multiple combinations of fast charged leptons (any of which can act as the trigger) plus displaced vertices XD (any of which can be identified by a heavy ionizing track terminating in the detector) and/or associated soft pions with characteristic momentum distributions.
Optimization of detectors for the ILC
NASA Astrophysics Data System (ADS)
Suehara, Taikan; ILD Group; SID Group
2016-04-01
International Linear Collider (ILC) is a next-generation e+e- linear collider to explore Higgs, Beyond-Standard-Models, top and electroweak particles with great precision. We are optimizing our two detectors, International Large Detector (ILD) and Silicon Detector (SiD) to maximize the physics reach expected in ILC with reasonable detector cost and good reliability. The optimization study on vertex detectors, main trackers and calorimeters is underway. We aim to conclude the optimization to establish final designs in a few years, to finish detector TDR and proposal in reply to expected ;green sign; of the ILC project.
Staging optics considerations for a plasma wakefield acceleration linear collider
NASA Astrophysics Data System (ADS)
Lindstrøm, C. A.; Adli, E.; Allen, J. M.; Delahaye, J. P.; Hogan, M. J.; Joshi, C.; Muggli, P.; Raubenheimer, T. O.; Yakimenko, V.
2016-09-01
Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.
Physics at the [Formula: see text] linear collider.
Moortgat-Pick, G; Baer, H; Battaglia, M; Belanger, G; Fujii, K; Kalinowski, J; Heinemeyer, S; Kiyo, Y; Olive, K; Simon, F; Uwer, P; Wackeroth, D; Zerwas, P M; Arbey, A; Asano, M; Bagger, J; Bechtle, P; Bharucha, A; Brau, J; Brümmer, F; Choi, S Y; Denner, A; Desch, K; Dittmaier, S; Ellwanger, U; Englert, C; Freitas, A; Ginzburg, I; Godfrey, S; Greiner, N; Grojean, C; Grünewald, M; Heisig, J; Höcker, A; Kanemura, S; Kawagoe, K; Kogler, R; Krawczyk, M; Kronfeld, A S; Kroseberg, J; Liebler, S; List, J; Mahmoudi, F; Mambrini, Y; Matsumoto, S; Mnich, J; Mönig, K; Mühlleitner, M M; Pöschl, R; Porod, W; Porto, S; Rolbiecki, K; Schmitt, M; Serpico, P; Stanitzki, M; Stål, O; Stefaniak, T; Stöckinger, D; Weiglein, G; Wilson, G W; Zeune, L; Moortgat, F; Xella, S; Bagger, J; Brau, J; Ellis, J; Kawagoe, K; Komamiya, S; Kronfeld, A S; Mnich, J; Peskin, M; Schlatter, D; Wagner, A; Yamamoto, H
A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.
GARLIC: GAmma Reconstruction at a LInear Collider experiment
NASA Astrophysics Data System (ADS)
Jeans, D.; Brient, J.-C.; Reinhard, M.
2012-06-01
The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.
Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider
NASA Astrophysics Data System (ADS)
Han, Y.; Latina, A.; Ma, L.; Schulte, D.
2017-06-01
The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.
MWPC prototyping and performance test for the STAR inner TPC upgrade
NASA Astrophysics Data System (ADS)
Shen, Fuwang; Wang, Shuai; Kong, Fangang; Bai, Shiwei; Li, Changyu; Videbæk, Flemming; Xu, Zhangbu; Zhu, Chengguang; Xu, Qinghua; Yang, Chi
2018-07-01
A new prototype of STAR inner Time Projection Chamber (iTPC) MWPC sector has been fabricated and tested in an X-ray test system. The wire chamber built at Shandong University has a wire tension precision better than 6% and wire pitch precision better than 10 μm. The gas gain uniformity and energy resolution are measured to be better than 1% (RMS) and 20% (FWHM), respectively, using an 55Fe X-ray source. The iTPC upgrade project is to replace all 24 STAR TPC inner sectors as a crucial detector upgrade for the RHIC beam energy scan phase II program. The test results show that the constructed iTPC prototype meets all project requirements.
Valdés, Arantzazu; Vidal, Lorena; Beltrán, Ana; Canals, Antonio; Garrigós, María Carmen
2015-06-10
A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box-Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.
Optimization of ultrasound-assisted extraction (UAE) of phenolic compounds from olive cake.
Mojerlou, Zohreh; Elhamirad, Amirhhossein
2018-03-01
The use of ultrasound in ultrasound-assisted extraction (UAE) is one of the main applications of this technology in food industry. This study aimed to optimize UAE conditions for olive cake extract (OCE) through response surface methodology (RSM). The optimal UAE conditions were obtained with extraction temperature of 56 °C, extraction time of 3 min, duty cycle of 0.6 s, and solid to solvent ratio of 3.6%. At the optimum conditions, the total phenolic compounds (TPC) content and antioxidant activity (AA) were measured 4.04 mg/g and 68.9%, respectively. The linear term of temperature had the most effect on TPC content and AA of OCE prepared by UAE. Protocatechuic acid and cinnamic acid were characterized as the highest (19.5%) and lowest (1.6%) phenolic compound measured in OCE extracted by UAE. This research revealed that UAE is an effective method to extract phenolic compounds from olive cake. RSM successfully optimized UAE conditions for OCE.
Anastácio, Ana; Carvalho, Isabel Saraiva de
2015-08-01
A beverage benchtop prototype related to oxidative stress protection was developed based on sweet potato peels phenolics. Formula components were sweet potato peel (Ipomoeas batatas L.) aqueous extract (SPPE), sweet potato leaves water extract (SPLE) and honey solution (HonS). According to linear squares regression (LSR) models, SPLE presented higher additive effect on total phenolic content (TPC), FRAP and DPPH than the other components. All antagonist interactions were not significant. The optimum formula obtained by artificial neural networks (ANN) analysis was 50.0% of SPPE, 21.5% of SPLE and 28.5% of HonS. Predicted responses of TPC, FRAP, DPPH and soluble solids were 309 mg GAE/L, 476 mg TE/L, 1098 mg TE/L and 12.3 °Brix, respectively. Optimization with LSR models was similar to ANN. Beverage prototype results positioned next to commercial vegetable and fruit beverages, thus it has an interesting potential to the market of health and wellness.
NASA Astrophysics Data System (ADS)
Allured, Ryan; Okajima, Takashi; Soufli, Regina; Fernández-Perea, Mónica; Daly, Ryan O.; Marlowe, Hannah; Griffiths, Scott T.; Pivovaroff, Michael J.; Kaaret, Philip
2012-10-01
The Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission is designed to measure the linear polarization of astrophysical sources in a narrow band centered at about 500 eV. X-rays are focused by Wolter I mirrors through a 4.5 m focal length to a time projection chamber (TPC) polarimeter, sensitive between 2{10 keV. In this optical path lies the BRP multilayer reflector at a nominal 45 degree incidence angle. The reflector reflects soft X-rays to the BRP detector and transmits hard X-rays to the TPC. As the spacecraft rotates about the optical axis, the reflected count rate will vary depending on the polarization of the incident beam. However, false polarization signals may be produced due to misalignments and spacecraft pointing wobble. Monte-Carlo simulations have been carried out, showing that the false modulation is below the statistical uncertainties for the expected focal plane offsets of < 2 mm.
Testing the scalar sector of the twin Higgs model at colliders
Chacko, Zackaria; Kilic, Can; Najjari, Saereh; ...
2018-03-22
We consider Mirror Twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum, and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the Twin Higgs mechanism. We find that, although the reach of themore » LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the Twin Higgs framework.« less
Testing the scalar sector of the twin Higgs model at colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, Zackaria; Kilic, Can; Najjari, Saereh
We consider Mirror Twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum, and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the Twin Higgs mechanism. We find that, although the reach of themore » LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the Twin Higgs framework.« less
CCD developments for particle colliders
NASA Astrophysics Data System (ADS)
Stefanov, Konstantin D.
2006-09-01
Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. First set of prototype devices have been designed, manufactured and successfully tested, with second-generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype is in production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Sumit; Giles, Logan J.; Thomas, Kolle E.
Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF 3, H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic–structural comparison with the corresponding FeCl, FeNO, and Fe 2(μ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes—Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]} 2O,more » and Fe[TPC]Ph—were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8 eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5 fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C 4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected Fe IV-like description, in contrast to Fe[TPC]Cl and Fe[TPC](NO), in which the Fe is thought to be Fe III-like. In conclusion, these results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.« less
Ganguly, Sumit; Giles, Logan J.; Thomas, Kolle E.; ...
2017-10-06
Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF 3, H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic–structural comparison with the corresponding FeCl, FeNO, and Fe 2(μ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes—Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]} 2O,more » and Fe[TPC]Ph—were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8 eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5 fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C 4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected Fe IV-like description, in contrast to Fe[TPC]Cl and Fe[TPC](NO), in which the Fe is thought to be Fe III-like. In conclusion, these results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.« less
Gait-Cycle-Driven Transmission Power Control Scheme for a Wireless Body Area Network.
Zang, Weilin; Li, Ye
2018-05-01
In a wireless body area network (WBAN), walking movements can result in rapid channel fluctuations, which severely degrade the performance of transmission power control (TPC) schemes. On the other hand, these channel fluctuations are often periodic and are time-synchronized with the user's gait cycle, since they are all driven from the walking movements. In this paper, we propose a novel gait-cycle-driven transmission power control (G-TPC) for a WBAN. The proposed G-TPC scheme reinforces the existing TPC scheme by exploiting the periodic channel fluctuation in the walking scenario. In the proposed scheme, the user's gait cycle information acquired by an accelerometer is used as beacons for arranging the transmissions at the time points with the ideal channel state. The specific transmission power is then determined by using received signal strength indication (RSSI). An experiment was conducted to evaluate the energy efficiency and reliability of the proposed G-TPC based on a CC2420 platform. The results reveal that compared to the original RSSI/link-quality-indication-based TPC, G-TPC reduces energy consumption by 25% on the sensor node and reduce the packet loss rate by 65%.
Molan, Abdul L; De, Shampa; Meagher, Lucy
2009-09-01
The antioxidant activity and total phenolics content (TPC) of freshly prepared green tea extract (GTE) as affected by time, temperature and stirring were determined using the ferric reducing antioxidant power (FRAP) and Folin-Ciocalteu assays, respectively. Acetone-water fractions of GTE containing flavan-3-ols and oligomeric proanthocyanidins were evaluated at concentrations between 25 and 500 µg/ml. Increasing the extraction time from 3 min to 10 min resulted in a significant increase in both the FRAP values and TPC. Increasing the extraction time from 10 min to 30 min was without any significant effects on both FRAP and TPC values. Moreover, the FRAP values were correlated with the TPC. GTE fractions had widely different FRAP values that were well correlated with the TPC of the fraction. It was concluded that brewing conditions such as extraction temperature, period of extraction, ratio of tea leaves to extracting water, and stirring are important factors for determining the FRAP values and TPC in GTE. These factors should be taken into consideration during preparation for nutritional benefits during usual consumption of this beverage. Elevated FRAP and TPC values corresponded to those GTE fractions with a higher amount of phenolic compounds, which have stronger antioxidant activities.
NASA Astrophysics Data System (ADS)
Ayyad, Yassid; Mittig, Wolfgang; Bazin, Daniel; Cortesi, Marco
2017-07-01
The Active Target Time Projection Chamber (AT-TPC) project at the NSCL (National Superconducting Cyclotron Laboratory, Michigan State University) is a novel active target detector tailored for low-energy nuclear reactions in inverse kinematics with radioactive ion beams. The AT-TPC allows for a full three dimensional reconstruction of the reaction and provides high luminosity without degradation of resolution by the thickness of the target. Since all the particles (and also the reaction vertex) are tracked inside the detector, the AT-TPC has full 4π efficiency. The AT-TPC can operate under a magnetic field (2 T) that improves the identification of the particles and the energy resolution through the measurement of the magnetic rigidity. Another important characteristic of the AT-TPC is the high-gain operation achieved by the hybrid thick Gas Electron Multipliers (THGEM)-Micromegas pad plane, that allow operation also in pure elemental gas. These two features make the AT-TPC a unique high resolution spectrometer with full acceptance for nuclear physics reactions. This work presents an overview of the project, focused on the data analysis and the development of new micro-pattern gas detectors.
Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies
NASA Astrophysics Data System (ADS)
Profumo, Stefano; Ramsey-Musolf, Michael J.; Wainwright, Carroll L.; Winslow, Peter
2015-02-01
We update the phenomenology of gauge-singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and the Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the high-luminosity LHC, the International Linear Collider, Triple-Large Electron-Positron collider, the China Electron-Positron Collider, and a 100 TeV proton-proton collider, such as the Very High Energy LHC or the Super Proton-Proton Collider. For the regions of parameter space leading to a strong first-order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.
An, Ke-Jing; Liu, Yu-Lan; Liu, Hai-Lan
2017-09-01
Deep-fried dough sticks (a Chinese traditional breakfast) were fried individually in peanut, sunflower, rapeseed, rice bran, soybean and palm oil without any time lag for 32 h (64 batches fried, each for 30 min) and fried oil samples were obtained every 2 h. The frying-induced changes in the levels of total polar compounds (TPC) and polycyclic aromatic hydrocarbons (PAHs) were investigated by edible oil polar compounds (EOPC) fast separation chromatographic system and gas chromatography-mass spectrometry (GC-MS), respectively. The correlations were analysed of TPC with benzo[a]pyrene (BaP), TPC and PAH4 (benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene) as well as TPC with PAH16 (USEPA 16 PAHs). The results revealed that the levels of TPC and PAHs in fried oil considerably increased with frying time, and the type of oil affected their formation, which could inform the choice of oil for frying. The total BaP equivalents (∑BaPeq) concentrations in fresh oil and in oil whose TPC exceeded 27% were 2.14-13.48 and 5.78-10.80 μg kg -1 , respectively, which means that the carcinogenic potency of frying oil was more pronounced than that of fresh oil. In addition, the TPC concentration was significantly correlated with the concentrations of the sum of the 16 PAHs, PAH4 and BaP, so that the levels of PAHs could be predicted according to the levels of TPC in fried oil. In European standards, the rejection point for TPC in frying oil should be recalculated when considered PAHs. In all, the concentration of PAHs is a vital factor for ensuring the safety of frying oil.
A time projection chamber for high accuracy and precision fission cross-section measurements
Heffner, M.; Asner, D. M.; Baker, R. G.; ...
2014-05-22
The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less
MWPC prototyping and performance test for the STAR inner TPC upgrade
Shen, Fuwang; Wang, Shuai; Kong, Fangang; ...
2018-04-16
A new prototype of STAR inner Time Projection Chamber (iTPC) MWPC sector has been fabricated and tested in an X-ray test system. The wire chamber built at Shandong University has a wire tension precision better than 6% and wire pitch precision better than 10 μm. The gas gain uniformity and energy resolution are measured to be better than 1% (RMS) and 20% (FWHM), respectively, using an 55Fe X-ray source. The iTPC upgrade project is to replace all 24 STAR TPC inner sectors as a crucial detector upgrade for the RHIC beam energy scan phase II program. Furthermore, the test resultsmore » show that the constructed iTPC prototype meets all project requirements.« less
MWPC prototyping and performance test for the STAR inner TPC upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Fuwang; Wang, Shuai; Kong, Fangang
A new prototype of STAR inner Time Projection Chamber (iTPC) MWPC sector has been fabricated and tested in an X-ray test system. The wire chamber built at Shandong University has a wire tension precision better than 6% and wire pitch precision better than 10 μm. The gas gain uniformity and energy resolution are measured to be better than 1% (RMS) and 20% (FWHM), respectively, using an 55Fe X-ray source. The iTPC upgrade project is to replace all 24 STAR TPC inner sectors as a crucial detector upgrade for the RHIC beam energy scan phase II program. Furthermore, the test resultsmore » show that the constructed iTPC prototype meets all project requirements.« less
Beam dynamic simulations of the CLIC crab cavity and implications on the BDS
NASA Astrophysics Data System (ADS)
Shinton, I. R. R.; Burt, G.; Glasman, C. J.; Jones, R. M.; Wolski, A.
2011-11-01
The Compact Linear Collider (CLIC) is a proposed electron positron linear collider design aiming to achieve a centre of mass energy of up to 3 TeV. The main accelerating structures in CLIC operate at an X-band frequency of 11.994 GHz with an accelerating gradient of 100 MV/m. The present design requires the beams to collide at a small crossing angle of 10 mrad per line giving a resultant overall crossing angle of 20 mrad. Transverse deflecting cavities, referred to as "Crab cavities", are installed in the beam delivery system (BDS) of linear collider designs in order to ensure the final luminosity at the interaction point (IP) is comparable to that in a head on collision. We utilise the beam tracking code PLACET combined with the beam-beam code GUINEA-PIG to calculate the resulting luminosity at the IP. We follow a similar tuning procedure to that used for the design of the ILC crab cavities and anitcrab cavities. However an unexpected loss in luminosity of 10% was observed for the 20 mrad design was observed. It was discovered that the action of the crab cavities can affect the geometric aberrations resulting from the sextupoles used to correct chromatic effects in the beam delivery system. This has direct consequences regarding the design of the present CLIC BDS.
The International Linear Collider Technical Design Report - Volume 2: Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Howard; Barklow, Tim; Fujii, Keisuke
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
The International Linear Collider Technical Design Report - Volume 4: Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnke, Ties
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
Unites States Linear Collider Steering Group dot dot dot dot What's New! June 2003 Meeting Welcome to the USLCSG Task Force at the Stanford Linear Accelerator Center [Enter] dot dot SLAC Page Owners
Potential and challenges of the physics measurements with very forward detectors at linear colliders
NASA Astrophysics Data System (ADS)
Božović Jelisavčić, Ivanka; Kačarević, G.; Lukić, S.; Poss, S.; Sailer, A.; Smiljanić, I.; FCAL Collaboration
2016-04-01
The instrumentation of the very forward region of a detector at a future linear collider (ILC, CLIC) is briefly reviewed. The status of the FCAL R&D activity is given with emphasis on physics and technological challenges. The current status of studies on absolute luminosity measurement, luminosity spectrum reconstruction and high-energy electron identification with the forward calorimeters is given. The impact of FCAL measurements on physics studies is illustrated with an example of the σHWW ṡBR (H →μ+μ-) measurement at 1.4 TeV CLIC.
Calorimetry at the International Linear Collider
NASA Astrophysics Data System (ADS)
Repond, José
2007-03-01
The physics potential of the International Linear Collider depends critically on the jet energy resolution of its detector. Detector concepts are being developed which optimize the jet energy resolution, with the aim of achieving σjet=30%/√{Ejet}. Under the assumption that Particle Flow Algorithms (PFAs), which combine tracking and calorimeter information to reconstruct the energy of hadronic jets, can provide this unprecedented jet energy resolution, calorimeters with very fine granularity are being developed. After a brief introduction outlining the principles of PFAs, the current status of various calorimeter prototype construction projects and their plans for the next few years will be reviewed.
Infrared weak corrections to strongly interacting gauge boson scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciafaloni, Paolo; Urbano, Alfredo
2010-04-15
We evaluate the impact of electroweak corrections of infrared origin on strongly interacting longitudinal gauge boson scattering, calculating all-order resummed expressions at the double log level. As a working example, we consider the standard model with a heavy Higgs. At energies typical of forthcoming experiments (LHC, International Linear Collider, Compact Linear Collider), the corrections are in the 10%-40% range, with the relative sign depending on the initial state considered and on whether or not additional gauge boson emission is included. We conclude that the effect of radiative electroweak corrections should be included in the analysis of longitudinal gauge boson scattering.
Ambrosio, Andrea L.; Boyle, Judith A.; Di Pietro, Santiago M.
2015-01-01
Platelet dense granules (PDGs) are acidic calcium stores essential for normal hemostasis. They develop from late endosomal compartments upon receiving PDG-specific proteins through vesicular trafficking, but their maturation process is not well understood. Here we show that two-pore channel 2 (TPC2) is a component of the PDG membrane that regulates PDG luminal pH and the pool of releasable Ca2+. Using a genetically encoded Ca2+ biosensor and a pore mutant TPC2, we establish the function of TPC2 in Ca2+ release from PDGs and the formation of perigranular Ca2+ nanodomains. For the first time, Ca2+ spikes around PDGs—or any organelle of the endolysosome family—are visualized in real time and revealed to precisely mark organelle “kiss-and-run” events. Further, the presence of membranous tubules transiently connecting PDGs is revealed and shown to be dramatically enhanced by TPC2 in a mechanism that requires ion flux through TPC2. “Kiss-and-run” events and tubule connections mediate transfer of membrane proteins and luminal content between PDGs. The results show that PDGs use previously unknown mechanisms of membrane dynamics and content exchange that are regulated by TPC2. PMID:26202466
Determination of the equation of state of asymmetric nuclear matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, Manyee Betty
A new Time Projection Chamber (TPC), called the SπRIT (SAMURAI pion Reconstruction Ion Tracker) TPC was constructed and used successfully in two experiments with the SAMURAI spectrometer at RIKEN, Japan to study the equation of state of neutron rich matter. As a result of the project, the SπRIT collaboration, an international collaboration consisting of groups from US, Japan, Korea, Poland, China and Germany, has been formed to pursue the science opportunities provided by the SπRIT TPC. After completion of the TPC and the two experiments, the collaboration continues to develop the software to analyze the SπRIT experiments and extract constraintsmore » of symmetry energy at supra-saturation densities. Over 250 TB of data have been obtained in the last SπRIT TPC experimental campaign. Construction of the TPC provided opportunities for the scientists to develop new designs for the light-weight and thin-walled field cage for the large pad plane and for the gating grid. Two PhD students (1 US and 1 Korea) graduated in 2016 based on their research on the TPC. At least four more doctoral theses (2 US, 1 Japan and 1 Korea) based on physics from the SπRIT experiments are expected.« less
Charfi, Rim; Lakhal, Mohamed; Klouz, Anis; Trabelsi, Sameh; Salouage, Issam
2015-01-01
Valproic acid (VA) is a widely used antiepileptic drug. Because of its pharmacokinetic variability and the influence of intrinsic and extrinsic factors such as the treatment compliance, VA therapeutic drug monitoring (TDM) is recommended in children. The aim of this study is to evaluate the effect of treatment compliance and the economic level on VA tough plasmatic concentration (TPC) and epileptic rhythm in children. A one-year prospective study (August 2008-August 2009) concerning children (age≤5 years) regularly treated by VA who had a VA TDM. So, 276 plasmatic samples from 238 children were collected. The children were divided in two groups as following: the group 1 (G1) presenting a good compliance and a reliable questioning and the group 2 (G2) presenting a bad compliance and a non reliable questioning. We evaluated the interindividual variability by correlating the TPC to the dose. Then, we divided the hole group in function of their economic levels (low-medium-high). Sex ratio male/female was 1.3. Median age was 5 years+/-3,9. The mean TPC was 62 µg/mL [0.12-131 µg/mL]. VA TPC were in the therapeutic range (TR) in 62%. Adverse drug reactions were noted in 4.2% of the children. G1 represented 70% of the children and G2, 30%. The TPC were in the TR in 67% of G1 and 51% of G2 (p=0.02). There was a significant difference between the TPC in G1 and G2 (p=0.02).There was no significative difference in the TPC in function of the economic levels. There was no correlation between TPC and the administered doses. The epileptic seizures were more spaced in children with therapeutic TPC than those with TPC in the TR (p=0.002) and in G1 than in G2 (p=0.03). Compliance should be appropriate in order to optimize the TDM rule. A good compliance and a therapeutic TPC allow a better control of epileptic seizures. © 2015 Société Française de Pharmacologie et de Thérapeutique.
Frequency and temperature dependence of electrical breakdown at 21, 30, and 39 GHz.
Braun, H H; Döbert, S; Wilson, I; Wuensch, W
2003-06-06
A TeV-range e(+)e(-) linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39 GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.
Frequency and Temperature Dependence of Electrical Breakdown at 21, 30, and 39GHz
NASA Astrophysics Data System (ADS)
Braun, H. H.; Döbert, S.; Wilson, I.; Wuensch, W.
2003-06-01
A TeV-range e+e- linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.
Lysosomal Two-pore Channel Subtype 2 (TPC2) Regulates Skeletal Muscle Autophagic Signaling*
Lin, Pei-Hui; Duann, Pu; Komazaki, Shinji; Park, Ki Ho; Li, Haichang; Sun, Mingzhai; Sermersheim, Mathew; Gumpper, Kristyn; Parrington, John; Galione, Antony; Evans, A. Mark; Zhu, Michael X.; Ma, Jianjie
2015-01-01
Postnatal skeletal muscle mass is regulated by the balance between anabolic protein synthesis and catabolic protein degradation, and muscle atrophy occurs when protein homeostasis is disrupted. Autophagy has emerged as critical in clearing dysfunctional organelles and thus in regulating protein turnover. Here we show that endolysosomal two-pore channel subtype 2 (TPC2) contributes to autophagy signaling and protein homeostasis in skeletal muscle. Muscles derived from Tpcn2−/− mice exhibit an atrophic phenotype with exacerbated autophagy under starvation. Compared with wild types, animals lacking TPC2 demonstrated an enhanced autophagy flux characterized by increased accumulation of autophagosomes upon combined stress induction by starvation and colchicine treatment. In addition, deletion of TPC2 in muscle caused aberrant lysosomal pH homeostasis and reduced lysosomal protease activity. Association between mammalian target of rapamycin and TPC2 was detected in skeletal muscle, allowing for appropriate adjustments to cellular metabolic states and subsequent execution of autophagy. TPC2 therefore impacts mammalian target of rapamycin reactivation during the process of autophagy and contributes to maintenance of muscle homeostasis. PMID:25480788
NASA Astrophysics Data System (ADS)
Isobe, Tadaaki; SPiRIT Collaboration
2014-09-01
The nuclear Equation of State (EoS) is a fundamental property of nuclear matter that describes the relationships between the parameters for a nuclear system, such as energy, density and temperature. An international collaboration, named SPiRIT, to study the nuclear EoS has been formed recently. One of the main devices of experimental setup is a Time Projection Chamber (TPC) which will be installed into the SAMURAI dipole magnet at RIKEN-RIBF. The TPC can measure charged pions, protons and light ions simultaneously in heavy RI collisions, and those will be used as probes to study the asymmetric dense nuclear matter. In addition to the status of the SPiRIT project, testing of SPiRIT-TPC with GET electronics will be presented in this talk. GET, general electronics for TPC, is a project for the development of novel electronics for TPC supported by NSF and ANR. This work is supported in part by the Japan Grant-in-Aide award and the US DOE grant DE-SC0004835 and JUSEIPEN.
Front-end electronics development for TPC detector in the MPD/NICA project
NASA Astrophysics Data System (ADS)
Cheremukhina, G.; Movchan, S.; Vereschagin, S.; Zaporozhets, S.
2017-06-01
The article is aimed at describing the development status, measuring results and design changes of the TPC front-end electronics. The TPC is placed in the middle of Multi-Purpose Detector (MPD) and provides tracing and identifying of charged particles in the pseudorapidity range |η| < 1.2. The readout system is one of the most complex parts of the TPC. The electronics of each readout chamber is an independent system. The whole system contains 95232 channels, 1488 64-channel—front-end cards (FEC), 24 readout control units (RCU). The front-end electronics (FEE) is based on ASICs, FPGAs and high-speed serial links. The concept of the TPC front-end electronics has been motivated from one side—by the requirements concerning the NICA accelerator complex which will operate at the luminosity up to 1027 cm-2 s-1 for Au79+ ions over the energy range of 4 < √SNN < 11 GeV with the trigger rate up to 7 kHz and from the other side—by the requirements of the 4-π geometry to minimize the substance on the end-caps of the TPC.
HOM-Free Linear Accelerating Structure for e+ e- Linear Collider at C-Band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubo, Kiyoshi
2003-07-07
HOM-free linear acceleration structure using the choke mode cavity (damped cavity) is now under design for e{sup +}e{sup -} linear collider project at C-band frequency (5712 MHz). Since this structure shows powerful damping effect on most of all HOMs, there is no multibunch problem due to long range wakefields. The structure will be equipped with the microwave absorbers in each cells and also the in-line dummy load in the last few cells. The straightness tolerance for 1.8 m long structure is closer than 30 {micro}m for 25% emittance dilution limit, which can be achieved by standard machining and braising techniques.more » Since it has good vacuum pumping conductance through annular gaps in each cell, instabilities due to the interaction of beam with the residual-gas and ions can be minimized.« less
Performance of the STAR Event Plane Detector
NASA Astrophysics Data System (ADS)
Ewigleben, Justin; Justin Ewigleben Collaboration
2017-09-01
The Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider has shown hints of a critical point and first order phase transition at the BES energies. Key measurements for locating the critical point and determining the first order phase transition are limited by poor event plane resolution, limited statistics and a TPC-only centrality determination. A new event plane and collision centrality detector (EPD) is planned to replace the existing detector, the Beam-Beam Counter (BBC), with higher granularity and acceptance. The design of the EPD consists of two scintillator discs at z = +/- 3.75m from the center of STAR, covering 2.2 < η < 5.1. One quarter of a single disc was installed in STAR for the 2017 run for commissioning. In this talk we will discuss the detector performance during this commissioning run in both proton-proton collisions at √{ s = 510 } GeV and Au-Au collisions at √{sNN = 54.4 } GeV. NSF Grant 1614474.
NASA Astrophysics Data System (ADS)
Frigm, R.; Johnson, L.
The Probability of Collision (Pc) has become a universal metric and statement of on-orbit collision risk. Although several flavors of the computation exist and are well-documented in the literature, the basic calculation requires the same input: estimates for the position, position uncertainty, and sizes of the two objects involved. The Pc is used operationally to make decisions on whether a given conjunction poses significant collision risk to the primary object (or space asset of concern). It is also used to determine necessity and degree of mitigative action (typically in the form of an orbital maneuver) to be performed. The predicted post-maneuver Pc also informs the maneuver planning process into regarding the timing, direction, and magnitude of the maneuver needed to mitigate the collision risk. Although the data sources, techniques, decision calculus, and workflows vary for different agencies and organizations, they all have a common thread. The standard conjunction assessment and collision risk concept of operations (CONOPS) predicts conjunctions, assesses the collision risk (typically, via the Pc), and plans and executes avoidance activities for conjunctions as a discrete events. As the space debris environment continues to increase and improvements are made to remote sensing capabilities and sensitivities to detect, track, and predict smaller debris objects, the number of conjunctions will in turn continue to increase. The expected order-of-magnitude increase in the number of predicted conjunctions will challenge the paradigm of treating each conjunction as a discrete event. The challenge will not be limited to workload issues, such as manpower and computing performance, but also the ability for satellite owner/operators to successfully execute their mission while also managing on-orbit collision risk. Executing a propulsive maneuver occasionally can easily be absorbed into the mission planning and operations tempo; whereas, continuously planning evasive maneuvers for multiple conjunction events is time-consuming and would disrupt mission and science operations beyond what is tolerable. At the point when the number of conjunctions is so large that it is no longer possible to consider each individually, some sort of an amalgamation of events and risk must be considered. This shift is to one where each conjunction cannot be treated individually and the effects of all conjunctions within a given period of time must be considered together. This new paradigm is called finite Conjunction Assessment (CA) risk management. This paper considers the use of the Total Probability of Collision (TPc) as an analogous collision risk metric in the finite CA paradigm. TPc is expressed by the equation below and provides an aggregate probability of colliding with any one of the predicted conjunctions under consideration. TPc=1-?(1-Pc,i) While the TPc computation is straightforward and its physical meaning is understandable, the implications of its usage operationally requires a change in mindset and approach to collision risk management. This paper explores the necessary changes to evolve the basic CA and collision risk management CONOPS from discrete to finite CA, including aspects of collision risk assessment and collision risk mitigation. It proposes numerical and graphical decision aids to understand both the “risk outlook” for a given primary as well as mitigation options for the total collision risk. Both concepts make use of the TPc as a metric for finite collision risk management. Several operational scenarios are used to demonstrate the proposed concepts in practice.
NASA Astrophysics Data System (ADS)
Lintang, H. O.; Jalani, M. A.; Yuliati, L.; Salleh, M. M.
2017-05-01
Herein we reported that by introducing a one-dimensional (1D) substrate with a porous structure such as anodic aluminum oxide (AAO) membrane, mesoporous silica/alumina hybrid nanocomposites were successfully fabricated by using amphiphilic triphenylene (TPC10TEG) as a template in sol-gel synthesis (TPC10TEG/silicahex). For the optical study of the nanocomposites, TPC10TEG/silicahex showed absorption peak at 264 nm due to the ordered and long-range π-π stacking of the disc-like aromatic triphenylene core. Moreover, the hexagonal arrangement of TPC10TEG/silicahex was proven based on their diffraction peaks of d 100 and d 200 at 2θ = 2.52° and 5.04° and images of transmission electron microscopy (TEM), respectively. For fabrication of mesoporous silica/alumina hybrid membrane, TPC10TEG/silicahex was drop-casted onto AAO membrane for penetration into the porous structure via gravity. X-ray diffraction (XRD) analysis on the resulted hybrid nanocomposites showed that the diffraction peaks of d 100 and d 200 of TPC10TEG/silicahex were still preserved, indicating that the hexagonal arrangements of mesoporous silica were maintained even on AAO substrate. The morphology study on the hybrid nanocomposites using TEM, scanning electron microscope (SEM) and field emission scanning electron microscope (FE-SEM) showed the successful filling of most AAO channels with the TPC10TEG/silicahex nanocomposites.
Macoris, Mariana S; De Marchi, Renata; Janzantti, Natália S; Monteiro, Magali
2012-07-01
This work aimed to investigate the influence of both ripening stage and cultivation system on the total phenolic compounds (TPC) and total antioxidant activity (TAA) of passion fruit pulp. TPC extraction was optimized using a 2³ central composed design. The variables were fruit pulp volume, methanol volume and extraction solution volume. TPC was determined using the Folin-Ciocalteu reaction, and TAA using the ABTS radical reaction. The conditions to extract TPC were 2 mL passion fruit pulp and 9 mL extraction solution containing 40% methanol:water (v/v). TPC values increased in the passion fruit pulp during ripening for both cultivation systems, ranging from 281.8 to 361.9 mg gallic acid L⁻¹ (P ≤ 0.05) for the organic pulp and from 291.0 to 338.6 mg gallic acid L⁻¹ (P ≤ 0.05) for the conventional pulp. TPC values increased during ripening for both organic and conventional passion fruit. The same was true for TAA values for conventional passion fruit. For organic passion fruit, however, TAA values were highest at the initial ripening stages. These results suggest that antioxidant compounds exert strong influence on the initial ripening stages for organic passion fruit, when TPC still did not reach its maximum level. Copyright © 2012 Society of Chemical Industry.
Ramkissoon, J S; Mahomoodally, M F; Ahmed, N; Subratty, A H
2013-07-01
To determine the contribution of total phenolic content (TPC) in glycation inhibitory activity of common tropical medicinal food and spices with potential antioxidative properties. In vitro glucose-bovine serum albumin (BSA) assay was used. Ethanolic extracts of ten common household condiments/herbs (Allium sativum, Zingiber officinale, Thymus vulgaris, Petroselinum crispum, Murraya koenigii Spreng, Mentha piperita L., Curcuma longa L., Allium cepa L., Allium fistulosum and Coriandrum sativum L.) were evaluated for antioxidative activity by 2,2-diphenyl-2-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) and the TPC, flavonoid and tannins content were determined. Findings showed good correlation between TPC/DPPH (r = 0.8), TPC/FRAP (r = 0.8), TPC/anti-glycation (r = 0.9), DPPH/anti-glycation (r = 0.6), FRAP/anti-glycation (r = 0.9), Flavonoid/anti-glycation (r = 0.7) and Tannins/anti-glycation (r = 0.8) and relatively fair correlation for TPC/Flavonoids (r = 0.5) and TPC/Tannins (r = 0.5). Results imply that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used for reducing oxidative stress. The positive glycation inhibitory and antioxidative activities of these tropical herbs suggest a possible role in targeting ageing, diabetic complications and oxidative stress related diseases. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Fourth standard model family neutrino at future linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftci, A.K.; Ciftci, R.; Sultansoy, S.
2005-09-01
It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered.more » The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.« less
Zeroth-order design report for the next linear collider. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raubenheimer, T.O.
This Zeroth-Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The ``design`` presented here is not fully engineered in any sense, but to be assured that the NLCmore » can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume II covers the following: collimation systems; IP switch and big bend; final focus; the interaction region; multiple bunch issues; control systems; instrumentation; machine protection systems; NLC reliability considerations; NLC conventional facilities. Also included are four appendices on the following topics: An RF power source upgrade to the NLC; a second interaction region for gamma-gamma, gamma-electron; ground motion: theory and measurement; and beam-based feedback: theory and implementation.« less
Shikonin Inhibites Migration and Invasion of Thyroid Cancer Cells by Downregulating DNMT1
Zhang, Yue; Sun, Bin; Huang, Zhi
2018-01-01
Background Shikonin is a component of Chinese herbal medicine. The aim of this study was to investigate the effects of shikonin on cell migration of papillary thyroid cancer cells of the TPC-1 cell line in vitro and expression levels of the phosphate and tensin homolog deleted on chromosome 10 (PTEN) and DNA methyltransferase 1 (DNMT1) genes. Material/Methods The Cell Counting Kit-8 (CCK-8) assay was performed to evaluate the proliferation of TPC-1 papillary thyroid cancer cells, and the normal thyroid cells, HTori-3, in vitro. A transwell motility assay was used to analyze the migration of TPC-1 cells. Western blot was performed to determine the expression levels of PTEN and DNMT1 genes. A methylation-specific polymerase chain reaction (PCR) (MSP) assay was used to evaluate the methylation of PTEN. Results Following treatment with shikonin, the cell survival rate of TPC-1 cells decreased in a dose-dependent manner; the inhibitory effects on HTori-3 cells were less marked. Shikonin inhibited TPC-1 cell migration and invasion in a dose-dependent manner. The methylation of PTEN was suppressed by shikonin, which also reduced the expression of DNMT1 in a dose-dependent manner, and increased the expression of PTEN. Overexpression of DNMT1 promoted the migration of TPC-1 cells and the methylation of PTEN. Levels of protein expression of PTEN in TPC-1 cells treated with shikonin decreased, and were increased by DNMT1 knockdown. Conclusions Shikonin suppressed the expression of DNMT1, reduced PTEN gene methylation, and increased PTEN protein expression, leading to the inhibition of TPC-1 cell migration. PMID:29389913
A streamlined Python framework for AT-TPC data analysis
NASA Astrophysics Data System (ADS)
Taylor, J. Z.; Bradt, J.; Bazin, D.; Kuchera, M. P.
2017-09-01
User-friendly data analysis software has been developed for the Active-Target Time Projection Chamber (AT-TPC) experiment at the National Superconducting Cyclotron Laboratory at Michigan State University. The AT-TPC, commissioned in 2014, is a gas-filled detector that acts as both the detector and target for high-efficiency detection of low-intensity, exotic nuclear reactions. The pytpc framework is a Python package for analyzing AT-TPC data. The package was developed for the analysis of 46Ar(p, p) data. The existing software was used to analyze data produced by the 40Ar(p, p) experiment that ran in August, 2015. Usage of the package was documented in an analysis manual both to improve analysis steps and aid in the work of future AT-TPC users. Software features and analysis methods in the pytpc framework will be presented along with the 40Ar results.
Superstrong Adjustable Permanent Magnet for a Linear Collider Final Focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihara, T.
A superstrong permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens for the linear collider because of its compactness and low power consumption. The first fabricated prototype of our PMQ achieved a 300T/m superstrong field gradient with a 100mm overall magnet radius and a 7mm bore radius, but a drawback is its fixed strength. Therefore, a second prototype of PMQ, whose strength is adjustable, was fabricated. Its strength adjustability is based on the ''double ring structure'', rotating subdivided magnet slices separately. This second prototype is being tested. Some of the early results are presented.
Heavy neutrino mixing and single production at linear collider
NASA Astrophysics Data System (ADS)
Gluza, J.; Maalampi, J.; Raidal, M.; Zrałek, M.
1997-02-01
We study the single production of heavy neutrinos via the processes e- e+ -> νN and e- γ -> W- N at future linear colliders. As a base of our considerations we take a wide class of models, both with vanishing and non-vanishing left-handed Majorana neutrino mass matrix mL. We perform a model independent analyses of the existing experimental data and find connections between the characteristic of heavy neutrinos (masses, mixings, CP eigenvalues) and the mL parameters. We show that with the present experimental constraints heavy neutrino masses almost up to the collision energy can be tested in the future experiments.
The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adolphsen, Chris
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
The International Linear Collider Technical Design Report - Volume 1: Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnke, Ties; Brau, James E.; Foster, Brian
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adolphsen, Chris
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
Efficiency Versus Instability in Plasma Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei
2017-01-05
Plasma wake-field acceleration in a strongly nonlinear (a.k.a. the blowout) regime is one of the main candidates for future high-energy colliders. For this case, we derive a universal efficiency-instability relation, between the power efficiency and the key instability parameter of the witness bunch. We also show that in order to stabilize the witness bunch in a regime with high power efficiency, the bunch needs to have high energy spread, which is not presently compatible with collider-quality beam properties. It is unclear how such limitations could be overcome for high-luminosity linear colliders.
You, Qi; Chen, Feng; Wang, Xi; Sharp, Julia L; You, Yuru
2012-10-01
Phenolic compounds and anthocyanins in muscadines have attracted much attention due to their diverse biological activities. With bioassays of antioxidant activities in terms of total phenolic content (TPC), total anthocyanin content (TAC), total procyanidin content (TPA), oxygen radical absorbance capacity (ORAC), and ferric reducing antioxidant power (FRAP) of different parts of the Noble muscadine, the butanol (BuOH) extract of the muscadine skin showed the highest TPC (317.91 ± 1.83 mg GAE/100 g FW), which might be ascribed to its high TAC of 227.06 ± 1.29 mg/100 g fresh weight (FW). The ethyl acetate (EtOAc) extract of the muscadine seed contained the highest TPA (55.30 ± 0.63 mg CE/100 g FW). Correlation analyses demonstrated a significant linear relationship of TPC and TAC compared to their ORAC and FRAP values within the range of R(2) from 0.9283 to 0.9936, which suggested that phenolics and anthocyanins in the extracts contributed significantly to their antioxidant potential. Nineteen individual phenolics and 5 anthocyanins were identified by HPLC-MS, which indicated different chemical profiles of anthocyanins and other phenolics in the muscadine extracts. The paper has provided rich information of bioactive phytochemical profiles in different solvent extracts and their correlation with the antioxidant activity in the muscadine that is a very special regional fruit in U.S. Its high content of phenolic compounds demonstrates that muscadine could be beneficial to human health. © 2012 Institute of Food Technologists®
El-Beshbishy, Ha; Bahashwan, Sa
2012-02-01
The present study investigated the in vitro hypoglycemic activity of basil (Ocimum basilicum) aqueous extract. Preliminary phytochemical screening of the extract revealed the presence of reducing sugars, cardiac glycosides, tannins, saponins, glycosides, flavonoids and steroids. The total polyphenols content (TPC), flavonoids content (FC), percentage diphenylpicrylhydrazyl (DPPH( · )) radical inhibition and total antioxidant status (TAS) were estimated. The FC was 41 ± 2.2 rutin/g dry extract, the TPC was 146 ± 5.26 mg catechin/g dry extract and the TAS was 5.12 ± 0.7 mmol/L. The %DPPH( · ) free radical inhibition was 60%, 54%, 49% and 43%, respectively, for different extract concentrations; 20, 18.2, 16.3 and 14.5 mg/ml, respectively. The extract elicited significant dose-dependent pattern against rat intestinal sucrase (RIS; IC(50) = 36.72 mg/ml), rat intestinal maltase (RIM; IC(50) = 21.31 mg/ml) and porcine pancreatic α-amylase (PPA; IC(50) = 42.50 mg/ml) inhibitory activities. The inhibition was greater against maltase compared with sucrase. These effects may be attributed to the high TPC and FC levels. The linear regression analysis revealed strong significant positive correlations between %DPPH( · ) radical inhibition and each of %RIS, %RIM and %PPA inhibiting activity. Also, strong significant positive correlations between %RIS and either %RIM or %PPA inhibition activity were observed. We concluded therefore that basil aqueous extract via antioxidant and possibly α-glucosidase and α-amylase inhibiting activities, offered positive benefits to control diabetes.
Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds
NASA Astrophysics Data System (ADS)
Bundgaard, Jeremy; Niffte Collaboration
2015-10-01
Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bullard, B.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; De Geronimo, G.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, S.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Rescia, S.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Thorn, C.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Yu, B.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2017-08-01
The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.
NASA Astrophysics Data System (ADS)
Park, Kyungjeen
This study aims to develop an objective hurricane initialization scheme which incorporates not only forecast model constraints but also observed features such as the initial intensity and size. It is based on the four-dimensional variational (4D-Var) bogus data assimilation (BDA) scheme originally proposed by Zou and Xiao (1999). The 4D-Var BDA consists of two steps: (i) specifying a bogus sea level pressure (SLP) field based on parameters observed by the Tropical Prediction Center (TPC) and (ii) assimilating the bogus SLP field under a forecast model constraint to adjust all model variables. This research focuses on improving the specification of the bogus SLP indicated in the first step. Numerical experiments are carried out for Hurricane Bonnie (1998) and Hurricane Gordon (2000) to test the sensitivity of hurricane track and intensity forecasts to specification of initial vortex. Major results are listed below: (1) A linear regression model is developed for determining the size of initial vortex based on the TPC observed radius of 34kt. (2) A method is proposed to derive a radial profile of SLP from QuikSCAT surface winds. This profile is shown to be more realistic than ideal profiles derived from Fujita's and Holland's formulae. (3) It is found that it takes about 1 h for hurricane prediction model to develop a conceptually correct hurricane structure, featuring a dominant role of hydrostatic balance at the initial time and a dynamic adjustment in less than 30 minutes. (4) Numerical experiments suggest that track prediction is less sensitive to the specification of initial vortex structure than intensity forecast. (5) Hurricane initialization using QuikSCAT-derived initial vortex produced a reasonably good forecast for hurricane landfall, with a position error of 25 km and a 4-h delay at landfalling. (6) Numerical experiments using the linear regression model for the size specification considerably outperforms all the other formulations tested in terms of the intensity prediction for both Hurricanes. For examples, the maximum track error is less than 110 km during the entire three-day forecasts for both hurricanes. The simulated Hurricane Gordon using the linear regression model made a nearly perfect landfall, with no position error and only 1-h error in landfalling time. (7) Diagnosis of model output indicates that the initial vortex specified by the linear regression model produces larger surface fluxes of sensible heat, latent heat and moisture, as well as stronger downward angular momentum transport than all the other schemes do. These enhanced energy supplies offset the energy lost caused by friction and gravity wave propagation, allowing for the model to maintain a strong and realistic hurricane during the entire forward model integration.
The human two-pore channel 1 is modulated by cytosolic and luminal calcium
Lagostena, Laura; Festa, Margherita; Pusch, Michael; Carpaneto, Armando
2017-01-01
Two-pore channels (TPC) are intracellular endo-lysosomal proteins with only recently emerging roles in organellar signalling and involvement in severe human diseases. Here, we investigated the functional properties of human TPC1 expressed in TPC-free vacuoles from Arabidopsis thaliana cells. Large (20 pA/pF) TPC1 currents were elicited by cytosolic addition of the phosphoinositide phosphatidylinositol-(3,5)-bisphosphate (PI(3,5)P2) with an apparent binding constant of ~15 nM. The channel is voltage-dependent, activating at positive potentials with single exponential kinetics and currents are Na+ selective, with measurable but low permeability to Ca2+. Cytosolic Ca2+ modulated hTPC1 in dual way: low μM cytosolic Ca2+ increased activity by shifting the open probability towards negative voltages and by accelerating the time course of activation. This mechanism was well-described by an allosteric model. Higher levels of cytosolic Ca2+ induced a voltage-dependent decrease of the currents compatible with Ca2+ binding in the permeation pore. Conversely, an increase in luminal Ca2+ decreased hTPC1 activity. Our data point to a process in which Ca2+ permeation in hTPC1 has a positive feedback on channel activity while Na+ acts as a negative regulator. We speculate that the peculiar Ca2+ and Na+ dependence are key for the physiological roles of the channel in organellar homeostasis and signalling. PMID:28252105
Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)
Thomson, Mark
2018-04-16
Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.
CP-violating top quark couplings at future linear e^+e^- colliders
NASA Astrophysics Data System (ADS)
Bernreuther, W.; Chen, L.; García, I.; Perelló, M.; Poeschl, R.; Richard, F.; Ros, E.; Vos, M.
2018-02-01
We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e^+e^- → t\\bar{t} production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e^+e^- collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.
NASA Astrophysics Data System (ADS)
Ramírez-Sánchez, F.; Gutierrez-Rodríguez, A.; Hernández-Ruiz, M. A.
2017-10-01
We study the phenomenology of the light h and heavy H Higgs boson production and decay in the context of a U(1) B - L extension of the standard model with an additional Z´ boson at future e + e - linear colliders with center-of-mass energies of √𝑠 = 500 - 3000 GeV and integrated luminosities of L = 500 - 2000 fb-1. The study includes the processes e + e - → (Z, Z´) → Zh and e + e - → (Z, Z´) → ZH, considering both the resonant and non-resonant effects. We find that the total number of expected Zh and ZH events can reach 106 and 105, respectively, which is a very optimistic scenario allowing us to perform precision measurements for both Higgs bosons h and H, as well as for the Z‧ boson in future high-energy and high-luminosity e + e - colliders.
Tao, Junjie; Feng, Chao; Ai, Bin; Kang, Ming
2016-01-01
Background and Aims Limestone karst areas possess high floral diversity and endemism. The genus Primulina, which contributes to the unique calcicole flora, has high species richness and exhibit specific soil-based habitat associations that are mainly distributed on calcareous karst soils. The adaptive molecular evolutionary mechanism of the genus to karst calcium-rich environments is still not well understood. The Ca2+-permeable channel TPC1 was used in this study to test whether its gene is involved in the local adaptation of Primulina to karst high-calcium soil environments. Methods Specific amplification and sequencing primers were designed and used to amplify the full-length coding sequences of TPC1 from cDNA of 76 Primulina species. The sequence alignment without recombination and the corresponding reconstructed phylogeny tree were used in molecular evolutionary analyses at the nucleic acid level and amino acid level, respectively. Finally, the identified sites under positive selection were labelled on the predicted secondary structure of TPC1. Key Results Seventy-six full-length coding sequences of Primulina TPC1 were obtained. The length of the sequences varied between 2220 and 2286 bp and the insertion/deletion was located at the 5′ end of the sequences. No signal of substitution saturation was detected in the sequences, while significant recombination breakpoints were detected. The molecular evolutionary analyses showed that TPC1 was dominated by purifying selection and the selective pressures were not significantly different among species lineages. However, significant signals of positive selection were detected at both TPC1 codon level and amino acid level, and five sites under positive selective pressure were identified by at least three different methods. Conclusions The Ca2+-permeable channel TPC1 may be involved in the local adaptation of Primulina to karst Ca2+-rich environments. Different species lineages suffered similar selective pressure associated with calcium in karst environments, and episodic diversifying selection at a few sites may play a major role in the molecular evolution of Primulina TPC1. PMID:27582362
Rollinson, Njal; Holt, Sarah M; Massey, Melanie D; Holt, Richard C; Nancekivell, E Graham; Brooks, Ronald J
2018-05-01
Temperature has a strong effect on ectotherm development rate. It is therefore possible to construct predictive models of development that rely solely on temperature, which have applications in a range of biological fields. Here, we leverage a reference series of development stages for embryos of the turtle Chelydra serpentina, which was described at a constant temperature of 20 °C. The reference series acts to map each distinct developmental stage onto embryonic age (in days) at 20 °C. By extension, an embryo taken from any given incubation environment, once staged, can be assigned an equivalent age at 20 °C. We call this concept "Equivalent Development", as it maps the development stage of an embryo incubated at a given temperature to its equivalent age at a reference temperature. In the laboratory, we used the concept of Equivalent Development to estimate development rate of embryos of C. serpentina across a series of constant temperatures. Using these estimates of development rate, we created a thermal performance curve measured in units of Equivalent Development (TPC ED ). We then used the TPC ED to predict developmental stage of embryos in several natural turtle nests across six years. We found that 85% of the variation of development stage in natural nests could be explained. Further, we compared the predictive accuracy of the model based on the TPC ED to the predictive accuracy of a degree-day model, where development is assumed to be linearly related to temperature and the amount of accumulated heat is summed over time. Information theory suggested that the model based on the TPC ED better describes variation in developmental stage in wild nests than the degree-day model. We suggest the concept of Equivalent Development has several strengths and can be broadly applied. In particular, studies on temperature-dependent sex determination may be facilitated by the concept of Equivalent Development, as development age maps directly onto the developmental series of the organism, allowing critical periods of sex determination to be delineated without invasive sampling, even under fluctuating temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Physics with e{sup +}e{sup -} Linear Colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barklow, Timothy L
2003-05-05
We describe the physics potential of e{sup +}e{sup -} linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosonsmore » and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e{sup +}e{sup -} linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines.« less
High susceptibility to fatty liver disease in two-pore channel 2-deficient mice.
Grimm, Christian; Holdt, Lesca M; Chen, Cheng-Chang; Hassan, Sami; Müller, Christoph; Jörs, Simone; Cuny, Hartmut; Kissing, Sandra; Schröder, Bernd; Butz, Elisabeth; Northoff, Bernd; Castonguay, Jan; Luber, Christian A; Moser, Markus; Spahn, Saskia; Lüllmann-Rauch, Renate; Fendel, Christina; Klugbauer, Norbert; Griesbeck, Oliver; Haas, Albert; Mann, Matthias; Bracher, Franz; Teupser, Daniel; Saftig, Paul; Biel, Martin; Wahl-Schott, Christian
2014-08-21
Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.
Performance study of the neutron-TPC
NASA Astrophysics Data System (ADS)
Huang, Meng; Li, Yulan; Niu, Libo; Deng, Zhi; Cheng, Xiaolei; He, Li; Zhang, Hongyan; Fu, Jianqiang; Yan, Yangyang; Cai, Yiming; Li, Yuanjing
2017-02-01
Fast neutron spectrometers will play an important role in the future of the nuclear industry and nuclear physics experiments, in tasks such as fast neutron reactor monitoring, thermo-nuclear fusion plasma diagnostics, nuclear reaction cross-section measurement, and special nuclear material detection. Recently, a new fast neutron spectrometer based on a GEM (Gas Electron Multiplier amplification)-TPC (Time Projection Chamber), named the neutron-TPC, has been under development at Tsinghua University. It is designed to have a high energy resolution, high detection efficiency, easy access to the medium material, an outstanding n/γ suppression ratio, and a wide range of applications. This paper presents the design, test, and experimental study of the neutron-TPC. Based on the experimental results, the energy resolution (FWHM) of the neutron-TPC can reach 15.7%, 10.3% and 7.0% with detection efficiency higher than 10-5 for 1.2 MeV, 1.81 MeV and 2.5 MeV neutrons respectively. Supported by National Natural Science Foundation of China (11275109)
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; et al.
The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outsidemore » the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.« less
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; An, R.
The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outsidemore » the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. In conclusion, this noise level is significantly lower than previous experiments utilizing warm front-end electronics.« less
Naringenin Impairs Two-Pore Channel 2 Activity And Inhibits VEGF-Induced Angiogenesis.
Pafumi, Irene; Festa, Margherita; Papacci, Francesca; Lagostena, Laura; Giunta, Cristina; Gutla, Vijay; Cornara, Laura; Favia, Annarita; Palombi, Fioretta; Gambale, Franco; Filippini, Antonio; Carpaneto, Armando
2017-07-11
Our research introduces the natural flavonoid naringenin as a novel inhibitor of an emerging class of intracellular channels, Two-Pore Channel 2 (TPC2), as shown by electrophysiological evidence in a heterologous system, i.e. Arabidopsis vacuoles lacking endogenous TPCs. In view of the control exerted by TPC2 on intracellular calcium signaling, we demonstrated that naringenin dampens intracellular calcium responses of human endothelial cells stimulated with VEGF, histamine or NAADP-AM, but not with ATP or Angiopoietin-1 (negative controls). The ability of naringenin to impair TPC2-dependent biological activities was further explored in an established in vivo model, in which VEGF-containing matrigel plugs implanted in mice failed to be vascularized in the presence of naringenin. Overall, the present data suggest that naringenin inhibition of TPC2 activity and the observed inhibition of angiogenic response to VEGF are linked by impaired intracellular calcium signaling. TPC2 inhibition is emerging as a key therapeutic step in a range of important pathological conditions including the progression and metastatic potential of melanoma, Parkinson's disease, and Ebola virus infection. The identification of naringenin as an inhibitor of TPC2-mediated signaling provides a novel and potentially relevant tool for the advancement of this field of research.
Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
Acciarri, R.; Adams, C.; An, R.; ...
2017-08-04
The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outsidemore » the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. In conclusion, this noise level is significantly lower than previous experiments utilizing warm front-end electronics.« less
Jaślan, D; Mueller, T D; Becker, D; Schultz, J; Cuin, T A; Marten, I; Dreyer, I; Schönknecht, G; Hedrich, R
2016-09-01
The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, structure modelling, site-directed mutagenesis, and in planta patch clamp studies to elucidate the molecular mechanisms of voltage-dependent channel gating in TPC1 in its native plant background. Structure-function analysis of the Arabidopsis TPC1 channel in planta confirmed that helix S10 operates as the major voltage-sensing site, with Glu450 and Glu478 identified as possible ion-pair partners for voltage-sensing Arg537. The contribution of helix S4 to voltage sensing was found to be negligible. Several conserved negative residues on the luminal site contribute to calcium binding, stabilizing the closed channel. During evolution of plant TPC1s from two separate Shaker-like domains, the voltage-sensing function in the N-terminal Shaker-unit (S1-S4) vanished. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Zeng, Qing-Guo; Ji, Li; Yang, Shuo
2015-03-01
In this paper, we investigate the production of a pair of doubly charged leptons associated with a gauge boson V(γ or Z) at future linear colliders via e+e- and γγ collisions. The numerical results show that the possible signals of the doubly charged leptons may be detected via the processes e+e- → VX++X-- and γγ → VX++X-- at future ILC or CLIC experiments. Supported in part by the National Natural Science Foundation of China under Grants Nos. 11275088, 11205023, 11375248 and the Program for Liaoning Excellent Talents in University under Grant No. LJQ2014135
Mechanism of vacuum breakdown in radio-frequency accelerating structures
NASA Astrophysics Data System (ADS)
Barengolts, S. A.; Mesyats, V. G.; Oreshkin, V. I.; Oreshkin, E. V.; Khishchenko, K. V.; Uimanov, I. V.; Tsventoukh, M. M.
2018-06-01
It has been investigated whether explosive electron emission may be the initiating mechanism of vacuum breakdown in the accelerating structures of TeV linear electron-positron colliders (Compact Linear Collider). The physical processes involved in a dc vacuum breakdown have been considered, and the relationship between the voltage applied to the diode and the time delay to breakdown has been found. Based on the results obtained, the development of a vacuum breakdown in an rf electric field has been analyzed and the main parameters responsible for the initiation of explosive electron emission have been estimated. The formation of craters on the cathode surface during explosive electron emission has been numerically simulated, and the simulation results are discussed.
Online beam energy measurement of Beijing electron positron collider II linear accelerator
NASA Astrophysics Data System (ADS)
Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Online beam energy measurement of Beijing electron positron collider II linear accelerator.
Wang, S; Iqbal, M; Liu, R; Chi, Y
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Low emittance electron storage rings
NASA Astrophysics Data System (ADS)
Levichev, E. B.
2018-01-01
Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, K.L.F.; Adolphsen, C.; Li, Z.
In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, duemore » to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm.« less
Left-handed and right-handed U(1) gauge symmetry
NASA Astrophysics Data System (ADS)
Nomura, Takaaki; Okada, Hiroshi
2018-01-01
We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; U(1) L × U(1) R . Then three right-handed neutrinos are naturally required to achieve U(1) R anomaly cancellations, while several mirror fermions are also needed to do U(1) L anomaly cancellations. Then we formulate the model, and discuss its testability of the new gauge interactions at collider physics such as the large hadron collider (LHC) and the international linear collider (ILC). In particular, we can investigate chiral structure of the interactions by the analysis of forward-backward asymmetry based on polarized beam at the ILC.
Müller, H-M; Van Auken, K M; Li, Y; Sternberg, P W
2018-03-09
The biomedical literature continues to grow at a rapid pace, making the challenge of knowledge retrieval and extraction ever greater. Tools that provide a means to search and mine the full text of literature thus represent an important way by which the efficiency of these processes can be improved. We describe the next generation of the Textpresso information retrieval system, Textpresso Central (TPC). TPC builds on the strengths of the original system by expanding the full text corpus to include the PubMed Central Open Access Subset (PMC OA), as well as the WormBase C. elegans bibliography. In addition, TPC allows users to create a customized corpus by uploading and processing documents of their choosing. TPC is UIMA compliant, to facilitate compatibility with external processing modules, and takes advantage of Lucene indexing and search technology for efficient handling of millions of full text documents. Like Textpresso, TPC searches can be performed using keywords and/or categories (semantically related groups of terms), but to provide better context for interpreting and validating queries, search results may now be viewed as highlighted passages in the context of full text. To facilitate biocuration efforts, TPC also allows users to select text spans from the full text and annotate them, create customized curation forms for any data type, and send resulting annotations to external curation databases. As an example of such a curation form, we describe integration of TPC with the Noctua curation tool developed by the Gene Ontology (GO) Consortium. Textpresso Central is an online literature search and curation platform that enables biocurators and biomedical researchers to search and mine the full text of literature by integrating keyword and category searches with viewing search results in the context of the full text. It also allows users to create customized curation interfaces, use those interfaces to make annotations linked to supporting evidence statements, and then send those annotations to any database in the world. Textpresso Central URL: http://www.textpresso.org/tpc.
Sealed operation, and circulation and purification of gas in the HARPO TPC
NASA Astrophysics Data System (ADS)
Frotin, M.; Gros, P.; Attié, D.; Bernard, D.; Dauvois, V.; Delbart, A.; Durand, D.; Geerebaert, Y.; Legand, S.; Magnier, P.; Poilleux, P.; Semeniouk, I.
2018-02-01
HARPO is a time projection chamber (TPC) demonstrator of a gamma-ray telescope and polarimeter in the MeV-GeV range, for a future space mission. We present the evolution of the TPC performance over a five month sealed-mode operation, by the analysis of cosmic-ray data, followed by the fast and complete recovery of the initial gas properties using a lightweight gas circulation and purification system.
Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition
Hockey, Leanne N.; Kilpatrick, Bethan S.; Eden, Emily R.; Lin-Moshier, Yaping; Brailoiu, G. Cristina; Brailoiu, Eugen; Futter, Clare E.; Schapira, Anthony H.; Marchant, Jonathan S.; Patel, Sandip
2015-01-01
ABSTRACT Two-pore channels (TPCs) are endolysosomal ion channels implicated in Ca2+ signalling from acidic organelles. The relevance of these ubiquitous proteins for human disease, however, is unclear. Here, we report that lysosomes are enlarged and aggregated in fibroblasts from Parkinson disease patients with the common G2019S mutation in LRRK2. Defects were corrected by molecular silencing of TPC2, pharmacological inhibition of TPC regulators [Rab7, NAADP and PtdIns(3,5)P2] and buffering local Ca2+ increases. NAADP-evoked Ca2+ signals were exaggerated in diseased cells. TPC2 is thus a potential drug target within a pathogenic LRRK2 cascade that disrupts Ca2+-dependent trafficking in Parkinson disease. PMID:25416817
Development work for a superconducting linear collider
NASA Technical Reports Server (NTRS)
Matheisen, Axel
1995-01-01
For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.
Fanfone, Deborah; Despretz, Nadège; Stanicki, Dimitri; Rubio-Magnieto, Jenifer; Fossépré, Mathieu; Surin, Mathieu; Rorive, Sandrine; Salmon, Isabelle; Vander Elst, Luce; Laurent, Sophie; Muller, Robert N; Saussez, Sven; Burtea, Carmen
2017-10-06
The incidence of papillary thyroid cancer has increased these last decades due to a better detection. High prevalence of nodules combined with the low incidence of thyroid cancers constitutes an important diagnostic challenge. We propose to develop an alternative diagnostic method to reduce the number of useless and painful thyroidectomies using a vectorized contrast agent for magnetic resonance imaging. Galectin-1 (gal-1), a protein overexpressed in well-differentiated thyroid cancer, has been targeted with a randomized linear 12-mer peptide library using the phage display technique. Selected peptides have been conjugated to ultrasmall superparamagnetic particles of iron oxide (USPIO). Peptides and their corresponding contrast agents have been tested in vitro for their specific binding and toxicity. Two peptides (P1 and P7) were selected according to their affinity toward gal-1. Their binding has been revealed by immunohistochemistry on human thyroid cancer biopsies, and they were co-localized with gal-1 by immunofluorescence on TPC-1 cell line. Both peptides induce a decrease in TPC-1 cells' adhesion to gal-1 immobilized on culture plates. After coupling to USPIO, the peptides preserved their affinity toward gal-1. Their specific binding has been corroborated by co-localization with gal-1 expressed by TPC-1 cells and by their ability to compete with anti-gal-1 antibody. The peptides and their USPIO derivatives produce no toxicity in HepaRG cells as determined by MTT assay. The vectorized contrast agents are potential imaging probes for thyroid cancer diagnosis. Moreover, the two gal-1-targeted peptides prevent cancer cell adhesion by interacting with the carbohydrate-recognition domain of gal-1.
Pitt, Samantha J; Funnell, Tim M; Sitsapesan, Mano; Venturi, Elisa; Rietdorf, Katja; Ruas, Margarida; Ganesan, A; Gosain, Rajendra; Churchill, Grant C; Zhu, Michael X; Parrington, John; Galione, Antony; Sitsapesan, Rebecca
2010-11-05
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca(2+) required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca(2+) from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca(2+) release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca(2+) that will enable it to act as a Ca(2+) release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca(2+)] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca(2+) release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca(2+) release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μM but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.
Hostler, David; Reis, Steven E; Bednez, James C; Kerin, Sarah; Suyama, Joe
2010-01-01
Background Thermal protective clothing (TPC) worn by firefighters provides considerable protection from the external environment during structural fire suppression. However, TPC is associated with physiological derangements that may have adverse cardiovascular consequences. These derangements should be treated during on-scene rehabilitation periods. Objective The present study examined heart rate and core temperature responses during the application of four active cooling devices, currently being marketed to the fire service for on-scene rehab, and compared them to passive cooling in a moderate temperature (approximately 24°C) and to an infusion of cold (4°C) saline. Methods Subjects exercised in TPC in a heated room. Following an initial exercise period (BOUT 1) the subjects exited the room, removed TPC, and for 20 minutes cooled passively at room temperature, received an infusion of cold normal saline, or were cooled by one of four devices (fan, forearm immersion in water, hand cooling, water perfused cooling vest). After cooling, subjects donned TPC and entered the heated room for another 50-minute exercise period (BOUT 2). Results Subjects were not able to fully recover core temperature during a 20-minute rehab period when provided rehydration and the opportunity to completely remove TPC. Exercise duration was shorter during BOUT 2 when compared to BOUT 1 but did not differ by cooling intervention. The overall magnitude and rate of cooling and heart rate recovery did not differ by intervention. Conclusions No clear advantage was identified when active cooling devices and cold intravenous saline were compared to passive cooling in a moderate temperature after treadmill exercise in TPC. PMID:20397868
Lin, Cun; Yu, Yawei; Kadono, Takashi; Iwata, Michiaki; Umemura, Kenji; Furuichi, Takuya; Kuse, Masaki; Isobe, Minoru; Yamamoto, Yoko; Matsumoto, Hideaki; Yoshizuka, Kazuharu; Kawano, Tomonori
2005-07-08
Previously, effect of Al ions on calcium signaling was assessed in tobacco cells expressing a Ca2+-monitoring luminescent protein, aequorin and a newly isolated putative plant Ca2+ channel protein from Arabidopsis thaliana, AtTPC1 (two-pore channel 1). TPC1 channels were shown to be the only channel known to be sensitive to Al and they are responsive to reactive oxygen species and cryptogein, a fungal elicitor protein. Thus, involvement of TPC1 channels in calcium signaling leading to development of plant defense mechanism has been suggested. Then, the use of Al as a specific inhibitor of TPC1-type plant calcium channels has been proposed. Here, using transgenic tobacco BY-2 cells expressing aequorin, we report on the evidence in support of the involvement of Al-sensitive signaling pathway requiring TPC1-type channel-dependent Ca2+ influx in response to salicylic acid, a key plant defense-inducing agent, but not to an elicitor prepared from the cell wall of rice blast disease fungus Magnaporthe grisea. In addition, involvement of Al-sensitive Ca2+ channels in response to cold shock was also tested. The data suggested that the elicitor used here induces the Ca2+ influx via Al-insensitive path, while salicylic acid and cold-shock-stimulate the influx of Ca2+ via Al-sensitive mechanism.
Jha, Archana; Ahuja, Malini; Patel, Sandip; Brailoiu, Eugen; Muallem, Shmuel
2014-01-01
Lysosomal Ca2+ homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca2+ signaling was the discovery of the two-pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg2+ and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg2+ specifically inhibited TPC2 outward current, whereas lysosomal Mg2+ partially inhibited both outward and inward currents in a lysosomal lumen pH-dependent manner. Under controlled Mg2+, TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP-mediated Ca2+ release in intact cells is regulated by Mg2+, PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP-mediated Ca2+ signaling and link this pathway to Mg2+ homeostasis and MAP kinases, pointing to roles for lysosomal Ca2+ in cell growth, inflammation and cancer. PMID:24502975
Jha, Archana; Ahuja, Malini; Patel, Sandip; Brailoiu, Eugen; Muallem, Shmuel
2014-03-03
Lysosomal Ca(2+) homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca(2+) signaling was the discovery of the two-pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg(2+) and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg(2+) specifically inhibited TPC2 outward current, whereas lysosomal Mg(2+) partially inhibited both outward and inward currents in a lysosomal lumen pH-dependent manner. Under controlled Mg(2+), TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP-mediated Ca(2+) release in intact cells is regulated by Mg(2+), PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP-mediated Ca(2+) signaling and link this pathway to Mg(2+) homeostasis and MAP kinases, pointing to roles for lysosomal Ca(2+) in cell growth, inflammation and cancer.
Lear, Pamela V.; González-Touceda, David; Porteiro Couto, Begoña; Viaño, Patricia; Guymer, Vanessa; Remzova, Elena; Tunn, Ruth; Chalasani, Annapurna; García-Caballero, Tomás; Hargreaves, Iain P.; Tynan, Patricia W.; Christian, Helen C.; Nogueiras, Rubén
2015-01-01
Intracellular calcium-permeable channels have been implicated in thermogenic function of murine brown and brite/beige adipocytes, respectively transient receptor potential melastin-8 and transient receptor potential vanilloid-4. Because the endo-lysosomal two-pore channels (TPCs) have also been ascribed with metabolic functionality, we studied the effect of simultaneously knocking out TPC1 and TPC2 on body composition and energy balance in male mice fed a chow diet. Compared with wild-type mice, TPC1 and TPC2 double knockout (Tpcn1/2−/−) animals had a higher respiratory quotient and became obese between 6 and 9 months of age. Although food intake was unaltered, interscapular brown adipose tissue (BAT) maximal temperature and lean-mass adjusted oxygen consumption were lower in Tpcn1/2−/− than in wild type mice. Phosphorylated hormone-sensitive lipase expression, lipid density and expression of β-adrenergic receptors were also lower in Tpcn1/2−/− BAT, whereas mitochondrial respiratory chain function and uncoupling protein-1 expression remained intact. We conclude that Tpcn1/2−/− mice show mature-onset obesity due to reduced lipid availability and use, and a defect in β-adrenergic receptor signaling, leading to impaired thermogenic activity, in BAT. PMID:25545384
Garcia-Ivars, Jorge; Iborra-Clar, Maria-Isabel; Alcaina-Miranda, Maria-Isabel; Mendoza-Roca, José-Antonio; Pastor-Alcañiz, Laura
2015-06-15
Table olive processing wastewaters (TOPW) have high salt concentration and total phenolic content (TPC) causing many environmental problems. To reduce them, ultrafiltration (UF) was applied for treating TOPW. However, NaCl, which is the main responsible of salinity in TOPW, and phenols are small molecules that cannot be separated by conventional UF membranes. They have serious problems caused by fouling, which can be overcome using membrane modification techniques. For these reasons, photomodification may be an effective technique to obtain a stream rich in TPC due to the changes in membrane surface properties. UV-modification in the presence of two hydrophilic compounds (polyethylene glycol and aluminium oxide) was performed to achieve membranes with high reductions of organic matter and to keep the TPC as high as possible. Commercial polyethersulfone (PES) membranes of 30 kDa were used. Surface modification was evaluated using FTIR-ATR spectroscopy and membrane performance was studied by calculating the rejection ratios of colour, chemical oxygen demand (COD) and TPC. Results demonstrated that UF is a useful pre-treatment to reduce organic matter from TOPW, obtaining a permeate rich in TPC. PES/Al2O3 membranes displayed superior antifouling properties and rejection values, keeping high the TPC (>95%). Therefore, UF using modified membranes is an appropriate and sustainable technique for treating TOPW. Copyright © 2015 Elsevier B.V. All rights reserved.
Korekar, Girish; Stobdan, Tsering; Arora, Richa; Yadav, Ashish; Singh, Shashi Bala
2011-11-01
Fourteen apricot genotypes grown under similar cultural practices in Trans-Himalayan Ladakh region were studied to find out the influence of genotype on antioxidant capacity and total phenolic content (TPC) of apricot kernel. The kernels were found to be rich in TPC ranging from 92.2 to 162.1 mg gallic acid equivalent/100 g. The free radical-scavenging activity in terms of inhibitory concentration (IC(50)) ranged from 43.8 to 123.4 mg/ml and ferric reducing antioxidant potential (FRAP) from 154.1 to 243.6 FeSO(4).7H(2)O μg/ml. A variation of 1-1.7 fold in total phenolic content, 1-2.8 fold in IC(50) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 1-1.6 fold in ferric reducing antioxidant potential among the examined kernels underlines the important role played by genetic background for determining the phenolic content and antioxidant potential of apricot kernel. A positive significant correlation between TPC and FRAP (r=0.671) was found. No significant correlation was found between TPC and IC(50); FRAP and IC(50); TPC and physical properties of kernel. Principal component analysis demonstrated that genotypic effect is more pronounced towards TPC and total antioxidant capacity (TAC) content in apricot kernel while the contribution of seed and kernel physical properties are not highly significant.
Accelerator Science: Circular vs. Linear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.
Cai, Shengbao; Wang, Ou; Wu, Wei; Zhu, Songjie; Zhou, Feng; Ji, Baoping; Gao, Fengyi; Zhang, Di; Liu, Jia; Cheng, Qian
2012-01-11
The aim of present work was to investigate the effect of solid-state fermentation with filamentous fungi (Aspergillus oryzae var. effuses, Aspergillus oryzae, and Aspergillus niger) on total phenolics content (TPC), flavonoids, and antioxidant activities of four subfractions of oat, namely, n-hexane, ethyl acetate (EA), n-butanol, and water, and compare them to their corresponding subfractions of unfermented oat. The TPC and total flavonoids increased dramatically, especially in EA subfractions (p < 0.05). The levels of antioxidant activity of subfractions were also significantly enhanced (p < 0.05). The highest antioxidant activities were also found in the EA subfractions. The polyphenols in EA were analyzed by high-performance liquid chromatography at 280 nm. Most polyphenols were increased remarkably, especially ferulic and caffeic acids. There was a clear correlation between the TPC and antioxidant activity. In conclusion, fungi fermentation is a potential bioprocess for increasing the TPC, flavonoids, and antioxidant activities of oat-based food.
Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs
NASA Astrophysics Data System (ADS)
Towell, Rusty; Niffte Collaboration
2015-10-01
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.
Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition.
Hockey, Leanne N; Kilpatrick, Bethan S; Eden, Emily R; Lin-Moshier, Yaping; Brailoiu, G Cristina; Brailoiu, Eugen; Futter, Clare E; Schapira, Anthony H; Marchant, Jonathan S; Patel, Sandip
2015-01-15
Two-pore channels (TPCs) are endolysosomal ion channels implicated in Ca(2+) signalling from acidic organelles. The relevance of these ubiquitous proteins for human disease, however, is unclear. Here, we report that lysosomes are enlarged and aggregated in fibroblasts from Parkinson disease patients with the common G2019S mutation in LRRK2. Defects were corrected by molecular silencing of TPC2, pharmacological inhibition of TPC regulators [Rab7, NAADP and PtdIns(3,5)P2] and buffering local Ca(2+) increases. NAADP-evoked Ca(2+) signals were exaggerated in diseased cells. TPC2 is thus a potential drug target within a pathogenic LRRK2 cascade that disrupts Ca(2+)-dependent trafficking in Parkinson disease. © 2015. Published by The Company of Biologists Ltd.
Physics Goals for the Planned Next Linear Collider Engineering Test Facility
NASA Astrophysics Data System (ADS)
Raubenheimer, T. O.
2001-10-01
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.
RF pulse shape control in the compact linear collider test facility
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Corsini, Roberto
2018-07-01
The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.
Model identification of new heavy Z‧ bosons at ILC with polarized beams
NASA Astrophysics Data System (ADS)
Pankov, A. A.; Tsytrinov, A. V.
2017-12-01
Extra neutral gauge bosons, Z‧s, are predicted by many theoretical scenarios of physics beyond the Standard Model, and intensive searches for their signatures will be performed at present and future high energy colliders. It is quite possible that Z‧s are heavy enough to lie beyond the discovery reach expected at the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z‧ exchanges may occur at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We here discuss in this context the expected sensitivity to Z‧ parameters of fermion-pair production cross sections at the planned International Linear Collider (ILC), especially as regards the potential of distinguishing different Z‧ models once such deviations are observed. Specifically, we evaluate the discovery and identification reaches on Z‧ gauge bosons pertinent to the E 6, LR, ALR, and SSM classes of models at the ILC.
1992-12-01
the reader to the hospital TPC program, the concept , the La:., and tbe progran implementation responsibilities. it qives a brief explanation of the DoD...Community Hospital of Monterey Peninsula (CHOMP). This thesis briefly introduces the reader to the hospital TPC program, the concept , the Law, and the...current program. E. THESIS CHAPTER SUMMARY The first chapter briefly introduces the reader to the hospital TPC program, the concept , the law, and the
Gravitational mass of relativistic matter and antimatter
Kalaydzhyan, Tigran
2015-10-13
The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, m g, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits -65 < m g/m <110 not excluding the so-calledmore » antigravity phenomenon, i.e. repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 < m g/m < 1.04 on the gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron–Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 -4 ×10 -7 < m g/m <1 +2 ×10 -7 for an electron and positron. Lastly, we comment on a possibility of performing complementary tests at the future International Linear Collider (ILC) and Compact Linear Collider (CLIC).« less
Gravitational mass of relativistic matter and antimatter
NASA Astrophysics Data System (ADS)
Kalaydzhyan, Tigran
2015-12-01
The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65
Han, Yaoqiang; Dang, Anhong; Ren, Yongxiong; Tang, Junxiong; Guo, Hong
2010-12-20
In free space optical communication (FSOC) systems, channel fading caused by atmospheric turbulence degrades the system performance seriously. However, channel coding combined with diversity techniques can be exploited to mitigate channel fading. In this paper, based on the experimental study of the channel fading effects, we propose to use turbo product code (TPC) as the channel coding scheme, which features good resistance to burst errors and no error floor. However, only channel coding cannot cope with burst errors caused by channel fading, interleaving is also used. We investigate the efficiency of interleaving for different interleaving depths, and then the optimum interleaving depth for TPC is also determined. Finally, an experimental study of TPC with interleaving is demonstrated, and we show that TPC with interleaving can significantly mitigate channel fading in FSOC systems.
Izumi, Shigeko Seiko; Basin, Basilia; Presley, Margo; McCalmont, Jean; Furuno, Jon P; Noble, Brie; Baggs, Judith G; Curtis, J Randall
2018-05-24
Many older adults live with serious illness for years before their death. Nurse-led primary palliative care could improve their quality of life and ability to stay in their community. To assess feasibility and acceptability of a nurse-led Transitional Palliative Care (TPC) program for older adults with serious illness. The study was a pilot trial of the TPC program in which registered nurses assisted patients with symptom management, communication with care providers, and advance care planning. Forty-one older adults with chronic conditions were enrolled in TPC or standard care groups. Feasibility was assessed through enrollment and attrition rates and degree of intervention execution. Acceptability was assessed through surveys and exit interviews with participants and intervention nurses. Enrollment rate for those approached was 68%, and completion rate for those enrolled was 71%. The TPC group found the intervention acceptable and helpful and was more satisfied with care received than the control group. However, one-third of participants perceived that TPC was more than they needed, despite the number of symptoms they experienced and the burdensomeness of their symptoms. More than half of the participants had little to no difficulty participating in daily activities. This study demonstrated that the nurse-led TPC program is feasible, acceptable, and perceived as helpful. However, further refinement is needed in selection criteria to identify the population who would most benefit from primary palliative care before future test of the efficacy of this intervention.
Mizobuchi, Teruaki; Kurihara, Masatoshi; Ebana, Hiroki; Yamanaka, Sumitaka; Kataoka, Hideyuki; Okamoto, Shouichi; Kobayashi, Etsuko; Kumasaka, Toshio; Seyama, Kuniaki
2018-05-15
Birt-Hogg-Dubé syndrome (BHDS) is a recently recognized inherited multiple cystic lung disease causing recurrent pneumothoraces. Similarly to the lesions in patients with lymphangioleiomyomatosis (LAM), the pulmonary cysts are innumerable and widely dispersed and cannot all be removed. We recently described a total pleural covering (TPC) that covers the entire visceral pleura with oxidized regenerated cellulose (ORC) mesh. TPC successfully prevented the recurrence of pneumothorax in LAM patients. The purpose of this study was to evaluate the effect of an ORC pleural covering on pneumothorax recurrence in BHDS patients. This retrospective study enrolled a total of 81 pneumothorax patients with the diagnosis of BHDS who underwent 90 covering surgeries from January 2010 to August 2017 at Tamagawa Hospital. During the first half of the study period, a lower pleural covering (LPC) which covered the affected area with ORC mesh was mainly used to treat 38 pneumothoraces. During the second half of the study period, TPC was primarily performed for 52 pneumothoraces. All the thoracoscopic surgeries were successfully performed without serious complications (≥ Clavien-Dindo grade III). The median follow-up periods after LPC/TPC were 66/34 months, respectively. Pneumothorax recurrence rates after LPC at 2.5/5/7.5 years postoperatively were 5.4/12/42%, respectively; none of the patients who had underwent TPC developed postoperative pneumothorax recurrence (P = 0.032). TPC might be an effective option for surgical treatment of intractable pneumothorax in patients with BHDS.
Chao, Yu-Kai; Schludi, Verena; Chen, Cheng-Chang; Butz, Elisabeth; Nguyen, O N Phuong; Müller, Martin; Krüger, Jens; Kammerbauer, Claudia; Ben-Johny, Manu; Vollmar, Angelika M; Berking, Carola; Biel, Martin; Wahl-Schott, Christian A; Grimm, Christian
2017-10-10
Two-pore channels (TPCs) are endolysosomal cation channels. Two members exist in humans, TPC1 and TPC2. Functional roles associated with the ubiquitously expressed TPCs include VEGF-induced neoangiogenesis, LDL-cholesterol trafficking and degradation, physical endurance under fasting conditions, autophagy regulation, the acrosome reaction in sperm, cancer cell migration, and intracellular trafficking of pathogens such as Ebola virus or bacterial toxins (e.g., cholera toxin). In a genome-wide association study for variants associated with human pigmentation characteristics two coding variants of TPC2, rs35264875 (encoding M484L) and rs3829241 (encoding G734E), have been found to be associated with a shift from brown to blond hair color. In two recent follow-up studies a role for TPC2 in pigmentation has been further confirmed. However, these human polymorphic variants have not been functionally characterized until now. The development of endolysosomal patch-clamp techniques has made it possible to investigate directly ion channel activities and characteristics in isolated endolysosomal organelles. We applied this technique here to scrutinize channel characteristics of the polymorphic TPC2 variants in direct comparison with WT. We found that both polymorphisms lead to a gain of channel function by independent mechanisms. We next conducted a clinical study with more than 100 blond- and brown/black-haired individuals. We performed a genotype/phenotype analysis and subsequently isolated fibroblasts from WT and polymorphic variant carriers for endolysosomal patch-clamp experimentation to confirm key in vitro findings.
Accelerator Science: Circular vs. Linear
Lincoln, Don
2018-06-12
Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilabâs Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.
Linear beam dynamics and ampere class superconducting RF cavities at RHIC
NASA Astrophysics Data System (ADS)
Calaga, Rama R.
The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half-cell electron gun and a five-cell SRF linac cavity are presented. Several RF and beam dynamics issues ultimately resulting in an optimum cavity design are discussed in detail.
Beam dynamics issues in linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1989-06-01
The primary goal of present and future linear colliders is to maximize the integrated luminosity for the experimental program. Beam dynamics plays a central role in the maximization of integrated luminosity. It is the major issue in the production of small beam sizes and low experimental backgrounds and is also an important factor in the production of particle numbers, in the acceleration process, and in the number of bunches. The beam dynamics effects on bunches which are extracted from the damping rings, accelerated in the linac, collimated, momentum analyzed, and finally delivered to the final focus are reviewed. The effectsmore » of bunch compression, transverse and longitudinal wakefields, BNS damping, energy definition, dispersion, emittance, bunch aspect ratio, feedback, and stability are all important. 11 refs., 1 tab.« less
Power supply and pulsing strategies for the future linear colliders
NASA Astrophysics Data System (ADS)
Brogna, A. S.; Göttlicher, P.; Weber, M.
2012-02-01
The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.
Physics Goals for the Planned Next Linear Collider Engineering Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raubenheimer, Tor O
2001-10-02
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less
Physics goals for the planned next linear collider engineering test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtlandt L Bohn et al.
2001-06-26
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less
Physics goals for the planned next linear collider engineering test facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, C.; Michelotti, L.; Ostiguy, J.-F.
2001-07-17
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less
Multipacting optimization of a 750 MHz rf dipole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delayen, Jean R.; Castillo, Alejandro
2014-12-01
Crab crossing schemes have been proposed to re-instate luminosity degradation due to crossing angles at the interaction points in next generation colliders to avoid the use of sharp bending magnets and their resulting large synchrotron radiation generation, highly undessirable in the detector region. The rf dipole has been considered for a different set of applications in several machines, both rings and linear colliders. We present in this paper a study of the effects on the multipacting levels and location depending on geometrical variations on the design for a crabbing/deflecting application in a high current (3/0.5 A), high repetition (750 MHz)more » electron/proton collider, as a matter to provide a comparison point for similar applications of rf dipoles.« less
NASA Technical Reports Server (NTRS)
Woods, Stephen S.; Saulsberry, Regor
2010-01-01
Pyrotechnic thruster pressure cartridges (TPCs) are used for aeroshell separation on a new NASA crew launch vehicle. Nondestructive evaluation (NDE) during TPC acceptance testing indicated that internal assemblies moved during shock and vibration testing due to an internal bond anomaly. This caused concerns that the launch environment might produce the same movement and release propellant grains that might be prematurely ignited through impact or through electrostatic discharge (ESD) as grains vibrated against internal surfaces. Since a new lot could not be fabricated in time, a determination had to be made as to whether the lot was acceptable to fly. This paper discusses the ESD evaluation and a separate paper addresses the impact problem. A challenge to straight forward assessment existed due to the unavailability of triboelectric data characterizing the static charging characteristics of the propellants within the TPC. The approach examined the physical limitations for charge buildup within the TPC system geometry and evaluated it for discharge under simulated vibrations used to qualify components for launch. A facsimile TPC was fabricated using SS 301 for the case and surrogate worst case materials for the propellants based on triboelectric data. System discharge behavior was evaluated by applying high voltage to the point of discharge in air and by placing worst case charge accumulations within the facsimile TPC and forcing discharge. The facsimile TPC contained simulated propellant grains and lycopodium, a well characterized indicator for static discharge in dust explosions, and was subjected to accelerations equivalent to the maximum accelerations possible during launch. The magnitude of charge generated within the facsimile TPC system was demonstrated to lie in a range of 100 to 10,000 times smaller than the spark energies measured to ignite propellant grains in industry standard discharge tests. The test apparatus, methodology, and results are described in this paper.
Cane, Matthew C.; Parrington, John; Rorsman, Patrik; Galione, Antony; Rutter, Guy A.
2016-01-01
Ca2+ signals are central to the stimulation of insulin secretion from pancreatic β-cells by glucose and other agents, including glucagon-like peptide-1 (GLP-1). Whilst Ca2+ influx through voltage-gated Ca2+ channels on the plasma membrane is a key trigger for glucose-stimulated secretion, mobilisation of Ca2+ from acidic stores has been implicated in the control of more localised Ca2+ changes and membrane potential. Nicotinic acid adenine dinucleotide phosphate (NAADP), generated in β-cells in response to high glucose, is a potent mobiliser of these stores, and has been proposed to act through two pore channels (TPC1 and TPC2, murine gene names Tpcn1 and Tpcn2). Whilst the role of TPC1 in the control of Ca2+ mobilisation and insulin secretion was recently confirmed, conflicting data exist for TPC2. Here, we used the selective and efficient deleter strain, Ins1Cre to achieve β-cell selective deletion of the Tpcn2 gene in mice. βTpcn2 KO mice displayed normal intraperitoneal and oral glucose tolerance, and glucose-stimulated Ca2+ dynamics and insulin secretion from islets were similarly normal. GLP-1-induced Ca2+ increases involved an increase in oscillation frequency from 4.35 to 4.84 per minute (p = 0.04) at 8 mM glucose, and this increase was unaffected by the absence of Tpcn2. The current data thus indicate that TPC2 is not absolutely required for normal glucose- or incretin-stimulated insulin secretion from the β-cell. Our findings suggest that TPC1, whose expression tended to increase in Tpcn2 null islets, might be sufficient to support normal Ca2+ dynamics in response to stimulation by nutrients or incretins. PMID:26769314
High Voltage Tests in the LUX-ZEPLIN System Test
NASA Astrophysics Data System (ADS)
Whitis, Thomas; Lux-Zeplin Collaboration
2016-03-01
The LUX-ZEPLIN (LZ) project is a dark matter direct detection experiment using liquid xenon. The detector is a time projection chamber (TPC) requiring the establishment of a large electric field inside of the detector in order to drift ionization electrons. Historically, many xenon TPC designs have been unable to reach their design fields due to light production and breakdown. The LZ System Test is scaled so that with a cathode voltage of -50 kV, it will have the fields that will be seen in the LZ detector at -100 kV. It will use a fully instrumented but scaled-down version of the LZ TPC design with a vessel set and gas system designed for quick turnaround, allowing for iterative modifications to the TPC prototype and instrumentation. This talk will present results from the high voltage tests performed during the first runs of the LZ System Test.
A thiourea derivative as potential ionophore for copper sensing
NASA Astrophysics Data System (ADS)
Ying, Kook Shih; Heng, Lee Yook; Hassan, Nurul Izzaty; Hasbullah, Siti Aishah
2018-04-01
A new thiourea derivative, N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide (TPC), as a potential copper ionophore was investigated. TPC was immobilized via drop casting method into poly(n-butyl acrylate) pBA membrane and the sensor was characterized by potentiometric method. The sensor fabricated based on TPC showed a Nernstian response towards copper ion with the slope of 27.07±2.84 mV/decade in the range of 1.0×10-6 - 1.0-10-4 M and limit of detection of 6.24 × 10-7 M. In addition, based on the separate solution method (SSM), the logarithm selectivity coefficients were less than -3.00 for monovalent, divalent and trivalent cations that are present in the environmental water samples such as K+, Ca2+, Mg2+ and Fe3+. This confirmed that the sensor fabricated with TPC exhibited good sensitivity and selectivity towards copper ion.
Alignment of the Stanford Linear Collider Arcs: Concepts and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitthan, R.; Bell, B.; Friedsam, H.
1987-02-01
The alignment of the Arcs for the Stanford Linear Collider at SLAC has posed problems in accelerator survey and alignment not encountered before. These problems come less from the tight tolerances of 0.1 mm, although reaching such a tight statistically defined accuracy in a controlled manner is difficult enough, but from the absence of a common reference plane for the Arcs. Traditional circular accelerators, including HERA and LEP, have been designed in one plane referenced to local gravity. For the SLC Arcs no such single plane exists. Methods and concepts developed to solve these and other problems, connected with themore » unique design of SLC, range from the first use of satellites for accelerator alignment, use of electronic laser theodolites for placement of components, computer control of the manual adjustment process, complete automation of the data flow incorporating the most advanced concepts of geodesy, strict separation of survey and alignment, to linear principal component analysis for the final statistical smoothing of the mechanical components.« less
Penilla, R P; Rodríguez, M H; López, A D; Viader-Salvadó, J M; Sánchez, C N
2002-09-01
Biopterin, isoxanthopterin and 6-pterincarboxylic acid were identified in the head of the malaria vector mosquito Anopheles albimanus Weidemann (Diptera: Culicidae) by HPLC. Total pteridine concentrations (TPC) were estimated in heads, body parts (BP: abdomen, legs and wings) and whole bodies of insectary-reared and field-collected females, by spectrofluorometry, to investigate whether they could be used for age determination. Pteridine concentrations diminished with age in both mosquito groups. TPC correlated with chronological age in insectary-reared sugar-fed females (heads: r2 = 0.35, BP: r2 = 0.34, P < 0.001), but lower correlation occurred in blood-fed females (heads: r2 = 0.22, BP: r2 = 0.27). TPC differed among females of the same age fed with blood at different times (P < 0.05), indicating that bloodmeals modify the diminution rate of pteridines with age. Nevertheless, a polynomial significant correlation was documented for TPC and the number of ovipositions (heads: r2 = 0.24, BP: r2 = 0.27, whole body: r2 = 0.52, P < 0.001) in insectary-reared mosquitoes. This correlation was lower in field-collected mosquitoes (heads: r2 = 0.14, BP: r2 = 0.10, P < 0.05), which showed a remarkable pteridine increase in one-parous females. The correlation of TPC in whole body with physiological age was much less (r2 = 0.03). These observations indicate that TPC determination by spectrofluorometry is not a reliable method to estimate the age of An. albimanus females from the feral population.
Brianza, Stefano; Vogel, Susan; Rothstock, Stephan; Thalhauser, Martin; Desrochers, Andrè; Boure, Ludovic
2013-01-01
To compare proximal fragment displacement and the peri-implant strain using a pin-sleeve cast (PSC) system and a transfixation pin cast (TPC) system on a cadaveric calf metacarpal bone fracture model. Experimental. Cadaveric calf metacarpal bones (n = 6 pairs). Paired samples were instrumented with either the TPC or the PSC systems. Strain gauges were applied proximal to the transfixation implants and the bones encased in cast material. The distal part of the construct was removed to mimic an unstable distal comminuted fracture. Constructs were fixed to the material testing machine and initially loaded in axial compression in their elastic range to determine construct stiffness. Constructs were loaded cyclically with a sinusoidal curve that increased until failure. Variables compared statistically between constructs were the initial construct stiffness and, at given load points, the mean metacarpal axial displacement in loading and unloading condition and mean axial strain. Initial construct mean ± SD axial stiffness was not significantly different between constructs (PSC: 689 ± 258; TPC: 879 ± 306 N/mm). There was no significant difference between either investigated displacements of metacarpal bones transfixed with PSC and those transfixed with TPC at all load points. The PSC constructs had a significant decrease in the recorded mean strain (502 ± 340 μstrain) compared to the TPC construct (1738 ± 2218 μstrain). The PSC significantly reduced peri-implant strain with comparable axial displacement to the TPC in cadaveric calf metacarpal bones. © Copyright 2012 by The American College of Veterinary Surgeons.
Soldà, Giulia; Merlino, Giuseppe; Fina, Emanuela; Brini, Elena; Moles, Anna; Cappelletti, Vera; Daidone, Maria Grazia
2016-01-01
Numerous studies have reported the existence of tumor-promoting cells (TPC) with self-renewal potential and a relevant role in drug resistance. However, pathways and modifications involved in the maintenance of such tumor subpopulations are still only partially understood. Sequencing-based approaches offer the opportunity for a detailed study of TPC including their transcriptome modulation. Using microarrays and RNA sequencing approaches, we compared the transcriptional profiles of parental MCF7 breast cancer cells with MCF7-derived TPC (i.e. MCFS). Data were explored using different bioinformatic approaches, and major findings were experimentally validated. The different analytical pipelines (Lifescope and Cufflinks based) yielded similar although not identical results. RNA sequencing data partially overlapped microarray results and displayed a higher dynamic range, although overall the two approaches concordantly predicted pathway modifications. Several biological functions were altered in TPC, ranging from production of inflammatory cytokines (i.e., IL-8 and MCP-1) to proliferation and response to steroid hormones. More than 300 non-coding RNAs were defined as differentially expressed, and 2,471 potential splicing events were identified. A consensus signature of genes up-regulated in TPC was derived and was found to be significantly associated with insensitivity to fulvestrant in a public breast cancer patient dataset. Overall, we obtained a detailed portrait of the transcriptome of a breast cancer TPC line, highlighted the role of non-coding RNAs and differential splicing, and identified a gene signature with a potential as a context-specific biomarker in patients receiving endocrine treatment. PMID:26556871
Design of the data quality control system for the ALICE O2
NASA Astrophysics Data System (ADS)
von Haller, Barthélémy; Lesiak, Patryk; Otwinowski, Jacek;
2017-10-01
ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). A major upgrade of the experiment is planned for 2019-20. In order to cope with a 100 times higher data rate and with the continuous readout of the Time Projection Chamber (TPC), it is necessary to upgrade the Online and Offline computing to a new common system called O2. The online Data Quality Monitoring (DQM) and the offline Quality Assurance (QA) are critical aspects of the data acquisition and reconstruction software chains. The former intends to provide shifters with precise and complete information in order to quickly identify and overcome problems while the latter aims at providing good quality data for physics analyses. DQM and QA typically involve the gathering of data, its distributed analysis by user-defined algorithms, the merging of the resulting objects and their visualization. This paper discusses the architecture and the design of the data Quality Control system that regroups the DQM and QA. In addition it presents the main design requirements and early results of a working prototype. A special focus is put on the merging of monitoring objects generated by the QC tasks. The merging is a crucial and challenging step of the O2 system, not only for QC but also for the calibration. Various scenarios and implementations have been made and large-scale tests carried out. This document presents the final results of this extensive work on merging. We conclude with the plan of work for the coming years that will bring the QC to production by 2019.
NASA Astrophysics Data System (ADS)
Bundgaard, Jeremy J.
Nuclear physicists have been recently called upon for new, high precision fission measurements to improve existing fission models, ultimately enabling engineers to design next generation reactors as well as guarding the nation's stockpile. In response, a resurgence in fission research is aimed at developing detectors to design and build new experiments to meet these needs. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unprecedented precision. The fissionTPC is annually deployed to the Los Alamos Neutron Science Center LANSCE where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's (LLNL) TPC lab, where it is tested with spontaneous fission (SF) from radioactive sources, typically 252Cf and 244Cm, to characterize detector response, improve performance, and evolve the design. One of the experiments relevant for both nuclear energy and nonproliferation is to measure the neutron induced fission of 239Pu, which exhibits a high alpha activity, generating a large unwanted background for the fission measurements. The ratio of alpha to fission present in our neutron induced fission measurement of 239Pu is on the same order of magnitude as the 244Cm alpha/SF branching ratio. The high alpha rate required the TPC to be triggering on fission signals during beam time and we set out to build a trigger system, which, using 244Cm to produce a similar alpha to fission ratio as 239Pu in the neutron beam, we successfully demonstrated the viability of this approach. The trigger design has been evolved for use in NIFFTE's current measurements at LANSCE. In addition to several hardware and software contributions in the development and operation of the fissionTPC, a central purpose of this thesis was also to develop analyses to demonstrate the fissionTPC's performance abilities/limitations in measuring the alpha/SF branching ratio of 252Cf and 244Cm. Our method results in benchmarking the fissionTPC's ability to produce a competitive alpha/SF ratio for 252Cf with sub-percent precision.
The XXth International Workshop High Energy Physics and Quantum Field Theory
NASA Astrophysics Data System (ADS)
The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year Workshop is organized jointly by the SINP MSU and the Southern Federal University (SFedU) and will take place in the holiday hotel "Luchezarniy" (Effulgent) situated on the Black Sea shore in a picturesque natural park in the suburb of the largest Russian resort city Sochi - the host city of the XXII Olympic Winter Games to be held in 2014. The main topics to be covered are: Experimental results from the LHC. Tevatron summary: the status of the Standard Model and the boundaries on BSM physics. Future physics at Linear Colliders and super B-factories. Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders: SUSY extensions of the Standard Model; particle interactions in space-time with extra dimensions; strings, quantum groups and new ideas from modern algebra and geometry. Higher order corrections and resummations for collider phenomenology. Automatic calculations of Feynman diagrams and Monte Carlo simulations. LHC/LC and astroparticle/cosmology connections. Modern nuclear physics and relativistic nucleous-nucleous collisions.
Higgs physics at the CLIC electron-positron linear collider.
Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S
2017-01-01
The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.
A First Assessment of Two-Beam Linear Colliders and Longer-Term Two-Beam R& D Issues at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loew, Greg
2001-06-05
The purpose of this document is to summarize the work that has been done at SLAC in the last three or four months to assess the possibilities of two-beam linear colliders proposed by Ron Ruth, and to compare these colliders to the current NLC designs and their costs. The work is based on general discussions with C. Adolphsen, D. Burke, J. Irwin, J. Paterson, R. Ruth, T. Lavine and T. Raubenheimer, with considerable work done by the latter two. Given the complexities of these machines, the fact that the designs are far from complete and that all cost estimates aremore » still in a state of flux, it is clear that the conclusions drawn in this report cannot be cast in concrete. On the other hand, it does not seem too early to present the results that have been gathered so far, even if the facts contain significant uncertainties and the costs have large error bars. Now that R. Ruth has returned to SLAC, he will be able to add his point of view to the discussion. At this time, the conclusions presented here are the sole responsibility of the author.« less
Perales-Sánchez, Janitzio X K; Reyes-Moreno, Cuauhtémoc; Gómez-Favela, Mario A; Milán-Carrillo, Jorge; Cuevas-Rodríguez, Edith O; Valdez-Ortiz, Angel; Gutiérrez-Dorado, Roberto
2014-09-01
The aim of this study was to optimize the germination conditions of amaranth seeds that would maximize the antioxidant activity (AoxA), total phenolic (TPC), and flavonoid (TFC) contents. To optimize the germination bioprocess, response surface methodology was applied over three response variables (AoxA, TPC, TFC). A central composite rotable experimental design with two factors [germination temperature (GT), 20-45 ºC; germination time (Gt), 14-120 h] in five levels was used; 13 treatments were generated. The amaranth seeds were soaked in distilled water (25 °C/6 h) before germination. The sprouts from each treatment were dried (50 °C/8 h), cooled, and ground to obtain germinated amaranth flours (GAF). The best combination of germination bioprocess variables for producing optimized GAF with the highest AoxA [21.56 mmol trolox equivalent (TE)/100 g sample, dw], TPC [247.63 mg gallic acid equivalent (GAE)/100 g sample, dw], and TFC [81.39 mg catechin equivalent (CAE)/100 g sample, dw] was GT = 30 ºC/Gt = 78 h. The germination bioprocess increased AoxA, TPC, and TFC in 300-470, 829, and 213%, respectively. The germination is an effective strategy to increase the TPC and TFC of amaranth seeds for enhancing functionality with improved antioxidant activity.
Performance Evaluation of the COBRA GEM for the Application of the TPC
NASA Astrophysics Data System (ADS)
Terasaki, Kohei; Hamagaki, Hideki; Gunji, Taku; Yamaguchi, Yorito
2014-09-01
Suppression of the back-drifting ions from avalanche region to drift space (IBF: Ion Backflow) is the key for a Time Projection Chamber (TPC) since IBF easily distorts the drift field. To suppress IBF, Gating Grid system is widely used for the TPC but this limits the data taking rate. Gas Electron Multiplier (GEM) has advantages in the reduction of IBF and high rate capability. By adopting GEM, it is possible to run a TPC continuously under high rate and high multiplicity conditions. Motivated by the study of IBF reduction for RICH with Thick COBRA, which has been developed by F. A. Amero et al., we developed COBRA GEMs for the application of a TPC. With a stack configuration, IBF reaches about 0.1 ~ 0.5%, which is ×5--10 better IBF than the standard GEMs. However, the measured energy resolution with COBRA is 20% (σ) and this is much worse than the resolution with standard GEMs. Measurement of long-time stability of gain indicates that gain of COBRA varies significantly due to charging up effect. Simulation studies based on Garfield++ are performed for understanding quantitatively the reasons of worse energy resolution and instability of gain. In this presentation, we will report the simulation studies together with the measured performance of the COBRA GEM.
Fermilab | Publications and Videos
International Linear Collider Global Design Effort. Science Node The Science Node is a free online publication , viewers can catch a true behind-the-scenes look of the United States' premier particle physics laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syphers, M. J.; Chattopadhyay, S.
An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW levelmore » intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.« less
Parallel computation of transverse wakes in linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Xiaowei; Ko, Kwok
1996-11-01
SLAC has proposed the detuned structure (DS) as one possible design to control the emittance growth of long bunch trains due to transverse wakefields in the Next Linear Collider (NLC). The DS consists of 206 cells with tapering from cell to cell of the order of few microns to provide Gaussian detuning of the dipole modes. The decoherence of these modes leads to two orders of magnitude reduction in wakefield experienced by the trailing bunch. To model such a large heterogeneous structure realistically is impractical with finite-difference codes using structured grids. The authors have calculated the wakefield in the DSmore » on a parallel computer with a finite-element code using an unstructured grid. The parallel implementation issues are presented along with simulation results that include contributions from higher dipole bands and wall dissipation.« less
Coupling Correction and Beam Dynamics at Ultralow Vertical Emittance in the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steier, Christoph; Robin, D.; Wolski, A.
2008-03-17
For synchrotron light sources and for damping rings of linear colliders it is important to be able to minimize the vertical emittance and to correct the spurious vertical dispersion. This allows one to maximize the brightness and/or the luminosity. A commonly used tool to measure the skew error distribution is the analysis of orbit response matrices using codes like LOCO. Using the new Matlab version of LOCO and 18 newly installed power supplies for individual skew quadrupoles at the ALS the emittance ratio could be reduced below 0.1% at 1.9 GeV yielding a vertical emittance of about 5 pm. Atmore » those very low emittances, additional effects like intra beam scattering become more important, potentially limiting the minimum emittance for machine like the damping rings of linear colliders.« less
CCD-based vertex detector for ILC
NASA Astrophysics Data System (ADS)
Stefanov, Konstantin D.
2006-12-01
Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide a superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last few years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips, to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. The first set of prototype devices have been successfully designed, manufactured and tested, with second generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype has been manufactured.
Wenzel, Jonathan; Storer Samaniego, Cheryl; Wang, Lihua; Burrows, Laron; Tucker, Evan; Dwarshuis, Nathan; Ammerman, Michelle; Zand, Ali
2017-03-01
The black walnut, Junglas nigra, is indigenous to eastern North America, and abscission of its fruit occurs around October. The fruit consists of a husk, a hard shell, and kernel. The husk is commonly discarded in processing, though it contains phenolic compounds that exhibit antioxidant and antimicrobial properties. For this study, black walnut husks were extracted using supercritical carbon dioxide with an ethanol modifier. The effects of temperature, ethanol concentration, and drying of walnut husks prior to extraction upon antioxidant potential were evaluated using a factorial design of experiments. The solvent density was held constant at 0.75 g/mL. The optimal extraction conditions were found to be 68°C and 20 wt-% ethanol in supercritical carbon dioxide. At these conditions, the antioxidant potential as measured by the ferric reducing ability of plasma (FRAP) assay was 0.027 mmol trolox equivalent/g (mmol TE/g) for dried walnut husk and 0.054 mmol TE/g for walnut husks that were not dried. Antioxidant potential was also evaluated using the total phenolic content (TPC) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assays and the FRAP assay was found to linearly correlate to the TPC assay.
A comparison of basal and eye-flush tears for the analysis of cat tear proteins.
Petznick, Andrea; Evans, Margaret D M; Madigan, Michele C; Markoulli, Maria; Garrett, Qian; Sweeney, Deborah F
2011-02-01
To identify a rapid and effective tear collection method providing sufficient tear volume and total protein content (TPC) for analysis of individual proteins in cats. Domestic adult short-haired cats (12-37 months; 2.7-6.6 kg) were used in the study. Basal tears without stimulation and eye-flush tears after instillation of saline (10 μl) were collected using microcapillary tubes from animal eyes either unwounded control or wounded with 9-mm central epithelial debridement giving four groups with n = 3. Tear comparisons were based on total time and rate for tear collection, TPC using micro bicinchoninic acid (BCA), tear immunoglobulin A (IgA), total matrix-metalloproteinase (MMP)-9 concentration using sandwich enzyme-linked immunosorbent assay (ELISA) and MMP-9 activity. Eye-flush tears were collected significantly faster than basal tears in wounded eyes with higher rates for tear collection in unwounded control and wounded eyes. TPC was significantly lower in eye-flush tears compared to basal tears. The relative proportion of tear IgA normalized to TPC (% IgA of TPC) was not significantly different between basal and eye-flush tears. In unwounded control eyes, MMP-9 was slightly higher in eye-flush than in basal tears; activity of MMP-9 in both tear types was similar. In wounded eyes, eye-flush tears showed highest MMP-9 levels and activity on Day 1, which subsequently decreased to Day 7. MMP-9 activity in basal tears from wounded eyes did not display changes in expression. Eye-flush tears can be collected rapidly providing sufficient tear volume and TPC. This study also indicates that eye-flush tears may be more suitable than basal tears for the analysis of MMPs following corneal wounding. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.
Chen, Zhongchuan Will; Kohan, Jessica; Perkins, Sherrie L.; Hussong, Jerry W.; Salama, Mohamed E.
2014-01-01
Background: Whole slide imaging (WSI) is widely used for education and research, but is increasingly being used to streamline clinical workflow. We present our experience with regard to satisfaction and time utilization using oil immersion WSI for presentation of blood/marrow aspirate smears, core biopsies, and tissue sections in hematology/oncology tumor board/treatment planning conferences (TPC). Methods: Lymph nodes and bone marrow core biopsies were scanned at ×20 magnification and blood/marrow smears at 83X under oil immersion and uploaded to an online library with areas of interest to be displayed annotated digitally via web browser. Pathologist time required to prepare slides for scanning was compared to that required to prepare for microscope projection (MP). Time required to present cases during TPC was also compared. A 10-point evaluation survey was used to assess clinician satisfaction with each presentation method. Results: There was no significant difference in hematopathologist preparation time between WSI and MP. However, presentation time was significantly less for WSI compared to MP as selection and annotation of slides was done prior to TPC with WSI, enabling more efficient use of TPC presentation time. Survey results showed a significant increase in satisfaction by clinical attendees with regard to image quality, efficiency of presentation of pertinent findings, aid in clinical decision-making, and overall satisfaction regarding pathology presentation. A majority of respondents also noted decreased motion sickness with WSI. Conclusions: Whole slide imaging, particularly with the ability to use oil scanning, provides higher quality images compared to MP and significantly increases clinician satisfaction. WSI streamlines preparation for TPC by permitting prior slide selection, resulting in greater efficiency during TPC presentation. PMID:25379347
Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)
Thomson, Mark
2018-05-21
In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.
Two-Pore Channels: Catalyzers of Endolysosomal Transport and Function
Grimm, Christian; Chen, Cheng-Chang; Wahl-Schott, Christian; Biel, Martin
2017-01-01
Two-pore channels (TPCs) have recently emerged as a novel class of non-selective cation channels in the endolysosomal system. There are two members in the human genome, TPC1 and TPC2. Studies with TPC knockout and knockdown models have revealed that these channels participate in the regulation of multiple endolysosomal trafficking pathways which when dysregulated can lead to or influence the development of a range of different diseases such as lysosomal storage, metabolic, or infectious diseases. TPCs have been demonstrated to be activated by different endogenous stimuli, PI(3,5)P2 and NAADP, and ATP has been found to block TPC activation via mTOR. Loss of TPCs can lead to obesity and hypercholesterolemia, and to a slow-down of intracellular virus and bacterial toxin trafficking, it can affect VEGF-induced neoangiogenesis, autophagy, human hair pigmentation or the acrosome reaction in sperm. Moreover, physiological roles of TPCs in cardiac myocytes and pancreatic β cells have been postulated. PMID:28223936
Slow Control System for the NIFFTE Collaboration TPC
NASA Astrophysics Data System (ADS)
Ringle, Erik; Niffte Collaboration Collaboration
2011-10-01
As world energy concerns continue to dominate public policy in the 21st century, the need for cleaner and more efficient nuclear power is necessary. In order to effectively design and implement plans for generation IV nuclear reactors, more accurate fission cross-section measurements are necessary. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration, in an effort to meet this need, has constructed a Time Projection Chamber (TPC) which aims to reduce the uncertainty of the fission cross-section to less than 1%. Using the Maximum Integration Data Acquisition System (MIDAS) framework, slow control measurements are integrated into a single interface to facilitate off-site monitoring. The Hart Scientific 1560 Black Stack will be used with two 2564 Thermistor Scanner Modules to monitor internal temperature of the TPC. A Prologix GPIB to Ethernet controller will be used to interface the hardware with MIDAS. This presentation will detail the design and implementation of the slow control system for the TPC. This work was supported by the U.S. Department of Energy Division of Energy Research.
DarkSide-50: A WIMP Search with a Two-phase Argon TPC
NASA Astrophysics Data System (ADS)
Meyers, P. D.; Agnes, P.; Alton, D.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; DAngelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Joliet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Perfetto, F.; Pocar, A.; Pordes, S.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, R.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zuzel, G.
DarkSide-50 is a two phase argon TPC for direct dark matter detection which is installed at the Gran Sasso underground laboratory, Italy. DarkSide-50 has a 50-kg active volume and will make use of underground argon low in 39Ar. The TPC is installed inside an active neutron veto made with boron-loaded high radiopurity liquid scintillator. The neutron veto is installed inside a 1000 m3 water Cherenkov muon veto. The DarkSide-50 TPC and cryostat are assembled in two radon-free clean rooms to reduce radioactive contaminants. The overall design aims for a background free exposure after selection cuts are applied. The expected sensitivity for WIMP-nucleon cross section is of the order of 10-45 cm2 for WIMP masses around 100 GeV/c2. The commissioning and performance of the detector are described. Details of the low-radioactivity underground argon and other unique features of the projects are reported.
Singh, Barinderjit; Singh, Narpinder; Thakur, Sheetal; Kaur, Amritpal
2017-03-01
In this study, extraction of polyphenols using different solvents (acetone, ethanol, methanol and water) with ultrasound and conventional method from whole mung bean (WMB), hull and cotyledon was conducted. Total phenolic content (TPC), total flavonoids content (TFC), total antioxidant activities (TAA), ferric reducing power (FRP) and DPPH radical scavenging activity were determined. Ultrasound treated extracts exhibited higher TPC, TFC, TAA, FRP and DPPH in different mung bean fractions than CSE. Among the solvents, acetone showed better TPC, TFC, TAA, FRP and DPPH. Hull had significantly higher TPC, TFC, TAA, FRP and DPPH than WMB and cotyledon. Sinapic acid (SA) was the major polyphenol in different fractions. Acetone extract of hull showed high polyphenol content. SA, ferulic acid, catechin, p-coumaric acid, resveratrol, quercetin and luteolin were the major contributors to antioxidant activity of acetone extract. Mung bean hull contained the maximum polyphenols and acetone was observed to be the best extraction medium for polyphenols in combination with ultrasound.
NASA Astrophysics Data System (ADS)
Cang, Chunlei; Aranda, Kimberly; Ren, Dejian
2014-09-01
Action potentials (APs) are fundamental cellular electrical signals. The genesis of short APs lasting milliseconds is well understood. Ultra-long APs (ulAPs) lasting seconds to minutes also occur in eukaryotic organisms, but their biological functions and mechanisms of generation are largely unknown. Here, we identify TPC3, a previously uncharacterized member of the two-pore channel protein family, as a new voltage-gated Na+ channel (NaV) that generates ulAPs, and that establishes membrane potential bistability. Unlike the rapidly inactivating NaVs that generate short APs in neurons, TPC3 has a high activation threshold, activates slowly and does not inactivate—three properties that help generate long-lasting APs and guard the membrane against unintended perturbation. In amphibian oocytes, TPC3 forms a channel similar to channels induced by depolarization and sperm entry into eggs. TPC3 homologues are present in plants and animals, and they may be important for cellular processes and behaviours associated with prolonged membrane depolarization.
Guan, Jingxia; Zhang, Shaofeng; Zhou, Qin; Yuan, Zhenhua; Lu, Zuneng
2016-09-01
To investigate the effect of thrombin preconditioning (TPC) on the intracerebral hemorrhage (ICH)-induced proliferation, migration, and function of subventriclular zone (SVZ) cells and to find new strategies that enhance endogenous neurogenesis after ICH. Male Sprague-Dawley rats were randomly divided into 3 groups (ICH, TPC, and control group). Rats of each group were randomly divided into 5 subgroups (3-d, 7-d, 14-d, 21-d, and 28-d subgroup). ICH was caused by intrastrial stereotactic administration of collagenase type IV. Brdu was used to label newborn SVZ cells. Organotypic brain slices were cultured to dynamically observe the migration of SVZ cells at living brain tissue. Migration of Dil-labeled SVZ cells in living brain slices was traced by time-lapse microscopy. To assess whether SVZ cells migrating to injured striatum had the ability to form synapses with other cells, brain slices from each group were double immunolabeled with Brdu and synapsin I. The number of Brdu-positive cells markedly increased in the ipsilateral SVZ and striatum 3 days after TPC, peaked at 14 days (P < 0.01), continued to 21 days, and then gradually decreased at 28 days with significant difference compared to the ICH group at each time point (P < 0.01). Migration of Dil-labeled SVZ cells in brain slices in each group was observed and imaged during a 12-h period. Dil-labeled SVZ cells in the TPC group were observed to migrate laterally toward striatum with time with a faster velocity compared to the ICH group (P < 0.01). Our study also demonstrated that TPC induced strong colocalization of Brdu and synapsin I in the ipsilateral striatum between 3 and 28 days after injury.TPC made colocalization of Brdu and synapsin I appear earlier and continue for a longer time compared to the ICH group. Our results demonstrated that TPC could promote proliferation, migration, and function of SVZ cells after ICH, which may provide a new idea for enhancing endogenous neurogenesis and developing new therapeutic strategies against ICH-induced brain injury.
Departure gate of acidic Ca2+ confirmed
Jentsch, Thomas J; Hoegg-Beiler, Maja B; Vogt, Janis
2015-01-01
More potent, but less known than IP3 that liberates Ca2+ from the ER, NAADP releases Ca2+ from acidic stores. The notion that TPC channels mediate this Ca2+ release was questioned recently by studies suggesting that TPCs are rather PI(3,5)P2-activated Na+ channels. Ruas et al (2015) now partially reconcile these views by showing that TPCs significantly conduct both cations and confirm their activation by both NAADP and PI(3,5)P2. They attribute the failure of others to observe TPC-dependent NAADP-induced Ca2+ release in vivo to inadequate mouse models that retain partial TPC function. PMID:26022292
NASA Astrophysics Data System (ADS)
Arimoto, Y.; Higashi, N.; Igarashi, Y.; Iwashita, Y.; Ino, T.; Katayama, R.; Kitaguchi, M.; Kitahara, R.; Matsumura, H.; Mishima, K.; Nagakura, N.; Oide, H.; Otono, H.; Sakakibara, R.; Shima, T.; Shimizu, H. M.; Sugino, T.; Sumi, N.; Sumino, H.; Taketani, K.; Tanaka, G.; Tanaka, M.; Tauchi, K.; Toyoda, A.; Tomita, T.; Yamada, T.; Yamashita, S.; Yokoyama, H.; Yoshioka, T.
2015-11-01
A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with 6Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.
NASA Astrophysics Data System (ADS)
Bachri, A.; Elmhamdi, A.; Hawron, M.; Grant, P.; Zazoum, B.; Martin, C.
2017-10-01
The xenon time projection chamber (TPC) promises a novel detection method for neutrinoless double-beta decay (0ν β β ) experiments. The TPC is capable of discovering the rare 0ν β β ionization signal of a distinct topological signature, with a decay energy Qββ = 2.458 MeV . However, more frequent internal (within TPC) and external events are also capable of depositing energy in the range of the Qβ β -value inside the chamber, thus mimicking 0ν β β or interfering with its direct observation. In the following paper, we illustrate a methodology for background radiation evaluation, assuming a basic cylindrical design for a toy titanium TPC that is capable of containing 100 kg of xenon gas at 20 atm pressure; we estimate the background budget and analyze the most prominent problematic events via theoretical calculation. Gamma rays emitted from nuclei of 214Bi and 208Tl present in the outer-shell titanium housing of the TPC are an example of such events for which we calculate probabilities of occurrences. We also study the effect of alpha-neutron (α-n)-induced neutrons and calculate their rate. Alpha particles which are created by the decay of naturally occurring uranium and thorium present in most materials, can react with the nucleus of low Z elements, prompting the release of neutrons and leading to thermal neutron capture. Our calculations suggest that the typical polytetrafluoroethylene (PTFE) inner coating of the chamber would constitute the primary material for neutron production, specifically; we find that the fluorine component of Teflon is much more likely to undergo an (α-n) reaction. From known contamination, we calculate an alpha production rate to be 5.5 × 107 alpha/year for the highest-purity titanium vessel with a Teflon lining. Lastly, using measurements of neutron flux from alpha bombardment, we estimate the expected neutron flux from the materials of the proposed toy TPC and identify all gamma rays (prompt or delayed, of energies comparable to the Qβ β -value) originating from thermal neutron capture with all stable elemental isotopes present in the TPC. We show that to limit the most probable reactions to a rate of one event per year or less, the neutron flux would have to be reduced to (3-6) × 10-10 cm-2ṡs-1. The predictions of our crude theoretical calculation are in good agreement with full simulation of TPC radiation background by existing experimental collaboration using xenon for 0ν β β experiment.
Ma, Yuqin; Zhang, Xia; Wang, Yutao
2017-01-01
This study investigated the effect of thyroid stimulating hormone (TSH) on the proliferation of papillary thyroid carcinoma (PTC) cells and the therapeutic effect of levothyroxine sodium (TH). PTC cells (TPC-1) were cultured using 0.1, 1.0 and 10 U/l TSH and 10−2, 10−4 and 10−6 mol/l TH. After the appropriate concentration was screened, TPC-1 cells were further divided into control group, TSH group, TH group and TSH+TH group. The cell proliferation was detected via methyl thiazolyl tetrazolium (MTT) method, TPC-1 cell cycle was detected via flow cytometer, and the mRNA and protein expression of cyclin D1 were detected via real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Compared with control group, TSH significantly promoted the proliferation of TPC-1 cells (P<0.05 or P<0.01), obviously promoted the transition of TPC-1 cells from G1 phase to S phase (P<0.01) and remarkably increased the mRNA and protein expression of cyclin D1 (P<0.01); but TH had a significant inhibitory effect on these results of TSH (P<0.05 or P<0.01). TSH can promote the proliferation of PTC cells, and the appropriate complement of TH can inhibit its proliferation. PMID:29250166
NASA Astrophysics Data System (ADS)
An, YoungHwa; Lee, Jeongwon; Jo, JongGab; Jung, Bong-Ki; Lee, HyunYeong; Chung, Kyoung-Jae; Na, Yong-Su; Hahm, T. S.; Hwang, Y. S.
2017-01-01
An efficient and robust ECH (electron cyclotron heating)-assisted plasma start-up scheme with a low loop voltage and low volt-second consumption utilizing the trapped particle configuration (TPC) has been developed in the versatile experiment spherical torus (VEST). The TPC is a mirror-like magnetic field configuration providing a vertical magnetic field in the same direction as the equilibrium field. It significantly enhances ECH pre-ionization with enhanced particle confinement due to its mirror effect, and intrinsically provides an equilibrium field with a stable decay index enabling prompt plasma current initiation. Consequently, the formation of TPC before the onset of the loop voltage allows the plasma to start up with a lower loop voltage and lower volt-second consumption as well as a wider operation range in terms of ECH pre-ionization power and H2 filling pressure. The TPC can improve the widely-used field null configuration significantly for more efficient start-up when ECH pre-ionization is used. This can then be utilized in superconducting tokamaks requiring a low loop voltage start-up, such as ITER, or in spherical tori with limited volt-seconds. The TPC can be particularly useful in superconducting tokamaks with a limited current slew-rate of superconducting PF coils, as it can save volt-second consumption before plasma current initiation by providing prompt initiation with an intrinsic stable equilibrium field.
Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siemann, R.H.
The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
The Command and Control Reference Model for Modeling, Simulations, and Technology Applications
1994-01-20
NUMBER Basic Research Group (BRG), Technical Panel for C3 (TPC3) Joint Directors of Laboratories (JDL) JDL TPC3 BRG NRaD, San Diego , CA 92152; RADC...wind, ionization, pressure, pollution, ... mesofeature (weather, man-made) cloud, storm, fog, smog, dust, fire, jet stream, smoke, aurora borealis
Linear Collider project database
&D projects circa 2005 List of who is thinking of working on what. At present this includes non SLAC, FNAL, and Cornell meetings. Ordered list of who is thinking of working on what. At present this
Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...
2016-01-20
The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less
A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihara, T.
A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials andmore » with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown.« less
NASA Astrophysics Data System (ADS)
Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi
2017-11-01
We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.
Design of 140 MW X-band Relativistic Klystron for Linear Collider
NASA Astrophysics Data System (ADS)
Dolbilov, G. V.; Azorsky, N. I.; Shvetsov, V. S.; Balakin, V. E.; Avrakhov, P. V.; Kazakov, S. Yu.; Teryaev, V. E.; Vogel, V. F.
1997-05-01
It has been reported at EPAC-96 on successful experimental results on achievement of 100 MW output rf power in a wide aperture (15 mm), high gain (80 dB) 14 GHz VLEPP klystron with distributed suppression of parasitic oscillations (G.V. Dolbilov et al., Proc. EPAC-96, Sitges (Barselona), 10-14 June, 1996, Vol. 3, p. 2143). This report presents design of an electrodynamic structure of the X-band klystron for linear collider with a higher efficiency up to 56 % which will be achieved at the same parameters of the electron beam (U = 1 MeV, I = 250 A, emittance 0.05 π cm\\cdotrad). Design rf output power of the klystron is 140 MW. Experimental investigations of electrodynamic structure of the klystron are planned to perform using the driving beam of the JINR LIA-3000 induction accelerator (E = 1 MeV, I = 250 A, τ = 250 ns).
High-yield positron systems for linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, J.E.
1989-04-01
Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for everymore » electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.« less
State of the art in electromagnetic modeling for the Compact Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Kabel, Andreas; Lee, Lie-Quan
SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less
Enhanced Compton Backscattering in a Periodic Mirror System for Polarized Positron Beam Generation
NASA Astrophysics Data System (ADS)
Miyahara, Yoshikazu
2002-05-01
By colliding a circularly polarized high power laser beam with a high-energy electron beam, intense circularly polarized γ-rays can be generated, which in turn can be used to produce a longitudinally polarized positron beam for a linear collider. In the present paper, an optical mirror system with periodic focal points is considered to generate intense polarized γ-rays. A CO2 laser beam propagates back and forth in a series of holed mirrors in a straight line. The diffraction loss through the holes is negligibly small, so that the laser beam can be used repeatedly for the collision. The beam size is reduced to 22 μm at a minimum and kept the same in 20 unit cells, ten of which are combined in series. A 5.8 GeV electron beam is focused to 30 μm at a minimum in a series of triplets of permanent quadrupole magnets to generate γ-rays of 60 MeV at a maximum. A γ-ray yield required for a positron beam in a linear collider can be obtained by 10 laser sources with a power of 3.1 kW each, which is considerably lower than the total power assumed in a previous proposal.
Kadota, Yoshihisa; Fukui, Eriko; Kitahara, Naoto; Okura, Eiji; Ohta, Mitsunori
2016-07-01
We report a patient with vascular-type Ehlers-Danlos syndrome (vEDS) who developed pneumothorax and was treated with a total pleural covering technique (TPC). A 24-year-old man developed repeat pneumothorax with intermittent hemo-sputum. Based on unusual radiological manifestations of lung lesions and physical findings, EDS was suspected as an underlying cause of the pneumothorax. Surgical treatment was performed using a mediastinal fat pad and TPC, and no relapse was seen up to 2 years after surgery. TPC is a less invasive surgical approach for selected patients with vEDS. Accurate underlying diagnosis of vEDS and systemic evaluation of vascular complications are necessary before planning surgery.
Gravitational waves from dark first order phase transitions and dark photons
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Marcianò, Antonino
2018-01-01
Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon’s space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates. Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)
Effects of deep-fat frying temperature on antioxidant properties of whole wheat doughnuts
USDA-ARS?s Scientific Manuscript database
The total phenolic content (TPC), phenolic acid composition, and in vitro antioxidant capacity of whole wheat donuts fried at 120, 140, 160, or 180'C were determined and compared in two types of wheat to identify the effects of frying temperature. Significant differences (P<0.05) in TPC were observe...
Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model
NASA Astrophysics Data System (ADS)
Díaz, Marco Aurelio; Rojas, Nicolás; Urrutia-Quiroga, Sebastián; Valle, José W. F.
2017-08-01
We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.
Overview of the CLIC detector and its physics potential
NASA Astrophysics Data System (ADS)
Ström, Rickard
2017-12-01
The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.
Conceptual Design for CLIC Gun Pulser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Tao
The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.
When Waves Collide: Future Conflict
1995-01-01
predictions merely guesswork, and forecasts often nothing more than co- herent fiction masquerading as fact.2 Trends and megatrends , which are linear...transportation, on-site inspection, and environmental cleanup—including radi- ological, chemical, and biological —as well as enforcement of the
International Linear Collider Technical Design Report (Volumes 1 through 4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison M.
2013-03-27
The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.
Antioxidant properties of selected fruit cultivars grown in Sri Lanka.
Silva, K D R R; Sirasa, M S F
2018-01-01
Extracts of twenty locally available Sri Lankan fruits were analysed for 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferrous reducing antioxidant power (FRAP), total phenolic content (TPC), total flavonoid content (TFC) and vitamin C content. The results showed that gooseberry (Phyllanthus emblica 'local') exhibited the highest DPPH scavenging activity (111.25mg ascorbic acid equivalent antioxidant capacity (AEAC)/g), FRAP (1022.05μmol FeSO 4 /g), TPC (915.7mg gallic acid equivalents (GAE)/100g), TFC (873.2mg catechin equivalents (CE)/100g) and vitamin C (136.8mg ascorbic acid equivalents (AAE)/100g), respectively. Sugar apple (Annona squamosa 'local') and star fruit (Averrhoa carambola 'Honey Sweet') obtained the second and third highest antioxidant activities in terms of rankings of FRAP, DPPH activities, TPC, TFC and vitamin C content. Strong correlation between vitamin C, TPC and TFC with FRAP and DPPH showed their contribution to antioxidant capacity. Among the selected fruits, underutilized fruit cultivar gooseberry showed the highest overall antioxidant potential. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fission cross section uncertainties with the NIFFTE TPC
NASA Astrophysics Data System (ADS)
Sangiorgio, Samuele; Niffte Collaboration
2014-09-01
Nuclear data such as neutron-induced fission cross sections play a fundamental role in nuclear energy and defense applications. In recent years, understanding of these systems has become increasingly dependent upon advanced simulation and modeling, where uncertainties in nuclear data propagate in the expected performances of existing and future systems. It is important therefore that uncertainties in nuclear data are minimized and fully understood. For this reason, the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure energy-differential (n,f) cross sections with unprecedented precision. The presentation will discuss how the capabilities of the NIFFTE TPC allow to directly measures systematic uncertainties in fission cross sections, in particular for what concerns fission-fragment identification, and target and beam uniformity. Preliminary results from recent analysis of 238U/235U and 239Pu/235U data collected with the TPC will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
3D reconstruction of nuclear reactions using GEM TPC with planar readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bihałowicz, Jan Stefan
2015-02-24
The research program of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) laboratory under construction in Magurele, Romania facilities the need of developing a gaseous active-target detector providing 3D reconstruction of charged products of nuclear reactions induced by gamma beam. The monoenergetic, high-energy (E{sub γ} > 19 MeV) gamma beam of intensity 10{sup 13}γ/s allows studying nuclear reactions in astrophysics. A Time Projection Chamber with crossed strip readout (eTPC) is proposed as one of the imaging detectors. The special feature of the readout electrode structure is a 2D reconstruction based on the information read out simultaneously from three arrays ofmore » strips that form virtual pixels. It is expected to reach similar spatial resolution as for pixel readout at largely reduced cost of electronics. The paper presents the current progress and first results of the small scale prototype TPC which is a one of implementation steps towards eTPC detector proposed in the Technical Design Report of Charged Particles Detection at ELI-NP.« less
Optimization of an organic yogurt based on sensorial, nutritional, and functional perspectives.
Karnopp, Ariadne Roberto; Oliveira, Katherine Guimarães; de Andrade, Eriel Forville; Postingher, Bruna Mara; Granato, Daniel
2017-10-15
The effects of purple grape juice (PGJ), grape skin flour (GSF), and oligofructose (OLI) on proximate composition, total phenolic content (TPC), antioxidant activity (AA), sensory, physicochemical, and textural properties of yogurts were analyzed using response surface methodology. Multiple regression models were proposed and results showed that PGJ increased the viscosity, AA, and TPC, while GSF increased the ash and total fiber contents of yogurts. GSF and OLI increased the hardness and consistency. A simultaneous optimization was performed to maximize TPC, ash and fibers contents, and sensory acceptance: a yogurt containing 1.7% GSF and 8.0% PGJ had a high fiber (5.60±0.13%) and ash (0.76±0.02%) contents, TPC (28.32±2.10mg GAE/100g), AA toward DPPH (57.85±1.36mg AAE/100g), and total reducing capacity (28.86±5.19mg QE/100g). The optimized yogurt had 79% acceptability index, indicating the use of PGJ and GSF is a feasible alternative to increase the functional properties of yogurts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rodsamran, Pattrathip; Sothornvit, Rungsinee
2018-03-01
Microencapsulation was investigated to enhance the stability of Thai rice grass extract. Microencapsulated powder (MP) was formed using total solid of extract solution and maltodextrin ratios of 1:4 (MP 1:4) and 1:9 (MP 1:9). The absence of an endothermic peak for both MPs confirmed all extract solutions were coated with maltodextrin. MP 1:9 had a lower total phenolic content (TPC) but was higher in antioxidant capacity than MP 1:4. Moreover, the TPC of the MPs slightly decreased (70.02-93.04%) during storage at 10, 30 and 70°C for 30d. Comparatively, the TPC of the extract solution significantly decreased from 100% down to 20.8%, 11.2% and 8.6% at 10, 30 and 70°C, respectively. Therefore, MP 1:9 incorporated with blended carboxymethyl cellulose film increased the water barrier and the TPC. This film can serve as a bioactive biodegradable packaging material to reduce plastic packaging in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Temperature Stabilization of the NIFFTE Time Projection Chamber
NASA Astrophysics Data System (ADS)
Hicks, Caleb
2017-09-01
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) is a collaboration measuring nuclear fission cross sections for use in advanced nuclear reactors. A neutron beam incident on targets of Uranium-235, Uranium-238, and Plutonium-239 is used to measure the neutron induced fission cross sections for these isotopes. A Time Projection Chamber (TPC) is used to record these reactions. Significant heat is generated by the readout cards mounted on the TPC, which are cooled by fans. One proposed measurement of the experiment is to compare the cross sections of the target to a proton target of gaseous hydrogen. A constant temperature inside the TPC's pressure vessel is desirable to maintain a constant number of hydrogen target atoms. In addition, a constant temperature minimizes the strain and wrinkles on an amplifying mesh inside the TPC. This poster describes the successful work to develop, build, and install a fan controller using a Raspberry Pi, an Arduino, and a custom circuit board to implement an algorithm called Proportional-Integral-Derivative control. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.
DarkSide-20k: A 20 Tonne Two-Phase LAr TPC for Direct Dark Matter Detection at LNGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalseth, C.E.; et al.
Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LArTPC) with an active (fiducial) mass of 23 t (20 t). The DarkSide-20k LArTPC will be deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). Operation of DarkSide-50 demonstrated a major reduction in the dominantmore » $$^{39}$$Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of $$\\gt3\\times10^9$$ is achievable. This, along with the use of the veto system, is the key to unlocking the path to large LArTPC detector masses, while maintaining an "instrumental background-free" experiment, an experiment in which less than 0.1 events (other than $$\
Nayak, Balunkeswar; Dahmoune, Farid; Moussi, Kamal; Remini, Hocine; Dairi, Sofiane; Aoun, Omar; Khodir, Madani
2015-11-15
Peel of Citrus sinensis contains significant amounts of bioactive polyphenols that could be used as ingredients for a number of value-added products with health benefits. Extraction of polyphenols from the peels was performed using a microwave-assisted extraction (MAE) technique. The effects of aqueous acetone concentration, microwave power, extraction time and solvent-to-solid ratio on the total phenolic content (TPC), total antioxidant activity (TAA) (using DPPH and ORAC-values) and individual phenolic acids (IPA) were investigated using a response surface method. The TPC, TAA and IPA of peel extracts using MAE was compared with conventional, ultrasound-assisted and accelerated solvent extraction. The maximum predicted TPC under the optimal MAE conditions (51% acetone concentration in water (v/v), 500 W microwave power, 122 s extraction time and 25 mL g(-1) solvent to solid ratio), was 12.20 mg GAE g(-1) DW. The TPC and TAA in MAE extracts were higher than the other three extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Haitao; Wang, Quanzhen; Liu, Yuyan; Chen, Guo; Cui, Jian
2013-02-01
Solvent, impregnation time, sonication repetitions, and ultrasonic power were important factors in the process of ultrasound-assisted extraction from chicory (Cichorium intybus) root, while there were no studies about optimizing these 4 factors for extract yield, total phenolic content (TPC), antioxidant, antibacterial, and antifungal activity of the extracts using orthogonal matrix design. The present research demonstrated that the solvent composition played a significant role in the improving extract yield, TPC, antioxidant, and antibacterial activities. The other 3 factors had inequable effect on different purposes, ultrasonic power could improve TPC and antioxidant activity, but long time of extraction lowered antioxidant activity. The TPC increased from 22.34 to 27.87 mg GAE (gallic acid equivalents)/100 g (dry extracts) with increasing solvent polarity. The half inhibition concentration (IC(50,) μg/mL) of the radical scavenging activity of the chicory extracts ranged from 281.00 to 983.33 μg/mL. The content of caffeoylquinic acids of root extract, which was extracted by the optimal combination was 0.104%. Several extracts displayed antibacterial activities against Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, Bacillus subtilis, and Salmonella typhi, while Penicillium sp. and Aspergillus sp. resisted against all the extracts. Combination of 70% ethanol v/v, 24-h impregnation time, 3 sonication rounds, and 300-W ultrasonic input power was found to be the optimal combination for the chicory extract yield, TPC, antioxidant activity, and antibacterial activity. © 2012 Institute of Food Technologists®
Xu, Baojun; Chang, Sam K C
2008-09-01
The effects of soaking, boiling and steaming processes on the total phenolic components and antioxidant activity in commonly consumed cool season food legumes (CSFL's), including green pea, yellow pea, chickpea and lentil were investigated. As compared to original unprocessed legumes, all processing steps caused significant (p<0.05) decreases in total phenolic content (TPC), DPPH free radical scavenging activity (DPPH) in all tested CSFL's. All soaking and atmospheric boiling treatments caused significant (p<0.05) decreases in oxygen radical absorbing capacity (ORAC). However, pressure boiling and pressure steaming caused significant (p<0.05) increases in ORAC values. Steaming treatments resulted in a greater retention of TPC, DPPH, and ORAC values in all tested CSFL's as compared to boiling treatments. To obtain cooked legumes with similar palatability and firmness, pressure boiling shortened processing time as compared to atmospheric boiling, resulted in insignificant differences in TPC, DPPH for green and yellow pea. However, TPC and DPPH in cooked lentils differed significantly between atmospheric and pressure boiling. As compared to atmospheric processes, pressure processes significantly increased ORAC values in both boiled and steamed CSFL's. Greater TPC, DPPH and ORAC values were detected in boiling water than that in soaking and steaming water. Boiling also caused more solid loss than steaming. Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities. Copyright © 2008 Elsevier Ltd. All rights reserved.
Using Linear Gluon Polarization Inside an Unpolarized Proton to Determine the Higgs Spin and Parity
NASA Astrophysics Data System (ADS)
den Dunnen, Wilco J.
2014-06-01
Gluons inside an unpolarized proton are in general linearly polarized in the direction of their transverse momentum, rendering the LHC effectively a polarized gluon collider. This polarization can be utilized in the determination of the spin and parity of the newly found Higgs-like boson. We focus here on the determination of the spin using the azimuthal Collins-Soper angle distribution.
Khalid, Samina; Malik, Aman U; Khan, Ahmad S; Shahid, Muhammad; Shafique, Muhammad
2016-03-15
Bioactive compounds (ascorbic acid, total phenolics and total antioxidants) are important constituents of citrus fruit juice; however, information with regard to their concentrations and changes in relation to tree age and storage conditions is limited. 'Kinnow' (Citrus nobilis Lour × Citrus deliciosa Tenora) mandarin juice from fruit of three tree ages (6, 18 and 35 years old) and fruit sizes (large, medium and small) were examined for their bioactive compounds during 7 days under ambient storage conditions (20 ± 2 °C and 60-65% relative humidity (RH)) and during 60 days under cold storage (4 ± 1 °C and 75-80% RH) conditions. Under ambient conditions, a reduction in total phenolic concentrations (TPC) and in total antioxidant activity (TAA) was found for the juice from all tree ages and fruit sizes. Overall, fruit from 18-year-old trees had higher mean TPC (95.86 µg mL(-1) ) and TAA (93.68 mg L(-1) ), as compared to 6 and 35-year-old trees. Likewise, in cold storage, TAA decreased in all fruit size groups from 18 and 35-year-old trees. In all tree age and fruit size groups, TPC decreased initially during 15 days of cold storage and then increased gradually with increase in storage duration. Ascorbic acid concentrations showed an increasing trend in all fruit size groups from 35-year-old trees. Overall, during cold storage, fruit from 18-year-old trees maintained higher mean ascorbic acid (33.05 mg 100 mL(-1) ) concentrations, whereas fruit from 6-year-old trees had higher TAA (153.1 mg L(-1) ) and TPC (115.1 µg mL(-1) ). Large-sized fruit had higher ascorbic acid (32.08 mg 100 mL(-1) ) concentrations and TAA (157.5 mg L(-1) ). Fruit from 18-year-old trees maintained higher TPC and TAA under ambient storage conditions, whereas fruit from 6-year-old trees maintained higher TPC and TAA during cold storage. Small-sized fruit had higher TPC after ambient temperature storage, whereas large fruit size showed higher ascorbic acid concentrations and TAA after cold storage. © 2015 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allanach, B
2004-03-01
The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 26 May-6 June, 2003. The research presented is original, and was performed specifically for the workshop. Tools for calculations in the minimal supersymmetric standard model are presented, including a comparison of the dark matter relic density predicted by public codes. Reconstruction of supersymmetric particle masses at the LHC and a future linear collider facility is examined. Less orthodox supersymmetric signals such as non-pointing photons and R-parity violating signals are studied. Features of extra dimensional modelsmore » are examined next, including measurement strategies for radions and Higgs', as well as the virtual effects of Kaluza Klein modes of gluons. Finally, there is an update on LHC Z' studies.« less
ERIC Educational Resources Information Center
Jones, Natasha N.
2016-01-01
This article argues for the need for a social justice approach to technical communication research and pedagogy. Given previous calls by scholars in technical and professional communication (TPC) for an attention to diversity, inclusion, and equality, the author examines the place and purpose of social justice in TPC and provides useful approaches…
NASA Astrophysics Data System (ADS)
The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year the Workshop is organized jointly by the SINP MSU and the SPbSU and it will take place in the holiday hotel "Baltiets" situated in a picturesque place of the Karelian Isthmus on the shore of the Gulf of Finland in the suburb of the second largest Russian city Saint Petersburg. Scientific program, the main topics to be covered are: * Higgs searches and other experimental results from the LHC and the Tevatron; impact of the Higgs-like boson observed * Physics prospects at Linear Colliders and super B-factories * Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders * Higher order corrections and resummations for collider phenomenology * Automatic calculations and Monte Carlo simulations in high energy physics * LHC/LC and astroparticle/cosmology connections * Modern nuclear physics and relativistic nucleous-nucleous collisions * Detectors for future experiments in high energy physics The Workshop will include plenary and two parallel afternoon sessions. The plenary sessions will consist of invited lectures. The afternoon sessions will include original talks. Further details are given at http://qfthep.sinp.msu.ru
Chuang, Kai-Ting; Davis, Lianne C.; Al-Douri, Areej; Tynan, Patricia W.; Tunn, Ruth; Teboul, Lydia; Galione, Antony
2014-01-01
Organelle ion homeostasis within the endo-lysosomal system is critical for physiological functions. Two-pore channels (TPCs) are cation channels that reside in endo-lysosomal organelles, and overexpression results in endo-lysosomal trafficking defects. However, the impact of a lack of TPC expression on endo-lysosomal trafficking is unknown. Here, we characterize Tpcn1 expression in two transgenic mouse lines (Tpcn1XG716 and Tpcn1T159) and show expression of a novel evolutionarily conserved Tpcn1B transcript from an alternative promoter, raising important questions regarding the status of Tpcn1 expression in mice recently described to be Tpcn1 knockouts. We show that the transgenic Tpcn1T159 line lacks expression of both Tpcn1 isoforms in all tissues analyzed. Using mouse embryonic fibroblasts (MEFs) from Tpcn1−/− and Tpcn2−/− animals, we show that a lack of Tpcn1 or Tpcn2 expression has no significant impact on resting endo-lysosomal pH or morphology. However, differential effects in endo-lysosomal function were observed upon the loss of Tpcn1 or Tpcn2 expression; thus, while Tpcn1−/− MEFs have impaired trafficking of cholera toxin from the plasma membrane to the Golgi apparatus, Tpcn2−/− MEFs show slower kinetics of ligand-induced platelet-derived growth factor receptor β (PDGFRβ) degradation, which is dependent on trafficking to lysosomes. Our findings indicate that TPC1 and TPC2 have important but distinct roles in the endo-lysosomal pathway. PMID:25135478
Physicochemical, nutritional, and sensory qualities of wine grape pomace fortified baked goods.
Walker, Rebecca; Tseng, Angela; Cavender, George; Ross, Andrew; Zhao, Yanyun
2014-09-01
Wine grape pomace (WGP) as a source of antioxidant dietary fiber (DF) was used to fortify baked goods, including breads, muffins, and brownies. Pinot Noir WGP (RWGP) and Pinot Grigio WGP (WWGP) substituted wheat flour at concentration of 5%, 10%, and 15% for bread, 10%, 15%, 20%, and 25% RWGP for brownies, and 5%, 10%, and 15% RWGP or 10%, 15%, and 20% WWGP for muffins. The finished products were evaluated for total phenolic content (TPC), radical scavenging activity (RSA), and total DF, as well as physicochemical and sensory properties. WGP flour blends were also tested for solvent retention capacity (SRC). The highest TPC and RSA values for bread and muffins were achieved in 15% RWGP fortified samples with TPC and RSA values of 68.32 mg gallic acid equivalent (GAE)/serving and 80.70 AAE mg/serving, respectively for bread, and 2164 mg GAE/serving and 1526 mg AAE/serving, respectively for muffins. Brownies fortified with 10% RWGP had the highest RSA value (115.52 mg AAE/serving) while the control had the highest TPC value (1152 mg GAE/serving). Breads and muffins with 15% RWGP and brownies with 25% RWGP had the highest amount of DF (6.33, 12.32, and 7.73 g/serving, respectively). Sensory evaluation concluded that there is no difference in overall liking of 5% and 10% RWGP breads and muffins or 15% and 20% WGP brownies compared to the controls. This study demonstrated that WGP is a viable functional ingredient in bakery goods to increase TPC, RSA, and DF in consumer's diets. © 2014 Institute of Food Technologists®
Stanger, Mayara C; Steffens, Cristiano A; Soethe, Cristina; Moreira, Marcelo A; do Amarante, Cassandro V T
2017-05-03
The aim of this study was to characterize the changes in the contents of total (TPC) and individual (IPC) phenolic compounds, the total antioxidant activity (TAA) in the peel and pulp, and total anthocyanins (TAN) in the peel during the development of the fruits of 'Brookfield' and 'Mishima' apple trees. 'Brookfield' apples were harvested from the 49th to the 138th days after full bloom (DAFB) and 'Mishima' apples from the 45th to the 172th DAFB. In the pulp, the IPC, TPC, and TAA rapidly reduced at 75 and 79 DAFB for the 'Brookfield' and 'Mishima' apples, respectively, and then remained constant until commercial maturity. In the peel of 'Brookfield' apples there was a reduction in the TPC and TAA at 79 DAFB. The quercetin 3-galactoside, epicatechin, and procyanidin B2 contents reduced up to 107 DAFB with a subsequent increase in the values at commercial maturity. In the peel of 'Mishima' apples there was a reduction in the TPC, TAA, epicatechin, and procyanidin B1 and B2 contents at 130 DAFB, with a subsequent increase until commercial maturity. The TAN content in the peel increased during the 2 and 4 weeks prior to commercial maturity for 'Brookfield' and 'Mishima' apples, respectively. In the pulp and peel of both cultivars there was a reduction in the IPC, TPC, and TAA as the development proceeded. On nearing commercial maturity, there was an increase in the contents of quercetin 3-galactoside, epicatechin, procyanidin B2, and TAN in the peel for both cultivars.
Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana
Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing
2015-01-01
Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, C.; et al.
The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of inductionmore » plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.« less
Şahin, Selin; Samli, Ruya; Tan, Ayşe Seher Birteksöz; Barba, Francisco J; Chemat, Farid; Cravotto, Giancarlo; Lorenzo, José M
2017-06-24
Response surface methodology (RSM) and artificial neural networks (ANN) were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC) and oleuropein yields in olive tree leaf ( Olea europaea ) extracts, obtained after solvent-free microwave-assisted extraction (SFMAE). The SFMAE processing conditions were: microwave irradiation power 250-350 W, extraction time 2-3 min, and the amount of sample 5-10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm) was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis , with a minimum inhibitory concentration (MIC) value of 1.25 mg/mL.
Tariba Lovaković, Blanka; Lazarus, Maja; Brčić Karačonji, Irena; Jurica, Karlo; Živković Semren, Tanja; Lušić, Dražen; Brajenović, Nataša; Pelaić, Zdenka; Pizent, Alica
2018-01-01
The concentration of 23 major and trace elements, total phenolic content (TPC) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were determined in nine samples of strawberry tree honey and compared to other types of unifloral honeys. The most abundant elements in strawberry tree honey were potassium, calcium, magnesium and sodium, ranging between 1276 and 2367, 95.2-154, 14.4-74.4 and 13.4-64.3mg/kg, respectively. Strawberry tree honey had generally higher TPC (range: 0.314-0.522g GA/kg) and DPPH (1.94-4.45mM TE/kg) compared to other analysed unifloral honeys. A strong positive relationship was found between TPC and DPPH, TPC and concentration of homogentisic acid (HGA), chemical marker of strawberry tree honey, and between DPPH and HGA. Regarding daily intake of essential elements, strawberry tree honey can be considered nutritionally richer than the majority of unifloral honeys available in Croatia, while contribution to tolerable intake set for potentially toxic elements was very low, corresponding to pristine areas. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Wagner, Albrecht
2006-04-01
Over the past century, physicists have sought to explain the character of the matter and energy in our universe, to show how the basic forces of nature and the building blocks of matter come about, and to explore the fabric of space and time. In the past three decades, experiments at laboratories around the world have given us a precise confirmation of the underlying theory called the standard model. These particle physics advances have a direct impact for our understanding of the structure of the universe, both at its inception in the Big Bang, and in its evolution to the present and future. The final synthesis is not yet fully clear, but we know with confidence that major discoveries expanding the standard model framework will occur at the next generation of accelerators. The Large Hadron Collider (LHC) being built at CERN will take us into the discovery realm. The proposed International Linear Collider (ILC) will extend the discoveries and provide a wealth of precision measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. A world-wide consensus has formed for a baseline ILC project at energies of 500 GeV and beyond. The choice of the superconducting technology as basis for the ILC has paved the way for a global design effort which has now taken full speed.
Introduction to Superconducting RF Structures and the Effect of High Pressure Rinsing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, Tsuyoshi
2016-06-30
This presentation begins by describing RF superconductivity and SRF accelerating structures. Then the use of superconducting RF structures in a number of accelerators around the world is reviewed; for example, the International Linear Collider (ILC) will use ~16,000 SRF cavities with ~2,000 cryomodules to get 500 GeV e⁺/e⁻ colliding energy. Field emission control was (and still is) a very important practical issue for SRF cavity development. It has been found that high-pressure ultrapure water rinsing as a final cleaning step after chemical surface treatment resulted in consistent performance of single- and multicell superconducting cavities.
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2005-04-01
This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.
Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B
2005-04-01
This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of square root of s(NN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of eta(')=|eta|-y(beam), scale with approximate linearity throughout eta('), implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.
TPC Proteins Are Phosphoinositide-activated Sodium-selective Ion Channels in Endosomes and Lysosomes
Wang, Xiang; Zhang, Xiaoli; Dong, Xian-ping; Samie, Mohammad; Li, Xinran; Cheng, Xiping; Goschka, Andrew; Shen, Dongbiao; Zhou, Yandong; Harlow, Janice; Zhu, Michael X.; Clapham, David E.; Ren, Dejian; Xu, Haoxing
2012-01-01
Summary Mammalian Two-Pore Channels (TPC1, 2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P2, and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na+, not K+, as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes, and may explain the specificity of PI(3,5)P2 in regulating the fusogenic potential of intracellular organelles. PMID:23063126
Development of the GEM-TPC X-ray Polarimeter with the Scalable Readout System
NASA Astrophysics Data System (ADS)
Kitaguchi, Takao; Hayato, Asami; Iwakiri, Wataru; Takeuchi, Yoko; Kubota, Megu; Nishida, Kazuki; Enoto, Teruaki; Tamagawa, Toru
2018-02-01
We have developed a gaseous Time Projection Chamber (TPC) containing a single-layered foil of a gas electron multiplier (GEM) to open up a new window on cosmic X-ray polarimetry in the 2-10 keV band. The micro-pattern TPC polarimeter in combination with the Scalable Readout System produced by the RD51 collaboration has been built as an engineering model to optimize detector parameters and improve polarimeter sensitivity. The polarimeter was characterized with unpolarized X-rays from an X-ray generator in a laboratory and polarized X-rays on the BL32B2 beamline at the SPring-8 synchrotron radiation facility. Preliminary results show that the polarimeter has a comparable modulation factor to a prototype of the flight one.
NASA Astrophysics Data System (ADS)
Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.
2018-02-01
More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.
Study of Electromagnetic Interactions with the MicroBooNE Detector
NASA Astrophysics Data System (ADS)
Caratelli, David; MicroBooNE Collaboration
2017-01-01
MicroBooNE is an experiment which employs the Liquid Argon Time Projection Chamber (LArTPC) detector technology to study neutrinos produced with the Fermilab Booster Neutrino Beam. As for any accelerator-based detector interested in studying neutrino oscillations, it is essential to be able to identify and reconstruct the kinematic properties of electrons and photons produced in μν and νe interactions. We report current progress in reconstructing electron and photon electromagnetic (EM) showers using data from the MicroBooNE LArTPC. These studies cover EM showers in the tens to hundreds of MeV energy range; they lay the foundation for MicroBooNE's investigation of the excess of low-energy EM events reported by MiniBooNE, and are of interest to the wider LArTPC neutrino community.
Model-independent determination of the triple Higgs coupling at e + e – colliders
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; ...
2018-03-20
Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less
Model-independent determination of the triple Higgs coupling at e + e – colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon
Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less
Model-independent determination of the triple Higgs coupling at e+e- colliders
NASA Astrophysics Data System (ADS)
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Peskin, Michael E.; Tian, Junping
2018-03-01
The observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e+e-→Z h h . We show that, by combining the measurement of this process with other measurements available at a 500 GeV e+e- collider, it is possible to quote model-independent limits on the effective field theory parameter c6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e+e- data.
Phosphorus content in three physical fractions of typical Chernozem
NASA Astrophysics Data System (ADS)
Kotelnikova, Anna; Egorova, Zoya; Sushkov, Nikolai; Matveeva, Natalia; Fastovets, Ilya; Rogova, Olga; Volkov, Dmitriy
2017-04-01
The widespread use of fertilizers makes it necessary to study not only the content but also the forms of occurrence of nutrients in soil, as well as the phase in which nutrients are transferred. These characteristics determine the availability of chemical elements for plants, but remain insufficiently studied. In this work we attempted to gain insight into the distribution of organo-mineral fractions in agriculturally used Chernozem from Voronezh (Russia) and the distribution of phosphorus - one of the most important nutrient elements - in this type of soil. We compared the distributions of phosphorus in physical fractions of the soil in 3 experimental groups: the control group (without fertilizers), the group fertilized with 1 dose of NPK, and the group fertilized with 2 doses of NPK. The soil was sampled during the period of treatment with fertilizers and during the period of aftereffect (4 years after the last application of fertilizers). In order to analyze organo-mineral fractions, we used size-density fractionation to separate the soil samples into three physical fractions: clay-associated fraction with particle size < 1μm (CF), light fraction with particle density < 2.0 g cm-3 (LF), and residual fraction > 2.0 g cm-3 (RF). Total phosphorus content (TPC) in the fractions was determined with Agilent 5100 ICP-AES spectrometer. To compare groups, simultaneous confidence intervals were computed from pooled variance estimators in ANOVA, and Fisher's LSD test was used. We showed that during the period of treatment with fertilizers LF increased proportionally to the dose of fertilizers, and a simultaneous reduction in RF was observed. During the period of aftereffect, the content of these fractions tended to the control value. The increase of LF may indicate increasing availability of nutrients, since this fraction is likely to participate in biological cycles. The analysis of TPC in fractions suggested that during the period of treatment with fertilizers most of phosphorus accumulates in CF. In the group with double dose of fertilizers TPC in CF was more than 1.5 times higher than in the control, while for LF the increase in TPC was not significant, and RF TPC was practically the same as in the control. Association of phosphorus predominantly with CF suggests that phosphorus was mainly adsorbed to the surface of clay particles rather than to organic components. Therefore, despite the increase in CF TPC as a consequence of treatment with fertilizers, the increase in availability of phosphorus is questionable. In the aftereffect period no significant differences in TPC were found. In conclusion, we showed that availability of fertilizers may be dependent on fractional composition of soil. Under our experimental conditions, phosphorus tended to bind predominantly to clay particles. However, in the aftereffect period, fractionation of TPC was similar to the control, indicating the need to further investigate the fate of phosphorus in soils.
Analysis of the Laser Calibration System for the CMS HCAL at CERN's Large Hadron Collider
NASA Astrophysics Data System (ADS)
Lebolo, Luis
2005-11-01
The European Organization for Nuclear Physics' (CERN) Large Hadron Collider uses the Compact Muon Solenoid (CMS) detector to measure collision products from proton-proton interactions. CMS uses a hadron calorimeter (HCAL) to measure the energy and position of quarks and gluons by reconstructing their hadronic decay products. An essential component of the detector is the calibration system, which was evaluated in terms of its misalignment, linearity, and resolution. In order to analyze the data, the authors created scripts in ROOT 5.02/00 and C++. The authors also used Mathematica 5.1 to perform complex mathematics and AutoCAD 2006 to produce optical ray traces. The misalignment of the optical components was found to be satisfactory; the Hybrid Photodiodes (HPDs) were confirmed to be linear; the constant, noise and stochastic contributions to its resolution were analyzed; and the quantum efficiency of most HPDs was determined to be approximately 40%. With a better understanding of the laser calibration system, one can further understand and improve the HCAL.
Charge shielding in the In-situ Storage Image Sensor for a vertex detector at the ILC
NASA Astrophysics Data System (ADS)
Zhang, Z.; Stefanov, K. D.; Bailey, D.; Banda, Y.; Buttar, C.; Cheplakov, A.; Cussans, D.; Damerell, C.; Devetak, E.; Fopma, J.; Foster, B.; Gao, R.; Gillman, A.; Goldstein, J.; Greenshaw, T.; Grimes, M.; Halsall, R.; Harder, K.; Hawes, B.; Hayrapetyan, K.; Heath, H.; Hillert, S.; Jackson, D.; Pinto Jayawardena, T.; Jeffery, B.; John, J.; Johnson, E.; Kundu, N.; Laing, A.; Lastovicka, T.; Lau, W.; Li, Y.; Lintern, A.; Lynch, C.; Mandry, S.; Martin, V.; Murray, P.; Nichols, A.; Nomerotski, A.; Page, R.; Parkes, C.; Perry, C.; O'Shea, V.; Sopczak, A.; Tabassam, H.; Thomas, S.; Tikkanen, T.; Velthuis, J.; Walsh, R.; Woolliscroft, T.; Worm, S.
2009-08-01
The Linear Collider Flavour Identification (LCFI) collaboration has successfully developed the first prototype of a novel particle detector, the In-situ Storage Image Sensor (ISIS). This device ideally suits the challenging requirements for the vertex detector at the future International Linear Collider (ILC), combining the charge storing capabilities of the Charge-Coupled Devices (CCD) with readout commonly used in CMOS imagers. The ISIS avoids the need for high-speed readout and offers low power operation combined with low noise, high immunity to electromagnetic interference and increased radiation hardness compared to typical CCDs. The ISIS is one of the most promising detector technologies for vertexing at the ILC. In this paper we describe the measurements on the charge-shielding properties of the p-well, which is used to protect the storage register from parasitic charge collection and is at the core of device's operation. We show that the p-well can suppress the parasitic charge collection by almost two orders of magnitude, satisfying the requirements for the application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Norman A.; /SLAC
Maximizing the physics performance of detectors being designed for the International Linear Collider, while remaining sensitive to cost constraints, requires a powerful, efficient, and flexible simulation, reconstruction and analysis environment to study the capabilities of a large number of different detector designs. The preparation of Letters Of Intent for the International Linear Collider involved the detailed study of dozens of detector options, layouts and readout technologies; the final physics benchmarking studies required the reconstruction and analysis of hundreds of millions of events. We describe the Java-based software toolkit (org.lcsim) which was used for full event reconstruction and analysis. The componentsmore » are fully modular and are available for tasks from digitization of tracking detector signals through to cluster finding, pattern recognition, track-fitting, calorimeter clustering, individual particle reconstruction, jet-finding, and analysis. The detector is defined by the same xml input files used for the detector response simulation, ensuring the simulation and reconstruction geometries are always commensurate by construction. We discuss the architecture as well as the performance.« less
Characterization of the International Linear Collider damping ring optics
NASA Astrophysics Data System (ADS)
Shanks, J.; Rubin, D. L.; Sagan, D.
2014-10-01
A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.
Poring over two-pore channel pore mutants
Penny, Christopher J.; Patel, Sandip
2016-01-01
Two-pore channels are members of the voltage-gated ion channel superfamily. They localise to the endolysosomal system and are likely targets for the Ca2+ mobilising messenger NAADP. In this brief review, we relate mutagenesis of the TPC pore to a recently published homology model and discuss how pore mutants are informing us of TPC function. Molecular physiology of these ubiquitous proteins is thus emerging. PMID:27226934
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutini, Irene
2017-09-20
A short overview of the Liquid Argon In A Testbeam (LArIAT) experiment hosted at Fermilab is reported. This program supports the Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiments at Fermilab. The LArIAT program consists of a calibration of a LArTPC in a dedicated charged particle beamline. The first total pion interaction cross section measurement ever made on argon is presented here (preliminary result).
Research and Development Toward Massive Liquid Argon Time Projection Chambers for Neutrino Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiesse, Matthew
Liquid argon (LAr) time projection chambers (TPC) have rapidly increased in importance as particle detectors throughout the past four decades. While much research has been completed, there are still many areas which require further development to build and operate the next generation LAr TPC experiment, such as the Deep Underground Neutrino Experiment (DUNE). These include high voltage breakdown, argon purification and purity monitoring, and vacuum ultraviolet (VUV) scintillation light measurement. Visual monitoring of high voltage breakdown is helpful in allowing assessment of the performance of high voltage component design. Thus, a system of cryogenic cameras, the first of its kind,more » was developed for use in a large LAr cryostat, without the need for additional electronics heating. The system functioned without problem for 50 days at cryogenic temperature, with some degradation of image quality, and provided a useful monitor for the DUNE 35-ton cryogenics systems. The system did not observe any high voltage breakdowns during the run. Further development of the concept is ongoing for future installation in other experiments. The monitoring of LAr purity using TPC data is a fundamental study for LAr TPC experiments. However, the study has not been performed for a large LAr TPC in the presence of high electronic noise. Custom software was developed and validated for the accurate reconstruction of signals in noisy TPC data. The results of the reconstruction were used to successfully measure the LAr electron lifetime with an uncertainty comparable to alternate methods of measurement. The electron lifetime of the 35-ton Phase II run is determined to be 4.12 ± 0.17 (stat.) ±0.40 (syst.) ms. For general purpose research and development of high purity LAr as a particle detection medium, a dedicated test stand was designed, constructed, and commissioned. The system is used to test the gaseous photomultiplier (GPM) performance at cryogenic temperatures. The GPM functions with photoelectron multiplication at 77 K, at a reduced gain. Further study is required to show the detector’s direct sensitivity to LAr VUV scintillation light.« less
A large ungated TPC with GEM amplification
NASA Astrophysics Data System (ADS)
Berger, M.; Ball, M.; Fabbietti, L.; Ketzer, B.; Arora, R.; Beck, R.; Böhmer, F. V.; Chen, J.-C.; Cusanno, F.; Dørheim, S.; García, F.; Hehner, J.; Herrmann, N.; Höppner, C.; Kaiser, D.; Kis̆, M.; Kleipa, V.; Konorov, I.; Kunkel, J.; Kurz, N.; Leifels, Y.; Müllner, P.; Münzer, R.; Neubert, S.; Rauch, J.; Schmidt, C. J.; Schmitz, R.; Soyk, D.; Vandenbroucke, M.; Voss, B.; Walther, D.; Zmeskal, J.
2017-10-01
A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost 4 π. The high density of hits on a given particle track facilitates the task of pattern recognition in a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC). The design requirements have driven innovations in the construction of a light-weight field-cage, a supporting media flange, the GEM amplification and the readout system, which are presented in this paper. We further describe the support infrastructure such as gas, cooling and slow control. Finally, we report on the operation of the GEM-TPC in the FOPI experiment, and describe the calibration procedures which are applied to achieve the design performance of the device.
Optimization of extraction parameters on the antioxidant properties of banana waste.
Toh, Pui Yee; Leong, Fei Shan; Chang, Sui Kiat; Khoo, Hock Eng; Yim, Hip Seng
2016-01-01
Banana is grown worldwide and consumed as ripe fruit or used for culinary purposes. Peels form about 18-33% of the whole fruit and are discarded as a waste product. With a view to exploiting banana peel as a source of valuable compounds, this study was undertaken to evaluate the effect of different extraction parameters on the antioxidant activities of the industrial by-product of banana waste (peel). Influence of different extraction parameters such as types of solvent, percentages of solvent, and extraction times on total phenolic content (TPC) and antioxidant activity of mature and green peels of Pisang Abu (PA), Pisang Berangan (PB), and Pisang Mas (PM) were investigated. The best extraction parameters were initially selected based on different percentages of ethanol (0-100% v/v), extraction time (1-5 hr), and extraction temperature (25-60°C) for extraction of antioxidants in the banana peels. Total phenolic content (TPC) was evaluated using Folin-Ciocalteu reagent assay while antioxidant activities (AA) of banana peel were accessed by DPPH, ABTS, and β-carotene bleaching (BCB) assays at optimum extraction conditions. Based on different extraction solvents and percentages of solvents used, 70% and 90% of acetone had yielded the highest TPC for the mature and green PA peels, respectively; 90% of ethanol and methanol has yielded the highest TPC for the mature and green PB peels, respectively; while 90% ethanol for the mature and green PM peels. Similar extraction conditions were found for the antioxidant activities for the banana peel assessed using DPPH assay except for green PB peel, which 70% methanol had contributed to the highest AA. Highest TPC and AA were obtained by applying 4, 1, and 2 hrs extraction for the peels of PA, PB and PM, respectively. The best extraction conditions were also used for determination of AAs using ABTS and β-carotene bleaching assays. Therefore, the best extraction conditions used have given the highest TPC and AAs. By-products of banana (peel) can be considered as a potential source of antioxidants in food and pharmaceutical industry.
Díaz-de-Cerio, Elixabet; Aguilera-Saez, Luis Manuel; Gómez-Caravaca, Ana María; Verardo, Vito; Fernández-Gutiérrez, Alberto; Fernández, Ignacio; Arráez-Román, David
2018-06-01
Annona cherimola Mill. (cherimoya) has widely been used as food crop. The leaves of this tree possess several health benefits, which are, in general, attributed mainly to its bioactive composition. However, literature concerning a comprehensive characterization based on a combined approach, which consists of nuclear magnetic resonance (NMR) and high-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF-MS), from these leaves is scarce. Thus, the aim of this work was to study the polar profile of full extracts of cherimoya leaves by using these tools. Thus, a total of 77 compounds have been characterized, 12 of which were identified by both techniques. Briefly, 23 compounds were classified as amino acids, organic acids, carbohydrates, cholines, phenolic acid derivatives, and flavonoids by NMR, while 66 metabolites were divided into sugars, amino acids, phenolic acids and derivatives, flavonoids, phenylpropanoids, and other polar compounds by HPLC-TOF-MS. It is worth mentioning that different solvent mixtures were tested and the total phenolic content in the extracts quantified (TPC via HPLC-TOF-MS). The tendency observed was EtOH/water 80/20 (v/v) (17.0 ± 0.2 mg TPC/g leaf dry weight (d.w.)) ≥ acetone/water 70/30 (v/v) (16.1 ± 0.7 mg TPC/g leaf d.w.) > EtOH/water 70/30 (v/v) (14.0 ± 0.3 mg TPC/g leaf d.w.) > acetone/water 80/20 (v/v) (13.5 ± 0.4 mg TPC/g leaf d.w.). Importantly, flavonoids derivatives were between 63 and 76% of the TPC in those extracts. Major compounds were sucrose, glucose (α and β), and proline, and chlorogenic acid and rutin for NMR and HPLC-TOF-MS, respectively. Graphical abstract The combined use of LC-HRMS and NMR is a potential synergic combination for a comprehensive metabolite composition of cherimoya leaves.
Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides
NASA Astrophysics Data System (ADS)
Howard, B.
2018-02-01
In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.
Liquid Argon Scintillation Detection Utilizing Wavelength-Shifting Plates and Light Guides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, B.
In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this lightmore » and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.« less
Commissioning of the Active-Target Time Projection Chamber
NASA Astrophysics Data System (ADS)
Bradt, J.; Bazin, D.; Abu-Nimeh, F.; Ahn, T.; Ayyad, Y.; Beceiro Novo, S.; Carpenter, L.; Cortesi, M.; Kuchera, M. P.; Lynch, W. G.; Mittig, W.; Rost, S.; Watwood, N.; Yurkon, J.
2017-12-01
The Active-Target Time Projection Chamber (AT-TPC) was recently built and commissioned at the National Superconducting Cyclotron Laboratory at Michigan State University. This gas-filled detector uses an active-target design where the gas acts as both the tracking medium and the reaction target. Operating inside a 2T solenoidal magnetic field, the AT-TPC records charged particle tracks that can be reconstructed to very good energy and angular resolutions. The near- 4 π solid angle coverage and thick target of the detector are well-suited to experiments with low secondary beam intensities. In this paper, the design and instrumentation of theAT-TPC are described along with the methods used to analyze the data it produces. A simulation of the detector's performance and some results from its commissioning with a radioactive 46Ar beam are also presented.
NASA Astrophysics Data System (ADS)
Kudoh, Eisuke; Ito, Haruki; Wang, Zhisen; Adachi, Fumiyuki
In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.
MICROMEGAS calibration for ACTAR TPC
NASA Astrophysics Data System (ADS)
Mauss, B.; Roger, T.; Pancin, J.; Damoy, S.; Grinyer, G. F.
2018-02-01
Active targets, such as the ACtive TARget and Time Projection Chamber (ACTAR TPC) being developed at GANIL, are detection systems that operate on the basis of a time projection chamber but where the filling gas also serves as a thick target for nuclear reactions. In nuclear physics experiments, the energy resolution is of primary importance to identify the reaction products and to precisely reconstruct level schemes of nuclei. These measurements are based on the energy deposited on a pixelated pad plane. A MICROMEGAS detector is used in ACTAR TPC for the ionization electron collection and amplification, and it is a major contributor to the energy dispersion through, for example, inhomogeneities of the amplification gap. A variation of one percent in the gap can lead to an amplitude variation of more than two percent which is of the same order as the resolution obtained with an energy deposition of 5 MeV. One way to calibrate the pad plane is through the use of a two dimensional source scanning table. It is used to calibrate the gain inhomogeneities and, using MAGBOLTZ calculations, deduce the corresponding gap variations. The inverse of this method would allow the relative gain variations to be calculated for the different gas mixtures and pressures used in experiments with ACTAR TPC.
Exclusive Muon-Neutrino Charged Current Muon Plus Any Number of Protons Topologies In ArgoNeuT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partyka, Kinga Anna
2013-01-01
Neutrinos remain among the least understood fundamental particles even after decades of study. As we enter the precision era o f neutrino measurements bigger and more sophisticated detectors have emerged. The leading candidate among them is a Liquid Argon Time Projection Chamber (LArTPC ) detector technology due to its bubble-like chamber imaging, superb background rejection and scalability. I t is a perfect candidate that w ill aim to answer the remaining questions of the nature o f neutrino and perhaps our existence. Studying neutrinos with a detector that employs detection via beautiful images o f neutrino interactions can be bothmore » illuminating and surprising. The analysis presented here takes the full advantage of the LArTPC power by exploiting the first topological analysis of charged current muon neutrino p + N p , muon and any number of protons, interactions with the ArgoNeuT LArTPC experiment on an argon target. The results presented here are the first that address the proton multiplicity at the vertex and the proton kinematics. This study also addresses the importance o f nuclear effects in neutrino interactions. Furthermore, the developed here reconstruction techniques present a significant step forward for this technology and can be employed in the future LArTPC detectors.« less
Trindade-da-Silva, Carlos Antônio; Reis, Carolina Fernandes; Vecchi, Lara; Napimoga, Marcelo Henrique; Sperandio, Marcelo; Matias Colombo, Bruna França; Alves, Patrícia Terra; Ward, Laura Sterian; Ueira-Vieira, Carlos; Goulart, Luiz Ricardo
2016-01-01
The cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a natural ligand of peroxisome proliferator-activated receptor gamma (PPAR-γ) and a potential mediator of apoptosis in cancer cells. In the present study, we evaluated the effect of 15d-PGJ2 in human thyroid papillary carcinoma cells (TPC-1) using different doses of 15d-PGJ2 (0.6 to 20 μM) to determine IC50 (9.3 μM) via the MTT assay. The supernatant culture medium of the TPC-1 cells that was treated either with 15d-PGJ2 or with vehicle (control) for 24 hours was assessed for IL-6 secretion via CBA assay. RT-qPCR was used to evaluate mRNA expression of IL-6, SOCS1, SOCS3, and STAT3. TPC-1 cells treated with 15d-PGJ2 decreased the secretion and expression of IL-6 and STAT3, while it increased SOCS1 and SOCS3. Overall, we demonstrated that 15d-PGJ2 downregulated IL-6 signaling pathway and led TPC-1 cells into apoptosis. In conclusion, 15d-PGJ2 shows the potential to become a new therapeutic approach for thyroid tumors. PMID:27190500
Simulations of Charged-Current Supernova νe Events in a Liquid Argon Time Projection Chamber
NASA Astrophysics Data System (ADS)
Gardiner, Steven; Grant, Christopher; Pantic, Emilija; Svoboda, Robert
2016-03-01
Although it is still in its infancy, the study of supernova neutrinos has proven to be a fertile topic for fundamental science. A mere two dozen events recorded from supernova 1987A, the only supernova neutrino source observed so far, have led to numerous publications on a wide variety of topics. This bountiful scientific harvest has prompted the neutrino physics community to prepare to make more detailed observations of the neutrinos that will be produced in the next nearby supernova. Because of their unique νe sensitivity, liquid argon time projection chamber (LArTPC) experiments such as DUNE (Deep Underground Neutrino Experiment) have the potential to make valuable contributions to this detection effort. To better understand the expected SN νe signal in a LArTPC, we have developed a Monte Carlo event generator called MARLEY (Model of Argon Reaction Low-Energy Yields) for charged-current νe reactions on argon. By combining MARLEY with LArSoft, a LArTPC simulation package, we have obtained the most detailed predictions currently available for the response of a LArTPC to supernova νe. We will discuss the implications of these results for the design and operation of LArTPCs sensitive to SN neutrinos.
Feng, Hong-Xia; Sam, Rokayya; Jiang, Lian-Zhou; Li, Yang; Cao, Wen-Ming
Camellia seed oil (CSO) is rich in oleic acid and has a high number of active components, which give the oil high nutritional value and a variety of biological activity. The aim of the present study was to determine the changes in the content and distribution of total polar compounds (TPC) in CSO during heating. TPC were isolated by means of preparative flash chromatography and further analyzed by high-performance size-exclusion chromatography (HPSEC). The TPC content of CSO increased from 4.74% to 25.29%, showing a significantly lower formation rate as compared to that of extra virgin olive oil (EVOO) and soybean oil (SBO) during heating. Furthermore, heating also resulted in significant differences (P<0.05) in the distribution of TPC among these oils. Though the content of oxidized triacylglycerol dimers, oxidized triacylglycerol oligomers, and oxidized triacylglycerol monomers significantly increased in all these oils, their increased percentages were much less in CSO than those in EVOO, indicating that CSO has a greater ability to resist oxidation. This work may be useful for the food oil industry and consumers in helping to choose the correct oil and to decide on the useful lifetime of the oil.
MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM POLYGONUM MULTIFLORUM THUNB. ROOTS.
Quoc, Le Pham Tan; Muoi, Nguyen Van
2016-01-01
The aim of this study was to determine the best extraction conditions for total phenolic content (TPC) and antioxidant capacity (AC) of Polygonum multiflorum Thunb. root using microwave-assisted extraction (MAE). The raw material used was Polygonum multiflorum Thunb. root powder. Five factors such as solvent type, solvent concentrations, solvent/material ratio, extraction time and microwave power were studied; TPC and AC values were determined by the Folin-Ciocalteu method and DPPH free radical scavenging activity measurement, respectively. In addition, studies involved assaying the HPLC test of extracts and SEM of samples. Optimal results pointed to acetone as the solvent, acetone concentration of 60%, solvent/material ratio of 40/1 (v/w), extraction time of 5 mins and microwave power of 127 W. TPC and AC obtained were approximates 44.3 ±0.13 mg GAE/g DW and 341.26 ±1.54 μmol TE/g DW, respectively. The effect of microwaving on the cell destruction of Polygonum multiflorum Thunb. root was observed by scanning electron microscopy (SEM). Some phenolic compounds were determined by the HPLC method, for instance, gallic acid, catechin and resveratrol. These factors significantly affected TPC and AC. We can use acetone as a solvent with microwave-assisted extraction to achieve the best result.
Connecting dark matter annihilation to the vertex functions of Standard Model fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu
We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner frommore » collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.« less
Status Of the ILC Main Linac Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Arun; Kapin, Valery; Solyak, Nikolay
2017-05-01
International Linear collider (ILC) is a proposed accelerator facility which is primarily based on two 11-km long superconducting main linacs. In this paper we present recent updates on the main linac design and discuss changes made in order to meet specification outlined in the technical design report (TDR).
Measurement of IR optics with linear coupling's action-angle parametrization
NASA Astrophysics Data System (ADS)
Luo, Y.; Bai, M.; Pilat, F.; Satogata, T.; Trbojevic, D.
2005-08-01
Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM) data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.
Emittance preservation in plasma-based accelerators with ion motion
Benedetti, C.; Schroeder, C. B.; Esarey, E.; ...
2017-11-01
In a plasma-accelerator-based linear collider, the density of matched, low-emittance, high-energy particle bunches required for collider applications can be orders of magnitude above the background ion density, leading to ion motion, perturbation of the focusing fields, and, hence, to beam emittance growth. By analyzing the response of the background ions to an ultrahigh density beam, analytical expressions, valid for nonrelativistic ion motion, are derived for the transverse wakefield and for the final (i.e., after saturation) bunch emittance. Analytical results are validated against numerical modeling. Initial beam distributions are derived that are equilibrium solutions, which require head-to-tail bunch shaping, enabling emittancemore » preservation with ion motion.« less
Simulation of double beta decay in the ''SeXe'' TPC
NASA Astrophysics Data System (ADS)
Mauger, F.
2007-04-01
In 2004, the NEMO collaboration has started some preliminary studies for a next-generation double beta decay experiment: SuperNEMO. The possibility to use a large gaseous TPC has been investigated using simulation and extrapolation of former experiments. In this talk, I report on the reasons why such techniques have not been selected in 2004 and led the NEMO collaboration to reuse the techniques implemented within the NEMO3 detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Averyanov, A. V.; Bajajin, A. G.; Chepurnov, V. F.
The time-projection chamber (TPC) is the main tracking detector in the MPD/NICA. The information on charge-particle tracks in the TPC is registered by the MWPG with cathode pad readout. The frontend electronics (FEE) are developed with use of modern technologies such as application specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), and data transfer to a concentrator via a fast optical interface. The main parameters of the FEE are as follows: total number of channels, ∼95 000; data stream from the whole TPC, 5 GB/s; low power consumption, less than 100 mW/ch; signal to noise ratio (S/N), 30; equivalent noisemore » charge (ENC), <1000e{sup –} (C{sub in} = 10–20 pF); and zero suppression (pad signal rejection ∼90%). The article presents the status of the readout chamber construction and the data acquisition system. The results of testing FEE prototypes are presented.« less
A melanosomal two-pore sodium channel regulates pigmentation
Bellono, Nicholas W.; Escobar, Iliana E.; Oancea, Elena
2016-01-01
Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation. PMID:27231233
Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade
Wang, Xu; Shen, Fuwang; Wang, Shuai; ...
2017-04-06
The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper,more » the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.« less
Time Projection Chamber Polarimeters for X-ray Astrophysics
NASA Astrophysics Data System (ADS)
Hill, Joanne; Black, Kevin; Jahoda, Keith
2015-04-01
Time Projection Chamber (TPC) based X-ray polarimeters achieve the sensitivity required for practical and scientifically significant astronomical observations, both galactic and extragalactic, with a combination of high analyzing power and good quantum efficiency. TPC polarimeters at the focus of an X-ray telescope have low background and large collecting areas providing the ability to measure the polarization properties of faint persistent sources. TPCs based on drifting negative ions rather than electrons permit large detector collecting areas with minimal readout electronics enabling wide field of view polarimeters for observing unpredictable, bright transient sources such as gamma-ray bursts. We described here the design and expected performance of two different TPC polarimeters proposed for small explorer missions: The PRAXyS (Polarimetry of Relativistic X-ray Sources) X-ray Polarimeter Instrument, optimized for observations of faint persistent sources and the POET (Polarimetry of Energetic Transients) Low Energy Polarimeter, designed to detect and measure bright transients. also NASA/GSFC.
Comparison of different strategies for soybean antioxidant extraction.
Chung, Hyun; Ji, Xiangming; Canning, Corene; Sun, Shi; Zhou, Kequan
2010-04-14
Three extraction strategies including Soxhlet extraction, conventional solid-liquid extraction, and ultrasonic-assisted extraction (UAE) were compared for their efficiency to extract phenolic antioxidants from Virginia-grown soybean seeds. Five extraction solvents were evaluated in UAE and the conventional extraction. The soybean extracts were compared for their total phenolic contents (TPC), oxygen radical absorbance capacity (ORAC), and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*)) scavenging activities. The results showed that UAE improved the extraction of soybean phenolic compounds by >54% compared to the conventional and Soxhlet extractions. Among the tested solvents, 50% acetone was the most efficient for extracting soybean phenolic compounds. There was no significant correlation between the TPC and antioxidant activities of the soybean extracts. The extracts prepared by 70% ethanol had the highest ORAC values. Overall, UAE with 50% acetone or 70% ethanol is recommended for extracting soybean antioxidants on the basis of the TPC and ORAC results.
Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade
NASA Astrophysics Data System (ADS)
Wang, Xu; Shen, Fuwang; Wang, Shuai; Feng, Cunfeng; Li, Changyu; Lu, Peng; Thomas, Jim; Xu, Qinghua; Zhu, Chengguang
2017-07-01
The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper, the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.
Benchmarking Using Basic DBMS Operations
NASA Astrophysics Data System (ADS)
Crolotte, Alain; Ghazal, Ahmad
The TPC-H benchmark proved to be successful in the decision support area. Many commercial database vendors and their related hardware vendors used these benchmarks to show the superiority and competitive edge of their products. However, over time, the TPC-H became less representative of industry trends as vendors keep tuning their database to this benchmark-specific workload. In this paper, we present XMarq, a simple benchmark framework that can be used to compare various software/hardware combinations. Our benchmark model is currently composed of 25 queries that measure the performance of basic operations such as scans, aggregations, joins and index access. This benchmark model is based on the TPC-H data model due to its maturity and well-understood data generation capability. We also propose metrics to evaluate single-system performance and compare two systems. Finally we illustrate the effectiveness of this model by showing experimental results comparing two systems under different conditions.
Rainha, Nuno; Koci, Kamila; Coelho, Ana Varela; Lima, Elisabete; Baptista, José; Fernandes-Ferreira, Manuel
2013-02-01
LC-UV and LC-MS analysis were used to study the phenolic composition of water extracts of Hypericum undulatum (HU) shoot cultures and wild-growing (WG) plants. Total phenolic content (TPC), determined using the Folin-Ciocalteu assay, and the antioxidant activity measured by two complementary methods were also performed for each sample. Mass spectrometry revealed several phenolics acids with quinic acid moieties, flavonols, mostly quercetin, luteolin and apigenin glycosides, flavan-3-ols (catechin and epicatechin) and the xanthonoid mangiferin. Differences in phenolic composition profile and TPC were found between the samples. The major phenolic in HU culture-growing (CG) samples is chlorogenic acid, followed by epicatechin, quercitrin and isoquercitrin. The WG plants presents hyperoside as the main phenolic, followed by isoquercitrin, chlorogenic acid and quercetin. The TPC and antioxidant activity were higher in samples from WG plants. Copyright © 2012 Elsevier Ltd. All rights reserved.
The darkside multiton detector for the direct dark matter search
Aalseth, C. E.; Agnes, P.; Alton, A.; ...
2015-01-01
Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing observable low-energy (<100 keV) nuclear recoils. The DarkSide program aims at the WIPMs detection using a liquid argon time projection chamber (LAr-TPC). In this paper we quickly review the DarkSide program focusing in particular on the next generation experiment DarkSide-G2, a 3.6-ton LAr-TPC. The different detector components are described as wellmore » as the improvements needed to scale the detector from DarkSide-50 (50 kg LAr-TPC) up to DarkSide-G2. Finally, the preliminary results on background suppression and expected sensitivity are presented.« less
Dong, Wenjiang; Cheng, Ke; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Long, Yuzhou
2018-05-11
The aim of this study is to investigate the effect of microwave vacuum drying (MVD) on the drying characteristics and quality attributes of green coffee beans. We specifically focused on the effective moisture diffusion coefficient ( D eff ), surface temperature, glass transition temperature ( T g ), water state, and microstructure. The kinetics of color changes during drying, total phenolic content (TPC), and antioxidant activity (DPPH, FRAP, and ABTS) were also characterized. Microwave power during MVD affected the porosity of coffee beans, their color, TPC, and antioxidant activity. The Allometric 1 model was the most suitable for simulating surface temperature rise kinetics. Thermal processing of green coffee beans resulted in increased b* , L* , Δ E , and TPC values, and greater antioxidant capacity. These findings may provide a theoretical reference for the technical improvement, mechanisms of flavor compound formation, and quality control of dried green coffee beans.
Large Time Projection Chambers for Rare Event Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heffner, M
The Time Projection Chamber (TPC) concept [add ref to TPC section] has been applied to many projects outside of particle physics and the accelerator based experiments where it was initially developed. TPCs in non-accelerator particle physics experiments are principally focused on rare event detection (e.g. neutrino and darkmater experiments) and the physics of these experiments can place dramatically different constraints on the TPC design (only extensions to the traditional TPCs are discussed here). The drift gas, or liquid, is usually the target or matter under observation and due to very low signal rates a TPC with the largest active massmore » is desired. The large mass complicates particle tracking of short and sometimes very low energy particles. Other special design issues include, efficient light collection, background rejection, internal triggering and optimal energy resolution. Backgrounds from gamma-rays and neutrons are significant design issues in the construction of these TPCs. They are generally placed deep underground to shield from cosmogenic particles and surrounded with shielding to reduce radiation from the local surroundings. The construction materials have to be carefully screened for radiopurity as they are in close contact with the active mass and can be a signification source of background events. The TPC excels in reducing this internal background because the mass inside the fieldcage forms one monolithic volume from which fiducial cuts can be made ex post facto to isolate quiet drift mass, and can be circulated and purified to a very high level. Self shielding in these large mass systems can be significant and the effect improves with density. The liquid phase TPC can obtain a high density at low pressure which results in very good self-shielding and compact installation with a lightweight containment. The down sides are the need for cryogenics, slower charge drift, tracks shorter than the typical electron diffusion, lower energy resolution (e.g. xenon) and limited charge readout options. Slower charge drift requires long electron lifetimes placing strict limits on the oxygen and other impurities with high electron affinity. A significant variation of the liquid phase TPC, that improves the charge readout, is the dual-phase TPC where a gas phase layer is formed above the liquid into which the drifting electrons are extracted and amplified, typically with electroluminescence. The successful transfer of electrons through the phase boundary requires careful control of its position and setting up an appropriate electric field. A high pressure gas phase TPC has no cryogenics and density is easily optimized for the signal, but a large heavy pressure vessel is required. Although shelf shielding is reduced, it can in some cases approach that of the liquid phase; in xenon at 50atm the density is about half that of water or about 1/6 of liquid xenon. A significant feature of high pressure xenon gas is the energy resolution. Below a density of about 0.5g/cc the intrinsic resolution is only a few times that of high purity germanium. A neutrino-less double beta decay (0{nu}2{beta}) TPC operated below this density limit could enjoy excellent energy resolution and maintain particle tracking for background rejection. An observable interaction with the TPC results in a charged particle that travels in the drift matter exciting and ionizing the atoms until the initial energy is converted into ionization, scintillation, or heat with relatively large fluctuations around a mean distribution. Rare event TPCs can be designed to detect scintillation light as well as charge to exploit the anti-correlation to improve energy resolution and/or signal to noise. An electric drift field separates the electrons and positive ions from the ionization although the separation is not complete and some electrons are captured, exciting atoms and releasing more light than the primary excitation alone. The average partition between the scintillation and ionization can be manipulated to increase the ionization (at a loss of scintillation) by a number of methods such as, increasing the strength of the electric field up to a saturation of the ionization yield, increasing the temperature to enhance the diffusion of the ionized electrons, and adding dopants such as triethylamine that can be photoionized by the scintillation photons releasing more ionization. Scintillation light is typically collected with photomultiplier tubes (PMTs) and avalanche photo diodes (APDs) although any fast (compared to the ionization drift speed) light collector capable of detecting the typically UV photons, maintaining high radiopurity and perhaps withstanding pressure would work. CCDs are slow and therefore only record 2 dimensions integrating over the time direction, some of which can be recovered with a few PMTs.« less
A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aicheler, M; Burrows, P.; Draper, M.
This report describes the accelerator studies for a future multi-TeV e +e - collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studiesmore » are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.« less
Linear momentum, angular momentum and energy in the linear collision between two balls
NASA Astrophysics Data System (ADS)
Hanisch, C.; Hofmann, F.; Ziese, M.
2018-01-01
In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.
Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac
NASA Astrophysics Data System (ADS)
Eliasson, Peder
2008-05-01
The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.
The Next Linear Collider Program
Navbar Other Address Books: Laboratory Phone/Email Web Directory SLAC SLAC Phonebook Entire SLAC Web FNAL Telephone Directory Fermilab Search LLNL Phone Book LLNL Web Servers LBNL Directory Services Web Search: A-Z Index KEK E-mail Database Research Projects NLC Website Search: Entire SLAC Web | Help
The Next Linear Collider Program
posted to the new SLAC ILC web site http://www-project.slac.stanford.edu/ilc/. Also, see the new site for . The NLC web site will remain accessible as an archive of important work done on the many systems | Navbar || || Documentation | NLC Playpen | Web Comments & Suggestions | Desktop Trouble Call | LC
The Next Linear Collider Program
. Records including program management records, financial records, technical and R&D data needed to international collaboration including BINP (Protvino), DESY, FNAL, KEK, LAL d'Orsay, MPI (Munich) and SLAC. SLAC scientific records for proper NLC documentation. Both paper and electronic files are archived in conjunction
A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.
2015-01-01
The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.
Analog VS Digital Hadron Calorimetry at a Future Electron-Positron Linear Collider
NASA Astrophysics Data System (ADS)
Magill, Stephen R.
2005-02-01
Precision jet measurements at a future e+e- linear collider may only be possible using so-called Particle Flow Algorithms (PFAs). While there are many possible implementations of P-flow techniques, they all have in common separation of induced calorimeter showers from charged and neutral hadrons (as well as photons) within a jet. Shower reconstruction in the calorimeter becomes more important than energy measurement of hadrons. The calorimeter cells must be highly granular both transverse to the particle trajectory and in longitudinal segmentation. It is probable that as the cell size decreases, it will be harder to get an energy measure from each cell (analog calorimetry). Using only the hit information (digital calorimetry) may be the best way to measure the neutral hadron energy contribution to jets. In this paper, comparisons of analog and digital methods of measuring the contributions of neutral hadrons to jets are made in simulation and in the context of a particular PFA, indicating that the digital method is at least equal to the analog case in jet energy resolution.
Modulators for the S-band test linac at DESY
NASA Astrophysics Data System (ADS)
Bieler, M.; Choroba, S.; Hameister, J.; Lewin, H.-Ch.
1995-07-01
The development of adequate modulators for high peak power klystrons is one of the focus points for linear collider R&D programs. For the DESY/THD S-band linear collider study 150 MW rf-pulse power at 50 Hz repetition rate and 3 μs pulse duration is required [1]. Two different modulator schemes are under investigation. One is the conventional line type pulser, using a pulse forming network and a step up transformer, the other one is a hard tube pulser, using a dc power source at the full klystron voltage and a switch tube. This paper is focused on the modulator development for the S-band Test Linac at DESY. After a short overview over the test linac and a brief description of the 150 MW S-band klystron the circuitry of the line type pulse (LTP) is given. A hard tube pulser (HTP), which switches the high voltage directly from a storage capacitor to the klystron, has been built up at DESY. Circuitry and the results of the commissioning of the switch tube are reported.
Using Spin Correlations to Distinguish Zh from ZA at the International Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahlon, Gregory; /Penn State U., Mont Alto; Parke, Stephen J.
2006-06-01
We investigate how to exploit the spin information imparted to the Z boson in associated Higgs production at a future linear collider as an aid in distinguishing between CP-even and CP-odd Higgs bosons. We apply a generalized spin-basis analysis which allows us to study the possibilities offered by non-traditional choices of spin projection axis. In particular, we find that the Z bosons produced in association with a CP-even Higgs via polarized collisions are in a single transverse spin-state (> 90% purity) when we use the Zh-transverse basis, provided that the Z bosons are not ultra-relativistic (speed < 0.9c). This samemore » basis applied to the associated production of a CP-odd Higgs yields Z's that are an approximately equal mixture of longitudinal and transverse polarizations. We present a decay angular distribution which could be used to distinguish between the CP-even and CP-odd cases. Finally, we make a few brief remarks about how this distribution would be affected if the Higgs boson turns out to not be a CP-eigenstate.« less
Effect of Damage on Strength and Durability
2010-05-01
sheets and different core materials. The HRP core has a phenolic resin matrix, the NP core has nylon modified phenolic base resin matrix and TPC core...core are 25% to 65% higher than those of NP or TPC cores. The phenolic resin of the HRP makes core stiff and brittle, resulting in cracking on impact...characteristics of graphite laminates can be improved by inserting glass or Kevlar fibers to form a hybrid laminate system. However, since glass and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Agostino, L.; Albuquerque, I. F. M.
DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles (WIMPs). It utilizes a liquid argon time projection chamber (LAr TPC) for the inner main detector. The TPC is surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV, both instrumented with PMTs, act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors.
Metal-core pad-plane development for ACTAR TPC
NASA Astrophysics Data System (ADS)
Giovinazzo, J.; Pibernat, J.; Goigoux, T.; de Oliveira, R.; Grinyer, G. F.; Huss, C.; Mauss, B.; Pancin, J.; Pedroza, J. L.; Rebii, A.; Roger, T.; Rosier, P.; Saillant, F.; Wittwer, G.
2018-06-01
With the recent development of active targets and time projection chambers (ACTAR TPC) as detectors for fundamental nuclear physics experiments, the need arose for charge collection planes with a high density of readout channels. In order to fulfill the mechanical constraints for the ACTAR TPC device, we designed a pad-plane based on a metal-core circuit with an conceptually simple design and routing for signal readout, named FAKIR (in reference to a fakir bed of nails). A test circuit has been equipped with a micro mesh gaseous structure (micromegas) for signal amplification and a dedicated readout electronics. Test measurements have been performed with an 55Fe X-ray source giving an intrinsic energy resolution (FWHM) of 22 ± 1% at 5 . 9 keV, and with a 3-alpha source for which a resolution of about 130 ± 20 keV at 4 . 8 MeV has been estimated. The pad-plane has been mounted into a reduced size demonstrator version of the ACTAR TPC detector, in order to illustrate charged particle track reconstruction. The tests preformed with the X-ray and the 3-alpha sources shows that results obtained from pads signals are comparable to the intrinsic result from the micro-mesh signal. In addition, a simple alpha particle tracks analysis is performed to demonstrate that the pad plane allows a precise reconstruction of the direction and length of the trajectories.
Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs
NASA Astrophysics Data System (ADS)
Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.
2014-02-01
This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.
Deng, Gaoyang; Wang, Zhonggang
2017-11-29
Triptycene-based cyanate monomers 2,6,14-tricyanatotriptycene (TPC) and 2,6,14-tris(4-cyanatophenyl)triptycene (TPPC) that contain different numbers of benzene rings per molecule were synthesized, from which two microporous cyanate resins PCN-TPC and PCN-TPPC were prepared. Of interest is the observation that the two polymers have very similar porosity parameters, but PCN-TPPC uptakes considerably higher benzene (77.8 wt %) than PCN-TPC (17.6 wt %) at room temperature since the higher concentration of phenyl groups in PCN-TPPC enhances the π-π interaction with benzene molecules. Besides, the adsorption capacity of benzene in PCN-TPPC is dramatically 7 times as high as that of cyclohexane. Contrary to the adsorption of organic vapors, at 273 K and 1.0 bar, PCN-TPC with more heteroatoms in the network skeleton displays larger uptake of CO 2 and higher CO 2 /N 2 selectivity (16.4 wt %, 60) than those of PCN-TPPC (14.0 wt %, 39). The excellent and unique adsorption properties exhibit potential applications in the purification of small molecular organic hydrocarbons, e.g., separation of benzene from benzene/cyclohexane mixture as well as CO 2 capture from flue gas. Moreover, the results are helpful for deeply understanding the effect of porous and chemical structures on the adsorption properties of organic hydrocarbons and CO 2 gas.
Integration of the ATLAS FE-I4 Pixel Chip in the Mini Time Projection Chamber
NASA Astrophysics Data System (ADS)
Lopez-Thibodeaux, Mayra; Garcia-Sciveres, Maurice; Kadyk, John; Oliver-Mallory, Kelsey
2013-04-01
This project deals with development of readout for a Time Projection Chamber (TPC) prototype. This is a type of detector proposed for direct detection of dark matter (WIMPS) with direction information. The TPC is a gaseous charged particle tracking detector composed of a field cage and a gas avalanche detector. The latter is made of two Gas Electron Multipliers in series, illuminating a pixel readout integrated circuit, which measures the distribution in position and time of the output charge. We are testing the TPC prototype, filled with ArCO2 gas, using a Fe-55 x-ray source and cosmic rays. The present prototype uses an FE-I3 chip for readout. This chip was developed about 10 years ago and is presently in use within the ATLAS pixel detector at the LHC. The aim of this work is to upgrade the TPC prototype to use an FE-I4 chip. The FE-I4 has an active area of 336 mm^2 and 26880 pixels, over nine times the number of pixels in the FE-I3 chip, and an active area about six times as much. The FE-I4 chip represents the state of the art of pixel detector readout, and is presently being used to build an upgrade of the ATLAS pixel detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, L.N.
Some proposed techniques for using laser beams to accelerate charged particles are reviewed. Two specific ideas for 'grating-type' accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a 'multi-pass collider', a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single-pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak powermore » requirements be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.« less
The laser accelerator-another unicorn in the garden
NASA Astrophysics Data System (ADS)
Hand, L. N.
1981-07-01
Some proposed techniques for using laser beams to accelerate charged particles was reviewed. Two specific ideas for grating type accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a multipass collider; a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements to be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.
Type IIB Colliding Plane Waves
NASA Astrophysics Data System (ADS)
Gutperle, M.; Pioline, B.
2003-09-01
Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+2-dimensional Einstein gravity with a n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n = 4, our results pertain to the collision of two ten-dimensional type-IIB Blau-Figueroa o'Farrill-Hull-Papadopoulos plane waves.
Spin formalism and applications to new physics searches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, H.E.
1994-12-01
An introduction to spin techniques in particle physics is given. Among the topics covered are: helicity formalism and its applications to the decay and scattering of spin-1/2 and spin-1 particles, techniques for evaluating helicity amplitudes (including projection operator methods and the spinor helicity method), and density matrix techniques. The utility of polarization and spin correlations for untangling new physics beyond the Standard Model at future colliders such as the LHC and a high energy e{sup +}e{sup {minus}} linear collider is then considered. A number of detailed examples are explored including the search for low-energy supersymmetry, a non-minimal Higgs boson sector,more » and new gauge bosons beyond the W{sup {+-}} and Z.« less
Jiang, Yong-Liang; Lin, Amanda H. Y.; Xia, Yang; Lee, Suengwon; Paudel, Omkar; Sun, Hui; Yang, Xiao-Ru; Ran, Pixin; Sham, James S. K.
2013-01-01
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-mobilizing messenger that releases Ca2+ from endolysosomal organelles. Recent studies showed that NAADP-induced Ca2+ release is mediated by the two-pore channels (TPCs) TPC1 and TPC2. However, the expression of TPCs and the NAADP-induced local Ca2+ signals have not been examined in vascular smooth muscle. Here, we found that both TPC1 and TPC2 are expressed in rat pulmonary arterial smooth muscle cells (PASMCs), with TPC1 being the major subtype. Application of membrane-permeant NAADP acetoxymethyl ester to PASMCs elicited a biphasic increase in global [Ca2+]i, which was independent of extracellular Ca2+ and blocked by the NAADP antagonist Ned-19 or the vacuolar H+-ATPase inhibitor bafilomycin A1, indicating Ca2+ release from acidic endolysosomal Ca2+ stores. The Ca2+ response was unaffected by xestospongin C but was partially blocked by ryanodine or thapsigargin. NAADP triggered heterogeneous local Ca2+ signals, including a diffuse increase in cytosolic [Ca2+], Ca2+ sparks, Ca2+ bursts, and regenerative Ca2+ release. The diffuse Ca2+ increase and Ca2+ bursts were ryanodine-insensitive, presumably arising from different endolysosomal sources. Ca2+ sparks and regenerative Ca2+ release were inhibited by ryanodine, consistent with cross-activation of loosely coupled ryanodine receptors. Moreover, Ca2+ release stimulated by endothelin-1 was inhibited by Ned-19, ryanodine, or xestospongin C, suggesting that NAADP-mediated Ca2+ signals interact with both ryanodine and inositol 1,4,5-trisphosphate receptors during agonist stimulation. Our results show that NAADP mediates complex global and local Ca2+ signals. Depending on the physiological stimuli, these diverse Ca2+ signals may serve to regulate different cellular functions in PASMCs. PMID:23443655
Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qinghe; Zhao, Donglin; Goldey, Matthew B.
Two types of electron acceptors were synthesized by coupling two kinds of electron-rich cores with four equivalent perylene diimides (PDIs) at the a position. With fully aromatic cores, TPB and TPSe have pi-orbitals spread continuously over the whole aromatic conjugated backbone, unlike TPC and TPSi, which contain isolated PDI units due to the use of a tetrahedron carbon or silicon linker. Density functional theory calculations of the projected density of states showed that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for TPB are localized in separate regions of space. Further, the LUMO of TPB showsmore » a greater contribution from the orbitals belonging to the connective core of the molecules than that of TPC. Overall, the properties of the HOMO and LUMO point at increased intra-molecular delocalization of negative charge carriers for TPB and TPSe than for TPC and TPSi and hence at a more facile intra-molecular charge transfer for the former. The film absorption and emission spectra showed evidences for the inter -molecular electron delocalization in TPB and TPSe, which is consistent with the network structure revealed by X-ray diffraction studies on single crystals of TPB. These features benefit the formation of charge transfer states and/or facilitate charge transport. Thus, higher electron mobility and higher charge dissociation probabilities under J(sc) condition were observed in blend films of TPB:PTB7-Th and TPSe:PTB7-Th than those in TPC:PTB7Th and TPSi:PTB7-Th blend films. As a result, the J(sc) and fill factor values of 15.02 mA/cm(2), 0.58 and 14.36 mA/cm(2), 0.55 for TPB- and TPSe-based solar cell are observed, whereas those for TPC and TPSi are 11.55 mA/cm2, 0.47 and 10.35 mA/cm(2), 0.42, respectively.« less
Evans, Matthew J; Choi, Won-Gyu; Gilroy, Simon; Morris, Richard J
2016-07-01
Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1. © 2016 American Society of Plant Biologists. All Rights Reserved.
Cranford, Ted W.; Krysl, Petr; Amundin, Mats
2010-01-01
Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC) and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish. PMID:20694149
Cranford, Ted W; Krysl, Petr; Amundin, Mats
2010-08-04
Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC) and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish.
NEXT, a HPXe TPC for neutrinoless double beta decay searches
NASA Astrophysics Data System (ADS)
Gómez-Cadenas, J. J.; Martín-Albo, J.
2008-11-01
The next-generation experiments for neutrinoless double beta decay searches are a major challenge, since the detectors have to fulfill conflicting requirements: they have to be very massive and scalable; very sensitive to the signature of the ββ processes, and simultaneously impose extremely stringent limits on the copious backgrounds. A high-pressure gaseous Xenon TPC may be the ideal detector for this purpose: the isotope 136Xe is almost 9% of natural Xenon and enrichment by centrifugation is a relatively easy technology as demonstrated by the EXO collaboration; the detector can be extrapolated to large masses; energy resolution in gas is expected to be at the level of 1% FWHM at Qββ this fact, combined with the very long life of the ββ2ν mode accounts for negligible backgrounds of intrinsic origin up to masses of the order of 1 ton. The detector is fully active and the gas can be continuously re-circulated and purified, which, together with the existence of a kinematical signature gives an extra handle against backgrounds. NEXT (Neutrino Experiment with a Xenon TPC) is an on-going project that aims to build a 100 kg HPXe TPC at a pressure of ~10 bar. The experiment has already been aproved by the scientific committee of the Canfranc Underground Laboratory (LSC), in Spain, for the initial R&D phase. The NEXT Collaboration has defined an ambitious roadmap for the next five years: an initial phase of R&D during 2 years will be used to decide the technology (MicroMegas, GEMs. APDs. PMTs, etc.); in 3 years a first prototype (NEXT-10) will be constructed; followed by NEXT-100 in 5 years. A special grant (Consolider-Ingenio 2010) from the Ministry of Science of Spain will fund the experiment during this period. The Collaboration is composed by the leading Spanish groups in experimental neutrino and underground physics. The general ideas behind neutrinoless double beta decay searches with a HPXe TPC are discussed in this note.
DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS
NASA Astrophysics Data System (ADS)
Aalseth, C. E.; Acerbi, F.; Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alici, A.; Alton, A. K.; Antonioli, P.; Arcelli, S.; Ardito, R.; Arnquist, I. J.; Asner, D. M.; Ave, M.; Back, H. O.; Barrado Olmedo, A. I.; Batignani, G.; Bertoldo, E.; Bettarini, S.; Bisogni, M. G.; Bocci, V.; Bondar, A.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Boulay, M.; Bunker, R.; Bussino, S.; Buzulutskov, A.; Cadeddu, M.; Cadoni, M.; Caminata, A.; Canci, N.; Candela, A.; Cantini, C.; Caravati, M.; Cariello, M.; Carlini, M.; Carpinelli, M.; Castellani, A.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Cavuoti, S.; Cereseto, R.; Chepurnov, A.; Cicalò, C.; Cifarelli, L.; Citterio, M.; Cocco, A. G.; Colocci, M.; Corgiolu, S.; Covone, G.; Crivelli, P.; D'Antone, I.; D'Incecco, M.; D'Urso, D.; Da Rocha Rolo, M. D.; Daniel, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Guido, G.; De Rosa, G.; Dellacasa, G.; Della Valle, M.; Demontis, P.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Dolgov, A.; Dormia, I.; Dussoni, S.; Empl, A.; Fernandez Diaz, M.; Ferri, A.; Filip, C.; Fiorillo, G.; Fomenko, K.; Franco, D.; Froudakis, G. E.; Gabriele, F.; Gabrieli, A.; Galbiati, C.; Garcia Abia, P.; Gendotti, A.; Ghisi, A.; Giagu, S.; Giampa, P.; Gibertoni, G.; Giganti, C.; Giorgi, M. A.; Giovanetti, G. K.; Gligan, M. L.; Gola, A.; Gorchakov, O.; Goretti, A. M.; Granato, F.; Grassi, M.; Grate, J. W.; Grigoriev, G. Y.; Gromov, M.; Guan, M.; Guerra, M. B. B.; Guerzoni, M.; Gulino, M.; Haaland, R. K.; Hallin, A.; Harrop, B.; Hoppe, E. W.; Horikawa, S.; Hosseini, B.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; Jillings, C.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Kim, S.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Kuss, M.; Kuźniak, M.; La Commara, M.; Lehnert, B.; Li, X.; Lissia, M.; Lodi, G. U.; Loer, B.; Longo, G.; Loverre, P.; Lussana, R.; Luzzi, L.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mapelli, L.; Marcante, M.; Margotti, A.; Mari, S. M.; Mariani, M.; Maricic, J.; Martoff, C. J.; Mascia, M.; Mayer, M.; McDonald, A. B.; Messina, A.; Meyers, P. D.; Milincic, R.; Moggi, A.; Moioli, S.; Monroe, J.; Monte, A.; Morrocchi, M.; Mount, B. J.; Mu, W.; Muratova, V. N.; Murphy, S.; Musico, P.; Nania, R.; Navrer Agasson, A.; Nikulin, I.; Nosov, V.; Nozdrina, A. O.; Nurakhov, N. N.; Oleinik, A.; Oleynikov, V.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Palmas, S.; Pandola, L.; Pantic, E.; Paoloni, E.; Paternoster, G.; Pavletcov, V.; Pazzona, F.; Peeters, S.; Pelczar, K.; Pellegrini, L. A.; Pelliccia, N.; Perotti, F.; Perruzza, R.; Pesudo, V.; Piemonte, C.; Pilo, F.; Pocar, A.; Pollmann, T.; Portaluppi, D.; Pugachev, D. A.; Qian, H.; Radics, B.; Raffaelli, F.; Ragusa, F.; Razeti, M.; Razeto, A.; Regazzoni, V.; Regenfus, C.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Retière, F.; Riffard, Q.; Rivetti, A.; Rizzardini, S.; Romani, A.; Romero, L.; Rossi, B.; Rossi, N.; Rubbia, A.; Sablone, D.; Salatino, P.; Samoylov, O.; Sánchez García, E.; Sands, W.; Sanfilippo, S.; Sant, M.; Santorelli, R.; Savarese, C.; Scapparone, E.; Schlitzer, B.; Scioli, G.; Segreto, E.; Seifert, A.; Semenov, D. A.; Shchagin, A.; Shekhtman, L.; Shemyakina, E.; Sheshukov, A.; Simeone, M.; Singh, P. N.; Skensved, P.; Skorokhvatov, M. D.; Smirnov, O.; Sobrero, G.; Sokolov, A.; Sotnikov, A.; Speziale, F.; Stainforth, R.; Stanford, C.; Suffritti, G. B.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Tosi, A.; Trinchese, P.; Unzhakov, E. V.; Vacca, A.; Vázquez-Jáuregui, E.; Verducci, M.; Viant, T.; Villa, F.; Vishneva, A.; Vogelaar, B.; Wada, M.; Wahl, J.; Walding, J.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Williams, R.; Wojcik, M. M.; Wu, S.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Yllera de Llano, A.; Zappa, F.; Zappalà, G.; Zhu, C.; Zichichi, A.; Zullo, M.; Zullo, A.; Zuzel, G.
2018-03-01
Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of >3 × 109 is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than < 0.1 events (other than ν-induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of 1.2 × 10^{-47} cm2 (1.1 × 10^{-46} cm2) for WIMPs of 1 TeV/c 2 (10 TeV/c 2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.
Recent Results from ArgoNeuT and Status of MicroBooNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szelc, Andrzej
2015-07-10
Liquid Argon Time Projection Chamber (LArTPC) detectors hold the key to answering the outstanding questions about the role of neutrinos in the Standard Model of Particle physics and beyond. Their fine granularity combined with calorimetric capabilities allows for precision measurements that answering these questions will require. Here, we discuss the recent results from the ArgoNeuT experiment as well as the status and prospects for MicroBooNE, both a part of the US-based LArTPC neutrino program.
NASA Technical Reports Server (NTRS)
Hill, J. E.; Black, J. K.; Jahoda, K.; Tamagawa, T.; Iwakiri, W.; Kitaguchi, T.; Kubota, M.; Kaaret, P.; Mccurdy, R.; Miles, D. M.;
2016-01-01
The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study. The PRAXyS observatory carries an X-ray Polarimeter Instrument (XPI) capable of measuring the linear polarization from a variety of high energy sources, including black holes, neutron stars, and supernova remnants. The XPI is comprised of two identical mirror-Time Projection Chamber (TPC) polarimeter telescopes with a system effective area of 124 sq cm at 3 keV, capable of photon limited observations for sources as faint as 1 mCrab. The XPI is built with well-established technologies. This paper will describe the performance of the XPI flight mirror with the engineering test unit polarimeter
Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment
NASA Astrophysics Data System (ADS)
Spilling, Kristian; Schulz, Kai G.; Paul, Allanah J.; Boxhammer, Tim; Achterberg, Eric P.; Hornick, Thomas; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Crawfurd, Kate; Brussaard, Corina P. D.; Grossart, Hans-Peter; Riebesell, Ulf
2016-11-01
About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient ( ˜ 370 µatm) to high ( ˜ 1200 µatm), were set up in mesocosm bags ( ˜ 55 m3). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol C m-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by ˜ 7 % in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was ˜ 100 mmol C m-2 day-1, from which 75-95 % was respired, ˜ 1 % ended up in the TPC (including export), and 5-25 % was added to the DOC pool. During phase II, the respiration loss increased to ˜ 100 % of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95 % of GPP) in the highest CO2 treatment. Bacterial production was ˜ 30 % lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.
Drell-Yan process as an avenue to test a noncommutative standard model at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
J, Selvaganapathy; Das, Prasanta Kumar; Konar, Partha
2016-06-01
We study the Drell-Yan process at the Large Hadron Collider in the presence of the noncommutative extension of the standard model. Using the Seiberg-Witten map, we calculate the production cross section to first order in the noncommutative parameter Θμ ν . Although this idea has been evolving for a long time, only a limited amount of phenomenological analysis has been completed, and this was mostly in the context of the linear collider. An outstanding feature from this nonminimal noncommutative standard model not only modifies the couplings over the SM production channel but also allows additional nonstandard vertices which can play a significant role. Hence, in the Drell-Yan process, as studied in the present analysis, one also needs to account for the gluon fusion process at the tree level. Some of the characteristic signatures, such as oscillatory azimuthal distributions, are an outcome of the momentum-dependent effective couplings. We explore the noncommutative scale ΛNC≥0.4 TeV , considering different machine energy ranging from 7 to 13 TeV.
DEPFET pixel detector for future e-e+ experiments
NASA Astrophysics Data System (ADS)
Boronat, M.; DEPFET Collaboration
2016-04-01
The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future e+e- collider experiments. A DEPFET sensor provides, simultaneously, position sensitive detector capabilities and in-pixel amplification by the integration of a field effect transistor on a fully depleted silicon bulk. The characterization of the latest DEPFET prototypes has proven that a comfortable signal to noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 μm. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. The close to Belle related final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the Belle II required read-out speed. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a solid candidate for the International Linear Collider (ILC). Therefore, in this paper, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future e+e- collider.
Aberration compensation in a Skew parametric-resonance ionization cooling channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sy, Amy V.; Derbenev, Yaroslav S.; Morozov, Vasiliy
Skew Parametric-resonance Ionization Cooling (Skew PIC) represents a novel method for focusing of highly divergent particle beams, as in the final 6D cooling stage of a high-luminosity muon collider. In the muon collider concept, the resultant equilibrium transverse emittances from cooling with Skew PIC are an order of magnitude smaller than in conventional ionization cooling. The concept makes use of coupling of the transverse dynamic behavior, and the linear dynamics are well-behaved with good agreement between analytic solutions and simulation results. Compared to the uncoupled system, coupling of the transverse dynamic behavior purports to reduce the number of multipoles requiredmore » for aberration compensation while also avoiding unwanted resonances. Aberration compensation is more complicated in the coupled case, especially in the high-luminosity muon collider application where equilibrium angular spreads in the cooling channel are on the order of 200 mrad. We present recent progress on aberration compensation for control of highly divergent muon beams in the coupled correlated optics channel, and a simple cooling model to test the transverse acceptance of the channel.« less
Discrepant Results in a 2-D Marble Collision
ERIC Educational Resources Information Center
Kalajian, Peter
2013-01-01
Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…
NASA Astrophysics Data System (ADS)
Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.
2009-12-01
Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.
The Next Linear Collider Program
/graphics.htm Snowmass 2001 http://snowmass2001.org/ Electrical Systems Modulators http://www -project.slac.stanford.edu/lc/local/electrical/e_home.htm DC Magnet Power http://www-project.slac.stanford.edu/lc/local /electrical/e_home.htm Global Systems http://www-project.slac.stanford.edu/lc/local/electrical/e_home.htm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bower, G.
We summarize the current status and future developments of the North American Group's Java-based system for studying physics and detector design issues at a linear collider. The system is built around Java Analysis Studio (JAS) an experiment-independent Java-based utility for data analysis. Although the system is an integrated package running in JAS, many parts of it are also standalone Java utilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Geronimo, G.; Li, S.; D'Andragora, A.
We present a front-end application-specific integrated circuit (ASIC) for a wire based time-projection-chamber (TPC) operating in liquid Argon (LAr). The LAr TPC will be used for long baseline neutrino oscillation experiments. The ASIC must provide a low-noise readout of the signals induced on the TPC wires, digitization of those signals at 2 MSamples/s, compression, buffering and multiplexing. A resolution of better than 1000 rms electrons at 200 pF input capacitance for an input range of 300 fC is required, along with low power and operation in LAr (at 87 K). We include the characterization of a commercial technology for operationmore » in the cryogenic environment and the first experimental results on the analog front end. The results demonstrate that complementary metal-oxide semiconductor transistors have lower noise and much improved dc characteristics at LAr temperature. Finally, we introduce the concept of '1/f equivalent' to model the low-frequency component of the noise spectral density, for use in the input metal-oxide semiconductor field-effect transistor optimization.« less
Influence of variety and harvest maturity on phytochemical content in corn silk.
Sarepoua, Eakrin; Tangwongchai, Ratchada; Suriharn, Bhalang; Lertrat, Kamol
2015-02-15
Corn silk has been used as a traditional herb in Asia. The objective of this study was to evaluate variability in phytochemicals in corn varieties at three maturity stages of corn silk. Ten vegetable corn varieties were evaluated in a completely randomized design with three replications. Data were recorded for total phenolic (TPC), total flavonoids (TFC), total anthocyanin (TAC) and antioxidant activity (AA) by DPPH free-radical-scavenging assays. Differences among corn varieties were observed for all parameters at all maturity stages, and the interactions between maturity stage and corn variety were significant. TPC and TAC were highest at the milky stage, whereas TFC and AA were highest at the silking stage. TPC, TFC and AA were highest in super sweet corn and white corn at the silking stage. PWC5 variety of purple waxy corn at the milky stage had the highest values for all parameters, and it is useful for further development of functional food products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Measuring the Neutron Cross Section and Detector Response from Interactions in Liquid Argon
NASA Astrophysics Data System (ADS)
Kamp, Nicholas; Collaboration, Captain
2017-09-01
The main objective of the CAPTAIN (Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos) program is to measure neutron and neutrino interactions in liquid argon. These results will be essential to the development of both short and long baseline neutrino experiments. The full CAPTAIN experiment involves a 10 ton liquid argon time projection chamber (LArTPC) that will take runs at a low-energy ( 10-50 MeV) stopped pion neutrino source. A two ton LArTPC, MiniCAPTAIN, will serve as a prototype for the full CAPTAIN detector. MiniCAPTAIN has been deployed to take data at the Los Alamos Neutron Science Center in late July. During this run, it will both test new LArTPC technologies and measure the cross section and detector response of neutron interactions in liquid argon. The results will be helpful in characterizing neutral current neutrino interactions and identifying background in future neutrino detection experiments. This poster gives an overview of these results and a status update on the CAPTAIN collaboration.
Live event reconstruction in an optically read out GEM-based TPC
NASA Astrophysics Data System (ADS)
Brunbauer, F. M.; Galgóczi, G.; Gonzalez Diaz, D.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.
2018-04-01
Combining strong signal amplification made possible by Gaseous Electron Multipliers (GEMs) with the high spatial resolution provided by optical readout, highly performing radiation detectors can be realized. An optically read out GEM-based Time Projection Chamber (TPC) is presented. The device permits 3D track reconstruction by combining the 2D projections obtained with a CCD camera with timing information from a photomultiplier tube. Owing to the intuitive 2D representation of the tracks in the images and to automated control, data acquisition and event reconstruction algorithms, the optically read out TPC permits live display of reconstructed tracks in three dimensions. An Ar/CF4 (80/20%) gas mixture was used to maximize scintillation yield in the visible wavelength region matching the quantum efficiency of the camera. The device is integrated in a UHV-grade vessel allowing for precise control of the gas composition and purity. Long term studies in sealed mode operation revealed a minor decrease in the scintillation light intensity.
Phenolic composition and antioxidant properties of koose, a deep-fat fried cowpea cake.
Apea-Bah, Franklin B; Serem, June C; Bester, Megan J; Duodu, Kwaku G
2017-12-15
Koose, a West African delicacy, is a side dish prepared by deep frying thick cowpea paste. The current research determined the effect of deep-fat frying of cowpea paste on its total phenolic content (TPC), phenolic composition and antioxidant properties. Four cowpea cultivars comprising two reddish-brown, a brownish-cream and cream phenotypes were used. Liquid chromatography-mass spectrometry was used to determine phenolic composition of the samples. TPC was determined using Folin-Ciocalteu method while radical scavenging capacities were by Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity and nitric oxide scavenging assays. The phenolic acids identified included benzoic and cinnamic acid derivatives. The predominant flavonoid classes were flavan-3-ols and flavonols. Deep-fat frying of the cowpea pastes decreased their TPC, radical scavenging capacities and total quantified flavonoids. The koose inhibited radical-induced oxidative cellular and DNA damage. It is concluded that koose is a potential functional food that can contribute to alleviating radical-induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dobson, Patricia; Graham, Julie; Stewart, D; Brennan, Rex; Hackett, Christine A; McDougall, Gordon J
2012-05-30
This study examined the total phenol content (TPC) and total anthocyanin content (TAC) in ripe fruit of progeny of a mapping population generated from a cross between the European red raspberry cv. Glen Moy ( Rubus ideaus var. idaeus) and the North American red raspberry cv. Latham ( Rubus ideaus var. strigosus) over five seasons in two different growing environments. Measurements of antioxidant capacity (FRAP and TEAC) were also carried out. TPC was highly correlated with TEAC and FRAP across the entire data set. The subset of anthocyanin content was genotype-dependent but also correlated with TPC, although the proportion of anthocyanin compounds varied between progeny. Quantitative trait locus (QTL) analysis was carried out, and key markers were tested for consistency of effects over sites and years. Four regions, on linkage groups 2, 3, 5, and 6, were identified. These agree with QTLs from a previous study over a single season and indicate that QTL effects were robust over seasons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gai, Moshe
The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC)more » will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, C.; et al.
We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge withmore » the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed.« less
Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke
2015-04-01
Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased. Copyright © 2014 Elsevier Ltd. All rights reserved.
Popović, Boris M; Stajner, Dubravka; Slavko, Kevrešan; Sandra, Bijelić
2012-09-15
Ethanol extracts (80% in water) of 10 cornelian cherry (Cornus mas L.) genotypes were studied for antioxidant properties, using methods including DPPH(), ()NO, O(2)(-) and ()OH antiradical powers, FRAP, total phenolic and anthocyanin content (TPC and ACC) and also one relatively new, permanganate method (permanganate reducing antioxidant capacity-PRAC). Lipid peroxidation (LP) was also determined as an indicator of oxidative stress. The data from different procedures were compared and analysed by multivariate techniques (correlation matrix calculation and principal component analysis (PCA)). Significant positive correlations were obtained between TPC, ACC and DPPH(), ()NO, O(2)(-), and ()OH antiradical powers, and also between PRAC and TPC, ACC and FRAP. PCA found two major clusters of cornelian cherry, based on antiradical power, FRAP and PRAC and also on chemical composition. Chemometric evaluation showed close interdependence between PRAC method and FRAP and ACC. There was a huge variation between C. mas genotypes in terms of antioxidant activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comparative antioxidant activity of edible Japanese brown seaweeds.
Airanthi, M K Widjaja-Adhi; Hosokawa, Masashi; Miyashita, Kazuo
2011-01-01
Japanese edible brown seaweeds, Eisenia bicyclis (Arame), Kjellmaniella crassifolia (Gagome), Alaria crassifolia (Chigaiso), Sargassum horneri (Akamoku), and Cystoseira hakodatensis (Uganomoku) were assayed for total phenolic content (TPC), fucoxanthin content, radical scavenging activities (DPPH, peroxyl radical, ABTS, and nitric oxide), and antioxidant activity in a liposome system. Among the solvents used for extraction, methanol was the most effective to extract total phenolics (TPC) from brown seaweeds. Among 5 kinds of brown seaweeds analyzed, methanol extract from C. hakodatensis was the best source for antioxidants. The high antioxidant activity of the extract was based not only on the high content of phenolics, but on the presence of fucoxanthin. No significant correlation (P > 0.05) was observed between TPC per gram extract with DPPH radical scavenging activity of the methanol extracts. These observed discrepancy would be due to structural variations in the phenolic compounds, and different levels of fucoxanthin in the extracts. The present study also demonstrated the synergy in the antioxidant activity of the combination of brown seaweed phenolics and fucoxanthin.
Ramos, Lorena Rodrigues; Santos, Jânio Sousa; Daguer, Heitor; Valese, Andressa Camargo; Cruz, Adriano Gomes; Granato, Daniel
2017-04-15
The aims of the present study were to optimize and characterize the phenolic composition of a herbal extract composed of green mate (Ilex paraguariensis), clove (Syzygium aromaticum), and lemongrass (Cymbopogon citratus) and to propose the addition of this polyphenol-rich extract to fermented milks (FM) with/without sweet potato pulp (Ipomoea batatas). Proximate composition, pH, acidity, instrumental texture profile, total phenolic content (TPC), antioxidant activity (AA) of all formulations were measured, and sensory attributes were also investigated. The addition of a lyophilized extract (1g 100g -1 ) containing 87.5% clove and 12.5% green mate increased the AA and TPC, while FM with added sweet potato pulp had the best sensory acceptance. The TPC and total reducing capacity had a slight change during 21days of storage. The data showed that herbal extracts and sweet potato pulp may be used to develop new dairy foods with potential functional properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Profiling of Phenolic Compounds and Antioxidant Activity of 12 Cruciferous Vegetables.
Li, Zhifeng; Lee, Hui Wen; Liang, Xu; Liang, Dong; Wang, Qi; Huang, Dejian; Ong, Choon Nam
2018-05-10
The phenolic profiles of 12 cruciferous vegetables (pakchoi, choysum, Chinese cabbage, kailan, Brussels sprout, cabbage, cauliflower, broccoli, rocket salad, red cherry radish, daikon radish, and watercress) were studied with UHPLC-MS/MS. Antioxidant activity and total phenolic content (TPC) were also evaluated. A total of 74 phenolic compounds were identified, including 16 hydroxycinnamic acids and derivatives, and 58 flavonoids and derivatives. The main flavonoids identified were glycosylated quercetin, kaempferol and isorhamnetin, and the main hydroxycinnamic acids were ferulic, sinapic, caffeic and p -coumaric acids. Principal component analysis (PCA) revealed that the distribution of phenolic compounds in different genera of cruciferous vegetables was in accordance with their conventional taxonomy. The DPPH, ORAC and TPC values ranged from 1.11 to 9.54 µmoles Trolox equivalent/g FW, 5.34 to 32.92 µmoles Trolox equivalent/g FW, and 0.16 to 1.93 mg gallic acid equivalent/g FW respectively. Spearman’s correlation showed significant ( p < 0.05) positive correlations between TPC, flavonoids and antioxidant activity.
Palamara, Ornella
2016-12-29
Results from the analysis of charged current pion-less (CC 0-pion) muon neutrino events in argon collected by the ArgoNeuT experiment on the NuMI beam at Fermilab are presented and compared with predictions from Monte Carlo simulations. A novel analysis method, based on the reconstruction of exclusive topologies, fully exploiting the Liquid argon Time Projection Chamber (LAr TPC) technique capabilities, is used to analyze the events, characterized by the presence at the vertex of a leading muon track eventually accompanied by one or more highly ionizing tracks, and study nuclear effects in neutrino interactions on argon nuclei. Multiple protons accompanying themore » leading muon are visible in the ArgoNeuT events, and measured with a proton reconstruction threshold of 21 MeV kinetic energy. As a result, measurements of (anti-)neutrino CC 0-pion inclusive and exclusive cross sections on argon nuclei are reported. Prospects for future, larger mass LAr TPC detectors are discussed.« less
Pang, Yuehan; Ahmed, Sulaiman; Xu, Yanjie; Beta, Trust; Zhu, Zhiwei; Shao, Yafang; Bao, Jinsong
2018-02-01
Total phenolic content (TPC), individual phenolic acid and antioxidant capacity of whole grain and bran fraction 18 rices with different bran color were investigated. The levels of TPC in bound fractions were significantly higher than those in the free fractions either in the whole grains or brans. The main bound phenolic acids in white rice samples were ferulic acid, p-coumaric acid, and isoferulic acid, and in pigmented rice samples were ferulic acid, p-coumaric acid, and vanillic acid. The protocatechuic acid and 2,5-dihydroxybenzoic acid were not detected in white samples. The content of gallic acid, protocatechuic acid, 2,5-dihydroxybenzoic acid, ferulic acid, sinapic acid had significantly positive correlations with TPC and antioxidant capacity. This study found much wider diversity in the phenolics and antioxidant capacity in the whole grain and brans of rice, and will provide new opportunities to further improvement of rice with enhanced levels of the phytochemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teoh, Li Shing; Lasekan, Ola; Adzahan, Noranizan Mohd; Hashim, Norhashila
2016-07-01
In this work, potato slices were exposed to different doses of UV-C irradiation (i.e. 2.28, 6.84, 11.41, and 13.68 kJ m -2 ) with or without pretreatment [i.e. ascorbic acid and calcium chloride (AACCl) dip] and stored at 4 ± 1 °C. Changes in enzymatic activities of polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia lyase (PAL), as well as total phenolic content (TPC) were investigated after 0, 3, 7 and 10 days of storage. Results showed that untreated and UV-C treated potato slices at 13.68 kJ m -2 dosage level showed significantly higher PPO, POD and PAL activities. Conversely, untreated potato slices showed the lowest TPC during storage period. Potato slices subjected to AACCl dip plus UV-C at 6.84 kJ m -2 produced lower PPO, POD and PAL activities, as well as maintained a high TPC during storage.
Drying effects on the antioxidant properties of tomatoes and ginger.
Gümüşay, Özlem Aktürk; Borazan, Alev Akpınar; Ercal, Nuran; Demirkol, Omca
2015-04-15
In this study, the effects of four different drying processes, sun drying (SD), oven drying (OD), vacuum oven drying (VOD) and freeze drying (FD) for tomatoes (Solanum lycopersicum) and ginger (Zingiber officinale) in terms of thiolic and phenolic contents have been studied. Thiol content, total phenolic content (TPC), ascorbic acid (AA) content, and cupric ion reducing antioxidant capacity (CUPRAC) were determined in fresh and dried samples. Glutathione (GSH) and cysteine (Cys) were determined as the thiol contents of tomatoes and ginger. Significant losses were observed in the contents of TPC, AA, GSH and Cys and CUPRAC values in all samples that were dried using the thermal method. There was a statistically significant difference in the losses of the TPC, AA, and thiol contents between the use of thermal drying and freeze drying (except Cys in tomatoes) methods. Freeze dried tomato and ginger samples have been found to have better antioxidant properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sarkar, Biswatrish; Kumar, Dhananjay; Sasmal, Dinakar; Mukhopadhyay, Kunal
2014-01-01
Anthocyanin extracts (AEs) from Ocimum tenuiflorum (leaf), Hibiscus rosa-sinensis (petal) and Hibiscus sabdariffa (calyx) were investigated and compared for in vitro antioxidant activity and DNA damage protective property. Total phenolic content (TPC) and total anthocyanin content (TAC) of the AEs were determined and the major anthocyanins were characterised. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay, 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical-scavenging activity, 2-deoxy-D-ribose degradation assay and lipid peroxidation assay. The protective property of the AEs was also examined against oxidative DNA damage by H2O2 and UV using pUC19 plasmid. All the AEs particularly those from O. tenuiflorum demonstrated efficient antioxidant activity and protected DNA from damage. Strong correlation between antioxidant capacity and TPC and TAC was observed. Significant correlation between antioxidant capacity and TPC and TAC ascertained that phenolics and anthocyanins were the major contributors of antioxidant activity.
Kaur, Ishtdeep; Suthar, Nancy; Kaur, Jasmeen; Bansal, Yogita; Bansal, Gulshan
2016-10-01
Regulatory guidelines recommend systematic stability studies on a herbal product to establish its shelf life. In the present study, commercial extracts (Types I and II) and freshly prepared extract (Type III) of Centella asiatica were subjected to accelerated stability testing for 6 months. Control and stability samples were evaluated for organoleptics, pH, moisture, total phenolic content (TPC), asiatic acid, kaempherol, and high-performance thin layer chromatography fingerprints, and for antioxidant and acetylcholinesterase inhibitory activities. Markers and TPC and both the activities of each extract decreased in stability samples with respect to control. These losses were maximum in Type I extract and minimum in Type III extract. Higher stability of Type III extract than others might be attributed to the additional phytoconstituents and/or preservatives in it. Pearson correlation analysis of the results suggested that TPC, asiatic acid, and kaempferol can be taken as chemical markers to assess chemical and therapeutic shelf lives of herbal products containing Centella asiatica. © The Author(s) 2016.
Performance measurement of HARPO: A time projection chamber as a gamma-ray telescope and polarimeter
NASA Astrophysics Data System (ADS)
Gros, P.; Amano, S.; Attié, D.; Baron, P.; Baudin, D.; Bernard, D.; Bruel, P.; Calvet, D.; Colas, P.; Daté, S.; Delbart, A.; Frotin, M.; Geerebaert, Y.; Giebels, B.; Götz, D.; Hashimoto, S.; Horan, D.; Kotaka, T.; Louzir, M.; Magniette, F.; Minamiyama, Y.; Miyamoto, S.; Ohkuma, H.; Poilleux, P.; Semeniouk, I.; Sizun, P.; Takemoto, A.; Yamaguchi, M.; Yonamine, R.; Wang, S.
2018-01-01
We analyse the performance of a gas time projection chamber (TPC) as a high-performance gamma-ray telescope and polarimeter in the e+e- pair-creation regime. We use data collected at a gamma-ray beam of known polarisation. The TPC provides two orthogonal projections (x, z) and (y, z) of the tracks induced by each conversion in the gas volume. We use a simple vertex finder in which vertices and pseudo-tracks exiting from them are identified. We study the various contributions to the single-photon angular resolution using Monte Carlo simulations, compare them with the experimental data and find that they are in excellent agreement. The distribution of the azimuthal angle of pair conversions shows a bias due to the non-cylindrical-symmetric structure of the detector. This bias would average out for a long duration exposure on a space mission, but for this pencil-beam characterisation we have ensured its accurate simulation by a double systematics-control scheme, data taking with the detector rotated at several angles with respect to the beam polarisation direction and systematics control with a non-polarised beam. We measure, for the first time, the polarisation asymmetry of a linearly polarised gamma-ray beam in the low energy pair-creation regime. This sub-GeV energy range is critical for cosmic sources as their spectra are power laws which fall quickly as a function of increasing energy. This work could pave the way to extending polarised gamma-ray astronomy beyond the MeV energy regime.
Misra, Ankita; Srivastava, Sharad; Verma, Shikhar; Rawat, Ajay Kumar Singh
2015-07-30
Roscoea purpurea (Zingiberaceae) is commonly known as "kakoli". Traditionally, various parts like leaves, roots and flower etc. are used for the treatment of diabetic, hypertension, diarrhea, fever, inflammation etc. In Nepal tubers are boiled for edible purpose and also used in traditional veterinary medicine. The study aims for nutritional characterization, chemical profiling of R. purpurea (tubers) methanol extract (RPE) along with evaluation of its anti-oxidant activity. Physicochemical and nutritional content were estimated as per standard protocols. Chemical profiling of markers includes method optimization, identification & quantification of bioactive poly phenolics through HPTLC. Anti oxidant potential RPE was analyzed via. Total phenolics (TPC), total flavonoids (TFC), reducing power assay, DPPH and β-carotene bleaching model. Physicochemical and nutritional standards were established. Kaempferol (0.30%), vanillic acid (0.27%), protocatechuic (0.14%), syringic (0.80%) and ferulic acid (0.05%) were identified and then quantified. TPC and TFC content were found to be 7.10 ± 0.115 and 6.10 ± 0.055%, reducing power of extract also increases linearly (r(2) = 0.946) with concentration, similar to standards. IC50 value of extract in DPPH and β-carotene bleaching model was observed at 810.66 ± 1.154 and 600.66 ± 1.154 µg/ml, which is significantly different from standards (p < 0.05). Although there is a positive, significant correlation between the phenolic and flavonoid content with anti oxidant activity of extract. Thus, study will authenticates the identity, utility of herb as nutrient supplement and an important medicinal plant having promising pharmacological activities for further elaborated/extended investigation work.
Michel electron reconstruction using cosmic-ray data from the MicroBooNE LArTPC
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Sutton, K. A.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2017-09-01
The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE's detector response to low-energy electrons (electrons with energies up to ~ 50 MeV). We describe the fully-automated algorithm developed to reconstruct Michel electrons, with which a sample of ~ 14,000 Michel electron candidates is obtained. Most of this article is dedicated to studying the impact of radiative photons produced by Michel electrons on the accuracy and resolution of their energy measurement. In this energy range, ionization and bremsstrahlung photon production contribute similarly to electron energy loss in argon, leading to a complex electron topology in the TPC. By profiling the performance of the reconstruction algorithm on simulation we show that the ability to identify and include energy deposited by radiative photons leads to a significant improvement in the energy measurement of low-energy electrons. The fractional energy resolution we measure improves from over 30% to ~ 20% when we attempt to include radiative photons in the reconstruction. These studies are relevant to a large number of analyses which aim to study neutrinos by measuring electrons produced by νe interactions over a broad energy range.
Hamilton, Alexander; Zhang, Quan; Salehi, Albert; Willems, Mara; Knudsen, Jakob G; Ringgaard, Anna K; Chapman, Caroline E; Gonzalez-Alvarez, Alejandro; Surdo, Nicoletta C; Zaccolo, Manuela; Basco, Davide; Johnson, Paul R V; Ramracheya, Reshma; Rutter, Guy A; Galione, Antony; Rorsman, Patrik; Tarasov, Andrei I
2018-06-01
Adrenaline is a powerful stimulus of glucagon secretion. It acts by activation of β-adrenergic receptors, but the downstream mechanisms have only been partially elucidated. Here, we have examined the effects of adrenaline in mouse and human α-cells by a combination of electrophysiology, imaging of Ca 2+ and PKA activity, and hormone release measurements. We found that stimulation of glucagon secretion correlated with a PKA- and EPAC2-dependent (inhibited by PKI and ESI-05, respectively) elevation of [Ca 2+ ] i in α-cells, which occurred without stimulation of electrical activity and persisted in the absence of extracellular Ca 2+ but was sensitive to ryanodine, bafilomycin, and thapsigargin. Adrenaline also increased [Ca 2+ ] i in α-cells in human islets. Genetic or pharmacological inhibition of the Tpc2 channel (that mediates Ca 2+ release from acidic intracellular stores) abolished the stimulatory effect of adrenaline on glucagon secretion and reduced the elevation of [Ca 2+ ] i Furthermore, in Tpc2-deficient islets, ryanodine exerted no additive inhibitory effect. These data suggest that β-adrenergic stimulation of glucagon secretion is controlled by a hierarchy of [Ca 2+ ] i signaling in the α-cell that is initiated by cAMP-induced Tpc2-dependent Ca 2+ release from the acidic stores and further amplified by Ca 2+ -induced Ca 2+ release from the sarco/endoplasmic reticulum. © 2018 by the American Diabetes Association.
Devi Ramaiya, Shiamala; Bujang, Japar Sidik; Zakaria, Muta Harah; King, Wong Sing; Shaffiq Sahrir, Muhd Arif
2013-03-30
The levels of sugars, ascorbic acid, total phenolic content (TPC) and total antioxidant activity (TAA) were determined in fruit juices from seven passion fruit (Passiflora spp.) cultivars: P. edulis cultivars Purple, Frederick, Yellow, Pink, P. edulis f. flavicarpa, P. maliformis and P. quadrangularis (we also tested this cultivar's mesocarp). Purple and Yellow P. edulis had significantly higher total sugar, 142.85 ± 0.17 g kg⁻¹ and 139.69 ± 0.12 g kg⁻¹, respectively, than other cultivars. Glucose and fructose content were higher in juice from vine-ripened fruits of Purple, Frederick and Yellow P. edulis, P. quadrangularis and P. maliformis. Sucrose content was significantly higher in juice of non-vine-ripened fruits of P. edulis (Pink) and P. edulis f. flavicarpa. Ascorbic acid, TPC and TAA were significantly higher in vine-ripened Purple and Yellow P. edulis; ranges were 0.22-0.33 g kg⁻¹, 342.80-382.00 mg gallic acid equivalent L⁻¹ and 409.13-586.70 µmol Trolox L⁻¹, respectively. Based on principal component analysis (PCA) and cluster analysis, the main variables - °Brix, total sugar, glucose, fructose, ascorbic acid, TPC and TAA - formed the characteristics for the group comprising Purple and Yellow P. edulis. Glucose, fructose, sucrose, ascorbic acid, TAA and TPC were quantified in passion fruit juices. Variation of the above variables in juices of Passiflora depends on the cultivar and ripeness. © 2012 Society of Chemical Industry.
Antioxidant activity of commonly consumed cereals, millets, pulses and legumes in India.
Sreeramulu, D; Reddy, C Vijaya Kumar; Raghunath, M
2009-02-01
Plant foods are important due to their antioxidant activity (AOA) attributed to the phenolics which are known to protect organisms against harmful effects of oxygen radicals. However, information on antioxidant activity of Indian plant foods is scanty. Therefore, the present study evaluated the AOA of cereals, millets, pulses and legumes, commonly consumed in India and assessed the relationship with their total phenolic content (TPC). AOA was assessed by DPPH (2,2-Diphenyl-1-picryl hydrazyl) radical scavenging assay, ferric reducing antioxidant power (FRAP) assay and reducing power. DPPH scavenging activity ranged from 0.24 and 1.73 mg/g, whereas FRAP ranged from 16.21 to 471.71 micromoles/g. Finger millet (Eleusine cora cana) and Rajmah (Phaseolus vulgaris) had the highest FRAP 471.71, 372.76 and DPPH scavenging activity 1.73, 1.07. Similar trends were observed with reducing power. Among cereals and legumes, Finger millet (Ragi) and black gram dhal (Phaseolus mungo Roxb) had the highest TPC, the values being 373 and 418 mg/100 g respectively, while rice (Oryza sativa) and green gram dhal (Phaseolus aureus Roxb) showed the least (47.6 and 62.4 mg/100 g). In the present study, FRAP (r = 0.91) and reducing power (r = 0.90) showed significant correlation with TPC in cereals and millets, but not in pulses and legumes. The results suggest that TPC contributes significantly to the AOA of Indian cereals and millets.
Michel Electron Reconstruction Using Cosmic-Ray Data from the MicroBooNE LArTPC
Acciarri, R.
2017-09-14
The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE's detector response to low-energy electrons (electrons with energies up to ~50 MeV). We describe the fully-automated algorithm developed to reconstruct Michel electrons, with which a sample of ~14,000 Michel electron candidates is obtained. Most of this article is dedicated to studying the impact of radiative photons produced by Michel electrons on the accuracy and resolution of their energy measurement. In this energy range, ionization and bremsstrahlung photon production contribute similarly to electron energy loss in argon, leading to a complex electron topology in the TPC. By profiling the performance of the reconstruction algorithm on simulation we show that the ability to identify and include energy deposited by radiative photons leads to a significant improvement in the energy measurement of low-energy electrons. The fractional energy resolution we measure improves from over 30% to ~20% when we attempt to include radiative photons in the reconstruction. These studies are relevant to a large number of analyses which aim to study neutrinos by measuring electrons produced bymore » $$\
Optimization of the beam crossing angle at the ILC for e+e‑ and γ γ collisions
NASA Astrophysics Data System (ADS)
Telnov, V. I.
2018-03-01
At this time, the design of the International Linear Collider (ILC) is optimized for e+e‑ collisions; the photon collider (γ γ and >=) is considered as an option. Unexpected discoveries, such as the diphoton excess digamma(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e‑ collisions, does not cause any degradation of the e+e‑ luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.
Role of the Prospect Rock Fault in the Exhumation of High Pressure Rocks in North-Central Vermont
NASA Astrophysics Data System (ADS)
Tam, E.; Webb, L. E.; Aiken, C. L.
2017-12-01
The Prospect Rock Fault (PRF) is key to our interpretation of regional deformation and exhumation of blueschist and eclogite-facies rocks in the Tillotson Peak Complex (TPC) during the Taconic Orogeny. The TPC is in the footwall of the PRF in the eastern limb of the Green Mountain Anticlinorium. In the TPC, the dominant foliation is S2 and E-W trending F2 folds parallel L2 lineations, which run orthogonal to regional N-S trending folds associated with the Taconic Orogeny. This structural trend has possible analogies with HP-UHP terranes in Papua New Guinea and China. The PRF itself is folded by F2 folds. Presently, there is a lack of consensus about the structural evolution of the PRF and its role in the exhumation of the TPC, and studies have not reconciled the formation of the E-W folds and lineations to a regional model. Oriented samples and structural data were collected from the footwall of the PRF over several transects. Samples were processed into orthogonal thin sections for microstructural analyses and for 40Ar/39Ar step-heating of white mica. Preliminary results show a range of ages from 458.6 ± 2.0 Ma to 420.0 ± 2.7 Ma. The oldest ages are just slightly younger, yet concordant, with published and new 40Ar/39Ar ages from the TPC. The dominant foliation in the PRF samples, S2, is defined in thin section by mica and quartz microlithons, and oriented mica grains. S1 is only locally preserved in some mica domains and albite/garnet inclusion trails. S3 appears as crenulations of S2, with no significant new mineral crystallization. In the field, L2 lineations are defined by mineral and quartz rods, and L3 lineations are defined as intersection lineations on S2 surfaces. The relationships between ages and microstructures are consistent younger ages being associated with increased presence of S3 crenulation foliations, which appeared in structurally lower areas. Samples with older ages display dominant S2 foliations and lack S3 crenulations, and were sourced from structurally higher areas. Our results suggest the PRF played a role in exhumation of the TPC and ages obtained are closely aligned with deformation ages constrained from 40Ar/39Ar dating in southern Quebec for the Taconic D2 and Salinian D3 deformation. These dates may aid to further correlation tectonostratographic models between southern Quebec and northern Vermont.
Bonner Prize Talk -- First Laboratory Observation of Double Beta Decay
NASA Astrophysics Data System (ADS)
Moe, Michael
2013-04-01
Although we are awash in neutrinos, we remain ignorant of some of their fundamental properties. We don't know their masses. We don't know whether ``anti-neutrinos'' are really distinct particles. Double beta (ββ) decay offers a handle on these questions if we can observe the energy spectrum of the two emitted electrons, and determine whether or not they share their energy with two neutrinos. Seeing neutrinoless (0ν) decay would solve some enduring puzzles. The power of the process to elucidate the neutrino was recognized in the 1930's, but ββ decay would be exceedingly rare and difficult to detect. Unsuccessful laboratory searches had been going on for 25 years when the UC Irvine group began its first experiment with a cloud chamber in 1972. After some background for the non-expert, and a snapshot of the theoretical and experimental milieu at the time, the talk will begin with the reasons for choosing a cloud chamber, and the taming of its balky and idiosyncratic behavior. The talk will end with the first definitive observation of two-neutrino (2ν)ββ decay of ^82Se in the vastly superior time projection chamber (TPC) in 1987. Discouragement through the tortuous 15-year interval was relieved by occasional victories. Some I will illustrate with revealing cloud-chamber photographs. We learned many things from this primitive device, and after seven years we isolated an apparent ββ decay signal. But the efficiency of the trigger was small, and difficult to pin down. Estimating 2.2%, we were way low. The resulting ``short'' ^82Se half-life of 1 x 10^19 years was suspect. New technology came to the rescue with the invention of the TPC. Experience with the cloud chamber guided our design of a TPC specifically for ββ decay. The TPC was built from scratch. Its long, steep learning curve was also punctuated with little triumphs. A memorable moment was the first turn-on of a portion of the chamber. So long ago, this all seems rather quaint, but through ample use of photographs and anecdotes it makes and interesting story. As a digital device, the TPC made data acquisition and analysis orders of magnitude simpler and faster. After seven years of massage, the TPC yielded good evidence for 2ν decay of ^82Se with a half-life near 10^20 years. While the 0ν mode was not in evidence, finally seeing ββ decay in the laboratory created optimism about an eventual 0ν discovery.
Effect of roasting degree on the antioxidant activity of different Arabica coffee quality classes.
Odžaković, Božana; Džinić, Natalija; Kukrić, Zoran; Grujić, Slavica
2016-01-01
Coffee is one of the most widely consumed beverages in the world, because of its unique sensory properties and physiological properties. Coffee beverages represent a significant source of antioxidants in the consumers' diet and contribute significantly to their daily intake. The aim of this research was to investigate the effect of different roasting degrees on the content of biologically active compounds and antioxidant activity in different quality classes of Arabica coffee. Samples of green Arabica coffee (Rio Minas) of two quality classes from two production batches were used for the research. Roasting was carried out at temperatures of 167, 175 and 171°C. The total phenol content (TPC), total flavonoid content (TFC), flavonol content (FC) and antioxidant activity (DPPH, ABTS) in the coffee extracts was determined. This research shows that TPC was significantly higher (P < 0.05) in green coffee compared to TPC in roasted coffee, and TPC decreases as the roasting temperature increases. TFC and FC were significantly lower (P < 0.05) in green coffee than in roasted coffee. Differences in TPC between the 1st and 2nd classes of Arabica coffee were not significant (P > 0.05), while differences in TFC were significant (P < 0.05) only for green coffee from the second production batch and differences in FC were significant (P < 0.05) for green coffee and for coffee roasted at 175°C. Roasting temperatures have different influences the antioxidant activity (DPPH, ABTS) of coffee and the highest antioxidant activity was determined in coffee roasted at 171°C. An exception was 1st class Arabica coffee roasted at 167°C (ABTS). All samples of 1st class Arabica coffee had higher antioxidant activity (DPPH, ABTS) compared to 2nd class Arabica. This research shows that the bioactive compounds content and antioxidant activity of different quality classes of Arabica coffee are dependent on the degree of roasting. TPC decreases when the roasting temperature increases, while TFC and FC also increase. These results indicate that the antioxidant activity of coffee depends on a variety of bioactive components in coffee beans. Antioxidant activity largely depends on the class of coffee. The coffee samples of 1stclass quality (maximum 8 black beans/300 g from the sample and large bean size) had higher antioxidant activity compared to samples of 2nd quality class (maximum 19 black beans/300 g in the sample and medium-sized beans).
The electronics and data acquisition system for the DarkSide-50 veto detectors
Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; ...
2016-12-01
DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles (WIMPs). It utilizes a liquid argon time projection chamber (LAr TPC) for the inner main detector. The TPC is surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV, both instrumented with PMTs, act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors.
Recent developments in track reconstruction and hadron identification at MPD
NASA Astrophysics Data System (ADS)
Mudrokh, A.; Zinchenko, A.
2017-03-01
A Monte Carlo simulation of real detector effects with as many details as possible has been carried out instead of a simplified Geant point smearing approach during the study of the detector performance. Some results of realistic simulation of the MPD TPC (Time Projection Chamber) including digitization in central Au+Au collisions have been obtained. Particle identification (PID) has been tuned to account for modifications in the track reconstruction. Some results on hadron identification in the TPC and TOF (Time Of Flight) detectors with realistically simulated response have been also obtained.
The Next Linear Collider Program
posted to the new SLAC ILC web site http://www-project.slac.stanford.edu/ilc/. Also, see the new site for . The NLC web site will remain accessible as an archive of important work done on the many systems to be complete by the end of the calendar year. NLC Website Search: Entire SLAC Web | Help Phonebook
LONG TERM STABILITY STUDY AT FNAL AND SLAC USING BINP DEVELOPED HYDROSTATIC LEVEL SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seryi, Andrei
2003-05-28
Long term ground stability is essential for achieving the performance goals of the Next Linear Collider. To characterize ground motion on relevant time scales, measurements have been performed at three geologically different locations using a hydrostatic level system developed specifically for these studies. Comparative results from the different sites are presented in this paper.
NASA Astrophysics Data System (ADS)
Maczewski, Lukasz
2010-05-01
The International Linear Collider (ILC) is a project of an electron-positron (e+e-) linear collider with the centre-of-mass energy of 200-500 GeV. Monolithic Active Pixel Sensors (MAPS) are one of the proposed silicon pixel detector concepts for the ILC vertex detector (VTX). Basic characteristics of two MAPS pixel matrices MIMOSA-5 (17 μm pixel pitch) and MIMOSA-18 (10 μm pixel pitch) are studied and compared (pedestals, noises, calibration of the ADC-to-electron conversion gain, detector efficiency and charge collection properties). The e+e- collisions at the ILC will be accompanied by intense beamsstrahlung background of electrons and positrons hitting inner planes of the vertex detector. Tracks of this origin leave elongated clusters contrary to those of secondary hadrons. Cluster characteristics and orientation with respect to the pixels netting are studied for perpendicular and inclined tracks. Elongation and precision of determining the cluster orientation as a function of the angle of incidence were measured. A simple model of signal formation (based on charge diffusion) is proposed and tested using the collected data.
Cosmic bubble and domain wall instabilities II: fracturing of colliding walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura, E-mail: j.braden@ucl.ac.uk, E-mail: bond@cita.utoronto.ca, E-mail: mersini@physics.unc.edu
2015-08-01
We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less
Cosmic bubble and domain wall instabilities II: fracturing of colliding walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braden, Jonathan; Department of Physics, University of Toronto,60 St. George Street, Toronto, ON, M5S 3H8; Department of Physics and Astronomy, University College London,Gower Street, London, WC1E 6BT
2015-08-26
We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less
A concept of a wide aperture klystron with RF absorbing drift tubes for a linear collider
NASA Astrophysics Data System (ADS)
Dolbilov, G. V.; Azorsky, N. I.; Fateev, A. A.; Lebedev, N. I.; Petrov, V. A.; Shvetsov, V. S.; Yurkov, M. V.; Balakin, V. E.; Avrakhov, P. V.; Kazakov, S. Yu.; Solyak, N. A.; Teryaev, V. E.; Vogel, V. F.
1996-02-01
This paper is devoted to a problem of the optimal design of the electrodynamic structure of the X-band klystron for a linear collider. It is shown that the optimal design should provide a large aperture and a high power gain, about 80 dB. The most severe problem arising here is that of parasitic self-excitation of the klystron, which becomes more complicated at increasing aperture and power gain. Our investigations have shown that traditional methods for suppressing the self-excitation become ineffective at the desired technical parameters of the klystron. In this paper we present a novel concept of a wide aperture klystron with distributed suppression of parasitic oscillations. Results of an experimental study of the wide-aperture relativistic klystron for VLEPP are presented. Investigations have been performed using the driving beam of the JINR LIA-3000 induction accelerator ( E = 1 MeV, I = 250 A, τ = 250 ns). To suppress self-excitation parasitic modes we have used the technique of RF absorbing drift tubes. As a result, we have obtained design output parameters of the klystron and achieved a level of 100 MW output power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, J. S.
2015-05-03
Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compactionmore » in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.« less
Danisi, Alessandro; Masi, Alessandro; Losito, Roberto
2015-01-01
The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs. PMID:26569259
Energy dependence of polarization across broad deexcitation gamma-ray line profiles
NASA Astrophysics Data System (ADS)
Werntz, Carl; Lang, F. L.
1998-04-01
The energy profiles of deexcitation gamma-ray lines from recoiling inelastically scattered nuclei exhibit detailed structure. MeV-wide gamma-ray lines from the direction of the Orion nebula have been detected (H. Bloemen, et al., Astr. and Astrophys. L5, 281 (1994).) by COMPTEL whose source is postulated to be cosmic ray carbon and oxygen nuclei shock accelerated near supernova remnants colliding with ambient hydrogen and helium. Even when the heavy ion velocity distributions are isotropic, structure characteristic of the multipolarity of the gamma transition remains (A. M. Bykov et al, Astr. and Astrophys. 607, L37 (1996); B. Kozlovsky et al, Astrophys. J. 484, (1997).). In experiments in which the energy dependent structure of the deexcitation gamma-ray profiles is not resolved, the gammas display a high degree of linear polarization that rapidly changes with gamma-beam angle. We calculate the polarization, both linear and circular, as a function of gamma-ray energy across the laboratory line profiles of C12*(4.44) and O16*(6.13) inelastically excited by protons and alphas. We then investigate the polarization in the surviving structures for isotropic energetic ions colliding with ^1H and ^4He.
Performance of a reentrant cavity beam position monitor
NASA Astrophysics Data System (ADS)
Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk
2008-08-01
The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.
Experimental Verification of Predicted Oscillations near a Spin Resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolanoski, Hermann; /Humboldt U., Berlin
2011-12-05
The E166 experiment at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme for the production of polarized positrons which is suitable for implementation in a future Linear Collider. A multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with GEANT4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.
Jannat, Behrooz; Oveisi, Mohammad Reza; Sadeghi, Naficeh; Hajimahmoodi, Mannan; Behzad, Masoomeh; Nahavandi, Bahman; Tehrani, Shirin; Sadeghi, Fatemeh; Oveisi, Morvarid
2013-01-01
Sesame (Sesamum indicum L.) seed and oil have long been used widely as healthy foods to supply energy and prevent aging. Some of the main active anti-oxidative constituents in sesame seeds are γ-tocopherol and phenols. The purpose of this study was to investigate the relationship between roasting temperature and time with γ-tocopherol and total phenolic compounds (TPC) of sesame seeds when roasted in a domestic electric oven. Eight cultivars of sesame seeds in this study were Darab, Dezful, Karaj, Moghan, Naz- Branching, Naz-NonBranching, Siah and Varamin. Each cultivar was divided into ten group based on the roasting time (10, 15 and 20 min) and temperatures (180, 200 and 220 °C)andunroasted one. The high-performance liquid chromatography (HPLC) and spectrophotometeric methods were used for γ-tocopherol (n = 80) and TPC (n = 80) analysis, respectively. The γ-tocopherol content ranged from 329 ± 5 mg/L in Naz-Branching sesame oil to 1114±7 mg/L in Siah sesame oil and 169±6 to 577±1 mg/kg in sesame seed respectively. γ-tocopherol content of six cultivars increased significantly (p < 0.05) as the roasting temperature and time; until 200 °C for 10 min, but they were decreased by roasting at 220 °C in longer time. Also TPC increased significantly as the roasting temperature. The amount of TPC varied in different sesame cultivars from 20.109 ± 3.967 μM to 129.300±3.493 in Varamin and Naz- Branching sesame seed cultivars, respectively, also TPC increased from 70.953 ± 5.863 μM in unroasted Naz-Branching sesame seed to 129.300 ± 3.493 μM after roasting in 200 °C for 20 min. The present study showed that Iranian sesame seed can be considered as a good source of natural antioxidant specially after roasting. The optimum temperature and time roasting to obtain the most γ-tocopherol and total phenolic content was 200 °C for 10 and 20 min, respectively. PMID:24523755
Jannat, Behrooz; Oveisi, Mohammad Reza; Sadeghi, Naficeh; Hajimahmoodi, Mannan; Behzad, Masoomeh; Nahavandi, Bahman; Tehrani, Shirin; Sadeghi, Fatemeh; Oveisi, Morvarid
2013-01-01
Sesame (Sesamum indicum L.) seed and oil have long been used widely as healthy foods to supply energy and prevent aging. Some of the main active anti-oxidative constituents in sesame seeds are γ-tocopherol and phenols. The purpose of this study was to investigate the relationship between roasting temperature and time with γ-tocopherol and total phenolic compounds (TPC) of sesame seeds when roasted in a domestic electric oven. Eight cultivars of sesame seeds in this study were Darab, Dezful, Karaj, Moghan, Naz- Branching, Naz-NonBranching, Siah and Varamin. Each cultivar was divided into ten group based on the roasting time (10, 15 and 20 min) and temperatures (180, 200 and 220 °C)andunroasted one. The high-performance liquid chromatography (HPLC) and spectrophotometeric methods were used for γ-tocopherol (n = 80) and TPC (n = 80) analysis, respectively. The γ-tocopherol content ranged from 329 ± 5 mg/L in Naz-Branching sesame oil to 1114±7 mg/L in Siah sesame oil and 169±6 to 577±1 mg/kg in sesame seed respectively. γ-tocopherol content of six cultivars increased significantly (p < 0.05) as the roasting temperature and time; until 200 °C for 10 min, but they were decreased by roasting at 220 °C in longer time. Also TPC increased significantly as the roasting temperature. The amount of TPC varied in different sesame cultivars from 20.109 ± 3.967 μM to 129.300±3.493 in Varamin and Naz- Branching sesame seed cultivars, respectively, also TPC increased from 70.953 ± 5.863 μM in unroasted Naz-Branching sesame seed to 129.300 ± 3.493 μM after roasting in 200 °C for 20 min. The present study showed that Iranian sesame seed can be considered as a good source of natural antioxidant specially after roasting. The optimum temperature and time roasting to obtain the most γ-tocopherol and total phenolic content was 200 °C for 10 and 20 min, respectively.
Status of the R&D activities for the upgrade of the ALICE TPC
NASA Astrophysics Data System (ADS)
Deisting, Alexander
2018-02-01
After the Long Shutdown 2 (LS2) the LHC will provide lead-lead collisions at interaction rates as high as 50 kHz. In order to cope with such conditions the ALICE Time Projection Chamber (TPC) needs to be upgraded. After the upgrade the TPC will run in a continuous mode, without any degradation of the momentum and dE/dx resolution compared to the performance of the present TPC. Since readout by multi-wire proportional chambers is no longer feasible with these requirements, new technologies have to be employed. In the new readout chambers the electron amplification is provided by a stack of four Gas ElectronMultiplier (GEM) foils. Here foils with a standard hole pitch of 140 μm as well as large pitch foils (280 μm) are used. Their high voltage settings and orientation have been optimised to provide an energy resolution of σE/E ≤ 12% at the photopeak of 55Fe. At the same settings the Ion BackFlow into the drift volume is less than 1% of the effective number of ions produced during gas amplification and the primary ionisations. This is necessary to prevent the accumulation of space charge, which eventually will distort the field in the drift volume. To ensure stable operation at the high loads during LHC run 3 the chambers have to be robust against discharges, too. With the selected configuration in a quadruple GEMstack the discharge probability is kept at the level of 10-12 discharges per incoming hadron. An overview of the ALICE TPC upgrade activities will be given in these proceedings and the optimised settings foreseen for the GEM stacks of the future readout chambers are introduced. Furthermore the outcome of two beam time campaigns at SPS and PS (at CERN) in the end of 2014 is shown. At this campaigns the stability against discharges and the dE/dx performance of a full size readout chamber prototype was tested. In addition it is reported on charging-up studies of 4GEM stacks and on tests of electromagnetic sagging of large GEM foils.
FPGA based data processing in the ALICE High Level Trigger in LHC Run 2
NASA Astrophysics Data System (ADS)
Engel, Heiko; Alt, Torsten; Kebschull, Udo;
2017-10-01
The ALICE High Level Trigger (HLT) is a computing cluster dedicated to the online compression, reconstruction and calibration of experimental data. The HLT receives detector data via serial optical links into FPGA based readout boards that process the data on a per-link level already inside the FPGA and provide it to the host machines connected with a data transport framework. FPGA based data pre-processing is enabled for the biggest detector of ALICE, the Time Projection Chamber (TPC), with a hardware cluster finding algorithm. This algorithm was ported to the Common Read-Out Receiver Card (C-RORC) as used in the HLT for RUN 2. It was improved to handle double the input bandwidth and adjusted to the upgraded TPC Readout Control Unit (RCU2). A flexible firmware implementation in the HLT handles both the old and the new TPC data format and link rates transparently. Extended protocol and data error detection, error handling and the enhanced RCU2 data ordering scheme provide an improved physics performance of the cluster finder. The performance of the cluster finder was verified against large sets of reference data both in terms of throughput and algorithmic correctness. Comparisons with a software reference implementation confirm significant savings on CPU processing power using the hardware implementation. The C-RORC hardware with the cluster finder for RCU1 data is in use in the HLT since the start of RUN 2. The extended hardware cluster finder implementation for the RCU2 with doubled throughput is active since the upgrade of the TPC readout electronics in early 2016.
Viganó, Juliane; Aguiar, Ana C; Moraes, Damila R; Jara, José L P; Eberlin, Marcos N; Cazarin, Cinthia B B; Maróstica, Mário R; Martínez, Julian
2016-07-01
Passion fruit seeds are currently discarded on the pulp processing but are known for their high piceatannol and scirpusin B contents. Using pressurized liquid extraction (PLE), these highly valuable phenolic compounds were efficiently extracted from defatted passion fruit bagasse (DPFB). PLE was performed using mixtures of ethanol and water (50 to 100% ethanol, w/w) as solvent, temperatures from 50 to 70°C and pressure at 10MPa. The extraction methods were compared in terms of the global yield, total phenolic content (TPC), piceatannol content and the antioxidant capacity of the extracts. The DPFB extracts were also compared with those from non-defatted passion fruit bagasse (nDPFB). Identification and quantification of piceatannol were performed using UHPLC-MS/MS. The results showed that high TPC and piceatannol content were achieved for the extracts obtained from DPFB through PLE at 70°C and using 50 and 75% ethanol as the solvent. The best PLE conditions for TPC (70°C, 75% ethanol) resulted in 55.237mgGAE/g dried and defatted bagasse, whereas PLE at 70°C and 50% ethanol achieved 18.590mg of piceatannol/g dried and defatted bagasse, and such yields were significantly higher than those obtained using conventional extraction techniques. The antioxidant capacity assays showed high correlation with the TPC (r>0.886) and piceatannol (r>0.772). The passion fruit bagasse has therefore proved to be a rich source of piceatannol and PLE showed high efficiency to recover phenolic compounds from defatted passion fruit bagasse. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Conallin, John; McLoughlin, Craig A.; Campbell, Josh; Knight, Roger; Bright, Troy; Fisher, Ian
2018-03-01
The complex nature of freshwater systems provides challenges for incorporating evidence-based techniques into management. This paper investigates the potential of participatory evidence-based techniques to involve local stakeholders and make decisions based on different "knowledge" sources within adaptive management programs. It focuses on the application of thresholds of potential concern (TPC) within strategic adaptive management (SAM) for facilitating inclusive decision-making. The study is based on the case of the Edward-Wakool (E-W) "Fish and Flows" SAM project in the Murray-Darling River Basin, Australia. We demonstrate the application of TPCs for improving collaborative decision-making within the E-W, associated with environmental watering requirements, and other natural resource management programs such as fish stocking. The development of TPCs in the E-W fish and flows SAM project helped improve stakeholder involvement and understanding of the system, and also the effectiveness of the implemented management interventions. TPCs ultimately helped inform environmental flow management activities. The TPC process complemented monitoring that was already occurring in the system and provided a mechanism for linking formal and informal knowledge to form explicit and measurable endpoints from objectives. The TPC process faced challenges due to the perceived reduction in scientific rigor within initial TPC development and use. However, TPCs must remain tangible to managers and other stakeholders, in order to aid in the implementation of adaptive management. Once accepted by stakeholders, over time TPCs should be reviewed and refined in order to increase their scientific rigor, as new information is generated.
Prevalence of fibromyalgia in Turkish geriatric population and its impact on quality of life.
Garip, Yeşim; Öztaş, Dilek; Güler, Tuba
2016-10-01
The aim of the present study was to examine the presence of fibromyalgia (FM) in elderly adults and to evaluate the impact of the severity of FM on quality of life. A total of 100 patients between 65 and 80 years of age were included. The main admission diagnosis of the patients was recorded. Presence of FM was evaluated based on 1990 American College of Rheumatology (ACR) diagnostic criteria. The FM group was comprised of 31 patients fulfilling these criteria, and the remaining 69 patients composed the non-FM group. Tender point count (TPC) and common symptoms were recorded. FM disease severity was assessed using Fibromyalgia Impact Questionnaire (FIQ). Nottingham Health Profile (NHP) was used to evaluate quality of life. Pain severity was measured using Visual Analog Scale (VAS). Rate of FM was found to be 31%. FM patients scored significantly higher on pain, sleep, social isolation, and emotional reactions subgroups of NHP when compared to controls (p<0.05). TPC and FIQ were not affected by gender difference (p>0.05), but reduced with increasing age (p<0.01). FIQ and TPC were found to be correlated with only the pain and emotional reactions subgroups of NHP (p<0.01). There was no statistically significant correlation between FIQ and TPC and the physical mobility, sleep, energy, and social isolation subgroups of NHP (p>0.05). Although FM is known as a disease of young and middle-aged women, our study indicates that its prevalence increases with age. FM is associated with poor quality of life in terms of pain, sleep, social, and emotional functions.
Yan, Huitong; Kerr, William L
2013-04-01
Apple pomace is a waste material from apple juice processing, and contains significant amounts of dietary fiber and phytochemicals. Many of these compounds may be degraded post-pressing and during drying operations. Continuous vacuum-belt drying (VBD) was studied as a means of drying and maintaining quality of apple pomace. The color and chemical properties of samples dried by vacuum-belt drying at different temperatures were evaluated including total phenolics content (TPC), monomeric anthocyanins (TMA) and dietary fiber content (TDF). VBD powders were pale golden yellow, and those dried at 80°C did not differ in L*, a* and b* values from freeze-dried powders. VBD pomace had 44.9 to 51.9 g gallic acid equivalents kg(-1) TPC, with greatest retention for pomace dried at 80 and 95°C. TPC for pomace dried at 80 or 95°C was not significantly different from that for freeze-dried pomace. TMA levels (74.0 mg C3G kg(-1), where C3G is cyanidine 3-O-glucoside equivalents) were highest in pomace vacuum dried at 80°C. TDF ranged from 442 to 495 g kg(-1) in vacuum-dried pomace and was not significantly different from TDF of freeze-dried poamce (480 g kg(-1)). In all cases, TPC, TMA and TDF were higher in VBD pomace than in freeze-dried whole apple, while VBD pomace prepared at 80 or 95°C had fiber and phytochemical levels similar to freeze-dried powders. © 2012 Society of Chemical Industry.
Finite element analyses of a linear-accelerator electron gun
NASA Astrophysics Data System (ADS)
Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.
2014-02-01
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.
Finite element analyses of a linear-accelerator electron gun.
Iqbal, M; Wasy, A; Islam, G U; Zhou, Z
2014-02-01
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.
NASA Astrophysics Data System (ADS)
Brekke, Stewart
2010-02-01
Each galaxy, star and planet is in a state of no motion, linear, rotational and/or vibratory motion. Orbital motion is linear motion in a force field such as gravity. These motions were created in the formation of the galaxy, star or planet unless modified by external events such as colliding galaxies or impacts such as meteors. Some motions, such as rotations and vibrations may be differential such as in the cases of our sun and the Milky Way galaxy. The basic equation for each heavenly body is as follows. E = mc^2 + 1/2mv^2 + 1/2I2̂+ 1/2Kx^2 + WG+ WE+ WM. )
NASA Astrophysics Data System (ADS)
Gearhart, Joshua; Niffte Collaboration
2017-09-01
Fission fragment mass distributions are important observables for developing next generation dynamical models of fission. Many previous measurements have utilized ionization chambers to measure fission fragment energies and emission angles which are then used for mass calculations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has built a time projection chamber (fissionTPC) that is capable of measuring additional quantities such as the ionization profiles of detected particles, allowing for the association of an individual fragment's ionization profile with its mass. The fragment masses are measured using the previously established 2E method. The fissionTPC takes its data using a continuous incident neutron energy spectrum provided by the Los Alamos Neutron Science CEnter (LANSCE). Mass distribution measurements across a continuous range of neutron energies put stronger constraints on fission models than similar measurements conducted at a handful of discrete neutron energies. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-NA0003180 and DE-NA0002921.
Méndez-Lagunas, Lilia; Rodríguez-Ramírez, Juan; Cruz-Gracida, Marlene; Sandoval-Torres, Sadoth; Barriada-Bernal, Gerardo
2017-09-01
The thermal drying effects on strawberries were investigated in terms of the kinetics of antioxidant activity (AA), anthocyanins (A) and total phenolic compound content (TPC), as well as the final colour. The evaluated drying temperatures were 50 and 60°C with an air rate of 1.5m/s. The 2,2-diphenyl-2-picryl-hydrazyl, pH differential and Folin-Ciocalteu methods were used to assess the antioxidant properties. The kinetics of TPC and AA showed an initial and final period of degradation attributed to inhibition of enzymes. A plateau between these two periods suggests that under certain conditions of temperature and water content, no degradation reactions occurred. Final losses of up to 74, 45 and 78% were found for AA, A and TPC, respectively. The total colour change (ΔE) was lesser degree at 60 than 50°C. Thermal degradation of the antioxidant compounds followed a first-order reaction kinetics and the degradation rate constants (k) were calculated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Enbo; Pan, Xiaowei; Wu, Zhengzong; Long, Jie; Li, Jingpeng; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan
2016-12-01
For the purpose of investigating the effect of enzyme concentration (EC), barrel temperature (BT), moisture content (MC), and screw speed (SS) on processing parameters (product temperature, die pressure and special mechanical energy (SME)) and product responses (extent of gelatinization (GE), retention rate of total phenolic content (TPC-RR)), rice flour extruded with thermostable α-amylase was analyzed by response surface methodology. Stepwise regression models were computed to generate response surface and contour plots, revealing that both TPC-RR and GE increased as increasing MC while expressed different sensitivities to BT during enzymatic extrusion. Phenolics preservation was benefited from low SME. According to multiple-factor optimization, the conditions required to obtain the target SME (10kJ/kg), GE (100%) and TPC-RR (85%) were: EC=1.37‰, BT=93.01°C, MC=44.30%, and SS=171.66rpm, with the actual values (9.49kJ/kg, 99.96% and 87.10%, respectively) showing a good fit to the predicted values. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Development of a 3-D Nuclear Event Visualization Program Using Unity
NASA Astrophysics Data System (ADS)
Kuhn, Victoria
2017-09-01
Simulations have become increasingly important for science and there is an increasing emphasis on the visualization of simulations within a Virtual Reality (VR) environment. Our group is exploring this capability as a visualization tool not just for those curious about science, but also for educational purposes for K-12 students. Using data collected in 3-D by a Time Projection Chamber (TPC), we are able to visualize nuclear and cosmic events. The Unity game engine was used to recreate the TPC to visualize these events and construct a VR application. The methods used to create these simulations will be presented along with an example of a simulation. I will also present on the development and testing of this program, which I carried out this past summer at MSU as part of an REU program. We used data from the S πRIT TPC, but the software can be applied to other 3-D detectors. This work is supported by the U.S. Department of Energy under Grant Nos. DE-SC0014530, DE-NA0002923 and US NSF under Grant No. PHY-1565546.
The Active Target Time Projection Chamber at NSCL
NASA Astrophysics Data System (ADS)
Bazin, D.; Bradt, J.; Ayyad, Y.; Mittig, W.; Ahn, T.; Beceiro-Novo, S.; Carpenter, L.; Cortesi, M.; Fritsch, A.; Kolata, J. J.; Lynch, W.; Watwood, N.
2017-11-01
Reactions in inverse kinematics close to the Coulomb barrier offer unique opportunities to study exotic nuclei, but they are plagued by the difficulty to efficiently and precisely measure the characteristics of the emerging particles. The Active Target Time Projection Chamber (AT-TPC) offers an elegant solution to this dilemma. In this device, the detector gas of the time projection chamber is at the same time the target in which nuclear reactions take place. The use of this new paradigm offers several advantages over conventional inert target methods, the most significant being the ability to increase the luminosity of experiments without loss of resolution. The AT-TPC and some results obtained on resonant α scattering to explore the clustering properties of neutron-rich nuclei are presented, as well as fusion cross section results using a 10Be radioactive beam. In addition, the first re-accelerated radioactive beam experiment using the fully commissioned ReA3 linac was conducted recently at the NSCL with the AT-TPC, where proton resonant scattering of a 4.6 MeV/u 46Ar beam was used to measure the neutron single-particle strength in 47Ar.
Exploring 0.1-10 eV axions with a new helioscope concept
NASA Astrophysics Data System (ADS)
Galán, J.; Dafni, T.; Ferrer-Ribas, E.; Giomataris, I.; Iguaz, F. J.; Irastorza, I. G.; García, J. A.; Garza, J. G.; Luzon, G.; Papaevangelou, T.; Redondo, J.; Tomás, A.
2015-12-01
We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbar to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10-11 GeV-1 for a 5 T, m3 scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0gtrsim 10 meV.
Negi, Bharti; Dey, Gargi
2013-06-01
This work relates to the development of a co-fermented product of sea buckthorn (Hippophae rhamnoides L.) with Saccharomyces cerevisiae and Issatchenkia orientalis. Besides malic acid degradation, the parameters of present production technology were also standardized with emphasis on the retainability of total phenolic content (TPC) of sea buckthorn juice. The effect of co-fermentation on physico-chemical characteristics, organic acids, flavonoids, TPC and antioxidant activities was studied. The high-performance liquid chromatography (HPLC) analysis showed 55% reduction in malic acid content after the co-fermentation of sea buckthorn juice. The TPC of sea buckthorn product was 2.18 g gallic acid equivalent (GAE)/l. The estimated scavenging effect on 2,2-diphenyl-1-picrylhydrazyl free radicals was 2.63 Trolox equivalent (TE) mmol/l. Ferric-reducing antioxidant power and 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulphonic acid) assays also showed that sea buckthorn product was on a par with commercial wines (Cabernet Shiraz and Beaujolais). We conclude that the process of co-fermentation resulted in a significant antioxidant potential of sea buckthorn product.
Da Porto, Carla; Natolino, Andrea
2018-08-30
Analysis of the extraction kinetic modelling for natural compounds is essential for industrial application. The second order rate model was applied to estimate the extraction kinetics of conventional solid-liquid extraction (CSLE), ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) of total polyphenols (TPC) from saffron floral bio-residues at different solid-to-liquid ratios (R S/L )(1:10, 1:20, 1:30, 1:50 g ml -1 ), ethanol 59% as solvent and 66 °C temperature. The optimum solid-to-liquid ratios for TPC kinetics were 1:20 for CLSE, 1:30 for UAE and 1:50 for MAE. The kinetics of total anthocyanins (TA) and antioxidant activity (AA) were investigated for the optimum R S/L for each method. The results showed a good prediction of the model for extraction kinetics in all experiments (R 2 > 0.99; NRMS 0.65-3.35%). The kinetic parameters were calculated and discussed. UAE, compared with the other methods, had the greater efficiency for TPC, TA and AA. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Casperson, R. J.; Asner, D. M.; Baker, J.; Baker, R. G.; Barrett, J. S.; Bowden, N. S.; Brune, C.; Bundgaard, J.; Burgett, E.; Cebra, D. A.; Classen, T.; Cunningham, M.; Deaven, J.; Duke, D. L.; Ferguson, I.; Gearhart, J.; Geppert-Kleinrath, V.; Greife, U.; Grimes, S.; Guardincerri, E.; Hager, U.; Hagmann, C.; Heffner, M.; Hensle, D.; Hertel, N.; Higgins, D.; Hill, T.; Isenhower, L. D.; King, J.; Klay, J. L.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Loveland, W.; Lynch, M.; Lynn, W. S.; Magee, J. A.; Manning, B.; Massey, T. N.; McGrath, C.; Meharchand, R.; Mendenhall, M. P.; Montoya, L.; Pickle, N. T.; Qu, H.; Ruz, J.; Sangiorgio, S.; Schmitt, K. T.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tate, A. C.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D. E.; Towell, R. S.; Walsh, N.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.; Younes, W.; Niffte Collaboration
2018-03-01
The normalized 238U(n ,f )/235U(n ,f ) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber (fissionTPC) from the reaction threshold to 30 MeV . The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows for full three-dimensional reconstruction of fission-fragment ionization profiles from neutron-induced fission. The measurement was performed at the Los Alamos Neutron Science Center, where the neutron energy is determined from neutron time of-flight. The 238U(n ,f )/235U(n ,f ) ratio reported here is the first cross section measurement made with the fissionTPC, and will provide new experimental data for evaluation of the 238U(n ,f ) cross section, an important standard used in neutron-flux measurements. Use of a development target in this work prevented the determination of an absolute normalization, to be addressed in future measurements. Instead, the measured cross section ratio has been normalized to ENDF/B-VIII.β 5 at 14.5 MeV.
Chen, Peter X; Tang, Yao; Marcone, Massimo F; Pauls, Peter K; Zhang, Bing; Liu, Ronghua; Tsao, Rong
2015-10-15
Cranberry beans (Phaseolus vulgaris L.) from 7 different cultivars were characterized for phytochemicals and assessed for antioxidant activities. In vitro colorimetric methods were used to measure total phenolic (TPC) and total proanthocyanidin (PAC) contents. Free, conjugated and bound phenolic acids and flavonoids were also identified and quantified using HPLC-DAD/ESI-MS(n). Regular-darkening (RD) seeds contained higher TPC, PAC and flavonoids which were absent in the non-darkening (ND) seeds. Bound and conjugated phenolics in RD and ND mainly included cinnamic and benzoic acids. DPPH, FRAP and ORAC showed strong positive correlation with TPC, PAC, and with specific phenolics such as free catechin and bound p-hydroxybenzoic acid. Lipophilic extracts were rich in polyunsaturated fatty acids (69.20-76.89%). Carotenoid and tocopherol were limited to γ-tocopherol and β-carotene. Results from this study can contribute to the development of cranberry bean cultivars with increased health benefits and addresses specific phenolic contributors to antioxidant activity. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Change of Bioactive Constituent in Clinacanthus nutans Leaves under Sun Drying
NASA Astrophysics Data System (ADS)
Abdullah, Sriyana; Aziz, Muhamad Faris Abdul
2018-03-01
Clinacanthus nutans (C. nutans) or locally known as belalai gajah is a folk medicine since ancient time. This research project was established to investigate the effects of under sun drying on the C. nutans bioactive constituent. The drying experiments were conducted using different drying surfaces i.e. perforated, black polythene and white polythene. The fresh and dried leaves were then extracted using a sonicator to evaluate its bioactive constituent. The total phenolic content (TPC) in the C. nutans extracts were determined using Follin Ciocalteu reagent method to represent the bioactive constituent. Drying over the white polythene surface showed the slowest reduction of moisture content as compared to the perforated polythene and black surfaces. Results also showed no significant effect of the drying surfaces on the TPC. However, the TPC in the dried leaves was significantly higher than in the fresh leaves. This may be due to the plant cells response to abiotic stress and the inhibition of oxidation enzymes. Therefore, drying C. nutanc leaves under sun light could be considered in order to preserve the concentration of phenolic compounds and for minimizing energy consumption.
Learning from Higgs physics at future Higgs factories
NASA Astrophysics Data System (ADS)
Gu, Jiayin; Li, Honglei; Liu, Zhen; Su, Shufang; Su, Wei
2017-12-01
Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explore its sensitivity to new physics models at the electron-positron colliders. In particular, we study two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We perform a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtain the limits on the singlet-doublet mixing angle sin θ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyze tree level effects in tan β vs. cos( β - α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtain lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compare the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).
Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, J.F.
1991-01-01
This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K{sup 0} decays at CERN; recent K{sup 0} decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results frommore » CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN {rho}{bar {rho}} collider; B physics at CDF; and review of particle astrophysics.« less
Low Emittance Tuning Studies for SuperB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liuzzo, Simone; /INFN, Pisa; Biagini, Maria
2012-07-06
SuperB[1] is an international project for an asymmetric 2 rings collider at the B mesons cm energy to be built in the Rome area in Italy. The two rings will have very small beam sizes at the Interaction Point and very small emittances, similar to the Linear Collider Damping Rings ones. In particular, the ultra low vertical emittances, 7 pm in the LER and 4 pm in the HER, need a careful study of the misalignment errors effects on the machine performances. Studies on the closed orbit, vertical dispersion and coupling corrections have been carried out in order to specifymore » the maximum allowed errors and to provide a procedure for emittance tuning. A new tool which combines MADX and Matlab routines has been developed, allowing for both corrections and tuning. Results of these studies are presented.« less
The SLAC linac as used in the SLC collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.; Abrams, G.; Adolphsen, C.
The linac of the SLAC Linear Collider (SLC) must accelerate three high intensity bunches on each linac pulse from 1.2 GeV to 50 GeV with minimal increase of the small transverse emittance. The procedures and adjustments used to obtain this goal are outlined. Some of the accelerator parameters and components which interact are the beam energy, transverse position, component alignment, RF manipulation, feedback systems, quadrupole lattice, BNS damping, energy spectra, phase space matching, collimation, instrumentation and modelling. The method to bring these interdependent parameters collectively into specification has evolved over several years. This review is ordered in the sequence whichmore » is used to turn on the linac from a cold start and produce acceptable beams for the final focus and collisions. Approximate time estimates for the various activities are given. 21 refs.« less
Fission and fusion scenarios for magnetic microswimmer clusters
Guzmán-Lastra, Francisca; Kaiser, Andreas; Löwen, Hartmut
2016-01-01
Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethora of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria. PMID:27874006
Making beam splitters with dark soliton collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiglitz, Ken
2010-10-15
We show with numerical simulations that for certain simple choices of parameters, the waveguides induced by colliding dark solitons in a Kerr medium yield a complete family of beam splitters for trapped linear waves, ranging from total transmission to total deflection. The way energy is transferred from one waveguide to another is similar to that of a directional coupler, but no special fabrication is required. Dark soliton beam splitters offer potential advantages over their bright soliton counterparts: Their transfer characteristics do not depend on the relative phase or speed of the colliding solitons; dark solitons are generally more robust thanmore » bright solitons; and the probe peaks at nulls of the pump, enhancing the signal-to-noise ratio for probe detection. The last factor is especially important for possible application to quantum information processing.« less
Pursuing the Secrets of Matter, Space and Time at the Energy Frontier
NASA Astrophysics Data System (ADS)
Grannis, Paul
2003-04-01
Particle physicists have made good progress in characterizing the fundamental forces of Nature and the elementary constituents of matter, and these phenomena shaped the universe in its earliest moments. However, what we know now is likely quite incomplete, and new ingredients are expected to surface in accelerator experiments over the coming twenty years. The new results are expected to give us insights into the nature of physics at much higher energies, and thus at earlier epochs in the universe, than are probed directly and may reveal new complexity in the nature of space and time. We will discuss the nature of the new results to be expected at the expanding energy frontier from experimental programs at the Fermilab Tevatron, the CERN Large Hadron Collider, and a TeV scale electron-positron linear collider.
Antioxidant compounds of kiwifruit during post-ripening process at ambient temperature
NASA Astrophysics Data System (ADS)
Liang, D.; Lv, X. L.; Wang, J.; Xia, H.; Xie, Y.; Li, M. Z.; Wang, Y. Z.
2017-09-01
Kiwifruit is well-known for an excellent source of antioxidants. In this study, contents of total phenolics (TPC), total flavonoids (TFC), total flavanols (TFAC) and vitamin C were investigated in different fruit tissues during post-ripening process at ambient temperature. The results explored that TPC and TFC showed declining trend with the increase in storage interval in different tissues. TFAC raised with the increase in storage interval in different fruit tissues, while was followed a decrease in later process. Vitamin C content was stable in outer and inner pericarp in prometaphase of post-ripening.
Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors
NASA Astrophysics Data System (ADS)
Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin
2017-01-01
Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.
Front-end electronics for the LZ experiment
NASA Astrophysics Data System (ADS)
Morad, James; LZ Collaboration
2016-03-01
LZ is a second generation direct dark matter detection experiment with 5.6 tonnes of liquid xenon active target, which will be instrumented as a two-phase time projection chamber (TPC). The peripheral xenon outside the active TPC (``skin'') will also be instrumented. In addition, there will be a liquid scintillator based outer veto surrounding the main cryostat. All of these systems will be read out using photomultiplier tubes. I will present the designs for front-end electronics for all these systems, which have been optimized for shaping times, gains, and low noise. Preliminary results from prototype boards will also be presented.
The Origins and Evolution of the Time Projection Chamber (TPC) Idea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygren, David
In February 1974, I conceived an idea for a tracking detector with only one spatial projection, thereby eliminating ambiguities that occur in conventional detector systems based on wires. I called it the “Time Projection Chamber”, or TPC, a name that has stuck even though the concept has evolved considerably over the following decades. I will recount the history leading to its conception and development in that now distant epoch, and will attempt to show why this is an interesting and instructive story and how the idea may continue to extend scientific reach in the coming era.
Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure.
Schulte, Patricia M; Healy, Timothy M; Fangue, Nann A
2011-11-01
Thermal performance curves (TPCs) describe the effects of temperature on biological rate processes. Here, we use examples from our work on common killifish (Fundulus heteroclitus) to illustrate some important conceptual issues relating to TPCs in the context of using these curves to predict the responses of organisms to climate change. Phenotypic plasticity has the capacity to alter the shape and position of the TPCs for acute exposures, but these changes can be obscured when rate processes are measured only following chronic exposures. For example, the acute TPC for mitochondrial respiration in killifish is exponential in shape, but this shape changes with acclimation. If respiration rate is measured only at the acclimation temperature, the TPC is linear, concealing the underlying mechanistic complexity at an acute time scale. These issues are particularly problematic when attempting to use TPCs to predict the responses of organisms to temperature change in natural environments. Many TPCs are generated using laboratory exposures to constant temperatures, but temperature fluctuates in the natural environment, and the mechanisms influencing performance at acute and chronic time scales, and the responses of the performance traits at these time scales may be quite different. Unfortunately, our current understanding of the mechanisms underlying the responses of organisms to temperature change is incomplete, particularly with respect to integrating from processes occurring at the level of single proteins up to whole-organism functions across different time scales, which is a challenge for the development of strongly grounded mechanistic models of responses to global climate change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
de Francisco, Lizziane; Pinto, Diana; Rosseto, Hélen; Toledo, Lucas; Santos, Rafaela; Tobaldini-Valério, Flávia; Svidzinski, Terezinha; Bruschi, Marcos; Sarmento, Bruno; Oliveira, M Beatriz P P; Rodrigues, Francisca
2018-03-01
Propolis is a natural adhesive resinous compound produced by honeybees to protect hives from bacteria and fungi, being extremely expensive for food industry. During propolis production, a resinous by-product is formed. This resinous waste is currently undervalued and underexploited. Accordingly, in this study the proximate physical and chemical quality, as well as the antioxidant activity, radical scavenging activity and cell viability of this by-product were evaluated and compared with propolis in order to boost new applications in food and pharmaceutical industries. The results revealed that the by-product meets the physical and chemical quality standards expected and showed that the propolis waste contains similar amounts of total phenolic content (TPC) and total flavonoid content (TFC) to propolis. Also, a good scavenging activity against reactive oxygen and nitrogen species (ROS and RNS, respectively) determined by the assays of superoxide anion radical (O 2 - ), hydrogen peroxide (H 2 O 2 ), hypochlorous acid (HOCl), nitric oxide (NO) and peroxyl radical (ROO) were determined. Linear positive correlations were established between the TPC of both samples and the antioxidant activity evaluated by three different methods (DPPH, ABTS and FRAP assays). The extracts were also screened for cell viability assays in two different intestinal cell lines (HT29-MTX and Caco-2), showing a viability concentration-dependent. Similarly, the Artemia salina assay, used to assess toxicity, demonstrated the concentration influence on results. Finally, the antifungal activity against ATCC species of Candida was demonstrated. These results suggest that propolis by-product can be used as a new rich source of bioactive compounds for different areas, such as food or pharmaceutical. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-Energy QCD Asymptotics of Photon-Photon Collisions
NASA Astrophysics Data System (ADS)
Brodsky, S. J.; Fadin, V. S.; Kim, V. T.; Lipatov, L. N.; Pivovarov, G. B.
2002-07-01
The high-energy behaviour of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL predictions for future linear colliders are presented.
NASA Astrophysics Data System (ADS)
Chakdar, Shreyashi
The Standard Model of particle physics is assumed to be a low-energy effective theory with new physics theoretically motivated to be around TeV scale. The thesis presents theories with new physics beyond the Standard Model in the TeV scale testable in the colliders. Work done in chapters 2, 3 and 5 in this thesis present some models incorporating different approaches of enlarging the Standard Model gauge group to a grand unified symmetry with each model presenting its unique signatures in the colliders. The study on leptoquarks gauge bosons in reference to TopSU(5) model in chapter 2 showed that their discovery mass range extends up to 1.5 TeV at 14 TeV LHC with luminosity of 100 fb--1. On the other hand, in chapter 3 we studied the collider phenomenology of TeV scale mirror fermions in Left-Right Mirror model finding that the reaches for the mirror quarks goes upto 750 GeV at the 14 TeV LHC with 300 fb--1 luminosity. In chapter 4 we have enlarged the bosonic symmetry to fermi-bose symmetry e.g. supersymmetry and have shown that SUSY with non-universalities in gaugino or scalar masses within high scale SUGRA set up can still be accessible at LHC with 14 TeV. In chapter 5, we performed a study in respect to the e+e-- collider and find that precise measurements of the higgs boson mass splittings up to ˜ 100 MeV may be possible with high luminosity in the International Linear Collider (ILC). In chapter 6 we have shown that the experimental data on neutrino masses and mixings are consistent with the proposed 4/5 parameter Dirac neutrino models yielding a solution for the neutrino masses with inverted mass hierarchy and large CP violating phase delta and thus can be tested experimentally. Chapter 7 of the thesis incorporates a warm dark matter candidate in context of two Higgs doublet model. The model has several testable consequences at colliders with the charged scalar and pseudoscalar being in few hundred GeV mass range. This thesis presents an endeavor to study beyond standard model physics at the TeV scale with testable signals in the Colliders.
Thin, Thazin; Myat, Lin; Ryu, Gi-Hyung
2016-01-01
The effects of CO2 injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals (sorghum, barley, oats, and millet) were studied. Extrusion was carried out using a twin-screw extruder at different barrel temperatures (80, 110, and 140°C), CO2 injection (0 and 500 mL/min), screw speed of 200 rpm, and moisture content of 25%. Extrusion significantly increased the total flavonoid content (TFC) of extruded oats, and β-glucan and protein digestibility (PD) of extruded barley and oats. In contrast, there were significant reductions in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, PD of extruded sorghum and millet, as well as resistant starch (RS) of extruded sorghum and barley, and total phenolic content (TPC) of all extrudates, except extruded millet. At a barrel temperature of 140°C, TPC in extruded barley was significantly increased, and there was also an increase in DPPH and PD in extruded millet with or without CO2 injection. In contrast, at a barrel temperature of 140°C, the TPC of extruded sorghum decreased, TFC of extruded oats decreased, and at a barrel temperature of 110°C, PD of extruded sorghum without CO2 decreased. Some physical properties [expansion ratio (ER), specific length, piece density, color, and water absorption index] of the extrudates were significantly affected by the increase in barrel temperature. The CO2 injection significantly affected some physical properties (ER, specific length, piece density, water solubility index, and water absorption index), TPC, DPPH, β-glucan, and PD. In conclusion, extruded barley and millet had higher potential for making value added cereal-based foods than the other cereals. PMID:27752504
NASA Astrophysics Data System (ADS)
Le, Thom; Cao, Diem Kieu; Pham, Thanh Vy; Huynh, Tan Dat; Ta, Nhat Thuy Anh; Nguyen, Ngoc Thao Linh; Nguyen, Huu Thanh; Le, Hue Huong; Bui, Anh Vo; Truong, Dieu-Hien
2018-04-01
Callisia fragrans is a wonder herb with many medicinal properties such as burn, dental diseases, cancer diseases and arthritis in folk medicine. It is noted that the phytochemical constituents and antimicrobial activity of traditional plants depend on not only the extracting method but also the solvent used for extraction. In this study, the effect of five extraction solvents (i.e., distilled water, 80% methanol, 80% ethanol, 80% ethyl acetate, and 80% chloroform) on yield, total phenolic content (TPC) and total flavonoid content (TFC) of Callisia leaves was determined. Besides, changes in anti-Lactobacillus fermentum activity of C. fragrans freeze-dried extract was also evaluated using disk-diffusion method. The recovery percentage of extractable yield of fresh leaves are ranged from 11.93% w/w for distilled water extract to 16.60% w/w for aqueous ethanol extracts. The yield of 80% aqueous methanol extract (16.27% w/w) is only slightly less than that of the ethanol extract. Significant differences were observed among TPC and TFC obtaining by 80% methanol (0.0522% and 0.0335% w/w, respectively) compared to other solvents (p < 0.05). TPC and TFC of C. fragrans extracts increase in the following order: distilled water < 80% chloroform < 80% ethyl acetate < 80% ethanol < 80% methanol. The results revealed that 80% aqueous methanol Calissia extracts has moderate inhibition (9.0 mm of inhibition zone for 1.5 mg/mL of extracts) of L. fermentum compared to standard antibacterial agent. Based on the study results, it can be concluded that the yield, TPC and TFC of C. frgrans extract varied with the extracting solvent. It also showed that Callisia extracts can prevent dental caries by inhibiting the growth of L. fermentum, towards new insights for treatment of dental caries.
GEM detector performance with innovative micro-TPC readout in high magnetic field
NASA Astrophysics Data System (ADS)
Garzia, I.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Cassariti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Dong, J.; Evangelisti, F.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Rolo, M. D.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Verma, S.; Wheadon, R.; Yan, L.
2018-01-01
Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD), allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs). Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.
Cortés, Javier; Rugo, Hope S; Awada, Ahmad; Twelves, Chris; Perez, Edith A; Im, Seock-Ah; Gómez-Pardo, Patricia; Schwartzberg, Lee S; Diéras, Veronique; Yardley, Denise A; Potter, David A; Mailliez, Audrey; Moreno-Aspitia, Alvaro; Ahn, Jin-Seok; Zhao, Carol; Hoch, Ute; Tagliaferri, Mary; Hannah, Alison L; O'Shaughnessy, Joyce
2017-09-01
Conventional chemotherapy has limited activity in patients with breast cancer and brain metastases (BCBM). Etirinotecan pegol (EP), a novel long-acting topoisomerase-1 inhibitor, was designed using advanced polymer technology to preferentially accumulate in tumor tissue including brain metastases, providing sustained cytotoxic SN38 levels. The phase 3 BEACON trial enrolled 852 women with heavily pretreated locally recurrent or metastatic breast cancer between 2011 and 2013. BEACON compared EP with treatment of physician's choice (TPC; eribulin, vinorelbine, gemcitabine, nab-paclitaxel, paclitaxel, ixabepilone, or docetaxel) in patients previously treated with anthracycline, taxane, and capecitabine, including those with treated, stable brain metastases. The primary endpoint, overall survival (OS), was assessed in a pre-defined subgroup of BCBM patients; an exploratory post hoc analysis adjusting for the diagnosis-specific graded prognostic assessment (GPA) index was also conducted. In the trial, 67 BCBM patients were randomized (EP, n = 36; TPC, n = 31). Treatment subgroups were balanced for baseline characteristics and GPA indices. EP was associated with a significant reduction in the risk of death (HR 0.51; P < 0.01) versus TPC; median OS was 10.0 and 4.8 months, respectively. Improvement in OS was observed in both poorer and better GPA prognostic groups. Survival rates at 12 months were 44.4% for EP versus 19.4% for TPC. Consistent with the overall BEACON population, fewer patients on EP experienced grade ≥3 toxicity (50 vs. 70%). The significant improvement in survival in BCBM patients provides encouraging data for EP in this difficult-to-treat subgroup of patients. A phase three trial of EP in BCBM patients is underway (ClinicalTrials.gov NCT02915744).
Kim, Hye Jin; Park, Jun Seok; Park, Soo Yeun; Choi, Wohn Ho; Ryuk, Jong Pil
2012-01-01
Purpose We evaluated the short- and long-term outcomes of laparoscopic total proctocolectomy with ileal pouch-anal anastomosis (TPC/IPAA) for treatment of familial adenomatous polyposis (FAP). Also, we assessed the oncologic outcomes in FAP patients with coexisting malignancy. Methods From August 1999 to September 2010, 43 FAP patients with or without coexisting malignancy underwent TPC/IPAA by a laparoscopic-assisted or hand-assisted laparoscopic surgery. Results The median age was 33 years (range, 18 to 58 years) at the time of operation. IPAA was performed by a hand-sewn method in 21 patients (48.8%). The median operative time was 300 minutes (range, 135 to 610 minutes), which reached a plateau after 22 operations. Early postoperative complications within 30 days occurred in 7 patients (16.3%) and long-term morbidity occurred in 15 patients (34.9%) including 6 (14.0%) with desmoid tumors and 3 (7.0%) who required operative treatment. Twenty-two patients (51.2%) were diagnosed with coexisting colorectal malignancy. The median follow-up was 58.5 months (range, 7.9 to 97.8 months). There was only 1 case of local recurrence in the pelvic cavity. No cases of adenocarcinoma at the residual rectal mucosa developed. 5-year disease-free survival rate for 22 patients who had coexisting malignancy was 86.5% and 5-year overall survival rate was 92.6%. Three patients died from pulmonary or hepatic metastasis. Conclusion Laparoscopic TPC/IPAA in patients with FAP is feasible and offers favorable postoperative outcomes. It also delivered acceptable oncological outcomes in patients with coexisting malignancy. Therefore, laparoscopic TPC/IPAA may be a favorable treatment option for FAP. PMID:23166888
The Capabilities of the upgraded MIPP experiment with respect to Hypernuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raja, Rajendran
2012-01-01
We describe the state of analysis of the MIPP experiment, its plans to upgrade the experiment and the impact such an upgraded experiment will have on hypernuclear physics. The upgraded MIPP experiment is designed to measure the properties of strong interaction spectra form beams {pi}{sup {+-}}, K{sup {+-}}, and p{sup {+-}}, for momenta ranging from 1 GeV/c to 120 GeV/c. The layout of the apparatus in the data taken so far can be seen in Figure 1. The centerpiece of the experiment is the time projection chamber, which is followed by the time of flight counter, a multi-cell Cerenkov detectormore » and the RICH detector. The TPC can identify charged particles with momenta less than 1 GeV/c using dE/dx, the time of flight will identify particles below approximately 2 GeV/c, the multi-cell Cerenkov detector is operational from 2.5 GeV/c to 14 GeV/c and the RICH detector can identify particles up to 120 GeVc. Following this is an EM and hadronic calorimeter capable of detecting forward going neutrons and photons. The experiment has been busy analyzing its data taken on various nuclei and beam conditions. The table 2 shows the data taken by MIPP I to date. We have almost complete acceptance in the forward hemisphere in the lab using the TPC. The reconstruction capabilities of the TPC can be seen in Figure 3. The particle identification capabilities of the TPC can be seen in Figure 4. The time of flight system provides further measurement of the particles with momenta less than 2 GeV/c. Figure 5 shows the time of flight data where a kaon peak is clearly visible.« less
SuperB Progress Report for Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagini, M.E.; Boni, R.; Boscolo, M.
2012-02-14
This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around themore » world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.« less
Finite element analyses of a linear-accelerator electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Wasy, A.
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gunmore » is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.« less
Study of cluster shapes in a monolithic active pixel detector
NASA Astrophysics Data System (ADS)
Maçzewski, ł.; Adamus, M.; Ciborowski, J.; Grzelak, G.; łużniak, P.; Nieżurawski, P.; Żarnecki, A. F.
2009-11-01
Beamstrahlung will constitute an important source of background in a pixel vertex detector at the future International Linear Collider. Electron and positron tracks of this origin impact the pixel planes at angles generally larger than those of secondary hadrons and the corresponding clusters are elongated. We report studies of cluster characteristics using test beam electron tracks incident at various angles on a MIMOSA-5 monolithic active pixel sensor matrix.
Signals for Extra Dimensions at CLIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Thomas G.
A brief overview is presented of the signatures for several different models with extra dimensions at CLIC, an e{sup +}e{sup -} linear collider with a center of mass energy of 3-5 TeV and an integrated luminosity of order 1 ab{sup -1}. In all cases the search reach for the resulting new physic signatures is found to be in the range of {approx} 15-80 TeV.
Evaluation of an Integrated Read-Out Layer Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Ajamieh, Fayez
2011-07-01
This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.
Evaluation of an Integrated Read-Out Layer Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Ajamieh, Fayez; /NIU
2011-08-18
This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.
NASA Astrophysics Data System (ADS)
Chouhan, N. S.; Singh, M. K.; Singh, V.; Pathak, R.
2013-12-01
Interactions of 84Kr36 having kinetic energy around 1 GeV per nucleon with NIKFI BR-2 nuclear emulsion detector's target reveal some of the important features of compound multiplicity. Present article shows that width of compound multiplicity distributions and value of mean compound multiplicity have linear relationship with mass number of the projectile colliding system.
Detectors for Linear Colliders: Tracking and Vertexing (2/4)
Battaglia, Marco
2018-04-16
Efficient and precise determination of the flavour of partons in multi-hadron final states is essential to the anticipated LC physics program. This makes tracking in the vicinity of the interaction region of great importance. Tracking extrapolation and momentum resolution are specified by precise physics requirements. The R&D; towards detectors able to meet these specifications will be discussed, together with some of their application beyond particle physics.
Repeated crossing of two concentric spherical thin-shells with charge
NASA Astrophysics Data System (ADS)
Mazharimousavi, S. Habib; Halilsoy, M.
Interaction/collision of two concentric spherical thin-shells of linear fluid resulting in collapse has been considered recently. We show that addition of finely tuned electric charges on the shells apart from the cosmological constant serves to delay the collapse indefinitely, yielding an ever colliding system of two concentric fluid shells. Given the finely tuned charges, this provides an example of a perpetual two-body motion in general relativity.
Implications of the 750 GeV γγ Resonance as a Case Study for the International Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.
If the γγ resonance at 750 GeV suggested by 2015 LHC data turns out to be a real effect, what are the implications for the physics case and upgrade path of the International Linear Collider? Whether or not the resonance is confirmed, this question provides an interesting case study testing the robustness of the ILC physics case. In this note, we address this question with two points: (1) Almost all models proposed for the new 750 GeV particle require additional new particles with electroweak couplings. The key elements of the 500 GeV ILC physics program - precision measurements of themore » Higgs boson, the top quark, and 4-fermion interactions - will powerfully discriminate among these models. This information will be important in conjunction with new LHC data, or alone, if the new particles accompanying the 750 GeV resonance are beyond the mass reach of the LHC. (2) Over a longer term, the energy upgrade of the ILC to 1 TeV already discussed in the ILC TDR will enable experiments in γγ and e +e - collisions to directly produce and study the 750 GeV particle from these unique initial states.« less
Cryogenic system configuration for the International Linear Collider (ILC) at mountainous site
NASA Astrophysics Data System (ADS)
Nakai, H.; Okamura, T.; Delikaris, D.; Peterson, T.; Yamamoto, A.
2017-02-01
The International Linear Collider (ILC) plans to make use of ten cryoplants for its main linacs, each providing 19 kW at 4.5 K equivalent and among of it 3.6 kW at 2 K. Each cryoplant will consist of various cryogenic components such as a 4.5 K refrigerator cold box, a 2 K refrigerator cold box, and helium compressors and so on. In the technical design report (TDR) of the ILC, due to the mountainous topology, almost all cryogenic components would be installed in underground cryogenic caverns next to the main linac tunnels and only cooling towers on surface area. However, we would like to find a more effective and sophisticated configuration of the cryoplant components (cryogenic configuration). Under several constraints of technical, geographical, and environmental points of view, the cryogenic configuration should be considered carefully to satisfy such various conditions. After discussions on this topic conducted at various workshops and conferences, an updated cryogenic configuration is suggested. The proposed updated configuration may affect the total construction cost of the ILC and the entire structure of the ILC conventional facilities. The updated cryogenic configuration is presented and the on-going discussions with the conventional facilities and siting (CFS) colleagues for further improvement of the cryogenic configuration is introduced.
Acceleration of a trailing positron bunch in a plasma wakefield accelerator
Doche, A.; Beekman, C.; Corde, S.; ...
2017-10-27
High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less
NASA Astrophysics Data System (ADS)
Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.
2013-06-01
The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.
Diagnostics of the Fermilab Tevatron using an AC dipole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, Ryoichi
2008-08-01
The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of themore » beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.« less
Acceleration of a trailing positron bunch in a plasma wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doche, A.; Beekman, C.; Corde, S.
High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less
A Study of a Mini-Drift GEM Tracking Detector
NASA Astrophysics Data System (ADS)
Azmoun, B.; DiRuzza, B.; Franz, A.; Kiselev, A.; Pak, R.; Phipps, M.; Purschke, M. L.; Woody, C.
2016-06-01
A GEM tracking detector with an extended drift region has been studied as part of an effort to develop new tracking detectors for future experiments at RHIC and for the Electron Ion Collider that is being planned for BNL or JLAB. The detector consists of a triple GEM stack with a 1.6 cm drift region that was operated in a mini TPC type configuration. Both the position and arrival time of the charge deposited in the drift region were measured on the readout plane which allowed the reconstruction of a short vector for the track traversing the chamber. The resulting position and angle information from the vector could then be used to improve the position resolution of the detector for larger angle tracks, which deteriorates rapidly with increasing angle for conventional GEM tracking detectors using only charge centroid information. Two types of readout planes were studied. One was a COMPASS style readout plane with 400 μm pitch XY strips and the other consisted of 2 × 10 mm2 chevron pads. The detector was studied in test beams at Fermilab and CERN, along with additional measurements in the lab, in order to determine its position and angular resolution for incident track angles up to 45 degrees. Several algorithms were studied for reconstructing the vector using the position and timing information in order to optimize the position and angular resolution of the detector for the different readout planes. Applications for large angle tracking detectors at RHIC and EIC are also discussed.
NASA Astrophysics Data System (ADS)
Francis, Kurt; CALICE Collaboration
Particle Flow Algorithms (PFAs) have been proposed as a method of improving the jet energy resolution of future colliding beam detectors. PFAs require calorimeters with high granularity to enable three-dimensional imaging of events. The Calorimeter for the Linear Collider Collaboration (CALICE) is developing and testing prototypes of such highly segmented calorimeters. In this context, a large prototype of a Digital Hadron Calorimeter (DHCAL) was developed and constructed by a group led by Argonne National Laboratory. The DHCAL consists of 52 layers, instrumented with Resistive Plate Chambers (RPCs) and interleaved with steel absorber plates. The RPCs are read out by 1 x 1 cm2 pads with a 1-bit resolution (digital readout). The DHCAL prototype has approximately 480,000 readout channels. This talk reports on the design, construction and commissioning of the DHCAL. The DHCAL was installed at the Fermilab Test Beam Facility in fall 2010 and data was collected through the summer 2011.
Fission and fusion scenarios for magnetic microswimmer clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzmán-Lastra, Francisca; Kaiser, Andreas; Löwen, Hartmut
Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethoramore » of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Lastly, our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria.« less
Treite, P.; Nuesslein, U.; Jia, Yi; ...
2015-07-15
The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features ofmore » the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.« less
Simulation of radiation damping in rings, using stepwise ray-tracing methods
Meot, F.
2015-06-26
The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including eRHIC electron-ion collider projectmore » at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.« less
Kumar, Krishna
2017-12-09
The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.
Fission and fusion scenarios for magnetic microswimmer clusters
Guzmán-Lastra, Francisca; Kaiser, Andreas; Löwen, Hartmut
2016-11-22
Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethoramore » of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Lastly, our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria.« less
Epicyclic helical channels for parametric resonance ionization cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johson, Rolland Paul; Derbenev, Yaroslav
Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parametermore » range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.« less
NASA Astrophysics Data System (ADS)
Ghodsi, O. N.; Gharaei, R.; Lari, F.
2012-08-01
The behaviors of barrier characteristics and fusion cross sections are analyzed by changing neutrons over a wide range of colliding systems. For this purpose, we have extended our previous study [Ghodsi and Gharaei, Eur. Phys. J. AEPJAFV1434-600110.1140/epja/i2012-12021-x 48, 21 (2012), it is devoted to the colliding systems with neutron-rich nuclei] to 125 isotopic systems with the condition of 0.5⩽N/Z⩽1.6 for their compound nuclei. The AW 95, Bass 80, Denisov DP, and Prox. 2010 potentials are used to calculate the nuclear part of the interacting potential. The obtained results show that the trend of barrier heights VB and positions RB as well as nuclear VN and Coulomb VC potentials (at R=RB) as a function of (N/Z-1) quantity are nonlinear (second order) whereas the fusion cross sections follow a linear dependence.
What Will the Neighbors Think? Building Large-Scale Science Projects Around the World
Jones, Craig; Mrotzek, Christian; Toge, Nobu; Sarno, Doug
2017-12-22
Public participation is an essential ingredient for turning the International Linear Collider into a reality. Wherever the proposed particle accelerator is sited in the world, its neighbors -- in any country -- will have something to say about hosting a 35-kilometer-long collider in their backyards. When it comes to building large-scale physics projects, almost every laboratory has a story to tell. Three case studies from Japan, Germany and the US will be presented to examine how community relations are handled in different parts of the world. How do particle physics laboratories interact with their local communities? How do neighbors react to building large-scale projects in each region? How can the lessons learned from past experiences help in building the next big project? These and other questions will be discussed to engage the audience in an active dialogue about how a large-scale project like the ILC can be a good neighbor.
Antonello, M.; Baibussinov, B.; Benetti, P.; ...
2013-01-15
Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.
A Combinatorial Geometry Computer Description of the M578 Light Recovery Vehicle
1984-05-01
cannot overlap. 10 TABLE 1. GEOMETRIC SOLIDS USED IN COM-GEOM DESCRIPTIONS Symbol Solid Name RPP Rectangular Parallelepiped BOX Box RAW Right Angle...20R «OX 209 PCC 210 RCC 211 TRC 212 RHX "»13 RCC 214 RCC 2T5 TRC 216 BOX ?17 PrC ?"»R R^C SOLID PARAMETERS REMARKS 74.0303 3694.444...821720 «OX 221 RCC 22’ PC* 223 TPC 224 30V 225 "CC 2?6 PCC 227 TRC 22* BOX 220 RCC 230 »CC 231 TRC ?3’ TPC 233 TRC 234 RCC SOLID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; An, R.
We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at ormore » near ground level.« less
The CERES/NA45 radial drift Time Projection Chamber
NASA Astrophysics Data System (ADS)
Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielčíková, J.; Braun-Munzinger, P.; Campagnolo, R.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kushpil, V.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Musa, L.; Panebrattsev, Y.; Pechenova, O.; Petráček, V.; Pfeiffer, A.; Rak, J.; Ravinovich, I.; Richter, M.; Sako, H.; Schäfer, E.; Schmitz, W.; Schukraft, J.; Seipp, W.; Sharma, A.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Wessels, J. P.; Wienold, T.; Windelband, B.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.
2008-08-01
The design, calibration, and performance of the first radial drift Time Projection Chamber (TPC) are presented. The TPC was built and installed at the CERES/NA45 experiment at the CERN SPS in the late nineties, with the objective to improve the momentum resolution of the spectrometer. The upgraded experiment took data twice, in 1999 and in 2000. After a detailed study of residual distortions a spatial resolution of 340 μm in the azimuthal and 640 μm in the radial direction was achieved, corresponding to a momentum resolution of Δp/p=√{(1%·p/GeV)2+(2%)2}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geynisman, M.; Bremer, J.; Chalifour, M.
The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements formore » the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.« less
Exploring 0.1–10 eV axions with a new helioscope concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galán, J.; Dafni, T.; Iguaz, F.J., E-mail: javier.galan.lacarra@cern.ch, E-mail: Theopisti.Dafni@cern.ch, E-mail: iguaz@unizar.es
2015-12-01
We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbarmore » to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10{sup −11} GeV{sup −1} for a 5 T, m{sup 3} scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0∼> 10 meV.« less
Microbiological evaluation of South Australian rock lobster meat.
Yap, A S
1977-12-01
Samples of frozen precooked rock lobster meat from five South Australian fish-processing plants situated in the West Coast and south-east regions were tested over a period of six months during the 1974/5 lobster fishing season. The most probable number (MPN) of E. coli and coliforms, Staphylococcus aureus and Salmonella, as well as total plate count (TPC) were determined in 480 samples. Monthly geometric mean TPC ranged from 1600/g to 25,000/g. The highest geometric mean of the MPN of coliforms and E. coli were 4.9/g and 1.8/g respectively. The highest geometric mean number of staphylococci was 18.6/g. Salmonella was not detected in the 480 units tested. Only 0.4% of the samples had TPC exceeding 100,000/g. Coliforms and E. coli were not present in 76.1% and 92.7% respectively of the samples tested. Staphylococcus aureus was not detected in 67.7% of the samples. The numbers of organisms in 82% of the samples fall within the microbiological standards proposed by the National Health and Medical Research Council of Australia for frozen precooked foods. The results of this study demonstrate the microbial quality of precooked lobster meat attainable when good manufacturing practices are used.
Gramza-Michałowska, Anna; Kulczyński, Bartosz; Xindi, Yuan; Gumienna, Małgorzata
2016-01-01
Recent consumption trends shows high consumer acceptability and growing medicinal interest in the biological value of kombucha tea. This tea is a sweetened tea leaf brew fermented with a layer containing mainly acetic acid bacteria, yeast and lactic acid bacteria. The main antioxidants in tea leaves are polyphenols, the consumption of which is proven to be beneficial for human health, e.g. protecting from reactive oxygen species (ROS). The aim of the present research was to evaluate antiradical activity, total polyphenol content (TPC) and sensory value of kombucha tea brews. In the present study, Kombucha tea beverages were analyzed for TPC content, DPPH radical scavenging method and sensory value. The highest TPC content and DPPH radical scavenging capacity values were evaluated in yellow tea samples, both unfermented and kombucha, which did not differ within the storage time. The results of sensory evaluations of kombucha tea brews depend on the tea leaf variety used for preparing the drink. Research indicates that the fermentation process of tea brews with kombucha microbiota does not affect significantly its polyphenol content and antiradical capacity, and retains its components' biological activity.
Casperson, R. J.; Asner, D. M.; Baker, J.; ...
2018-03-23
We present that the normalized 238U(n,f)/ 235U(n,f) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber (fissionTPC) from the reaction threshold to 30 MeV . The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows for full three-dimensional reconstruction of fission-fragment ionization profiles from neutron-induced fission. The measurement was performed at the Los Alamos Neutron Science Center, where the neutron energy is determined from neutron time of-flight. The 238U(n,f)/ 235U(n,f) ratio reported here is the first cross section measurement made with the fissionTPC, and will provide new experimental data for evaluation of the 238U(n,f) crossmore » section, an important standard used in neutron-flux measurements. Use of a development target in this work prevented the determination of an absolute normalization, to be addressed in future measurements. Instead, the measured cross section ratio has been normalized to ENDF/B-VIII.β5 at 14.5 MeV.« less
Catechin Composition and Antioxidant Activity of Black Teas in Relation to Brewing Time.
Koch, Wojciech; Kukula-Koch, Wirginia; Głowniak, Kazimierz
2017-11-01
Black tea infusions are one of the most popular beverages across the world. Their extract composition depends on several factors, brewing time being one of the most important determinants. The aim of the present study was to determine the catechin composition of different black tea infusions using a validated LC electrospray ionization time-of-flight MS method. Additionally, total phenolic content (TPC) and antioxidant activity of infusions were evaluated using Folin-Ciocalteu reagent and stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). An optimized LC-MS method enabled the precise identification of the studied catechins [epicatechin (EC), EC gallate (ECG), epigallocatechin (EGC), and epigallocatechin-3-gallate (EGCG)] and gallic acid (GA). The major catechin in all investigated teas was EGC (25.6 mg/100 cm3 after 4 min of brewing). EC was present at the lowest concentration in all extracts. TPC and antiradical scavenging activity were in a good agreement with catechins and GA content. In general, the longer the brewing time, the higher the concentration of catechin, TPC, and antioxidant activity values. However, it should be noted that after 2 min brewing, most phenolics had already been extracted, and extract composition did not significantly change at a prolonged extraction time.
Josephson Photodetectors via Temperature-to-Phase Conversion
NASA Astrophysics Data System (ADS)
Virtanen, P.; Ronzani, A.; Giazotto, F.
2018-05-01
We theoretically investigate the temperature-to-phase conversion (TPC) process occurring in dc superconducting quantum interferometers based on superconductor-normal-metal-superconductor (S -N -S ) mesoscopic Josephson junctions. In particular, we predict the temperature-driven rearrangement of the phase gradients in the interferometer under the fixed constraints of fluxoid quantization and supercurrent conservation. This mechanism allows sizeable phase variations across the junctions for suitable structure parameters and temperatures. We show that the TPC can be a basis for sensitive single-photon sensors or bolometers. We propose a radiation detector realizable with conventional materials and state-of-the-art nanofabrication techniques. Integrated with a superconducting quantum-interference proximity transistor as a readout setup, an aluminum-based TPC calorimeter can provide a large signal-to-noise ratio >100 in the 10-GHz-10-THz frequency range and a resolving power larger than 1 02 below 50 mK for terahertz photons. In the bolometric operation, electrical noise equivalent power of approximately 10-22 W /√{Hz } is predicted at 50 mK. This device can be attractive as a cryogenic single-photon sensor operating in the giga- and terahertz regime with applications in dark-matter searches.
NASA Astrophysics Data System (ADS)
Geynisman, M.; Bremer, J.; Chalifour, M.; Delaney, M.; Dinnon, M.; Doubnik, R.; Hentschel, S.; Kim, M. J.; Montanari, C.; Montanari, D.; Nichols, T.; Norris, B.; Sarychev, M.; Schwartz, F.; Tillman, J.; Zuckerbrot, M.
2017-12-01
The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ∼260 tons) and SBN’s Far Detector (SBN-FD, ∼760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.
Effect of drying methods on total antioxidant capacity of bitter gourd (momordica charantia) fruit
NASA Astrophysics Data System (ADS)
Tan, Ee Shian; Abdullah, Aminah; Maskat, Mohammad Yusof
2013-11-01
The effect of thermal and non-thermal drying methods on hydrophilic and lipophilic antioxidant capacities of bitter gourd fruit was investigated in this study. The bitter gourd fruits were dried by following methods: (i) oven drying 40°C, (ii) oven drying 50°C, (iii) oven drying 60°C, (iv) microwave drying (medium low power), (v) microwave drying (medium power) and (vi) freeze drying. Pure acetone and hexane were used to extract the hydrophilic and lipophilic antioxidant compounds from dried bitter gourd fruits. Freeze dried extracts reported to have highest values in DPPH scavenging activity (hydrophilic and lipophilic fractions), FRAP (lipophilic fraction) and TPC (hydrophilic and lipophilic fraction). Thermal drying slightly increased the values of DPPH scavenging activity, FRAP and TPC assays for hydrophilic extracts. Results concluded bitter gourd fruit is a good source of natural antioxidants and its total antioxidant quality was most preserved by freeze drying. Additionally, the higher value reported in DPPH scavenging activity, FRAP and TPC assays for lipophilic extracts than the hydrophilic extracts suggested that the lipophilic antioxidant compounds of bitter gourd fruit might possess stronger antioxidant power than its counterpart.