Davidson, Natalie R; Godfrey, Keith R; Alquaddoomi, Faisal; Nola, David; DiStefano, Joseph J
2017-05-01
We describe and illustrate use of DISTING, a novel web application for computing alternative structurally identifiable linear compartmental models that are input-output indistinguishable from a postulated linear compartmental model. Several computer packages are available for analysing the structural identifiability of such models, but DISTING is the first to be made available for assessing indistinguishability. The computational algorithms embedded in DISTING are based on advanced versions of established geometric and algebraic properties of linear compartmental models, embedded in a user-friendly graphic model user interface. Novel computational tools greatly speed up the overall procedure. These include algorithms for Jacobian matrix reduction, submatrix rank reduction, and parallelization of candidate rank computations in symbolic matrix analysis. The application of DISTING to three postulated models with respectively two, three and four compartments is given. The 2-compartment example is used to illustrate the indistinguishability problem; the original (unidentifiable) model is found to have two structurally identifiable models that are indistinguishable from it. The 3-compartment example has three structurally identifiable indistinguishable models. It is found from DISTING that the four-compartment example has five structurally identifiable models indistinguishable from the original postulated model. This example shows that care is needed when dealing with models that have two or more compartments which are neither perturbed nor observed, because the numbering of these compartments may be arbitrary. DISTING is universally and freely available via the Internet. It is easy to use and circumvents tedious and complicated algebraic analysis previously done by hand. Copyright © 2017 Elsevier B.V. All rights reserved.
Identifiability Results for Several Classes of Linear Compartment Models.
Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa
2015-08-01
Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.
Classical Michaelis-Menten and system theory approach to modeling metabolite formation kinetics.
Popović, Jovan
2004-01-01
When single doses of drug are administered and kinetics are linear, techniques, which are based on the compartment approach and the linear system theory approach, in modeling the formation of the metabolite from the parent drug are proposed. Unlike the purpose-specific compartment approach, the methodical, conceptual and computational uniformity in modeling various linear biomedical systems is the dominant characteristic of the linear system approach technology. Saturation of the metabolic reaction results in nonlinear kinetics according to the Michaelis-Menten equation. The two compartment open model with Michaelis-Menten elimination kinetics is theorethicaly basic when single doses of drug are administered. To simulate data or to fit real data using this model, one must resort to numerical integration. A biomathematical model for multiple dosage regimen calculations of nonlinear metabolic systems in steady-state and a working example with phenytoin are presented. High correlation between phenytoin steady-state serum levels calculated from individual Km and Vmax values in the 15 adult epileptic outpatients and the observed levels at the third adjustment of phenytoin daily dose (r=0.961, p<0.01) were found.
Transit and lifespan in neutrophil production: implications for drug intervention.
Câmara De Souza, Daniel; Craig, Morgan; Cassidy, Tyler; Li, Jun; Nekka, Fahima; Bélair, Jacques; Humphries, Antony R
2018-02-01
A comparison of the transit compartment ordinary differential equation modelling approach to distributed and discrete delay differential equation models is studied by focusing on Quartino's extension to the Friberg transit compartment model of myelosuppression, widely relied upon in the pharmaceutical sciences to predict the neutrophil response after chemotherapy, and on a QSP delay differential equation model of granulopoiesis. An extension to the Quartino model is provided by considering a general number of transit compartments and introducing an extra parameter that allows for the decoupling of the maturation time from the production rate of cells. An overview of the well established linear chain technique, used to reformulate transit compartment models with constant transit rates as distributed delay differential equations (DDEs), is then given. A state-dependent time rescaling of the Quartino model is performed to apply the linear chain technique and rewrite the Quartino model as a distributed DDE, yielding a discrete DDE model in a certain parameter limit. Next, stability and bifurcation analyses are undertaken in an effort to situate such studies in a mathematical pharmacology context. We show that both the original Friberg and the Quartino extension models incorrectly define the mean maturation time, essentially treating the proliferative pool as an additional maturation compartment. This misspecification can have far reaching consequences on the development of future models of myelosuppression in PK/PD.
The renal compartment: a hydraulic view.
Cruces, Pablo; Salas, Camila; Lillo, Pablo; Salomon, Tatiana; Lillo, Felipe; Hurtado, Daniel E
2014-12-01
The hydraulic behavior of the renal compartment is poorly understood. In particular, the role of the renal capsule on the intrarenal pressure has not been thoroughly addressed to date. We hypothesized that pressure and volume in the renal compartment are not linearly related, similar to other body compartments. The pressure-volume curve of the renal compartment was obtained by injecting fluid into the renal pelvis and recording the rise in intrarenal pressure in six anesthetized and mechanically ventilated piglets, using a catheter Camino 4B® inserted into the renal parenchyma. In healthy kidneys, pressure has a highly nonlinear dependence on the injected volume, as revealed by an exponential fit to the data (R (2) = 0.92). On the contrary, a linear relation between pressure and volume is observed in decapsulated kidneys. We propose a biomechanical model for the renal capsule that is able to explain the nonlinear pressure-volume dependence for moderate volume increases. We have presented experimental evidence and a theoretical model that supports the existence of a renal compartment. The mechanical role of the renal capsule investigated in this work may have important implications in elucidating the role of decompressive capsulotomy in reducing the intrarenal pressure in acutely injured kidneys.
Transit-time and age distributions for nonlinear time-dependent compartmental systems.
Metzler, Holger; Müller, Markus; Sierra, Carlos A
2018-02-06
Many processes in nature are modeled using compartmental systems (reservoir/pool/box systems). Usually, they are expressed as a set of first-order differential equations describing the transfer of matter across a network of compartments. The concepts of age of matter in compartments and the time required for particles to transit the system are important diagnostics of these models with applications to a wide range of scientific questions. Until now, explicit formulas for transit-time and age distributions of nonlinear time-dependent compartmental systems were not available. We compute densities for these types of systems under the assumption of well-mixed compartments. Assuming that a solution of the nonlinear system is available at least numerically, we show how to construct a linear time-dependent system with the same solution trajectory. We demonstrate how to exploit this solution to compute transit-time and age distributions in dependence on given start values and initial age distributions. Furthermore, we derive equations for the time evolution of quantiles and moments of the age distributions. Our results generalize available density formulas for the linear time-independent case and mean-age formulas for the linear time-dependent case. As an example, we apply our formulas to a nonlinear and a linear version of a simple global carbon cycle model driven by a time-dependent input signal which represents fossil fuel additions. We derive time-dependent age distributions for all compartments and calculate the time it takes to remove fossil carbon in a business-as-usual scenario.
Fan, Denggui; Wang, Qingyun; Su, Jianzhong; Xi, Hongguang
2017-12-01
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
The dynamical analysis of modified two-compartment neuron model and FPGA implementation
NASA Astrophysics Data System (ADS)
Lin, Qianjin; Wang, Jiang; Yang, Shuangming; Yi, Guosheng; Deng, Bin; Wei, Xile; Yu, Haitao
2017-10-01
The complexity of neural models is increasing with the investigation of larger biological neural network, more various ionic channels and more detailed morphologies, and the implementation of biological neural network is a task with huge computational complexity and power consumption. This paper presents an efficient digital design using piecewise linearization on field programmable gate array (FPGA), to succinctly implement the reduced two-compartment model which retains essential features of more complicated models. The design proposes an approximate neuron model which is composed of a set of piecewise linear equations, and it can reproduce different dynamical behaviors to depict the mechanisms of a single neuron model. The consistency of hardware implementation is verified in terms of dynamical behaviors and bifurcation analysis, and the simulation results including varied ion channel characteristics coincide with the biological neuron model with a high accuracy. Hardware synthesis on FPGA demonstrates that the proposed model has reliable performance and lower hardware resource compared with the original two-compartment model. These investigations are conducive to scalability of biological neural network in reconfigurable large-scale neuromorphic system.
A general multiple-compartment model for the transport of trace elements through animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assimakopoulos, P.A.; Ioannides, K.G.; Pakou, A.A.
1991-08-01
Multiple-compartment models employed in the analysis of trace element transport in animals are often based on linear differential equations which relate the rate of change of contaminant (or contaminant concentration) in each compartment to the amount of contaminant (or contaminant concentration) in every other compartment in the system. This has the serious disadvantage of mixing intrinsic physiological properties with the geometry of the animal. The basic equations on which the model presented here is developed are derived from the actual physical process under way and are capable of separating intrinsic physiological properties from geometry. It is thus expected that ratemore » coefficients determined through this model will be applicable to a wider category of physiologically similar animals. A specific application of the model for the study of contamination of sheep--or indeed for any ruminant--is presented, and the temporal evolution of contaminant concentration in the various compartments of the animal is calculated. The application of this model to a system of compartments with changing geometry is also presented.« less
Application of separable parameter space techniques to multi-tracer PET compartment modeling.
Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J
2016-02-07
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.
Application of separable parameter space techniques to multi-tracer PET compartment modeling
NASA Astrophysics Data System (ADS)
Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.
2016-02-01
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.
Kaiyala, Karl J
2014-01-01
Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit 'local linearity.' Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying 'latent' allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.
Sellei, R M; Hingmann, S J; Kobbe, P; Weber, C; Grice, J E; Zimmerman, F; Jeromin, S; Gansslen, A; Hildebrand, F; Pape, H C
2015-01-01
PURPOSE OF THE STUDY Decision-making in treatment of an acute compartment syndrome is based on clinical assessment, supported by invasive monitoring. Thus, evolving compartment syndrome may require repeated pressure measurements. In suspected cases of potential compartment syndromes clinical assessment alone seems to be unreliable. The objective of this study was to investigate the feasibility of a non-invasive application estimating whole compartmental elasticity by ultrasound, which may improve accuracy of diagnostics. MATERIAL AND METHODS In an in-vitro model, using an artificial container simulating dimensions of the human anterior tibial compartment, intracompartmental pressures (p) were raised subsequently up to 80 mm Hg by infusion of saline solution. The compartmental depth (mm) in the cross-section view was measured before and after manual probe compression (100 mm Hg) upon the surface resulting in a linear compartmental displacement (Δd). This was repeated at rising compartmental pressures. The resulting displacements were related to the corresponding intra-compartmental pressures simulated in our model. A hypothesized relationship between pressures related compartmental displacement and the elasticity at elevated compartment pressures was investigated. RESULTS With rising compartmental pressures, a non-linear, reciprocal proportional relation between the displacement (mm) and the intra-compartmental pressure (mm Hg) occurred. The Pearson's coefficient showed a high correlation (r2 = -0.960). The intraobserver reliability value kappa resulted in a statistically high reliability (κ = 0.840). The inter-observer value indicated a fair reliability (κ = 0.640). CONCLUSIONS Our model reveals that a strong correlation between compartmental strain displacements assessed by ultrasound and the intra-compartmental pressure changes occurs. Further studies are required to prove whether this assessment is transferable to human muscle tissue. Determining the complete compartmental elasticity by ultrasound enhancement, this application may improve detection of early signs of potential compartment syndrome. Key words: compartment syndrome, intra-compartmental pressure, non-invasive diagnostic, elasticity measurement, elastography.
Parameter estimation using weighted total least squares in the two-compartment exchange model.
Garpebring, Anders; Löfstedt, Tommy
2018-01-01
The linear least squares (LLS) estimator provides a fast approach to parameter estimation in the linearized two-compartment exchange model. However, the LLS method may introduce a bias through correlated noise in the system matrix of the model. The purpose of this work is to present a new estimator for the linearized two-compartment exchange model that takes this noise into account. To account for the noise in the system matrix, we developed an estimator based on the weighted total least squares (WTLS) method. Using simulations, the proposed WTLS estimator was compared, in terms of accuracy and precision, to an LLS estimator and a nonlinear least squares (NLLS) estimator. The WTLS method improved the accuracy compared to the LLS method to levels comparable to the NLLS method. This improvement was at the expense of increased computational time; however, the WTLS was still faster than the NLLS method. At high signal-to-noise ratio all methods provided similar precisions while inconclusive results were observed at low signal-to-noise ratio. The proposed method provides improvements in accuracy compared to the LLS method, however, at an increased computational cost. Magn Reson Med 79:561-567, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Application of separable parameter space techniques to multi-tracer PET compartment modeling
Zhang, Jeff L; Morey, A Michael; Kadrmas, Dan J
2016-01-01
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. PMID:26788888
Sellei, Richard Martin; Hingmann, Simon Johannes; Kobbe, Philipp; Weber, Christian; Grice, John Edward; Zimmerman, Frauke; Jeromin, Sabine; Hildebrand, Frank; Pape, Hans-Christoph
2015-01-01
Decision-making in treatment of an acute compartment syndrome is based on clinical assessment, supported by invasive monitoring. Thus, evolving compartment syndrome may require repeated pressure measurements. In suspected cases of potential compartment syndromes clinical assessment alone seems to be unreliable. The objective of this study was to investigate the feasibility of a non-invasive application estimating whole compartmental elasticity by ultrasound, which may improve accuracy of diagnostics. In an in vitro model, using an artificial container simulating dimensions of the human anterior tibial compartment, intra-compartmental pressures (p) were raised subsequently up to 80 mmHg by infusion of saline solution. The compartmental depth (mm) in the cross-section view was measured before and after manual probe compression (100 mmHg) upon the surface resulting in a linear compartmental displacement (∆d). This was repeated at rising compartmental pressures. The resulting displacements were related to the corresponding intra-compartmental pressures simulated in our model. A hypothesized relationship between pressures related compartmental displacement and the elasticity at elevated compartment pressures was investigated. With rising compartmental pressures, a non-linear, reciprocal proportional relation between the displacement (mm) and the intra-compartmental pressure (mmHg) occurred. The Pearson coefficient showed a high correlation (r(2) = -0.960). The intra-observer reliability value kappa resulted in a statistically high reliability (κ = 0.840). The inter-observer value indicated a fair reliability (κ = 0.640). Our model reveals that a strong correlation between compartmental strain displacements assessed by ultrasound and the intra-compartmental pressure changes occurs. Further studies are required to prove whether this assessment is transferable to human muscle tissue. Determining the complete compartmental elasticity by ultrasound enhancement, this application may improve detection of early signs of potential compartment syndrome.
Garcia, F; Arruda-Neto, J D; Manso, M V; Helene, O M; Vanin, V R; Rodriguez, O; Mesa, J; Likhachev, V P; Filho, J W; Deppman, A; Perez, G; Guzman, F; de Camargo, S P
1999-10-01
A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data.
NASA Astrophysics Data System (ADS)
Müller-Schauenburg, Wolfgang; Reimold, Matthias
Positron Emission Tomography is a well-established technique that allows imaging and quantification of tissue properties in-vivo. The goal of pharmacokinetic modelling is to estimate physiological parameters, e.g. perfusion or receptor density from the measured time course of a radiotracer. After a brief overview of clinical application of PET, we summarize the fundamentals of modelling: distribution volume, Fick's principle of local balancing, extraction and perfusion, and how to calculate equilibrium data from measurements after bolus injection. Three fundamental models are considered: (i) the 1-tissue compartment model, e.g. for regional cerebral blood flow (rCBF) with the short-lived tracer [15O]water, (ii) the 2-tissue compartment model accounting for trapping (one exponential + constant), e.g. for glucose metabolism with [18F]FDG, (iii) the reversible 2-tissue compartment model (two exponentials), e.g. for receptor binding. Arterial blood sampling is required for classical PET modelling, but can often be avoided by comparing regions with specific binding with so called reference regions with negligible specific uptake, e.g. in receptor imaging. To estimate the model parameters, non-linear least square fits are the standard. Various linearizations have been proposed for rapid parameter estimation, e.g. on a pixel-by-pixel basis, for the prize of a bias. Such linear approaches exist for all three models; e.g. the PATLAK-plot for trapping substances like FDG, and the LOGAN-plot to obtain distribution volumes for reversibly binding tracers. The description of receptor modelling is dedicated to the approaches of the subsequent lecture (chapter) of Millet, who works in the tradition of Delforge with multiple-injection investigations.
Langenbucher, Frieder
2005-01-01
A linear system comprising n compartments is completely defined by the rate constants between any of the compartments and the initial condition in which compartment(s) the drug is present at the beginning. The generalized solution is the time profiles of drug amount in each compartment, described by polyexponential equations. Based on standard matrix operations, an Excel worksheet computes the rate constants and the coefficients, finally the full time profiles for a specified range of time values.
Nonlinear multiplicative dendritic integration in neuron and network models
Zhang, Danke; Li, Yuanqing; Rasch, Malte J.; Wu, Si
2013-01-01
Neurons receive inputs from thousands of synapses distributed across dendritic trees of complex morphology. It is known that dendritic integration of excitatory and inhibitory synapses can be highly non-linear in reality and can heavily depend on the exact location and spatial arrangement of inhibitory and excitatory synapses on the dendrite. Despite this known fact, most neuron models used in artificial neural networks today still only describe the voltage potential of a single somatic compartment and assume a simple linear summation of all individual synaptic inputs. We here suggest a new biophysical motivated derivation of a single compartment model that integrates the non-linear effects of shunting inhibition, where an inhibitory input on the route of an excitatory input to the soma cancels or “shunts” the excitatory potential. In particular, our integration of non-linear dendritic processing into the neuron model follows a simple multiplicative rule, suggested recently by experiments, and allows for strict mathematical treatment of network effects. Using our new formulation, we further devised a spiking network model where inhibitory neurons act as global shunting gates, and show that the network exhibits persistent activity in a low firing regime. PMID:23658543
Kaiyala, Karl J.
2014-01-01
Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit ‘local linearity.’ Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying ‘latent’ allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses. PMID:25068692
Design of vaccination and fumigation on Host-Vector Model by input-output linearization method
NASA Astrophysics Data System (ADS)
Nugraha, Edwin Setiawan; Naiborhu, Janson; Nuraini, Nuning
2017-03-01
Here, we analyze the Host-Vector Model and proposed design of vaccination and fumigation to control infectious population by using feedback control especially input-output liniearization method. Host population is divided into three compartments: susceptible, infectious and recovery. Whereas the vector population is divided into two compartment such as susceptible and infectious. In this system, vaccination and fumigation treat as input factors and infectious population as output result. The objective of design is to stabilize of the output asymptotically tend to zero. We also present the examples to illustrate the design model.
A physiology-based parametric imaging method for FDG-PET data
NASA Astrophysics Data System (ADS)
Scussolini, Mara; Garbarino, Sara; Sambuceti, Gianmario; Caviglia, Giacomo; Piana, Michele
2017-12-01
Parametric imaging is a compartmental approach that processes nuclear imaging data to estimate the spatial distribution of the kinetic parameters governing tracer flow. The present paper proposes a novel and efficient computational method for parametric imaging which is potentially applicable to several compartmental models of diverse complexity and which is effective in the determination of the parametric maps of all kinetic coefficients. We consider applications to [18 F]-fluorodeoxyglucose positron emission tomography (FDG-PET) data and analyze the two-compartment catenary model describing the standard FDG metabolization by an homogeneous tissue and the three-compartment non-catenary model representing the renal physiology. We show uniqueness theorems for both models. The proposed imaging method starts from the reconstructed FDG-PET images of tracer concentration and preliminarily applies image processing algorithms for noise reduction and image segmentation. The optimization procedure solves pixel-wise the non-linear inverse problem of determining the kinetic parameters from dynamic concentration data through a regularized Gauss-Newton iterative algorithm. The reliability of the method is validated against synthetic data, for the two-compartment system, and experimental real data of murine models, for the renal three-compartment system.
Scala, Christopher; Marsot, Amélie; Limoges, Marie-Josée; Locatelli, Yann; Simon, Nicolas; Alvarez, Jean-Claude
2015-03-01
To assess the population pharmacokinetics of methadone in deer. Prospective non-randomized experimental trial. Twelve healthy adult sika deer (nine males and three females). Deer received intramuscular administration of racemic methadone hydrochloride at 0.5 mg kg(-1) or 1 mg kg(-1) . Plasma methadone and its metabolite 2-Ethylidene-1,5-Dimethyl-3,3-Diphenyl-Pyrolidine (EDDP) concentrations were determined by validated liquid chromatography coupled to tandem mass spectrometry methods, at times 0, 30 minutes, 1, 2, 3, 4, 5, 6, 8, 12 and 24 hours. Population pharmacokinetics analysis was undertaken using a non-linear mixed effects modelling (NONMEM). A two-compartment linear disposition model best described observed time-concentration profiles of methadone and EDDP. Population parameter estimates of methadone were elimination clearance (17.3 L hour(-1) ), metabolic clearance (34.6 L hour(-1) ), volume of distribution of compartment 1 (216.0 L) and volume of distribution of compartment 2 (384.0 L). Population parameter estimates of EDDP were elimination clearance (121.0 L hour(-1) ), volume of distribution of compartment 3 (1.08 L) and volume of distribution of compartment 4 (499.5 L). The total clearance and total volume of distribution of methadone and EDDP were 51.9 L hour(-1) , 121.0 L hour (-1) , 600.0 L and 500.6 L, respectively. The methadone terminal elimination half-life was 8.19 hours. No adverse effects were observed after methadone administration. Following intramuscular injection, methadone was characterized by a large total volume of distribution, high systemic clearance and intermediate terminal half-life in sika deer. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.
Yassen, Ashraf; Olofsen, Erik; Romberg, Raymonda; Sarton, Elise; Danhof, Meindert; Dahan, Albert
2006-06-01
The objective of this investigation was to characterize the pharmacokinetic-pharmacodynamic relation of buprenorphine's antinociceptive effect in healthy volunteers. Data on the time course of the antinociceptive effect after intravenous administration of 0.05-0.6 mg/70 kg buprenorphine in healthy volunteers was analyzed in conjunction with plasma concentrations by nonlinear mixed-effects analysis. A three-compartment pharmacokinetic model best described the concentration time course. Four structurally different pharmacokinetic-pharmacodynamic models were evaluated for their appropriateness to describe the time course of buprenorphine's antinociceptive effect: (1) E(max) model with an effect compartment model, (2) "power" model with an effect compartment model, (3) receptor association-dissociation model with a linear transduction function, and (4) combined biophase equilibration/receptor association-dissociation model with a linear transduction function. The latter pharmacokinetic-pharmacodynamic model described the time course of effect best and was used to explain time dependencies in buprenorphine's pharmacodynamics. The model converged, yielding precise estimation of the parameters characterizing hysteresis and the relation between relative receptor occupancy and antinociceptive effect. The rate constant describing biophase equilibration (k(eo)) was 0.00447 min(-1) (95% confidence interval, 0.00299-0.00595 min(-1)). The receptor dissociation rate constant (k(off)) was 0.0785 min(-1) (95% confidence interval, 0.0352-0.122 min(-1)), and k(on) was 0.0631 ml . ng(-1) . min(-1) (95% confidence interval, 0.0390-0.0872 ml . ng(-1) . min(-1)). This is consistent with observations in rats, suggesting that the rate-limiting step in the onset and offset of the antinociceptive effect is biophase distribution rather than slow receptor association-dissociation. In the dose range studied, no saturation of receptor occupancy occurred explaining the lack of a ceiling effect for antinociception.
Larsen, Malte Selch; Keizer, Ron; Munro, Gordon; Mørk, Arne; Holm, René; Savic, Rada; Kreilgaard, Mads
2016-05-01
Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin's effect on mechanical hypersensitivity in a rat model of CFA-induced inflammatory hyperalgesia. A semi-mechanistic population-based PKPD model was developed using nonlinear mixed-effects modelling, based on gabapentin plasma and brain extracellular fluid (ECF) time-concentration data and measurements of CFA-evoked mechanical hyperalgesia following administration of a range of gabapentin doses (oral and intravenous). The plasma/brain ECF concentration-time profiles of gabapentin were adequately described with a two-compartment plasma model with saturable intestinal absorption rate (K m = 44.1 mg/kg, V max = 41.9 mg/h∙kg) and dose-dependent oral bioavailability linked to brain ECF concentration through a transit compartment. Brain ECF concentration was directly linked to a sigmoid E max function describing reversal of hyperalgesia (EC 50, plasma = 16.7 μg/mL, EC 50, brain = 3.3 μg/mL). The proposed semi-mechanistic population-based PKPD model provides further knowledge into the understanding of gabapentin's non-linear pharmacokinetics and the link between plasma/brain disposition and anti-hyperalgesic effects. The model suggests that intestinal absorption is the primary source of non-linearity and that the investigated rat model provides reasonable predictions of clinically effective plasma concentrations for gabapentin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blais, AR; Dekaban, M; Lee, T-Y
2014-08-15
Quantitative analysis of dynamic positron emission tomography (PET) data usually involves minimizing a cost function with nonlinear regression, wherein the choice of starting parameter values and the presence of local minima affect the bias and variability of the estimated kinetic parameters. These nonlinear methods can also require lengthy computation time, making them unsuitable for use in clinical settings. Kinetic modeling of PET aims to estimate the rate parameter k{sub 3}, which is the binding affinity of the tracer to a biological process of interest and is highly susceptible to noise inherent in PET image acquisition. We have developed linearized kineticmore » models for kinetic analysis of dynamic contrast enhanced computed tomography (DCE-CT)/PET imaging, including a 2-compartment model for DCE-CT and a 3-compartment model for PET. Use of kinetic parameters estimated from DCE-CT can stabilize the kinetic analysis of dynamic PET data, allowing for more robust estimation of k{sub 3}. Furthermore, these linearized models are solved with a non-negative least squares algorithm and together they provide other advantages including: 1) only one possible solution and they do not require a choice of starting parameter values, 2) parameter estimates are comparable in accuracy to those from nonlinear models, 3) significantly reduced computational time. Our simulated data show that when blood volume and permeability are estimated with DCE-CT, the bias of k{sub 3} estimation with our linearized model is 1.97 ± 38.5% for 1,000 runs with a signal-to-noise ratio of 10. In summary, we have developed a computationally efficient technique for accurate estimation of k{sub 3} from noisy dynamic PET data.« less
Rosario, M; Dirks, N L; Gastonguay, M R; Fasanmade, A A; Wyant, T; Parikh, A; Sandborn, W J; Feagan, B G; Reinisch, W; Fox, I
2015-07-01
Vedolizumab, an anti-α(4)β(7) integrin monoclonal antibody (mAb), is indicated for treating patients with moderately to severely active ulcerative colitis (UC) and Crohn's disease (CD). As higher therapeutic mAb concentrations have been associated with greater efficacy in inflammatory bowel disease, understanding determinants of vedolizumab clearance may help to optimise dosing. To characterise vedolizumab pharmacokinetics in patients with UC and CD, to identify clinically relevant determinants of vedolizumab clearance, and to describe the pharmacokinetic-pharmacodynamic relationship using population modelling. Data from a phase 1 healthy volunteer study, a phase 2 UC study, and 3 phase 3 UC/CD studies were included. Population pharmacokinetic analysis for repeated measures was conducted using nonlinear mixed effects modelling. Results from the base model, developed using extensive phase 1 and 2 data, were used to develop the full covariate model, which was fit to sparse phase 3 data. Vedolizumab pharmacokinetics was described by a 2-compartment model with parallel linear and nonlinear elimination. Using reference covariate values, linear elimination half-life of vedolizumab was 25.5 days; linear clearance (CL(L)) was 0.159 L/day for UC and 0.155 L/day for CD; central compartment volume of distribution (V(c)) was 3.19 L; and peripheral compartment volume of distribution was 1.66 L. Interindividual variabilities (%CV) were 35% for CLL and 19% for V(c); residual variance was 24%. Only extreme albumin and body weight values were identified as potential clinically important predictors of CL(L). Population pharmacokinetic parameters were similar in patients with moderately to severely active UC and CD. This analysis supports use of vedolizumab fixed dosing in these patients. Clinicaltrials.gov Identifiers: NCT01177228; NCT00783718 (GEMINI 1); NCT00783692 (GEMINI 2); NCT01224171 (GEMINI 3). © 2015 Takeda Pharmaceuticals International Co published by John Wiley & Sons Ltd.
Wu, Liviawati; Mould, Diane R; Perez Ruixo, Juan Jose; Doshi, Sameer
2015-10-01
A population pharmacokinetic pharmacodynamic (PK/PD) model describing the effect of epoetin alfa on hemoglobin (Hb) response in hemodialysis patients was developed. Epoetin alfa pharmacokinetics was described using a linear 2-compartment model. PK parameter estimates were similar to previously reported values. A maturation-structured cytokinetic model consisting of 5 compartments linked in a catenary fashion by first-order cell transfer rates following a zero-order input process described the Hb time course. The PD model described 2 subpopulations, one whose Hb response reflected epoetin alfa dosing and a second whose response was unrelated to epoetin alfa dosing. Parameter estimates from the PK/PD model were physiologically reasonable and consistent with published reports. Numerical and visual predictive checks using data from 2 studies were performed. The PK and PD of epoetin alfa were well described by the model. © 2015, The American College of Clinical Pharmacology.
Pharmacokinetic Studies of Oxathio-Heterocycle Fused Chalcones.
Okoniewska, Krystyna; Konieczny, Marek T; Lemke, Krzysztof; Grabowski, Tomasz
2017-02-01
Chalcone constitutes one of the most used molecular frameworks in medicinal chemistry and its derivatives exhibit a broad spectrum of biological activities. Low absolute bioavailability, poor distribution, intensive metabolism and elimination of chalcones are the main problems in designing new drugs based on their structure. One of the fundamental steps in evaluation of drug candidates is a comparative analysis of pharmacokinetic parameters. The aim of the studies was the pharmacokinetic characterization of the selected oxathio-heterocycle fused chalcones. The pharmacokinetic parameters of 19 compounds were reported. The analyzed chalcones were examined after a single intravenous administration to forty 7-week-old mature male rats of Wistar stock. Pharmacokinetic analysis was performed independently using SHAM (slopes, highest, amounts, and moments) and the two-compartment model. Basic physiochemical parameters were calculated. The bioanalytical methods were validated in terms of repeatability, linearity, accuracy, precision, and selectivity. The pharmacokinetics of the examined group of chalcones are compatible with the two-compartment model. The physicochemical characteristics of this group are quite homogeneous. The kinetics of the examined chalcones are indicative of a distribution to the tissue compartment with the predominance of a rate constant from central to peripheral compartments (k 12 ) over the rate constant from peripheral to central compartments (k 21 ). The elimination from the central compartment (k 10 ) is higher than the transfer from the central compartment to the tissues (k 10 > k 12 ) in almost all examined cases. The presented group of compounds may form a starting point for studies into drugs treating autoimmune diseases of the gastro-intestinal tract.
Oldick, B S; Firkins, J L; Kohn, R A
2000-09-01
Two- and three-compartment models were developed to describe N kinetics within the rumen using three Holstein heifers and one nonlactating Holstein cow fitted with ruminal and duodenal cannulas. A 4 x 4 Latin square design included a control diet containing no supplemental fat and diets containing 4.85% of diet dry matter as partially hydrogenated tallow (iodine value = 13), tallow (iodine value = 51), or animal-vegetable fat (iodine value = 110). Effects of fat on intraruminal N recycling and relationships between intraruminal N recycling and ruminal protozoa concentration or the efficiency of microbial protein synthesis were determined. A pulse dose of 15(NH4)2SO4 was introduced into the ruminal NH3 N pool, and samples were taken over time from the ruminal NH3 N and nonammonia N pools. For the three-compartment model, precipitates of nonammonia N after trichloroacetic acid and ethanol extraction were defined as slowly turning over nonammonia N; rapidly turning over nonammonia N was determined by difference. Curves of 15N enrichment were fit to models with two (NH3 N and nonammonia N) or three (NH3 N, rapidly turning over nonammonia N, and slowly turning over nonammonia N) compartments using the software SAAM II. Because the three-compartment model did not remove a small systematic bias or improve the fit of the data, the two-compartment model was used to provide measurements of intraruminal N recycling. Intraruminal NH3 N recycling (45% for control) decreased linearly as fat unsaturation increased (50.2, 43.0, and 41.7% for partially hydrogenated tallow, tallow, and animal-vegetable fat, respectively). Intraruminal nitrogen recycling was not correlated with efficiency of microbial protein synthesis or ruminal protozoa counts.
Zhang, Xiaoping; Nieforth, Keith; Lang, Jean-Marie; Rouzier-Panis, Regine; Reynes, Jacques; Dorr, Albert; Kolis, Stanley; Stiles, Mark R; Kinchelow, Tosca; Patel, Indravadan H
2002-07-01
Enfuvirtide (T-20) is the first of a novel class of human immunodeficiency virus (HIV) drugs that block gp41-mediated viral fusion to host cells. The objectives of this study were to develop a structural pharmacokinetic model that would adequately characterize the absorption and disposition of enfuvirtide pharmacokinetics after both intravenous and subcutaneous administration and to evaluate the dose proportionality of enfuvirtide pharmacokinetic parameters at a subcutaneous dose higher than that currently used in phase III studies. Twelve patients with HIV infection received 4 single doses of enfuvirtide separated by a 1-week washout period in an open-label, randomized, 4-way crossover fashion. The doses studied were 90 mg (intravenous) and 45 mg, 90 mg, and 180 mg (subcutaneous). Serial blood samples were collected up to 48 hours after each dose. Plasma enfuvirtide concentrations were measured with use of a validated liquid chromatography-tandem mass spectrometry method. Enfuvirtide plasma concentration-time data after subcutaneous administration were well described by an inverse Gaussian density function-input model linked to a 2-compartment open distribution model with first-order elimination from the central compartment. The model-derived mean pharmacokinetic parameters (+/-SD) were volume of distribution of the central compartment (3.8 +/- 0.8 L), volume of distribution of the peripheral compartment (1.7 +/- 0.6 L), total clearance (1.44 +/- 0.30 L/h), intercompartmental distribution (2.3 +/- 1.1 L/h), bioavailability (89% +/- 11%), and mean absorption time (7.26 hours, 8.65 hours, and 9.79 hours for the 45-mg, 90-mg, and 180-mg dose groups, respectively). The terminal half-life increased from 3.46 to 4.35 hours for the subcutaneous dose range from 45 to 180 mg. An inverse Gaussian density function-input model linked to a 2-compartment open distribution model with first-order elimination from the central compartment was appropriate to describe complex absorption and disposition kinetics of enfuvirtide plasma concentration-time data after subcutaneous administration to patients with HIV infection. Enfuvirtide was nearly completely absorbed from subcutaneous depot, and pharmacokinetic parameters were linear up to a dose of 180 mg in this study.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.
2013-12-01
Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.
Zhang, Yi; Gabr, Refaat E.; Schär, Michael; Weiss, Robert G.; Bottomley, Paul A.
2012-01-01
Speed and signal-to-noise ratio (SNR) are critical for localized magnetic resonance spectroscopy (MRS) of low-concentration metabolites. Matching voxels to anatomical compartments a priori yields better SNR than the spectra created by summing signals from constituent chemical-shift-imaging (CSI) voxels post-acquisition. Here, a new method of localized Spectroscopy using Linear Algebraic Modeling (SLAM) is presented, that can realize this additional SNR gain. Unlike prior methods, SLAM generates spectra from C signal-generating anatomic compartments utilizing a CSI sequence wherein essentially only the C central k-space phase-encoding gradient steps with highest SNR are retained. After MRI-based compartment segmentation, the spectra are reconstructed by solving a sub-set of linear simultaneous equations from the standard CSI algorithm. SLAM is demonstrated with one-dimensional CSI surface coil phosphorus MRS in phantoms, the human leg and the heart on a 3T clinical scanner. Its SNR performance, accuracy, sensitivity to registration errors and inhomogeneity, are evaluated. Compared to one-dimensional CSI, SLAM yielded quantitatively the same results 4-times faster in 24 cardiac patients and healthy subjects. SLAM is further extended with fractional phase-encoding gradients that optimize SNR and/or minimize both inter- and intra-compartmental contamination. In proactive cardiac phosphorus MRS of 6 healthy subjects, both SLAM and fractional-SLAM (fSLAM) produced results indistinguishable from CSI while preserving SNR gains of 36–45% in the same scan-time. Both SLAM and fSLAM are simple to implement and reduce the minimum scan-time for CSI, which otherwise limits the translation of higher SNR achievable at higher field strengths to faster scanning. PMID:22578557
Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine
NASA Technical Reports Server (NTRS)
Wu, L.; Chow, D. S. L.; Tam, V.; Putcha, L.
2014-01-01
An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials for an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP. METHODS: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model discrimination was performed, by minimizing the Akaike Information Criteria (AIC), maximizing the coefficient of determination (r²) and by comparison of the quality of fit plots. RESULTS: The best structural model to describe scopolamine disposition after INSCOP administration (minimal AIC =907.2) consisted of one compartment for plasma, saliva and urine respectively that were inter-connected with different rate constants. The estimated values of PK parameters were compiled in Table 1. The model fitting exercises revealed a nonlinear PK for scopolamine between plasma and saliva compartments for K21, Vmax and Km. CONCLUSION: PK model for INSCOP was developed and for the first time it satisfactorily predicted the PK of scopolamine in plasma, saliva and urine after INSCOP administration. Using non-linear PK yielded the best structural model to describe scopolamine disposition between plasma and saliva compartments, and inclusion of non-linear PK resulted in a significant improved model fitting. The model can be utilized to predict scopolamine plasma concentration using saliva and/or urine data that allows non-invasive assessment of pharmacotherapeutics of scopolamine in space and other remote environments without requiring blood sampling.
Jafari, Ramin; Chhabra, Shalini; Prince, Martin R; Wang, Yi; Spincemaille, Pascal
2018-04-01
To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric
2014-01-01
We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.
NASA Technical Reports Server (NTRS)
Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.
2014-01-01
An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND) protocol. The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trials with INSCOP. Methods: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min and 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model selection was based on the likelihood ratio test on the difference of criteria (-2LL) and comparison of the quality of fit plots. Results: The best structural model for INSCOP (minimal -2LL= 502.8) was established. It consisted of one compartment each for plasma, saliva and urine, respectively, which were connected with linear transport processes except the nonlinear PK process from plasma to saliva compartment. The best-fit estimates of PK parameters from individual PK compartmental analysis and Population PK model analysis were shown in Tables 1 and 2, respectively. Conclusion: A population PK model that could predict population and individual PK of scopolamine in plasma, saliva and urine after dosing was developed and validated. Incorporating a non-linear transfer from plasma to saliva compartments resulted in a significantly improved model fitting. The model could be used to predict scopolamine plasma concentrations from salivary and urinary drug levels, allowing non-invasive therapeutic monitoring of scopolamine in space and other remote environments.
de Witte, Wilhelmus E A; Rottschäfer, Vivi; Danhof, Meindert; van der Graaf, Piet H; Peletier, Lambertus A; de Lange, Elizabeth C M
2018-05-18
Drug-target binding kinetics (as determined by association and dissociation rate constants, k on and k off ) can be an important determinant of the kinetics of drug action. However, the effect compartment model is used most frequently instead of a target binding model to describe hysteresis. Here we investigate when the drug-target binding model should be used in lieu of the effect compartment model. The utility of the effect compartment (EC), the target binding kinetics (TB) and the combined effect compartment-target binding kinetics (EC-TB) model were tested on either plasma (EC PL , TB PL and EC-TB PL ) or brain extracellular fluid (ECF) (EC ECF , TB ECF and EC-TB ECF ) morphine concentrations and EEG amplitude in rats. It was also analyzed when a significant shift in the time to maximal target occupancy (Tmax TO ) with increasing dose, the discriminating feature between the TB and EC model, occurs in the TB model. All TB models assumed a linear relationship between target occupancy and drug effect on the EEG amplitude. All three model types performed similarly in describing the morphine pharmacodynamics data, although the EC model provided the best statistical result. The analysis of the shift in Tmax TO (∆Tmax TO ) as a result of increasing dose revealed that ∆Tmax TO is decreasing towards zero if the k off is much smaller than the elimination rate constant or if the target concentration is larger than the initial morphine concentration. The results for the morphine PKPD modelling and the analysis of ∆Tmax TO indicate that the EC and TB models do not necessarily lead to different drug effect versus time curves for different doses if a delay between drug concentrations and drug effect (hysteresis) is described. Drawing mechanistic conclusions from successfully fitting one of these two models should therefore be avoided. Since the TB model can be informed by in vitro measurements of k on and k off , a target binding model should be considered more often for mechanistic modelling purposes.
Solazzo, Stephanie A; Liu, Zhengjun; Lobo, S Melvyn; Ahmed, Muneeb; Hines-Peralta, Andrew U; Lenkinski, Robert E; Goldberg, S Nahum
2005-08-01
To determine whether radiofrequency (RF)-induced heating can be correlated with background electrical conductivity in a controlled experimental phantom environment mimicking different background tissue electrical conductivities and to determine the potential electrical and physical basis for such a correlation by using computer modeling. The effect of background tissue electrical conductivity on RF-induced heating was studied in a controlled system of 80 two-compartment agar phantoms (with inner wells of 0.3%, 1.0%, or 36.0% NaCl) with background conductivity that varied from 0.6% to 5.0% NaCl. Mathematical modeling of the relationship between electrical conductivity and temperatures 2 cm from the electrode (T2cm) was performed. Next, computer simulation of RF heating by using two-dimensional finite-element analysis (ETherm) was performed with parameters selected to approximate the agar phantoms. Resultant heating, in terms of both the T2cm and the distance of defined thermal isotherms from the electrode surface, was calculated and compared with the phantom data. Additionally, electrical and thermal profiles were determined by using the computer modeling data and correlated by using linear regression analysis. For each inner compartment NaCl concentration, a negative exponential relationship was established between increased background NaCl concentration and the T2cm (R2= 0.64-0.78). Similar negative exponential relationships (r2 > 0.97%) were observed for the computer modeling. Correlation values (R2) between the computer and experimental data were 0.9, 0.9, and 0.55 for the 0.3%, 1.0%, and 36.0% inner NaCl concentrations, respectively. Plotting of the electrical field generated around the RF electrode identified the potential for a dramatic local change in electrical field distribution (ie, a second electrical peak ["E-peak"]) occurring at the interface between the two compartments of varied electrical background conductivity. Linear correlations between the E-peak and heating at T2cm (R2= 0.98-1.00) and the 50 degrees C isotherm (R2= 0.99-1.00) were established. These results demonstrate the strong relationship between background tissue conductivity and RF heating and further explain electrical phenomena that occur in a two-compartment system.
Wirth, Christian; Schumacher, Jens; Schulze, Ernst-Detlef
2004-02-01
To facilitate future carbon and nutrient inventories, we used mixed-effect linear models to develop new generic biomass functions for Norway spruce (Picea abies (L.) Karst.) in Central Europe. We present both the functions and their respective variance-covariance matrices and illustrate their application for biomass prediction and uncertainty estimation for Norway spruce trees ranging widely in size, age, competitive status and site. We collected biomass data for 688 trees sampled in 102 stands by 19 authors. The total number of trees in the "base" model data sets containing the predictor variables diameter at breast height (D), height (H), age (A), site index (SI) and site elevation (HSL) varied according to compartment (roots: n = 114, stem: n = 235, dry branches: n = 207, live branches: n = 429 and needles: n = 551). "Core" data sets with about 40% fewer trees could be extracted containing the additional predictor variables crown length and social class. A set of 43 candidate models representing combinations of lnD, lnH, lnA, SI and HSL, including second-order polynomials and interactions, was established. The categorical variable "author" subsuming mainly methodological differences was included as a random effect in a mixed linear model. The Akaike Information Criterion was used for model selection. The best models for stem, root and branch biomass contained only combinations of D, H and A as predictors. More complex models that included site-related variables resulted for needle biomass. Adding crown length as a predictor for needles, branches and roots reduced both the bias and the confidence interval of predictions substantially. Applying the best models to a test data set of 17 stands ranging in age from 16 to 172 years produced realistic allocation patterns at the tree and stand levels. The 95% confidence intervals (% of mean prediction) were highest for crown compartments (approximately +/- 12%) and lowest for stem biomass (approximately +/- 5%), and within each compartment, they were highest for the youngest and oldest stands, respectively.
Ashoor, Mansour; Khorshidi, Abdollah
2016-03-01
The goal of the present study was to estimate the number of compartments and the mean apparent diffusion coefficient (ADC) value with the use of the DWI signal curve. A useful new mathematic model that includes internal correlation among subcompartments with a distinct number of compartments was proposed. The DWI signal was simulated to estimate the approximate association between the number of subcompartments and the molecular density, with density corresponding to the ratio of the ADC values of the compartments, as determined using the Monte Carlo method. Various factors, such as energy depletion, temperature, intracellular water accumulation, changes in the tortuosity of the extracellular diffusion paths, and changes in cell membrane permeability, have all been implicated as factors contributing to changes in the ADC of water (ADCw); therefore, one may consider them as pseudocompartments in the new model proposed in this study. The lower the coefficient is, the lower the contribution of the compartment to the net signal will be. The results of the simulation indicate that when the number of compartments increases, the signal will become significantly lower, because the gradient factor (i.e., the b value) will increase. In other words, the signal curve is approximately linear at all b values when the number of compartments in which the tissues have been severely damaged is low; however, when the number of compartments is high, the curve will become constant at high b values, and the perfusion parameters will prevail on the diffusion parameters at low b values. Therefore, normal tissues will be investigated when the number of compartments and the ADC values are high and the b values are low, whereas damaged tissues will be evaluated when the number of compartments and the ADC values are low and the b values are high. The present study investigates damaged tissues at high b values for which the effect of eddy currents will also be compensated. These b values will probably be used in functional MRI.
Silber, Hanna E; Burgener, Claudia; Letellier, Ingrid M; Peyrou, Mathieu; Jung, Martin; King, Jonathan N; Gruet, Philippe; Giraudel, Jerome M
2010-12-01
The purpose of this population analysis was to characterize the pharmacokinetic properties of robenacoxib in blood and stifle joint synovial fluid of dogs. Data were obtained from two studies: 1) 8 healthy Beagle dogs in which an acute inflammation was induced by injection of urate crystals into one joint; 2) 95 dogs from various breeds diagnosed with osteoarthritis (OA). Robenacoxib concentrations in blood and synovial fluid were measured using a validated HPLC-UV and LC-MS method. Non-linear mixed effects modeling was performed using NONMEM6. A two-compartment pharmacokinetic model with linear elimination was developed to describe blood concentrations of robenacoxib. Blood clearance in healthy animals was found to be 75% higher than in OA dogs. Synovial fluid concentrations were modeled using an effect-compartment-type model predicting longer residence times in OA dogs compared to healthy Beagles (e.g. concentrations above the IC(50) for COX-2, respectively, 16 h vs. 10 h at 1.5 mg/kg). Robenacoxib was found to reside longer at the effect site (inflamed joint) compared to blood in both healthy and OA dogs. These results may explain the good efficacy observed with once-daily dosing in clinical trials and the high safety index of robenacoxib in dogs.
NASA Astrophysics Data System (ADS)
Renny; Supriyanto
2018-04-01
Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.
Motlagh, Mohadeseh Ghanbari; Kafaky, Sasan Babaie; Mataji, Asadollah; Akhavan, Reza
2018-05-21
Hyrcanian forests of North of Iran are of great importance in terms of various economic and environmental aspects. In this study, Spot-6 satellite images and regression models were applied to estimate above-ground biomass in these forests. This research was carried out in six compartments in three climatic (semi-arid to humid) types and two altitude classes. In the first step, ground sampling methods at the compartment level were used to estimate aboveground biomass (Mg/ha). Then, by reviewing the results of other studies, the most appropriate vegetation indices were selected. In this study, three indices of NDVI, RVI, and TVI were calculated. We investigated the relationship between the vegetation indices and aboveground biomass measured at sample-plot level. Based on the results, the relationship between aboveground biomass values and vegetation indices was a linear regression with the highest level of significance for NDVI in all compartments. Since at the compartment level the correlation coefficient between NDVI and aboveground biomass was the highest, NDVI was used for mapping aboveground biomass. According to the results of this study, biomass values were highly different in various climatic and altitudinal classes with the highest biomass value observed in humid climate and high-altitude class.
Mathematical properties and parameter estimation for transit compartment pharmacodynamic models.
Yates, James W T
2008-07-03
One feature of recent research in pharmacodynamic modelling has been the move towards more mechanistically based model structures. However, in all of these models there are common sub-systems, such as feedback loops and time-delays, whose properties and contribution to the model behaviour merit some mathematical analysis. In this paper a common pharmacodynamic model sub-structure is considered: the linear transit compartment. These models have a number of interesting properties as the length of the cascade chain is increased. In the limiting case a pure time-delay is achieved [Milsum, J.H., 1966. Biological Control Systems Analysis. McGraw-Hill Book Company, New York] and the initial behaviour becoming increasingly sensitive to parameter value perturbation. It is also shown that the modelled drug effect is attenuated, though the duration of action is longer. Through this analysis the range of behaviours that such models are capable of reproducing are characterised. The properties of these models and the experimental requirements are discussed in order to highlight how mathematical analysis prior to experimentation can enhance the utility of mathematical modelling.
Miao, Jia; Nan, Feng; Shen, Qi; Qin, Yong-Ping; Wang, Ying; Yu, Qin; Zheng, Li; Liang, Mao-Zhi
2013-03-01
To study the pharmacokinetics of amoxicillin sodium clavulanate potassium (10:1) injection with different single doses intravenous infusion and one dose repeated intravenous injection in healthy volunteers for guiding the rational clinical regimen. Using infusion pump constantly intravenous dripping in 30 min, 4 mL blood samples were collected before and after the administration at 10 min, 20 min, 30 min, 45 min, and 1, 1.25, 1.5, 2, 2.5, 3, 4, 6, 8, 10 h. The plasma concentrations of amoxicillin and clavulanate were detected by high performance liquid chromatography- mass spectrometry/mass spectrometry method. The pharmacokinetic parameters were calculated by DAS2.0.1 software. The dispositions of amoxicillin and clavulanate matched three or two compartment model with the weight coefficient 1/cc. To avoid the biases caused by compartment model fitting, the pharmacokinetic parameters were statistical moment parameters of non-compartment model. The peak concentrations, the areas under curve, the half-lifes and the clearances after single injections of 0. 55 g, 1.1 g and 2.2 g indicated that both amoxillin and clavulanate had linear dynamics characteristics. After 1.1 g single dose and multiple doses infusion, the pharmacokinetic parameters of amoxicillin and clavulanate were close respectively, and the trough concentrations before the 7th to 13th administration were lower than the detection limitation, which implied that the previous administration had cleared out before the next administration, and no accumulation happened after multiple doses. The amoxicillin sodium clavulanate potassium (10:1) injection possesses the linear kinetics. The dosage regimen of 1.1 g Q8h intravenous infusion could meet the needs of clinical therapy.
Neely, Michael; Kaplan, Edward L; Blumer, Jeffrey L; Faix, Dennis J; Broderick, Michael P
2014-11-01
Serum penicillin G falls to low levels 2 weeks after injection as benzathine penicillin G (BPG) in young adults. Using Pmetrics and previously reported penicillin G pharmacokinetic data after 1.2 million units were given as BPG to 329 male military recruits, here we develop the first reported population pharmacokinetic model of penicillin G after BPG injection. We simulated time-concentration profiles over a broad range of pediatric and adult weights after alternative doses and dose frequencies to predict the probability of maintaining serum penicillin G concentrations of >0.02 mg/liter, a proposed protective threshold against group A Streptococcus pyogenes (GAS). The final population model included linear absorption into a central compartment, distribution to and from a peripheral compartment, and linear elimination from the central compartment, with allometrically scaled volumes and rate constants. With 1.2 million units of BPG given intramuscularly every 4 weeks in four total doses, only 23.2% of 5,000 simulated patients maintained serum penicillin G trough concentrations of >0.02 mg/liter 4 weeks after the last dose. When the doses were 1.8 million units and 2.4 million units, the percentages were 30.2% and 40.7%, respectively. With repeated dosing of 1.2 million units every 3 weeks and every 2 weeks for 4 doses, the percentages of simulated patients with a penicillin G trough concentration of >0.02 mg/liter were 37.8% and 65.2%, respectively. Our simulations support recommendations for more frequent rather than higher BPG doses to prevent recurrent rheumatic heart disease in areas of high GAS prevalence or during outbreaks. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Kaplan, Edward L.; Blumer, Jeffrey L.; Faix, Dennis J.; Broderick, Michael P.
2014-01-01
Serum penicillin G falls to low levels 2 weeks after injection as benzathine penicillin G (BPG) in young adults. Using Pmetrics and previously reported penicillin G pharmacokinetic data after 1.2 million units were given as BPG to 329 male military recruits, here we develop the first reported population pharmacokinetic model of penicillin G after BPG injection. We simulated time-concentration profiles over a broad range of pediatric and adult weights after alternative doses and dose frequencies to predict the probability of maintaining serum penicillin G concentrations of >0.02 mg/liter, a proposed protective threshold against group A Streptococcus pyogenes (GAS). The final population model included linear absorption into a central compartment, distribution to and from a peripheral compartment, and linear elimination from the central compartment, with allometrically scaled volumes and rate constants. With 1.2 million units of BPG given intramuscularly every 4 weeks in four total doses, only 23.2% of 5,000 simulated patients maintained serum penicillin G trough concentrations of >0.02 mg/liter 4 weeks after the last dose. When the doses were 1.8 million units and 2.4 million units, the percentages were 30.2% and 40.7%, respectively. With repeated dosing of 1.2 million units every 3 weeks and every 2 weeks for 4 doses, the percentages of simulated patients with a penicillin G trough concentration of >0.02 mg/liter were 37.8% and 65.2%, respectively. Our simulations support recommendations for more frequent rather than higher BPG doses to prevent recurrent rheumatic heart disease in areas of high GAS prevalence or during outbreaks. PMID:25182635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, P.K.N.; Lam, P.K.S.; Ng, B.K.P.
The biokinetics of Cs in four compartments in the green-lipped mussel Perna viridis, namely, gill, viscera, adductor muscle, and foot, were studied. First-order linear differential equations were set up for these four compartments, and their solutions were used to fit the experimental data. The parameters governing the biokinetics, which depend on the elimination rate from each compartment and the transfer coefficient between compartments, were found. These are useful in understanding the physiology of Perna viridis, in predicting the activity of cesium in each compartment of Perna viridis from a contamination history, or in using Perna viridis as a sentinel organismmore » for surveying and monitoring radioactive contamination. The results showed that the viscera should be represented by more than one compartment. Concentration factors for the four compartments and for Perna viridis were also determined, and these agreed well with reported values in the literature.« less
Emergent Chemical Behavior in Variable-Volume Protocells
Shirt-Ediss, Ben; Solé, Ricard V.; Ruiz-Mirazo, Kepa
2015-01-01
Artificial protocellular compartments and lipid vesicles have been used as model systems to understand the origins and requirements for early cells, as well as to design encapsulated reactors for biotechnology. One prominent feature of vesicles is the semi-permeable nature of their membranes, able to support passive diffusion of individual solute species into/out of the compartment, in addition to an osmotic water flow in the opposite direction to the net solute concentration gradient. Crucially, this water flow affects the internal aqueous volume of the vesicle in response to osmotic imbalances, in particular those created by ongoing reactions within the system. In this theoretical study, we pay attention to this often overlooked aspect and show, via the use of a simple semi-spatial vesicle reactor model, that a changing solvent volume introduces interesting non-linearities into an encapsulated chemistry. Focusing on bistability, we demonstrate how a changing volume compartment can degenerate existing bistable reactions, but also promote emergent bistability from very simple reactions, which are not bistable in bulk conditions. One particularly remarkable effect is that two or more chemically-independent reactions, with mutually exclusive reaction kinetics, are able to couple their dynamics through the variation of solvent volume inside the vesicle. Our results suggest that other chemical innovations should be expected when more realistic and active properties of protocellular compartments are taken into account. PMID:25590570
Mitra, A; Fadda, H M
2014-08-04
The purpose of this study was to investigate the influence of gastric emptying patterns, surfactants, and dosage form on the supersaturation of a poorly soluble weakly basic drug, dipyridamole, using an in vitro model mimicking the dynamic environment of the upper gastrointestinal tract, and, furthermore, to evaluate the usefulness of this model in establishing correlations to in vivo bioavailability for drugs with solubility/dissolution limited absorption. A simulated stomach duodenum model comprising four compartments was used to assess supersaturation and precipitation kinetics as a function of time. It integrates physiologically relevant fluid volumes, fluid transfer rates, and pH changes of the upper GI tract. Monoexponential gastric emptying patterns simulating the fasted state were compared to linear gastric emptying patterns simulating the fed state. The effect of different surfactants commonly used in oral preparations, specifically, sodium lauryl sulfate (SLS), poloxamer-188, and polysorbate-80, on dipyridamole supersaturation was investigated while maintaining surface tension of the simulated gastric fluids at physiological levels and without obtaining artificial micellar solubilization of the drug. The supersaturation behavior of different dose strengths of dipyridamole was explored. Significant levels of dipyridamole supersaturation were observed in the duodenal compartment under all the different in vivo relevant conditions explored. Dipyridamole supersaturation ratios of up to 11-fold have been observed, and supersaturation has been maintained for up to 120 min. Lower duodenal concentrations of dipyridamole were observed under linear gastric emptying patterns compared to mononexponential gastric emptying. The mean duodenal area under concentration-time curves (AUC60min) for the dipyridamole concentration profile in the duodenal compartment is significantly different for all the surfactants explored (P < 0.05). Our investigations with the different surfactants and comparison of dosage form (solution versus suspension) on the precipitation of dipyridamole revealed that crystal growth, rather than nucleation, is the rate-limiting step for the precipitation of dipyridamole. A linear dose-response relationship was found for the mean in vitro duodenal area under concentration-time curves (AUC∞) in the dose range of 25 mg to 100 mg (R(2) = 0.886). This is in agreement with the pharmacokinetic data of dipyridamole reported in the literature. The simulated stomach duodenum model can provide a reliable and discriminative screening tool for exploring the effect of different physiological variables or formulations on the supersaturation/precipitation kinetics of weakly basic drugs with solubility limited absorption. The amount of drug in solution in the duodenal compartment of the SSD correlates to bioavailability for the weakly basic drug, dipyridamole, which has solubility limited absorption and undergoes supersaturation/precipitation.
Evaluation of an I-box wind tunnel model for assessment of behavioral responses of blow flies.
Moophayak, Kittikhun; Sukontason, Kabkaew L; Kurahashi, Hiromu; Vogtsberger, Roy C; Sukontason, Kom
2013-11-01
The behavioral response of flies to olfactory cues remains the focus of many investigations, and wind tunnels have sometimes been employed for assessment of this variable in the laboratory. In this study, our aim was to design, construct, and operate a new model of I-box wind tunnel with improved efficacy, highlighting the use of a new wind tunnel model to investigate the behavioral response of the medically important blow fly, Chrysomya megacephala (Fabricius). The I-box dual-choice wind tunnel designed for this study consists of seven conjoined compartments that resulted in a linear apparatus with clear glass tunnel of 30 × 30 × 190 cm ended both sides with wooden "fan compartments" which are equipped with adjustable fans as wind source. The clear glass tunnel consisted of two "stimulus compartments" with either presence or absence (control) of bait; two "trap compartments" where flies were attracted and allowed to reside; and one central "release compartment" where flies were introduced. Wind tunnel experiments were carried out in a temperature-controlled room, with a room light as a light source and a room-ventilated fan as odor-remover from tunnel out. Evaluation of testing parameters revealed that the highest attractive index was achieved with the use of 300 g of 1-day tainted pork scrap (pork meat mixed with offal) as bait in wind tunnel settings wind speed of 0.58 m/s, during 1.00-5.00 PM with light intensity of 341.33 lux from vertical light and 135.93 lux from horizontal light for testing a group of 60 flies. In addition, no significant response of well-fed and 24 h staved flies to this bait under these conditions was found. Results of this study supported this new wind tunnel model as a suitable apparatus for investigation of behavioral response of blow flies to bait chemical cues in the laboratory.
Stability of knee ligament complex of Thiel-embalmed cadaver compared to in vivo knee.
Völlner, Florian; Pilsl, Ulrike; Craiovan, Benjamin; Zeman, Florian; Schneider, Michael; Wörner, Michael; Grifka, Joachim; Weber, Markus
2017-07-01
The first biomechanical evaluation of new implants is usually carried out with cadavers. Fixation of Thiel-embalmed cadavers is supposed to preserve the histological structure, colour and consistency of the tissue and has a low risk of infection and toxicity. However, the biomechanical properties of Thiel-fixated tissue are still unknown. The aim of this study was to quantify the effect of the Thiel-embalming method on the elastic properties of the ligament complex of the knee compared to in vivo knees during total knee arthroplasty. The results of biomechanical tensile tests with 10 Thiel-embalmed knees were compared with the findings of 10 patients who underwent total knee arthroplasty with a standardised knee balancer at our department. We reconstructed the force-elongation curves of the medial and lateral ligament complex and calculated the stiffness in direct correlation with overall soft tissue stability in full extension and in 90° of flexion. All curves consisted of a non-linear part at the beginning and a linear part from about 80N onwards. In full extension, median stiffness in the cadavers was 26.6N/mm for the medial compartment and 31.6N/mm for the lateral compartment. The values for in vivo were 25.7N/mm for the medial compartment and 25.3N/mm for the lateral compartment (p=0.684 for the medial compartment and p=0.247 for the lateral compartment). In 90° of flexion, median stiffness in the cadaver group was 24.7N/mm for the medial compartment and 22.2N/mm for the lateral compartment. In vivo, median stiffness was 30.3N/mm for the medial compartment and 29.2N/mm for the lateral compartment (p=0.009 for the medial compartment and p=0.143 for the lateral compartment). Stiffness of the medial and lateral ligament complex in the knee was comparable between Thiel-embalmed cadavers and in vivo patients during total knee arthroplasty. Thiel fixation seems to preserve the soft tissue properties similar to those in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioavailability of dexmedetomidine after extravascular doses in healthy subjects
Anttila, Markku; Penttilä, Jani; Helminen, Antti; Vuorilehto, Lauri; Scheinin, Harry
2003-01-01
Aim To determine the absolute bioavailability of extravascularly administered dexmedetomidine, a novel a2-adrenoceptor agonist, in healthy subjects. Methods Single 2 µg kg−1 doses of dexmedetomidine were given intravenously, intramuscularly, perorally and buccally (where the solution is not swallowed) to 12 healthy male subjects. The drug concentration-time data were analysed using linear one-compartment (buccal and peroral data), or two-compartment modelling (intravenous data), or noncompartmental methods (intramuscular data). Results Mean (95% CI) absolute bioavailability after peroral, buccal and intramuscular administration was 16% (12–20%), 82% (73–92%) and 104% (96–112%), respectively. Conclusion Dexmedetomidine is well absorbed systemically through the oral mucosa, and therefore buccal dosing may provide an effective, noninvasive route to administer the drug. PMID:14616431
Groenendaal, D; Freijer, J; de Mik, D; Bouw, M R; Danhof, M; de Lange, E C M
2007-01-01
Background and purpose: Biophase equilibration must be considered to gain insight into the mechanisms underlying the pharmacokinetic-pharmacodynamic (PK-PD) correlations of opioids. The objective was to characterise in a quantitative manner the non-linear distribution kinetics of morphine in brain. Experimental approach: Male rats received a 10-min infusion of 4 mg kg−1 of morphine, combined with a continuous infusion of the P-glycoprotein (Pgp) inhibitor GF120918 or vehicle, or 40 mg kg−1 morphine alone. Unbound extracellular fluid (ECF) concentrations obtained by intracerebral microdialysis and total blood concentrations were analysed using a population modelling approach. Key results: Blood pharmacokinetics of morphine was best described with a three-compartment model and was not influenced by GF120918. Non-linear distribution kinetics in brain ECF was observed with increasing dose. A one compartment distribution model was developed, with separate expressions for passive diffusion, active saturable influx and active efflux by Pgp. The passive diffusion rate constant was 0.0014 min−1. The active efflux rate constant decreased from 0.0195 min−1 to 0.0113 min−1 in the presence of GF120918. The active influx was insensitive to GF120918 and had a maximum transport (Nmax/Vecf) of 0.66 ng min−1 ml−1 and was saturated at low concentrations of morphine (C50=9.9 ng ml−1). Conclusions and implications: Brain distribution of morphine is determined by three factors: limited passive diffusion; active efflux, reduced by 42% by Pgp inhibition; low capacity active uptake. This implies blood concentration-dependency and sensitivity to drug-drug interactions. These factors should be taken into account in further investigations on PK-PD correlations of morphine. PMID:17471182
Fractal analysis of lateral movement in biomembranes.
Gmachowski, Lech
2018-04-01
Lateral movement of a molecule in a biomembrane containing small compartments (0.23-μm diameter) and large ones (0.75 μm) is analyzed using a fractal description of its walk. The early time dependence of the mean square displacement varies from linear due to the contribution of ballistic motion. In small compartments, walking molecules do not have sufficient time or space to develop an asymptotic relation and the diffusion coefficient deduced from the experimental records is lower than that measured without restrictions. The model makes it possible to deduce the molecule step parameters, namely the step length and time, from data concerning confined and unrestricted diffusion coefficients. This is also possible using experimental results for sub-diffusive transport. The transition from normal to anomalous diffusion does not affect the molecule step parameters. The experimental literature data on molecular trajectories recorded at a high time resolution appear to confirm the modeled value of the mean free path length of DOPE for Brownian and anomalous diffusion. Although the step length and time give the proper values of diffusion coefficient, the DOPE speed calculated as their quotient is several orders of magnitude lower than the thermal speed. This is interpreted as a result of intermolecular interactions, as confirmed by lateral diffusion of other molecules in different membranes. The molecule step parameters are then utilized to analyze the problem of multiple visits in small compartments. The modeling of the diffusion exponent results in a smooth transition to normal diffusion on entering a large compartment, as observed in experiments.
Calvetti, Daniela; Cheng, Yougan; Somersalo, Erkki
2016-12-01
Identifying feasible steady state solutions of a brain energy metabolism model is an inverse problem that allows infinitely many solutions. The characterization of the non-uniqueness, or the uncertainty quantification of the flux balance analysis, is tantamount to identifying the degrees of freedom of the solution. The degrees of freedom of multi-compartment mathematical models for energy metabolism of a neuron-astrocyte complex may offer a key to understand the different ways in which the energetic needs of the brain are met. In this paper we study the uncertainty in the solution, using techniques of linear algebra to identify the degrees of freedom in a lumped model, and Markov chain Monte Carlo methods in its extension to a spatially distributed case. The interpretation of the degrees of freedom in metabolic terms, more specifically, glucose and oxygen partitioning, is then leveraged to derive constraints on the free parameters to guarantee that the model is energetically feasible. We demonstrate how the model can be used to estimate the stoichiometric energy needs of the cells as well as the household energy based on the measured oxidative cerebral metabolic rate of glucose and glutamate cycling. Moreover, our analysis shows that in the lumped model the net direction of lactate dehydrogenase (LDH) in the cells can be deduced from the glucose partitioning between the compartments. The extension of the lumped model to a spatially distributed multi-compartment setting that includes diffusion fluxes from capillary to tissue increases the number of degrees of freedom, requiring the use of statistical sampling techniques. The analysis of the distributed model reveals that some of the conclusions valid for the spatially lumped model, e.g., concerning the LDH activity and glucose partitioning, may no longer hold.
de Velde, Femke; de Winter, Brenda C M; Koch, Birgit C P; van Gelder, Teun; Mouton, Johan W
2016-10-01
To describe the population pharmacokinetics of oral amoxicillin and to compare the PTA of current dosing regimens. Two groups, each with 14 healthy male volunteers, received oral amoxicillin/clavulanic acid tablets on two separate days 1 week apart. One group received 875/125 mg twice daily and 500/125 mg three times daily and the other group 500/125 mg twice daily and 250/125 mg three times daily. A total of 1428 amoxicillin blood samples were collected before and after administration. We analysed the concentration-time profiles using a non-compartmental pharmacokinetic method (PKSolver) and a population pharmacokinetic method (NONMEM). The PTA was computed using Monte Carlo simulations for several dosing regimens. AUC0-24 and Cmax increased non-linearly with dose. The final model included the following components: Savic's transit compartment model, Michaelis-Menten absorption, two distribution compartments and first-order elimination. The mean central volume of distribution was 27.7 L and mean clearance was 21.3 L/h. We included variability for the central volume of distribution (34.4%), clearance (25.8%), transit compartment model parameters and Michaelis-Menten absorption parameters. For 40% fT>MIC and >97.5% PTA, the breakpoints were 0.125 mg/L (500 mg twice daily), 0.25 mg/L (250 mg three times daily and 875 mg twice daily), 0.5 mg/L (500 mg three times daily) and 1 mg/L (750, 875 or 1000 mg three times daily and 500 mg four times daily). The amoxicillin absorption rate appears to be saturable. The PTAs of high-dose as well as twice-daily regimens are less favourable than regimens with lower doses and higher frequency. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.
Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier
2018-01-01
Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.
Zandvliet, Anthe S; Huitema, Alwin D R; de Jonge, Milly E; den Hoed, Rob; Sparidans, Rolf W; Hendriks, Vincent M; van den Brink, Wim; van Ree, Jan M; Beijnen, Jos H
2005-01-01
The stimulant effect of caffeine, as an additive in diacetylmorphine preparations for study purposes, may interfere with the pharmacodynamic effects of diacetylmorphine. In order to obtain insight into the pharmacology of caffeine after inhalation in heroin users, the pharmacokinetics of caffeine and its dimethylxanthine metabolites were studied. The objectives were to establish the population pharmacokinetics under these exceptional circumstances and to compare the results to published data regarding intravenous and oral administration in healthy volunteers. Diacetylmorphine preparations containing 100 mg of caffeine were used by 10 persons by inhalation. Plasma concentrations of caffeine, theobromine, paraxanthine and theophylline were measured by high performance liquid chromatography. Non-linear mixed effects modelling was used to estimate population pharmacokinetic parameters. The model was evaluated by the jack-knife procedure. Caffeine was rapidly and effectively absorbed after inhalation. Population pharmacokinetics of caffeine and its dimethylxanthine metabolites could adequately and simultaneously be described by a linear multi-compartment model. The volume of distribution for the central compartment was estimated to be 45.7 l and the apparent elimination rate constant of caffeine at 8 hr after inhalation was 0.150 hr(-1) for a typical individual. The bioavailability was approximately 60%. The presented model adequately describes the population pharmacokinetics of caffeine and its dimethylxanthine metabolites after inhalation of the caffeine sublimate of a 100 mg tablet. Validation proved the stability of the model. Pharmacokinetics of caffeine after inhalation and intravenous administration are to a large extent similar. The bioavailability of inhaled caffeine is approximately 60% in experienced smokers.
Würthwein, Gudrun; Lanvers-Kaminsky, Claudia; Hempel, Georg; Gastine, Silke; Möricke, Anja; Schrappe, Martin; Karlsson, Mats O; Boos, Joachim
2017-12-01
The pharmacokinetics of the polyethylene glycol (PEG)-conjugated asparaginase Oncaspar ® are characterized by an increase in elimination over time. The focus of our analysis is the better understanding of this time-dependency. In paediatric acute lymphoblastic leukemia therapy (AIEOP-BFM ALL 2009), two administrations of Oncaspar ® (2500 U/m 2 intravenously) in induction phase (14-day interval) and one single administration in reinduction were followed by weekly monitoring of asparaginase activity. Non-linear mixed-effects modeling techniques (NONMEM) were used. Samples indicating immunological inactivation were excluded to describe the pharmacokinetics under standard conditions. Models with time-constant or time-varying clearance (CL) as well as transit compartment models with an increase in CL over a chain of compartments were investigated. Models with time-constant elimination could not adequately describe 6107 asparaginase activities from 1342 patients. Implementing a time-varying CL improved the fit. Modeling an increase of CL over time after dose (E max - and Weibull-functions) were superior to models with an increase of CL over time after the first administration. However, a transit compartment model came out to be the best structural model. The increase in elimination of PEGylated asparaginase appears to be driven by physicochemical processes that are drug-related. The observed hydrolytically in vitro instability of the drug leads to the hypothesis that this increase in CL might be due to an in vivo hydrolysis of the instable ester bond between PEG and the enzyme combined with an increased elimination of the partly de-PEGylated enzyme (Trial registered at www.clinicaltrials.gov , NCT0111744).
Tossavainen, A; Nurminen, M; Mutanen, P; Tola, S
1980-01-01
The biological half-times of urinary chromium and nickel excretion and plasma nickel concentration were calculated for four welders and four electroplaters. A linear one-compartment kinetic model gave estimates of the half-times ranging from 15 to 41 hours for chromium in urine, from 17 to 39 hours for nickel in urine, and from 20 to 34 hours for nickel in plasma. The model allows a precise description to be made of a worker's state of exposure as affected by a varying concentration of the metals in the air. PMID:7426481
On some stochastic formulations and related statistical moments of pharmacokinetic models.
Matis, J H; Wehrly, T E; Metzler, C M
1983-02-01
This paper presents the deterministic and stochastic model for a linear compartment system with constant coefficients, and it develops expressions for the mean residence times (MRT) and the variances of the residence times (VRT) for the stochastic model. The expressions are relatively simple computationally, involving primarily matrix inversion, and they are elegant mathematically, in avoiding eigenvalue analysis and the complex domain. The MRT and VRT provide a set of new meaningful response measures for pharmacokinetic analysis and they give added insight into the system kinetics. The new analysis is illustrated with an example involving the cholesterol turnover in rats.
Lu, Yanhui; Bliven-Sizemore, Erin; Weiner, Marc; Nuermberger, Eric; Burman, William; Dorman, Susan E.; Dooley, Kelly E.
2014-01-01
Rifapentine is under active investigation as a potent drug that may help shorten the tuberculosis (TB) treatment duration. A previous rifapentine dose escalation study with daily dosing indicated a possible decrease in bioavailability as the dose increased and an increase in clearance over time for rifapentine and its active metabolite, desacetyl rifapentine. This study aimed to assess the effects of increasing doses on rifapentine absorption and bioavailability and to evaluate the clearance changes over 14 days. A population analysis was performed with nonlinear mixed-effects modeling. Absorption, time-varying clearance, bioavailability, and empirical and semimechanistic autoinduction models were investigated. A one-compartment model linked to a transit compartment absorption model best described the data. The bioavailability of rifapentine decreased linearly by 2.5% for each 100-mg increase in dose. The autoinduction model suggested a dose-independent linear increase in clearance of the parent drug and metabolite over time from 1.2 and 3.1 liters · h−1, respectively, after a single dose to 2.2 and 5.0 liters · h−1, respectively, after 14 once-daily doses, with no plateau being reached by day 14. In clinical trial simulations using the final model, rifapentine demonstrated less-than-dose-proportional pharmacokinetics, but there was no plateau in exposures over the dose range tested (450 to 1,800 mg), and divided dosing increased exposures significantly. Thus, the proposed compartmental model incorporating daily dosing of rifapentine over a wide range of doses and time-related changes in bioavailability and clearance provides a useful tool for estimation of drug exposure that can be used to optimize rifapentine dosing for TB treatment. (This study has been registered at ClinicalTrials.gov under registration no. NCT01162486.) PMID:24614383
A simple method for identifying parameter correlations in partially observed linear dynamic models.
Li, Pu; Vu, Quoc Dong
2015-12-14
Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a software packet.
An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.
Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen
2018-06-01
This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhao, Shizhen; Jones, Kevin C; Sweetman, Andrew J
2018-01-01
A wide range of studies have characterized different types of biosorbent, with regard to their interactions with chemicals. This has resulted in the development of poly-parameter linear free energy relationships (pp-LFERs) for the estimation of partitioning of neutral organic compounds to biological phases (e.g., storage lipids, phospholipids and serum albumins). The aims of this study were to explore and evaluate the influence of implementing pp-LFERs both into a one-compartment fish model and a multi-compartment physiologically based toxicokinetic (PBTK) fish model and the associated implications for chemical risk assessment. For this purpose, fish was used as reference biota, due to their important role in aquatic food chains and dietary exposure to humans. The bioconcentration factor (BCF) was utilized as the evaluation metric. Overall, our results indicated that models incorporating pp-LFERs (R 2 = 0.75) slightly outperformed the single parameter (sp) LFERs approach in the one-compartmental fish model (R 2 = 0.72). A pronounced enhancement was achieved for compounds with log K OW between 4 and 5 with increased R 2 from 0.52 to 0.71. The minimal improvement was caused by the overestimation of lipid contribution and underestimation of protein contribution by the sp-approach, which cancelled each other out. Meanwhile, a greater improvement was observed for multi-compartmental PBTK models with consideration of metabolism, making all predictions fall within a factor of 10 compared with measured data. For screening purposes, the K OW -based (sp-LFERs) approach should be sufficient to quantify the main partitioning characteristics. Further developments are required for the consideration of ionization and more accurate quantification of biotransformation in biota. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Hojeong; Heckman, C. J.
2014-01-01
Neuromodulatory inputs from brainstem systems modulate the normal function of spinal motoneurons by altering the activation properties of persistent inward currents (PICs) in their dendrites. However, the effect of the PIC on firing outputs also depends on its location in the dendritic tree. To investigate the interaction between PIC neuromodulation and PIC location dependence, we used a two-compartment model that was biologically realistic in that it retains directional and frequency-dependent electrical coupling between the soma and the dendrites, as seen in multi-compartment models based on full anatomical reconstructions of motoneurons. Our two-compartment approach allowed us to systematically vary the coupling parameters between the soma and the dendrite to accurately reproduce the effect of location of the dendritic PIC on the generation of nonlinear (hysteretic) motoneuron firing patterns. Our results show that as a single parameter value for PIC activation was either increased or decreased by 20% from its default value, the solution space of the coupling parameter values for nonlinear firing outputs was drastically reduced by approximately 80%. As a result, the model tended to fire only in a linear mode at the majority of dendritic PIC sites. The same results were obtained when all parameters for the PIC activation simultaneously changed only by approximately ±10%. Our results suggest the democratization effect of neuromodulation: the neuromodulation by the brainstem systems may play a role in switching the motoneurons with PICs at different dendritic locations to a similar mode of firing by reducing the effect of the dendritic location of PICs on the firing behavior. PMID:25309410
The MATCHIT Automaton: Exploiting Compartmentalization for the Synthesis of Branched Polymers
Weyland, Mathias S.; Fellermann, Harold; Hadorn, Maik; Sorek, Daniel; Lancet, Doron; Rasmussen, Steen; Füchslin, Rudolf M.
2013-01-01
We propose an automaton, a theoretical framework that demonstrates how to improve the yield of the synthesis of branched chemical polymer reactions. This is achieved by separating substeps of the path of synthesis into compartments. We use chemical containers (chemtainers) to carry the substances through a sequence of fixed successive compartments. We describe the automaton in mathematical terms and show how it can be configured automatically in order to synthesize a given branched polymer target. The algorithm we present finds an optimal path of synthesis in linear time. We discuss how the automaton models compartmentalized structures found in cells, such as the endoplasmic reticulum and the Golgi apparatus, and we show how this compartmentalization can be exploited for the synthesis of branched polymers such as oligosaccharides. Lastly, we show examples of artificial branched polymers and discuss how the automaton can be configured to synthesize them with maximal yield. PMID:24489601
Potter, W R; Henderson, B W; Bellnier, D A; Pandey, R K; Vaughan, L A; Weishaupt, K R; Dougherty, T J
1999-11-01
An open three-compartment pharmacokinetic model was applied to the in vivo quantitative structure-activity relationship (QSAR) data of a homologous series of pyropheophorbide photosensitizers for photodynamic therapy (PDT). The physical model was a lipid compartment sandwiched between two identical aqueous compartments. The first compartment was assumed to clear irreversibly at a rate K0. The measured octanol-water partition coefficients, P(i) (where i is the number of carbons in the alkyl chain) and the clearance rate K0 determined the clearance kinetics of the drugs. Solving the coupled differential equations of the three-compartment model produced clearance kinetics for each of the sensitizers in each of the compartments. The third compartment was found to contain the target of PDT. This series of compounds is quite lipophilic. Therefore these drugs are found mainly in the second compartment. The drug level in the third compartment represents a small fraction of the tissue level and is thus not accessible to direct measurement by extraction. The second compartment of the model accurately predicted the clearance from the serum of mice of the hexyl ether of pyropheophorbide a, one member of this series of compounds. The diffusion and clearance rate constants were those found by fitting the pharmacokinetics of the third compartment to the QSAR data. This result validated the magnitude and mechanistic significance of the rate constants used to model the QSAR data. The PDT response to dose theory was applied to the kinetic behavior of the target compartment drug concentration. This produced a pharmacokinetic-based function connecting PDT response to dose as a function of time postinjection. This mechanistic dose-response function was fitted to published, single time point QSAR data for the pheophorbides. As a result, the PDT target threshold dose together with the predicted QSAR as a function of time postinjection was found.
Campos Moreno, Eduardo; Merino Sanjuán, Matilde; Merino, Virginia; Nácher, Amparo; Martín Algarra, Rafael V; Casabó, Vicente G
2007-02-01
The objective of this paper was to characterize the disposition phase of AM in rats, after different high doses and modalities of i.v. administration. Three fitting programs, WINNONLIN, ADAPT II and NONMEM were employed. The two-stage fitting methods led to different results, none of which can adequately explain amiodarone's behaviour, although a great amount of data per subject is available. The non-linear mixed effect modelling approach allows satisfactory estimation of population pharmacokinetic parameters, and their respective variability. The best model to define the AM pharmacokinetic profile is a two-compartment model, with saturable and dynamic plasma protein binding and linear tissular depot dynamic binding. These results indicate that peripheral tissues act as depots, causing an important fall in AM plasma levels in the first moment after dosing. Later, the return of the drug from these depots causes a slow increase in serum concentration whenever the dose is reduced.
A human cadaver fascial compartment pressure measurement model.
Messina, Frank C; Cooper, Dylan; Huffman, Gretchen; Bartkus, Edward; Wilbur, Lee
2013-10-01
Fresh human cadavers provide an effective model for procedural training. Currently, there are no realistic models to teach fascial compartment pressure measurement. We created a human cadaver fascial compartment pressure measurement model and studied its feasibility with a pre-post design. Three faculty members, following instructions from a common procedure textbook, used a standard handheld intra-compartment pressure monitor (Stryker(®), Kalamazoo, MI) to measure baseline pressures ("unembalmed") in the anterior, lateral, deep posterior, and superficial posterior compartments of the lower legs of a fresh human cadaver. The right femoral artery was then identified by superficial dissection, cannulated distally towards the lower leg, and connected to a standard embalming machine. After a 5-min infusion, the same three faculty members re-measured pressures ("embalmed") of the same compartments on the cannulated right leg. Unembalmed and embalmed readings for each compartment, and baseline readings for each leg, were compared using a two-sided paired t-test. The mean baseline compartment pressures did not differ between the right and left legs. Using the embalming machine, compartment pressure readings increased significantly over baseline for three of four fascial compartments; all in mm Hg (±SD): anterior from 40 (±9) to 143 (±44) (p = 0.08); lateral from 22 (±2.5) to 160 (±4.3) (p < 0.01); deep posterior from 34 (±7.9) to 161 (±15) (p < 0.01); superficial posterior from 33 (±0) to 140 (±13) (p < 0.01). We created a novel and measurable fascial compartment pressure measurement model in a fresh human cadaver using a standard embalming machine. Set-up is minimal and the model can be incorporated into teaching curricula. Copyright © 2013 Elsevier Inc. All rights reserved.
Rudin, M; Beckmann, N; Sauter, A
1997-01-01
Determination of tissue perfusion rates by MRI bolus tracking methods relies on the central volume principle which states that tissue blood flow is given by the tissue blood volume divided by the mean tracer transit time (MTT). Accurate determination of the MTT requires knowledge of the arterial input function which in MRI experiments is usually not known, especially when using small animals. The problem of unknown arterial input can be circumvented in animal experiments by directly injecting the contrast agent into a feeding artery of the tissue of interest. In the present article the passage of magnetite nanoparticles through the rat cerebral cortex is analyzed after injection into the internal carotid artery. The results are discussed in the framework of linear system theory using a one-compartment model for brain tissue and by using the well characterized gamma-variate function to describe the tissue concentration profile of the contrast agent. The results obtained from the intra-arterial tracer administration experiments are then compared with the commonly used intra-venous injection of the contrast agent in order to estimate the contribution of the peripheral circulation to the MTT values in the latter case. The experiments were analyzed using a two-compartment model and the gamma-variate function. As an application perfusion rates in normal and ischemic cerebral cortex of hypertensive rats were estimated in a model of focal cerebral ischemia. The results indicate that peripheral circulation has a significant influence on the MTT values and thus on the perfusion rates, which cannot be neglected.
Tanaka, Jun; Kasai, Hidefumi; Shimizu, Kenji; Shimasaki, Shigeki; Kumagai, Yuji
2013-03-01
We performed a population pharmacokinetic analysis of phenytoin after intravenous administration of fosphenytoin sodium in healthy, neurosurgical, and epileptic subjects, including pediatric patients, and determined the optimal dose and infusion rate for achieving the therapeutic range. We used pooled data obtained from two phase I studies and one phase III study performed in Japan. The population pharmacokinetic analysis was performed using NONMEM software. The optimal dose and infusion rate were determined using simulation results obtained using the final model. The therapeutic range for total plasma phenytoin concentration is 10-20 μg/mL. We used a linear two-compartment model with conversion of fosphenytoin to phenytoin. Pharmacokinetic parameters of phenytoin, such as total clearance and central and peripheral volume of distribution were influenced by body weight. The dose simulations are as follows. In adult patients, the optimal dose and infusion rate of phenytoin for achieving the therapeutic range was 22.5 mg/kg and 3 mg/kg/min respectively. In pediatric patients, the total plasma concentration of phenytoin was within the therapeutic range for a shorter duration than that in adult patients at 22.5 mg/kg (3 mg/kg/min). However, many pediatric patients showed phenytoin concentration within the toxic range after administration of a dose of 30 mg/kg. The pharmacokinetics of phenytoin after intravenous administration of fosphenytoin sodium could be described using a linear two-compartment model. The administration of fosphenytoin sodium 22.5 mg/kg at an infusion rate of 3 mg/kg/min was optimal for achieving the desired plasma phenytoin concentration.
Ito, Hiroshi; Yokoi, Takashi; Ikoma, Yoko; Shidahara, Miho; Seki, Chie; Naganawa, Mika; Takahashi, Hidehiko; Takano, Harumasa; Kimura, Yuichi; Ichise, Masanori; Suhara, Tetsuya
2010-01-01
In positron emission tomography (PET) studies with radioligands for neuroreceptors, tracer kinetics have been described by the standard two-tissue compartment model that includes the compartments of nondisplaceable binding and specific binding to receptors. In the present study, we have developed a new graphic plot analysis to determine the total distribution volume (V(T)) and nondisplaceable distribution volume (V(ND)) independently, and therefore the binding potential (BP(ND)). In this plot, Y(t) is the ratio of brain tissue activity to time-integrated arterial input function, and X(t) is the ratio of time-integrated brain tissue activity to time-integrated arterial input function. The x-intercept of linear regression of the plots for early phase represents V(ND), and the x-intercept of linear regression of the plots for delayed phase after the equilibrium time represents V(T). BP(ND) can be calculated by BP(ND)=V(T)/V(ND)-1. Dynamic PET scanning with measurement of arterial input function was performed on six healthy men after intravenous rapid bolus injection of [(11)C]FLB457. The plot yielded a curve in regions with specific binding while it yielded a straight line through all plot data in regions with no specific binding. V(ND), V(T), and BP(ND) values calculated by the present method were in good agreement with those by conventional non-linear least-squares fitting procedure. This method can be used to distinguish graphically whether the radioligand binding includes specific binding or not.
Cycle-averaged dynamics of a periodically driven, closed-loop circulation model
NASA Technical Reports Server (NTRS)
Heldt, T.; Chang, J. L.; Chen, J. J. S.; Verghese, G. C.; Mark, R. G.
2005-01-01
Time-varying elastance models have been used extensively in the past to simulate the pulsatile nature of cardiovascular waveforms. Frequently, however, one is interested in dynamics that occur over longer time scales, in which case a detailed simulation of each cardiac contraction becomes computationally burdensome. In this paper, we apply circuit-averaging techniques to a periodically driven, closed-loop, three-compartment recirculation model. The resultant cycle-averaged model is linear and time invariant, and greatly reduces the computational burden. It is also amenable to systematic order reduction methods that lead to further efficiencies. Despite its simplicity, the averaged model captures the dynamics relevant to the representation of a range of cardiovascular reflex mechanisms. c2004 Elsevier Ltd. All rights reserved.
A three-compartment thermometry model for the improved estimation of changes in body heat content.
Jay, Ollie; Gariépy, Louise M; Reardon, Francis D; Webb, Paul; Ducharme, Michel B; Ramsay, Tim; Kenny, Glen P
2007-01-01
The aim of this study was to use whole body calorimetry to directly measure the change in body heat content (DeltaH(b)) during steady-state exercise and compare these values with those estimated using thermometry. The thermometry models tested were the traditional two-compartment model of "core" and "shell" temperatures, and a three-compartment model of "core," "muscle," and "shell" temperatures; with individual compartments within each model weighted for their relative influence upon DeltaH(b) by coefficients subject to a nonnegative and a sum-to-one constraint. Fifty-two participants performed 90 min of moderate-intensity exercise (40% of Vo(2 peak)) on a cycle ergometer in the Snellen air calorimeter, at regulated air temperatures of 24 degrees C or 30 degrees C and a relative humidity of either 30% or 60%. The "core" compartment was represented by temperatures measured in the esophagus (T(es)), rectum (T(re)), and aural canal (T(au)), while the "muscle" compartment was represented by regional muscle temperature measured in the vastus lateralis (T(vl)), triceps brachii (T(tb)), and upper trapezius (T(ut)). The "shell" compartment was represented by the weighted mean of 12 skin temperatures (T(sk)). The whole body calorimetry data were used to derive optimally fitting two- and three-compartment thermometry models. The traditional two-compartment model was found to be statistically biased, systematically underestimating DeltaH(b) by 15.5% (SD 31.3) at 24 degrees C and by 35.5% (SD 21.9) at 30 degrees C. The three-compartment model showed no such bias, yielding a more precise estimate of DeltaH(b) as evidenced by a mean estimation error of 1.1% (SD 29.5) at 24 degrees C and 5.4% (SD 30.0) at 30 degrees C with an adjusted R(2) of 0.48 and 0.51, respectively. It is concluded that a major source of error in the estimation of DeltaH(b) using the traditional two-compartment thermometry model is the lack of an expression independently representing the heat storage in muscle during exercise.
Log-linear human chorionic gonadotropin elimination in cases of retained placenta percreta.
Stitely, Michael L; Gerard Jackson, M; Holls, William H
2014-02-01
To describe the human chorionic gonadotropin (hCG) elimination rate in patients with intentionally retained placenta percreta. Medical records for cases of placenta percreta with intentional retention of the placenta were reviewed. The natural log of the hCG levels were plotted versus time and then the elimination rate equations were derived. The hCG elimination rate equations were log-linear in three cases individually (R (2) = 0.96-0.99) and in aggregate R (2) = 0.92). The mean half-life of hCG elimination was 146.3 h (6.1 days). The elimination of hCG in patients with intentionally retained placenta percreta is consistent with a two-compartment elimination model. The hCG elimination in retained placenta percreta is predictable in a log-linear manner that is similar to other reports of retained abnormally adherent placentae treated with or without methotrexate.
Whole-body mathematical model for simulating intracranial pressure dynamics
NASA Technical Reports Server (NTRS)
Lakin, William D. (Inventor); Penar, Paul L. (Inventor); Stevens, Scott A. (Inventor); Tranmer, Bruce I. (Inventor)
2007-01-01
A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment.
On the physics-based processes behind production-induced seismicity in natural gas fields
NASA Astrophysics Data System (ADS)
Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan
2017-05-01
Induced seismicity due to natural gas production is observed at different sites worldwide. Common understanding states that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations and hence reactivates preexisting faults and induces earthquakes. In this study, we show that the multiphase fluid flow involved in natural gas extraction activities should be included. We use a fully coupled fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, divided into two compartments that are offset by a normal fault. Results show that fluid flow plays a major role in pore pressure and stress evolution within the fault. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighboring reservoir compartment and other formations. We also analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas reinjection. In the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production has ceased, although on average the shut-in results in a reduction in seismicity. In the case of gas reinjection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, gas reinjection into a neighboring compartment does not stop the fault from being reactivated.
Transport of fluid and solutes in the body I. Formulation of a mathematical model.
Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L
1999-09-01
A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.
Jin, Yuyan; Pollock, Bruce G; Coley, Kim; Miller, Del; Marder, Stephen R; Florian, Jeff; Schneider, Lon; Lieberman, Jeffrey; Kirshner, Margaret; Bies, Robert R
2010-01-01
The goal of the study was to characterize population pharmacokinetics (PPK) for perphenazine in patients with schizophrenia from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE). Patients (n = 156) received 8 to 32 mg of perphenazine daily for 14 to 600 days for a total of 421 plasma concentrations measurements. Nonlinear mixed-effects modeling was used to determine PPK characteristics of perphenazine. One- and 2-compartment models with various random effect implementations and mixture distributions were evaluated. Objective function values and goodness-of-fit plots were used as model selection criteria. Age, weight, sex, race, smoking, and concomitant medications were evaluated as covariates. A 1-compartment linear model with proportional error best described the data. The population mean clearance and volume of distribution for perphenazine were 483 L/h and 18 200 L, respectively. Race and smoking status had significant impacts on perphenazine clearance estimates. In addition, the estimated population mean clearance was 48% higher in nonsmoking African Americans than in nonsmoking other races (512 L/h vs 346 L/h). Active smokers eliminated perphenazine 159 L/h faster than nonsmokers in each race. Clearances for smoking African Americans versus smokers in other races were 671 L/h versus 505 L/h, respectively.
Lin, Ai-Ling; Fox, Peter T; Yang, Yihong; Lu, Hanzhang; Tan, Li-Hai; Gao, Jia-Hong
2009-01-01
The aim of this study was to investigate the relationship between relative cerebral blood flow (delta CBF) and relative cerebral metabolic rate of oxygen (delta CMRO(2)) during continuous visual stimulation (21 min at 8 Hz) with fMRI biophysical models by simultaneously measuring of BOLD, CBF and CBV fMRI signals. The delta CMRO(2) was determined by both a newly calibrated single-compartment model (SCM) and a multi-compartment model (MCM) and was in agreement between these two models (P>0.5). The duration-varying delta CBF and delta CMRO(2) showed a negative correlation with time (r=-0.97, P<0.001); i.e., delta CBF declines while delta CMRO(2) increases during continuous stimulation. This study also illustrated that without properly calibrating the critical parameters employed in the SCM, an incorrect and even an opposite appearance of the flow-metabolism relationship during prolonged visual stimulation (positively linear coupling) can result. The time-dependent negative correlation between flow and metabolism demonstrated in this fMRI study is consistent with a previous PET observation and further supports the view that the increase in CBF is driven by factors other than oxygen demand and the energy demands will eventually require increased aerobic metabolism as stimulation continues.
Lee, Jungwoo; Choi, Jong-ryul; Ha, Sang Keun; Choi, Inwook; Lee, Seung Hwan; Kim, Donghyun; Choi, Nakwon; Sung, Jong Hwan
2014-08-21
Various food components are known for their health-promoting effects. However, their biochemical effects are generally evaluated in vitro, and their actual in vivo effect can vary significantly, depending on their metabolic profiles. To evaluate the effect of the liver metabolism on the antioxidant activity, we have developed a two-compartment microfluidic system that integrates the dynamics of liver metabolism and the subsequent antioxidant activity of food components. In the first compartment of the device, human liver enzyme fractions were immobilized inside a poly(ethylene glycol) diacrylate (PEGDA) hydrogel to mimic the liver metabolism. The radical scavenging activity was evaluated by the change of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) absorbance in the second compartment. Reaction engineering and fluid mechanics principles were used to develop a simplified analytical model and a more complex finite element model, which were used to design the chip and determine the optimal flow conditions. For real-time measurements of the reaction on a chip, we developed a custom-made photospectrometer system with an LED light source. The developed microfluidic system showed a linear and dose-dependent antioxidant activity in response to increasing concentration of flavonoid. We also compared the antioxidant activity of flavonoid after various liver metabolic reactions. This microfluidic system can serve as a novel in vitro platform for predicting the antioxidant activity of various food components in a more physiologically realistic manner, as well as for studying the mechanism of action of such food components.
Leohr, Jennifer; Heathman, Michael; Kjellsson, Maria C
2018-03-01
To quantify the postprandial triglyceride (TG) response of chylomicrons and very-low-density lipoprotein-V6 (VLDL-V6) after a high-fat meal in lean, obese and very obese healthy individuals, using a mechanistic population lipokinetic modelling approach. Healthy individuals from three body mass index population categories: lean (18.5-24.9 kg/m 2 ), obese (30-33 kg/m 2 ), and very obese (34-40 kg/m 2 ) were enrolled in a clinical study to assess the TG response after a high-fat meal, containing 60% fat. Non-linear mixed-effect modelling was used to analyse the TG concentrations of chylomicrons and large VLDL-V6 particles. The TGs in chylomicrons and VLDL-V6 particles had a prominent postprandial peak and represented the majority of the postprandial response; only the VLDL-V6 showed a difference across the populations. A turn-over model successfully described the TG concentration-time profiles of both chylomicrons and large VLDL-V6 particles after the high-fat meal. This model consisted of four compartments: two transit compartments for the lag between meal consumption and appearance of TGs in the blood, and one compartment each for the chylomicrons and large VLDL-V6 particles. The rate constants for the production of chylomicrons and elimination of large VLDL-V6 particles, along with the conversion rate of chylomicrons to large VLDL-V6 particles were well defined. This is the first lipokinetic model to describe the absorption of TGs from dietary fats into the blood stream and compares the dynamics of TGs in chylomicrons and large VLDL-V6 particles among lean, obese and very obese people. Such a model can be used to identify where pharmacological therapies act, thereby improving the determination of efficacy, and identifying complementary mechanisms for combinational drug therapies. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ceballos-Núñez, Verónika; Richardson, Andrew; Sierra, Carlos
2017-04-01
The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. However, it is uncertain how some vegetation dynamics such as the allocation of carbon to different ecosystem compartments should be represented in models. The assumptions behind model structures may result in highly divergent model predictions. Here, we asses model performance by calculating the age of the carbon in the system and in each compartment, and the overall transit time of C in the system. We used these diagnostics to assess the influence of three different carbon allocation schemes on the rates of C cycling in vegetation. First, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find the best set of parameters for the different model structures. Second, we calculated C stocks, respiration fluxes, radiocarbon values, ages, and transit times. We found a good fit of the three model structures to the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed and reduce model equifinality. Differences in model structures had a small impact on predicting ecosystem C compartments, but overall they resulted in very different predictions of age and transit time distributions. In particular, the inclusion of a storage compartment had an important impact on predicting system ages and transit times. In the case of the models with 1 or 2 storage compartments, the age of carbon in the system and in each of the compartments was distributed more towards younger ages than in the model that had no storage; the mean system age of these two models with storage was 80 years younger than in the model without storage. As expected from these age distributions, the mean transit time for the two models with storage compartments was 50 years faster than for the model without storage. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure and could largely help to reduce uncertainties in model predictions. Furthermore, by considering age and transit times of C in vegetation compartments as distributions, not only their mean values, we obtain additional insights on the temporal dynamics of carbon use, storage, and allocation to plant parts, which not only depends on the rate at which this C is transferred in and out of the compartments, but also on the stochastic nature of the process itself.
Liu, Huolong; Li, Mingzhong
2014-11-20
In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.
Mortensen, Stig B; Klim, Søren; Dammann, Bernd; Kristensen, Niels R; Madsen, Henrik; Overgaard, Rune V
2007-10-01
The non-linear mixed-effects model based on stochastic differential equations (SDEs) provides an attractive residual error model, that is able to handle serially correlated residuals typically arising from structural mis-specification of the true underlying model. The use of SDEs also opens up for new tools for model development and easily allows for tracking of unknown inputs and parameters over time. An algorithm for maximum likelihood estimation of the model has earlier been proposed, and the present paper presents the first general implementation of this algorithm. The implementation is done in Matlab and also demonstrates the use of parallel computing for improved estimation times. The use of the implementation is illustrated by two examples of application which focus on the ability of the model to estimate unknown inputs facilitated by the extension to SDEs. The first application is a deconvolution-type estimation of the insulin secretion rate based on a linear two-compartment model for C-peptide measurements. In the second application the model is extended to also give an estimate of the time varying liver extraction based on both C-peptide and insulin measurements.
Kinetics of mineralization of organic compounds at low concentrations in soil.
Scow, K M; Simkins, S; Alexander, M
1986-01-01
The kinetics of mineralization of 14C-labeled phenol and aniline were measured at initial concentrations ranging from 0.32 to 5,000 ng and 0.30 ng to 500 micrograms/g of soil, respectively. Mineralization of phenol at concentrations less than or equal to 32 ng/g of soil and of aniline at all concentrations began immediately, and the curves for the evolution of labeled CO2 were biphasic. The patterns of mineralization of 4.0 ng of 2,4-dichlorophenol per g of soil and 20 ng of nitrilotriacetic acid per g of soil were similar to the patterns for phenol and aniline. The patterns of mineralization of 1.0 to 100 ng of p-nitrophenol and 6.0 ng of benzylamine per g of soil were also biphasic but after a short apparent lag period. The curves of CO2 evolution from higher concentrations of phenol and p-nitrophenol had increasing apparent lag phases and were S-shaped or linear. Cumulative plots of the percentage of substrate converted to CO2 were fit by nonlinear regression to first-order, integrated Monod, logistic, logarithmic, zero-order, three-half-order, and two-compartment models. None of the models of the Monod family provided the curve of best fit to any of the patterns of mineralization. The linear growth form of the three-half-order model provided the best fit for the mineralization of p-nitrophenol, with the exception of the lowest concentrations, and of benzylamine. The two-compartment model provided the best fit for the mineralization of concentrations of phenol below 100 ng/g, of several concentrations of aniline, and of nitrilotriacetic acid. It is concluded that models derived from the Monod equation, including the first-order model, do not adequately describe the kinetics of mineralization of low concentrations of chemicals added to soil. PMID:3729388
Passive dendrites enable single neurons to compute linearly non-separable functions.
Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris
2013-01-01
Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions.
Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions
Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris
2013-01-01
Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions. PMID:23468600
Population Pharmacokinetics of Oral Baclofen in Pediatric Patients with Cerebral Palsy
He, Yang; Brunstrom-Hernandez, Janice E.; Thio, Liu Lin; Lackey, Shellie; Gaebler-Spira, Deborah; Kuroda, Maxine M.; Stashinko, Elaine; Hoon, Alexander H.; Vargus-Adams, Jilda; Stevenson, Richard D.; Lowenhaupt, Stephanie; McLaughlin, John F.; Christensen, Ana; Dosa, Nienke P.; Butler, Maureen; Schwabe, Aloysia; Lopez, Christina; Roge, Desiree; Kennedy, Diane; Tilton, Ann; Krach, Linda E.; Lewandowski, Andrew; Dai, Hongying; Gaedigk, Andrea; Leeder, J. Steven; Jusko, William J.
2014-01-01
Objective To characterize the population pharmacokinetics (PK) of oral baclofen and assess impact of patient-specific covariates in children with cerebral palsy (CP) in order to support its clinical use. Subjects design Children (2-17 years of age) with CP received a dose of titrated oral baclofen from 2.5 mg 3 times a day to a maximum tolerated dose of up to 20 mg 4 times a day. PK sampling followed titration of 10-12 weeks. Serial R- and S-baclofen plasma concentrations were measured for up to 16 hours in 49 subjects. Population PK modeling was performed using NONMEM 7.1 (ICON PLC; Ellicott City, Maryland). Results R- and S-baclofen showed identical concentration-time profiles. Both baclofen enantiomers exhibited linear and dose/kg-proportional PK, and no sex differences were observed. Average baclofen terminal half-life was 4.5 hours. A 2-compartment PK model with linear elimination and transit absorption steps adequately described concentration-time profiles of both baclofen enantiomers. The mean population estimate of apparent clearance/F was 0.273 L/h/kg with 33.4% inter-individual variability (IIV), and the apparent volume of distribution (Vss/F) was 1.16 L/kg with 43.9% IIV. Delayed absorption was expressed by a mean transit time of 0.389 hours with 83.7% IIV. Body weight, a possible genetic factor, and age were determinants of apparent clearance in these children. Conclusion The PK of oral baclofen exhibited dose-proportionality and were adequately described by a 2-compartment model. Our population PK findings suggest that baclofen dosage can be based on body weight (2 mg/kg per day) and the current baclofen dose escalation strategy is appropriate in the treatment of children with CP older than 2 years of age. PMID:24607242
Model cerebellar granule cells can faithfully transmit modulated firing rate signals
Rössert, Christian; Solinas, Sergio; D'Angelo, Egidio; Dean, Paul; Porrill, John
2014-01-01
A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates. These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit. PMID:25352777
Population pharmacokinetics of hydroxyurea for children and adolescents with sickle cell disease.
Wiczling, Paweł; Liem, Robert I; Panepinto, Julie A; Garg, Uttam; Abdel-Rahman, Susan M; Kearns, Gregory L; Neville, Kathleen A
2014-09-01
The objective of this study was to develop a population pharmacokinetic (PK) model sufficient to describe hydroxyurea (HU) concentrations in serum and urine following oral drug administration in pediatric patients with sickle cell disease. Additionally, the measured hydroxyurea concentrations for particular sampling time were correlated with exposure measures (AUC) to find the most predictive relationship. Hydroxyurea concentrations were determined in 21 subjects. Using a population nonlinear mixed-effect modeling, the HU PK was best described by a one-compartment model with two elimination pathways (metabolic and renal) and a transit compartment absorption. The typical mean absorption time was 0.222 hour. The typical apparent volume of distribution was 21.8 L and the apparent systemic clearance was 6.88 L/h for an average weight patient of 30.7 kg. The 50% of the HU dose was renally excreted. Linear correlations were apparent between the plasma HU concentration at 1, 1.5, 2, 4, and 6 hours post-dose and AUC with the most significant (R(2) = 0.71) observed at 1.5 hours. A population PK model was successful in describing HU disposition in plasma and urine. Data from the model also demonstrated that HU plasma concentrations at 1.5 hours after an oral dose of the drug were highly predictive of systemic drug exposure. © 2014, The American College of Clinical Pharmacology.
Gamma time-dependency in Blaxter's compartmental model.
NASA Technical Reports Server (NTRS)
Matis, J. H.
1972-01-01
A new two-compartment model for the passage of particles through the gastro-intestinal tract of ruminants is proposed. In this model, a gamma distribution of lifetimes is introduced in the first compartment; thereby, passage from that compartment becomes time-dependent. This modification is strongly suggested by the physical alteration which certain substances, e.g. hay particles, undergo in the digestive process. The proposed model is applied to experimental data.
NASA Astrophysics Data System (ADS)
Ceballos-Núñez, Verónika; Richardson, Andrew D.; Sierra, Carlos A.
2018-03-01
The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike), ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure and could largely help to reduce uncertainties in model predictions. Furthermore, by considering age and transit times of C in vegetation compartments as distributions, not only their mean values, we obtain additional insights into the temporal dynamics of carbon use, storage, and allocation to plant parts, which not only depends on the rate at which this C is transferred in and out of the compartments but also on the stochastic nature of the process itself.
Jackola, D R; Hallgren, H M
1998-11-16
In healthy humans, phenotypic restructuring occurs with age within the CD3+ T-lymphocyte complement. This is characterized by a non-linear decrease of the percentage of 'naive' (CD45RA+) cells and a corresponding non-linear increase of the percentage of 'memory' (CD45R0+) cells among both the CD4+ and CD8+ T-cell subsets. We devised a simple compartmental model to study the age-dependent kinetics of phenotypic restructuring. We also derived differential equations whose parameters determined yearly gains minus losses of the percentage and absolute numbers of circulating naive cells, yearly gains minus losses of the percentage and absolute numbers of circulating memory cells, and the yearly rate of conversion of naive to memory cells. Solutions of these evaluative differential equations demonstrate the following: (1) the memory cell complement 'resides' within its compartment for a longer time than the naive cell complement within its compartment for both CD4 and CD8 cells; (2) the average, annual 'turnover rate' is the same for CD4 and CD8 naive cells. In contrast, the average, annual 'turnover rate' for memory CD8 cells is 1.5 times that of memory CD4 cells; (3) the average, annual conversion rate of CD4 naive cells to memory cells is twice that of the CD8 conversion rate; (4) a transition in dynamic restructuring occurs during the third decade of life that is due to these differences in turnover and conversion rates, between and from naive to memory cells.
Pediatric obesity and walking duration increase medial tibiofemoral compartment contact forces.
Lerner, Zachary F; Board, Wayne J; Browning, Raymond C
2016-01-01
With the high prevalence of pediatric obesity there is a need for structured physical activity during childhood. However, altered tibiofemoral loading during physical activity in obese children likely contribute to their increased risk of orthopedic disorders of the knee. The goal of this study was to determine the effects of pediatric obesity and walking duration on medial and lateral tibiofemoral contact forces. We collected experimental biomechanics data during treadmill walking at 1 m•s(-1) for 20 min in 10 obese and 10 healthy-weight 8-12 year-olds. We created subject-specific musculoskeletal models using radiographic measures of tibiofemoral alignment and centers-of-pressure, and predicted medial and lateral tibiofemoral contact forces at the beginning and end of each trial. Obesity and walking duration affected tibiofemoral loading. At the beginning of the trail, the average percent of the total load passing through the medial compartment during stance was 85% in the obese children and 63% in the healthy-weight children; at the end of the trial, the medial distribution was 90% in the obese children and 72% in the healthy-weight children. Medial compartment loading rates were 1.78 times greater in the obese participants. The medial compartment loading rate increased 17% in both groups at the end compared to the beginning of the trial (p = 0.001). We found a strong linear relationship between body-fat percentage and the medial-lateral load distribution (r(2) = 0.79). Altered tibiofemoral loading during walking in obese children may contribute to their increased risk of knee pain and pathology. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Strauss, Ludwig G; Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2011-03-01
(18)F-FDG kinetics are quantified by a 2-tissue-compartment model. The routine use of dynamic PET is limited because of this modality's 1-h acquisition time. We evaluated shortened acquisition protocols up to 0-30 min regarding the accuracy for data analysis with the 2-tissue-compartment model. Full dynamic series for 0-60 min were analyzed using a 2-tissue-compartment model. The time-activity curves and the resulting parameters for the model were stored in a database. Shortened acquisition data were generated from the database using the following time intervals: 0-10, 0-16, 0-20, 0-25, and 0-30 min. Furthermore, the impact of adding a 60-min uptake value to the dynamic series was evaluated. The datasets were analyzed using dedicated software to predict the results of the full dynamic series. The software is based on a modified support vector machines (SVM) algorithm and predicts the compartment parameters of the full dynamic series. The SVM-based software provides user-independent results and was accurate at predicting the compartment parameters of the full dynamic series. If a squared correlation coefficient of 0.8 (corresponding to 80% explained variance of the data) was used as a limit, a shortened acquisition of 0-16 min was accurate at predicting the 60-min 2-tissue-compartment parameters. If a limit of 0.9 (90% explained variance) was used, a dynamic series of at least 0-20 min together with the 60-min uptake values is required. Shortened acquisition protocols can be used to predict the parameters of the 2-tissue-compartment model. Either a dynamic PET series of 0-16 min or a combination of a dynamic PET/CT series of 0-20 min and a 60-min uptake value is accurate for analysis with a 2-tissue-compartment model.
Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.
2017-01-01
Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201
Population pharmacokinetics of phenytoin in critically ill children.
Hennig, Stefanie; Norris, Ross; Tu, Quyen; van Breda, Karin; Riney, Kate; Foster, Kelly; Lister, Bruce; Charles, Bruce
2015-03-01
The objective was to study the population pharmacokinetics of bound and unbound phenytoin in critically ill children, including influences on the protein binding profile. A population pharmacokinetic approach was used to analyze paired protein-unbound and total phenytoin plasma concentrations (n = 146 each) from 32 critically ill children (0.08-17 years of age) who were admitted to a pediatric hospital, primarily intensive care unit. The pharmacokinetics of unbound and bound phenytoin and the influence of possible influential covariates were modeled and evaluated using visual predictive checks and bootstrapping. The pharmacokinetics of protein-unbound phenytoin was described satisfactorily by a 1-compartment model with first-order absorption in conjunction with a linear partition coefficient parameter to describe the binding of phenytoin to albumin. The partitioning coefficient describing protein binding and distribution to bound phenytoin was estimated to be 8.22. Nonlinear elimination of unbound phenytoin was not supported in this patient group. Weight, allometrically scaled for clearance and volume of distribution for the unbound and bound compartments, and albumin concentration significantly influenced the partition coefficient for protein binding of phenytoin. The population model can be applied to estimate the fraction of unbound phenytoin in critically ill children given an individual's albumin concentration. © 2014, The American College of Clinical Pharmacology.
NASA Technical Reports Server (NTRS)
Myers, J. G.; Eke, Chika; Werner, C.; Nelson, E. S.; Mulugeta, L.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.
2016-01-01
Space flight impacts human physiology in many ways, the most immediate being the marked cephalad (headward) shift of fluid upon introduction into the microgravity environment. This physiological response to microgravity points to the redistribution of blood and interstitial fluid as a major factor in the loss of venous tone and reduction in heart muscle efficiency which impact astronaut performance. In addition, researchers have hypothesized that a reduction in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, is associated with this redistribution of fluid. VIIP arises within several months of beginning space flight and includes a variety of ophthalmic changes including posterior globe flattening, distension of the optic nerve sheath, and kinking of the optic nerve. We utilize a suite of lumped parameter models to simulate microgravity-induced fluid redistribution in the cardiovascular, central nervous and ocular systems to provide initial and boundary data to a 3D finite element simulation of ocular biomechanics in VIIP. Specifically, the lumped parameter cardiovascular model acts as the primary means of establishing how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. The cardiovascular model consists of 16 compartments, including three cerebrospinal fluid (CSF) compartments, three cranial blood compartments, and 10 thoracic and lower limb blood compartments. To assess the models capability to address variations in physiological parameters, we completed a formal uncertainty and sensitivity analysis that evaluated the relative importance of 42 input parameters required in the model on relative compartment flows and compartment pressures. Utilizing the model in a pulsatile flow configuration, the sensitivity analysis identified the ten parameters that most influenced each compartment pressure. Generally, each compartment responded appropriately to parameter variations associated with itself and adjacent compartments. However, several unexpected interactions between components, such as between the choroid plexus and the lower capillaries, were found, and are due to simplifications in the formulation of the model. The analysis illustrates that highly influential parameters and those that have unique influences within the model formulation must be tightly controlled for successful model application.
On the MTD paradigm and optimal control for multi-drug cancer chemotherapy.
Ledzewicz, Urszula; Schättler, Heinz; Gahrooi, Mostafa Reisi; Dehkordi, Siamak Mahmoudian
2013-06-01
In standard chemotherapy protocols, drugs are given at maximum tolerated doses (MTD) with rest periods in between. In this paper, we briey discuss the rationale behind this therapy approach and, using as example multidrug cancer chemotherapy with a cytotoxic and cytostatic agent, show that these types of protocols are optimal in the sense of minimizing a weighted average of the number of tumor cells (taken both at the end of therapy and at intermediate times) and the total dose given if it is assumed that the tumor consists of a homogeneous population of chemotherapeutically sensitive cells. A 2-compartment linear model is used to model the pharmacokinetic equations for the drugs.
Population pharmacokinetics of teicoplanin in children.
Ramos-Martín, V; Paulus, S; Siner, S; Scott, E; Padmore, K; Newland, P; Drew, R J; Felton, T W; Docobo-Pérez, F; Pizer, B; Pea, F; Peak, M; Turner, M A; Beresford, M W; Hope, W W
2014-11-01
Teicoplanin is frequently administered to treat Gram-positive infections in pediatric patients. However, not enough is known about the pharmacokinetics (PK) of teicoplanin in children to justify the optimal dosing regimen. The aim of this study was to determine the population PK of teicoplanin in children and evaluate the current dosage regimens. A PK hospital-based study was conducted. Current dosage recommendations were used for children up to 16 years of age. Thirty-nine children were recruited. Serum samples were collected at the first dose interval (1, 3, 6, and 24 h) and at steady state. A standard 2-compartment PK model was developed, followed by structural models that incorporated weight. Weight was allowed to affect clearance (CL) using linear and allometric scaling terms. The linear model best accounted for the observed data and was subsequently chosen for Monte Carlo simulations. The PK parameter medians/means (standard deviation [SD]) were as follows: CL, [0.019/0.023 (0.01)] × weight liters/h/kg of body weight; volume, 2.282/4.138 liters (4.14 liters); first-order rate constant from the central to peripheral compartment (Kcp), 0.474/3.876 h(-1) (8.16 h(-1)); and first-order rate constant from peripheral to central compartment (Kpc), 0.292/3.994 h(-1) (8.93 h(-1)). The percentage of patients with a minimum concentration of drug in serum (Cmin) of <10 mg/liter was 53.85%. The median/mean (SD) total population area under the concentration-time curve (AUC) was 619/527.05 mg · h/liter (166.03 mg · h/liter). Based on Monte Carlo simulations, only 30.04% (median AUC, 507.04 mg · h/liter), 44.88% (494.1 mg · h/liter), and 60.54% (452.03 mg · h/liter) of patients weighing 50, 25, and 10 kg, respectively, attained trough concentrations of >10 mg/liter by day 4 of treatment. The teicoplanin population PK is highly variable in children, with a wider AUC distribution spread than for adults. Therapeutic drug monitoring should be a routine requirement to minimize suboptimal concentrations. (This trial has been registered in the European Clinical Trials Database Registry [EudraCT] under registration number 2012-005738-12.). Copyright © 2014, American Society for Microbiology. All Rights Reserved.
A Network Thermodynamic Approach to Compartmental Analysis
Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.
1979-01-01
We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387
Network thermodynamic approach compartmental analysis. Na+ transients in frog skin.
Mikulecky, D C; Huf, E G; Thomas, S R
1979-01-01
We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc.
Carreira, Guido Correia; Gemeinhardt, Ole; Gorenflo, Rudolf; Beyersdorff, Dirk; Franiel, Tobias; Plendl, Johanna; Lüdemann, Lutz
2011-06-01
Dynamic contrast-enhanced magnetic resonance imaging commonly uses compartment models to estimate tissue parameters in general and perfusion parameters in particular. Compartment models assume a homogeneous distribution of the injected tracer throughout the compartment volume. Since tracer distribution within a compartment cannot be assessed, the parameters obtained by means of a compartment model might differ from the actual physical values. This work systematically examines the widely used permeability-surface-limited one-compartment model to determine the reliability of the parameters obtained by comparing them with their actual values. A computer simulation was used to model spatial tracer distribution within the interstitial volume using diffusion of contrast agent in tissue. Vascular parameters were varied as well as tissue parameters. The vascular parameters used were capillary radius (4 and 12 μm), capillary permeability (from 0.03 to 3.3 μm/s) and intercapillary distances from 30 to 300 μm. The tissue parameters used were tortuosity (λ), porosity (α) and interstitial volume fraction (v(e)). Our results suggest that the permeability-surface-limited compartment model generally underestimates capillary permeability for capillaries with a radius of 4 μm by factors from ≈0.03 for α=0.04, to ≈ 0.1 for α=0.2, to ≈ 0.5 for α=1.0. An overestimation of actual capillary permeability for capillaries with a radius of 12 μm by a factor of ≥1.3 was found for α=1.0, while α=0.2 yielded an underestimation by a factor of ≈0.3 and α=0.04 by a factor of ≈ 0.03. The interstitial volume fraction, v(e), obtained by the compartment model differed with increasing intercapillary distances and for low vessel permeability, whereas v(e) was found to be estimated approximately accurately for P=0.3 μm/s and P=3.3 μm/s for vessel distances <100 μm. Copyright © 2011 Elsevier Inc. All rights reserved.
On the physics-based processes behind production-induced seismicity in natural gas fields
NASA Astrophysics Data System (ADS)
Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan
2017-04-01
Induced seismicity due to natural gas production is observed at different sites around the world. Common understanding is that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations, hence reactivating pre-existing faults and inducing earthquakes. Previous studies have often assumed that pressure changes in the reservoir compartments and intersecting fault zones are equal, while neglecting multi-phase fluid flow. In this study, we show that disregarding fluid flow involved in natural gas extraction activities is often inappropriate. We use a fully coupled multiphase fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, cut in two compartments that are offset by a normal fault, and overlain by impermeable caprock. Results show that fluid flow plays a major role pertaining to pore pressure and stress evolution within the fault. Hydro-mechanical processes include rotation of the principal stresses due to reservoir compaction, as well as poroelastic effects caused by the pressure drop in the adjacent reservoir. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighbouring reservoir compartment and other formations. We also analyze the case of production in both compartments, and results show that simultaneous production does not prevent the fault to be reactivated, but the magnitude of the induced event is smaller. Finally, we analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas re-injection. Results show that, in the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production stop, although in average the shut-in results in reduction of seismicity. In the case of gas re-injection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, accounting for continuous production at a given reservoir and gas re-injection at a neighbouring compartment does not stop the fault from being reactivated.
Yates, Christian A; Flegg, Mark B
2015-05-06
Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of the first, it is derived in the continuum limit over the PDE region alone. We test our hybrid methods for functionality and accuracy in a variety of different scenarios by comparing the averaged simulations with analytical solutions of PDEs for mean concentrations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Taylor, P. R.; Baker, R. E.; Simpson, M. J.; Yates, C. A.
2016-01-01
Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are ‘compartment-based’: the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise. PMID:27383421
Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.
Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio
2016-01-21
In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. Within the assumption of "small" capillary blood flow velocity oscillations the model showed that the capillary and venous compartments "respond" to this input as low pass filters, characterized by two distinct impulse response functions. In this work, we do not make the assumption of "small" perturbations of capillary blood flow velocity by solving without approximations the partial differential equation that governs the spatio-temporal behavior of hemoglobin saturation in capillary and venous blood. Preliminary comparison between the linear time-invariant model and the extended model (here identified as nonlinear model) are shown for the relevant parameters measured in CHS as a function of the oscillation frequency (CHS spectra). We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical experimental errors, but further investigation is needed to assess the effect of these differences. Flow oscillations larger than 10-20% are not typically induced in CHS; therefore, the results presented in this work indicate that a linear hemodynamic model, combined with a method to elicit controlled hemodynamic oscillations (as done for CHS), is appropriate for the quantitative assessment of cerebral microcirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hope, William W; Goodwin, Joanne; Felton, Timothy W; Ellis, Michael; Stevens, David A
2012-10-01
There is increased interest in intermittent regimen of liposomal amphotericin B, which may facilitate use in ambulatory settings. Little is known, however, about the most appropriate dosage and schedule of administration. Plasma pharmacokinetic data were acquired from 30 patients receiving liposomal amphotericin B for empirical treatment of suspected invasive fungal infection. Two cohorts were studied. The first cohort received 3 mg of liposomal amphotericin B/kg of body weight/day; the second cohort received 10 mg of liposomal amphotericin B/kg at time zero, followed by 5 mg/kg at 48 and 120 h. The levels of liposomal amphotericin B were measured by high-pressure liquid chromatography (HPLC). The pharmacokinetics were estimated by using a population methodology. Monte Carlo simulations were performed. D-optimal design was used to identify maximally informative sampling times for both conventional and intermittent regimens for future studies. A three-compartment pharmacokinetic model best described the data. The pharmacokinetics for both conventional and intermittent dosing were linear. The estimates for the mean (standard deviation) for clearance and the volume of the central compartment were 1.60 (0.85) liter/h and 20.61 (15.27) liters, respectively. Monte Carlo simulations demonstrated considerable variability in drug exposure. Bayesian estimates for clearance and volume increased in a linear manner with weight, but only the former was statistically significant (P = 0.039). D-optimal design provided maximally informative sampling times for future pharmacokinetic studies. The pharmacokinetics of a conventional and an intermittently administered high-dose regimen liposomal amphotericin B are linear. Further pharmacokinetic-pharmacodynamic preclinical and clinical studies are required to identify safe and effective intermittent regimens.
Goodwin, Joanne; Felton, Timothy W.; Ellis, Michael; Stevens, David A.
2012-01-01
There is increased interest in intermittent regimen of liposomal amphotericin B, which may facilitate use in ambulatory settings. Little is known, however, about the most appropriate dosage and schedule of administration. Plasma pharmacokinetic data were acquired from 30 patients receiving liposomal amphotericin B for empirical treatment of suspected invasive fungal infection. Two cohorts were studied. The first cohort received 3 mg of liposomal amphotericin B/kg of body weight/day; the second cohort received 10 mg of liposomal amphotericin B/kg at time zero, followed by 5 mg/kg at 48 and 120 h. The levels of liposomal amphotericin B were measured by high-pressure liquid chromatography (HPLC). The pharmacokinetics were estimated by using a population methodology. Monte Carlo simulations were performed. D-optimal design was used to identify maximally informative sampling times for both conventional and intermittent regimens for future studies. A three-compartment pharmacokinetic model best described the data. The pharmacokinetics for both conventional and intermittent dosing were linear. The estimates for the mean (standard deviation) for clearance and the volume of the central compartment were 1.60 (0.85) liter/h and 20.61 (15.27) liters, respectively. Monte Carlo simulations demonstrated considerable variability in drug exposure. Bayesian estimates for clearance and volume increased in a linear manner with weight, but only the former was statistically significant (P = 0.039). D-optimal design provided maximally informative sampling times for future pharmacokinetic studies. The pharmacokinetics of a conventional and an intermittently administered high-dose regimen liposomal amphotericin B are linear. Further pharmacokinetic-pharmacodynamic preclinical and clinical studies are required to identify safe and effective intermittent regimens. PMID:22869566
Hultin, Magnus; Savonen, Roger; Chevreuil, Olivier; Olivecrona, Thomas
2013-01-01
Chylomicrons labeled in vivo with 14C-oleic acid (primarily in triglycerides, providing a tracer for lipolysis) and 3H-retinol (primarily in ester form, providing a tracer for the core lipids) were injected into rats. Radioactivity in tissues was followed at a series of times up to 40 min and the data were analyzed by compartmental modeling. For heart-like tissues it was necessary to allow the chylomicrons to enter into a compartment where lipolysis is rapid and then transfer to a second compartment where lipolysis is slower. The particles remained in these compartments for minutes and when they returned to blood they had reduced affinity for binding in the tissue. In contrast, the data for liver could readily be fitted with a single compartment for native and lipolyzed chylomicrons in blood, and there was no need for a pathway back to blood. A composite model was built from the individual tissue models. This whole-body model could simultaneously fit all data for both fed and fasted rats and allowed estimation of fluxes and residence times in the four compartments; native and lipolyzed chylomicrons (“remnants”) in blood, and particles in the tissue compartments where lipolysis is rapid and slow, respectively. PMID:23922383
A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics
NASA Astrophysics Data System (ADS)
McDermott, Randall; Weinschenk, Craig
2013-11-01
A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.
Determination of carboxyhaemoglobin in humans following low-level exposures to carbon monoxide.
Gosselin, Nathalie H; Brunet, Robert C; Carrier, Gaétan
2009-11-01
This study proposes to estimate carboxyhaemoglobin (COHb) levels in the blood of men and women of various ages exposed to common concentrations of carbon monoxide (CO) using a model with only one free parameter while integrating alveoli-blood and blood-tissue CO exchanges. The model retained is essentially that of Coburn et al. (1965) with two important additions: an alveoli compartment for the dynamics of CO exchanges between alveoli and blood, and a compartment for the significant amounts of CO bound to heme proteins in extravascular spaces. The model was validated by comparing its simulations with various published data sets for the COHb time profiles of volunteers exposed to known CO concentrations. Once the model was validated, it was used to simulate various situations of interest for their impact on public health. This approach yields reliable estimations of the time profiles of COHb levels resulting from different levels of CO exposure over various periods of time and under various conditions (resting, exercise, working, and smoking). The non-linear kinetics of CO, observed experimentally, were correctly reproduced by simulations with the model. Simulations were also carried out iteratively to determine the exposure times and CO concentrations in ambient air needed to reach the maximum levels of COHb recommended by Health Canada, the U.S. Environmental Protection Agency (EPA), and the World Health Organisation (WHO) for each age group of the general population. The lowest CO concentrations leading to maximum COHb levels of 1.5, 2, and 2.5% were determined.
Moon, Jordan R; Hull, Holly R; Tobkin, Sarah E; Teramoto, Masaru; Karabulut, Murat; Roberts, Michael D; Ryan, Eric D; Kim, So Jung; Dalbo, Vincent J; Walter, Ashley A; Smith, Abbie T; Cramer, Joel T; Stout, Jeffrey R
2007-01-01
Background Methods used to estimate percent body fat can be classified as a laboratory or field technique. However, the validity of these methods compared to multiple-compartment models has not been fully established. This investigation sought to determine the validity of field and laboratory methods for estimating percent fat (%fat) in healthy college-age women compared to the Siri three-compartment model (3C). Methods Thirty Caucasian women (21.1 ± 1.5 yrs; 164.8 ± 4.7 cm; 61.2 ± 6.8 kg) had their %fat estimated by BIA using the BodyGram™ computer program (BIA-AK) and population-specific equation (BIA-Lohman), NIR (Futrex® 6100/XL), a quadratic (SF3JPW) and linear (SF3WB) skinfold equation, air-displacement plethysmography (BP), and hydrostatic weighing (HW). Results All methods produced acceptable total error (TE) values compared to the 3C model. Both laboratory methods produced similar TE values (HW, TE = 2.4%fat; BP, TE = 2.3%fat) when compared to the 3C model, though a significant constant error (CE) was detected for HW (1.5%fat, p ≤ 0.006). The field methods produced acceptable TE values ranging from 1.8 – 3.8 %fat. BIA-AK (TE = 1.8%fat) yielded the lowest TE among the field methods, while BIA-Lohman (TE = 2.1%fat) and NIR (TE = 2.7%fat) produced lower TE values than both skinfold equations (TE > 2.7%fat) compared to the 3C model. Additionally, the SF3JPW %fat estimation equation resulted in a significant CE (2.6%fat, p ≤ 0.007). Conclusion Data suggest that the BP and HW are valid laboratory methods when compared to the 3C model to estimate %fat in college-age Caucasian women. When the use of a laboratory method is not feasible, NIR, BIA-AK, BIA-Lohman, SF3JPW, and SF3WB are acceptable field methods to estimate %fat in this population. PMID:17988393
SimpleBox 4.0: Improving the model while keeping it simple….
Hollander, Anne; Schoorl, Marian; van de Meent, Dik
2016-04-01
Chemical behavior in the environment is often modeled with multimedia fate models. SimpleBox is one often-used multimedia fate model, firstly developed in 1986. Since then, two updated versions were published. Based on recent scientific developments and experience with SimpleBox 3.0, a new version of SimpleBox was developed and is made public here: SimpleBox 4.0. In this new model, eight major changes were implemented: removal of the local scale and vegetation compartments, addition of lake compartments and deep ocean compartments (including the thermohaline circulation), implementation of intermittent rain instead of drizzle and of depth dependent soil concentrations, adjustment of the partitioning behavior for organic acids and bases as well as of the value for enthalpy of vaporization. In this paper, the effects of the model changes in SimpleBox 4.0 on the predicted steady-state concentrations of chemical substances were explored for different substance groups (neutral organic substances, acids, bases, metals) in a standard emission scenario. In general, the largest differences between the predicted concentrations in the new and the old model are caused by the implementation of layered ocean compartments. Undesirable high model complexity caused by vegetation compartments and a local scale were removed to enlarge the simplicity and user friendliness of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hood, Heather M.; Ocasio, Linda R.; Sachs, Matthew S.; Galagan, James E.
2013-01-01
The filamentous fungus Neurospora crassa played a central role in the development of twentieth-century genetics, biochemistry and molecular biology, and continues to serve as a model organism for eukaryotic biology. Here, we have reconstructed a genome-scale model of its metabolism. This model consists of 836 metabolic genes, 257 pathways, 6 cellular compartments, and is supported by extensive manual curation of 491 literature citations. To aid our reconstruction, we developed three optimization-based algorithms, which together comprise Fast Automated Reconstruction of Metabolism (FARM). These algorithms are: LInear MEtabolite Dilution Flux Balance Analysis (limed-FBA), which predicts flux while linearly accounting for metabolite dilution; One-step functional Pruning (OnePrune), which removes blocked reactions with a single compact linear program; and Consistent Reproduction Of growth/no-growth Phenotype (CROP), which reconciles differences between in silico and experimental gene essentiality faster than previous approaches. Against an independent test set of more than 300 essential/non-essential genes that were not used to train the model, the model displays 93% sensitivity and specificity. We also used the model to simulate the biochemical genetics experiments originally performed on Neurospora by comprehensively predicting nutrient rescue of essential genes and synthetic lethal interactions, and we provide detailed pathway-based mechanistic explanations of our predictions. Our model provides a reliable computational framework for the integration and interpretation of ongoing experimental efforts in Neurospora, and we anticipate that our methods will substantially reduce the manual effort required to develop high-quality genome-scale metabolic models for other organisms. PMID:23935467
The FieldTrip-SimBio pipeline for EEG forward solutions.
Vorwerk, Johannes; Oostenveld, Robert; Piastra, Maria Carla; Magyari, Lilla; Wolters, Carsten H
2018-03-27
Accurately solving the electroencephalography (EEG) forward problem is crucial for precise EEG source analysis. Previous studies have shown that the use of multicompartment head models in combination with the finite element method (FEM) can yield high accuracies both numerically and with regard to the geometrical approximation of the human head. However, the workload for the generation of multicompartment head models has often been too high and the use of publicly available FEM implementations too complicated for a wider application of FEM in research studies. In this paper, we present a MATLAB-based pipeline that aims to resolve this lack of easy-to-use integrated software solutions. The presented pipeline allows for the easy application of five-compartment head models with the FEM within the FieldTrip toolbox for EEG source analysis. The FEM from the SimBio toolbox, more specifically the St. Venant approach, was integrated into the FieldTrip toolbox. We give a short sketch of the implementation and its application, and we perform a source localization of somatosensory evoked potentials (SEPs) using this pipeline. We then evaluate the accuracy that can be achieved using the automatically generated five-compartment hexahedral head model [skin, skull, cerebrospinal fluid (CSF), gray matter, white matter] in comparison to a highly accurate tetrahedral head model that was generated on the basis of a semiautomatic segmentation with very careful and time-consuming manual corrections. The source analysis of the SEP data correctly localizes the P20 component and achieves a high goodness of fit. The subsequent comparison to the highly detailed tetrahedral head model shows that the automatically generated five-compartment head model performs about as well as a highly detailed four-compartment head model (skin, skull, CSF, brain). This is a significant improvement in comparison to a three-compartment head model, which is frequently used in praxis, since the importance of modeling the CSF compartment has been shown in a variety of studies. The presented pipeline facilitates the use of five-compartment head models with the FEM for EEG source analysis. The accuracy with which the EEG forward problem can thereby be solved is increased compared to the commonly used three-compartment head models, and more reliable EEG source reconstruction results can be obtained.
Ayllón, Daniel; Grimm, Volker; Attinger, Sabine; Hauhs, Michael; Simmer, Clemens; Vereecken, Harry; Lischeid, Gunnar
2018-05-01
Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model intercomparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. Copyright © 2017 Elsevier B.V. All rights reserved.
Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.
Aregawi, Wondwosen A; Abera, Metadel K; Fanta, Solomon W; Verboven, Pieter; Nicolai, Bart
2014-11-19
A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. 'Jonagold') during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick's second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell's rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range ( > 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.
Murphy, F Gregory; Hada, Ethan A; Doolette, David J; Howle, Laurens E
2017-07-01
Decompression sickness (DCS) is a disease caused by gas bubbles forming in body tissues following a reduction in ambient pressure, such as occurs in scuba diving. Probabilistic models for quantifying the risk of DCS are typically composed of a collection of independent, perfusion-limited theoretical tissue compartments which describe gas content or bubble volume within these compartments. It has been previously shown that 'pharmacokinetic' gas content models, with compartments coupled in series, show promise as predictors of the incidence of DCS. The mechanism of coupling can be through perfusion or diffusion. This work examines the application of five novel pharmacokinetic structures with compartments coupled by perfusion to the prediction of the probability and time of onset of DCS in humans. We optimize these models against a training set of human dive trial data consisting of 4335 exposures with 223 DCS cases. Further, we examine the extrapolation quality of the models on an additional set of human dive trial data consisting of 3140 exposures with 147 DCS cases. We find that pharmacokinetic models describe the incidence of DCS for single air bounce dives better than a single-compartment, perfusion-limited model. We further find the U.S. Navy LEM-NMRI98 is a better predictor of DCS risk for the entire training set than any of our pharmacokinetic models. However, one of the pharmacokinetic models we consider, the CS2T3 model, is a better predictor of DCS risk for single air bounce dives and oxygen decompression dives. Additionally, we find that LEM-NMRI98 outperforms CS2T3 on the extrapolation data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Yan; Ramírez-Valle, Francisco; Xue, Yongjun; Ventura, Judith I; Gouedard, Olivier; Mei, Jay; Takeshita, Kenichi; Palmisano, Maria; Zhou, Simon
2017-10-01
CC-292, a potent Bruton tyrosine kinase inhibitor, is under development for the treatment of B-cell malignancies. An analysis was performed to develop a population pharmacokinetic model of CC-292 and assess the influence of demographics and disease-related covariates on CC-292 exposure and to assess the exposure-response (overall response rate) relationship in patients with chronic lymphocytic leukemia. Population pharmacokinetic analysis was based on a 2-compartment base model conducted in NONMEM. Categorical exposure-response analysis was performed using logistic regression in SAS. The population pharmacokinetic analysis results indicated that CC-292 pharmacokinetic disposition is similar between healthy subjects and patients. CC-292 showed a larger central compartment volume of distribution than the peripheral compartment volume of distribution (158 L and 72 L, respectively) and a faster clearance than intercompartmental clearance (134 L/h and 18.7 L/h, respectively), indicating that for CC-292, clearance from blood occurs faster than distribution into deep tissues and organs. CC-292 clearance is not affected by demographics or baseline clinical lab factors, except for sex. Although sex significantly reduced variation of apparent clearance, the sex effect on apparent clearance is unlikely to be clinically relevant. The exposure-response analysis suggested that higher drug exposure is linearly correlated with higher overall response rate. A twice-daily dose regimen showed higher overall response rate as compared to once-daily dosing, consistent with a threshold concentration of approximately 300 ng/mL, above which the probability of overall response rate significantly increases. © 2017, The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.
CO 2 capture in the sustainable wheat-derived activated microporous carbon compartments
Hong, Seok -Min; Jang, Eunji; Dysart, Arthur D.; ...
2016-10-04
Here, microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO 2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO 2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores withinmore » carbon. The highest CO 2 adsorption capacities of 5.70 mol kg -1 at 0 °C and 3.48 mol kg -1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO 2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudofirst-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.« less
CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments
NASA Astrophysics Data System (ADS)
Hong, Seok-Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong
2016-10-01
Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg-1 at 0 °C and 3.48 mol kg-1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.
NASA Astrophysics Data System (ADS)
Garcia, F.; Mesa, J.; Arruda-Neto, J. D. T.; Helene, O.; Vanin, V.; Milian, F.; Deppman, A.; Rodrigues, T. E.; Rodriguez, O.
2007-03-01
The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo simulation procedure. Program summaryTitle of program:STATFLUX Catalogue identifier:ADYS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it has been tested:Micro-computer with Intel Pentium III, 3.0 GHz Installation:Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, Brazil Operating system:Windows 2000 and Windows XP Programming language used:Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program. Memory required to execute with typical data:8 Mbytes of RAM memory and 100 MB of Hard disk memory No. of bits in a word:16 No. of lines in distributed program, including test data, etc.:6912 No. of bytes in distributed program, including test data, etc.:229 541 Distribution format:tar.gz Nature of the physical problem:The investigation of transport mechanisms for radioactive substances, through environmental pathways, is very important for radiological protection of populations. One such pathway, associated with the food chain, is the grass-animal-man sequence. The distribution of trace elements in humans and laboratory animals has been intensively studied over the past 60 years [R.C. Pendlenton, C.W. Mays, R.D. Lloyd, A.L. Brooks, Differential accumulation of iodine-131 from local fallout in people and milk, Health Phys. 9 (1963) 1253-1262]. In addition, investigations on the incidence of cancer in humans, and a possible causal relationship to radioactive fallout, have been undertaken [E.S. Weiss, M.L. Rallison, W.T. London, W.T. Carlyle Thompson, Thyroid nodularity in southwestern Utah school children exposed to fallout radiation, Amer. J. Public Health 61 (1971) 241-249; M.L. Rallison, B.M. Dobyns, F.R. Keating, J.E. Rall, F.H. Tyler, Thyroid diseases in children, Amer. J. Med. 56 (1974) 457-463; J.L. Lyon, M.R. Klauber, J.W. Gardner, K.S. Udall, Childhood leukemia associated with fallout from nuclear testing, N. Engl. J. Med. 300 (1979) 397-402]. From the pathways of entry of radionuclides in the human (or animal) body, ingestion is the most important because it is closely related to life-long alimentary (or dietary) habits. Those radionuclides which are able to enter the living cells by either metabolic or other processes give rise to localized doses which can be very high. The evaluation of these internally localized doses is of paramount importance for the assessment of radiobiological risks and radiological protection. The time behavior of trace concentration in organs is the principal input for prediction of internal doses after acute or chronic exposure. The General Multiple-Compartment Model (GMCM) is the powerful and more accepted method for biokinetical studies, which allows the calculation of concentration of trace elements in organs as a function of time, when the flow parameters of the model are known. However, few biokinetics data exist in the literature, and the determination of flow and transfer parameters by statistical fitting for each system is an open problem. Restriction on the complexity of the problem:This version of the code works with the constant volume approximation, which is valid for many situations where the biological half-live of a trace is lower than the volume rise time. Another restriction is related to the central flux model. The model considered in the code assumes that exist one central compartment (e.g., blood) that connect the flow with all compartments, and the flow between other compartments is not included. Typical running time:Depends on the choice for calculations. Using the Derivative Method the time is very short (a few minutes) for any number of compartments considered. When the Gauss-Marquardt iterative method is used the calculation time can be approximately 5-6 hours when ˜15 compartments are considered.
On the kinetics of anaerobic power
2012-01-01
Background This study investigated two different mathematical models for the kinetics of anaerobic power. Model 1 assumes that the work power is linear with the work rate, while Model 2 assumes a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. In order to test these models, a cross country skier ran with poles on a treadmill at different exercise intensities. The aerobic power, based on the measured oxygen uptake, was used as input to the models, whereas the simulated blood lactate concentration was compared with experimental results. Thereafter, the metabolic rate from phosphocreatine break down was calculated theoretically. Finally, the models were used to compare phosphocreatine break down during continuous and interval exercises. Results Good similarity was found between experimental and simulated blood lactate concentration during steady state exercise intensities. The measured blood lactate concentrations were lower than simulated for intensities above the lactate threshold, but higher than simulated during recovery after high intensity exercise when the simulated lactate concentration was averaged over the whole lactate space. This fit was improved when the simulated lactate concentration was separated into two compartments; muscles + internal organs and blood. Model 2 gave a better behavior of alactic energy than Model 1 when compared against invasive measurements presented in the literature. During continuous exercise, Model 2 showed that the alactic energy storage decreased with time, whereas Model 1 showed a minimum value when steady state aerobic conditions were achieved. During interval exercise the two models showed similar patterns of alactic energy. Conclusions The current study provides useful insight on the kinetics of anaerobic power. Overall, our data indicate that blood lactate levels can be accurately modeled during steady state, and suggests a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. PMID:22830586
Abe, Eiji; Abe, Mari
2011-08-01
With the spread of total intravenous anesthesia, clinical pharmacology has become more important. We report Microsoft Excel file applying three compartment model and response surface model to clinical anesthesia. On the Microsoft Excel sheet, propofol, remifentanil and fentanyl effect-site concentrations are predicted (three compartment model), and probabilities of no response to prodding, shaking, surrogates of painful stimuli and laryngoscopy are calculated using predicted effect-site drug concentration. Time-dependent changes in these calculated values are shown graphically. Recent development in anesthetic drug interaction studies are remarkable, and its application to clinical anesthesia with this Excel file is simple and helpful for clinical anesthesia.
Hilal-Alnaqbi, Ali; Mourad, Abdel-Hamid I; Yousef, Basem F
2014-01-01
A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Model-based meta-analysis for comparing Vitamin D2 and D3 parent-metabolite pharmacokinetics.
Ocampo-Pelland, Alanna S; Gastonguay, Marc R; Riggs, Matthew M
2017-08-01
Association of Vitamin D (D3 & D2) and its 25OHD metabolite (25OHD3 & 25OHD2) exposures with various diseases is an active research area. D3 and D2 dose-equivalency and each form's ability to raise 25OHD concentrations are not well-defined. The current work describes a population pharmacokinetic (PK) model for D2 and 25OHD2 and the use of a previously developed D3-25OHD3 PK model [1] for comparing D3 and D2-related exposures. Public-source D2 and 25OHD2 PK data in healthy or osteoporotic populations, including 17 studies representing 278 individuals (15 individual-level and 18 arm-level units), were selected using search criteria in PUBMED. Data included oral, single and multiple D2 doses (400-100,000 IU/d). Nonlinear mixed effects models were developed simultaneously for D2 and 25OHD2 PK (NONMEM v7.2) by considering 1- and 2-compartment models with linear or nonlinear clearance. Unit-level random effects and residual errors were weighted by arm sample size. Model simulations compared 25OHD exposures, following repeated D2 and D3 oral administration across typical dosing and baseline ranges. D2 parent and metabolite were each described by 2-compartment models with numerous parameter estimates shared with the D3-25OHD3 model [1]. Notably, parent D2 was eliminated (converted to 25OHD) through a first-order clearance whereas the previously published D3 model [1] included a saturable non-linear clearance. Similar to 25OHD3 PK model results [1], 25OHD2 was eliminated by a first-order clearance, which was almost twice as fast as the former. Simulations at lower baselines, following lower equivalent doses, indicated that D3 was more effective than D2 at raising 25OHD concentrations. Due to saturation of D3 clearance, however, at higher doses or baselines, the probability of D2 surpassing D3's ability to raise 25OHD concentrations increased substantially. Since 25OHD concentrations generally surpassed 75 nmol/L at these higher baselines by 3 months, there would be no expected clinical difference in the two forms.
Two-Compartment Pharmacokinetic Models for Chemical Engineers
ERIC Educational Resources Information Center
Kanneganti, Kumud; Simon, Laurent
2011-01-01
The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, M.T.; Broome, M.R.; Turrel, J.M.
A comprehensive multicompartmental kinetic model was developed to account for the distribution and metabolism of simultaneously injected radioactive iodide (iodide*), T3 (T3*), and T4 (T4*) in six normal and seven spontaneously hyperthyroid cats. Data from plasma samples (analyzed by HPLC), urine, feces, and thyroid accumulation were incorporated into the model. The submodels for iodide*, T3*, and T4* all included both a fast and a slow exchange compartment connecting with the plasma compartment. The best-fit iodide* model also included a delay compartment, presumed to be pooling of gastrosalivary secretions. This delay was 62% longer in the hyperthyroid cats than in themore » euthyroid cats. Unexpectedly, all of the exchange parameters for both T4 and T3 were significantly slowed in hyperthyroidism, possibly because the hyperthyroid cats were older. None of the plasma equivalent volumes of the exchange compartments of iodide*, T3*, or T4* was significantly different in the hyperthyroid cats, although the plasma equivalent volume of the fast T4 exchange compartments were reduced. Secretion of recycled T4* from the thyroid into the plasma T4* compartment was essential to model fit, but its quantity could not be uniquely identified in the absence of multiple thyroid data points. Thyroid secretion of T3* was not detectable. Comparing the fast and slow compartments, there was a shift of T4* deiodination into the fast exchange compartment in hyperthyroidism. Total body mean residence times (MRTs) of iodide* and T3* were not affected by hyperthyroidism, but mean T4* MRT was decreased 23%. Total fractional T4 to T3 conversion was unchanged in hyperthyroidism, although the amount of T3 produced by this route was increased nearly 5-fold because of higher concentrations of donor stable T4.« less
NASA Astrophysics Data System (ADS)
Choiri, S.; Ainurofiq, A.
2018-03-01
Drug release from a montmorillonite (MMT) matrix is a complex mechanism controlled by swelling mechanism of MMT and an interaction of drug and MMT. The aim of this research was to explain a suitable model of the drug release mechanism from MMT and its binary mixture with a hydrophilic polymer in the controlled release formulation based on a compartmental modelling approach. Theophylline was used as a drug model and incorporated into MMT and a binary mixture with hydroxyl propyl methyl cellulose (HPMC) as a hydrophilic polymer, by a kneading method. The dissolution test was performed and the modelling of drug release was assisted by a WinSAAM software. A 2 model was purposed based on the swelling capability and basal spacing of MMT compartments. The model evaluation was carried out to goodness of fit and statistical parameters and models were validated by a cross-validation technique. The drug release from MMT matrix regulated by a burst release mechanism of unloaded drug, swelling ability, basal spacing of MMT compartment, and equilibrium between basal spacing and swelling compartments. Furthermore, the addition of HPMC in MMT system altered the presence of swelling compartment and equilibrium between swelling and basal spacing compartment systems. In addition, a hydrophilic polymer reduced the burst release mechanism of unloaded drug.
Mechanisms underlying anomalous diffusion in the plasma membrane.
Krapf, Diego
2015-01-01
The plasma membrane is a complex fluid where lipids and proteins undergo diffusive motion critical to biochemical reactions. Through quantitative imaging analyses such as single-particle tracking, it is observed that diffusion in the cell membrane is usually anomalous in the sense that the mean squared displacement is not linear with time. This chapter describes the different models that are employed to describe anomalous diffusion, paying special attention to the experimental evidence that supports these models in the plasma membrane. We review models based on anticorrelated displacements, such as fractional Brownian motion and obstructed diffusion, and nonstationary models such as continuous time random walks. We also emphasize evidence for the formation of distinct compartments that transiently form on the cell surface. Finally, we overview heterogeneous diffusion processes in the plasma membrane, which have recently attracted considerable interest. Copyright © 2015. Published by Elsevier Inc.
Saint-Pol, Agnès; Bauvy, Chantal; Codogno, Patrice; Moore, Stuart E.H.
1997-01-01
Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H–like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[α1-2]Man[α1-2]Man[α1-3][Man α1-6]Man[β14]GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse–chase incubations with d-[2- 3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse–chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3–4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 μM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes. PMID:9008702
Saint-Pol, A; Bauvy, C; Codogno, P; Moore, S E
1997-01-13
Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H-like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[alpha 1-2]Man[alpha 1-2]Man[alpha 1-3][Man alpha 1-6]Man[beta 1-4] GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse-chase incubations with D-[2-3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse-chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3-4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 microM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes.
An earthquake instability model based on faults containing high fluid-pressure compartments
Lockner, D.A.; Byerlee, J.D.
1995-01-01
It has been proposed that large strike-slip faults such as the San Andreas contain water in seal-bounded compartments. Arguments based on heat flow and stress orientation suggest that in most of the compartments, the water pressure is so high that the average shear strength of the fault is less than 20 MPa. We propose a variation of this basic model in which most of the shear stress on the fault is supported by a small number of compartments where the pore pressure is relatively low. As a result, the fault gouge in these compartments is compacted and lithified and has a high undisturbed strength. When one of these locked regions fails, the system made up of the neighboring high and low pressure compartments can become unstable. Material in the high fluid pressure compartments is initially underconsolidated since the low effective confining pressure has retarded compaction. As these compartments are deformed, fluid pressure remains nearly unchanged so that they offer little resistance to shear. The low pore pressure compartments, however, are overconsolidated and dilate as they are sheared. Decompression of the pore fluid in these compartments lowers fluid pressure, increasing effective normal stress and shear strength. While this effect tends to stabilize the fault, it can be shown that this dilatancy hardening can be more than offset by displacement weakening of the fault (i.e., the drop from peak to residual strength). If the surrounding rock mass is sufficiently compliant to produce an instability, slip will propagate along the fault until the shear fracture runs into a low-stress region. Frictional heating and the accompanying increase in fluid pressure that are suggested to occur during shearing of the fault zone will act as additional destabilizers. However, significant heating occurs only after a finite amount of slip and therefore is more likely to contribute to the energetics of rupture propagation than to the initiation of the instability. We present results of a one-dimensional dynamic Burridge-Knopoff-type model to demonstrate various aspects of the fluid-assisted fault instability described above. In the numerical model, the fault is represented by a series of blocks and springs, with fault rheology expressed by static and dynamic friction. In addition, the fault surface of each block has associated with it pore pressure, porosity and permeability. All of these variables are allowed to evolve with time, resulting in a wide range of phenomena related to fluid diffusion, dilatancy, compaction and heating. These phenomena include creep events, diffusion-controlled precursors, triggered earthquakes, foreshocks, aftershocks, and multiple earthquakes. While the simulations have limitations inherent to 1-D fault models, they demonstrate that the fluid compartment model can, in principle, provide the rich assortment of phenomena that have been associated with earthquakes. ?? 1995 Birkha??user Verlag.
Yoshihara, Kazutaka; Gao, Yuying; Shiga, Hiroshi; Wada, D Russell; Hisaoka, Masafumi
2005-01-01
Olmesartan medoxomil (CS-866) is a new orally active angiotensin II receptor antagonist that is highly selective for the AT1 receptor subtype. To develop a population pharmacokinetic model for olmesartan (RNH-6270), the active metabolite of olmesartan medoxomil, in healthy volunteers and hypertensive patients, and to evaluate effects of covariates on the apparent oral clearance (CL/F), with particular emphasis on the effect of race. Retrospective analysis of data from 12 phase I-III trials in the US, Europe and Japan. Eighty-nine healthy volunteers and 383 hypertensive patients. Nonlinear mixed-effects modelling was used to evaluate 7911 olmesartan plasma sample concentrations. The covariates included age, bodyweight, sex, race (Westerners [including Caucasians and Hispanics] versus Japanese), patient status (hypertensive patients versus healthy volunteers), serum creatinine level as an index of renal function and serum chemistry data as indices of hepatic function. The pharmacokinetic data of olmesartan were well described by a two-compartment linear model with first-order absorption and an absorption lag-time, parameterised in terms of CL/F (6.66 L/h for a typical male Western hypertensive patient), absorption rate constant (1.46h-1), elimination rate constant (0.193h-1), rate constant from the central to peripheral compartment (0.061h-1), rate constant from the peripheral to central compartment (0.079h-1) and absorption lag-time (0.427h). Analysis of covariates showed that age, bodyweight, sex, patient status and renal function were factors influencing the clearance of olmesartan. The population pharmacokinetic analysis of olmesartan showed that: (i) severe renal impairment (serum creatinine >265 micromol/L [approximately 3 mg/dL]) could cause a clearance decrease of > or =30%; (ii) older age, lower bodyweight and being female were determinants of lower clearance but their effects on olmesartan clearance were within 20%; (iii) no statistically significant difference in clearance was found between Westerners and Japanese.
Li, Cheryl; Shoji, Satoshi; Beebe, Jean
2018-05-18
The purpose of this study was to characterize pharmacokinetics (PK) of PF-04236921, a novel anti-IL-6 monoclonal antibody, and its pharmacokinetics/pharmacodynamics (PK/PD) relationship on serum C-Reactive Protein (CRP) in healthy volunteers and patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and Crohn's disease (CD) METHODS: Population modelling analyses were conducted using nonlinear mixed effects modelling. Data from 2 phase 1 healthy volunteer studies, a phase 1 RA study, a Phase 2 CD study, and a Phase 2 SLE study were included. A 2-compartment model with first order absorption and linear elimination and a mechanism-based indirect response model adequately described the PK and PK/PD relationships, respectively. Central compartment volume of distribution (Vc) positively correlated with body weight. Clearance (CL) negatively correlated with baseline albumin concentration and positively correlated with baseline CRP and creatinine clearance, and was slightly lower in females. After correcting for covariates, CL in CD subjects was approximately 60% higher than other populations. Maximum inhibition of PF-04236921 on CRP production (I max ) negatively correlated with baseline albumin. I max positively correlated with baseline CRP and the relationship was captured as a covariance structure in the PK/PD model. Integrated population PK and PK/PD models of PF-04236921 have been developed using pooled data from healthy subjects and autoimmune patients. The current model enables simulation of PF-04236921 PK and PD profiles under various dosing regimens and patient populations and should facilitate future clinical study of PF-04236921 and other anti-IL6 monoclonal antibodies. This article is protected by copyright. All rights reserved.
Modelling cell population growth with applications to cancer therapy in human tumour cell lines.
Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N
2004-01-01
In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.
A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry
NASA Astrophysics Data System (ADS)
Hobbs, Robert F.; Song, Hong; Huso, David L.; Sundel, Margaret H.; Sgouros, George
2012-07-01
Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the human and murine models. The renal cortex and medulla S-values were also calculated and the results compared to traditional absorbed fraction calculations. The nephron model enables a more optimal implementation of treatment and is a critical step in understanding toxicity for human translation of targeted α-particle therapy. The S-values established here will enable a MIRD-type application of α-particle dosimetry for α-emitters, i.e. measuring the TIA in the kidney (or renal cortex) will provide meaningful and accurate nephron-level dosimetry.
NASA Astrophysics Data System (ADS)
Uno, Yuko; Ogawa, Emiyu; Aiyoshi, Eitaro; Arai, Tsunenori
2018-02-01
We constructed the 3-compartment talaporfin sodium pharmacokinetic model for canine by an optimization using the fluorescence measurement data from canine skin to estimate the concentration in the interstitial space. It is difficult to construct the 3-compartment model consisted of plasma, interstitial space, and cell because there is a lack of the dynamic information. Therefore, we proposed the methodology to construct the 3-compartment model using the measured talaporfin sodium skin fluorescence change considering originated tissue part by a histological observation. In a canine animal experiment, the talaporfin sodium concentration time history in plasma was measured by a spectrophotometer with a prepared calibration curve. The time history of talaporfin sodium Q-band fluorescence on left femoral skin of a beagle dog excited by talaporfin sodium Soret-band of 409 nm was measured in vivo by our previously constructed measurement system. The measured skin fluorescence was classified to its source, that is, specific ratio of plasma, interstitial space, and cell. We represented differential rate equations of the talaporfin sodium concentration in plasma, interstitial space, cell. The specific ratios and a converting constant to obtain absolute value of skin concentration were arranged. Minimizing the squared error of the difference between the measured fluorescence data and calculated concentration by the conjugate gradient method in MATLAB, the rate constants in the 3-compartment model were determined. The accuracy of the fitting operation was confirmed with determination coefficient of 0.98. We could construct the 3-compartment pharmacokinetic model for canine using the measured talaporfin sodium fluorescence change from canine skin.
Pursiainen, S; Vorwerk, J; Wolters, C H
2016-12-21
The goal of this study is to develop focal, accurate and robust finite element method (FEM) based approaches which can predict the electric potential on the surface of the computational domain given its structure and internal primary source current distribution. While conducting an EEG evaluation, the placement of source currents to the geometrically complex grey matter compartment is a challenging but necessary task to avoid forward errors attributable to tissue conductivity jumps. Here, this task is approached via a mathematically rigorous formulation, in which the current field is modeled via divergence conforming H(div) basis functions. Both linear and quadratic functions are used while the potential field is discretized via the standard linear Lagrangian (nodal) basis. The resulting model includes dipolar sources which are interpolated into a random set of positions and orientations utilizing two alternative approaches: the position based optimization (PBO) and the mean position/orientation (MPO) method. These results demonstrate that the present dipolar approach can reach or even surpass, at least in some respects, the accuracy of two classical reference methods, the partial integration (PI) and St. Venant (SV) approach which utilize monopolar loads instead of dipolar currents.
Reyes, Arthur; Sun, Liping L.; Cheu, Melissa; Oldendorp, Amy; Ramanujan, Saroja; Stefanich, Eric G.
2018-01-01
Abstract CD20 is a cell‐surface receptor expressed by healthy and neoplastic B cells and is a well‐established target for biologics used to treat B‐cell malignancies. Pharmacokinetic (PK) and pharmacodynamic (PD) data for the anti‐CD20/CD3 T‐cell‐dependent bispecific antibody BTCT4465A were collected in transgenic mouse and nonhuman primate (NHP) studies. Pronounced nonlinearity in drug elimination was observed in the murine studies, and time‐varying, nonlinear PK was observed in NHPs, where three empirical drug elimination terms were identified using a mixed‐effects modeling approach: i) a constant nonsaturable linear clearance term (7 mL/day/kg); ii) a rapidly decaying time‐varying, linear clearance term (t½ = 1.6 h); and iii) a slowly decaying time‐varying, nonlinear clearance term (t½ = 4.8 days). The two time‐varying drug elimination terms approximately track with time scales of B‐cell depletion and T‐cell migration/expansion within the central blood compartment. The mixed‐effects NHP model was scaled to human and prospective clinical simulations were generated. PMID:29351372
Hu, Yan; Wang, Dazhou; Li, Yu
2016-07-01
The environmental behaviors of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in a Chinese oilfield were investigated using a steady-state multimedia aquivalence (SMA) model. The modeling results showed good agreement with the actual measured values, with average residual errors of 0.69, 0.83, 0.35, 0.16, and 0.54 logarithmic units for air, water, soil, sediment, and vegetation compartments, respectively. Model results indicated that most heavy metals were buried in sediment, and that transfers between adjacent compartments were mainly deposition from the water to the sediment compartment (48.59 %) and from the air to the soil compartment (47.74 %) via atmospheric dry/wet deposition. Sediment and soil were the dominant sinks, accounting for 68.80 and 25.26 % of all the heavy metals in the multimedia system, respectively. The potential ecological risks from the five heavy metals in the sediment and soil compartments were assessed by the potential ecological risk index (PERI). The assessment results demonstrate that the heavy metals presented low levels of ecological risk in the sediment compartment, and that Cd was the most significant contributor to the integrated potential ecological risk in the oilfield. The SMA model provided useful simulations of the transport and fate of heavy metals and is a useful tool for ecological risk assessment and contaminated site management.
Morris, Carrie A; Tan, Beesan; Duparc, Stephan; Borghini-Fuhrer, Isabelle; Jung, Donald; Shin, Chang-Sik; Fleckenstein, Lawrence
2013-12-01
Despite the important role of the antimalarial artesunate and its active metabolite dihydroartemisinin (DHA) in malaria treatment efforts, there are limited data on the pharmacokinetics of these agents in pediatric patients. This study evaluated the effects of body size and gender on the pharmacokinetics of artesunate-DHA using data from pediatric and adult malaria patients. Nonlinear mixed-effects modeling was used to obtain a base model consisting of first-order artesunate absorption and one-compartment models for artesunate and for DHA. Various methods of incorporating effects of body size descriptors on clearance and volume parameters were tested. An allometric scaling model for weight and a linear body surface area (BSA) model were deemed optimal. The apparent clearance and volume of distribution of DHA obtained with the allometric scaling model, normalized to a 38-kg patient, were 63.5 liters/h and 65.1 liters, respectively. Estimates for the linear BSA model were similar. The 95% confidence intervals for the estimated gender effects on clearance and volume parameters for artesunate fell outside the predefined no-relevant-clinical-effect interval of 0.75 to 1.25. However, the effect of gender on apparent DHA clearance was almost entirely contained within this interval, suggesting a lack of an influence of gender on this parameter. Overall, the pharmacokinetics of artesunate and DHA following oral artesunate administration can be described for pediatric patients using either an allometric scaling or linear BSA model. Both models predict that, for a given artesunate dose in mg/kg of body weight, younger children are expected to have lower DHA exposure than older children or adults.
Body composition in elderly people: effect of criterion estimates on predictive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.
1991-06-01
The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less
Wetzel, Hanna N; Zhang, Tongli; Norman, Andrew B
2017-09-01
A recombinant humanized anti-cocaine monoclonal antibody (mAb), h2E2, is at an advanced stage of pre-clinical development as an immunotherapy for cocaine abuse. It is hypothesized that h2E2 binds to and sequesters cocaine in the blood. A three-compartment model of the effects of h2E2 on cocaine's distribution was constructed. The model assumes that h2E2 binds to cocaine and that the h2E2-cocaine complex does not enter the brain but distributes between the central and peripheral compartments. Free cocaine is eliminated from both the central and peripheral compartments, and h2E2 and the h2E2-cocaine complex are eliminated from the central compartment only. This model was tested against a new dataset measuring cocaine concentrations in the brain and plasma over 1h in the presence and absence of h2E2. The mAb significantly increased plasma cocaine concentrations with a concomitant significant decrease in brain concentration. Plasma concentrations declined over the 1-hour sampling period in both groups. With a set of parameters within reasonable physiological ranges, the three-compartment model was able to qualitatively and quantitatively simulate the increased plasma concentration in the presence of the antibody and the decreased peak brain concentration in the presence of antibody. Importantly, the model explained the decline in plasma concentrations over time as distribution of the cocaine-h2E2 complex into a peripheral compartment. This model will facilitate the targeting of ideal mAb PK/PD properties thus accelerating the identification of lead candidate anti-drug mAbs. Copyright © 2017 Elsevier Inc. All rights reserved.
Two-compartment modeling of tissue microcirculation revisited.
Brix, Gunnar; Salehi Ravesh, Mona; Griebel, Jürgen
2017-05-01
Conventional two-compartment modeling of tissue microcirculation is used for tracer kinetic analysis of dynamic contrast-enhanced (DCE) computed tomography or magnetic resonance imaging studies although it is well-known that the underlying assumption of an instantaneous mixing of the administered contrast agent (CA) in capillaries is far from being realistic. It was thus the aim of the present study to provide theoretical and computational evidence in favor of a conceptually alternative modeling approach that makes it possible to characterize the bias inherent to compartment modeling and, moreover, to approximately correct for it. Starting from a two-region distributed-parameter model that accounts for spatial gradients in CA concentrations within blood-tissue exchange units, a modified lumped two-compartment exchange model was derived. It has the same analytical structure as the conventional two-compartment model, but indicates that the apparent blood flow identifiable from measured DCE data is substantially overestimated, whereas the three other model parameters (i.e., the permeability-surface area product as well as the volume fractions of the plasma and interstitial distribution space) are unbiased. Furthermore, a simple formula was derived to approximately compute a bias-corrected flow from the estimates of the apparent flow and permeability-surface area product obtained by model fitting. To evaluate the accuracy of the proposed modeling and bias correction method, representative noise-free DCE curves were analyzed. They were simulated for 36 microcirculation and four input scenarios by an axially distributed reference model. As analytically proven, the considered two-compartment exchange model is structurally identifiable from tissue residue data. The apparent flow values estimated for the 144 simulated tissue/input scenarios were considerably biased. After bias-correction, the deviations between estimated and actual parameter values were (11.2 ± 6.4) % (vs. (105 ± 21) % without correction) for the flow, (3.6 ± 6.1) % for the permeability-surface area product, (5.8 ± 4.9) % for the vascular volume and (2.5 ± 4.1) % for the interstitial volume; with individual deviations of more than 20% being the exception and just marginal. Increasing the duration of CA administration only had a statistically significant but opposite effect on the accuracy of the estimated flow (declined) and intravascular volume (improved). Physiologically well-defined tissue parameters are structurally identifiable and accurately estimable from DCE data by the conceptually modified two-compartment model in combination with the bias correction. The accuracy of the bias-corrected flow is nearly comparable to that of the three other (theoretically unbiased) model parameters. As compared to conventional two-compartment modeling, this feature constitutes a major advantage for tracer kinetic analysis of both preclinical and clinical DCE imaging studies. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Chinnaiyan, P; Wloch, J
Purpose: The majority of quantitative analyses involving dynamic contrast enhanced (DCE) MRI have been performed to obtain kinetic parameters such as Ktrans and ve. Such analyses are generally performed assuming a “reversible” tissue compartment, where the tracer is assumed to be rapidly equilibrated between the plasma and tissue compartments. However, some tumor vascular environments may be more suited for a “non-reversible” tissue compartment, where, as with FDG PET imaging, the tracer is continuously deposited into the tissue compartment (or the return back to the plasma compartment is very slow in the imaging time scale). Therefore, Patlak and Logan analyses, whichmore » represent tools for the “non-reversible” and “reversible” modeling, respectively, were performed to better characterize the brain tumor vascular environment. Methods: A voxel-by-voxel analysis was performed to generate both Patlak and Logan plots in two brain tumor patients, one with grade III astrocytoma and the other with grade IV astrocytoma or glioblastoma. The slopes of plots and the r-square were then obtained by linear fitting and compared for each voxel. Results: The 2-dimensional scatter plots of Logan (Y-axis) vs. Patlak slopes (X-axis) clearly showed increased Logan slopes for glioblastoma (Figure 3A). The scatter plots of goodness-of-fit (Figure 3B) also suggested glioblastoma, relative to grade III astrocytoma, might consist of more voxels that are kinetically Logan-like (i.e. rapidly equilibrated extravascular space and active vascular environment). Therefore, the enhanced Logan-like behavior (and the Logan slope) in glioblastoma may imply an increased fraction of active vascular environment, while the enhanced Patlak-like behavior implies the vascular environment permitting a relatively slower washout of the tracer. Conclusion: Although further verification is required, the combination of Patlak and Logan analyses in DCE MRI may be useful in characterizing the tumor vascular environment, and thus, may have implications in tumor grading and monitoring response to anti-vascular therapy.« less
Population pharmacokinetics of bupivacaine in combined lumbar and sciatic nerve block
Eljebari, Hanene; Jebabli, Nadia; Salouage, Issam; Gaies, Emna; Lakhal, Mohamed; Boussofara, Mehdi; Klouz, Anis
2014-01-01
Objectives: The primary aim of this study was to establish the population pharmacokinetic (PPK) model of bupivacaine after combined lumbar plexus and sciatic nerve blocks and secondary aim is to assess the effect of patient's characteristics including age, body weight and sex on pharmacokinetic parameters. Materials and Methods: A total of 31 patients scheduled for elective lower extremity surgery with combined lumbar and sciatic nerve block using plain bupivacaine 0.5% were included. The total bupivacaine plasma concentrations were measured before injection and after two blocks placement and at selected time points. Monitoring of bupivacaine was made by high performance liquid chromatography (HPLC) with ultraviolet detection. Non-linear mixed effects modeling was used to analyze the PPK of bupivacaine. Results: One compartment model with first order absorption, two input compartments and a central elimination was selected. The Shapiro-Wilks test of normality for normalized prediction distribution errors for this model (P = 0.156) showed this as a valid model. The selected model predicts a population clearance of 930 ml/min (residual standard error [RSE] = 15.48%, IC 95% = 930 ± 282.24) with inter individual variability of 75.29%. The central volume of distribution was 134 l (RSE = 12.76%, IC = 134 ± 33.51 L) with inter individual variability of 63.40%. The absorption of bupivacaine in two sites Ka1 and Ka2 were 0.00462/min for the lumbar site and 0.292/min for the sciatic site. Age, body weight and sex have no effect on the bupivacaine pharmacokinetics in this studied population. Conclusion: The developed model helps us to assess the systemic absorption of bupivacaine at two injections sites. PMID:24741194
Treatment model of dengue hemorrhagic fever infection in human body
NASA Astrophysics Data System (ADS)
Handayani, D.; Nuraini, N.; Primasari, N.; Wijaya, K. P.
2014-03-01
The treatment model of DHF presented in this paper involves the dynamic of five time-dependent compartments, i.e. susceptible, infected, free virus particle, immune cell, and haematocrit level. The treatment model is investigated based on normalization of haematocrit level, which is expressed as intravenous fluid infusion control. We analyze the stability of the disease free equilibrium and the endemic equilibrium. The numerical simulations will explain the dynamic of each compartment in human body. These results show particularly that infected compartment and free virus particle compartment are tend to be vanished in two weeks after the onset of dengue virus. However, these simulation results also show that without the treatment, the haematocrit level will decrease even though not up to the normal level. Therefore the effective haematocrit normalization should be done with the treatment control.
Plant uptake of elements in soil and pore water: field observations versus model assumptions.
Raguž, Veronika; Jarsjö, Jerker; Grolander, Sara; Lindborg, Regina; Avila, Rodolfo
2013-09-15
Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible. Copyright © 2013 Elsevier Ltd. All rights reserved.
Epidemic Spreading in a Multi-compartment System
NASA Astrophysics Data System (ADS)
Gao, Zong-Mao; Gu, Jiao; Li, Wei
2012-02-01
We introduce the variant rate and white noise into the susceptible-infected-removed (SIR) model for epidemics, discuss the epidemic dynamics of a multiple-compartment system, and describe this system by using master equations. For both the local epidemic spreading system and the whole multiple-compartment system, we find that a threshold could be useful in forecasting when the epidemic vanishes. Furthermore, numerical simulations show that a model with the variant infection rate and white noise can improve fitting with real SARS data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, T.E.; Bennett, D.H.
2002-08-01
In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analyticalmore » solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.« less
Physiological water model development
NASA Technical Reports Server (NTRS)
Doty, Susan
1993-01-01
The water of the human body can be categorized as existing in two main compartments: intracellular water and extracellular water. The intracellular water consists of all the water within the cells and constitutes over half of the total body water. Since red blood cells are surrounded by plasma, and all other cells are surrounded by interstitial fluid, the intracellular compartment has been subdivided to represent these two cell types. The extracellular water, which includes all of the fluid outside of the cells, can be further subdivided into compartments which represent the interstitial fluid, circulating blood plasma, lymph, and transcellular water. The interstitial fluid surrounds cells outside of the vascular system whereas plasma is contained within the blood vessels. Avascular tissues such as dense connective tissue and cartilage contain interstitial water which slowly equilibrates with tracers used to determine extracellular fluid volume. For this reason, additional compartments are sometimes used to represent these avascular tissues. The average size of each compartment, in terms of percent body weight, has been determined for adult males and females. These compartments and the forces which cause flow between them are presented. The kidneys, a main compartment, receive about 25 percent of the cardiac output and filters out a fluid similar to plasma. The composition of this filtered fluid changes as it flows through the kidney tubules since compounds are continually being secreted and reabsorbed. Through this mechanism, the kidneys eliminate wastes while conserving body water, electrolytes, and metabolites. Since sodium accounts for over 90 percent of the cations in the extracellular fluid, and the number of cations is balanced by the number of anions, considering the renal handling sodium and water only should sufficiently describe the relationship between the plasma compartment and kidneys. A kidney function model is presented which has been adapted from a previous model of normal renal function in man. To test the validity of the proposed kidney model, results predicted by the model will be compared to actual data involving injected or ingested fluids and subsequent urine flow rates. Comparison of the model simulation to actual data following the ingestion of 1 liter of water is shown. The model simulation is also shown with actual data following the intravenous infusion of hypertonic saline.
Lu, Xue-Feng; Zhou, Yang; Bi, Kai-Shun; Chen, Xiao-Hui
2016-09-01
1. Pravastatin is a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor used for the treatment of hyperlipidaemia. This study aims to investigate the effects of genetic polymorphisms in OATP1B1, BCRP and NTCP on pravastatin population pharmacokinetics in healthy Chinese volunteers using a non-linear mixed-effect modelling (NONMEM) approach. A two-compartment model with a first-order absorption and elimination described plasma pravastatin concentrations well. 2. Genetic polymorphisms of rs4149056 (OATP1B1) and rs2306283 (OATP1B1) were found to be associated with a significant (p < 0.01) decrease in the apparent clearance from the central compartment (CL/F), while rs2296651 (NTCP) increased CL/F to a significant degree (p < 0.01). The combination of these three polymorphisms reduced the inter-individual variability of CL/F by 78.8%. 3. There was minimal effect of rs2231137 (BCRP) and rs2231142 (BCRP) on pravastatin pharmacokinetics (0.01 < p < 0.05), whereas rs11045819 (OATP1B1), rs1061018 (BCRP) and rs61745930 (NTCP) genotypes do not appear to be associated with pravastatin pharmacokinetics based on the population model (p > 0.05). 4. The current data suggest that the combination of rs4149056, rs2306283 and rs2296651 polymorphisms is an important determinant of pravastatin pharmacokinetics.
Zöllner, Frank G; Daab, Markus; Sourbron, Steven P; Schad, Lothar R; Schoenberg, Stefan O; Weisser, Gerald
2016-01-14
Perfusion imaging has become an important image based tool to derive the physiological information in various applications, like tumor diagnostics and therapy, stroke, (cardio-) vascular diseases, or functional assessment of organs. However, even after 20 years of intense research in this field, perfusion imaging still remains a research tool without a broad clinical usage. One problem is the lack of standardization in technical aspects which have to be considered for successful quantitative evaluation; the second problem is a lack of tools that allow a direct integration into the diagnostic workflow in radiology. Five compartment models, namely, a one compartment model (1CP), a two compartment exchange (2CXM), a two compartment uptake model (2CUM), a two compartment filtration model (2FM) and eventually the extended Toft's model (ETM) were implemented as plugin for the DICOM workstation OsiriX. Moreover, the plugin has a clean graphical user interface and provides means for quality management during the perfusion data analysis. Based on reference test data, the implementation was validated against a reference implementation. No differences were found in the calculated parameters. We developed open source software to analyse DCE-MRI perfusion data. The software is designed as plugin for the DICOM Workstation OsiriX. It features a clean GUI and provides a simple workflow for data analysis while it could also be seen as a toolbox providing an implementation of several recent compartment models to be applied in research tasks. Integration into the infrastructure of a radiology department is given via OsiriX. Results can be saved automatically and reports generated automatically during data analysis ensure certain quality control.
Konrath, Jason M; Saxby, David J; Killen, Bryce A; Pizzolato, Claudio; Vertullo, Christopher J; Barrett, Rod S; Lloyd, David G
2017-01-01
The muscle-tendon properties of the semitendinosus (ST) and gracilis (GR) are substantially altered following tendon harvest for the purpose of anterior cruciate ligament reconstruction (ACLR). This study adopted a musculoskeletal modelling approach to determine how the changes to the ST and GR muscle-tendon properties alter their contribution to medial compartment contact loading within the tibiofemoral joint in post ACLR patients, and the extent to which other muscles compensate under the same external loading conditions during walking, running and sidestep cutting. Motion capture and electromyography (EMG) data from 16 lower extremity muscles were acquired during walking, running and cutting in 25 participants that had undergone an ACLR using a quadruple (ST+GR) hamstring auto-graft. An EMG-driven musculoskeletal model was used to estimate the medial compartment contact loads during the stance phase of each gait task. An adjusted model was then created by altering muscle-tendon properties for the ST and GR to reflect their reported changes following ACLR. Parameters for the other muscles in the model were calibrated to match the experimental joint moments. The medial compartment contact loads for the standard and adjusted models were similar. The combined contributions of ST and GR to medial compartment contact load in the adjusted model were reduced by 26%, 17% and 17% during walking, running and cutting, respectively. These deficits were balanced by increases in the contribution made by the semimembranosus muscle of 33% and 22% during running and cutting, respectively. Alterations to the ST and GR muscle-tendon properties in ACLR patients resulted in reduced contribution to medial compartment contact loads during gait tasks, for which the semimembranosus muscle can compensate.
Simulating wall and corner fire tests on wood products with the OSU room fire model
H. C. Tran
1994-01-01
This work demonstrates the complexity of modeling wall and corner fires in a compartment. The model chosen for this purpose is the Ohio State University (OSU) room fire model. This model was designed to simulate fire growth on walls in a compartment and therefore lends itself to direct comparison with standard room test results. The model input were bench-scale data...
Reppas-Chrysovitsinos, Efstathios; Sobek, Anna; MacLeod, Matthew
2016-06-15
Polymeric materials flowing through the technosphere are repositories of organic chemicals throughout their life cycle. Equilibrium partition ratios of organic chemicals between these materials and air (KMA) or water (KMW) are required for models of fate and transport, high-throughput exposure assessment and passive sampling. KMA and KMW have been measured for a growing number of chemical/material combinations, but significant data gaps still exist. We assembled a database of 363 KMA and 910 KMW measurements for 446 individual compounds and nearly 40 individual polymers and biopolymers, collected from 29 studies. We used the EPI Suite and ABSOLV software packages to estimate physicochemical properties of the compounds and we employed an empirical correlation based on Trouton's rule to adjust the measured KMA and KMW values to a standard reference temperature of 298 K. Then, we used a thermodynamic triangle with Henry's law constant to calculate a complete set of 1273 KMA and KMW values. Using simple linear regression, we developed a suite of single parameter linear free energy relationship (spLFER) models to estimate KMA from the EPI Suite-estimated octanol-air partition ratio (KOA) and KMW from the EPI Suite-estimated octanol-water (KOW) partition ratio. Similarly, using multiple linear regression, we developed a set of polyparameter linear free energy relationship (ppLFER) models to estimate KMA and KMW from ABSOLV-estimated Abraham solvation parameters. We explored the two LFER approaches to investigate (1) their performance in estimating partition ratios, and (2) uncertainties associated with treating all different polymers as a single "bulk" polymeric material compartment. The models we have developed are suitable for screening assessments of the tendency for organic chemicals to be emitted from materials, and for use in multimedia models of the fate of organic chemicals in the indoor environment. In screening applications we recommend that KMA and KMW be modeled as 0.06 ×KOA and 0.06 ×KOW respectively, with an uncertainty range of a factor of 15.
Dong, Min; Fukuda, Tsuyoshi; Cox, Shareen; de Vries, Marij T; Hooper, David K; Goebel, Jens; Vinks, Alexander A
2014-11-01
The purpose of this study was to develop a population pharmacokinetic and pharmacodynamic (PK-PD) model for mycophenolic acid (MPA) in paediatric renal transplant recipients in the early post-transplant period. A total of 214 MPA plasma concentrations-time data points from 24 patients were available for PK model development. In 17 out of a total of 24 patients, inosine monophosphate dehydrogenase (IMPDH) enzyme activity measurements (n = 97) in peripheral blood mononuclear cells were available for PK-PD modelling. The PK-PD model was developed using non-linear mixed effects modelling sequentially by 1) developing a population PK model and 2) incorporating IMPDH activity into a PK-PD model using post hoc Bayesian PK parameter estimates. Covariate analysis included patient demographics, co-medication and clinical laboratory data. Non-parametric bootstrapping and prediction-corrected visual predictive checks were performed to evaluate the final models. A two compartment model with a transit compartment absorption best described MPA PK. A non-linear relationship between dose and MPA exposure was observed and was described by a power function in the model. The final population PK parameter estimates (and their 95% confidence intervals) were CL/F, 22 (14.8, 25.2) l h(-1) 70 kg(-1) ; Vc /F, 45.4 (29.6, 55.6) l; Vp /F, 411 (152.6, 1472.6)l; Q/F, 22.4 (16.0, 32.5) l h(-1) ; Ka , 2.5 (1.45, 4.93) h(-1) . Covariate analysis in the PK study identified body weight to be significantly correlated with CL/F. A simplified inhibitory Emax model adequately described the relationship between MPA concentration and IMPDH activity. The final population PK-PD parameter estimates (and their 95% confidence intervals) were: E0 , 3.45 (2.61, 4.56) nmol h(-1) mg(-1) protein and EC50 , 1.73 (1.16, 3.01) mg l(-1) . Emax was fixed to 0. There were two African-American patients in our study cohorts and both had low IMPDH baseline activities (E0 ) compared with Caucasian patients (mean value 2.13 mg l(-1) vs. 3.86 mg l(-1) ). An integrated population PK-PD model of MPA has been developed in paediatric renal transplant recipients. The current model provides information that will facilitate future studies and may be implemented in a Bayesian algorithm to allow a PK-PD guided therapeutic drug monitoring strategy. © 2014 The British Pharmacological Society.
Sun, Xiangfei; Ng, Carla A; Small, Mitchell J
2018-06-12
Organisms have long been treated as receptors in exposure studies of polychlorinated biphenyls (PCBs) and other persistent organic pollutants (POPs). The influences of environmental pollution on organisms are well recognized. However, the impact of biota on PCB transport in an environmental system has not been considered in sufficient detail. In this study, a population-based multi-compartment fugacity model is developed by reconfiguring the organisms as populated compartments and reconstructing all the exchange processes between the organism compartments and environmental compartments, especially the previously ignored feedback routes from biota to the environment. We evaluate the model performance by simulating the PCB concentration distribution in Lake Ontario using published loading records. The lake system is divided into three environment compartments (air, water, and sediment) and several organism groups according to the dominant local biotic species. The comparison indicates that the simulated results are well-matched by a list of published field measurements from different years. We identify a new process, called Facilitated Biotic Intermedia Transport (FBIT), to describe the enhanced pollution transport that occurs between environmental media and organisms. As the hydrophobicity of PCB congener increases, the organism population exerts greater influence on PCB mass flows. In a high biomass scenario, the model simulation indicates significant FBIT effects and biotic storage effects with hydrophobic PCB congeners, which also lead to significant shifts in systemic contaminant exchange rates between organisms and the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Population pharmacokinetic analysis of carboxyhaemoglobin concentrations in adult cigarette smokers.
Cronenberger, Carol; Mould, Diane R; Roethig, Hans-Juergen; Sarkar, Mohamadi
2008-01-01
To develop a population-based model to describe and predict the pharmacokinetics of carboxyhaemoglobin (COHb) in adult smokers. Data from smokers of different conventional cigarettes (CC) in three open-label, randomized studies were analysed using NONMEM (version V, Level 1.1). COHb concentrations were determined at baseline for two cigarettes [Federal Trade Commission (FTC) tar 11 mg; CC1, or FTC tar 6 mg; CC2]. On day 1, subjects were randomized to continue smoking their original cigarettes, switch to a different cigarette (FTC tar 1 mg; CC3), or stop smoking. COHb concentrations were measured at baseline and on days 3 and 8 after randomization. Each cigarette was treated as a unit dose assuming a linear relationship between the number of cigarettes smoked and measured COHb percent saturation. Model building used standard methods. Model performance was evaluated using nonparametric bootstrapping and predictive checks. The data were described by a two-compartment model with zero-order input and first-order elimination with endogenous COHb. Model parameters included elimination rate constant (k(10)), central volume of distribution (Vc/F), rate constants between central and peripheral compartments (k(12) and k(21)), baseline COHb concentrations (c0), and relative fraction of carbon monoxide absorbed (F1). The median (range) COHb half-lives were 1.6 h (0.680-2.76) and 30.9 h (7.13-367) (alpha and beta phases, respectively). F1 increased with increasing cigarette tar content and age, whereas k(12) increased with ideal body weight. A robust model was developed to predict COHb concentrations in adult smokers and to determine optimum COHb sampling times in future studies.
Kip, Anke E; Castro, María Del Mar; Gomez, Maria Adelaida; Cossio, Alexandra; Schellens, Jan H M; Beijnen, Jos H; Saravia, Nancy Gore; Dorlo, Thomas P C
2018-05-10
Leishmania parasites reside within macrophages and the direct target of antileishmanial drugs is therefore intracellular. We aimed to characterize the intracellular PBMC miltefosine kinetics by developing a population pharmacokinetic (PK) model simultaneously describing plasma and intracellular PBMC pharmacokinetics. Furthermore, we explored exposure-response relationships and simulated alternative dosing regimens. A population PK model was developed with NONMEM, based on 339 plasma and 194 PBMC miltefosine concentrations from Colombian cutaneous leishmaniasis patients [29 children (2-12 years old) and 22 adults] receiving 1.8-2.5 mg/kg/day miltefosine for 28 days. A three-compartment model with miltefosine distribution into an intracellular PBMC effect compartment best fitted the data. Intracellular PBMC distribution was described with an intracellular-to-plasma concentration ratio of 2.17 [relative standard error (RSE) 4.9%] and intracellular distribution rate constant of 1.23 day-1 (RSE 14%). In exploring exposure-response relationships, both plasma and intracellular model-based exposure estimates significantly influenced probability of cure. A proposed PK target for the area under the plasma concentration-time curve (day 0-28) of >535 mg·day/L corresponded to >95% probability of cure. In linear dosing simulations, 18.3% of children compared with 2.8% of adults failed to reach 535 mg·day/L. In children, this decreased to 1.8% after allometric dosing simulation. The developed population PK model described the rate and extent of miltefosine distribution from plasma into PBMCs. Miltefosine exposure was significantly related to probability of cure in this cutaneous leishmaniasis patient population. We propose an exploratory PK target, which should be validated in a larger cohort study.
Melin, Johanna; Parra-Guillen, Zinnia P; Hartung, Niklas; Huisinga, Wilhelm; Ross, Richard J; Whitaker, Martin J; Kloft, Charlotte
2018-04-01
Optimisation of hydrocortisone replacement therapy in children is challenging as there is currently no licensed formulation and dose in Europe for children under 6 years of age. In addition, hydrocortisone has non-linear pharmacokinetics caused by saturable plasma protein binding. A paediatric hydrocortisone formulation, Infacort ® oral hydrocortisone granules with taste masking, has therefore been developed. The objective of this study was to establish a population pharmacokinetic model based on studies in healthy adult volunteers to predict hydrocortisone exposure in paediatric patients with adrenal insufficiency. Cortisol and binding protein concentrations were evaluated in the absence and presence of dexamethasone in healthy volunteers (n = 30). Dexamethasone was used to suppress endogenous cortisol concentrations prior to and after single doses of 0.5, 2, 5 and 10 mg of Infacort ® or 20 mg of Infacort ® /hydrocortisone tablet/hydrocortisone intravenously. A plasma protein binding model was established using unbound and total cortisol concentrations, and sequentially integrated into the pharmacokinetic model. Both specific (non-linear) and non-specific (linear) protein binding were included in the cortisol binding model. A two-compartment disposition model with saturable absorption and constant endogenous cortisol baseline (Baseline cort ,15.5 nmol/L) described the data accurately. The predicted cortisol exposure for a given dose varied considerably within a small body weight range in individuals weighing <20 kg. Our semi-mechanistic population pharmacokinetic model for hydrocortisone captures the complex pharmacokinetics of hydrocortisone in a simplified but comprehensive framework. The predicted cortisol exposure indicated the importance of defining an accurate hydrocortisone dose to mimic physiological concentrations for neonates and infants weighing <20 kg. EudraCT number: 2013-000260-28, 2013-000259-42.
NASA Astrophysics Data System (ADS)
Sumi, Tomonari; Okumoto, Atsushi; Goto, Hitoshi; Sekino, Hideo
2017-10-01
A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments.
Hullett, Bruce; Salman, Sam; O'Halloran, Sean J; Peirce, Deborah; Davies, Kylie; Ilett, Kenneth F
2012-05-01
Parecoxib is a cyclooxygenase-2 selective inhibitor used in management of postoperative pain in adults. This study aimed to provide pediatric pharmacokinetic information for parecoxib and its active metabolite valdecoxib. Thirty-eight children undergoing surgery received parecoxib (1 mg/kg IV to a maximum of 40 mg) at induction of anesthesia, and plasma samples were collected for drug measurement. Population pharmacokinetic parameters were estimated using nonlinear mixed effects modeling. Area under the valdecoxib concentration-time curve and time above cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib were simulated. A three-compartment model best represented parecoxib disposition, whereas one compartment was adequate for valdecoxib. Age was linearly correlated with parecoxib clearance (5.0% increase/yr). There was a sigmoid relationship between age and both valdecoxib clearance and distribution volume. Time to 50% maturation was 87 weeks postmenstrual age for both. In simulations using allometric-based doses the 90% prediction interval of valdecoxib concentration-time curve in children 2-12.7 yr included the mean for adults given 40 mg parecoxib IV. Simulated free valdecoxib plasma concentration remained above the in vitro 50% inhibitory concentrations for more than 12 h. In children younger than 2 yr, a dose reduction is likely required due to ongoing metabolic maturation. The final pharmacokinetic model gave a robust representation of parecoxib and valdecoxib disposition. Area under the valdecoxib concentration-time curve was similar to that in adults (40 mg), and simulated free valdecoxib concentration was above the cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib for at least 12 h.
CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments
Hong, Seok-Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong
2016-01-01
Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg−1 at 0 °C and 3.48 mol kg−1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically. PMID:27698448
A recycling model of the biokinetics of systemic tellurium.
Giussani, Augusto
2014-11-01
To develop a compartmental model of the systemic biokinetics of tellurium required for calculating the internal dose and interpreting bioassay measurements after incorporation of radioactive tellurium. The compartmental model for tellurium was developed with the software SAAM II v. 2.0 (©The Epsilon Group, Charlottesville, Virginia, USA). Model parameters were determined on the basis of published retention and excretion data in humans and animals. The model consists of two blood compartments, one compartment each for liver, kidneys, thyroid, four compartments for bone tissues and a generic compartment for the soft tissues. The model predicts a rapid urinary excretion of systemic tellurium: 45% in the first 24 h and 84% after 50 d. Faecal excretion amounts to 0.4% after 3 d and 9% after 50 d. Whole body retention is 55% after one day, and 2.8% after 100 d. These values as well as the retained fractions in the single organs are reasonably consistent with the available human and animal data (studies with swine and guinea pigs). The proposed model gives a realistic description of the available biokinetic data for tellurium and will be adopted by the International Commission on Radiological Protection for applications in internal dosimetry.
Numerical analysis of air-flow and temperature field in a passenger car compartment
NASA Astrophysics Data System (ADS)
Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski
2012-06-01
This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.
To address the pharmacokinetics of PFOA during gestation and lactation, a biologically supported dynamic model was developed. A two compartment system linked via placental blood flow described gestation, while milk production linked the dam to a pup litter compartment during lact...
Fluid and Electrolyte Balance model (FEB)
NASA Technical Reports Server (NTRS)
Fitzjerrell, D. G.
1973-01-01
The effects of various oral input water loads on solute and water distribution throughout the body are presented in the form of a model. The model was a three compartment model; the three compartments being plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea were the only major solutes considered explicitly. The control of body water and electrolyte distribution was affected via drinking and hormone levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inugami, A.; Kanno, I.; Uemura, K.
1988-12-01
The radioisotope distribution following intravenous injection of 99mTc-labeled hexamethylpropyleneamine oxime (HM-PAO) in the brain was measured by single photon emission computed tomography (SPECT) and corrected for the nonlinearity caused by differences in net extraction. The linearization correction was based on a three compartment model, and it required a region of reference to normalize the SPECT image in terms of regional cerebral blood flow distribution. Two different regions of reference, the cerebellum and the whole brain, were tested. The uncorrected and corrected HM-PAO images were compared with cerebral blood flow (CBF) image measured by the C VO2 inhalation steady state methodmore » and positron emission tomography (PET). The relationship between uncorrected HM-PAO and PET-CBF showed a correlation coefficient of 0.85 but tended to saturate at high CBF values, whereas it was improved to 0.93 after the linearization correction. The whole-brain normalization worked just as well as normalization using the cerebellum. This study constitutes a validation of the linearization correction and it suggests that after linearization the HM-PAO image may be scaled to absolute CBF by employing a global hemispheric CBF value as measured by the nontomographic TTXe clearance method.« less
Ferrari, Myriam; Pengo, Vittorio; Barolo, Massimiliano; Bezzo, Fabrizio; Padrini, Roberto
2017-06-01
The purpose of this study is to develop a new pharmacokinetic-pharmacodynamic (PK-PD) model to characterise the contribution of (S)- and (R)-warfarin to the anticoagulant effect on patients in treatment with rac-warfarin. Fifty-seven patients starting warfarin (W) therapy were studied, from the first dose and during chronic treatment at INR stabilization. Plasma concentrations of (S)- and (R)-W and INRs were measured 12, 36 and 60 h after the first dose and at steady state 12-14 h after dosing. Patients were also genotyped for the G>A VKORC1 polymorphism. The PK-PD model assumed a linear relationship between W enantiomer concentration and INR and included a scaling factor k to account for a different potency of (R)-W. Two parallel compartment chains with different transit times (MTT 1 and MTT 2 ) were used to model the delay in the W effect. PD parameters were estimated with the maximum likelihood approach. The model satisfactorily described the mean time-course of INR, both after the initial dose and during long-term treatment. (R)-W contributed to the rac-W anticoagulant effect with a potency of about 27% that of (S)-W. This effect was independent of VKORC1 genotype. As expected, the slope of the PK/PD linear correlation increased stepwise from GG to GA and from GA to AA VKORC1 genotype (0.71, 0.90 and 1.49, respectively). Our PK-PD linear model can quantify the partial pharmacodynamic activity of (R)-W in patients contemporaneously exposed to therapeutic (S)-W plasma levels. This concept may be useful in improving the performance of future algorithms aiming at identifying the most appropriate W maintenance dose.
NASA Astrophysics Data System (ADS)
Molnar, Nicolas; Cruden, Alexander; Betts, Peter
2017-04-01
The kinematic evolution of the Danakil Block is well constrained but the processes responsible for the formation of an isolated continental segment around 13 Ma ago with an independent pole of rotation are still matter of debate. We performed three-dimensional analogue experiments of rotational continental extension containing a pre-existing linear weakness zones in the lithospheric mantle to investigate the formation of the Red Sea, including the Danakil Block. We imposed a rotational extensional boundary condition that simulates the progressive anticlockwise rotation of the Arabian Plate with respect to the Nubia Plate over the last 13-15 Ma and we simulated the presence of a narrow thermal anomaly related to the northward channelling of Afar plume by varying the viscosity of the model lithospheric mantle. The results from experiments containing a linear zone of weakness oriented at low angles with respect to the rift axis show that early stages of deformation are characterised by the development of two rift sub-parallel compartments that delimit an intra-rift block in the vicinity of the weak lithosphere boundary zone, which are analogous to the two rift branches that confine the Danakil Block in the southern Red Sea. The imposed rotational boundary condition creates a displacement gradient along the intra-rift block and prevents the nucleation of the early rift compartments to the north of the block, enhancing the formation of an independently rotating intra-rift segment. Comparison with geodetic data supports our modelling results, which are also in agreement with the "crank-arm" model of Sichler (1980. La biellette Danakile: un modèle pour l'évolution géodynamique de l'Afar. Bull. la Société Géologique Fr. 22, 925-933). Additional analogue models of i) orthogonal extension with an identical lithospheric mantle weakness and, ii) rotational extension with a homogeneous lithosphere (i.e., no lithospheric mantle weakness) show no evidence of developing rotating intra-rift segments and therefore suggest that if these processes had acted diachronously, the Danakil Block would not have formed. Based on the modelling results, we hypothesize that the Danakil Block formed as a result of the interaction between northward rift propagation and a north-northeast-trending mantle weakness zone, associated with anticlockwise rotation of the Arabian Plate and simultaneous northward channelling of the Afar plume.
Estimation of pharmacokinetic parameters from non-compartmental variables using Microsoft Excel.
Dansirikul, Chantaratsamon; Choi, Malcolm; Duffull, Stephen B
2005-06-01
This study was conducted to develop a method, termed 'back analysis (BA)', for converting non-compartmental variables to compartment model dependent pharmacokinetic parameters for both one- and two-compartment models. A Microsoft Excel spreadsheet was implemented with the use of Solver and visual basic functions. The performance of the BA method in estimating pharmacokinetic parameter values was evaluated by comparing the parameter values obtained to a standard modelling software program, NONMEM, using simulated data. The results show that the BA method was reasonably precise and provided low bias in estimating fixed and random effect parameters for both one- and two-compartment models. The pharmacokinetic parameters estimated from the BA method were similar to those of NONMEM estimation.
Cytoplasmic rearrangements associated with amphibian egg symmetrization
NASA Technical Reports Server (NTRS)
Malacinski, G. M.
1984-01-01
Cytoplasmic rearrangements which follow fertilization were mentioned in normal and inverted eggs. A set of yolk compartments was resolved by cytological analyses of both normally oriented and inverted eggs. Those compartments were characterized by their yolk platelet compositions and movement during egg inversion. It is found that during egg inversion the yolk compartments shift minor cytoplasmic compartments which line the egg cortex. Those yolk mass shifts occurred only after the inverted egg was activated. The direction of shift of the major yolk components, rather than the sperm entrance site, determines the dorsal/ventral polarity of the inverted egg. Among different spawnings the rate of shift varied. Eggs that displayed the fastest rate of shift exhibited the highest frequency of developmental abnormalities during organogenesis. Interpretation of novel observations on cytoplasmic organization provide criticism of some earlier models. A new density compartment model is presented as a coherent way to view the organization of the egg cytoplasm and the development of bilateral symmetry.
Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz
2015-01-01
The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the ultrasound probe, highly correlated with total flow determined by MRI, R = 0.89 and P = 10−7. Linear regression yielded a slope of 1.2 and a y-axis intercept of 259 mL/min. The mean total volume of the investigated muscle tissue corresponds to an offset perfusion of 4.7mL/(min ⋅ 100cm3). The DCE-MRI technique presented here uses a blood pool contrast medium in combination with a two-compartment tracer kinetic model and allows absolute quantification of low-perfused non-cerebral organs such as muscles. PMID:26061498
Covariates of intravenous paracetamol pharmacokinetics in adults
2014-01-01
Background Pharmacokinetic estimates for intravenous paracetamol in individual adult cohorts are different to a certain extent, and understanding the covariates of these differences may guide dose individualization. In order to assess covariate effects of intravenous paracetamol disposition in adults, pharmacokinetic data on discrete studies were pooled. Methods This pooled analysis was based on 7 studies, resulting in 2755 time-concentration observations in 189 adults (mean age 46 SD 23 years; weight 73 SD 13 kg) given intravenous paracetamol. The effects of size, age, pregnancy and other clinical settings (intensive care, high dependency, orthopaedic or abdominal surgery) on clearance and volume of distribution were explored using non-linear mixed effects models. Results Paracetamol disposition was best described using normal fat mass (NFM) with allometric scaling as a size descriptor. A three-compartment linear disposition model revealed that the population parameter estimates (between subject variability,%) were central volume (V1) 24.6 (55.5%) L/70 kg with peripheral volumes of distribution V2 23.1 (49.6%) L/70 kg and V3 30.6 (78.9%) L/70 kg. Clearance (CL) was 16.7 (24.6%) L/h/70 kg and inter-compartment clearances were Q2 67.3 (25.7%) L/h/70 kg and Q3 2.04 (71.3%) L/h/70 kg. Clearance and V2 decreased only slightly with age. Sex differences in clearance were minor and of no significance. Clearance, relative to median values, was increased during pregnancy (FPREG = 1.14) and decreased during abdominal surgery (FABDCL = 0.715). Patients undergoing orthopaedic surgery had a reduced V2 (FORTHOV = 0.649), while those in intensive care had increased V2 (FICV = 1.51). Conclusions Size and age are important covariates for paracetamol pharmacokinetics explaining approximately 40% of clearance and V2 variability. Dose individualization in adult subpopulations would achieve little benefit in the scenarios explored. PMID:25342929
A simple model of fluid flow and electrolyte balance in the body
NASA Technical Reports Server (NTRS)
White, R. J.; Neal, L.
1973-01-01
The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.
Yousef, A M; Melhem, M; Xue, B; Arafat, T; Reynolds, D K; Van Wart, S A
2013-05-01
Clopidogrel is metabolized primarily into an inactive carboxyl metabolite (clopidogrel-IM) or to a lesser extent an active thiol metabolite. A population pharmacokinetic (PK) model was developed using NONMEM(®) to describe the time course of clopidogrel-IM in plasma and to design a sparse-sampling strategy to predict clopidogrel-IM exposures for use in characterizing anti-platelet activity. Serial blood samples from 76 healthy Jordanian subjects administered a single 75 mg oral dose of clopidogrel were collected and assayed for clopidogrel-IM using reverse phase high performance liquid chromatography. A two-compartment (2-CMT) PK model with first-order absorption and elimination plus an absorption lag-time was evaluated, as well as a variation of this model designed to mimic enterohepatic recycling (EHC). Optimal PK sampling strategies (OSS) were determined using WinPOPT based upon collection of 3-12 post-dose samples. A two-compartment model with EHC provided the best fit and reduced bias in C(max) (median prediction error (PE%) of 9.58% versus 12.2%) relative to the basic two-compartment model, AUC(0-24) was similar for both models (median PE% = 1.39%). The OSS for fitting the two-compartment model with EHC required the collection of seven samples (0.25, 1, 2, 4, 5, 6 and 12 h). Reasonably unbiased and precise exposures were obtained when re-fitting this model to a reduced dataset considering only these sampling times. A two-compartment model considering EHC best characterized the time course of clopidogrel-IM in plasma. Use of the suggested OSS will allow for the collection of fewer PK samples when assessing clopidogrel-IM exposures. Copyright © 2013 John Wiley & Sons, Ltd.
Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R
2000-01-01
Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.
Xiao, Ruiyang; Arnot, Jon A; MacLeod, Matthew
2015-11-01
Dietary exposure is considered the dominant pathway for fish exposed to persistent, hydrophobic chemicals in the environment. Here we present a dynamic, fugacity-based three-compartment bioaccumulation model that describes the fish body as one compartment and the gastrointestinal tract (GIT) as two compartments. The model simulates uptake from the GIT by passive diffusion and micelle-mediated diffusion, and chemical degradation in the fish and the GIT compartments. We applied the model to a consistent measured dietary uptake and depuration dataset for rainbow trout (n=215) that is comprised of chlorinated benzenes, biphenyls, dioxins, diphenyl ethers, and polycyclic aromatic hydrocarbons (PAHs). Model performance relative to the measured data is statistically similar regardless of whether micelle-mediated diffusion is included; however, there are considerable uncertainties in modeling this process. When degradation in the GIT is assumed to be negligible, modeled chemical elimination rates are similar to measured rates; however, predicted concentrations of the PAHs are consistently higher than measurements by up to a factor of 20. Introducing a kinetic limit on chemical transport from the fish compartment to the GIT and increasing the rate constant for degradation of PAHs in tissues of the liver and/or GIT are required to achieve good agreement between the modelled and measured concentrations for PAHs. Our results indicate that the apparent low absorption efficiency of PAHs relative to the chemicals with similar hydrophobicity is attributable to biotransformation in the liver and/or the GIT. Our results provide process-level insights about controls on the extent of bioaccumulation of chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
On dependency properties of the ISIs generated by a two-compartmental neuronal model.
Benedetto, Elisa; Sacerdote, Laura
2013-02-01
One-dimensional leaky integrate and fire neuronal models describe interspike intervals (ISIs) of a neuron as a renewal process and disregarding the neuron geometry. Many multi-compartment models account for the geometrical features of the neuron but are too complex for their mathematical tractability. Leaky integrate and fire two-compartment models seem a good compromise between mathematical tractability and an improved realism. They indeed allow to relax the renewal hypothesis, typical of one-dimensional models, without introducing too strong mathematical difficulties. Here, we pursue the analysis of the two-compartment model studied by Lansky and Rodriguez (Phys D 132:267-286, 1999), aiming of introducing some specific mathematical results used together with simulation techniques. With the aid of these methods, we investigate dependency properties of ISIs for different values of the model parameters. We show that an increase of the input increases the strength of the dependence between successive ISIs.
Ferl, Gregory Z; Reyes, Arthur; Sun, Liping L; Cheu, Melissa; Oldendorp, Amy; Ramanujan, Saroja; Stefanich, Eric G
2018-05-01
CD20 is a cell-surface receptor expressed by healthy and neoplastic B cells and is a well-established target for biologics used to treat B-cell malignancies. Pharmacokinetic (PK) and pharmacodynamic (PD) data for the anti-CD20/CD3 T-cell-dependent bispecific antibody BTCT4465A were collected in transgenic mouse and nonhuman primate (NHP) studies. Pronounced nonlinearity in drug elimination was observed in the murine studies, and time-varying, nonlinear PK was observed in NHPs, where three empirical drug elimination terms were identified using a mixed-effects modeling approach: i) a constant nonsaturable linear clearance term (7 mL/day/kg); ii) a rapidly decaying time-varying, linear clearance term (t ½ = 1.6 h); and iii) a slowly decaying time-varying, nonlinear clearance term (t ½ = 4.8 days). The two time-varying drug elimination terms approximately track with time scales of B-cell depletion and T-cell migration/expansion within the central blood compartment. The mixed-effects NHP model was scaled to human and prospective clinical simulations were generated. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
A NOVEL PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT. Evans, M.V., Hughes, M.F., and Kenyon, E.M. USEPA, ORD, NHEERL, RTP, NC 27711
DMA is the major methylated metabolite of inorganic arsenic, a kno...
A model describing diffusion in prostate cancer.
Gilani, Nima; Malcolm, Paul; Johnson, Glyn
2017-07-01
Quantitative diffusion MRI has frequently been studied as a means of grading prostate cancer. Interpretation of results is complicated by the nature of prostate tissue, which consists of four distinct compartments: vascular, ductal lumen, epithelium, and stroma. Current diffusion measurements are an ill-defined weighted average of these compartments. In this study, prostate diffusion is analyzed in terms of a model that takes explicit account of tissue compartmentalization, exchange effects, and the non-Gaussian behavior of tissue diffusion. The model assumes that exchange between the cellular (ie, stromal plus epithelial) and the vascular and ductal compartments is slow. Ductal and cellular diffusion characteristics are estimated by Monte Carlo simulation and a two-compartment exchange model, respectively. Vascular pseudodiffusion is represented by an additional signal at b = 0. Most model parameters are obtained either from published data or by comparing model predictions with the published results from 41 studies. Model prediction error is estimated using 10-fold cross-validation. Agreement between model predictions and published results is good. The model satisfactorily explains the variability of ADC estimates found in the literature. A reliable model that predicts the diffusion behavior of benign and cancerous prostate tissue of different Gleason scores has been developed. Magn Reson Med 78:316-326, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Storage and growth of denitrifiers in aerobic granules: part I. model development.
Ni, Bing-Jie; Yu, Han-Qing
2008-02-01
A mathematical model, based on the Activated Sludge Model No.3 (ASM3), is developed to describe the storage and growth activities of denitrifiers in aerobic granules under anoxic conditions. In this model, mass transfer, hydrolysis, simultaneous anoxic storage and growth, anoxic maintenance, and endogenous decay are all taken into account. The model established is implemented in the well-established AQUASIM simulation software. A combination of completely mixed reactor and biofilm reactor compartments provided by AQUASIM is used to simulate the mass transport and conversion processes occurring in both bulk liquid and granules. The modeling results explicitly show that the external substrate is immediately utilized for storage and growth at feast phase. More external substrates are diverted to storage process than the primary biomass production process. The model simulation indicates that the nitrate utilization rate (NUR) of granules-based denitrification process includes four linear phases of nitrate reduction. Furthermore, the methodology for determining the most important parameter in this model, that is, anoxic reduction factor, is established. (c) 2007 Wiley Periodicals, Inc.
Why does walking economy improve after weight loss in obese adolescents?
Peyrot, Nicolas; Thivel, David; Isacco, Laurie; Morin, Jean-Benoît; Belli, Alain; Duche, Pascale
2012-04-01
This study tested the hypothesis that the increase in walking economy (i.e., decrease in net metabolic rate per kilogram) after weight loss in obese adolescents is induced by a lower metabolic rate required to support the lower body weight and maintain balance during walking. Sixteen obese adolescent boys and girls were tested before and after a weight reduction program. Body composition and oxygen uptake while standing and walking at four preset speeds (0.75, 1, 1.25, and 1.5 m·s⁻¹) and at the preferred speed were quantified. Net metabolic rate and gross metabolic cost of walking-versus-speed relationships were determined. A three-compartment model was used to distinguish the respective parts of the metabolic rate associated with standing (compartment 1), maintaining balance and supporting body weight during walking (compartment 2), and muscle contractions required to move the center of mass and limbs (compartment 3). Standing metabolic rate per kilogram (compartment 1) significantly increased after weight loss, whereas net metabolic rate per kilogram during walking decreased by 9% on average across speeds. Consequently, the gross metabolic cost of walking per unit of distance-versus-speed relationship and hence preferred walking speeds did not change with weight loss. Compartment 2 of the model was significantly lower after weight loss, whereas compartment 3 did not change. The model showed that the improvement in walking economy after weight loss in obese adolescents was likely related to the lower metabolic rate of the isometric muscular contractions required to support the lower body weight and maintain balance during walking. Contrastingly, the part of the total metabolic rate associated with muscle contractions required to move the center of mass and limbs did not seem to be related to the improvement in walking economy in weight-reduced individuals.
Measuring Compartment Size and Gas Solubility in Marine Mammals
2015-09-30
bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Measuring Compartment Size and Gas Solubility in Marine...is to develop methods to estimate marine mamal tissue compartment sizes, and tissue gas solubility. We aim to improve the data available for the
Figueroa, Isabel; Leipold, Doug; Leong, Steve; Zheng, Bing; Triguero-Carrasco, Montserrat; Fourie-O'Donohue, Aimee; Kozak, Katherine R; Xu, Keyang; Schutten, Melissa; Wang, Hong; Polson, Andrew G; Kamath, Amrita V
2018-05-14
For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.
Reaction time for trimolecular reactions in compartment-based reaction-diffusion models
NASA Astrophysics Data System (ADS)
Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang
2018-05-01
Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.
A fugacity-based indoor residential pesticide fate model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Deborah H.; Furtaw, Edward J.; McKone, Thomas E.
Dermal and non-dietary pathways are potentially significant exposure pathways to pesticides used in residences. Exposure pathways include dermal contact with residues on surfaces, ingestion from hand- and object-to-mouth activities, and absorption of pesticides into food. A limited amount of data has been collected on pesticide concentrations in various residential compartments following an application. But models are needed to interpret this data and make predictions about other pesticides based on chemical properties. In this paper, we propose a mass-balance compartment model based on fugacity principles. We include air (both gas phase and aerosols), carpet, smooth flooring, and walls as model compartments.more » Pesticide concentrations on furniture and toys, and in food, are being added to the model as data becomes available. We determine the compartmental fugacity capacity and mass transfer-rate coefficient for wallboard as an example. We also present the framework and equations needed for a dynamic mass-balance model.« less
An experimental approach towards the development of an in vitro cortical-thalamic co-culture model.
Kanagasabapathi, Thirukumaran T; Massobrio, Paolo; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J; Decré, Michel M J
2011-01-01
In this paper, we propose an experimental approach to develop an in vitro dissociated cortical-thalamic co-culture model using a dual compartment neurofluidic device. The device has two compartments separated by 10 μm wide and 3 μm high microchannels. The microchannels provide a physical isolation of neurons allowing only neurites to grow between the compartments. Long-term viable co-culture was maintained in the compartmented device, neurite growth through the microchannels was verified using immunofluorescence staining, and electrophysiological recordings from the co-culture system was investigated. Preliminary analysis of spontaneous activities from the co-culture shows a distinctively different firing pattern associated with cultures of individual cell types and further analysis is proposed for a deeper understanding of the dynamics involved in the network connectivity in such a co-culture system.
Lerner, Zachary F; DeMers, Matthew S; Delp, Scott L; Browning, Raymond C
2015-02-26
Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined through radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r(2)=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r(2)=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lerner, Zachary F.; DeMers, Matthew S.; Delp, Scott L.; Browning, Raymond C.
2015-01-01
Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined via radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r2=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r2=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. PMID:25595425
Wattanakul, Thanaporn; Teerapong, Pramote; Plewes, Katherine; Newton, Paul N; Chierakul, Wirongrong; Silamut, Kamolrat; Chotivanich, Kesinee; Ruengweerayut, Ronnatrai; White, Nicholas J; Dondorp, Arjen M; Tarning, Joel
2016-04-27
Fever is an inherent symptom of malaria in both adults and children. Paracetamol (acetaminophen) is the recommended antipyretic as it is inexpensive, widely available and has a good safety profile, but patients may not be able to take the oral drug reliably. A comparison between the pharmacokinetics of oral syrup and intramuscular paracetamol given to patients with acute falciparum malaria and high body temperature was performed. A randomized, open-label, two-treatment, crossover, pharmacokinetic study of paracetamol dosed orally and intramuscularly was conducted. Twenty-one adult patients with uncomplicated falciparum malaria were randomized to receive a single 600 mg dose of paracetamol either as syrup or intramuscular injection on day 0 followed by a single dose administered by the alternative route on day 1. Paracetamol plasma concentrations were quantified frequently and modelled simultaneously using nonlinear mixed-effects modelling. The final population pharmacokinetic model was used for dose optimization simulations. Relationships between paracetamol concentrations with temperature and parasite half-life were investigated using linear and non-linear regression analyses. The population pharmacokinetic properties of paracetamol were best described by a two-compartment disposition model, with zero-order and first-order absorption for intramuscular and oral syrup administration, respectively. The relative bioavailability of oral syrup was 84.4 % (95 % CI 68.2-95.1 %) compared to intramuscular administration. Dosing simulations showed that 1000 mg of intramuscular or oral syrup administered six-hourly reached therapeutic steady state concentrations for antipyresis, but more favourable concentration-time profiles were achieved with a loading dose of 1500 mg, followed by a 1000 mg maintenance dose. This ensured that maximum therapeutic concentrations were reached rapidly during the first 6 h. No significant relationships between paracetamol concentrations and temperature or parasite half-life were found. Paracetamol plasma concentrations after oral syrup and intramuscular administration in patients with acute falciparum malaria were described successfully by a two-compartment disposition model. Relative oral bioavailability compared to intramuscular dosing was estimated as 84.4 % (95 % CI 68.2-95.1 %). Dosing simulations showed that a loading dose followed by six-hourly dosing intervals reduced the time delay to reach therapeutic drug levels after both routes of administration. The safety and efficacy of loading dose paracetamol antipyretic regimens now needs to be established in larger studies.
Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait)
NASA Astrophysics Data System (ADS)
van Oevelen, Dick; Bergmann, Melanie; Soetaert, Karline; Bauerfeind, Eduard; Hasemann, Christiane; Klages, Michael; Schewe, Ingo; Soltwedel, Thomas; Budaeva, Nataliya E.
2011-11-01
The HAUSGARTEN observatory is located in the eastern Fram Strait (Arctic Ocean) and used as long-term monitoring site to follow changes in the Arctic benthic ecosystem. Linear inverse modelling was applied to decipher carbon flows among the compartments of the benthic food web at the central HAUSGARTEN station (2500 m) based on an empirical data set consisting of data on biomass, prokaryote production, total carbon deposition and community respiration. The model resolved 99 carbon flows among 4 abiotic and 10 biotic compartments, ranging from prokaryotes up to megafauna. Total carbon input was 3.78±0.31 mmol C m -2 d -1, which is a comparatively small fraction of total primary production in the area. The community respiration of 3.26±0.20 mmol C m -2 d -1 is dominated by prokaryotes (93%) and has lower contributions from surface-deposit feeding macro- (1.7%) and suspension feeding megafauna (1.9%), whereas contributions from nematode and other macro- and megabenthic compartments were limited to <1%. The high prokaryotic contribution to carbon processing suggests that functioning of the benthic food web at the central HAUSGARTEN station is comparable to abyssal plain sediments that are characterised by strong energy limitation. Faunal diet compositions suggest that labile detritus is important for deposit-feeding nematodes (24% of their diet) and surface-deposit feeding macrofauna (˜44%), but that semi-labile detritus is more important in the diets of deposit-feeding macro- and megafauna. Dependency indices on these food sources were also calculated as these integrate direct (i.e. direct grazing and predator-prey interactions) and indirect (i.e. longer loops in the food web) pathways in the food web. Projected sea-ice retreats for the Arctic Ocean typically anticipate a decrease in the labile detritus flux to the already food-limited benthic food web. The dependency indices indicate that faunal compartments depend similarly on labile and semi-labile detritus, which suggests that the benthic biota may be more sensitive to changes in labile detritus inputs than when assessed from diet composition alone. Species-specific responses to different types of labile detritus inputs, e.g. pelagic algae versus sympagic algae, however, are presently unknown and are needed to assess the vulnerability of individual components of the benthic food web.
Bellnier, David A; Greco, William R; Loewen, Gregory M; Nava, Hector; Oseroff, Allan R; Dougherty, Thomas J
2006-06-01
Photodynamic therapy (PDT) uses a photosensitizer activated by light, in an oxygen-rich environment, to destroy malignant tumors. Clinical trials of PDT at Roswell Park Cancer Institute (RPCI) use the photosensitizers Photofrin, Photochlor, and 5-ALA-induced protoporphyrin IX (PpIX). In some studies the concentrations of photosensitizer in blood, and occasionally in tumor tissue, were obtained. Pharmacokinetic (PK) data from these individual studies were pooled and analyzed. This is the first published review to compare head-to-head the PK of Photofrin and Photochlor. Blood and tissue specimens were obtained from patients undergoing PDT at RPCI. Concentrations of Photofrin, Photochlor, and PpIX were measured using fluorescence analysis. A non-linear mixed effects modeling approach was used to analyze the PK data for Photochlor (up to 4 days post-infusion; two-compartment model) and a simpler multipatient-data-pooling approach was used to model PK data for both Photofrin and Photochlor (at least 150 days post-infusion; three-compartment models). Physiological parameters were standardized to correspond to a standard (70 kg; 1.818 m2 surface area) man to facilitate comparisons between Photofrin and Photochlor. Serum concentration-time profiles obtained for Photofrin and Photochlor showed long circulating half-lives, where both sensitizers could be found more than 3 months after intravenous infusion; however, estimated plasma clearances (standard man) were markedly smaller for Photofrin (25.8 ml/hour) than for Photochlor (84.2 ml/hour). Volumes of distribution of the central compartment (standard man) for both Photofrin and Photochlor were about the size (3.14 L, 4.29 L, respectively) of plasma volume, implying that both photosensitizers are almost 100% bound to serum components. Circulating levels of PpIX were generally quite low, falling below the level of instrument sensitivity within a few days after topical application of 5-ALA. We have modeled the PK of Photochlor and Photofrin. PK parameter estimates may, in part, explain the relatively long skin photosensitivity attributed to Photofrin but not Photochlor. Due to the potential impact and limited experimental PK data in the PDT field further clinical studies of photosensitizer kinetics in tumor and normal tissues are warranted. Copyright 2006 Wiley-Liss, Inc.
Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.
Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano
2015-12-01
On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of acute alcohol intoxication on the metabolism and plasma kinetics of chlordiazepoxide.
Whiting, B; Lawrence, J R; Skellern, G G; Meier, J
1979-01-01
1. The metabolism and plasma kinetics of chlordiazepoxide have been determined in a group of volunteers and in a group of patients with acute alcohol intoxication. 2. Using the SAAM 26 non-linear least squares fitting programme, all chlordiazepoxide plasma concentration v time data following oral administration could be analysed in terms of a one-compartment open model with metabolic conversion of chlordiazepoxide to desmethylchlordiazepoxide. 3. Acutely intoxicated patients showed a prolonged elimination of chlordiazepoxide and a reduced clearance when compared with alcohol-free volunteers. The elimination of desmethylchlordiazepoxide, on the other hand, appeared to be faster in the alcoholics. 4. Alcohol exerts significant effects on the metabolism of chlordiazepoxide in acutely intoxicated patients. PMID:760747
Current concepts in the pathophysiology, evaluation, and diagnosis of compartment syndrome
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Mubarak, S. J.
1998-01-01
This article reviews present knowledge of the pathophysiology and diagnosis of acute compartment syndromes. Recent results using compression of legs in normal volunteers provide objective data concerning local pressure thresholds for neuromuscular dysfunction in the anterior compartment. Results with this model indicate that a progression of neuromuscular deficits occurs when IMP increases to within 35 to 40 mm Hg of diastolic blood pressure. These findings provide useful information on the diagnosis and compression thresholds for acute compartment syndromes. Time factors are also important, however, and usually are incompletely known in most cases of acute compartment syndrome. Although the slit catheter is a very good technique for monitoring IMP during rest, these catheters and their associated extracorporeal transducer systems are not ideal. Recently developed miniature transducer-tipped catheters and, perhaps, future development of noninvasive techniques may provide accurate recordings of IMP in patients with acute compartment syndromes.
Planktonic food webs revisited: Reanalysis of results from the linear inverse approach
NASA Astrophysics Data System (ADS)
Hlaili, Asma Sakka; Niquil, Nathalie; Legendre, Louis
2014-01-01
Identification of the trophic pathway that dominates a given planktonic assemblage is generally based on the distribution of biomasses among food-web compartments, or better, the flows of materials or energy among compartments. These flows are obtained by field observations and a posteriori analyses, including the linear inverse approach. In the present study, we re-analysed carbon flows obtained by inverse analysis at 32 stations in the global ocean and one large lake. Our results do not support two "classical" views of plankton ecology, i.e. that the herbivorous food web is dominated by mesozooplankton grazing on large phytoplankton, and the microbial food web is based on microzooplankton significantly consuming bacteria; our results suggest instead that phytoplankton are generally grazed by microzooplankton, of which they are the main food source. Furthermore, we identified the "phyto-microbial food web", where microzooplankton largely feed on phytoplankton, in addition to the already known "poly-microbial food web", where microzooplankton consume more or less equally various types of food. These unexpected results led to a (re)definition of the conceptual models corresponding to the four trophic pathways we found to exist in plankton, i.e. the herbivorous, multivorous, and two types of microbial food web. We illustrated the conceptual trophic pathways using carbon flows that were actually observed at representative stations. The latter can be calibrated to correspond to any field situation. Our study also provides researchers and managers with operational criteria for identifying the dominant trophic pathway in a planktonic assemblage, these criteria being based on the values of two carbon ratios that could be calculated from flow values that are relatively easy to estimate in the field.
Granular fountains: convection cascade in a compartmentalized granular gas.
van der Meer, Devaraj; van der Weele, Ko; Reimann, Peter
2006-06-01
This paper extends the two-compartment granular fountain [D. van der Meer, P. Reimann, K. van der Weele, and D. Lohse, Phys. Rev. Lett. 92, 184301 (2004)] to an arbitrary number of compartments: the tendency of a granular gas to form clusters is exploited to generate spontaneous convective currents, with particles going down in the well-filled compartments and going up in the diluted ones. We focus upon the bifurcation diagram of the general -compartment system, which is constructed using a dynamical flux model and which proves to agree quantitatively with results from molecular dynamics simulations.
Aoyama, Yumiko; Kaibara, Atsunori; Takada, Akitsugu; Nishimura, Tetsuya; Katashima, Masataka; Sawamoto, Taiji
2013-04-01
Purpose Population pharmacokinetics (PK) of sepantronium bromide (YM155) was characterized in patients with non-small cell lung cancer, hormone refractory prostate cancer, or unresectable stage III or IV melanoma and enrolled in one of three phase 2 studies conducted in Europe or the U.S. Method Sepantronium was administered as a continuous intravenous infusion (CIVI) at 4.8 mg/m(2)/day over 7 days every 21 days. Population PK analysis was performed using a linear one-compartment model involving total body clearance (CL) and volume of distribution with an inter-individual random effect on CL and a proportional residual errors to describe 578 plasma sepantronium concentrations obtained from a total of 96 patients by NONMEM Version VI. The first-order conditional estimation method with interaction was applied. Results The one-compartment model with one random effect on CL and two different proportional error models provided an adequate description of the data. Creatinine clearance (CLCR), cancer type, and alanine aminotransferase (ALT) were recognized as significant covariates of CL. CLCR was the most influential covariate on sepantronium exposure and predicted to contribute to a 25 % decrease in CL for patients with moderately impaired renal function (CLCR = 40 mL/min) compared to patients with normal CLCR. Cancer type and ALT had a smaller but nonetheless significant contribution. Other patient characteristics such as age, gender, and race were not considered as significant covariates of CL. Conclusions The results provide the important information for optimizing the therapeutic efficacy and minimizing the toxicity for sepantronium in cancer therapy.
Kendall, Kristina L; Fukuda, David H; Hyde, Parker N; Smith-Ryan, Abbie E; Moon, Jordon R; Stout, Jeffrey R
2017-04-01
The purpose of this study was to investigate the accuracy of fat-free mass (FFM) estimates from two-compartment (2C) models including air displacement plethysmography (ADP), ultrasound (US), near-infrared interactance (NIR), and the Jackson and Pollock skinfold equation (SKF) against a criterion four-compartment (4C) model in elite male rowers. Twenty-three elite-level male rowers (mean± SD; age 24.6 ± 2.2 years; stature: 191.4 ± 7.2 cm; mass: 87.2 ± 11.2 kg) participated in this investigation. All body composition assessments were performed on the same day in random order, except for hydrostatic weighing (HW), which was measured last. FFM was evaluated using a 4C model, which included total body water from bioimpedance spectroscopy, body volume from HW, and total body bone mineral via dual-energy X-ray absorptiometry. The major findings of the study were that the 2C models evaluated overestimated FFM and should be considered with caution for the assessment of FFM in elite male rowers. Future studies should use multiple-compartment models, with measurement of TBW and bone mineral content, for the estimation of FFM.
A Hybrid Windkessel Model of Blood Flow in Arterial Tree Using Velocity Profile Method
NASA Astrophysics Data System (ADS)
Aboelkassem, Yasser; Virag, Zdravko
2016-11-01
For the study of pulsatile blood flow in the arterial system, we derived a coupled Windkessel-Womersley mathematical model. Initially, a 6-elements Windkessel model is proposed to describe the hemodynamics transport in terms of constant resistance, inductance and capacitance. This model can be seen as a two compartment model, in which the compartments are connected by a rigid pipe, modeled by one inductor and resistor. The first viscoelastic compartment models proximal part of the aorta, the second elastic compartment represents the rest of the arterial tree and aorta can be seen as the connection pipe. Although the proposed 6-elements lumped model was able to accurately reconstruct the aortic pressure, it can't be used to predict the axial velocity distribution in the aorta and the wall shear stress and consequently, proper time varying pressure drop. We then modified this lumped model by replacing the connection pipe circuit elements with a vessel having a radius R and a length L. The pulsatile flow motions in the vessel are resolved instantaneously along with the Windkessel like model enable not only accurate prediction of the aortic pressure but also wall shear stress and frictional pressure drop. The proposed hybrid model has been validated using several in-vivo aortic pressure and flow rate data acquired from different species such as, humans, dogs and pigs. The method accurately predicts the time variation of wall shear stress and frictional pressure drop. Institute for Computational Medicine, Dept. Biomedical Engineering.
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyeong; Murugan, Muthuvel; Wereley, Norman M.
2013-04-01
This study investigates a lumped-parameter human body model which includes lower leg in seated posture within a quarter-car model for blast injury assessment simulation. To simulate the shock acceleration of the vehicle, mine blast analysis was conducted on a generic land vehicle crew compartment (sand box) structure. For the purpose of simulating human body dynamics with non-linear parameters, a physical model of a lumped-parameter human body within a quarter car model was implemented using multi-body dynamic simulation software. For implementing the control scheme, a skyhook algorithm was made to work with the multi-body dynamic model by running a co-simulation with the control scheme software plug-in. The injury criteria and tolerance levels for the biomechanical effects are discussed for each of the identified vulnerable body regions, such as the relative head displacement and the neck bending moment. The desired objective of this analytical model development is to study the performance of adaptive semi-active magnetorheological damper that can be used for vehicle-occupant protection technology enhancements to the seat design in a mine-resistant military vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackay, D.; Di Guardo, A.; Paterson, S.
Evaluation of chemical fate in the environment has been suggested to be best accomplished using a five-stage process in which a sequence of increasing site-specific multimedia mass balance models is applied. This approach is illustrated for chlorobenzene and linear alkylbenzene sulfonates (LAS). The first two stages involve classifying the chemical and quantifying the emissions into each environmental compartment. In the third stage, the characteristics of the chemical are determined using the evaluative equilibrium criterion model, which is capable of treating a variety of chemicals including those that are in volatile and insoluble in water. This evaluation is conducted in threemore » steps using levels 1, 2, and 3 versions of the model, which introduce increasing complexity and more realistic representations of the environment. In the fourth stage, ChemCAN, which is a level 3 model for specific regions of Canada, is used to predict the chemical`s fate in southern Ontario. The final stage is to apply local environmental models to predict environmental exposure concentrations. For chlorobenzene, the local model was the SoilFug model, which predicts the fate of agrochemicals, and for LAS the WW-TREAT, GRiDS, and ROUT models were used to predict the fate of LAS in a sewage treatment plant and in riverine receiving waters. It is concluded that this systematic approach provides a comprehensive assessment of chemical fate, revealing the broad characteristics of chemical behavior and quantifying the likely local and regional exposure levels.« less
A review of models for near-field exposure pathways of chemicals in consumer products.
Huang, Lei; Ernstoff, Alexi; Fantke, Peter; Csiszar, Susan A; Jolliet, Olivier
2017-01-01
Exposure to chemicals in consumer products has been gaining increasing attention, with multiple studies showing that near-field exposures from products is high compared to far-field exposures. Regarding the numerous chemical-product combinations, there is a need for an overarching review of models able to quantify the multiple transfers of chemicals from products used near-field to humans. The present review therefore aims at an in-depth overview of modeling approaches for near-field chemical release and human exposure pathways associated with consumer products. It focuses on lower-tier, mechanistic models suitable for life cycle assessments (LCA), chemical alternative assessment (CAA) and high-throughput screening risk assessment (HTS). Chemicals in a product enter the near-field via a defined "compartment of entry", are transformed or transferred to adjacent compartments, and eventually end in a "human receptor compartment". We first focus on models of physical mass transfers from the product to 'near-field' compartments. For transfers of chemicals from article interior, adequate modeling of in-article diffusion and of partitioning between article surface and air/skin/food is key. Modeling volatilization and subsequent transfer to the outdoor is crucial for transfers of chemicals used in the inner space of appliances, on object surfaces or directly emitted to indoor air. For transfers from skin surface, models need to reflect the competition between dermal permeation, volatilization and fraction washed-off. We then focus on transfers from the 'near-field' to 'human' compartments, defined as respiratory tract, gastrointestinal tract and epidermis, for which good estimates of air concentrations, non-dietary ingestion parameters and skin permeation are essential, respectively. We critically characterize for each exposure pathway the ability of models to estimate near-field transfers and to best inform LCA, CAA and HTS, summarizing the main characteristics of the potentially best-suited models. This review identifies large knowledge gaps for several near-field pathways and suggests research needs and future directions. Copyright © 2016 Elsevier B.V. All rights reserved.
Schooler, J; Kumar, D; Nardo, L; McCulloch, C; Li, X; Link, T M; Majumdar, S
2014-01-01
To investigate longitudinal changes in laminar and spatial distribution of knee articular cartilage magnetic resonance imaging (MRI) T1ρ and T2 relaxation times, in individuals with and without medial compartment cartilage defects. All subjects (at baseline n = 88, >18 years old) underwent 3-Tesla knee MRI at baseline and annually thereafter for 3 years. The MR studies were evaluated for presence of cartilage defects (modified Whole-Organ Magnetic Resonance Imaging Scoring - mWORMS), and quantitative T1ρ and T2 relaxation time maps. Subjects were segregated into those with (mWORMS ≥2) and without (mWORMS ≤1) cartilage lesions at the medial tibia (MT) or medial femur (MF) at each time point. Laminar (bone and articular layer) and spatial (gray level co-occurrence matrix - GLCM) distribution of the T1ρ and T2 relaxation time maps were calculated. Linear regression models (cross-sectional) and Generalized Estimating Equations (GEEs) (longitudinal) were used. Global T1ρ, global T2 and articular layer T2 relaxation times at the MF, and global and articular layer T2 relaxation times at the MT, were higher in subjects with cartilage lesions compared to those without lesions. At the MT global T1ρ relaxation times were higher at each time point in subjects with lesions. MT T1ρ and T2 became progressively more heterogeneous than control compartments over the course of the study. Spatial distribution of T1ρ and T2 relaxation time maps in medial knee OA using GLCM technique may be a sensitive indicator of cartilage deterioration, in addition to whole-compartment relaxation time data. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Does Critical Illness Change Levofloxacin Pharmacokinetics?
Roberts, Jason A; Cotta, Menino Osbert; Cojutti, Piergiorgio; Lugano, Manuela; Della Rocca, Giorgio; Pea, Federico
2015-12-14
Levofloxacin is commonly used in critically ill patients for which existing data suggest nonstandard dosing regimens should be used. The objective of this study was to compare the population pharmacokinetics of levofloxacin in critically ill and in non-critically ill patients. Adult patients with a clinical indication for levofloxacin were eligible for participation in this prospective pharmacokinetic study. Patients were given 500 mg or 750 mg daily by intravenous administration with up to 11 blood samples taken on day 1 or 2 of therapy. Plasma samples were analyzed and population pharmacokinetic analysis was undertaken using Pmetrics. Thirty-five patients (18 critically ill) were included. The mean (standard deviation [SD]) age, weight, and Cockcroft-Gault creatinine clearance for the critically ill and for the non-critically ill patients were 60.3 (16.4) and 72.0 (11.6) years, 78.5 (14.8) and 70.9 (15.8) kg, and 71.9 (65.8) and 68.2 (30.1) ml/min, respectively. A two-compartment linear model best described the data. Increasing creatinine clearance was the only covariate associated with increasing drug clearance. The presence of critical illness did not significantly affect any pharmacokinetic parameter. The mean (SD) parameter estimates were as follows: clearance, 8.66 (3.85) liters/h; volume of the central compartment (Vc), 41.5 (24.5) liters; intercompartmental clearance constants from central to peripheral, 2.58 (3.51) liters/h; and peripheral to central compartments, 0.90 (0.58) liters/h. Monte Carlo dosing simulations demonstrated that achievement of therapeutic exposures was dependent on renal function, pathogen, and MIC. Critical illness appears to have no independent effect on levofloxacin pharmacokinetics that cannot be explained by altered renal function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Does Critical Illness Change Levofloxacin Pharmacokinetics?
Cotta, Menino Osbert; Cojutti, Piergiorgio; Lugano, Manuela; Rocca, Giorgio Della; Pea, Federico
2015-01-01
Levofloxacin is commonly used in critically ill patients for which existing data suggest nonstandard dosing regimens should be used. The objective of this study was to compare the population pharmacokinetics of levofloxacin in critically ill and in non-critically ill patients. Adult patients with a clinical indication for levofloxacin were eligible for participation in this prospective pharmacokinetic study. Patients were given 500 mg or 750 mg daily by intravenous administration with up to 11 blood samples taken on day 1 or 2 of therapy. Plasma samples were analyzed and population pharmacokinetic analysis was undertaken using Pmetrics. Thirty-five patients (18 critically ill) were included. The mean (standard deviation [SD]) age, weight, and Cockcroft-Gault creatinine clearance for the critically ill and for the non-critically ill patients were 60.3 (16.4) and 72.0 (11.6) years, 78.5 (14.8) and 70.9 (15.8) kg, and 71.9 (65.8) and 68.2 (30.1) ml/min, respectively. A two-compartment linear model best described the data. Increasing creatinine clearance was the only covariate associated with increasing drug clearance. The presence of critical illness did not significantly affect any pharmacokinetic parameter. The mean (SD) parameter estimates were as follows: clearance, 8.66 (3.85) liters/h; volume of the central compartment (Vc), 41.5 (24.5) liters; intercompartmental clearance constants from central to peripheral, 2.58 (3.51) liters/h; and peripheral to central compartments, 0.90 (0.58) liters/h. Monte Carlo dosing simulations demonstrated that achievement of therapeutic exposures was dependent on renal function, pathogen, and MIC. Critical illness appears to have no independent effect on levofloxacin pharmacokinetics that cannot be explained by altered renal function. PMID:26666946
Linking Essential Tremor to the Cerebellum: Neuropathological Evidence.
Louis, Elan D
2016-06-01
A fundamental question about essential tremor (ET) is whether its associated pathological changes and disease mechanisms are linkable to a specific brain region. To that end, recent tissue-based studies have made significant strides in elucidating changes in the ET brain. Emerging from these studies is increasing neuropathological evidence linking ET to the cerebellum. These studies have systematically identified a broad range of structural, degenerative changes in the ET cerebellum, spanning across all Purkinje cell compartments. These include the dendritic compartment (where there is an increase in number of Purkinje cell dendritic swellings, a pruning of the dendritic arbor, and a reduction in spine density), the cell body (where, aside from reductions in Purkinje cell linear density in some studies, there is an increase in the number of heterotopic Purkinje cell soma), and the axonal compartment (where a plethora of changes in axonal morphology have been observed, including an increase in the number of thickened axonal profiles, torpedoes, axonal recurrent collaterals, axonal branching, and terminal axonal sprouting). Additional changes, possibly due to secondary remodeling, have been observed in neighboring neuronal populations. These include a hypertrophy of basket cell axonal processes and changes in the distribution of climbing fiber-Purkinje cell synapses. These changes all distinguish ET from normal control brains. Initial studies further indicate that the profile (i.e., constellation) of these changes may separate ET from other diseases of the cerebellum, thereby serving as a disease signature. With the discovery of these changes, a new model of ET has arisen, which posits that it may be a neurodegenerative disorder centered in the cerebellar cortex. These newly emerging neuropathological studies pave the way for anatomically focused, hypothesis-driven, molecular mechanistic studies of disease pathogenesis.
Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison.
Panagiotaki, Eleftheria; Schneider, Torben; Siow, Bernard; Hall, Matt G; Lythgoe, Mark F; Alexander, Daniel C
2012-02-01
This paper aims to identify the minimum requirements for an accurate model of the diffusion MR signal in white matter of the brain. We construct a taxonomy of multi-compartment models of white matter from combinations of simple models for the intra- and the extra-axonal spaces. We devise a new diffusion MRI protocol that provides measurements with a wide range of imaging parameters for diffusion sensitization both parallel and perpendicular to white matter fibres. We use the protocol to acquire data from two fixed rat brains, which allows us to fit, study and compare the different models. The study examines a total of 47 analytic models, including several well-used models from the literature, which we place within the taxonomy. The results show that models that incorporate intra-axonal restriction, such as ball and stick or CHARMED, generally explain the data better than those that do not, such as the DT or the biexponential models. However, three-compartment models which account for restriction parallel to the axons and incorporate pore size explain the measurements most accurately. The best fit comes from combining a full diffusion tensor (DT) model of the extra-axonal space with a cylindrical intra-axonal component of single radius and a third spherical compartment of non-zero radius. We also measure the stability of the non-zero radius intra-axonal models and find that single radius intra-axonal models are more stable than gamma distributed radii models with similar fitting performance. Copyright © 2011 Elsevier Inc. All rights reserved.
Multi-compartmental modeling of SORLA’s influence on amyloidogenic processing in Alzheimer’s disease
2012-01-01
Background Proteolytic breakdown of the amyloid precursor protein (APP) by secretases is a complex cellular process that results in formation of neurotoxic Aβ peptides, causative of neurodegeneration in Alzheimer’s disease (AD). Processing involves monomeric and dimeric forms of APP that traffic through distinct cellular compartments where the various secretases reside. Amyloidogenic processing is also influenced by modifiers such as sorting receptor-related protein (SORLA), an inhibitor of APP breakdown and major AD risk factor. Results In this study, we developed a multi-compartment model to simulate the complexity of APP processing in neurons and to accurately describe the effects of SORLA on these processes. Based on dose–response data, our study concludes that SORLA specifically impairs processing of APP dimers, the preferred secretase substrate. In addition, SORLA alters the dynamic behavior of β-secretase, the enzyme responsible for the initial step in the amyloidogenic processing cascade. Conclusions Our multi-compartment model represents a major conceptual advance over single-compartment models previously used to simulate APP processing; and it identified APP dimers and β-secretase as the two distinct targets of the inhibitory action of SORLA in Alzheimer’s disease. PMID:22727043
NASA Astrophysics Data System (ADS)
Li, Yungui; Li, Qingqing; Chen, Baoliang
2016-03-01
The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants.
Li, Yungui; Li, Qingqing; Chen, Baoliang
2016-03-24
The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants.
NASA Astrophysics Data System (ADS)
Zhang, Huiming; Xie, Yang; Ji, Tongyu
2007-06-01
The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1 ρ can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1 ρ-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/ in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA) 30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1 ρ-weighted image in the presence of water diffusion-exchange. The T1 ρ contrast has substantially higher sensitivity than the conventional T1 contrast in detecting paramagnetic agents, especially at low paramagnetic agent volumetric fractions, low paramagnetic agent concentrations, and low RF amplitudes. Short pulse duration, short pulse recycle delay and efficient paramagnetic relaxation can reduce the influence of water diffusion-exchange on the paramagnetic enhancement. This study paves the way for the design of off-resonance rotating experiments to detect labeled cell clusters/tissue compartments in vivo at a sub-millimeter scale.
Zeng, Qiang; Shi, Feina; Zhang, Jianmin; Ling, Chenhan; Dong, Fei; Jiang, Biao
2018-01-01
Purpose: To present a new modified tri-exponential model for diffusion-weighted imaging (DWI) to detect the strictly diffusion-limited compartment, and to compare it with the conventional bi- and tri-exponential models. Methods: Multi-b-value diffusion-weighted imaging (DWI) with 17 b-values up to 8,000 s/mm2 were performed on six volunteers. The corrected Akaike information criterions (AICc) and squared predicted errors (SPE) were calculated to compare these three models. Results: The mean f0 values were ranging 11.9–18.7% in white matter ROIs and 1.2–2.7% in gray matter ROIs. In all white matter ROIs: the AICcs of the modified tri-exponential model were the lowest (p < 0.05 for five ROIs), indicating the new model has the best fit among these models; the SPEs of the bi-exponential model were the highest (p < 0.05), suggesting the bi-exponential model is unable to predict the signal intensity at ultra-high b-value. The mean ADCvery−slow values were extremely low in white matter (1–7 × 10−6 mm2/s), but not in gray matter (251–445 × 10−6 mm2/s), indicating that the conventional tri-exponential model fails to represent a special compartment. Conclusions: The strictly diffusion-limited compartment may be an important component in white matter. The new model fits better than the other two models, and may provide additional information. PMID:29535599
Switching from a unicellular to multicellular organization in an Aspergillus niger hypha.
Bleichrodt, Robert-Jan; Hulsman, Marc; Wösten, Han A B; Reinders, Marcel J T
2015-03-03
Pores in fungal septa enable cytoplasmic streaming between hyphae and their compartments. Consequently, the mycelium can be considered unicellular. However, we show here that Woronin bodies close ~50% of the three most apical septa of growing hyphae of Aspergillus niger. The incidence of closure of the 9th and 10th septa was even ≥94%. Intercompartmental streaming of photoactivatable green fluorescent protein (PA-GFP) was not observed when the septa were closed, but open septa acted as a barrier, reducing the mobility rate of PA-GFP ~500 times. This mobility rate decreased with increasing septal age and under stress conditions, likely reflecting a regulatory mechanism affecting septal pore diameter. Modeling revealed that such regulation offers effective control of compound concentration between compartments. Modeling also showed that the incidence of septal closure in A. niger had an even stronger impact on cytoplasmic continuity. Cytoplasm of hyphal compartments was shown not to be in physical contact when separated by more than 4 septa. Together, data show that apical compartments of growing hyphae behave unicellularly, while older compartments have a multicellular organization. The hyphae of higher fungi are compartmentalized by porous septa that enable cytosolic streaming. Therefore, it is believed that the mycelium shares cytoplasm. However, it is shown here that the septa of Aspergillus niger are always closed in the oldest part of the hyphae, and therefore, these compartments are physically isolated from each other. In contrast, only part of the septa is closed in the youngest part of the hyphae. Still, compartments in this hyphal part are physically isolated when separated by more than 4 septa. Even open septa act as a barrier for cytoplasmic mixing. The mobility rate through such septa reduces with increasing septal age and under stress conditions. Modeling shows that the septal pore width is set such that its regulation offers maximal control of compound concentration levels within the compartments. Together, we show for the first time that Aspergillus hyphae switch from a unicellular to multicellular organization. Copyright © 2015 Bleichrodt et al.
Imaging regional renal function parameters using radionuclide tracers
NASA Astrophysics Data System (ADS)
Qiao, Yi
A compartmental model is given for evaluating kidney function accurately and noninvasively. This model is cast into a parallel multi-compartment structure and each pixel region (picture element) of kidneys is considered as a single kidney compartment. The loss of radionuclide tracers from the blood to the kidney and from the kidney to the bladder are modelled in great detail. Both the uptake function and the excretion function of the kidneys can be evaluated pixel by pixel, and regional diagnostic information on renal function is obtained. Gamma Camera image data are required by this model and a screening test based renal function measurement is provided. The regional blood background is subtracted from the kidney region of interest (ROI) and the kidney regional rate constants are estimated analytically using the Kuhn-Pucker multiplier method in convex programming by considering the input/output behavior of the kidney compartments. The detailed physiological model of the peripheral compartments of the system, which is not available for most radionuclide tracers, is not required in the determination of the kidney regional rate constants and the regional blood background factors within the kidney ROI. Moreover, the statistical significance of measurements is considered to assure the improved statistical properties of the estimated kidney rate constants. The relations between various renal function parameters and the kidney rate constants are established. Multiple renal function measurements can be found from the renal compartmental model. The blood radioactivity curve and the regional (or total) radiorenogram determining the regional (or total) summed behavior of the kidneys are obtained analytically with the consideration of the statistical significance of measurements using convex programming methods for a single peripheral compartment system. In addition, a new technique for the determination of 'initial conditions' in both the blood compartment and the kidney compartment is presented. The blood curve and the radiorenogram are analyzed in great detail and a physiological analysis from the radiorenogram is given. Applications of Kuhn-Tucker multiplier methods are illustrated for the renal compartmental model in the field of nuclear medicine. Conventional kinetic data analysis methods, the maximum likehood method, and the weighted integration method are investigated and used for comparisons. Moreover, the effect of the blood background subtraction is shown by using the gamma camera images in man. Several functional images are calculated and the functional imaging technique is applied for evaluating renal function in man quantitatively and visually and compared with comments from a physician.
A Three Component Model to Estimate Sensible Heat Flux Over Sparse Shrubs in Nevada
Chehbouni, A.; Nichols, W.D.; Njoku, E.G.; Qi, J.; Kerr, Y.H.; Cabot, F.
1997-01-01
It is now recognized that accurate partitioning of available energy into sensible and latent heat flux is crucial to understanding surface-atmosphere interactions. This issue is more complicated in arid and semi-arid regions where the relative contribution to surface fluxes from the soil and vegetation may vary significantly throughout the day and throughout the season. The objective of this paper is to present a three-component model to estimate sensible heat flux over heterogeneous surfaces. The surface was represented with two adjacent compartments. The first compartment is made up of two components, shrubs and shaded soil; the second compartment consists of bare, unshaded soil. Data collected at two different sites in Nevada during the summers of 1991 and 1992 were used to evaluate model performance. The results show that the present model is sufficiently general to yield satisfactory results for both sites.
Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis.
Wambaugh, John F; Barton, Hugh A; Setzer, R Woodrow
2008-12-01
Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskell Laboratories, USEPA Administrative Record AR-226.1499 (2003)] that administered single oral or iv doses of PFOA to adult male and female rats. PFOA concentration was observed over time; in plasma for some animals and in fecal and urinary excretion for others. There were four rats per dose group, for a total of 36 males and 36 females. Assuming that the PK parameters for each individual within a gender were drawn from the same, biologically varying population, plasma and excretion data were jointly analyzed using a hierarchical framework to separate uncertainty due to measurement error from actual biological variability. Bayesian analysis using Markov Chain Monte Carlo (MCMC) provides tools to perform such an analysis as well as quantitative diagnostics to evaluate and discriminate between models. Starting from a one-compartment PK model with separate clearances to urine and feces, the model was incrementally expanded using Bayesian measures to assess if the expansion was supported by the data. PFOA excretion is sexually dimorphic in rats; male rats have bi-phasic elimination that is roughly 40 times slower than that of the females, which appear to have a single elimination phase. The male and female data were analyzed separately, keeping only the parameters describing the measurement process in common. For male rats, including excretion data initially decreased certainty in the one-compartment parameter estimates compared to an analysis using plasma data only. Allowing a third, unspecified clearance improved agreement and increased certainty when all the data was used, however a significant amount of eliminated PFOA was estimated to be missing from the excretion data. Adding an additional PK compartment reduced the unaccounted-for elimination to amounts comparable to the cage wash. For both sexes, an MCMC estimate of the appropriateness of a model for a given data type, the Deviance Information Criterion, indicated that this two-compartment model was better suited to describing PFOA PK. The median estimate was 142.1 +/- 37.6 ml/kg for the volume of the primary compartment and 1.24 +/- 1.1 ml/kg/h for the clearances of male rats and 166.4 +/- 46.8 ml/kg and 30.3 +/- 13.2 ml/kg/h, respectively for female rats. The estimates for the second compartment differed greatly with gender-volume 311.8 +/- 453.9 ml/kg with clearance 3.2 +/- 6.2 for males and 1400 +/- 2507.5 ml/kg and 4.3 +/- 2.2 ml/kg/h for females. The median estimated clearance was 12 +/- 6% to feces and 85 +/- 7% to urine for male rats and 8 +/- 6% and 77 +/- 9% for female rats. We conclude that the available data may support more models for PFOA PK beyond two-compartments and that the methods employed here will be generally useful for more complicated, including PBPK, models.
Heal, David J; Goddard, Simon; Brammer, Richard J; Hutson, Peter H; Vickers, Steven P
2016-07-01
Compulsive and perseverative behaviour in binge-eating, female, Wistar rats was investigated in a novel food reward/punished responding conflict model. Rats were trained to perform the conditioned avoidance response task. When proficient, the paradigm was altered to a food-associated conflict test by placing a chocolate-filled jar (empty jar for controls) in one compartment of the shuttle box. Entry into the compartment with the jar triggered the conditioning stimulus after a variable interval, and foot-shock 10 seconds later if the rat did not leave. Residence in the 'safe' compartment with no jar did not initiate trials or foot-shocks. By frequently entering the chocolate-paired compartment, binge-eating rats completed their 10 trials more quickly than non-binge controls. Binge-eating rats spent a greater percentage of the session in the chocolate-paired compartment, received foot-shocks more frequently, and tolerated foot-shocks for longer periods; all consistent with compulsive and perseverative behaviour. The d-amphetamine prodrug, lisdexamfetamine, has recently received US approval for the treatment of moderate to severe binge-eating disorder in adults. Lisdexamfetamine (0.8 mg/kg po [d-amphetamine base]) decreased chocolate consumption by binge-eating rats by 55% and markedly reduced compulsive and perseverative responding in the model. These findings complement clinical results showing lisdexamfetamine reduced compulsiveness scores in subjects with binge-eating disorder. © The Author(s) 2016.
Koeppe, R A; Holthoff, V A; Frey, K A; Kilbourn, M R; Kuhl, D E
1991-09-01
The in vivo kinetic behavior of [11C]flumazenil ([11C]FMZ), a non-subtype-specific central benzodiazepine antagonist, is characterized using compartmental analysis with the aim of producing an optimized data acquisition protocol and tracer kinetic model configuration for the assessment of [11C]FMZ binding to benzodiazepine receptors (BZRs) in human brain. The approach presented is simple, requiring only a single radioligand injection. Dynamic positron emission tomography data were acquired on 18 normal volunteers using a 60- to 90-min sequence of scans and were analyzed with model configurations that included a three-compartment, four-parameter model, a three-compartment, three-parameter model, with a fixed value for free plus nonspecific binding; and a two-compartment, two-parameter model. Statistical analysis indicated that a four-parameter model did not yield significantly better fits than a three-parameter model. Goodness of fit was improved for three- versus two-parameter configurations in regions with low receptor density, but not in regions with moderate to high receptor density. Thus, a two-compartment, two-parameter configuration was found to adequately describe the kinetic behavior of [11C]FMZ in human brain, with stable estimates of the model parameters obtainable from as little as 20-30 min of data. Pixel-by-pixel analysis yields functional images of transport rate (K1) and ligand distribution volume (DV"), and thus provides independent estimates of ligand delivery and BZR binding.
de Jesus, E B; de Andrade Lima, L R P
2016-08-01
Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity.
ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins
Puntervoll, Pål; Linding, Rune; Gemünd, Christine; Chabanis-Davidson, Sophie; Mattingsdal, Morten; Cameron, Scott; Martin, David M. A.; Ausiello, Gabriele; Brannetti, Barbara; Costantini, Anna; Ferrè, Fabrizio; Maselli, Vincenza; Via, Allegra; Cesareni, Gianni; Diella, Francesca; Superti-Furga, Giulio; Wyrwicz, Lucjan; Ramu, Chenna; McGuigan, Caroline; Gudavalli, Rambabu; Letunic, Ivica; Bork, Peer; Rychlewski, Leszek; Küster, Bernhard; Helmer-Citterich, Manuela; Hunter, William N.; Aasland, Rein; Gibson, Toby J.
2003-01-01
Multidomain proteins predominate in eukaryotic proteomes. Individual functions assigned to different sequence segments combine to create a complex function for the whole protein. While on-line resources are available for revealing globular domains in sequences, there has hitherto been no comprehensive collection of small functional sites/motifs comparable to the globular domain resources, yet these are as important for the function of multidomain proteins. Short linear peptide motifs are used for cell compartment targeting, protein–protein interaction, regulation by phosphorylation, acetylation, glycosylation and a host of other post-translational modifications. ELM, the Eukaryotic Linear Motif server at http://elm.eu.org/, is a new bioinformatics resource for investigating candidate short non-globular functional motifs in eukaryotic proteins, aiming to fill the void in bioinformatics tools. Sequence comparisons with short motifs are difficult to evaluate because the usual significance assessments are inappropriate. Therefore the server is implemented with several logical filters to eliminate false positives. Current filters are for cell compartment, globular domain clash and taxonomic range. In favourable cases, the filters can reduce the number of retained matches by an order of magnitude or more. PMID:12824381
Ex-ORISKANY Artificial Reef Project: Ecological Risk Assessment
2006-01-25
preferences used by PRAM and the Trophic Level determined by diet for each compartment modeled in the food chain...grouping organisms according to their habitat and diet preferences , PRAM also provided output to evaluate exposure point concentrations for the pelagic...dietary preferences used by PRAM (version 1.4C) and the Trophic Level determined by diet for each compartment modeled in the food chain. PRAM Default
Isolation of the Lateral Border Recycling Compartment using a diaminobenzidine-induced density shift
Sullivan, David P.; Rüffer, Claas; Muller, William A.
2014-01-01
The migration of leukocytes across the endothelium and into tissue is critical to mounting an inflammatory response. The Lateral Border Recycling Compartment (LBRC), a complex vesicular-tubule invagination of the plasma membrane found at endothelial cell borders, plays an important role in the this process. Although a few proteins have been shown to be present in the LBRC, no unique marker is known. Here we detail methods that can be used to characterize a subcellular compartment that lacks an identifying marker. Initial characterization of the LBRC was performed using standard subcellular fractionation with sucrose gradients and took advantage of the observation that the compartment migrated at a lower density than other membrane compartments. To isolate larger quantities of the compartment, we modified a classic technique known as a diaminobenzidine (DAB)-induced density shift. The DAB-induced density shift allowed for specific isolation of membranes labeled with HRP conjugated antibody. Because the LBRC could be differentially labeled at 4°C and 37°C, we were able to identify proteins that are enriched in the compartment, despite lacking a unique marker. These methods serve as a model to others studying poorly characterized compartments and organelles and are applicable to a wide variety of biological systems. PMID:24915828
Ackerman, D.J.
1995-01-01
Quantitative estimates of ground-water flow directions and traveltimes for advective flow were developed for the regional aquifer system of the eastern Snake River Plain, Idaho. The work included: (1) descriptions of compartments in the aquifer that function as intermediate and regional flow systems, (2) descriptions of pathlines for flow originating at or near the water table, and (3) quantitative estimates of traveltimes for advective transport originating at or near the water table. A particle-tracking postprocessing program was used to compute pathlines on the basis of output from an existing three-dimensional steady-state flow model. The flow model uses 1980 conditions to approximate average annual conditions for 1950-80. The advective transport model required additional information about the nature of flow across model boundaries, aquifer thickness, and porosity. Porosity of two types of basalt strata has been reported for more than 1,500 individual cores from test holes, wells, and outcrops near the south side of the Idaho National Engineering Laboratory. The central 80 percent of samples had porosities of 0.08 to 0.25, the central 50 percent of samples, O. 11 to 0.21. Calibration of the model involved choosing a value for porosity that yielded the best solution. Two radiologic contaminants, iodine-129 and tritium, both introduced to the flow system about 40 years ago, are relatively conservative tracers. Iodine- 129 was considered to be more useful because of a lower analytical detection limit, longer half-life, and longer flow path. The calibration value for porosity was 0.21. Most flow in the aquifer is contained within a regional-scale compartment and follows paths that discharge to the Snake River downstream from Milner Dam. Two intermediate-scale compartments exist along the southeast side of the aquifer and near Mud Lake.One intermediate-scale compartment along the southeast side of the aquifer discharges to the Snake River near American Fails Reservoir and covers an area of nearly 1,000 square miles. This compartment, which receives recharge from an area of intensive surface-water irrigation, is apparently fairly stable. The other intermediate-scale compartment near Mud Lake covers an area of 300 square miles. The stability and size of this compartment are uncertain, but are assumed to be in a state of change. Traveltimes for advective flow from the water table to discharge points in the regional compartment ranged from 12 to 350 years for 80 percent of the particles; in the intermediate-scale flow compartment near American Falls Reservoir, from 7 to 60 years for 80 percent of the particles; and in the intermediate-scale compartment near Mud Lake, from 25 to 100 years for 80 percent of the particles. Traveltimes are sensitive to porosity and assumptions regarding the importance of the strength of internal sinks, which represent ground-water pumpage. A decrease in porosity results in shorter traveltimes but not a uniform decrease in traveltime, because the porosity and thickness is different in each model layer. Most flow was horizontal and occurred in the top 500 feet of the aquifer. An important limitation of the model is the assumption of steady-state flow. The most recent trend in the flow system has been a decrease in recharge since 1987 because of an extended drought and changes in land use. A decrease in flow through the system will result in longer traveltimes than those predicted for a greater flow. Because the interpretation of the model was limited to flow on a larger scale, and did not consider individual wells or well fields, the interpretations were not seriously limited by the discretization of well discharge. The interpretations made from this model also were limited by the discretization of the major discharge areas. Near discharge areas, pathlines might not be representative at the resolution of the grid. Most improvement in the estimates of ground-waterflow directions and travelt
Kodati, Devender; Kotakonda, Harish Kaushik; Yellu, Narsimhareddy
2017-08-01
Olmesartan medoxomil is an orally given angiotensin II receptor antagonist indicated for the treatment of hypertension. The aim of the study was to establish a population pharmacokinetic model for olmesartan, the active metabolite of olmesartan medoxomil, in Indian hypertensive patients, and to evaluate effects of covariates on the volume of distribution (V/F) and oral clearance (CL/F) of olmesartan. The population pharmacokinetic model for olmesartan was developed using Phoenix NLME 1.3 with a non-linear mixed-effect model. Bootstrap and visual predictive check were used simultaneously to validate the final population pharmacokinetic models. The covariates included age, sex, body surface area (BSA), bodyweight, height, creatinine clearance (CL CR ) as an index of renal function and liver parameters as indices of hepatic function. A total of 205 olmesartan plasma sample concentrations from 69 patients with hypertension were collected in this study. The pharmacokinetic data of olmesartan was well described by a two-compartment linear pharmacokinetic model with first-order absorption and an absorption lag-time. The mean values of CL/F and V/F of olmesartan in the patients were 0.31565 L/h and 44.5162 L, respectively. Analysis of covariates showed that age and CL CR were factors influencing the clearance of olmesartan and the volume of distribution of olmesartan was dependent on age and BSA. The final population pharmacokinetic model was demonstrated to be appropriate and effective and it can be used to assess the pharmacokinetic parameters of olmesartan in Indian patients with hypertension.
Fields, David A; Allison, David B
2012-08-01
The objective of this study was to determine the accuracy, precision, bias, and reliability of percent fat (%fat) determined by air-displacement plethysmography (ADP) with the pediatric option against the four-compartment model in 31 children (4.1 ± 1.2 years, 103.3 ± 10.2 cm, 17.5 ± 3.4 kg). %Fat was determined by (BOD POD Body Composition System; COSMED USA, Concord, CA) with the pediatric option. Total body water (TBW) was determined by isotope dilution ((2)H(2)O; 0.2 g/kg) while bone mineral was determined by dual-energy X-ray absorptiometry (DXA) (Lunar iDXA v13.31; GE, Fairfield, CT and analyzed using enCore 2010 software). The four-compartment model by Lohman was used as the criterion measure of %fat. The regression for %fat by ADP vs. %fat by the four-compartment model did not deviate from the line of identity where: y = 0.849(x) + 4.291. ADP explained 75.2% of the variance in %fat by the four-compartment model while the standard error of the estimate (SEE) was 2.09 %fat. The Bland-Altman analysis showed %fat by ADP did not exhibit any bias across the range of fatness (r = 0.04; P = 0.81). The reliability of ADP was assessed by the coefficient of variation (CV), within-subject SD, and Cronbach's α. The CV was 3.5%, within-subject SD was 0.9%, and Cronbach's α was 0.95. In conclusion, ADP with the pediatric option is accurate, precise, reliable, and without bias in estimating %fat in children 2-6 years old.
Vaccination intervention on epidemic dynamics in networks
NASA Astrophysics Data System (ADS)
Peng, Xiao-Long; Xu, Xin-Jian; Fu, Xinchu; Zhou, Tao
2013-02-01
Vaccination is an important measure available for preventing or reducing the spread of infectious diseases. In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments is studied on Watts-Strogatz small-world, Barabási-Albert scale-free, and random scale-free networks. The epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution. Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic treatment upon diseases in structured populations.
Modelling dimercaptosuccinic acid (DMSA) plasma kinetics in humans.
van Eijkeren, Jan C H; Olie, J Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Meulenbelt, Jan; Hunault, Claudine C
2016-11-01
No kinetic models presently exist which simulate the effect of chelation therapy on lead blood concentrations in lead poisoning. Our aim was to develop a kinetic model that describes the kinetics of dimercaptosuccinic acid (DMSA; succimer), a commonly used chelating agent, that could be used in developing a lead chelating model. This was a kinetic modelling study. We used a two-compartment model, with a non-systemic gastrointestinal compartment (gut lumen) and the whole body as one systemic compartment. The only data available from the literature were used to calibrate the unknown model parameters. The calibrated model was then validated by comparing its predictions with measured data from three different experimental human studies. The model predicted total DMSA plasma and urine concentrations measured in three healthy volunteers after ingestion of DMSA 10 mg/kg. The model was then validated by using data from three other published studies; it predicted concentrations within a factor of two, representing inter-human variability. A simple kinetic model simulating the kinetics of DMSA in humans has been developed and validated. The interest of this model lies in the future potential to use it to predict blood lead concentrations in lead-poisoned patients treated with DMSA.
NASA Astrophysics Data System (ADS)
Ichihara, Takashi; George, Richard T.; Silva, Caterina; Lima, Joao A. C.; Lardo, Albert C.
2011-02-01
The purpose of this study was to develop a quantitative method for myocardial blood flow (MBF) measurement that can be used to derive accurate myocardial perfusion measurements from dynamic multidetector computed tomography (MDCT) images by using a compartment model for calculating the first-order transfer constant (K1) with correction for the capillary transit extraction fraction (E). Six canine models of left anterior descending (LAD) artery stenosis were prepared and underwent first-pass contrast-enhanced MDCT perfusion imaging during adenosine infusion (0.14-0.21 mg/kg/min). K1 , which is the first-order transfer constant from left ventricular (LV) blood to myocardium, was measured using the Patlak plot method applied to time-attenuation curve data of the LV blood pool and myocardium. The results were compared against microsphere MBF measurements, and the extraction fraction of contrast agent was calculated. K1 is related to the regional MBF as K1=EF, E=(1-exp(-PS/F)), where PS is the permeability-surface area product and F is myocardial flow. Based on the above relationship, a look-up table from K1 to MBF can be generated and Patlak plot-derived K1 values can be converted to the calculated MBF. The calculated MBF and microsphere MBF showed a strong linear association. The extraction fraction in dogs as a function of flow (F) was E=(1-exp(-(0.2532F+0.7871)/F)) . Regional MBF can be measured accurately using the Patlak plot method based on a compartment model and look-up table with extraction fraction correction from K1 to MBF.
Population Pharmacokinetics of Cladribine in Patients with Multiple Sclerosis.
Savic, Radojka M; Novakovic, Ana M; Ekblom, Marianne; Munafo, Alain; Karlsson, Mats O
2017-10-01
The aims of this study were to characterize the concentration-time course of cladribine (CdA) and its main metabolite 2-chloroadenine (CAde), estimate interindividual variability in pharmacokinetics (PK), and identify covariates explaining variability in the PK of CdA. This population PK analysis was based on the combined dataset from four clinical studies in patients with multiple sclerosis (MS): three phase I studies, including one food and one drug-drug interaction study, and one phase III clinical study. Plasma and urine concentration data of CdA and CAde were modeled simultaneously. The analysis comprised a total of 2619 CdA and CAde plasma and urine concentration observations from 173 patients with MS who received an intravenous infusion or oral tablet doses of CdA as a single agent or in combination with interferon (IFN) β-1a. CdA PK data were best described by a three-compartment model, while a one-compartment model best described the PK of CAde. CdA renal clearance (CL R ) was correlated with creatinine clearance (CL CR ), predicting a decrease in the total clearance of 19%, 30% and 40% for patients with mild (CL CR = 65 ml/min), moderate (CL CR = 40 ml/min) and severe (CL CR = 20 ml/min) renal impairment, respectively. Food decreased the extent of CdA absorption by 11.2% and caused an absorption delay. Coadministration with IFNβ-1a was found to increase non-CL R (CL NR ) by 21%, resulting in an increase of 11% in total clearance. Both CdA and CAde displayed linear PK after intravenous and oral administration of CdA, with CdA renal function depending on CL CR . Trial registration number for study 25643: NCT00213135.
Li, W B; Karpas, Z; Salonen, L; Kurttio, P; Muikku, M; Wahl, W; Höllriegl, V; Hoeschen, C; Oeh, U
2009-06-01
To predict uranium in human hair due to chronic exposure through drinking water, a compartment representing human hair was added into the uranium biokinetic model developed by the International Commission on Radiological Protection (ICRP). The hair compartmental model was used to predict uranium excretion in human hair as a bioassay indicator due to elevated uranium intakes. Two excretion pathways, one starting from the compartment of plasma and the other from the compartment of intermediate turnover soft tissue, are assumed to transfer uranium to the compartment of hair. The transfer rate was determined from reported uranium contents in urine and in hair, taking into account the hair growth rate of 0.1 g d(-1). The fractional absorption in the gastrointestinal tract of 0.6% was found to fit best to describe the measured uranium levels among the users of drilled wells in Finland. The ingestion dose coefficient for (238)U, which includes its progeny of (234)Th, (234m)Pa, and (234)Pa, was calculated equal to 1.3 x 10(-8) Sv Bq(-1) according to the hair compartmental model. This estimate is smaller than the value of 4.5 x 10(-8) Sv Bq(-1) published by ICRP for the members of the public. In this new model, excretion of uranium through urine is better represented when excretion to the hair compartment is accounted for and hair analysis can provide a means for assessing the internal body burden of uranium. The model is applicable for chronic exposure as well as for an acute exposure incident. In the latter case, the hair sample can be collected and analyzed even several days after the incident, whereas urinalysis requires sample collection shortly after the exposure. The model developed in this study applies to ingestion intakes of uranium.
A three-compartment model of osmotic water exchange in the lung microvasculature.
Seale, K T; Harris, T R
2000-08-01
A bolus injection of hypertonic NaCl into the pulmonary arterial circulation of an isolated perfused dog lung causes the osmotic movement of water first into, and then out of the capillary. The associated changes in blood constituent concentrations and density are referred to as the osmotic transient (OT). Measurement of the sound conduction velocity of effluent blood during an OT is a highly sensitive way to monitor water movement between the vascular and extravascular spaces. It was our objective to develop a mathematical model that adequately describes this transient change in the sound conduction velocity and evaluate its application under conditions of homogeneous and heterogeneous capillary flow distributions. The model accounts for osmotic water exchange between the capillary and two parallel extravascular compartments, and includes as parameters the osmotic conductances (sigmaK1 ,sigmaK2) of the two compartments. The osmotic conductance parameters incorporate the filtration coefficient for water and reflection coefficient for salt for the two pathways of water exchange. The partition of total extravascular lung water (EVLW) between the two extravascular compartments is a third parameter of the model. The homogeneous model parameter estimates (per gram wet lung weight +/-95% confidence limits) from the best-fit analysis of a typical curve were sigmaK1=2.15 +/-0.07, sigmaK2 = 0.03 + 0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)] and V1 = 23.83+/-0.12 ml, with a coefficient of variation (CV) of 0.08. The heterogeneous parameter estimates for a capillary transit time distribution with mean transit time (MTTc) = 1.72 s, and relative dispersion (RDc) = 0.35 were KI = 2.38+/-0.05, or K2 = 0.03+/-0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)], V1 = 23.91+/-0.08 ml, and CV=0.05. EVLW was 42.1 ml for both models. We conclude that the three-compartment mathematical model adequately describes a typical OT under both homogeneous and heterogeneous blood flow assumptions.
Perbellini, L; Mozzo, P; Brugnone, F; Zedde, A
1986-01-01
The physiologicomathematical model with eight compartments described allows the simulation of the absorbtion, distribution, biotransformation, excretion of an organic solvent, and the kinetics of its metabolites. The usual compartments of the human organism (vessel rich group, muscle group, and fat group) are integrated with the lungs, the metabolising tissues, and three other compartments dealing with the metabolic kinetics (biotransformation, water, and urinary compartments). The findings obtained by mathematical simulation of exposure to n-hexane were compared with data previously reported. The concentrations of n-hexane in alveolar air and in venous blood described both in experimental and occupational exposures provided a substantial validation for the data obtained by mathematical simulation. The results of the urinary excretion of 2,5-hexanedione given by the model were in good agreement with data already reported. The simulation of an exposure to n-hexane repeated five days a week suggested that the solvent accumulates in the fat tissue. The half life of n-hexane in fat tissue equalled 64 hours. The kinetics of 2,5-hexanedione resulting from the model suggest that occupational exposure results in the presence of large amounts of 2,5-hexanedione in the body for the whole working week. PMID:3790456
Li, Yungui; Li, Qingqing; Chen, Baoliang
2016-01-01
The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants. PMID:27009902
Haem, Elham; Harling, Kajsa; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf; Karlsson, Mats O
2017-02-01
One important aim in population pharmacokinetics (PK) and pharmacodynamics is identification and quantification of the relationships between the parameters and covariates. Lasso has been suggested as a technique for simultaneous estimation and covariate selection. In linear regression, it has been shown that Lasso possesses no oracle properties, which means it asymptotically performs as though the true underlying model was given in advance. Adaptive Lasso (ALasso) with appropriate initial weights is claimed to possess oracle properties; however, it can lead to poor predictive performance when there is multicollinearity between covariates. This simulation study implemented a new version of ALasso, called adjusted ALasso (AALasso), to take into account the ratio of the standard error of the maximum likelihood (ML) estimator to the ML coefficient as the initial weight in ALasso to deal with multicollinearity in non-linear mixed-effect models. The performance of AALasso was compared with that of ALasso and Lasso. PK data was simulated in four set-ups from a one-compartment bolus input model. Covariates were created by sampling from a multivariate standard normal distribution with no, low (0.2), moderate (0.5) or high (0.7) correlation. The true covariates influenced only clearance at different magnitudes. AALasso, ALasso and Lasso were compared in terms of mean absolute prediction error and error of the estimated covariate coefficient. The results show that AALasso performed better in small data sets, even in those in which a high correlation existed between covariates. This makes AALasso a promising method for covariate selection in nonlinear mixed-effect models.
The pharmacokinetics of oxypurinol in people with gout
Stocker, Sophie L; McLachlan, Andrew J; Savic, Radojka M; Kirkpatrick, Carl M; Graham, Garry G; Williams, Kenneth M; Day, Richard O
2012-01-01
AIMS Our aim was to identify and quantify the sources of variability in oxypurinol pharmacokinetics and explore relationships with plasma urate concentrations. METHODS Non-linear mixed effects modelling was applied to concentration–time data from 155 gouty patients with demographic, medical history and renal transporter genotype information. RESULTS A one compartment pharmacokinetic model with first order absorption best described the oxypurinol concentration–time data. Renal function and concomitant medicines (diuretics and probenecid), but not transporter genotype, significantly influenced oxypurinol pharmacokinetics and reduced the between subject variability in the apparent clearance of oxypurinol (CL/Fm) from 65% to 29%. CL/Fm for patients with normal, mild, moderate and severe renal impairment was 1.8, 0.6, 0.3 and 0.18 l h−1, respectively. Model predictions showed a relationship between plasma oxypurinol and urate concentrations and failure to reach target oxypurinol concentrations using suggested allopurinol dosing guidelines. CONCLUSIONS In conclusion, this first established pharmacokinetic model provides a tool to achieve target oxypurinol plasma concentrations, thereby optimizing the effectiveness and safety of allopurinol therapy in gouty patients with various degrees of renal impairment. PMID:22300439
Wang, M.; Ford, R.M.; Harvey, R.W.
2008-01-01
The inter-relationship of growth and chemotactic response exhibited by two common soil-inhabiting bacteria was investigated to determine its impact on bacterial migration. Filter-chambers were used to simulate aquifer sediments characterized by vertical gradients of organic contaminants in both artificial groundwater flow systems in the laboratory and within the screened intervals of observation wells in a sandy aquifer. A labile model contaminant (acetate) was added to the top compartments of the three-part chambers, whereas bacteria with a demonstrated propensity to grow on and chemotactically respond to acetate were introduced to the lower compartments, The motility and chemotactic response of Pseudomonas putida F1 resulted in 40 to 110% greater abundances in the upper compartments and concomitant 22 to 70% depletions in the lower compartments relative to the nonchemotactic controls over 2 days. Bacteria were in greatest abundance within the sand plug that separated the upper and lower compartments where sharp acetate gradients induced a strong chemotactic response. This observation was consistent with predictions from a mathematical model. In agreement with the laboratory results, the down-well filter-chamber incubations with Pseudomonas stutzeri in the aquifer indicated that 91% fewer bacteria resided in the lower compartment than the control experiment without acetate at 15 h. The combination of chemotaxis and growth greatly accelerated the migration of bacteria toward and subsequent abundance at the higher acetate concentration. ?? 2008 American Chemical Society.
DOT National Transportation Integrated Search
1976-03-01
The spectral characteristics of the urban center -- at the level of the family, the functional organized units of society, and the essential compartment balances of the urban center -- are spelled out in greater detail. These compartments are food, m...
ASEI-SEIR model with vaccination for dengue control in Shah Alam, Malaysia
NASA Astrophysics Data System (ADS)
Tay, Chai Jian; Teh, Su Yean; Koh, Hock Lye
2018-03-01
Epidemiology modelling provides an understanding of the underlying mechanisms that influence the spread of dengue disease. The most common mathematical models used are the compartment models abbreviated by ASI-SIR, ASEI-SIR and ASEI-SEIR. This paper starts with a discussion of these common models, followed by the derivation of the basic reproduction number (Ro) of each model. The value of Ro in ASI-SIR model is higher than that in ASEI-SIR and ASEI-SEIR models due to the exclusion of exposed adult mosquito in ASI-SIR model. Further, sensitivity analysis on Ro indicates that natural mortality and biting rate of adult mosquito have significant effects on dengue transmission dynamics. Next, an in-house mathematical model named MOSSEIR is developed, based upon the ASEI-SEIR compartment model, in which both mosquito and human populations are considered. The mosquito population is divided into four compartments consisting of aquatic mosquito, susceptible, exposed and infected adult mosquito; while the human population is classified into four compartments comprising susceptible, exposed, infected and recovered human. MOSSEIR is then used to replicate the number of dengue cases in 2010 for Shah Alam, a capital city of Selangor with high incidence of dengue fever. Finally, effectiveness of control strategies, including mosquito breeding sites control, fogging and vaccination, are evaluated for Shah Alam. Simulation results indicate that these three control strategies can significantly reduce dengue transmission, in theory. In reality, the effectiveness of traditional control methods such as elimination of mosquito breeding sites and fogging is below expectation due to non-compliance. Therefore, the adoption of a safe, effective and affordable vaccine remains the best prospect for controlling dengue.
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M
2017-10-03
In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wegrzyński, Wojciech; Konecki, Marek
2018-01-01
This paper presents results of CFD and scale modelling of the flow of heat and smoke inside and outside of a compartment, in case of fire. Estimation of mass flow out of a compartment is critical, as it is the boundary condition in further considerations related to the exhaust of the smoke from a building - also in analysis related to the performance of natural ventilation in wind conditions. Both locations of the fire and the size of compartment were addressed as possible variables, which influence the mass and the temperature of smoke that leaves the room engulfed in fire. Results of the study show small to none influence of both size of the compartment and the location of the fire, on the mass flow of smoke exiting the room. On the same time, both of these parameters influence the temperature of the smoke - in larger compartments lower average temperatures of the smoke layer, but higher maximum values were observed. Results of this study may be useful also in the determination of the worst case scenarios for structural analysis, or in the investiga tion of the spread of fire through the compartment. Based on the results presented in this study, researchers can attribute an expert judgement choice of fire location, as a single scenario that is representative of a larger amount of probable scenarios.
Lumped Parameter Models of the Central Nervous System for VIIP Research
NASA Technical Reports Server (NTRS)
Vera, J.; Mulugeta, L.; Nelson, E. S.; Raykin, J.; Feola, A.; Gleason, R.; Samuels, B.; Myers, J. G.
2015-01-01
INTRODUCTION: Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit, such as to Mars and asteroids, expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome [1]. It has been hypothesized that the headward shift of cerebral spinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn induces VIIP syndrome through biomechanical pathways [1, 2]. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the realted IWS abstracts submitted by Nelson et al., Feola et al. and Ethier et al. METHODS: We have developed a nine compartment CNS model (Figure 1) capable of both time-dependent and steady state fluid transport simulations, based on the works of Stevens et al. [3]. The breakdown of compartments within the model includes: vascular (3), CSF (2), brain (1) and extracranial (3). The boundary pressure in the Central Arteries [A] node is prescribed using an oscillating pressure function PA(t) simulating the carotid pulsatile pressure wave as developed by Linninger et al. [4]. For each time step, pressures are integrated through time using an adaptive-timestep 4th and 5th order Runga-Kutta solver. Once pressures are found, constitutive equations are used to solve for flowrates (Q) between each compartment. In addition to fluid flow between the different compartments, compliance (C) interactions between neighboring compartments are represented. We are also developing a second CNS model based on the works of Linninger et al. [4] which takes a more granular approach to represent the interactions of the intracranial and spinal compartments with the inclusion of arteries, arterioles, capillaries, venules, veins, venous sinus, and ventricles. The flow through the arteries, veins and CSF compartments are governed by continuity, momentum and distensibility balance equations. Furthermore, unlike the Stevens et al. approach, the Monro-Kellie doctrine of constant cranial volume and the bi-phasic nature of the brain parenchyma are implemented. These features appear to be more consistent with the physiologic and anatomical behavior of the CNS, and follow a modeling philosophy similar to the lumped parameter eye model that is intended to be integrated with the CNS model. However, Linninger’s approach has never been implemented to include hydrostatic gradient and microgravity simulation capabilities. Therefore, we aim at implement this modeling approach for spaceflight simulations and assess its overall applicability to VIIP research. OBJECTIVES: We will present verification and validation test results for both models, as well as head-to-head comparison to explore their strengths and limitations with respect to mathematical implementation and physiological significance for VIIP research. In doing so, we hope to provide some guidance to the HRP research community on how to appropriately leverage lumped parameter models for space biomedical research.
Membrane order in the plasma membrane and endocytic recycling compartment.
Iaea, David B; Maxfield, Frederick R
2017-01-01
The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.
Membrane order in the plasma membrane and endocytic recycling compartment
Iaea, David B.; Maxfield, Frederick R.
2017-01-01
The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles. PMID:29125865
Laffon, E; Calcagni, M L; Galli, G; Giordano, A; Capotosti, A; Marthan, R; Indovina, L
2018-03-27
Patlak's graphical analysis can provide tracer net influx constant (Ki) with limitation of assuming irreversible tracer trapping, that is, release rate constant (k b ) set to zero. We compared linear Patlak's analysis to non-linear three-compartment three-parameter kinetic model analysis (3P-KMA) providing Ki, k b , and fraction of free 18 F-FDG in blood and interstitial volume (V b ). Dynamic PET data of 21 lung cancer patients were retrospectively analyzed, yielding for each patient an 18 F-FDG input function (IF) and a tissue time-activity curve. The former was fitted with a three-exponentially decreasing function, and the latter was fitted with an analytical formula involving the fitted IF data (11 data points, ranging 7.5-57.5 min post-injection). Bland-Altman analysis was used for Ki comparison between Patlak's analysis and 3P-KMA. Additionally, a three-compartment five-parameter KMA (5P-KMA) was implemented for comparison with Patlak's analysis and 3P-KMA. We found that 3P-KMA Ki was significantly greater than Patlak's Ki over the whole patient series, + 6.0% on average, with limits of agreement of ± 17.1% (95% confidence). Excluding 8 out of 21 patients with k b > 0 deleted this difference. A strong correlation was found between Ki ratio (=3P-KMA/Patlak) and k b (R = 0.801; P < 0.001). No significant difference in Ki was found between 3P-KMA versus 5P-KMA, and between 5P-KMA versus Patlak's analysis, with limits of agreement of ± 23.0 and ± 31.7% (95% confidence), respectively. Comparison between 3P-KMA and Patlak's analysis significantly showed that the latter underestimates Ki because it arbitrarily set k b to zero: the greater the k b value, the greater the Ki underestimation. This underestimation was not revealed when comparing 5P-KMA and Patlak's analysis. We suggest that further studies are warranted to investigate the 3P-KMA efficiency in various tissues showing greater 18 F-FDG trapping reversibility than lung cancer lesions.
Shidahara, Miho; Watabe, Hiroshi; Tashiro, Manabu; Okamura, Nobuyuki; Furumoto, Shozo; Watanuki, Shoichi; Furukawa, Katsutoshi; Arakawa, Yuma; Funaki, Yoshihito; Iwata, Ren; Gonda, Kohsuke; Kudo, Yukitsuka; Arai, Hiroyuki; Ishiwata, Kiichi; Yanai, Kazuhiko
2015-09-01
The purpose of this study was to compare two amyloid imaging agents, [(11)C]BF227 and [(18)F]FACT (derivative from [(11)C]BF227) through quantitative pharmacokinetics analysis in human brain. Positron emission tomography studies were performed on six elderly healthy control (HC) subjects and seven probable Alzheimer's disease (AD) patients with [(11)C]BF227 and 10 HC subjects and 10 probable AD patients with [(18)F]FACT. Data from nine regions of interest were analyzed by several approaches, namely non-linear least-squared fitting methods with arterial input functions (one-tissue compartment model(1TCM), two-tissue compartment model (2TCM)), Logan plot, and linearized methods with reference region (Reference Logan plot (RefLogan), MRTM0, MRTM2). We also evaluated SUV and SUVR for both tracers. The parameters estimated by several approaches were compared between two tracers for detectability of differences between HC and AD patients. For [(11)C]BF227, there were no significant difference of VT (2TCM, 1TCM) and SUV in all regions (Student t-test; p<0.05) and significant differences in the DVRs (Logan, RefLogan, and MRTM2) and SUVRs in six neocortical regions (p<0.05) between the HC and AD groups. For [(18)F]FACT, significant differences in DVRs (RefLogan, MRTM0, and MRTM2) were observed in more than four neocortical regions between the HC and AD groups (p<0.05), and the significant differences were found in SUVRs for two neocortical regions (inferior frontal coretex and lateral temporal coretex). Our results showed that both tracers can clearly distinguish between HC and AD groups although the pharmacokinetics and distribution patterns in brain for two tracers were substantially different. This study revealed that although the PET amyloid imaging agents [(11)C]BF227 and [(18)F]FACT have similar chemical and biological properties, they have different pharmacokinetics, and caution must be paid for usage of the tracers. Copyright © 2015 Elsevier Inc. All rights reserved.
A hybrid continuous-discrete method for stochastic reaction-diffusion processes.
Lo, Wing-Cheong; Zheng, Likun; Nie, Qing
2016-09-01
Stochastic fluctuations in reaction-diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method.
76 FR 10476 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Crew-Rest Compartment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
...\\ in interior volume, the design must ensure the ability to contain a fire likely to occur within the... or unusual design features associated with installation of an overhead crew-rest (OCR) compartment... this design feature. These special conditions contain the additional safety standards that the...
Groenendaal, D; Freijer, J; de Mik, D; Bouw, M R; Danhof, M; de Lange, E C M
2007-01-01
Background and purpose: The aim was to investigate the influence of biophase distribution including P-glycoprotein (Pgp) function on the pharmacokinetic-pharmacodynamic correlations of morphine's actions in rat brain. Experimental approach: Male rats received a 10-min infusion of morphine as 4 mg kg−1, combined with a continuous infusion of the Pgp inhibitor GF120918 or vehicle, 10 or 40 mg kg−1. EEG signals were recorded continuously and blood samples were collected. Key results: Profound hysteresis was observed between morphine blood concentrations and effects on the EEG. Only the termination of the EEG effect was influenced by GF120918. Biophase distribution was best described with an extended catenary biophase distribution model, with a sequential transfer and effect compartment. The rate constant for transport through the transfer compartment (k1e) was 0.038 min−1, being unaffected by GF120918. In contrast, the rate constant for the loss from the effect compartment (keo) decreased 60% after GF120918. The EEG effect was directly related to concentrations in the effect compartment using the sigmoidal Emax model. The values of the pharmacodynamic parameters E0, Emax, EC50 and Hill factor were 45.0 μV, 44.5 μV, 451 ng ml−1 and 2.3, respectively. Conclusions and implications: The effects of GF120918 on the distribution kinetics of morphine in the effect compartment were consistent with the distribution in brain extracellular fluid (ECF) as estimated by intracerebral microdialysis. However, the time-course of morphine concentrations at the site of action in the brain, as deduced from the biophase model, is distinctly different from the brain ECF concentrations. PMID:17471181
Morris, Denise; Podolski, Joseph; Kirsch, Alan; Wiehle, Ronald; Fleckenstein, Lawrence
2011-12-01
Telapristone is a selective progesterone antagonist that is being developed for the long-term treatment of symptoms associated with endometriosis and uterine fibroids. The population pharmacokinetics of telapristone (CDB-4124) and CDB-4453 was investigated using nonlinear mixed-effects modeling. Data from two clinical studies (n = 32) were included in the analysis. A two-compartment (parent) one compartment (metabolite) mixture model (with two populations for apparent clearance) with first-order absorption and elimination adequately described the pharmacokinetics of telapristone and CDB-4453. Telapristone was rapidly absorbed with an absorption rate constant (Ka) of 1.26 h(-1). Moderate renal impairment resulted in a 74% decrease in Ka. The population estimates for oral clearance (CL/F) for the two populations were 11.6 and 3.34 L/h, respectively, with 25% of the subjects being allocated to the high-clearance group. Apparent volume of distribution for the central compartment (V2/F) was 37.4 L, apparent inter-compartmental clearance (Q/F) was 21.9 L/h, and apparent peripheral volume of distribution for the parent (V4/F) was 120 L. The ratio of the fraction of telapristone converted to CDB-4453 to the distribution volume of CDB-4453 (Fmet(est)) was 0.20/L. Apparent volume of distribution of the metabolite compartment (V3/F) was fixed to 1 L and apparent clearance of the metabolite (CLM/F) was 2.43 L/h. A two-compartment parent-metabolite model adequately described the pharmacokinetics of telapristone and CDB-4453. The clearance of telapristone was separated into two populations and could be the result of metabolism via polymorphic CYP3A5.
Kashiha, Mohammad Amin; Green, Angela R; Sales, Tatiana Glogerley; Bahr, Claudia; Berckmans, Daniel; Gates, Richard S
2014-10-01
Image processing systems have been widely used in monitoring livestock for many applications, including identification, tracking, behavior analysis, occupancy rates, and activity calculations. The primary goal of this work was to quantify image processing performance when monitoring laying hens by comparing length of stay in each compartment as detected by the image processing system with the actual occurrences registered by human observations. In this work, an image processing system was implemented and evaluated for use in an environmental animal preference chamber to detect hen navigation between 4 compartments of the chamber. One camera was installed above each compartment to produce top-view images of the whole compartment. An ellipse-fitting model was applied to captured images to detect whether the hen was present in a compartment. During a choice-test study, mean ± SD success detection rates of 95.9 ± 2.6% were achieved when considering total duration of compartment occupancy. These results suggest that the image processing system is currently suitable for determining the response measures for assessing environmental choices. Moreover, the image processing system offered a comprehensive analysis of occupancy while substantially reducing data processing time compared with the time-intensive alternative of manual video analysis. The above technique was used to monitor ammonia aversion in the chamber. As a preliminary pilot study, different levels of ammonia were applied to different compartments while hens were allowed to navigate between compartments. Using the automated monitor tool to assess occupancy, a negative trend of compartment occupancy with ammonia level was revealed, though further examination is needed. ©2014 Poultry Science Association Inc.
Liu, Dan; Chalkidou, Anastasia; Landau, David B; Marsden, Paul K; Fenwick, John D
2014-09-07
Tumour cell proliferation can be imaged via positron emission tomography of the radiotracer 3'-deoxy-3'-18F-fluorothymidine (18F-FLT). Conceptually, the number of proliferating cells might be expected to correlate more closely with the kinetics of 18F-FLT uptake than with uptake at a fixed time. Radiotracer uptake kinetics are standardly visualized using parametric maps of compartment model fits to time-activity-curves (TACs) of individual voxels. However the relationship between the underlying spatiotemporal accumulation of FLT and the kinetics described by compartment models has not yet been explored. In this work tumour tracer uptake is simulated using a mechanistic spatial-temporal model based on a convection-diffusion-reaction equation solved via the finite difference method. The model describes a chain of processes: the flow of FLT between the spatially heterogeneous tumour vasculature and interstitium; diffusion and convection of FLT within the interstitium; transport of FLT into cells; and intracellular phosphorylation. Using values of model parameters estimated from the biological literature, simulated FLT TACs are generated with shapes and magnitudes similar to those seen clinically. Results show that the kinetics of the spatial-temporal model can be recovered accurately by fitting a 3-tissue compartment model to FLT TACs simulated for those tumours or tumour sub-volumes that can be viewed as approximately closed, for which tracer diffusion throughout the interstitium makes only a small fractional change to the quantity of FLT they contain. For a single PET voxel of width 2.5-5 mm we show that this condition is roughly equivalent to requiring that the relative difference in tracer uptake between the voxel and its neighbours is much less than one.
Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin
Ing-Simmons, Elizabeth; Seitan, Vlad C.; Faure, Andre J.; Flicek, Paul; Carroll, Thomas; Dekker, Job; Fisher, Amanda G.; Lenhard, Boris
2015-01-01
In addition to mediating sister chromatid cohesion during the cell cycle, the cohesin complex associates with CTCF and with active gene regulatory elements to form long-range interactions between its binding sites. Genome-wide chromosome conformation capture had shown that cohesin's main role in interphase genome organization is in mediating interactions within architectural chromosome compartments, rather than specifying compartments per se. However, it remains unclear how cohesin-mediated interactions contribute to the regulation of gene expression. We have found that the binding of CTCF and cohesin is highly enriched at enhancers and in particular at enhancer arrays or “super-enhancers” in mouse thymocytes. Using local and global chromosome conformation capture, we demonstrate that enhancer elements associate not just in linear sequence, but also in 3D, and that spatial enhancer clustering is facilitated by cohesin. The conditional deletion of cohesin from noncycling thymocytes preserved enhancer position, H3K27ac, H4K4me1, and enhancer transcription, but weakened interactions between enhancers. Interestingly, ∼50% of deregulated genes reside in the vicinity of enhancer elements, suggesting that cohesin regulates gene expression through spatial clustering of enhancer elements. We propose a model for cohesin-dependent gene regulation in which spatial clustering of enhancer elements acts as a unified mechanism for both enhancer-promoter “connections” and “insulation.” PMID:25677180
Leypoldt, John K; Agar, Baris U; Akonur, Alp; Gellens, Mary E; Culleton, Bruce F
2012-11-01
Mathematical models of phosphorus kinetics and mass balance during hemodialysis are in early development. We describe a theoretical phosphorus steady state mass balance model during hemodialysis based on a novel pseudo one-compartment kinetic model. The steady state mass balance model accounted for net intestinal absorption of phosphorus and phosphorus removal by both dialysis and residual kidney function. Analytical mathematical solutions were derived to describe time-dependent intradialytic and interdialytic serum phosphorus concentrations assuming hemodialysis treatments were performed symmetrically throughout a week. Results from the steady state phosphorus mass balance model are described for thrice weekly hemodialysis treatment prescriptions only. The analysis predicts 1) a minimal impact of dialyzer phosphorus clearance on predialysis serum phosphorus concentration using modern, conventional hemodialysis technology, 2) variability in the postdialysis-to-predialysis phosphorus concentration ratio due to differences in patient-specific phosphorus mobilization, and 3) the importance of treatment time in determining the predialysis serum phosphorus concentration. We conclude that a steady state phosphorus mass balance model can be developed based on a pseudo one-compartment kinetic model and that predictions from this model are consistent with previous clinical observations. The predictions from this mass balance model are theoretical and hypothesis-generating only; additional prospective clinical studies will be required for model confirmation.
Yang, Jian-Feng; Zhao, Zhen-Hua; Zhang, Yu; Zhao, Li; Yang, Li-Ming; Zhang, Min-Ming; Wang, Bo-Yin; Wang, Ting; Lu, Bao-Chun
2016-04-07
To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma (HCC). From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant (Ktrans), plasma flow (Fp), permeability surface area product (PS), efflux rate constant (kep), extravascular extracellular space volume ratio (ve), blood plasma volume ratio (vp), and hepatic perfusion index (HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model (2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student's t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. The Fp value was greater than the PS value (FP = 1.07 mL/mL per minute, PS = 0.19 mL/mL per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dual-input 2CXM, respectively. There were no significant differences in the kep, vp, or HPI between the dual-input extended Tofts model and the dual-input 2CXM (P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for ve, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dual-input 2CXM were correlated with Ktrans derived from the dual-input extended Tofts model (P = 0.002, r = 0.566; P = 0.002, r = 0.570); kep, vp, and HPI between the two kinetic models were positively correlated (P = 0.001, r = 0.594; P = 0.0001, r = 0.686; P = 0.04, r = 0.391, respectively). In the dual input extended Tofts model, ve was significantly less than that in the dual input 2CXM (P = 0.004), and no significant correlation was seen between the two tracer kinetic models (P = 0.156, r = 0.276). Neither tumor size nor tumor stage was significantly correlated with any of the pharmacokinetic parameters obtained from the two models (P > 0.05). A dual-input two-compartment pharmacokinetic model (a dual-input extended Tofts model and a dual-input 2CXM) can be used in assessing the microvascular physiopathological properties before the treatment of advanced HCC. The dual-input extended Tofts model may be more stable in measuring the ve; however, the dual-input 2CXM may be more detailed and accurate in measuring microvascular permeability.
Ott, Wayne R; Klepeis, Neil E; Switzer, Paul
2003-08-01
This paper derives the analytical solutions to multi-compartment indoor air quality models for predicting indoor air pollutant concentrations in the home and evaluates the solutions using experimental measurements in the rooms of a single-story residence. The model uses Laplace transform methods to solve the mass balance equations for two interconnected compartments, obtaining analytical solutions that can be applied without a computer. Environmental tobacco smoke (ETS) sources such as the cigarette typically emit pollutants for relatively short times (7-11 min) and are represented mathematically by a "rectangular" source emission time function, or approximated by a short-duration source called an "impulse" time function. Other time-varying indoor sources also can be represented by Laplace transforms. The two-compartment model is more complicated than the single-compartment model and has more parameters, including the cigarette or combustion source emission rate as a function of time, room volumes, compartmental air change rates, and interzonal air flow factors expressed as dimensionless ratios. This paper provides analytical solutions for the impulse, step (Heaviside), and rectangular source emission time functions. It evaluates the indoor model in an unoccupied two-bedroom home using cigars and cigarettes as sources with continuous measurements of carbon monoxide (CO), respirable suspended particles (RSP), and particulate polycyclic aromatic hydrocarbons (PPAH). Fine particle mass concentrations (RSP or PM3.5) are measured using real-time monitors. In our experiments, simultaneous measurements of concentrations at three heights in a bedroom confirm an important assumption of the model-spatial uniformity of mixing. The parameter values of the two-compartment model were obtained using a "grid search" optimization method, and the predicted solutions agreed well with the measured concentration time series in the rooms of the home. The door and window positions in each room had considerable effect on the pollutant concentrations observed in the home. Because of the small volumes and low air change rates of most homes, indoor pollutant concentrations from smoking activity in a home can be very high and can persist at measurable levels indoors for many hours.
Understanding tumor heterogeneity as functional compartments - superorganisms revisited
2011-01-01
Compelling evidence broadens our understanding of tumors as highly heterogeneous populations derived from one common progenitor. In this review we portray various stages of tumorigenesis, tumor progression, self-seeding and metastasis in analogy to the superorganisms of insect societies to exemplify the highly complex architecture of a neoplasm as a system of functional "castes." Accordingly, we propose a model in which clonal expansion and cumulative acquisition of genetic alterations produce tumor compartments each equipped with distinct traits and thus distinct functions that cooperate to establish clinically apparent tumors. This functional compartment model also suggests mechanisms for the self-construction of tumor stem cell niches. Thus, thinking of a tumor as a superorganism will provide systemic insight into its functional compartmentalization and may even have clinical implications. PMID:21619636
Near-Infrared Monitoring of Model Chronic Compartment Syndrome In Exercising Skeletal Muscle
NASA Technical Reports Server (NTRS)
Hargens, Alan R.; Breit, G. A.; Gross, J. H.; Watenpaugh, D. E.; Chance, B.
1995-01-01
Chronic compartment syndrome (CCS) is characterized by muscle ischemia, usually in the anterior oompartment of the leg, caused by high intramuscular pressure during exercise. Dual-wave near-infrared (NIR) spectroscopy is an optical technique that allows noninvasive tracking of variations in muscle tissue oxygenation (Chance et al., 1988). We hypothesized that with a model CCS, muscle tissue oxygenation will show a greater decline during exercise and a slower recovery post-exercise than under normal conditions.
Blind identification of the kinetic parameters in three-compartment models
NASA Astrophysics Data System (ADS)
Riabkov, Dmitri Y.; Di Bella, Edward V. R.
2004-03-01
Quantified knowledge of tissue kinetic parameters in the regions of the brain and other organs can offer information useful in clinical and research applications. Dynamic medical imaging with injection of radioactive or paramagnetic tracer can be used for this measurement. The kinetics of some widely used tracers such as [18F]2-fluoro-2-deoxy-D-glucose can be described by a three-compartment physiological model. The kinetic parameters of the tissue can be estimated from dynamically acquired images. Feasibility of estimation by blind identification, which does not require knowledge of the blood input, is considered analytically and numerically in this work for the three-compartment type of tissue response. The non-uniqueness of the two-region case for blind identification of kinetic parameters in three-compartment model is shown; at least three regions are needed for the blind identification to be unique. Numerical results for the accuracy of these blind identification methods in different conditions were considered. Both a separable variables least-squares (SLS) approach and an eigenvector-based algorithm for multichannel blind deconvolution approach were used. The latter showed poor accuracy. Modifications for non-uniform time sampling were also developed. Also, another method which uses a model for the blood input was compared. Results for the macroparameter K, which reflects the metabolic rate of glucose usage, using three regions with noise showed comparable accuracy for the separable variables least squares method and for the input model-based method, and slightly worse accuracy for SLS with the non-uniform sampling modification.
Population pharmacokinetics model of THC used by pulmonary route in occasional cannabis smokers.
Marsot, A; Audebert, C; Attolini, L; Lacarelle, B; Micallef, J; Blin, O
Cannabis is the most widely used illegal drug in the world. Delta-9-tetrahydrocannabinol (THC) is the main source of the pharmacological effect. Some studies have been carried out and showed significant variability in the described models as the values of the estimated pharmacokinetic parameters. The objective of this study was to develop a population pharmacokinetic model for THC in occasional cannabis smokers. Twelve male volunteers (age: 20-28years, body weight: 62.5-91.0kg), tobacco (3-8 cigarette per day) and cannabis occasional smokers were recruited from the local community. After ad libitum smoking cannabis cigarette according a standardized procedure, 16 blood samples up to 72h were collected. Population pharmacokinetic analysis was performed using a non-linear mixed effects model, with NONMEM software. Demographic and biological data were investigated as covariates. A three-compartment model with first-order elimination fitted the data. The model was parameterized in terms of micro constants and central volume of distribution (V 1 ). Normal ALT concentration (6.0 to 45.0IU/l) demonstrated a statistically significant correlation with k 10 . The mean values (%Relative Standard Error (RSE)) for k 10 , k 12 , k 21 , k 23 , k 32 and V 1 were 0.408h -1 (48.8%), 4.070h -1 (21.4%), 0.022h -1 (27.0%), 1.070h -1 (14.3%), 1.060h -1 (16.7%) and 19.10L (39.7%), respectively. We have developed a population pharmacokinetic model able to describe the quantitative relationship between administration of inhaled doses of THC and the observed plasma concentrations after smoking cannabis. In addition, a linear relationship between ALT concentration and value of k 10 has been described and request further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.
Single-sample method for the estimation of glomerular filtration rate in children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tauxe, W.N.; Bagchi, A.; Tepe, P.G.
1987-03-01
A method for the determination of the glomerular filtration rate (GFR) in children which involves the use of a single-plasma sample (SPS) after the injection of a radioactive indicator such as radioiodine labeled diatrizoate (Hypaque) has been developed. This is analogous to previously published SPS techniques of effective renal plasma flow (ERPF) in adults and children and GFR SPS techniques in adults. As a reference standard, GFR has been calculated from compartment analysis of injected radiopharmaceuticals (Sapirstein Method). Theoretical volumes of distribution were calculated at various times after injection (Vt) by dividing the total injected counts (I) by the plasmamore » concentration (Ct) expressed in liters, determined by counting an aliquot of plasma in a well type scintillation counter. Errors of predicting GFR from the various Vt values were determined as the standard error of estimate (Sy.x) in ml/min. They were found to be relatively high early after injection and to fall to a nadir of 3.9 ml/min at 91 min. The Sy.x Vt relationship was examined in linear, quadratic, and exponential form, but the simpler linear relationship was found to yield the lowest error. Other data calculated from the compartment analysis of the reference plasma disappearance curves are presented, but at this time have apparently little clinical relevance.« less
Sweeney, K; Frost, C; Boyd, RA
2017-01-01
Apixaban is approved for treatment of venous thromboembolism (VTE) and prevention of recurrence. Population pharmacokinetics, pharmacokinetics–pharmacodynamics (anti‐FXa activity), and exposure–response (binary bleeding and thromboembolic endpoints) of apixaban in VTE treatment subjects were characterized using data from phase I–III studies. Apixaban pharmacokinetics were adequately characterized by a two‐compartment model with first‐order absorption and elimination. Age, sex, and Asian race had less than 25% impact on exposure, while subjects with severe renal impairment were predicted to have 56% higher exposure than the reference subject (60‐year‐old non‐Asian male weighing 85 kg with creatinine clearance of 100 mL/min). The relationship between apixaban concentration and anti‐FXa activity was described by a linear model with a slope estimate of 0.0159 IU/ng. The number of subjects with either a bleeding or thromboembolic event was small, and no statistically significant relationship between apixaban exposure and clinical endpoints could be discerned with a logistic regression analysis. PMID:28547774
Russell, Solomon; Distefano, Joseph J
2006-07-01
W(3)MAMCAT is a new web-based and interactive system for building and quantifying the parameters or parameter ranges of n-compartment mammillary and catenary model structures, with input and output in the first compartment, from unstructured multiexponential (sum-of-n-exponentials) models. It handles unidentifiable as well as identifiable models and, as such, provides finite parameter interval solutions for unidentifiable models, whereas direct parameter search programs typically do not. It also tutorially develops the theory of model distinguishability for same order mammillary versus catenary models, as did its desktop application predecessor MAMCAT+. This includes expert system analysis for distinguishing mammillary from catenary structures, given input and output in similarly numbered compartments. W(3)MAMCAT provides for universal deployment via the internet and enhanced application error checking. It uses supported Microsoft technologies to form an extensible application framework for maintaining a stable and easily updatable application. Most important, anybody, anywhere, is welcome to access it using Internet Explorer 6.0 over the internet for their teaching or research needs. It is available on the Biocybernetics Laboratory website at UCLA: www.biocyb.cs.ucla.edu.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
..., explain the reason for any recommended change, and include supporting data. We ask that you send us two... changes to the approved OFCR compartment configuration that affect crewmember emergency egress or any other procedures affecting safety of the occupying crewmembers or related emergency training will...
75 FR 75 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Crew Rest Compartment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
..., explain the reason for any recommended change, and include supporting data. We ask that you send us two...-site operational evaluation. Any changes to the approved OCR compartment configuration that affect crewmember emergency egress or any other procedures affecting safety of the occupying crewmembers or related...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
... significantly delay issuance of the design approval and thus delivery of the affected aircraft. In addition, the... specific portion of the special conditions, explain the reason for any recommended change, and include... compartment configuration that affect crew member emergency egress or any other procedures affecting the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbs, J.; Atkins, H.
1999-01-01
{sup 117m}Sn(4+) DTPA is a new radiopharmaceutical for the palliation of pain associated with metastatic bone cancer. Recently, the Phase 2 clinical trials involving 47 patients were completed. These patients received administered activities in the range 6.7--10.6 MBq/kg of body mass. Frequent collections of urine were acquired over the first several hours postadministration and daily cumulative collections were obtained for the next 4--10 days. Anterior/posterior gamma camera images were obtained frequently over the initial 10 days. Radiation dose estimates were calculated for 8 of these patients. Each patient`s biodistribution data were mathematically simulated using a multicompartmental model. The model consistedmore » of the following compartments: central, bone, kidney, other tissues, and cumulative urine. The measured cumulative urine data were used as references for the cumulative urine excretion compartment. The total-body compartment (sum of the bone surfaces, central, kidney, and other tissues compartments) was reference to all activity not excreted in the urine.« less
Kalaidzidis, Inna; Miaczynska, Marta; Brewińska-Olchowik, Marta; Hupalowska, Anna; Ferguson, Charles; Parton, Robert G.; Kalaidzidis, Yannis
2015-01-01
Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway. PMID:26459602
NASA Astrophysics Data System (ADS)
Perama, Yasmin Mohd Idris; Siong, Khoo Kok
2018-04-01
A mathematical model comprising 8 compartments were designed to describe the kinetic dissolution of arsenic (As) from water leach purification (WLP) waste samples ingested into the gastrointestinal system. A totally reengineered software system named Simulation, Analysis and Modelling II (SAAM II) was employed to aid in the experimental design and data analysis. As a powerful tool that creates, simulate and analyze data accurately and rapidly, SAAM II computationally creates a system of ordinary differential equations according to the specified compartmental model structure and simulates the solutions based upon the parameter and model inputs provided. The experimental design of in vitro DIN approach was applied to create an artificial gastric and gastrointestinal fluids. These synthetic fluids assay were produced to determine the concentrations of As ingested into the gastrointestinal tract. The model outputs were created based upon the experimental inputs and the recommended fractional transfer rates parameter. As a result, the measured and predicted As concentrations in gastric fluids were much similar against the time of study. In contrast, the concentrations of As in the gastrointestinal fluids were only similar during the first hour and eventually started decreasing until the fifth hours of study between the measured and predicted values. This is due to the loss of As through the fractional transfer rates of q2 compartment to corresponding compartments of q3 and q5 which are involved with excretion and distribution to the whole body, respectively. The model outputs obtained after best fit to the data were influenced significantly by the fractional transfer rates between each compartment. Therefore, a series of compartmental model created with the association of fractional transfer rates parameter with the aid of SAAM II provides better estimation that simulate the kinetic behavior of As ingested into the gastrointestinal system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisiger, R.A.; Mendel, C.M.; Cavalieri, R.R.
1986-03-01
Two general models have been proposed for predicting the effects of metabolism, protein binding, and plasma flow on the removal of drugs by the liver. These models differ in the degree of plasma mixing assumed to exist within each hepatic sinusoid. The venous equilibrium model treats the sinusoid as a single well-stirred compartment, whereas the sinusoidal model effectively breaks up the sinusoid into a large number of sequentially perfused compartments which do not exchange their contents except through plasma flow. As a consequence, the sinusoidal model, but not the venous equilibrium model, predicts that the concentration of highly extracted drugsmore » will decline as the plasma flows through the hepatic lobule. To determine which of these alternative models best describes the hepatic uptake process, we looked for evidence that concentration gradients are formed during the uptake of (/sup 125/I)thyroxine by the perfused rat liver. Autoradiography of tissue slices after perfusion of the portal vein at physiologic flow rates with protein-free buffer containing (/sup 125/I)thyroxine demonstrated a rapid exponential fall in grain density with distance from the portal venule, declining by half for each 8% of the mean length of the sinusoid. Reversing the direction of perfusate flow reversed the direction of the autoradiographic gradients, indicating that they primarily reflect differences in the concentration of thyroxine within the hepatic sinusoids rather than differences in the uptake capacity of portal and central hepatocytes. Analysis of the data using models in which each sinusoid was represented by different numbers of sequentially perfused compartments (1-20) indicated that at least eight compartments were necessary to account for the magnitude of the gradients seen.« less
Bioelectrical impedance analysis. What does it measure?
NASA Technical Reports Server (NTRS)
Schoeller, D. A.
2000-01-01
Bioelectrical impedance analysis (BIA) has been proposed for measuring fat-free mass, total body water, percent fat, body cell mass, intracellular water, and extracellular water: a veritable laboratory in a box. Although it is unlikely that BIA is quite this versatile, correlations have been demonstrated between BIA and all of these body compartments. At the same time, it is known that all of the compartments are correlated among themselves. Because of this, it is difficult to determine whether BIA is specific for any or all of these compartments. To investigate this question, we induced acute changes in total body water and its compartments over a 3-h period. Using this approach, we demonstrated that multifrequency BIA, using the Cole-Cole model to calculate the zero frequency and infinite frequency resistance, measures extracellular and intracellular water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank
Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universalmore » survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from stereotactic ablative radiation therapy. The DLQ model also predicted the remarkable GBM radioresistance, a result that is highly consistent with clinical observations. The radioresistance putatively stemmed from accelerated DCC regrowth that rapidly restored compartmental equilibrium between CSCs and DCCs.« less
Population pharmacokinetic analysis of carboxyhaemoglobin concentrations in adult cigarette smokers
Cronenberger, Carol; Mould, Diane R; Roethig, Hans-Juergen; Sarkar, Mohamadi
2008-01-01
AIMS To develop a population-based model to describe and predict the pharmacokinetics of carboxyhaemoglobin (COHb) in adult smokers. METHODS Data from smokers of different conventional cigarettes (CC) in three open-label, randomized studies were analysed using NONMEM (version V, Level 1.1). COHb concentrations were determined at baseline for two cigarettes [Federal Trade Commission (FTC) tar 11 mg; CC1, or FTC tar 6 mg; CC2]. On day 1, subjects were randomized to continue smoking their original cigarettes, switch to a different cigarette (FTC tar 1 mg; CC3), or stop smoking. COHb concentrations were measured at baseline and on days 3 and 8 after randomization. Each cigarette was treated as a unit dose assuming a linear relationship between the number of cigarettes smoked and measured COHb percent saturation. Model building used standard methods. Model performance was evaluated using nonparametric bootstrapping and predictive checks. RESULTS The data were described by a two-compartment model with zero-order input and first-order elimination with endogenous COHb. Model parameters included elimination rate constant (k10), central volume of distribution (Vc/F), rate constants between central and peripheral compartments (k12 and k21), baseline COHb concentrations (c0), and relative fraction of carbon monoxide absorbed (F1). The median (range) COHb half-lives were 1.6 h (0.680–2.76) and 30.9 h (7.13–367) (α and β phases, respectively). F1 increased with increasing cigarette tar content and age, whereas k12 increased with ideal body weight. CONCLUSION A robust model was developed to predict COHb concentrations in adult smokers and to determine optimum COHb sampling times in future studies. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT The pharmacokinetics of carboxyhaemoglobin have been reported previously, primarily with regard to poisoning and toxicity. Most of these reports have involved noncompartmental analysis of data obtained where the actual dose of carbon monoxide was not known. WHAT THIS STUDY ADDS This study presents a comprehensive population pharmacokinetic model for carboxyhaemoglobin in adult cigarette smokers. Since carboxyhaemoglobin is a marker of cigarette smoke exposure, model-based evaluations can be used for simulation and other evaluations of the kinetics of this agent. PMID:17764477
NASA Astrophysics Data System (ADS)
Kartashov, Dmitry; Shurshakov, Vyacheslav
2018-03-01
A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.
The estimation of the rates of lead exchange between body compartments of smelter employees.
Behinaein, Sepideh; Chettle, David R; Egden, Lesley M; McNeill, Fiona E; Norman, Geoff; Richard, Norbert; Stever, Susan
2014-07-01
The overwhelming proportion of the mass of lead (Pb) is stored in bone and the residence time of Pb in bone is much longer than that in other tissues. Hence, in a metabolic model that we used to solve the differential equations governing the transfer of lead between body compartments, three main compartments are involved: blood (as a transfer compartment), cortical bone (tibia), and trabecular bone (calcaneus). There is a bidirectional connection between blood and the other two compartments. A grid search chi-squared minimization method was used to estimate the initial values of lead transfer rate values from tibia (λTB) and calcaneus (λCB) to blood of 209 smelter employees whose bone lead measurements are available from 1994, 1999, and 2008, and their blood lead level from 1967 onwards (depending on exposure history from once per month to once per year), and then the initial values of kinematic parameters were used to develop multivariate models in order to express λTB and λCB as a function of employment time, age, body lead contents and their interaction. We observed a significant decrease in the transfer rate of lead from bone to blood with increasing body lead contents. The model was tested by calculating the bone lead concentration in 1999 and 2008, and by comparing those values with the measured ones. A good agreement was found between the calculated and measured tibia/calcaneus lead values. Also, we found that the transfer rate of lead from tibia to blood can be expressed solely as a function of cumulative blood lead index.
Stroh, Mark; Addy, Carol; Wu, Yunhui; Stoch, S Aubrey; Pourkavoos, Nazaneen; Groff, Michelle; Xu, Yang; Wagner, John; Gottesdiener, Keith; Shadle, Craig; Wang, Hong; Manser, Kimberly; Winchell, Gregory A; Stone, Julie A
2009-03-01
We describe how modeling and simulation guided program decisions following a randomized placebo-controlled single-rising oral dose first-in-man trial of compound A where an undesired transient blood pressure (BP) elevation occurred in fasted healthy young adult males. We proposed a lumped-parameter pharmacokinetic-pharmacodynamic (PK/PD) model that captured important aspects of the BP homeostasis mechanism. Four conceptual units characterized the feedback PD model: a sinusoidal BP set point, an effect compartment, a linear effect model, and a system response. To explore approaches for minimizing the BP increase, we coupled the PD model to a modified PK model to guide oral controlled-release (CR) development. The proposed PK/PD model captured the central tendency of the observed data. The simulated BP response obtained with theoretical release rate profiles suggested some amelioration of the peak BP response with CR. This triggered subsequent CR formulation development; we used actual dissolution data from these candidate CR formulations in the PK/PD model to confirm a potential benefit in the peak BP response. Though this paradigm has yet to be tested in the clinic, our model-based approach provided a common rational framework to more fully utilize the limited available information for advancing the program.
Review on solving the forward problem in EEG source analysis
Hallez, Hans; Vanrumste, Bart; Grech, Roberta; Muscat, Joseph; De Clercq, Wim; Vergult, Anneleen; D'Asseler, Yves; Camilleri, Kenneth P; Fabri, Simon G; Van Huffel, Sabine; Lemahieu, Ignace
2007-01-01
Background The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem. PMID:18053144
Locher, Kathrin; Borghardt, Jens M; Frank, Kerstin J; Kloft, Charlotte; Wagner, Karl G
2016-08-01
Biphasic dissolution models are proposed to have good predictive power for the in vivo absorption. The aim of this study was to improve our previously introduced mini-scale dissolution model to mimic in vivo situations more realistically and to increase the robustness of the experimental model. Six dissolved APIs (BCS II) were tested applying the improved mini-scale biphasic dissolution model (miBIdi-pH-II). The influence of experimental model parameters including various excipients, API concentrations, dual paddle and its rotation speed was investigated. The kinetics in the biphasic model was described applying a one- and four-compartment pharmacokinetic (PK) model. The improved biphasic dissolution model was robust related to differing APIs and excipient concentrations. The dual paddle guaranteed homogenous mixing in both phases; the optimal rotation speed was 25 and 75rpm for the aqueous and the octanol phase, respectively. A one-compartment PK model adequately characterised the data of fully dissolved APIs. A four-compartment PK model best quantified dissolution, precipitation, and partitioning also of undissolved amounts due to realistic pH profiles. The improved dissolution model is a powerful tool for investigating the interplay between dissolution, precipitation and partitioning of various poorly soluble APIs (BCS II). In vivo-relevant PK parameters could be estimated applying respective PK models. Copyright © 2016 Elsevier B.V. All rights reserved.
Control of maglev vehicles with aerodynamic and guideway disturbances
NASA Technical Reports Server (NTRS)
Flueckiger, Karl; Mark, Steve; Caswell, Ruth; Mccallum, Duncan
1994-01-01
A modeling, analysis, and control design methodology is presented for maglev vehicle ride quality performance improvement as measured by the Pepler Index. Ride quality enhancement is considered through active control of secondary suspension elements and active aerodynamic surfaces mounted on the train. To analyze and quantify the benefits of active control, the authors have developed a five degree-of-freedom lumped parameter model suitable for describing a large class of maglev vehicles, including both channel and box-beam guideway configurations. Elements of this modeling capability have been recently employed in studies sponsored by the U.S. Department of Transportation (DOT). A perturbation analysis about an operating point, defined by vehicle and average crosswind velocities, yields a suitable linearized state space model for multivariable control system analysis and synthesis. Neglecting passenger compartment noise, the ride quality as quantified by the Pepler Index is readily computed from the system states. A statistical analysis is performed by modeling the crosswind disturbances and guideway variations as filtered white noise, whereby the Pepler Index is established in closed form through the solution to a matrix Lyapunov equation. Data is presented which indicates the anticipated ride quality achieved through various closed-loop control arrangements.
Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.; ...
2015-03-15
Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹⁸F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modelingmore » of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹⁸F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.« less
Sy, Sherwin K B; de Kock, Lizanne; Diacon, Andreas H; Werely, Cedric J; Xia, Huiming; Rosenkranz, Bernd; van der Merwe, Lize; Donald, Peter R
2015-07-01
The aim of this study was to examine the relationships between N-acetyltransferase genotypes, pharmacokinetics, and tolerability of granular slow-release para-aminosalicylic acid (GSR-PAS) in tuberculosis patients. The study was a randomized, two-period, open-label, crossover design wherein each patient received 4 g GSR-PAS twice daily or 8 g once daily alternately. The PAS concentration-time profiles were modeled by a one-compartment disposition model with three transit compartments in series to describe its absorption. Patients' NAT1 and NAT2 genotypes were determined by sequencing and restriction enzyme analysis, respectively. The number of daily vomits was modeled by a Poisson probability mass function. Comparisons of other tolerability measures by regimens, gender, and genotypes were evaluated by a linear mixed-effects model. The covariate effects associated with efavirenz, gender, and NAT1*3, NAT1*14, and NAT2*5 alleles corresponded to 25, 37, -17, -48, and -27% changes, respectively, in oral clearance of PAS. The NAT1*10 allele did not influence drug clearance. The time above the MIC of 1 mg/liter was significantly different between the two regimens but not influenced by the NAT1 or NAT2 genotypes. The occurrence and intensity of intolerance differed little between regimens. Four grams of GSR-PAS twice daily but not 8 g once daily ensured concentrations exceeding the MIC (1 mg/liter) throughout the dosing interval; PAS intolerance was not related to maximum PAS concentrations over the doses studied and was not more frequent after once-daily dosing. We confirm that the slow phenotype conferred by the NAT1*14 and NAT1*3 alleles resulted in higher PAS exposure but found no evidence of increased activity of the NAT1*10 allele. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.
Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹⁸F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modelingmore » of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹⁸F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.« less
Impact of fitting algorithms on errors of parameter estimates in dynamic contrast-enhanced MRI
NASA Astrophysics Data System (ADS)
Debus, C.; Floca, R.; Nörenberg, D.; Abdollahi, A.; Ingrisch, M.
2017-12-01
Parameter estimation in dynamic contrast-enhanced MRI (DCE MRI) is usually performed by non-linear least square (NLLS) fitting of a pharmacokinetic model to a measured concentration-time curve. The two-compartment exchange model (2CXM) describes the compartments ‘plasma’ and ‘interstitial volume’ and their exchange in terms of plasma flow and capillary permeability. The model function can be defined by either a system of two coupled differential equations or a closed-form analytical solution. The aim of this study was to compare these two representations in terms of accuracy, robustness and computation speed, depending on parameter combination and temporal sampling. The impact on parameter estimation errors was investigated by fitting the 2CXM to simulated concentration-time curves. Parameter combinations representing five tissue types were used, together with two arterial input functions, a measured and a theoretical population based one, to generate 4D concentration images at three different temporal resolutions. Images were fitted by NLLS techniques, where the sum of squared residuals was calculated by either numeric integration with the Runge-Kutta method or convolution. Furthermore two example cases, a prostate carcinoma and a glioblastoma multiforme patient, were analyzed in order to investigate the validity of our findings in real patient data. The convolution approach yields improved results in precision and robustness of determined parameters. Precision and stability are limited in curves with low blood flow. The model parameter ve shows great instability and little reliability in all cases. Decreased temporal resolution results in significant errors for the differential equation approach in several curve types. The convolution excelled in computational speed by three orders of magnitude. Uncertainties in parameter estimation at low temporal resolution cannot be compensated by usage of the differential equations. Fitting with the convolution approach is superior in computational time, with better stability and accuracy at the same time.
Zhang, Yanshuai; McNerny, Erin Gatenby; Terajima, Masahiko; Raghavan, Mekhala; Romanowicz, Genevieve; Zhang, Zhanpeng; Zhang, Honghao; Kamiya, Nobuhiro; Tantillo, Margaret; Zhu, Peizhi; Scott, Gregory J.; Ray, Manas K.; Lynch, Michelle; Ma, Peter X.; Morris, Michael D.; Yamauchi, Mitsuo; Kohn, David H.; Mishina, Yuji
2016-01-01
Bone morphogenetic protein (BMP) signaling pathways play critical roles in skeletal development and new bone formation. Our previous study, however, showed a negative impact of BMP signaling on bone mass because of the osteoblast-specific loss of a BMP receptor (i.e. BMPR1A) showing increased trabecular bone volume and mineral density in mice. Here, we investigated the bone quality and biomechanical properties of the higher bone mass associated with BMPR1A deficiency using the osteoblast-specific Bmpr1a conditional knockout (cKO) mouse model. Collagen biochemical analysis revealed greater levels of the mature cross-link pyridinoline in the cKO bones, in parallel with upregulation of collagen modifying enzymes. Raman spectroscopy distinguished increases in the mature to immature cross-link ratio and mineral to matrix ratio in the trabecular compartments of cKO femora, but not in the cortical compartments. The mineral crystallinity was unchanged in the cKO in either the trabecular or cortical compartments. Further, we tested the intrinsic material properties by nanoindentation and found significantly higher hardness and elastic modulus in the cKO trabecular compartments, but not in the cortical compartments. Four point bending tests of cortical compartments showed lower structural biomechanical properties (i.e. strength and stiffness) in the cKO bones due to the smaller cortical areas. However, there were no significant differences in biomechanical performance at the material level, which was consistent with the nanoindentation test results on the cortical compartment. These studies emphasize the pivotal role of BMPR1A in the determination of bone quality and mechanical integrity under physiological conditions, with different impact on femoral cortical and trabecular compartments. PMID:27113526
A Dynamic Model for Nitrogen‐stressed Lettuce
SEGINER, IDO
2003-01-01
A previously developed dynamic lettuce model, designed to predict growth and nitrate content under the normal range of glasshouse environmental conditions, has been extended to cover high nitrogen‐stress situations. Under severe shortage of nitrogen, lettuce has been observed to grow at a very slow rate, as well as to have abnormally low water content, low reduced‐nitrogen content and negligible nitrate content. The new model mimics these observations by adding to the original model a storage compartment for ‘excess’ carbon. The resulting model has three compartments: (1) ‘vacuole’, where the soluble non‐structural material is stored, and the nitrate : carbon ratio may vary as needed to maintain a constant osmotic potential; (2) ‘structure’, a metabolically active compartment with fixed chemical composition; and (3) ‘excess‐carbon’, which serves as a long‐term storage of ‘waterless’ carbohydrates. Simulations with the model illustrate its ability to predict the effect of light, temperature and nitrogen in the nutrient solution on the long‐term growth and composition of lettuce. They also illustrate the effects of plant size, and the associated relative growth rate, on the characteristic times of transient responses resulting from step changes in the environment. PMID:12714361
75 FR 6092 - Special Conditions: Model C-27J Airplane; Class E Cargo Compartment Lavatory
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
... waste-receptacle design-and-material standards. (g) Section 25.854, lavatory smoke-detector and fire... lavatory, and the oxygen-supply system in the lavatory, in the event of a smoke-detector alarm in the cargo... system that shuts off power to the lavatory following a lavatory or cargo-compartment smoke-detector...
Modeling malware propagation using a carrier compartment
NASA Astrophysics Data System (ADS)
Hernández Guillén, J. D.; Martín del Rey, A.
2018-03-01
The great majority of mathematical models proposed to simulate malware spreading are based on systems of ordinary differential equations. These are compartmental models where the devices are classified according to some types: susceptible, exposed, infectious, recovered, etc. As far as we know, there is not any model considering the special class of carrier devices. This type is constituted by the devices whose operative systems is not targeted by the malware (for example, iOS devices for Android malware). In this work a novel mathematical model considering this new compartment is considered. Its qualitative study is presented and a detailed analysis of the efficient control measures is shown by studying the basic reproductive number.
A Model for the Estimation of Hepatic Insulin Extraction After a Meal.
Piccinini, Francesca; Dalla Man, Chiara; Vella, Adrian; Cobelli, Claudio
2016-09-01
Quantitative assessment of hepatic insulin extraction (HE) after an oral glucose challenge, e.g., a meal, is important to understand the regulation of carbohydrate metabolism. The aim of the current study is to develop a model of system for estimating HE. Nine different models, of increasing complexity, were tested on data of 204 normal subjects, who underwent a mixed meal tolerance test, with frequent measurement of plasma glucose, insulin, and C-peptide concentrations. All these models included a two-compartment model of C-peptide kinetics, an insulin secretion model, a compartmental model of insulin kinetics (with number of compartments ranging from one to three), and different HE descriptions, depending on plasma glucose and insulin. Model performances were compared on the basis of data fit, precision of parameter estimates, and parsimony criteria. The three-compartment model of insulin kinetics, coupled with HE depending on glucose concentration, showed the best fit and a good ability to precisely estimate the parameters. In addition, the model calculates basal and total indices of HE ( HE b and HE tot , respectively), and provides an index of HE sensitivity to glucose ( S G HE ). A new physiologically based HE model has been developed, which allows an improved quantitative description of glucose regulation. The use of the new model provides an in-depth description of insulin kinetics, thus enabling a better understanding of a given subject's metabolic state.
A COMPREHENSIVE INSIGHT ON OCULAR PHARMACOKINETICS
Agrahari, Vibhuti; Mandal, Abhirup; Agrahari, Vivek; Trinh, Hoang My; Joseph, Mary; Ray, Animikh; Hadji, Hicheme; Mitra, Ranjana; Pal, Dhananjay; Mitra, Ashim K.
2017-01-01
Eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment model of ocular drug delivery has been developed for describing the absorption, distribution and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems and routes of administration are discussed including factors affecting intraocular bioavailability. Factors such as pre-corneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, drug metabolism renders ocular delivery challenging and elaborated in this manuscript. Several compartment models are discussed those are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations. PMID:27798766
NASA Technical Reports Server (NTRS)
Conkin, J.; Gernhardt, M. L.; Powell, M. R.
2004-01-01
Not enough is known about the increased risk of hypobaric decompression sickness (DCS) and production of venous (VGE) and arterial (AGE) gas emboli following an air break in an otherwise normal 100% resting oxygen (O2) prebreathe (PB), and certainly a break in PB when exercise is used to accelerate nitrogen (N2) elimination from the tissues. Current Aeromedical Flight Rules at the Johnson Space Center about additional PB payback times are untested, possibly too conservative, and therefore not optimized for operational use. A 10 min air break at 90 min into a 120 min PB that includes initial dual-cycle ergometry for 10 min will show a measurable increase in the risk of DCS and VGE after ascent to 4.3 psia compared to a 10 min break at 15 min into the PB, or when there is no break in PB. Data collection with humans begins in 2005, but here we first evaluate the hypothesis using three models of tissue N2 kinetics: Model I is a simple single half-time compartment exponential model, Model II is a three compartment half-time exponential model, and Model III is a variable half-time compartment model where the percentage of maximum O2 consumption for the subject during dual-cycle ergometry exercise defines the half-time compartment. Model I with large rate constants to simulate an exercise effect always showed a late break in PB had the greatest consequence. Model II showed an early break had the greatest consequence. Model III showed there was no difference between early or late break in exercise PB. Only one of these outcomes will be observed when humans are tested. Our results will favor one of these models, and so advance our understanding of tissue N2 kinetics, and of altitude DCS after an air break in PB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethi, Roshan V.; Giantsoudi, Drosoula; Raiford, Michael
2014-03-01
Purpose: The pattern of failure in medulloblastoma patients treated with proton radiation therapy is unknown. For this increasingly used modality, it is important to ensure that outcomes are comparable to those in modern photon series. It has been suggested this pattern may differ from photons because of variations in linear energy transfer (LET) and relative biological effectiveness (RBE). In addition, the use of matching fields for delivery of craniospinal irradiation (CSI) may influence patterns of relapse. Here we report the patterns of failure after the use of protons, compare it to that in the available photon literature, and determine themore » LET and RBE values in areas of recurrence. Methods and Materials: Retrospective review of patients with medulloblastoma treated with proton radiation therapy at Massachusetts General Hospital (MGH) between 2002 and 2011. We documented the locations of first relapse. Discrete failures were contoured on the original planning computed tomography scan. Monte Carlo calculation methods were used to estimate the proton LET distribution. Models were used to estimate RBE values based on the LET distributions. Results: A total of 109 patients were followed for a median of 38.8 months (range, 1.4-119.2 months). Of the patients, 16 experienced relapse. Relapse involved the supratentorial compartment (n=8), spinal compartment (n=11), and posterior fossa (n=5). Eleven failures were isolated to a single compartment; 6 failures in the spine, 4 failures in the supratentorium, and 1 failure in the posterior fossa. The remaining patients had multiple sites of disease. One isolated spinal failure occurred at the spinal junction of 2 fields. None of the 70 patients treated with an involved-field-only boost failed in the posterior fossa outside of the tumor bed. We found no correlation between Monte Carlo-calculated LET distribution and regions of recurrence. Conclusions: The most common site of failure in patients treated with protons for medulloblastoma was outside of the posterior fossa. The most common site for isolated local failure was the spine. We recommend consideration of spinal imaging in follow-up and careful attention to dose distribution in the spinal junction regions. Development of techniques that do not require field matching may be of benefit. We did not identify a direct correlation between lower LET values and recurrence in medulloblastoma patients treated with proton therapy. Patterns of failure do not appear to differ from those in patients treated with photon therapy.« less
Dictyostelium LvsB has a regulatory role in endosomal vesicle fusion
Falkenstein, Kristin; De Lozanne, Arturo
2014-01-01
ABSTRACT Defects in human lysosomal-trafficking regulator (Lyst) are associated with the lysosomal disorder Chediak–Higashi syndrome. The absence of Lyst results in the formation of enlarged lysosome-related compartments, but the mechanism for how these compartments arise is not well established. Two opposing models have been proposed to explain Lyst function. The fission model describes Lyst as a positive regulator of fission from lysosomal compartments, whereas the fusion model identifies Lyst as a negative regulator of fusion between lysosomal vesicles. Here, we used assays that can distinguish between defects in vesicle fusion versus fission. We compared the phenotype of Dictyostelium discoideum cells defective in LvsB, the ortholog of Lyst, with that of two known fission defect mutants (μ3- and WASH-null mutants). We found that the temporal localization characteristics of the post-lysosomal marker vacuolin, as well as vesicular acidity and the fusion dynamics of LvsB-null cells are distinct from those of both μ3- and WASH-null fission defect mutants. These distinctions are predicted by the fusion defect model and implicate LvsB as a negative regulator of vesicle fusion. PMID:25086066
A hybrid continuous-discrete method for stochastic reaction–diffusion processes
Zheng, Likun; Nie, Qing
2016-01-01
Stochastic fluctuations in reaction–diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method. PMID:27703710
Wang, Wei; Putra, Adhytia; Schools, Gary P.; Ma, Baofeng; Chen, Haijun; Kaczmarek, Leonard K.; Barhanin, Jacques; Lesage, Florian; Zhou, Min
2013-01-01
TWIK-1 two-pore domain K+ channels are expressed abundantly in astrocytes. In the present study, we examined the extent to which TWIK-1 contributes to the linear current-voltage (I–V) relationship (passive) K+ membrane conductance, a dominant electrophysiological feature of mature hippocampal astrocytes. Astrocytes from TWIK-1 knockout mice have a more negative resting potential than those from wild type animals and a reduction in both inward rectification and Cs+ permeability. Nevertheless, the overall whole-cell passive conductance is not altered significantly in TWIK-1 knockout astrocytes. The expression of Kir4.1 and TREK-1, two other major astrocytic K+ channels, or of other two-pore K+ channels is not altered in TWIK-1 knockout mice, suggesting that the mild effect of TWIK-1 knockout does not result from compensation by these channels. Fractionation experiments showed that TWIK-1 is primarily localized in intracellular cytoplasmic fractions (55%) and mildly hydrophobic internal compartment fractions (41%), with only 5% in fractions containing plasma membranes. Our study revealed that TWIK-1 proteins are mainly located in the intracellular compartments of hippocampal astrocyte under physiological condition, therefore a minimal contribution of TWIK-1 channels to whole-cell currents is likely attributable to a relatively low level presence of channels in the plasma membrane. PMID:24368895
Henstra, Marieke; Wong, Liza; Chahbouni, Abdel; Swart, Noortje; Allaart, Cor; Sombogaard, Ferdi
2017-07-01
Ibogaine is an agent that has been evaluated as an unapproved anti-addictive agent for the management of drug dependence. Sudden cardiac death has been described to occur secondary to its use. We describe the clinical effects and toxicokinetics of ibogaine and noribogaine in a single patient. For this purpose, we developed a LC-MS/MS-method to measure ibogaine and noribogaine plasma-concentrations. We used two compartments with first order absorption. The maximum concentration of ibogaine was 1.45 mg/L. Our patient developed markedly prolonged QTc interval of 647ms maximum, several multiple cardiac arrhythmias (i.e., atrial tachycardia and ventricular tachycardia and Torsades des Pointes). QTc-prolongation remained present until 12 days after ingestion, several days after ibogaine plasma-levels were low, implicating clinically relevant noribogaine concentrations long after ibogaine had been cleared from the plasma. The ratio k 12 /k 21 for noribogaine was 21.5 and 4.28 for ibogaine, implicating a lower distribution of noribogaine from the peripheral compartment into the central compartment compared to ibogaine. We demonstrated a linear relationship between the concentration of the metabolite and long duration of action, rather than with parent ibogaine. Therefore, after (prolonged) ibogaine ingestion, clinicians should beware of long-term effects due to its metabolite.
Rozman, Samo; Grabnar, Iztok; Novaković, Srdjan; Mrhar, Ales; Jezeršek Novaković, Barbara
2017-08-01
Pharmacokinetic (PK) studies suggest that there is a room for improvement in clinical use of rituximab through more individualized treatment. The objective of this study was to characterize rituximab PK in 29 newly diagnosed patients with diffuse large B-cell lymphoma treated with rituximab in combination with cyclophosphamide, doxorubicin, vincristine and methylprednisolone every 3 weeks. We also evaluated the association of rituximab PK with clinical outcome. Rituximab serum levels were determined by enzyme-linked immunosorbent assay and evaluated by a population PK analysis applying nonlinear mixed effects modelling. The data were best described by a two-compartment model comprising linear nonspecific clearance of 0.252 [95% confidence interval (CI): 0.227-0.279] l day -1 and time-varying specific clearance of 0.278 (95% CI: 0.181-0.390) l day -1 , corresponding to target-mediated drug disposition of rituximab. Nonspecific clearance was lower in older patients and those with lower body weight. Additionally, volume of the central compartment was higher in males. A clear association of clinical response with rituximab PK has been observed. Rate constant of specific clearance decay was 0.143 day -1 (95% CI: 0.0478-0.418) in patients with no disease progression, while in patients with disease progression it was 82.2% lower (95% CI: 33.4-95.0). This finding indicates that time-changes in clearance could serve as a predictive marker of response to rituximab. Our report demonstrates the rationale for studies evaluating higher doses of rituximab in selected patients. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
van Gorp, Freek; Duffull, Stephen; Hackett, L Peter; Isbister, Geoffrey K
2012-01-01
AIMS To describe the pharmacokinetics and pharmacodynamics (PKPD) of escitalopram in overdose and its effect on QT prolongation, including the effectiveness of single dose activated charcoal (SDAC). METHODS The data set included 78 escitalopram overdose events (median dose, 140 mg [10–560 mg]). SDAC was administered 1.0 to 2.6 h after 12 overdoses (15%). A fully Bayesian analysis was undertaken in WinBUGS 1.4.3, first for a population pharmacokinetic (PK) analysis followed by a PKPD analysis. The developed PKPD model was used to predict the probability of having an abnormal QT as a surrogate for torsade de pointes. RESULTS A one compartment model with first order input and first-order elimination described the PK data, including uncertainty in dose and a baseline concentration for patients taking escitalopram therapeutically. SDAC reduced the fraction absorbed by 31% and reduced the individual predicted area under the curve adjusted for dose (AUCi/dose). The absolute QT interval was related to the observed heart rate with an estimated individual heart rate correction factor (α = 0.35). The heart rate corrected QT interval (QTc) was linearly dependent on predicted escitalopram concentration [slope = 87 ms/(mg l–1)], using a hypothetical effect-compartment (half-life of effect-delay, 1.0h). Administration of SDAC significantly reduced QT prolongation and was shown to reduce the risk of having an abnormal QT by approximately 35% for escitalopram doses above 200 mg. CONCLUSIONS There was a dose-related lengthening of the QT interval that lagged the increase in drug concentration. SDAC resulted in a moderate reduction in fraction of escitalopram absorbed and reduced the risk of the QT interval being abnormal. PMID:21883384
Intracompartmental pressure as a predictor of intratesticular blood flow: a rat model.
Watson, Matthew J; Bartkowski, Donald P; Nelson, Nathan C
2015-06-01
We identified an intratesticular pressure at which vascular flow would cease in a testicular compartment syndrome model, defining a critical vascular stop flow pressure. A total of 52 male Sprague Dawley® rats were used for the study. The testicle of each rat was delivered from the scrotum and size measurements were taken. An intracompartment pressure monitor needle was inserted into the testis to record basal intratesticular pressure. The monitor needle remained in the testicle for the duration of the procedure. Vascular flow within the testis was measured using a variable frequency linear ultrasound transducer with color flow and pulse wave Doppler modalities. Saline was infused through the compartment monitor in 5 mm Hg increments via a pressure infusion pump. Following each 5 mm Hg increase intratesticular vascular blood flow and velocities were recorded using color flow and pulse wave, respectively. Data collection proceeded until color flow images indicated a complete absence of flow within the testis. Using a paired t-test (p <0.0001), mean color flow stop flow pressure was 52.17 mm Hg (95% CI 49.57-54.77) and pulse wave stop flow pressure was 36.34 mm Hg (95% CI 33.90-38.77). Regression analysis of pulse wave vs color flow showed a slope of 0.6960 ± 0.09112, a y-intercept of 0.02427 ± 4.824 and an x-intercept of -0.03486. This is the first known study to characterize a stop flow pressure within the testicular parenchyma resulting from an increased intracompartmental pressure. Due to probe sensitivity limitations, color flow appears to provide the most precise mean pressure of occlusion of 52.17 mm Hg. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Compartmental Pharmacokinetics of the Antifungal Echinocandin Caspofungin (MK-0991) in Rabbits
Groll, Andreas H.; Gullick, Bryan M.; Petraitiene, Ruta; Petraitis, Vidmantas; Candelario, Myrna; Piscitelli, Stephen C.; Walsh, Thomas J.
2001-01-01
The pharmacokinetics of the antifungal echinocandin-lipopeptide caspofungin (MK-0991) in plasma were studied in groups of three healthy rabbits after single and multiple daily intravenous administration of doses of 1, 3, and 6 mg/kg of body weight. Concentrations were measured by a validated high-performance liquid chromatography method and fitted into a three-compartment open pharmacokinetic model. Across the investigated dosage range, caspofungin displayed dose-independent pharmacokinetics. Following administration over 7 days, the mean peak concentration in plasma (Cmax) ± standard error of the mean increased from 16.01 ± 0.61 μg/ml at the 1-mg/kg dose to 105.52 ± 8.92 μg/ml at the 6-mg/kg dose; the mean area under the curve from 0 h to infinity rose from 13.15 ± 2.37 to 158.43 ± 15.58 μg · h/ml, respectively. The mean apparent volume of distribution at steady state (Vdss) was 0.299 ± 0.011 liter/kg at the 1-mg/kg dose and 0.351 ± 0.016 liter/kg at the 6-mg/kg dose (not significant [NS]). Clearance (CL) ranged from 0.086 ± 0.017 liter/kg/h at the 1-mg/kg dose to 0.043 ± 0.004 liter/kg/h at the 6-mg/kg dose (NS), and the mean terminal half-life was between 30 and 34 h (NS). Except for a trend towards an increased Vdss, there were no significant differences in pharmacokinetic parameters in comparison to those after single-dose administration. Caspofungin was well tolerated, displayed linear pharmacokinetics that fit into a three-compartment pharmacokinetic model, and achieved sustained concentrations in plasma that were multiple times in excess of reported MICs for susceptible opportunistic fungi. PMID:11158761
Casacuberta, N; Traversa, F L; Masqué, P; Garcia-Orellana, J; Anguita, M; Gasa, J; Garcia-Tenorio, R
2010-09-15
Dicalcium phosphate (DCP) is used as a calcium supplement for food producing animals (i.e., cattle, poultry and pig). When DCP is produced via wet acid digestion of the phosphate rock and depending on the acid used in the industrial process, the final product can result in enhanced (210)Pb and (210)Po specific activities (approximately 2000 Bq.kg(-1)). Both (210)Pb and (210)Po are of great interest because their contribution to the dose received by ingestion is potentially large. The aims of this work are to examine the accumulation of (210)Pb and (210)Po in chicken tissues during the first 42 days of life and to build a suitable single-compartment biokinetic model to understand the behavior of both radionuclides within the entire animal using the experimental results. Three commercial corn-soybean-based diets containing different amounts and sources of DCP were fed to broilers during a period of 42 days. The results show that diets containing enhanced concentrations of (210)Pb and (210)Po lead to larger specific accumulation in broiler tissues compared to the blank diet. Radionuclides do not accumulate homogeneously within the animal body: (210)Pb follows the calcium pathways to some extent and accumulates largely in bones, while (210)Po accumulates to a large extent in liver and kidneys. However, the total amount of radionuclide accumulation in tissues is small compared to the amounts excreted in feces. The single-compartment non-linear biokinetic model proposed here for (210)Pb and (210)Po in the whole animal takes into account the size evolution and is self-consistent in that no fitting parameterization of intake and excretions rates is required. Copyright 2010 Elsevier B.V. All rights reserved.
Measurement of regional cerebral blood flow with copper-62-PTSM and a three-compartment model.
Okazawa, H; Yonekura, Y; Fujibayashi, Y; Mukai, T; Nishizawa, S; Magata, Y; Ishizu, K; Tamaki, N; Konishi, J
1996-07-01
We evaluated quantitatively 62Cu-labeled pyruvaldehyde bis(N4-methylthiosemicarbazone) copper II (62Cu-PTSM) as a brain perfusion tracer for positron emission tomography (PET). For quantitative measurement, the octanol extraction method is needed to correct for arterial radioactivity in estimating the lipophilic input function, but the procedure is not practical for clinical studies. To measure regional cerebral blood flow (rCBF) by 62Cu-PTSM with simple arterial blood sampling, a standard curve of the octanol extraction ratio and a three-compartment model were applied. We performed both 15O-labeled water PET and 62 Cu-PTSM PET with dynamic data acquisition and arterial sampling in six subjects. Data obtained in 10 subjects studied previously were used for the standard octanol extraction curve. Arterial activity was measured and corrected to obtain the true input function using the standard curve. Graphical analysis (Gjedde-Patlak plot) with the data for each subject fitted by a straight regression line suggested that 62Cu-PTSM can be analyzed by the three-compartment model with negligible K4. Using this model, K1-K3 were estimated from curve fitting of the cerebral time-activity curve and the corrected input function. The fractional uptake of 62Cu-PTSM was corrected to rCBF with the individual extraction at steady state calculated from K1-K3. The influx rates (Ki) obtained from three-compartment model and graphical analyses were compared for the validation of the model. A comparison of rCBF values obtained from 62Cu-PTSM and 150-water studies demonstrated excellent correlation. The results suggest the potential feasibility of quantitation of cerebral perfusion with 62Cu-PTSM accompanied by dynamic PET and simple arterial sampling.
Zang, Yan-Nan; Zhang, Min-Jie; Wang, Yi-Tong; Wang, Chen; Wang, Qian; Zheng, Qing-Shan; Ji, Li-Nong; Guo, Wei; Fang, Yi
2017-08-01
To investigate the population pharmacokinetics of lyophilized recombinant glucagon-like peptide-1 receptor agonist (rE-4) in Chinese patients with type 2 diabetes mellitus (T2DM) for plasma concentration estimation and individualized treatment. Twelve patients with T2DM were enrolled to receive subcutaneous injections of rE-4 at 5 µg twice daily for 84 days. Administration dosage was adjusted from 5 µg to 10 µg twice daily at day 29 in case of glycated albumin (GA) ≥ 17%. The population pharmacokinetic model was developed in the nonlinear mixed-effects modeling software NONMEM. The data were best described by a two-compartment model with first-order absorption and elimination. The outcome parameters were as follows: apparent clearance (CL/F) 6.67 L/h, apparent distribution volume of central compartment (Vc/F) 19.4 L, absorption rate constant (Ka) 1.39 h-1, apparent distribution volume of peripheral compartment (Vp/F) 22.6 L, intercompartmental clearance (Q/F) 1.28 L/h. The interindividual variabilities for CL/F, Vc/F, Ka, and Q/F were 64.4%, 57.7%, 45.5%, and 153.3%, respectively. The intra-individual variability of proportional error model was 41.7%. No covariate was screened out that showed significant influence on the model parameters. The established two-compartment model with first-order absorption and elimination successfully described the pharmacokinetic characteristics of rE-4 in Chinese patients with T2DM. .
Kernel Regression Estimation of Fiber Orientation Mixtures in Diffusion MRI
Cabeen, Ryan P.; Bastin, Mark E.; Laidlaw, David H.
2016-01-01
We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III. PMID:26691524
NASA Astrophysics Data System (ADS)
Dai, Xiaoqian; Tian, Jie; Chen, Zhe
2010-03-01
Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.
Ozeki, Kazuhisa; Kato, Motohiro; Sakurai, Yuuji; Ishigai, Masaki; Kudo, Toshiyuki; Ito, Kiyomi
2015-11-30
In a transcellular transport study, the apparent permeability coefficient (Papp) of a compound is evaluated using the range by which the amount of compound accumulated on the receiver side is assumed to be proportional to time. However, the time profile of the concentration of the compound in receiver (C3) often shows a lag time before reaching the linear range and later changes from linear to steady state. In this study, the linear range needed to calculate Papp in the C3-time profile was evaluated by a 3-compartment model. C3 was described by an equation with two steady states (C3=A3(1-e(-αt))+B3(1-e(-βt)), α>β), and by a simple approximate line (C3=A3-A3×αt) in the time range of 3/α
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... comments on this proposal, include with your comments a pre-addressed, stamped postcard on which the docket number appears. We will stamp the date on the postcard and mail it back to you. Background On November 4... pots), other than a conventional lavatory or kitchenette hot water heater, within the OFAR compartment...
Fréalle, E; Gantois, N; Aliouat-Denis, C M; Leroy, S; Zawadzki, C; Perkhofer, S; Aliouat, E M; Dei-Cas, E
2015-09-01
Pneumocystis is mostly found in the alveolar spaces, but circulation of viable organisms also occurs and suggests that the detection of DNA in blood could be used as a noninvasive procedure to improve the diagnosis of Pneumocystis pneumonia (PcP). In order to determine the optimal compartment for Pneumocystis DNA detection, we used a rat model of PcP and tested the presence of Pneumocystis with a quantitative mtLSU targeting real-time PCR in four blood compartments: whole blood, clot, serum and Platelet-Rich-Plasma (PRP). All samples from 4 Pneumocystis-free control rats were negative. Pneumocystis was detected in 79, 64, 57, and 57% of samples from 14 PcP rats, respectively, but DNA release was not related to pulmonary loads. These data confirm the potential usefulness of Pneumocystis DNA detection in the blood for PcP diagnosis and suggest that whole blood could be the most appropriate compartment for Pneumocystis detection. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Höglund, Richard; Moussavi, Younis; Ruengweerayut, Ronnatrai; Cheomung, Anurak; Äbelö, Angela; Na-Bangchang, Kesara
2016-02-29
A three-day course of chloroquine remains a standard treatment of Plasmodium vivax infection in Thailand with satisfactory clinical efficacy and tolerability although a continuous decline in in vitro parasite sensitivity has been reported. Information on the pharmacokinetics of chloroquine and its active metabolite desethylchloroquine are required for optimization of treatment to attain therapeutic exposure and thus prevent drug resistance development. The study was conducted at Mae Tao Clinic for migrant worker, Tak province, Thailand. Blood samples were collected from a total of 75 (8 Thais and 67 Burmeses; 36 males and 39 females; aged 17-52 years) patients with mono-infection with P. vivax malaria [median (95 % CI) admission parasitaemia 4898 (1206-29,480)/µL] following treatment with a three-day course of chloroquine (25 mg/kg body weight chloroquine phosphate over 3 days). Whole blood concentrations of chloroquine and desethylchloroquine were measured using high performance liquid chromatography with UV detection. Concentration-time profiles of both compounds were analysed using a population-based pharmacokinetic approach. All patients showed satisfactory response to standard treatment with a three-day course of chloroquine with 100 % cure rate within the follow-up period of 42 days. Neither recurrence of P. vivax parasitaemia nor appearance of P. falciparum occurred. A total of 1045 observations from 75 participants were included in the pharmacokinetic analysis. Chloroquine disposition was most adequately described by the two-compartment model with one transit compartment absorption model into the central compartment and a first-order transformation of chloroquine into desethylchloroquine with an additional peripheral compartment added to desethylchloroquine. First-order elimination from the central compartment of chloroquine and desethylchloroquine was assumed. The model exhibited a strong predictive ability and the pharmacokinetic parameters were estimated with adequate precision. The developed population-based pharmacokinetic model could be applied for future prediction of optimal dosage regimen of chloroquine in patients with P. vivax infection.
Structural Design Strategies for Improved Small Overlap Crashworthiness Performance.
Mueller, Becky C; Brethwaite, Andrew S; Zuby, David S; Nolan, Joseph M
2014-11-01
In 2012, the Insurance Institute for Highway Safety (IIHS) began a 64 km/h small overlap frontal crash test consumer information test program. Thirteen automakers already have redesigned models to improve test performance. One or more distinct strategies are evident in these redesigns: reinforcement of the occupant compartment, use of energy-absorbing fender structures, and the addition of engagement structures to induce vehicle lateral translation. Each strategy influences vehicle kinematics, posing additional challenges for the restraint systems. The objective of this two-part study was to examine how vehicles were modified to improve small overlap test performance and then to examine how these modifications affect dummy response and restraint system performance. Among eight models tested before and after design changes, occupant compartment intrusion reductions ranged from 6 cm to 45 cm, with the highest reductions observed in models with the largest number of modifications. All redesigns included additional occupant compartment reinforcement, one-third added structures to engage the barrier, and two modified a shotgun load path. Designs with engagement structures produced greater glance-off from the barrier and exhibited lower delta Vs but experienced more lateral outboard motion of the dummy. Designs with heavy reinforcement of the occupant compartment had higher vehicle accelerations and delta V. In three cases, these apparent trade-offs were not well addressed by concurrent changes in restraint systems and resulted in increased injury risk compared with the original tests. Among the 36 models tested after design changes, the extent of design changes correlated to structural performance. Half of the vehicles with the lowest intrusion levels incorporated aspects of all three design strategies. Vehicle kinematics and dummy and restraint system characteristics were similar to those observed in the before/after pairs. Different combinations of structural improvement strategies for improving small overlap test performance were found to be effective in reducing occupant compartment intrusion and improving dummy kinematics in the IIHS small overlap test with modest weight increase.
Numerical Modeling of Ophthalmic Response to Space
NASA Technical Reports Server (NTRS)
Nelson, E. S.; Myers, J. G.; Mulugeta, L.; Vera, J.; Raykin, J.; Feola, A.; Gleason, R.; Samuels, B.; Ethier, C. R.
2015-01-01
To investigate ophthalmic changes in spaceflight, we would like to predict the impact of blood dysregulation and elevated intracranial pressure (ICP) on Intraocular Pressure (IOP). Unlike other physiological systems, there are very few lumped parameter models of the eye. The eye model described here is novel in its inclusion of the human choroid and retrobulbar subarachnoid space (rSAS), which are key elements in investigating the impact of increased ICP and ocular blood volume. Some ingenuity was required in modeling the blood and rSAS compartments due to the lack of quantitative data on essential hydrodynamic quantities, such as net choroidal volume and blood flowrate, inlet and exit pressures, and material properties, such as compliances between compartments.
Morphological elucidation of basal ganglia circuits contributing reward prediction
Fujiyama, Fumino; Takahashi, Susumu; Karube, Fuyuki
2015-01-01
Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor–critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments. PMID:25698913
Ma, Jun; Jia, Zheng-Ping; Zhang, Qiang; Fan, Jun-Jie; Jiang, Ning-Xi; Wang, Rong; Xie, Hua; Wang, Juan
2003-10-25
A simple, rapid, sensitive column-switching HPLC method is described for the analysis of the 10-hydroxycamptothecin (HCPT) in human serum. A pre-column containing restricted access media (RAM) is used for the sample clean-up and trace enrichment and is combined with a C18 column for the final separation. The analytical time is 8 min. The HCPT is monitored with fluorescence detector, excitation and emission wavelengths being 385 and 539 nm, respectively. There is a linear response range of 1-1000 ng/ml with correlation coefficient of 0.998 while the limit of quantification is 0.1 ng/ml. The intra-day and inter-day variations are less than 5%. This analytic procedure has been applied to a pharmacokinetic study of HCPT in clinical patients and the pharmacokinetic parameters of one-compartment model are calculated.
The development of the MELiSSA Pilot Plant Facility
NASA Astrophysics Data System (ADS)
Godia, Francesc; Dussap, Claude-Gilles; Dixon, Mike; Peiro, Enrique; Fossen, Arnaud; Lamaze, Brigitte; Brunet, Jean; Demey, Dries; Mas-Albaigès, Joan L.
MELiSSA (Micro-Ecological Life Support System Alternative) is a closed artificial ecosystem intended as a tool for the development of a bio-regenerative life support system for longterm manned missions. The MELiSSA loop is formed by five interconnected compartments, organized in three different loops (solid, liquid and gas). This compartments are microbial bioreactors and higher plant chambers. The MELiSSA Pilot Plant facility has been designed to achieve the preliminary terrestrial demonstration of the MELiSSA concept at pilot scale, using animals as a model for the crew compartent. The experience gained in the operation of such a facility will be highly relevant for planning future life support systems in Space. In this communication, the latests developments in the MELiSSA Pilot Plant will be reported. Particularly, the completion of the design phase and instalation of all the different compartments will be discussed in detail. Each of the compartments had to be designed and constructed according to very specific characteristics, associated to the biological systems to be cultured, as part of the complete MELiSSA loop (anerobic, oxygenic, thermophilic, heterotrophic, autotrophic, axenic, photosynthetic, etc.). Additionally, the sizing of each reactor (ranging from 8 to 100 Liters, depending of each particular compartment) should compile with the global integration scenario proposed, and with the final goal of connection of all compartments to provide a demonstration of the MELiSSA concept, and generate data for the design and operation of future biological life support systems.
[Effect of the ISS Russian segment configuration on the service module radiation environment].
Mitrikas, V G
2011-01-01
Mathematical modeling of variations in the Service module radiation environment as a function of ISS Russian segment configuration was carried out using models of the RS modules and a spherical humanoid phantom. ISS reconfiguration impacted significantly only the phantom brought into the transfer compartment (ExT). The Radiation Safety Service prohibition for cosmonauts to stay in this compartment during solar flare events remains valid. In all other instances, error of dose estimation is higher as compared to dose value estimation with consideration for ISS RS reconfiguration.
GLUT4 Retention in Adipocytes Requires Two Intracellular Insulin-regulated Transport Steps
Zeigerer, Anja; Lampson, Michael A.; Karylowski, Ola; Sabatini, David D.; Adesnik, Milton; Ren, Mindong; McGraw, Timothy E.
2002-01-01
Insulin regulates glucose uptake into fat and muscle by modulating the distribution of the GLUT4 glucose transporter between the surface and interior of cells. The GLUT4 trafficking pathway overlaps with the general endocytic recycling pathway, but the degree and functional significance of the overlap are not known. In this study of intact adipocytes, we demonstrate, by using a compartment-specific fluorescence-quenching assay, that GLUT4 is equally distributed between two intracellular pools: the transferrin receptor-containing endosomes and a specialized compartment that excludes the transferrin receptor. These pools of GLUT4 are in dynamic communication with one another and with the cell surface. Insulin-induced redistribution of GLUT4 to the surface requires mobilization of both pools. These data establish a role for the general endosomal system in the specialized, insulin-regulated trafficking of GLUT4. Trafficking through the general endosomal system is regulated by rab11. Herein, we show that rab11 is required for the transport of GLUT4 from endosomes to the specialized compartment and for the insulin-induced translocation to the cell surface, emphasizing the importance of the general endosomal pathway in the specialized trafficking of GLUT4. Based on these findings we propose a two-step model for GLUT4 trafficking in which the general endosomal recycling compartment plays a specialized role in the insulin-regulated traffic of GLUT4. This compartment-based model provides the framework for understanding insulin-regulated trafficking at a molecular level. PMID:12134080
GLUT4 retention in adipocytes requires two intracellular insulin-regulated transport steps.
Zeigerer, Anja; Lampson, Michael A; Karylowski, Ola; Sabatini, David D; Adesnik, Milton; Ren, Mindong; McGraw, Timothy E
2002-07-01
Insulin regulates glucose uptake into fat and muscle by modulating the distribution of the GLUT4 glucose transporter between the surface and interior of cells. The GLUT4 trafficking pathway overlaps with the general endocytic recycling pathway, but the degree and functional significance of the overlap are not known. In this study of intact adipocytes, we demonstrate, by using a compartment-specific fluorescence-quenching assay, that GLUT4 is equally distributed between two intracellular pools: the transferrin receptor-containing endosomes and a specialized compartment that excludes the transferrin receptor. These pools of GLUT4 are in dynamic communication with one another and with the cell surface. Insulin-induced redistribution of GLUT4 to the surface requires mobilization of both pools. These data establish a role for the general endosomal system in the specialized, insulin-regulated trafficking of GLUT4. Trafficking through the general endosomal system is regulated by rab11. Herein, we show that rab11 is required for the transport of GLUT4 from endosomes to the specialized compartment and for the insulin-induced translocation to the cell surface, emphasizing the importance of the general endosomal pathway in the specialized trafficking of GLUT4. Based on these findings we propose a two-step model for GLUT4 trafficking in which the general endosomal recycling compartment plays a specialized role in the insulin-regulated traffic of GLUT4. This compartment-based model provides the framework for understanding insulin-regulated trafficking at a molecular level.
Dynamics of tax evasion through an epidemic-like model
NASA Astrophysics Data System (ADS)
Brum, Rafael M.; Crokidakis, Nuno
In this work, we study a model of tax evasion. We considered a fixed population divided in three compartments, namely honest tax payers, tax evaders and a third class between the mentioned two, which we call susceptibles to become evaders. The transitions among those compartments are ruled by probabilities, similarly to a model of epidemic spreading. These probabilities model social interactions among the individuals, as well as the government’s fiscalization. We simulate the model on fully-connected graphs, as well as on scale-free and random complex networks. For the fully-connected and random graph cases, we observe that the emergence of tax evaders in the population is associated with an active-absorbing nonequilibrium phase transition, that is absent in scale-free networks.
Statistical Exposé of a Multiple-Compartment Anaerobic Reactor Treating Domestic Wastewater.
Pfluger, Andrew R; Hahn, Martha J; Hering, Amanda S; Munakata-Marr, Junko; Figueroa, Linda
2018-06-01
Mainstream anaerobic treatment of domestic wastewater is a promising energy-generating treatment strategy; however, such reactors operated in colder regions are not well characterized. Performance data from a pilot-scale, multiple-compartment anaerobic reactor taken over 786 days were subjected to comprehensive statistical analyses. Results suggest that chemical oxygen demand (COD) was a poor proxy for organics in anaerobic systems as oxygen demand from dissolved inorganic material, dissolved methane, and colloidal material influence dissolved and particulate COD measurements. Additionally, univariate and functional boxplots were useful in visualizing variability in contaminant concentrations and identifying statistical outliers. Further, significantly different dissolved organic removal and methane production was observed between operational years, suggesting that anaerobic reactor systems may not achieve steady-state performance within one year. Last, modeling multiple-compartment reactor systems will require data collected over at least two years to capture seasonal variations of the major anaerobic microbial functions occurring within each reactor compartment.
Stochastic Model of Vesicular Sorting in Cellular Organelles
NASA Astrophysics Data System (ADS)
Vagne, Quentin; Sens, Pierre
2018-02-01
The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intracellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations, considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values lead to fast sorting but result in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well-defined sorted compartments but sorting is exponentially slow. Our results suggest an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components and highlight the importance of stochastic effects for the steady-state organization of intracellular compartments.
Practical Modeling Concepts for Connective Tissue Stem Cell and Progenitor Compartment Kinetics
2003-01-01
Stem cell activation and development is central to skeletal development, maintenance, and repair, as it is for all tissues. However, an integrated model of stem cell proliferation, differentiation, and transit between functional compartments has yet to evolve. In this paper, the authors review current concepts in stem cell biology and progenitor cell growth and differentiation kinetics in the context of bone formation. A cell-based modeling strategy is developed and offered as a tool for conceptual and quantitative exploration of the key kinetic variables and possible organizational hierarchies in bone tissue development and remodeling, as well as in tissue engineering strategies for bone repair. PMID:12975533
Inter-synaptic learning of combination rules in a cortical network model
Lavigne, Frédéric; Avnaïm, Francis; Dumercy, Laurent
2014-01-01
Selecting responses in working memory while processing combinations of stimuli depends strongly on their relations stored in long-term memory. However, the learning of XOR-like combinations of stimuli and responses according to complex rules raises the issue of the non-linear separability of the responses within the space of stimuli. One proposed solution is to add neurons that perform a stage of non-linear processing between the stimuli and responses, at the cost of increasing the network size. Based on the non-linear integration of synaptic inputs within dendritic compartments, we propose here an inter-synaptic (IS) learning algorithm that determines the probability of potentiating/depressing each synapse as a function of the co-activity of the other synapses within the same dendrite. The IS learning is effective with random connectivity and without either a priori wiring or additional neurons. Our results show that IS learning generates efficacy values that are sufficient for the processing of XOR-like combinations, on the basis of the sole correlational structure of the stimuli and responses. We analyze the types of dendrites involved in terms of the number of synapses from pre-synaptic neurons coding for the stimuli and responses. The synaptic efficacy values obtained show that different dendrites specialize in the detection of different combinations of stimuli. The resulting behavior of the cortical network model is analyzed as a function of inter-synaptic vs. Hebbian learning. Combinatorial priming effects show that the retrospective activity of neurons coding for the stimuli trigger XOR-like combination-selective prospective activity of neurons coding for the expected response. The synergistic effects of inter-synaptic learning and of mixed-coding neurons are simulated. The results show that, although each mechanism is sufficient by itself, their combined effects improve the performance of the network. PMID:25221529
To Be or Not To Be...Perceived Benefits of Mentoring In the United States Air Force
2013-06-01
negative , and this perception of the process can drive individuals from future relationships. For this reason, career-influencing factors have to be...to discuss the positive and negative perceptions of mentoring on twenty-first century Airman. In this study, the focus is on mentoring and non...different stages of life. Each compartment segments linear periods in a given lifespan. From the middle of childhood to that of adolescence
Comparison of Kinetic Models for Dual-Tracer Receptor Concentration Imaging in Tumors
Hamzei, Nazanin; Samkoe, Kimberley S; Elliott, Jonathan T; Holt, Robert W; Gunn, Jason R; Hasan, Tayyaba; Pogue, Brian W; Tichauer, Kenneth M
2014-01-01
Molecular differences between cancerous and healthy tissue have become key targets for novel therapeutics specific to tumor receptors. However, cancer cell receptor expression can vary within and amongst different tumors, making strategies that can quantify receptor concentration in vivo critical for the progression of targeted therapies. Recently a dual-tracer imaging approach capable of providing quantitative measures of receptor concentration in vivo was developed. It relies on the simultaneous injection and imaging of receptor-targeted tracer and an untargeted tracer (to account for non-specific uptake of the targeted tracer). Early implementations of this approach have been structured on existing “reference tissue” imaging methods that have not been optimized for or validated in dual-tracer imaging. Using simulations and mouse tumor model experimental data, the salient findings in this study were that all widely used reference tissue kinetic models can be used for dual-tracer imaging, with the linearized simplified reference tissue model offering a good balance of accuracy and computational efficiency. Moreover, an alternate version of the full two-compartment reference tissue model can be employed accurately by assuming that the K1s of the targeted and untargeted tracers are similar to avoid assuming an instantaneous equilibrium between bound and free states (made by all other models). PMID:25414912
Hydrological modelling in forested systems | Science ...
This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... these hybrid models is cable of achieving temperatures at or below 38 [deg]F, the wine storage compartment of these single-cabinet units can only achieve a minimum temperature of 45 [deg]F. As a result, it... energy consumption be measured when each compartment temperature is set at 38 [deg]F. In order to...
NASA Astrophysics Data System (ADS)
Riabkov, Dmitri
Compartment modeling of dynamic medical image data implies that the concentration of the tracer over time in a particular region of the organ of interest is well-modeled as a convolution of the tissue response with the tracer concentration in the blood stream. The tissue response is different for different tissues while the blood input is assumed to be the same for different tissues. The kinetic parameters characterizing the tissue responses can be estimated by blind identification methods. These algorithms use the simultaneous measurements of concentration in separate regions of the organ; if the regions have different responses, the measurement of the blood input function may not be required. In this work it is shown that the blind identification problem has a unique solution for two-compartment model tissue response. For two-compartment model tissue responses in dynamic cardiac MRI imaging conditions with gadolinium-DTPA contrast agent, three blind identification algorithms are analyzed here to assess their utility: Eigenvector-based Algorithm for Multichannel Blind Deconvolution (EVAM), Cross Relations (CR), and Iterative Quadratic Maximum Likelihood (IQML). Comparisons of accuracy with conventional (not blind) identification techniques where the blood input is known are made as well. The statistical accuracies of estimation for the three methods are evaluated and compared for multiple parameter sets. The results show that the IQML method gives more accurate estimates than the other two blind identification methods. A proof is presented here that three-compartment model blind identification is not unique in the case of only two regions. It is shown that it is likely unique for the case of more than two regions, but this has not been proved analytically. For the three-compartment model the tissue responses in dynamic FDG PET imaging conditions are analyzed with the blind identification algorithms EVAM and Separable variables Least Squares (SLS). A method of identification that assumes that FDG blood input in the brain can be modeled as a function of time and several parameters (IFM) is analyzed also. Nonuniform sampling SLS (NSLS) is developed due to the rapid change of the FDG concentration in the blood during the early postinjection stage. Comparisons of accuracy of EVAM, SLS, NSLS and IFM identification techniques are made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.
1996-12-31
Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the {open_quotes}E{close_quotes} or {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin.more » The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.
1996-01-01
Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the [open quotes]E[close quotes] or [open quotes]Pink[close quotes] reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence withinmore » a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less
A Multi-Compartment 3-D Finite Element Model of Rectocele and Its Interaction with Cystocele
Luo, Jiajia; Chen, Luyun; Fenner, Dee E.; Ashton-Miller, James A.; DeLancey, John O. L.
2015-01-01
We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as POP-Q point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment. PMID:25757664
Alqahtani, Saeed A; Alsultan, Abdullah S; Alqattan, Hussain M; Eldemerdash, Ahmed; Albacker, Turki B
2018-04-23
The purpose of this study was to investigate the population pharmacokinetics of vancomycin in patients undergoing open heart surgery. In this observational pharmacokinetic study, multiple blood samples were drawn over a 48-h period of intravenous vancomycin in patients who were undergoing open heart surgery. Blood samples were analysed using the Architect i4000SR Immunoassay Analyzer. Population pharmacokinetic models were developed using Monolix 4.4 software. Pharmacokinetic-pharmacodynamic (PK-PD) simulations were performed to explore the ability of different dosage regimens to achieve the pharmacodynamic targets. One-hundred and sixty-eight blood samples were analysed from 28 patients. The pharmacokinetics of vancomycin was best described by a two-compartment model with between-subject variability in CL, V of the central compartment, and V of the peripheral compartment. CL and central compartment V of vancomycin were related to CL CR , body weight, and albumin concentration. Dosing simulations showed that standard dosing regimens of 1 and 1.5 g failed to achieve the PK-PD target of AUC 0--24 /MIC > 400 for an MIC of 1 mg/L, while high weight-based dosing regimens were able to achieve the PK-PD target. In summary, administration of standard doses of 1 and 1.5 g of vancomycin two times daily provided inadequate antibiotic prophylaxis in patients undergoing open heart surgery. The same findings were obtained when 15 mg/kg and 20 mg/kg doses of vancomycin were administered. Achieving the PK-PD target required higher doses (25 mg/kg and 30 mg/kg) of vancomycin. Copyright © 2018 American Society for Microbiology.
Hill, Lydia; Chaplain, Mark A J; Wolf, Roland; Kapelyukh, Yury
2017-03-01
The Cytochrome P450 (CYP) system is involved in 90% of the human body's interactions with xenobiotics and due to this, it has become an area of avid research including the creation of transgenic mice. This paper proposes a three-compartment model which is used to explain the drug metabolism in the Hepatic Reductase Null (HRN) mouse developed by the University of Dundee (Henderson, C. J., Otto, D. M. E., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I. and Wolf, C. R. (2003) Inactivation of the hepatic cytochrome p450 system by conditional deletion of hepatic cytochrome p450 reductase. J. Biol. Chem. , 13480-13486). The model is compared with a two-compartment model using experimental data from studies using wild-type and HRN mice. This comparison allowed for metabolic differences between the two types of mice to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the transgenic mouse has a decreased rate of metabolism. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.
Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke
2015-01-07
Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Shi, En; Li, Jianzheng; Leu, Shao-Yuan; Antwi, Philip
2016-12-01
To predict the dynamic profiles in volatile fatty acids (VFAs) with pH and hydraulic retention time (HRT) during the startup of a 4-compartment ABR, a mathematical model was constructed by introducing pH and thermodynamic inhibition functions into the biochemical processes derived from the ADM1. The calibration of inhibition parameter for propionate uptake effectively improved the prediction accuracy of VFAs. The developed model could simulate the VFAs profiles very well no matter the observable change of pH or/and HRT. The simulation results indicated that both H 2 -producing acetogenesis and methanogenesis in the ABR would be inhibited with a pH less than 4.61, and the propionate oxidation could be thermodynamically restricted even with a neutral pH. A decreased HRT would enhanced the acidogenesis and H 2 -producing acetogenesis in the first 3 compartments, but no observable increase in effluent VFAs could be found due to the synchronously enhanced methanogenesis in the last compartment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.
Bekir Ersu, Cagatayhan; Ong, Say Kee; Arslankaya, Ertan; Brown, Patrick
2008-03-01
A 12-L lab-scale membrane bioreactor (MBR), consisting of an anaerobic and anoxic compartment followed by an oxic plate-frame membrane compartment, was evaluated for carbonaceous and nutrient removals by varying the recirculation of mixed liquor and permeate. The hydraulic retention times (HRTs) for the anaerobic, anoxic, and oxic compartments were 2, 2, and 8h, respectively. The solids residence time (SRT) for the oxic compartment was 25 days. Five different recirculation configurations were tested by recirculating mixed liquor and/or permeate recirculation equal to the influent flow rate (identified as 100%) into different locations of the anaerobic and anoxic compartments. Of the five configurations, the configuration with 100% mixed liquor recirculation to the anaerobic compartment and 100% permeate recirculation to the anoxic compartment gave the highest percentage removal with an average 92.3+/-0.5% soluble chemical oxygen demand (sCOD), 75.6+/-0.4% total nitrogen (TN), and 62.4+/-1.3% total phosphorus (TP) removal. When the mixed liquor and permeate recirculation rates were varied for the same configuration, the highest TP removal was obtained for 300% mixed liquor recirculation and 100% permeate recirculation (300%/100%) with a TP removal of 88.1+/-1.3% while the highest TN removal (90.3+/-0.3%) was obtained for 200%/300% recirculation. TN and TP concentrations as low as 4.2+/-0.1 and 1.4+/-0.2mg/L respectively were obtained. Mass loading rates were generally low in the range of 0.11-0.22kgCOD/kgMLSS/d due to high biomass concentrations within the oxic reactor (approx. 8000mg/L). The BioWin model was calibrated against one set of the experimental data and was found to predict the experimental data of effluent TN, TP, and NO(3)(-)-N but over-predicted sCOD and NH(3)-N for various recirculation rates. The anoxic heterotrophic yield for the calibrated model was 0.2kg biomass COD/kg COD utilized while the maximum growth rates were found to be 0.45day(-1) for mu(max-autotroph), 3.2day(-1) for mu(max-heterotroph), and 1.5day(-1) for mu(max-PAO).
Huang, Yu; Parra, Lucas C.; Haufe, Stefan
2018-01-01
In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semiautomated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an ‘arbitrary’ individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebrospinal fluid (CSF), and their field of view excludes portions of the head and neck—two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or “New York Head”. It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5 mm 3 resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the ‘ground truth’) is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an ‘individualized’ BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. PMID:26706450
Huang, Yu; Parra, Lucas C; Haufe, Stefan
2016-10-15
In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semi-automated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an 'arbitrary' individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebro-spinal fluid (CSF), and their field of view excludes portions of the head and neck-two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or "New York Head". It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5mm(3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the 'ground truth') is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an 'individualized' BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. Published by Elsevier Inc.
A mathematical model for CTL effect on a latently infected cell inclusive HIV dynamics and treatment
NASA Astrophysics Data System (ADS)
Tarfulea, N. E.
2017-10-01
This paper investigates theoretically and numerically the effect of immune effectors, such as the cytotoxic lymphocyte (CTL), in modeling HIV pathogenesis (via a newly developed mathematical model); our results suggest the significant impact of the immune response on the control of the virus during primary infection. Qualitative aspects (including positivity, boundedness, stability, uncertainty, and sensitivity analysis) are addressed. Additionally, by introducing drug therapy, we analyze numerically the model to assess the effect of treatment consisting of a combination of several antiretroviral drugs. Our results show that the inclusion of the CTL compartment produces a higher rebound for an individual's healthy helper T-cell compartment than drug therapy alone. Furthermore, we quantitatively characterize successful drugs or drug combination scenarios.
Geometric approach to segmentation and protein localization in cell culture assays.
Raman, S; Maxwell, C A; Barcellos-Hoff, M H; Parvin, B
2007-01-01
Cell-based fluorescence imaging assays are heterogeneous and require the collection of a large number of images for detailed quantitative analysis. Complexities arise as a result of variation in spatial nonuniformity, shape, overlapping compartments and scale (size). A new technique and methodology has been developed and tested for delineating subcellular morphology and partitioning overlapping compartments at multiple scales. This system is packaged as an integrated software platform for quantifying images that are obtained through fluorescence microscopy. Proposed methods are model based, leveraging geometric shape properties of subcellular compartments and corresponding protein localization. From the morphological perspective, convexity constraint is imposed to delineate and partition nuclear compartments. From the protein localization perspective, radial symmetry is imposed to localize punctate protein events at submicron resolution. Convexity constraint is imposed against boundary information, which are extracted through a combination of zero-crossing and gradient operator. If the convexity constraint fails for the boundary then positive curvature maxima are localized along the contour and the entire blob is partitioned into disjointed convex objects representing individual nuclear compartment, by enforcing geometric constraints. Nuclear compartments provide the context for protein localization, which may be diffuse or punctate. Punctate signal are localized through iterative voting and radial symmetries for improved reliability and robustness. The technique has been tested against 196 images that were generated to study centrosome abnormalities. Corresponding computed representations are compared against manual counts for validation.
Hindel, Stefan; Papanastasiou, Giorgos; Wust, Peter; Maaß, Marc; Söhner, Anika; Lüdemann, Lutz
2018-06-01
Pharmacokinetic models for perfusion quantification with a low-molecular-weight contrast agent (LMCA) in skeletal muscle using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were evaluated. Tissue perfusion was measured in seven regions of interest (ROIs) placed in the total hind leg supplied by the femoral artery in seven female pigs. DCE-MRI was performed using a 3D gradient echo sequence with k-space sharing. The sequence was acquired twice, first after LMCA and then after blood pool contrast agent injection. Blood flow was augmented by continuous infusion of the vasodilator adenosine into the femoral artery, resulting in up to four times increased blood flow. The results obtained with several LMCA models were compared with those of a two-compartment blood pool model (2CBPM) consisting of a capillary and an arteriolar compartment. Measurements performed with a Doppler flow probe placed at the femoral artery served as ground truth. The two-compartment exchange model extended by an arteriolar compartment (E2CXM) showed the highest fit quality of all LMCA models and the most significant correlation with the Doppler measurements, r = 0.78 (P < 0.001). The best correspondence between the capillary perfusion measurements of the LMCA models and those of the 2CBPM was found with the E2CXM (slope of the regression line equal to 1, r = 0.85, P < 0.001). The results for the clinical patient data corresponded very well with the results obtained in the animal experiments. Double-contrast agent DCE-MRI in combination with the E2CXM yields the most reliable results and can be used in clinical routine. Magn Reson Med 79:3154-3162, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Yu, Tian; Enioutina, Elena Y; Brunner, Hermine I; Vinks, Alexander A; Sherwin, Catherine M
2017-02-01
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with potentially severe clinical manifestation that mainly affects women of child-bearing age. Patients who do not respond to standard-of-care therapies, such as corticosteroids and immunosuppressants, require biologic therapeutics that specifically target a single or multiple SLE pathogenesis pathways. This review summarizes the clinical pharmacokinetic and pharmacodynamic characteristics of biologic agents that are approved, used off-label, or in the active pipeline of drug development for SLE patients. Depending on the type of target, the interacting biologics may exhibit linear (non-specific) or non-linear (target-mediated) disposition profiles, with terminal half-lives varying from approximately 1 week to 1 month. Biologics given by subcutaneous administration, which offers dosing flexibility over intravenous administration, demonstrated a relatively slow absorption with a time to maximum concentration of approximately 1 day to 2 weeks and a variable bioavailability of 30-82 %. The population pharmacokinetics of monoclonal antibodies were best described by a two-compartment model with central clearance and steady-state volume of distribution ranging from 0.176 to 0.215 L/day and 3.60-5.29 L, respectively. The between-subject variability in pharmacokinetic parameters were moderate (20-79 %) and could be partially explained by body size. The development of linked pharmacokinetic-pharmacodynamic models incorporating SLE disease biomarkers are an attractive strategy for use in dosing regimen simulation and optimization. The relationship between efficacy/adverse events and biologic concentration should be evaluated to improve clinical trial outcomes, especially for biologics in the advanced phase of drug development. New strategies, such as model-based precision dosing dashboards, could be utilized to incorporate information collected from therapeutic drug monitoring into pharmacokinetic/pharmacodynamic models to enable individualized dosing in real time.
Rico, Andreu; Jacobs, Rianne; Van den Brink, Paul J; Tello, Alfredo
2017-12-01
Estimating antibiotic pollution and antibiotic resistance development risks in environmental compartments is important to design management strategies that advance our stewardship of antibiotics. In this study we propose a modelling approach to estimate the risk of antibiotic resistance development in environmental compartments and demonstrate its application in aquaculture production systems. We modelled exposure concentrations for 12 antibiotics used in Vietnamese Pangasius catfish production using the ERA-AQUA model. Minimum selective concentration (MSC) distributions that characterize the selective pressure of antibiotics on bacterial communities were derived from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) Minimum Inhibitory Concentration dataset. The antibiotic resistance development risk (RDR) for each antibiotic was calculated as the probability that the antibiotic exposure distribution exceeds the MSC distribution representing the bacterial community. RDRs in pond sediments were nearly 100% for all antibiotics. Median RDR values in pond water were high for the majority of the antibiotics, with rifampicin, levofloxacin and ampicillin having highest values. In the effluent mixing area, RDRs were low for most antibiotics, with the exception of amoxicillin, ampicillin and trimethoprim, which presented moderate risks, and rifampicin and levofloxacin, which presented high risks. The RDR provides an efficient means to benchmark multiple antibiotics and treatment regimes in the initial phase of a risk assessment with regards to their potential to develop resistance in different environmental compartments, and can be used to derive resistance threshold concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors
NASA Astrophysics Data System (ADS)
Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.
2017-11-01
Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.
Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations
NASA Astrophysics Data System (ADS)
Flegg, Mark B.; Hellander, Stefan; Erban, Radek
2015-05-01
In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: Δt → 0 and h is fixed; Δt → 0 and h → 0 such that √{ Δt } / h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.
Hiroi, Noriko; Okuhara, Takahiro; Kubojima, Takeshi; Iba, Keisuke; Tabira, Akito; Yamashita, Shuji; Okada, Yasunori; Kobayashi, Tetsuya J.; Funahashi, Akira
2012-01-01
The intracellular environment is known to be a crowded and inhomogeneous space. Such an in vivo environment differs from a well-diluted, homogeneous environment for biochemical reactions. However, the effects of both crowdedness and the inhomogeneity of environment on the behavior of a mobile particle have not yet been investigated sufficiently. As described in this paper, we constructed artificial reaction spaces with fractal models, which are assumed to be non-reactive solid obstacles in a reaction space with crevices that function as operating ranges for mobile particles threading the space. Because of the homogeneity of the structures of artificial reaction spaces, the models succeeded in reproducing the physiological fractal dimension of solid structures with a smaller number of non-reactive obstacles than in the physiological condition. This incomplete compatibility was mitigated when we chose a suitable condition of a perimeter-to-area ratio of the operating range to our model. Our results also show that a simulation space is partitioned into convenient reaction compartments as an in vivo environment with the exact amount of solid structures estimated from TEM images. The characteristics of these compartments engender larger mean square displacement of a mobile particle than that of particles in smaller compartments. Subsequently, the particles start to show confined particle-like behavior. These results are compatible with our previously presented results, which predicted that a physiological environment would produce quick response and slow exhaustion reactions. PMID:22936917
Study the Seasonal Variability of Plankton and Forage Fish in the Gulf of Khambhat Using Npzfd Model
NASA Astrophysics Data System (ADS)
Kumar, V.; Kumar, S.
2016-02-01
Numerical modelling of marine ecology exploits several assumptions and it is indeed quite challenging to include marine ecological phenomena into a mathematical framework with too many unknown parameters. The governing ordinary differential equations represent the interaction of the biological and chemical processes in a marine environment. The key concern in the development of a numerical models are parameterizations based on output, viz., mathematical modelling of ecological system mainly depends on parameters and its variations. Almost, all constituents of each trophic level of marine food web are depended on phytoplankton, which are mostly influenced by initial slope of P-I curve and nutrient stock in the study domain. Whereas, the earlier plankton dynamic models rarely include a compartment of small fish and as an agent in zooplankton mortality, which is most important for the modelling of higher trophic level of marine species. A compartment of forage fish in the modelling of plankton dynamics has been given more realistic mortality rates of plankton, viz., they feed upon phytoplankton and zooplankton. The inclusion of an additional compartment increases complexity of earlier plankton dynamics model as it introduces additional unknown parameters, which has been specified for performing the numerical simulations.As a case study we applied our analysis to explain the aquatic ecology of Gulf of Khambhat (19o 48' N - 22o20' N, 65o E - 72o40' E), west coast of India, which has rich bio-diversity and a high productive area in the form of plankton and forage fish. It has elevated turbidity and varying geography location, viz., one of the regions among world's ocean with high biological productivity.The model presented in this study is able to bring out the essential features of the observed data; that includes the bimodal oscillations in the observed data, monthly mean chlorophyll-a in the SeaWiFs/MODIS Aqua data and in-situ data of plankton. The additional compartment of forage fish and detritus in NPZFD model represents a major structural difference from the earlier NPZ model.
Ratios of transfer coefficients for radiocesium transport in ruminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assimakopoulos, P.A.; Ioannides, K.G.; Karamanis, D.
1995-09-01
A corollary of the multiple-compartment model for the transport of trace elements through animals was tested for cows, goats, and sheep. According to this corollary, for a given body {open_quotes}compartment{close_quotes} k of the animal (soft tissue, lung, liver, etc.), the ratio a(k)=f(k)/f(blood) of the transfer coefficients f, should exhibit similar values for physiologically similar animals. In order to verify this prediction, two experiments were performed at the Agricultural Research Station of Ioannina and at the facilities of Ria Pripyat in Pripyat, Ukranine. Eight animals in the first experiment and eighteen in the second were housed in individual pens and weremore » artificially contaminated with a constant daily dose of radiocesium until equilibrium was reached. the animals were then sacrificed and transfer coefficients f(k) to twelve body {open_quotes}compartments{close_quotes} k were measured. These data were used to calculate the ratios a(k). The results were in accordance with predictions of the model and average values of a(k) were extracted for ruminants. It is concluded that these values may be employed for the prediction of animal contamination in any body compartment through the measurement of blood samples. 7 refs., 8 tabs.« less
Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar
NASA Astrophysics Data System (ADS)
Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun
2015-04-01
Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged from 6.5 to 8.0. Sorption capacity was reduced with aging time. From kinetic results, two-compartment first order model was more suitable than one-compartment first order model. Fast sorption site of biochar-amended soils dominated total sorption process (i.e., Fraction of fast sorption site ranged from 0.55 to 0.96). Reduced sorption capacity with aging time could be attributed to changes in physico-chemical properties of biochar-amended soils (e.g., reduced pores and increased hydrophilic carboxyl and carbonyl functional groups). Verification is FI-IR and SSA. It is assumed that biochar is a suitable material for PHE contaminated soil in order to reduce the lability of PHE. However, aging effects would lessen biochar benefit for reducing the sorption capacity of PHE by forming hydrophilic functional group and reducing pores.
Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells.
Asensio, Y; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Rodrigo, M A
2016-08-01
This manuscript focuses on the evaluation of the use of different types and dosages of fuels in the performance of double-compartment microbial fuel cell equipped with carbon felt electrodes and cationic membrane. Five types of fuels (ethanol, glycerol, acetate, propionate and fructose) have been tested for the same organic load (5,000 mg L(-1) measured as COD) and for one of them (acetate), the range of dosages between 500 and 20,000 mg L(-1) of COD was also studied. Results demonstrate that production of electricity depends strongly on the fuel used. Carboxylic acids are much more efficient than alcohols or fructose for the same organic load and within the range 500-5,000 mg L(-1) of acetate the production of electricity increases linearly with the amount of acetate fed but over these concentrations a change in the population composition may explain a worse performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shang, De-Wei; Li, Li-Jun; Wang, Xi-Pei; Wen, Yu-Guan; Ren, Yu-Peng; Guo, Wei; Li, Wen-Biao; Li, Liang; Zhou, Tian-Yan; Lu, Wei; Wang, Chuan-Yue
2014-06-01
The aim of this study was to characterize the relationship between accumulated exposure of clozapine and changes in Positive and Negative Syndrome Scale (PANSS) score in Chinese patients with schizophrenia by pharmacokinetic/pharmacodynamic (PK/PD) modeling. Sparse clozapine PK data and PANSS scores were collected from 2 clinical studies of Chinese inpatients with schizophrenia. Two other rich PK data sets were included for more accurate assessment of clozapine PK characteristics. The relationship between clozapine-accumulated exposure and PANSS score was investigated using linear, log-linear, E(max), and sigmoid models, and each model was evaluated using visual predictive condition and normalized prediction distribution error methods. Simulations based on the final PK/PD model were preformed to investigate the effect of clozapine on PANSS scores under different dose regimens. A total of 1391 blood clozapine concentrations from 198 subjects (180 patients and 18 healthy volunteers) and 576 PANSS scores from 137 patients were included for PK and PK/PD analysis. A first-order 2-compartment PK model with covariates gender and smoking status influencing systemic clearance adequately described the PK profile of clozapine. The decrease in total PANSS score during treatment was best characterized using cumulated clozapine area under the curve (AUC) data in the E(max) model. The maximum decrease in PANSS during clozapine treatment (Emax) was 55.4%, and the cumulated AUC(50) (cAUC(50)) required to attain half of E(max) was 296 mg·L(-1)·h(-1)·d(-1). The simulations demonstrated that the accelerated dose titration and constant dose regimens achieved a similar maximum drug response but with a slower relief of symptoms in dose titration regimen. The PK/PD model can describe the clinical response as measured by decreasing PANSS score during treatment and may be useful for optimizing the dose regimen for individual patients.
Yassen, A; Olofsen, E; Romberg, R; Sarton, E; Teppema, L; Danhof, M; Dahan, A
2007-01-01
The objective of this study was to characterize the pharmacokinetic/pharmacodynamic (PK/PD) relationship of buprenorphine and fentanyl for the respiratory depressant effect in healthy volunteers. Data on the time course of the ventilatory response at a fixed P(ET)CO(2) of 50 mm Hg and P(ET)O(2) of 110 mm Hg following intravenous administration of buprenorphine and fentanyl were obtained from two phase I studies (50 volunteers received buprenorphine: 0.05-0.6 mg/70 kg and 24 volunteers received fentanyl: 0.075-0.5 mg/70 kg). The PK/PD correlations were analyzed using nonlinear mixed effects modeling. A two- and three-compartment pharmacokinetic model characterized the time course of fentanyl and buprenorphine concentration, respectively. Three structurally different PK/PD models were evaluated for their appropriateness to describe the time course of respiratory depression: (1) a biophase distribution model with a fractional sigmoid E(max) pharmacodynamic model, (2) a receptor association/dissociation model with a linear transduction function, and (3) a combined biophase distribution-receptor association/dissociation model with a linear transduction function. The results show that for fentanyl hysteresis is entirely determined by the biophase distribution kinetics, whereas for buprenorphine hysteresis is caused by a combination of biophase distribution kinetics and receptor association/dissociation kinetics. The half-time values of biophase equilibration (t(1/2, k(eo))) were 16.4 and 75.3 min for fentanyl and buprenorphine, respectively. In addition, for buprenorphine, the value of k(on) was 0.246 ml/ng/min and the value of k(off) was 0.0102 min(-1). The concentration-effect relationship of buprenorphine was characterized by a ceiling effect at higher concentrations (intrinsic activity alpha=0.56, 95% confidence interval (CI): 0.50-0.62), whereas fentanyl displayed full respiratory depressant effect (alpha=0.91, 95% CI: 0.19-1.62).
Experimental Study of an On-board Fuel Tank Inerting System
NASA Astrophysics Data System (ADS)
Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang
2017-03-01
A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.
Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny
2015-06-01
Following in utero exposure to low dose radiation (10-200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No significant induction of DSB or apoptosis was observed following exposure to magnetic fields (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. 53BP1 foci were quantified following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 μT for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. We conclude that in this sensitive system MF do not exert any significant level of DNA damage and do not impede the repair of X-ray induced damage.
Micropollutant and sludge characterization for modeling sorption equilibria.
Barret, Maialen; Carrère, Hélène; Latrille, Eric; Wisniewski, Christelle; Patureau, Dominique
2010-02-01
The sorption of hydrophobic micropollutants in sludge is one of the major mechanisms which drive their fate within wastewater treatment systems. The objective of this study was to investigate the influence of both sludge and micropollutant characteristics on the equilibria of sorption to particles and to dissolved and colloidal matter (DCM). For this purpose, the equilibrium constants were measured for 13 polycyclic aromatic hydrocarbons, 5 polychlorobiphenyls and the nonylphenol, and five different sludge types encountered in treatment systems: a primary sludge, a secondary sludge, the same secondary sludge after thermal treatment, after anaerobic digestion, and after both treatments. After thermal treatment, no more sorption to DCM was observed. Anaerobic biological treatment was shown to enhance micropollutants sorption to particles and to DCM of one logarithmic unit, due to matter transformation. Partial least-squares linear regressions of sorption data as a function of micropollutant and sludge properties revealed that sludge physical and chemical characteristics were more influential than micropollutant characteristics. Two models were provided to predict the sorption of such micropollutants in any sludge. To our knowledge, this is the first time that a three-compartment approach is used to accurately model micropollutant sorption in sludge and to understand the driving mechanisms.
Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands
NASA Astrophysics Data System (ADS)
Schijven, Jack F.; Hoogenboezem, Wim; Hassanizadeh, S. Majid; Peters, Jos H.
1999-04-01
Removal of model viruses by dune recharge was studied at a field site in the dune area of Castricum, Netherlands. Recharge water was dosed with bacteriophages MS2 and PRD1 for 11 days at a constant concentration in a 10- by 15-m compartment that was isolated in a recharge basin. Breakthrough was monitored for 120 days at six wells with their screens along a flow line. Concentrations of both phages were reduced about 3 log10 within the first 2.4 m and another 5 log10 in a linear fashion within the following 27 m. A model accounting for one-site kinetic attachment as well as first-order inactivation was employed to simulate the bacteriophage breakthrough curves. The major removal process was found to be attachment of the bacteriophages. Detachment was very slow. After passage of the pulse of dosed bacteriophages, there was a long tail whose slope corresponds to the inactivation rate coefficient of 0.07-0.09 day-1 for attached bacteriophages. The end of the rising and the start of the declining limbs of the breakthrough curves could not be simulated completely, probably because of an as yet unknown process.
Mathematical model of forest succession and land use for the North Carolina Piedmont
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, W.C.
1977-01-01
A linear, constant-coefficient compartment model was constructed to simulate temporal changes in the areal extent of major forest types in the North Carolina Piedmont. Model structure and transfer coefficients were derived from published ecological literature and available USDA Forest Service statistical summaries. The results show the importance of old-field abandonment to the perpetuation of extensive loblolly pine (Pinus taeda) forests in the Piedmont. Should abandonment cease, post-harvest treatment and planting of loblolly pine would have to be increased considerably over current levels to maintain an extensive loblolly pine forest type. Extrapolation of current rates of change forward 250 years wouldmore » result in a sizeable increase in the area of loblolly pine and loblolly pine-oak types, a slight increase in oak-hickory, a sizeable decline in shortleaf and Virginia pine (Pinus echinata, Pinus virginiana, resp.) types and a slight decline for other mixed pine-hardwood and lowland and dry upland hardwood categories compared to current conditions. The technique can be a useful tool either to assess some long-term effects of present management and use trends or to suggest strategies necessary to obtain a desired regional mixture of forest types.« less
Girgis, I G; Patel, M R; Peters, G R; Moore, K T; Mahaffey, K W; Nessel, C C; Halperin, J L; Califf, R M; Fox, K A A; Becker, R C
2014-08-01
Two once-daily rivaroxaban dosing regimens were compared with warfarin for stroke prevention in patients with non-valvular atrial fibrillation in ROCKET AF: 20 mg for patients with normal/mildly impaired renal function and 15 mg for patients with moderate renal impairment. Rivaroxaban population pharmacokinetic (PK)/pharmacodynamic (PD) modeling data from ROCKET AF patients (n = 161) are reported and are used to confirm established rivaroxaban PK and PK/PD models and to re-estimate values of the models' parameters for the current AF population. An oral one-compartment model with first-order absorption adequately described rivaroxaban PK. Age, renal function, and lean body mass influenced the PK model. Prothrombin time and prothrombinase-induced clotting time exhibited a near-linear relationship with rivaroxaban plasma concentration; inhibitory effects were observed through to 24 hours post-dose. Rivaroxaban plasma concentration and factor Xa activity had an inhibitory maximum-effect (Emax ) relationship. Renal function (on prothrombin time; prothrombinase-induced clotting time) and age (on factor Xa activity) had moderate effects on PK/PD models. PK and PK/PD models were shown to be adequate for describing the current dataset. These findings confirm the modeling and empirical results that led to the selection of doses tested against warfarin in ROCKET AF. © 2014, The American College of Clinical Pharmacology.
Lu, Cheng; Zhang, Yuyi; Chen, Mingyu; Zhong, Ping; Chen, Yuancheng; Yu, Jicheng; Wu, Xiaojie; Wu, Jufang
2016-01-01
Meropenem is used to manage postneurosurgical meningitis, but its population pharmacokinetics (PPK) in plasma and cerebrospinal fluid (CSF) in this patient group are not well-known. Our aims were to (i) characterize meropenem PPK in plasma and CSF and (ii) recommend favorable dosing regimens in postneurosurgical meningitis patients. Eighty-two patients were enrolled to receive meropenem infusions of 2 g every 8 h (q8h), 1 g q8h, or 1 g q6h for at least 3 days. Serial blood and CSF samples were collected, and concentrations were determined and analyzed via population modeling. Probabilities of target attainment (PTA) were predicted via Monte Carlo simulations, using the target of unbound meropenem concentrations above the MICs for at least 40% of dosing intervals in plasma and at least of 50% or 100% of dosing intervals in CSF. A two-compartment model plus another CSF compartment best described the data. The central, intercentral/peripheral, and intercentral/CSF compartment clearances were 22.2 liters/h, 1.79 liters/h, and 0.01 liter/h, respectively. Distribution volumes of the central and peripheral compartments were 17.9 liters and 3.84 liters, respectively. The CSF compartment volume was fixed at 0.13 liter, with its clearance calculated by the observed drainage amount. The multiplier for the transfer from the central to the CSF compartment was 0.172. Simulation results show that the PTAs increase as infusion is prolonged and as the daily CSF drainage volume decreases. A 4-hour infusion of 2 g q8h with CSF drainage of less than 150 ml/day, which provides a PTA of >90% for MICs of ≤8 mg/liter in blood and of ≤0.5 mg/liter or 0.25 mg/liter in CSF, is recommended. (This study has been registered at ClinicalTrials.gov under identifier NCT02506686.) PMID:27572392
A Stochastic Model For Extracting Sediment Delivery Timescales From Sediment Budgets
NASA Astrophysics Data System (ADS)
Pizzuto, J. E.; Benthem, A.; Karwan, D. L.; Keeler, J. J.; Skalak, K.
2015-12-01
Watershed managers need to quantify sediment storage and delivery timescales to understand the time required for best management practices to improve downstream water quality. To address this need, we route sediment downstream using a random walk through a series of valley compartments spaced at 1 km intervals. The probability of storage within each compartment, q, is specified from a sediment budget and is defined as the ratio of the volume deposited to the annual sediment flux. Within each compartment, the probability of sediment moving directly downstream without being stored is p=1-q. If sediment is stored within a compartment, its "resting time" is specified by a stochastic exponential waiting time distribution with a mean of 10 years. After a particle's waiting time is over, it moves downstream to the next compartment by fluvial transport. Over a distance of "n" compartments, a sediment particle may be stored from 0 to n times with the probability of each outcome (store or not store) specified by the binomial distribution. We assign q = 0.02, a stream velocity of 0.5 m/s, an event "intermittency "of 0.01, and assume a balanced sediment budget. Travel time probability density functions have a steep peak at the shortest times, representing rapid transport in the channel of the fraction of sediment that moves downstream without being stored. However, the probability of moving downstream "n" km without storage is pn (0.90 for 5 km, 0.36 for 50 km, 0.006 for 250 km), so travel times are increasingly dominated by storage with increasing distance. Median travel times for 5, 50, and 250 km are 0.03, 4.4, and 46.5 years. After a distance of approximately 2/q or 100 km (2/0.02/km), the median travel time is determined by storage timescales, and active fluvial transport is irrelevant. Our model extracts travel time statistics from sediment budgets, and can be cast as a differential equation and solved numerically for more complex systems.
Nagasaka, Kei; Mizuno, Koji; Ito, Daisuke; Saida, Naoya
2017-05-29
In car crashes, the passenger compartment deceleration significantly influences the occupant loading. Hence, it is important to consider how each structural component deforms in order to control the passenger compartment deceleration. In frontal impact tests, the passenger compartment deceleration depends on the energy absorption property of the front structures. However, at this point in time there are few papers describing the components' quantitative contributions on the passenger compartment deceleration. Generally, the cross-sectional force is used to examine each component's contribution to passenger compartment deceleration. However, it is difficult to determine each component's contribution based on the cross-sectional forces, especially within segments of the individual members itself such as the front rails, because the force is transmitted continuously and the cross-sectional forces remain the same through the component. The deceleration of a particle can be determined from the derivative of the kinetic energy. Using this energy-derivative method, the contribution of each component on the passenger compartment deceleration can be determined. Using finite element (FE) car models, this method was applied for full-width and offset impact tests. This method was also applied to evaluate the deceleration of the powertrain. The finite impulse response (FIR) coefficient of the vehicle deceleration (input) and the driver chest deceleration (output) was calculated from Japan New Car Assessment Program (JNCAP) tests. These were applied to the component's contribution on the vehicle deceleration in FE analysis, and the component's contribution to the deceleration of the driver's chest was determined. The sum of the contribution of each component coincides with the passenger compartment deceleration in all types of impacts; therefore, the validity of this method was confirmed. In the full-width impact, the contribution of the crush box was large in the initial phases, and the contribution of the passenger compartment was large in the final phases. For the powertrain deceleration, the crush box had a positive contribution and the passenger compartment had a negative contribution. In the offset test, the contribution of the honeycomb and the passenger compartment deformation to the passenger compartment deceleration was large. Based on the FIR analysis, the passenger compartment deformation contributed the most to the chest deceleration of the driver dummy in the full-width impact. Based on the energy-derivative method, the contribution of the components' deformation to deceleration of the passenger compartment can be calculated for various types of crash configurations more easily, directly, and quantitatively than by using conventional methods. In addition, by combining the energy-derivative method and FIR, each structure's contribution to the occupant deceleration can be obtained. The energy-derivative method is useful in investigating how the deceleration develops from component deformations and also in designing deceleration curves for various impact configurations.
Murphy, George W.
1983-01-01
A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment.
Green, Leeta Alison; Nguyen, Khoi; Berenji, Bijan; Iyer, Meera; Bauer, Eileen; Barrio, Jorge R; Namavari, Mohammad; Satyamurthy, Nagichettiar; Gambhir, Sanjiv S
2004-09-01
Reporter probe 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (18F-FHBG) and reporter gene mutant herpes simplex virus type 1 thymidine kinase (HSV1-sr39tk) have been used for imaging reporter gene expression with PET. Current methods for quantitating the images using the percentage injected dose per gram of tissue do not distinguish between the effects of probe transport and subsequent phosphorylation. We therefore investigated tracer kinetic models for 18F-FHBG dynamic microPET data and noninvasive methods for determining blood time-activity curves in an adenoviral gene delivery model in mice. 18F-FHBG (approximately 7.4 MBq [approximately 200 microCi]) was injected into 4 mice; 18F-FHBG concentrations in plasma and whole blood were measured from mouse heart left ventricle (LV) direct sampling. Replication-incompetent adenovirus (0-2 x 10(9) plaque-forming units) with the E1 region deleted (n = 8) or replaced by HSV1-sr39tk (n = 18) was tail-vein injected into mice. Mice were dynamically scanned using microPET (approximately 7.4 MBq [approximately 200 microCi] 18F-FHBG) over 1 h; regions of interest were drawn on images of the heart and liver. Serial whole blood 18F-FHBG concentrations were measured in 6 of the mice by LV sampling, and 1 least-squares ratio of the heart image to the LV time-activity curve was calculated for all 6 mice. For 2 control mice and 9 mice expressing HSV1-sr39tk, heart image (input function) and liver image time-activity curves (tissue curves) were fit to 2- and 3-compartment models using Levenberg-Marquardt nonlinear regression. The models were compared using an F statistic. HSV1-sr39TK enzyme activity was determined from liver samples and compared with model parameter estimates. For another 3 control mice and 6 HSV1-sr39TK-positive mice, the model-predicted relative percentage of metabolites was compared with high-performance liquid chromatography analysis. The ratio of 18F-FHBG in plasma to whole blood was 0.84 +/- 0.05 (mean +/- SE) by 30 s after injection. The least-squares ratio of the heart image time-activity curve to the LV time-activity curve was 0.83 +/- 0.02, consistent with the recovery coefficient for the partial-volume effect (0.81) based on independent measures of heart geometry. A 3-compartment model best described 18F-FHBG kinetics in mice expressing HSV1-sr39tk in the liver; a 2-compartment model best described the kinetics in control mice. The 3-compartment model parameter, k3, correlated well with the HSV1-sr39TK enzyme activity (r2 = 0.88). 18F-FHBG equilibrates rapidly between plasma and whole blood in mice. Heart image time-activity curves corrected for partial-volume effects well approximate LV time-activity curves and can be used as input functions for 2- and 3-compartment models. The model parameter k3 from the 3-compartment model can be used as a noninvasive estimate for HSV1-sr39TK reporter protein activity and can predict the relative percentage of metabolites.
Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal
2010-05-01
A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.
Murphy, G.W.
1983-09-13
A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment. 3 figs.
Effect of Posterior Horn Medial Meniscus Root Tear on In Vivo Knee Kinematics.
Marsh, Chelsea A; Martin, Daniel E; Harner, Christopher D; Tashman, Scott
2014-07-01
Medial meniscus root tear (MMRT) is a recently recognized yet frequently missed meniscal tear pattern that biomechanically creates an environment approaching meniscal deficiency. The purpose of this study was to assess the effect of MMRT on tibiofemoral kinematics and arthrokinematics during daily activities by comparing the injured knees of subjects with isolated MMRT to their uninjured contralateral knees. The hypothesis was that the injured knee will demonstrate significantly more lateral tibial translation and adduction than the uninjured knee, and that the medial compartment will exhibit significantly different arthrokinematics than the lateral compartment in the affected limb. Cross-sectional study; Level of evidence, 3. Seven subjects with isolated MMRT were recruited and volumetric, density-based 3-dimensional models of their distal femurs and proximal tibia were created from computed tomography scans. High-speed, biplane radiographs were obtained of both their affected and unaffected knees. Moving 3-dimensional models of tibiofemoral kinematics were calculated using model-based tracking to assess overall kinematic variables and specific measures of tibiofemoral joint contact. The affected knees of the subjects were then compared to their unaffected contralateral knees. Affected knees demonstrated significantly more lateral tibial translation than the uninjured contralateral limb in all dynamic activities. Additionally, the medial compartment displayed greater amounts of mobility than the lateral compartment in the injured limbs. This study suggests that MMRT causes significant changes in in vivo knee kinematics and arthrokinematics and that the magnitude of these changes is influenced by dynamic task difficulty. Medial meniscus root tears lead to significant changes in joint arthrokinematics, with increased lateral tibial translation and greater medial compartment excursion. With complete root tears, essentially 100% of circumferential fibers are lost. This study will further our knowledge of meniscal deficiency and osteoarthritis and provide a baseline for more common forms of medial meniscal injuries (vertical, horizontal, radial), with various degrees of circumferential fiber function remaining.
Simulation of radiofrequency ablation in real human anatomy.
Zorbas, George; Samaras, Theodoros
2014-12-01
The objective of the current work was to simulate radiofrequency ablation treatment in computational models with realistic human anatomy, in order to investigate the effect of realistic geometry in the treatment outcome. The body sites considered in the study were liver, lung and kidney. One numerical model for each body site was obtained from Duke, member of the IT'IS Virtual Family. A spherical tumour was embedded in each model and a single electrode was inserted into the tumour. The same excitation voltage was used in all cases to underline the differences in the resulting temperature rise, due to different anatomy at each body site investigated. The same numerical calculations were performed for a two-compartment model of the tissue geometry, as well as with the use of an analytical approximation for a single tissue compartment. Radiofrequency ablation (RFA) therapy appears efficient for tumours in liver and lung, but less efficient in kidney. Moreover, the time evolution of temperature for a realistic geometry differs from that for a two-compartment model, but even more for an infinite homogenous tissue model. However, it appears that the most critical parameters of computational models for RFA treatment planning are tissue properties rather than tissue geometry. Computational simulations of realistic anatomy models show that the conventional technique of a single electrode inside the tumour volume requires a careful choice of both the excitation voltage and treatment time in order to achieve effective treatment, since the ablation zone differs considerably for various body sites.
Pao, L H; Hsiong, C H; Hu, O Y; Ho, S T
2000-09-15
For the determination of nalbuphine and its long acting prodrug, sebacoyl dinalbuphine ester (SDN), in biological samples, a reversed-phase high-performance liquid chromatographic method using dual detectors was established. Ultraviolet and fluorescence detectors were connected in series for determining SDN and nalbuphine, respectively. The two analytes and internal standard were extracted from plasma by alkaline liquid-liquid extraction using n-hexane-isoamyl alcohol (9:1, v/v). The calibration curve for nalbuphine was linear over the range from 10 to 2,500 ng/ml, while the range was 25 to 2,500 ng/ml for SDN. The within- and between-day precision and accuracy were all within 10% for both nalbuphine and SDN over these concentrations. The method was applied successfully to a pharmacokinetic study of SDN administered at 20 mg/kg to two beagle dogs. Pharmacokinetic analysis revealed that SDN followed a linear one-compartment model with an elimination half-life of 74.7 min. Formation of nalbuphine after intravenous administration of SDN was observed in the first time point sample (5 min). These results indicate that SDN is rapidly metabolized to its active moiety, nalbuphine, in dogs and no other metabolites are detected in plasma.
Polyethylene wear of mobile-bearing unicompartmental knee replacement at 20 years.
Kendrick, B J L; Simpson, D J; Kaptein, B L; Valstar, E R; Gill, H S; Murray, D W; Price, A J
2011-04-01
The Oxford unicompartmental knee replacement (UKR) was designed to minimise wear utilising a fully-congruent, mobile, polyethylene bearing. Wear of polyethylene is a significant cause of revision surgery in UKR in the first decade, and the incidence increases in the second decade. Our study used model-based radiostereometric analysis to measure the combined wear of the upper and lower bearing surfaces in 13 medial-compartment Oxford UKRs at a mean of 20.9 years (17.2 to 25.9) post-operatively. The mean linear penetration of the polyethylene bearing was 1.04 mm (0.307 to 2.15), with a mean annual wear rate of 0.045 mm/year (0.016 to 0.099). The annual wear rate of the phase-2 bearings (mean 0.022 mm/year) was significantly less (p = 0.01) than that of phase-1 bearings (mean 0.07 mm/year). The linear wear rate of the Oxford UKR remains very low into the third decade. We believe that phase-2 bearings had lower wear rates than phase-1 implants because of the improved bearing design and surgical technique which decreased the incidence of impingement. We conclude that the design of the Oxford UKR gives low rates of wear in the long term.
Torres, Bruna G. S.; Helfer, Victória E.; Bernardes, Priscila M.; Macedo, Alexandre José; Nielsen, Elisabet I.; Friberg, Lena E.
2017-01-01
ABSTRACT Biofilm formation plays an important role in the persistence of pulmonary infections, for example, in cystic fibrosis patients. So far, little is known about the antimicrobial lung disposition in biofilm-associated pneumonia. This study aimed to evaluate, by microdialysis, ciprofloxacin (CIP) penetration into the lungs of healthy and Pseudomonas aeruginosa biofilm-infected rats and to develop a comprehensive model to describe the CIP disposition under both conditions. P. aeruginosa was immobilized into alginate beads and intratracheally inoculated 14 days before CIP administration (20 mg/kg of body weight). Plasma and microdialysate were sampled from different animal groups, and the observations were evaluated by noncompartmental analysis (NCA) and population pharmacokinetic (popPK) analysis. The final model that successfully described all data consisted of an arterial and a venous central compartment and two peripheral distribution compartments, and the disposition in the lung was modeled as a two-compartment model structure linked to the venous compartment. Plasma clearance was approximately 32% lower in infected animals, leading to a significantly higher level of plasma CIP exposure (area under the concentration-time curve from time zero to infinity, 27.3 ± 12.1 μg · h/ml and 13.3 ± 3.5 μg · h/ml in infected and healthy rats, respectively). Despite the plasma exposure, infected animals showed a four times lower tissue concentration/plasma concentration ratio (lung penetration factor = 0.44 and 1.69 in infected and healthy rats, respectively), and lung clearance (CLlung) was added to the model for these animals (CLlung = 0.643 liters/h/kg) to explain the lower tissue concentrations. Our results indicate that P. aeruginosa biofilm infection reduces the CIP free interstitial lung concentrations and increases plasma exposure, suggesting that plasma concentrations alone are not a good surrogate of lung concentrations. PMID:28461311
Leypoldt, John K; Akonur, Alp; Agar, Baris U; Culleton, Bruce F
2012-10-01
The kinetics of plasma phosphorus concentrations during hemodialysis (HD) are complex and cannot be described by conventional one- or two-compartment kinetic models. It has recently been shown by others that the physiologic (or apparent distribution) volume for phosphorus (Vr-P) increases with increasing treatment time and shows a large variation among patients treated by thrice weekly and daily HD. Here, we describe the dependence of Vr-P on treatment time and predialysis plasma phosphorus concentration as predicted by a novel pseudo one-compartment model. The kinetics of plasma phosphorus during conventional and six times per week daily HD were simulated as a function of treatment time per session for various dialyzer phosphate clearances and patient-specific phosphorus mobilization clearances (K(M)). Vr-P normalized to extracellular volume from these simulations were reported and compared with previously published empirical findings. Simulated results were relatively independent of dialyzer phosphate clearance and treatment frequency. In contrast, Vr-P was strongly dependent on treatment time per session; the increase in Vr-P with treatment time was larger for higher values of K(M). Vr-P was inversely dependent on predialysis plasma phosphorus concentration. There was significant variation among predicted Vr-P values, depending largely on the value of K(M). We conclude that a pseudo one-compartment model can describe the empirical dependence of the physiologic volume of phosphorus on treatment time and predialysis plasma phosphorus concentration. Further, the variation in physiologic volume of phosphorus among HD patients is largely due to differences in patient-specific phosphorus mobilization clearance. © 2012 The Authors. Hemodialysis International © 2012 International Society for Hemodialysis.
Tracing compartment exchange by NMR diffusometry: Water in lithium-exchanged low-silica X zeolites
NASA Astrophysics Data System (ADS)
Lauerer, A.; Kurzhals, R.; Toufar, H.; Freude, D.; Kärger, J.
2018-04-01
The two-region model for analyzing signal attenuation in pulsed field gradient (PFG) NMR diffusion studies with molecules in compartmented media implies that, on their trajectory, molecules get from one region (one type of compartment) into the other one with a constant (i.e. a time-invariant) probability. This pattern has proved to serve as a good approach for considering guest diffusion in beds of nanoporous host materials, with the two regions ("compartments") identified as the intra- and intercrystalline pore spaces. It is obvious, however, that the requirements of the application of the two-region model are not strictly fulfilled given the correlation between the covered diffusion path lengths in the intracrystalline pore space and the probability of molecular "escape" from the individual crystallites. On considering water diffusion in lithium-exchanged low-silica X zeolite, we are now assuming a different position since this type of material is known to offer "traps" in the trajectories of the water molecules. Now, on attributing the water molecules in the traps and outside of the traps to these two types of regions, we perfectly comply with the requirements of the two-region model. We do, moreover, benefit from the option of high-resolution measurements owing to the combination of magic angle spinning (MAS) with PFG NMR. Data analysis via the two-region model under inclusion of the influence of nuclear magnetic relaxation yields satisfactory agreement between experimental evidence and theoretical estimates. Limitations in accuracy are shown to result from the fact that mass transfer outside of the traps is too complicated for being adequately reflected by simple Fick's laws with but one diffusivity.
A Multi-Scale Integrated Approach to Representing Watershed Systems: Significance and Challenges
NASA Astrophysics Data System (ADS)
Kim, J.; Ivanov, V. Y.; Katopodes, N.
2013-12-01
A range of processes associated with supplying services and goods to human society originate at the watershed level. Predicting watershed response to forcing conditions has been of high interest to many practical societal problems, however, remains challenging due to two significant properties of the watershed systems, i.e., connectivity and non-linearity. Connectivity implies that disturbances arising at any larger scale will necessarily propagate and affect local-scale processes; their local effects consequently influence other processes, and often convey nonlinear relationships. Physically-based, process-scale modeling is needed to approach the understanding and proper assessment of non-linear effects between the watershed processes. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion and sediment transport, tRIBS-OFM-HRM (Triangulated irregular network - based Real time Integrated Basin Simulator-Overland Flow Model-Hairsine and Rose Model). This coupled model offers the advantage of exploring the hydrological effects of watershed physical factors such as topography, vegetation, and soil, as well as their feedback mechanisms. Several examples investigating the effects of vegetation on flow movement, the role of soil's substrate on sediment dynamics, and the driving role of topography on morphological processes are illustrated. We show how this comprehensive modeling tool can help understand interconnections and nonlinearities of the physical system, e.g., how vegetation affects hydraulic resistance depending on slope, vegetation cover fraction, discharge, and bed roughness condition; how the soil's substrate condition impacts erosion processes with an non-unique characteristic at the scale of a zero-order catchment; and how topographic changes affect spatial variations of morphologic variables. Due to feedback and compensatory nature of mechanisms operating in different watershed compartments, our conclusion is that a key to representing watershed systems lies in an integrated, interdisciplinary approach, whereby a physically-based model is used for assessments/evaluations associated with future changes in landuse, climate, and ecosystems.
A physiologically based toxicokinetic model for methylmercury in female American kestrels
Nichols, J.W.; Bennett, R.S.; Rossmann, R.; French, J.B.; Sappington, K.G.
2010-01-01
A physiologically based toxicokinetic (PBTK) model was developed to describe the uptake, distribution, and elimination of methylmercury (CH 3Hg) in female American kestrels. The model consists of six tissue compartments corresponding to the brain, liver, kidney, gut, red blood cells, and remaining carcass. Additional compartments describe the elimination of CH3Hg to eggs and growing feathers. Dietary uptake of CH 3Hg was modeled as a diffusion-limited process, and the distribution of CH3Hg among compartments was assumed to be mediated by the flow of blood plasma. To the extent possible, model parameters were developed using information from American kestrels. Additional parameters were based on measured values for closely related species and allometric relationships for birds. The model was calibrated using data from dietary dosing studies with American kestrels. Good agreement between model simulations and measured CH3Hg concentrations in blood and tissues during the loading phase of these studies was obtained by fitting model parameters that control dietary uptake of CH 3Hg and possible hepatic demethylation. Modeled results tended to underestimate the observed effect of egg production on circulating levels of CH3Hg. In general, however, simulations were consistent with observed patterns of CH3Hg uptake and elimination in birds, including the dominant role of feather molt. This model could be used to extrapolate CH 3Hg kinetics from American kestrels to other bird species by appropriate reassignment of parameter values. Alternatively, when combined with a bioenergetics-based description, the model could be used to simulate CH 3Hg kinetics in a long-term environmental exposure. ?? 2010 SETAC.
NASA Astrophysics Data System (ADS)
Thomas, S. A.; Valett, H.; Webster, J. R.; Mulholland, P. J.; Dahm, C. N.
2001-12-01
Identifying the locations and controls governing solute uptake is a recent area of focus in studies of stream biogeochemistry. We introduce a technique, rising limb analysis (RLA), to estimate areal nitrate uptake in the advective and transient storage (TS) zones of streams. RLA is an inverse approach that combines nutrient spiraling and transient storage modeling to calculate total uptake of reactive solutes and the fraction of uptake occurring within the advective sub-compartment of streams. The contribution of the transient storage zones to solute loss is determined by difference. Twelve-hour coinjections of conservative (Cl-) and reactive (15NO3) tracers were conducted seasonally in several headwater streams among which AS/A ranged from 0.01 - 2.0. TS characteristics were determined using an advection-dispersion model modified to include hydrologic exchange with a transient storage compartment. Whole-system uptake was determined by fitting the longitudinal pattern of NO3 to first-order, exponential decay model. Uptake in the advective sub-compartment was determined by collecting a temporal sequence of samples from a single location beginning with the arrival of the solute front and concluding with the onset of plateau conditions (i.e. the rising limb). Across the rising limb, 15NO3:Cl was regressed against the percentage of water that had resided in the transient storage zone (calculated from the TS modeling). The y-intercept thus provides an estimate of the plateau 15NO3:Cl ratio in the absence of NO3 uptake within the transient storage zone. Algebraic expressions were used to calculate the percentage of NO3 uptake occurring in the advective and transient storage sub-compartments. Application of RLA successfully estimated uptake coefficients for NO3 in the subsurface when the physical dimensions of that habitat were substantial (AS/A > 0.2) and when plateau conditions at the sampling location consisted of waters in which at least 25% had resided in the transient storage zone. In those cases, the TS zone accounted for 8 - 47 % of overall NO3 uptake and uptake rates within the subsurface ranged from 0.7 - 14.3 mg N m-2 d-1.
NASA Astrophysics Data System (ADS)
Gusev, Sergey A.; Nikolaev, Vladimir N.
2018-01-01
The method for determination of an aircraft compartment thermal condition, based on a mathematical model of a compartment thermal condition was developed. Development of solution techniques for solving heat exchange direct and inverse problems and for determining confidence intervals of parametric identification estimations was carried out. The required performance of air-conditioning, ventilation systems and heat insulation depth of crew and passenger cabins were received.
2012-10-01
the study. Ill. ~Ut’i.Jt.t.;l I 1:111V1~ Vascular injury, Extremity\\ Ischemia-rcperfusion, Therapeutic reperfusion, Statin \\ Recovery\\ Neuromuscular...Health Sciences, Bethesda, Maryland Keywords: Vascular injury, Extremity, Ischemia-reperfusion, Therapeutic reperfusion, Statin , Recovery...compartment pressure (pɘ.05) which were directly related to degree of muscle degeneration (pɘ.05) and inversely related to nerve recovery (p<.05
Jay, Ollie; Reardon, Francis D; Webb, Paul; Ducharme, Michel B; Ramsay, Tim; Nettlefold, Lindsay; Kenny, Glen P
2007-08-01
Changes in mean body temperature (DeltaT(b)) estimated by the traditional two-compartment model of "core" and "shell" temperatures and an adjusted two-compartment model incorporating a correction factor were compared with values derived by whole body calorimetry. Sixty participants (31 men, 29 women) cycled at 40% of peak O(2) consumption for 60 or 90 min in the Snellen calorimeter at 24 or 30 degrees C. The core compartment was represented by esophageal, rectal (T(re)), and aural canal temperature, and the shell compartment was represented by a 12-point mean skin temperature (T(sk)). Using T(re) and conventional core-to-shell weightings (X) of 0.66, 0.79, and 0.90, mean DeltaT(b) estimation error (with 95% confidence interval limits in parentheses) for the traditional model was -95.2% (-83.0, -107.3) to -76.6% (-72.8, -80.5) after 10 min and -47.2% (-40.9, -53.5) to -22.6% (-14.5, -30.7) after 90 min. Using T(re), X = 0.80, and a correction factor (X(0)) of 0.40, mean DeltaT(b) estimation error for the adjusted model was +9.5% (+16.9, +2.1) to -0.3% (+11.9, -12.5) after 10 min and +15.0% (+27.2, +2.8) to -13.7% (-4.2, -23.3) after 90 min. Quadratic analyses of calorimetry DeltaT(b) data was subsequently used to derive best-fitting values of X for both models and X(0) for the adjusted model for each measure of core temperature. The most accurate model at any time point or condition only accounted for 20% of the variation observed in DeltaT(b) for the traditional model and 56% for the adjusted model. In conclusion, throughout exercise the estimation of DeltaT(b) using any measure of core temperature together with mean skin temperature irrespective of weighting is inaccurate even with a correction factor customized for the specific conditions.
Dynamics of an SAITS alcoholism model on unweighted and weighted networks
NASA Astrophysics Data System (ADS)
Huo, Hai-Feng; Cui, Fang-Fang; Xiang, Hong
2018-04-01
A novel SAITS alcoholism model on networks is introduced, in which alcoholics are divided into light problem alcoholics and heavy problem alcoholics. Susceptible individuals can enter into the compartment of heavy problem alcoholics directly by contacting with light problem alcoholics or heavy problem alcoholics and the heavy problem alcoholics who receive treatment can relapse into the compartment of heavy problem alcoholics are also considered. First, the dynamics of our model on unweighted networks, including the basic reproduction number, existence and stability of equilibria are studied. Second, the models with fixed weighted and adaptive weighted networks are introduced and investigated. At last, some simulations are presented to illustrate and extend our results. Our results show that it is very important to treat alcoholics to quit the drinking.
Kleinberg, David L; Ruan, Weifeng; Yee, Douglas; Kovacs, Kalman T; Vidal, Sergio
2007-03-01
Although antiandrogen therapy has been shown effective in treating prostatic tumors, it is relatively ineffective in treating benign prostatic hyperplasia (BPH). In an attempt to understand better the role of androgens in the development of the normal prostate and BPH, we studied the relative effects of testosterone and IGF-I on the development of the two compartments of the prostate in castrated IGF-I((-/-)) male mice. Here we report that IGF-I stimulated the development of the fibromuscular compartment, but testosterone inhibited it (stromal epithelial ratio 2.17 vs. 0.83, respectively; P < 0.001). Testosterone also impaired IGF-I induced insulin receptor substrate-1 phosphorylation and cell division, and increased apoptosis in fibromuscular tissue. In sharp contrast IGF-I and testosterone both stimulated the development of the glandular compartment individually and together. The combined effects were either additive or synergistic on compartment size, cell division, insulin receptor substrate-1 phosphorylation, and probasin production. Together they also had a greater inhibitory effect on apoptosis in gland tissue. To determine whether IGF-I inhibition would inhibit both fibromuscular and glandular compartments, we tested the effect of IGF binding protein-1 on prostate development in two different models: castrated Ames dwarf mice and eugonadal normal male mice. IGF binding protein-1 blocked bovine GH-induced fibromuscular and glandular development in both. It also inhibited epithelial cell division and increased apoptosis in both prostate compartments in the eugonadal mice. The observed discordance between IGF-I and testosterone control of prostate compartment development might explain the relative failure of 5alpha-reductase inhibition in BPH and why testosterone inhibition might theoretically reduce gland volume but increase fibromuscular tissue. The work also provides a rationale for considering IGF-I inhibition as therapy for BPH to reduce the size of both prostate compartments.
Michel, Marcus; Aliee, Maryam; Rudolf, Katrin; Bialas, Lisa; Jülicher, Frank; Dahmann, Christian
2016-01-01
The separation of cells with distinct fates and functions is important for tissue and organ formation during animal development. Regions of different fates within tissues are often separated from another along straight boundaries. These compartment boundaries play a crucial role in tissue patterning and growth by stably positioning organizers. In Drosophila, the wing imaginal disc is subdivided into a dorsal and a ventral compartment. Cells of the dorsal, but not ventral, compartment express the selector gene apterous. Apterous expression sets in motion a gene regulatory cascade that leads to the activation of Notch signaling in a few cell rows on either side of the dorsoventral compartment boundary. Both Notch and apterous mutant clones disturb the separation of dorsal and ventral cells. Maintenance of the straight shape of the dorsoventral boundary involves a local increase in mechanical tension at cell bonds along the boundary. The mechanisms by which cell bond tension is locally increased however remain unknown. Here we use a combination of laser ablation of cell bonds, quantitative image analysis, and genetic mutants to show that Notch and Apterous are required to increase cell bond tension along the dorsoventral compartment boundary. Moreover, clonal expression of the Apterous target gene capricious results in cell separation and increased cell bond tension at the clone borders. Finally, using a vertex model to simulate tissue growth, we find that an increase in cell bond tension at the borders of cell clones, but not throughout the cell clone, can lead to cell separation. We conclude that Apterous and Notch maintain the characteristic straight shape of the dorsoventral compartment boundary by locally increasing cell bond tension. PMID:27552097
Wang, Ligong; Salibi, Nouha; Chang, Gregory; Bencardino, Jenny T.; Babb, James S.; Rokito, Andrew; Jazrawi, Laith; Sherman, Orrin; Regatte, Ravinder R.
2014-01-01
Rationale and Objectives The objectives of this study were to investigate the changes in compartment-specific subchondral bone marrow lipids of femoral–tibial bone in acute anterior cruciate ligament (ACL)-injured patients compared to that of healthy volunteers and patients with osteoarthritis (OA) (Kellgren–Lawrence [KL] grade 2–3). Materials and Methods A total of 55 subjects were recruited in the study and subdivided into three subgroups: 17 healthy controls (4 females, 13 males; mean age = 41 ± 16, age range 24–78 years), 17 patients with acute ACL injury (3 females, 14 males; mean age = 30 ± 11, age range 18–61 years), and 21 patients with KL2–3 OA (12 females, 9 males; mean age = 65 ± 12, age range 44–89 years). Routine clinical proton density–weighted fast spin echo images in sagittal (without fat saturation), axial, and coronal (fat saturation) planes were acquired on a 3 T clinical scanner for cartilage morphology using Whole-Organ Magnetic Resonance Imaging Score grading. A voxel of 10 × 10 × 10 mm3 was positioned in the medial and lateral compartments of the tibia and femur for proton magnetic resonance spectroscopy measurements using the single voxel stimulated echo acquisition mode pulse sequence. All proton magnetic resonance data were processed with Java-based magnetic resonance user interface. Wilcoxon rank sum test and mixed model two-way analysis of variance were performed to determine significant differences between different compartments and examine the effect of ACL injury, OA grade and compartment, and their interactions. Results The index of unsaturation in lateral tibial compartment in ACL-injured patients was significantly higher (P < .05) than all compartments except lateral femoral in patients with KL2–3 OA. Significantly lower values (P < .05) were also identified in saturated lipids at 2.03 ppm in all compartments in ACL-injured patients than those of all compartments in patients with KL2–3 OA. Conclusions The preliminary results suggest that the indices of unsaturation in the lateral tibial compartment and the peaks of saturated lipids at 1.3 and 2.03 ppm in medial tibial compartment may be clinically useful to characterize subchondral bone marrow among healthy controls, acute ACL-injured patients, and patients with OA. PMID:24717549
Wang, Ligong; Salibi, Nouha; Chang, Gregory; Bencardino, Jenny T; Babb, James S; Rokito, Andrew; Jazrawi, Laith; Sherman, Orrin; Regatte, Ravinder R
2014-06-01
The objectives of this study were to investigate the changes in compartment-specific subchondral bone marrow lipids of femoral-tibial bone in acute anterior cruciate ligament (ACL)-injured patients compared to that of healthy volunteers and patients with osteoarthritis (OA) (Kellgren-Lawrence [KL] grade 2-3). A total of 55 subjects were recruited in the study and subdivided into three subgroups: 17 healthy controls (4 females, 13 males; mean age = 41 ± 16, age range 24-78 years), 17 patients with acute ACL injury (3 females, 14 males; mean age = 30 ± 11, age range 18-61 years), and 21 patients with KL2-3 OA (12 females, 9 males; mean age = 65 ± 12, age range 44-89 years). Routine clinical proton density-weighted fast spin echo images in sagittal (without fat saturation), axial, and coronal (fat saturation) planes were acquired on a 3 T clinical scanner for cartilage morphology using Whole-Organ Magnetic Resonance Imaging Score grading. A voxel of 10 × 10 × 10 mm(3) was positioned in the medial and lateral compartments of the tibia and femur for proton magnetic resonance spectroscopy measurements using the single voxel stimulated echo acquisition mode pulse sequence. All proton magnetic resonance data were processed with Java-based magnetic resonance user interface. Wilcoxon rank sum test and mixed model two-way analysis of variance were performed to determine significant differences between different compartments and examine the effect of ACL injury, OA grade and compartment, and their interactions. The index of unsaturation in lateral tibial compartment in ACL-injured patients was significantly higher (P < .05) than all compartments except lateral femoral in patients with KL2-3 OA. Significantly lower values (P < .05) were also identified in saturated lipids at 2.03 ppm in all compartments in ACL-injured patients than those of all compartments in patients with KL2-3 OA. The preliminary results suggest that the indices of unsaturation in the lateral tibial compartment and the peaks of saturated lipids at 1.3 and 2.03 ppm in medial tibial compartment may be clinically useful to characterize subchondral bone marrow among healthy controls, acute ACL-injured patients, and patients with OA. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Crema, M D; Guermazi, A; Sayre, E C; Roemer, F W; Wong, H; Thorne, A; Singer, J; Esdaile, J M; Marra, M D; Kopec, J A; Nicolaou, S; Cibere, J
2011-12-01
Osteoarthritis (OA) is the most common arthropathy of the knee joint(1). Symptoms reported by patients and signs noted during physical examination guide clinicians in identifying subjects with knee OA(2-4). Pain is one of the most important symptoms reported by subjects with knee OA(2,3). Although very common, pain is a non-specific symptom, related to pathology in several structures within the knee joint, and includes synovitis(5), subchondral bone marrow lesions(6), and joint effusion(7). Further, pain is a subjective symptom that cannot be directly measured or assessed during physical examination. Crepitus or crepitation in association with arthritis is defined as a crackling or grinding sound on joint movement with a sensation in the joint. Crepitus may occur with or without pain and is a common finding during physical examination in subjects with knee OA(2-4,8,9). It is not known whether crepitus is related to pathology in various structures within the knee. The aim of our study was to determine the cross-sectional associations of structural pathologies within the knee with crepitus in a population-based cohort with knee pain, using magnetic resonance imaging (MRI). Subjects with knee pain were recruited as a random population sample, with crepitus assessed in each compartment of the knee using a validated and standardized approach during physical examination(10). MRI of the knee was performed to assess cartilage morphology, meniscal morphology, osteophytes, cruciate ligaments, and collateral ligaments. For both compartment-specific and whole-knee analyses, a multiple logistic regression analysis was performed to assess the associations of MRI-detected structural pathology with crepitus, adjusting for potential confounders. Variables were selected by backwards elimination within each compartment and in the overall knee models, and only statistically significant variables remained in the "selected" models; remaining variables in these models are adjusted for each other. An increased risk for compartment-specific crepitus was associated with osteophytes at the patellofemoral (PF) and lateral tibiofemoral (LTF) joints. Crepitus was associated with osteophytes and medial collateral ligament (MCL) pathology at the medial tibiofemoral (MTF) compartment, but cartilage damage was negatively associated with crepitus at this compartment. In the selected whole-knee model, only meniscal tears were associated with an increased risk for general crepitus. Thus, it seems that crepitus may be associated with pathology in several internal structures. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Choudhary, M; Clavica, F; van Mastrigt, R; van Asselt, E
2016-06-20
Electrophysiological studies of whole organ systems in vitro often require measurement of nerve activity and/or stimulation of the organ via the associated nerves. Currently two-compartment setups are used for such studies. These setups are complicated and require two fluids in two separate compartments and stretching the nerve across one chamber to the other, which may damage the nerves. We aimed at developing a simple single compartment setup by testing the electrophysiological properties of FC-770 (a perfluorocarbon) for in vitro recording of bladder afferent nerve activity and electrical stimulation of the bladder. Perflurocarbons are especially suitable for such a setup because of their high oxygen carrying capacity and insulating properties. In male Wistar rats, afferent nerve activity was recorded from postganglionic branches of the pelvic nerve in vitro, in situ and in vivo. The bladder was stimulated electrically via the efferent nerves. Organ viability was monitored by recording spontaneous contractions of the bladder. Additionally, histological examinations were done to test the effect of FC-770 on the bladder tissue. Afferent nerve activity was successfully recorded in a total of 11 rats. The bladders were stimulated electrically and high amplitude contractions were evoked. Histological examinations and monitoring of spontaneous contractions showed that FC-770 maintained organ viability and did not cause damage to the tissue. We have shown that FC-770 enables a simple, one compartment in vitro alternative for the generally used two compartment setups for whole organ electrophysiological studies.
Shin, Choongsoo S; Souza, Richard B; Kumar, Deepak; Link, Thomas M; Wyman, Bradley T; Majumdar, Sharmila
2011-12-01
To investigate the effect of acute loading on in vivo tibiofemoral contact area changes in both compartments, and to determine whether in vivo tibiofemoral contact area differs between subjects with medial knee osteoarthritis (OA) and healthy controls. Ten subjects with medial knee OA (KL3) and 11 control subjects (KL0) were tested. Coronal three-dimensional spoiled gradient-recalled (3D-SPGR) and T(2) -weighted fast spin-echo FSE magnetic resonance imaging (MRI) of the knee were acquired under both unloaded and loaded conditions. Tibiofemoral cartilage contact areas were measured using image-based 3D models. Tibiofemoral contact areas in both compartments significantly increased under loading (P < 0.001) and the increased contact area in the medial compartment was significantly larger than in the lateral compartment (P < 0.05). Medial compartment contact area was significantly larger in KL3 subjects than KL0 subjects, both at unloaded and loaded conditions (P < 0.05). Contact areas measured from 3D-SPGR and T(2) -weighted FSE images were strongly correlated (r = 0.904). Females with medial OA increased tibiofemoral contact area in the medial compartment compared to healthy subjects under both unloaded and loaded conditions. The contact area data presented in this study may provide a quantitative reference for further cartilage contact biomechanics such as contact stress analysis and cartilage biomechanical function difference between osteoarthritic and healthy knees. Copyright © 2011 Wiley Periodicals, Inc.
Ecposure Related Dose Estimating Model
ERDEM is a physiologically based pharmacokinetic (PBPK) modeling system consisting of a general model and an associated front end. An actual model is defined when the user prepares an input command file. Such a command file defines the chemicals, compartments and processes that...
Huttary, Rudolf; Goubergrits, Leonid; Schütte, Christof; Bernhard, Stefan
2017-08-01
It has not yet been possible to obtain modeling approaches suitable for covering a wide range of real world scenarios in cardiovascular physiology because many of the system parameters are uncertain or even unknown. Natural variability and statistical variation of cardiovascular system parameters in healthy and diseased conditions are characteristic features for understanding cardiovascular diseases in more detail. This paper presents SISCA, a novel software framework for cardiovascular system modeling and its MATLAB implementation. The framework defines a multi-model statistical ensemble approach for dimension reduced, multi-compartment models and focuses on statistical variation, system identification and patient-specific simulation based on clinical data. We also discuss a data-driven modeling scenario as a use case example. The regarded dataset originated from routine clinical examinations and comprised typical pre and post surgery clinical data from a patient diagnosed with coarctation of aorta. We conducted patient and disease specific pre/post surgery modeling by adapting a validated nominal multi-compartment model with respect to structure and parametrization using metadata and MRI geometry. In both models, the simulation reproduced measured pressures and flows fairly well with respect to stenosis and stent treatment and by pre-treatment cross stenosis phase shift of the pulse wave. However, with post-treatment data showing unrealistic phase shifts and other more obvious inconsistencies within the dataset, the methods and results we present suggest that conditioning and uncertainty management of routine clinical data sets needs significantly more attention to obtain reasonable results in patient-specific cardiovascular modeling. Copyright © 2017 Elsevier Ltd. All rights reserved.
A physiologically based pharmacokinetic model for developmental exposure to BDE-47 in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emond, Claude, E-mail: claude.emond@umontreal.c; BioSimulation Consulting Inc., Newark, DE 19711; Raymer, James H.
2010-02-01
Polybrominated diphenyl ethers (PBDEs) are used commercially as additive flame retardants and have been shown to transfer into environmental compartments, where they have the potential to bioaccumulate in wildlife and humans. Of the 209 possible PBDEs, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is usually the dominant congener found in human blood and milk samples. BDE-47 has been shown to have endocrine activity and produce developmental, reproductive, and neurotoxic effects. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for BDE-47 in male and female (pregnant and non-pregnant) adult rats to facilitate investigations of developmental exposure. This model consistsmore » of eight compartments: liver, brain, adipose tissue, kidney, placenta, fetus, blood, and the rest of the body. Concentrations of BDE-47 from the literature and from maternal-fetal pharmacokinetic studies conducted at RTI International were used to parameterize and evaluate the model. The results showed that the model simulated BDE-47 tissue concentrations in adult male, maternal, and fetal compartments within the standard deviations of the experimental data. The model's ability to estimate BDE-47 concentrations in the fetus after maternal exposure will be useful to design in utero exposure/effect studies. This PBPK model is the first one designed for any PBDE pharmaco/toxicokinetic description. The next steps will be to expand this model to simulate BDE-47 pharmacokinetics and distributions across species (mice), and then extrapolate it to humans. After mouse and human model development, additional PBDE congeners will be incorporated into the model and simulated as a mixture.« less
DiFrancesco, D; Ohba, M; Ojeda, C
1979-12-01
1. The apparent reversal potential (Erev) of the pace-maker current (iK2) is found to depend on the experimental protocol used for its measurement. Evidence is presented showing that depolarizing (hyperpolarizing) pulses given before a test hyperpolarization used to determine Erev, shift Erev to more negative (positive) values. These shifts are opposite to those expected if the only effect of pre-pulses were to change the concentration of potassium in extracellular clefts ([K]c) via accumulation and depletion processes. 2. This effect is shown to be due to the fact that Erev is dependent on s0, the degree of activation of iK2 at the start of the test hyperpolarization. 3. When a suitable protocol is used, depletion of cleft K can be demonstrated to take place during a large hyperpolarization. Changes in the level of [K]c induced by pre-pulses must therefore also affect the Erev determination. 4. A simplified three-compartment model has been used to investigate how K accumulation and depletion can affect the time course of iK2, with particular reference to the problem of Erev determination. Computed examples show that the model is able to reproduce the main features of the time course of iK2 recorded near its reversal potential and the changes induced by pre-pulses on Erev measuremnet. By contrast, simulation on a linear cable model rules out the possibility that such results are due to voltage non-uniformity. 5. The three-compartment model predicts that the measured value of Erev differs from EK2 for two reasons: (1) when the recorded current trace is flat iK2 is still outward and decaying, and (2) the K equilibrium potential shifts to more negative values while the test hyperpolarization is applied. 6. The finding that Erev is directly affected by changes in s at the beginning of the test pulse is discussed in relation to the action of agents (such as Ca2+, H+, salicylate, adrenaline and ouabain) which are found to shift both the s00 curve and Erev.
Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke
2015-05-07
Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Frymoyer, Adam; Su, Felice; Grimm, Paul C; Sutherland, Scott M; Axelrod, David M
2016-09-01
Children undergoing cardiac surgery requiring cardiopulmonary bypass (CPB) frequently develop acute kidney injury due to renal ischemia. Theophylline, which improves renal perfusion via adenosine receptor inhibition, is a potential targeted therapy. However, children undergoing cardiac surgery and CPB commonly have alterations in drug pharmacokinetics. To help understand optimal aminophylline (salt formulation of theophylline) dosing strategies in this population, a population-based pharmacokinetic model was developed using nonlinear mixed-effects modeling (NONMEM) from 71 children (median age 5 months; 90% range 1 week to 10 years) who underwent cardiac surgery requiring CPB and received aminophylline as part of a previous randomized controlled trial. A 1-compartment model with linear elimination adequately described the pharmacokinetics of theophylline. Weight scaled via allometry was a significant predictor of clearance and volume. In addition, allometric scaled clearance increased with age implemented as a power maturation function. Compared to prior reports in noncardiac children, theophylline clearance was markedly reduced across age. In the final population pharmacokinetic model, optimized empiric dosing regimens were developed via Monte Carlo simulations. Doses 50% to 75% lower than those recommended in noncardiac children were needed to achieve target serum concentrations of 5 to 10 mg/L. © 2016, The American College of Clinical Pharmacology.
Optimization behavior of brainstem respiratory neurons. A cerebral neural network model.
Poon, C S
1991-01-01
A recent model of respiratory control suggested that the steady-state respiratory responses to CO2 and exercise may be governed by an optimal control law in the brainstem respiratory neurons. It was not certain, however, whether such complex optimization behavior could be accomplished by a realistic biological neural network. To test this hypothesis, we developed a hybrid computer-neural model in which the dynamics of the lung, brain and other tissue compartments were simulated on a digital computer. Mimicking the "controller" was a human subject who pedalled on a bicycle with varying speed (analog of ventilatory output) with a view to minimize an analog signal of the total cost of breathing (chemical and mechanical) which was computed interactively and displayed on an oscilloscope. In this manner, the visuomotor cortex served as a proxy (homolog) of the brainstem respiratory neurons in the model. Results in 4 subjects showed a linear steady-state ventilatory CO2 response to arterial PCO2 during simulated CO2 inhalation and a nearly isocapnic steady-state response during simulated exercise. Thus, neural optimization is a plausible mechanism for respiratory control during exercise and can be achieved by a neural network with cognitive computational ability without the need for an exercise stimulus.
In Vitro Polarization of Colonoids to Create an Intestinal Stem Cell Compartment
Attayek, Peter J.; Ahmad, Asad A.; Wang, Yuli; Williamson, Ian; Sims, Christopher E.; Magness, Scott T.; Allbritton, Nancy L.
2016-01-01
The polarity of proliferative and differentiated cellular compartments of colonic crypts is believed to be specified by gradients of key mitogens and morphogens. Indirect evidence demonstrates a tight correlation between Wnt- pathway activity and the basal-luminal patterning; however, to date there has been no direct experimental manipulation demonstrating that a chemical gradient of signaling factors can produce similar patterning under controlled conditions. In the current work, colonic organoids (colonoids) derived from cultured, multicellular organoid fragments or single stem cells were exposed in culture to steep linear gradients of two Wnt-signaling ligands, Wnt-3a and R-spondin1. The use of a genetically engineered Sox9-Sox9EGFP:CAGDsRED reporter gene mouse model and EdU-based labeling enabled crypt patterning to be quantified in the developing colonoids. Colonoids derived from multicellular fragments cultured for 5 days under a Wnt-3a or a combined Wnt-3a and R-spondin1 gradient were highly polarized with proliferative cells localizing to the region of the higher morphogen concentration. In a Wnt-3a gradient, Sox9EGFP polarization was 7.3 times greater than that of colonoids cultured in the absence of a gradient; and the extent of EdU polarization was 2.2 times greater than that in the absence of a gradient. Under a Wnt-3a/R-spondin1 gradient, Sox9EGFP polarization was 8.2 times greater than that of colonoids cultured in the absence of a gradient while the extent of EdU polarization was 10 times greater than that in the absence of a gradient. Colonoids derived from single stem cells cultured in Wnt-3a/R-spondin1 gradients were most highly polarized demonstrated by a Sox9EGFP polarization 20 times that of colonoids grown in the absence of a gradient. This data provides direct evidence that a linear gradient of Wnt signaling factors applied to colonic stem cells is sufficient to direct patterning of the colonoid unit in culture. PMID:27100890
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles
Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Bloodmore » flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.« less
Impact of Trichodesmium Sp. on Pacific Primary production
NASA Astrophysics Data System (ADS)
Dutheil, C.; Menkes, C.; Aumont, O.; Shiozaki, T.; Bonnet, S.; Rodier, M.; Bopp, L.; Lorrain, A.
2016-12-01
Recent sea-experiments have suggested that the South Pacific is one of the world's hot spot for nitrogen fixation. In that region, diazotrophs Trichodesmium Sp. have been shown to be one of its major contributors. Here we assess the climatological impact of these diazotrophs in the Pacific by using a 1°x1° coupled model dynamical-biogeochemical model ROMS-PISCES in which an explicit a Trichodesmium compartment is implemented. Firstly, we validate our model on the main limiting components (phosphate, iron, and temperature) of Trichodesmium growth. Phosphate patterns show modelled values and structures in qualitatively good agreement with observations. Iron concentrations are in good agreement with the observations. We also validate our model on nitrogen fixation rates. The regional spatial patterns of strong fixation are coherent with the observations. In the South Pacific, the model is able to reproduce the strong east-west gradient. Secondly, we evaluate the climatological effects of Trichodesmium on the biogeochemical conditions of the Tropical Pacific by adding with the explicit Trichodesmium compartment. The implementation of this compartment improves the model ability to reproduce the observed chlorophyll fields in the South West Pacific and the northern hemisphere, especially around Hawaii. In regions where there are strong nitrogen fixation rates, we observe an increase in the primary production by more than 100%, and an increase by more than 60 % in the production due to nanophytoplankton and diatoms, between the simulation with trichodesmium and without nitrogen fixation.
Starling forces drive intracranial water exchange during normal and pathological states.
Linninger, Andreas A; Xu, Colin; Tangen, Kevin; Hartung, Grant
2017-12-31
To quantify the exchange of water between cerebral compartments, specifically blood, tissue, perivascular pathways, and cerebrospinal fluid-filled spaces, on the basis of experimental data and to propose a dynamic global model of water flux through the entire brain to elucidate functionally relevant fluid exchange phenomena. The mechanistic computer model to predict brain water shifts is discretized by cerebral compartments into nodes. Water and species flux is calculated between these nodes across a network of arcs driven by Hagen-Poiseuille flow (blood), Darcy flow (interstitial fluid transport), and Starling's Law (transmembrane fluid exchange). Compartment compliance is accounted for using a pressure-volume relationship to enforce the Monro-Kellie doctrine. This nonlinear system of differential equations is solved implicitly using MATLAB software. The model predictions of intraventricular osmotic injection caused a pressure rise from 10 to 22 mmHg, followed by a taper to 14 mmHg over 100 minutes. The computational results are compared to experimental data with R2=0.929. Moreover, simulated osmotic therapy of systemic (blood) injection reduced intracranial pressure from 25 to 10 mmHg. The modeled volume and intracranial pressure changes following cerebral edema agree with experimental trends observed in animal models with R2=0.997. The model successfully predicted time course and the efficacy of osmotic therapy for clearing cerebral edema. Furthermore, the mathematical model implicated the perivascular pathways as a possible conduit for water and solute exchange. This was a first step to quantify fluid exchange throughout the brain.
The role of the bi-compartmental stem cell niche in delaying cancer
NASA Astrophysics Data System (ADS)
Shahriyari, Leili; Komarova, Natalia L.
2015-10-01
In recent years, by using modern imaging techniques, scientists have found evidence of collaboration between different types of stem cells (SCs), and proposed a bi-compartmental organization of the SC niche. Here we create a class of stochastic models to simulate the dynamics of such a heterogeneous SC niche. We consider two SC groups: the border compartment, S1, is in direct contact with transit-amplifying (TA) cells, and the central compartment, S2, is hierarchically upstream from S1. The S1 SCs differentiate or divide asymmetrically when the tissue needs TA cells. Both groups proliferate when the tissue requires SCs (thus maintaining homeostasis). There is an influx of S2 cells into the border compartment, either by migration, or by proliferation. We examine this model in the context of double-hit mutant generation, which is a rate-limiting step in the development of many cancers. We discover that this type of a cooperative pattern in the stem niche with two compartments leads to a significantly smaller rate of double-hit mutant production compared with a homogeneous, one-compartmental SC niche. Furthermore, the minimum probability of double-hit mutant generation corresponds to purely symmetric division of SCs, consistent with the literature. Finally, the optimal architecture (which minimizes the rate of double-hit mutant production) requires a large proliferation rate of S1 cells along with a small, but non-zero, proliferation rate of S2 cells. This result is remarkably similar to the niche structure described recently by several authors, where one of the two SC compartments was found more actively engaged in tissue homeostasis and turnover, while the other was characterized by higher levels of quiescence (but contributed strongly to injury recovery). Both numerical and analytical results are presented.
Pereira, Luis M
2010-06-01
Pharmacokinetics (PK) has been traditionally dealt with under the homogeneity assumption. However, biological systems are nowadays comprehensively understood as being inherently fractal. Specifically, the microenvironments where drug molecules interact with membrane interfaces, metabolic enzymes or pharmacological receptors, are unanimously recognized as unstirred, space-restricted, heterogeneous and geometrically fractal. Therefore, classical Fickean diffusion and the notion of the compartment as a homogeneous kinetic space must be revisited. Diffusion in fractal spaces has been studied for a long time making use of fractional calculus and expanding on the notion of dimension. Combining this new paradigm with the need to describe and explain experimental data results in defining time-dependent rate constants with a characteristic fractal exponent. Under the one-compartment simplification this strategy is straightforward. However, precisely due to the heterogeneity of the underlying biology, often at least a two-compartment model is required to address macroscopic data such as drug concentrations. This simple modelling step-up implies significant analytical and numerical complications. However, a few methods are available that make possible the original desideratum. In fact, exploring the full range of parametric possibilities and looking at different drugs and respective biological concentrations, it may be concluded that all PK modelling approaches are indeed particular cases of the fractal PK theory.
Zha, Lin; Zhao, Yan; Zhu, Hong-Yan; Cai, En-Bo; Liu, Shuang-Li; Yang, He; Zhao, Ying; Gao, Yu-Gang; Zhang, Lian-Xue
2017-05-01
The experiment was aimed to investigate the difference of plasma concentration and pharmacokinetic parameters between liposome and aqueous solution of toatal ginsenoside of ginseng stems and leaves in rats, such as ginsenosides Rg₁, Re, Rf, Rb₁, Rg₂, Rc, Rb₂, Rb₃, Rd. After intravenous injection of liposome and aqueous solution in rats, the blood was taken from the femoral vein to detect the plasma concentration of the above 9 ginsenoside monomers in different time points by using HPLC. The concentration-time curve was obtained and 3p97 pharmacokinetic software was used to get the pharmacokinetic parameters. After the intravenous injection of ginsenosides to rats, nine ginsenosides were detected in plasma. In general, among these ginsenosides, the peak time of the aqueous solution was between 0.05 to 0.083 3 h, and the serum concentration peak of liposome usually appeared after 0.5 h. After software fitting, the aqueous solution of ginsenoside monomers Rg₁, Re, Rf, Rg₂, Rc, Rd, Rb₃ was two-compartment model, and the liposomes were one-compartment model; aqueous solution and liposome of ginsenoside monomers Rb₁ were three-compartment model; aqueous solution of ginsenoside monomers Rb₂ was three-compartment model, and its liposome was one-compartment model. Area under the drug time curve (AUC) of these 9 kinds of saponin liposomes was larger than that of aqueous solution, and the retention time of the liposomes was longer than that of the aqueous solution; the removal rate was slower than that of the aqueous solution, and the half-life was longer than that of the water solution. The results from the experiment showed that by intravenous administration, the pharmacokinetic parameters of two formulations were significantly different from each other; the liposomes could not only remain the drug for a longer time in vivo, but also reduce the elimination rate and increase the treatment efficacy. As compared with the traditional dosage forms, the total ginsenoside of ginseng stems and leaves can improve the sustained release of the drug, which is of great significance for the research and development of new dosage forms of ginsenosides in the future. Copyright© by the Chinese Pharmaceutical Association.
Modeling Microgravity Induced Fluid Redistribution Autoregulatory and Hydrostatic Enhancements
NASA Technical Reports Server (NTRS)
Myers, J. G.; Werner, C.; Nelson, E. S.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.
2017-01-01
Space flight induces a marked cephalad (headward) redistribution of blood and interstitial fluid potentially resulting in a loss of venous tone and reduction in heart muscle efficiency upon introduction into the microgravity environment. Using various types of computational models, we are investigating how this fluid redistribution may induce intracranial pressure changes, relevant to reported reductions in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome. Methods: We utilize a lumped parameter cardiovascular system (CVS) model, augmented by compartments comprising the cerebral spinal fluid (CSF) space, as the primary tool to describe how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. Models of ocular fluid pressures and biomechanics then accept the output of the above model as boundary condition input to allow more detailed, local analysis (see IWS Abstract by Ethier et al.). Recently, we enhanced the capabilities our previously reported CVS model through the implementation of robust autoregulatory mechanisms and a more fundamental approach to the implementation of hydrostatic mechanisms. Modifying the approach of Blanco et al., we implemented auto-regulation in a quasi-static manner, as an averaged effect across the span of one heartbeat. This approach reduced the higher frequency perturbations from the regulatory mechanism and was intended to allow longer simulation times (days) than models that implement within-beat regulatory mechanisms (minutes). A more fundamental approach to hydrostatics was implemented by a quasi-1D approach, in which compartment descriptions include compartment length, orientation and relative position, allowed for modeling of body orientation, relative body positioning and, in the future, alternative gravity environments. At this time the inclusion of hydrostatic mechanisms supplies additional capabilities to train and validate the CVS model with terrestrial data. Results and Conclusions: With the implementation of auto-regulation and hydrostatic modeling capabilities, the model performs as expected in the maintaining the CA (Central Artery) compartment pressure when simulating orientations ranging from supine to standing. The model appears to generally overpredict heart rate and thus cardiac output, possibly indicating sensitivity to the nominal heart rate, which is used as an initial set point of the regulation mechanisms. Despite this sensitivity, the model performs consistently for many hours of simulation time, indicating the success of our quasi-static implementation approach.
Desai, Parind M; Liew, Celine V; Heng, Paul W S
2013-02-14
The aim of this study was to develop a responsive disintegration test apparatus that is particularly suitable for rapidly disintegrating tablets (RDTs). The designed RDT disintegration apparatus consisted of disintegration compartment, stereomicroscope and high speed video camera. Computational fluid dynamics (CFD) was used to simulate 3 different designs of the compartment and to predict velocity and pressure patterns inside the compartment. The CFD preprocessor established the compartment models and the CFD solver determined the numerical solutions of the governing equations that described disintegration medium flow. Simulation was validated by good agreement between CFD and experimental results. Based on the results, the most suitable disintegration compartment was selected. Six types of commercial RDTs were used and disintegration times of these tablets were determined using the designed RDT disintegration apparatus and the USP disintegration apparatus. The results obtained using the designed apparatus correlated well to those obtained by the USP apparatus. Thus, the applied CFD approach had the potential to predict the fluid hydrodynamics for the design of optimal disintegration apparatus. The designed visiometric liquid jet-mediated disintegration apparatus for RDT provided efficient and precise determination of very short disintegration times of rapidly disintegrating dosage forms. Copyright © 2012 Elsevier B.V. All rights reserved.
B Cell Development in the Bone Marrow Is Regulated by Homeostatic Feedback Exerted by Mature B Cells
Shahaf, Gitit; Zisman-Rozen, Simona; Benhamou, David; Melamed, Doron; Mehr, Ramit
2016-01-01
Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment. PMID:27047488
1974-12-01
259 Paul M. Newberne 19 - STATISTICAL MODELS FOR ESTIMATING CARCINOGENIC RISKS FROM ANIMAL DATA ................... 285 .David G. Hoel V AMRL-TR-74-125... Paul M., D. V. M., Ph. D. SHANK, Ronald C., Ph. D. Professor of Pathology Associate Professor of Toxicology Laboratory of Animal Pathology Departments of...significance for water quality management . Each compartment represents the concentration of a measurable constituent. Lines connecting compartments represent
SIZE DEPENDENT MODEL OF HAZARDOUS SUBSTANCES IN Q AQUATIC FOOD CHAIN
A model of toxic substance accumulation is constructed that introduces organism size as an additional independent variable. The model represents an ecological continuum through size dependency; classical compartment analyses are therefore a special case of the continuous model. S...
Hu, Pei; Chen, Jia; Liu, Dongyang; Zheng, Xin; Zhao, Qian; Jiang, Ji
2015-07-01
Icotinib is a potent and selective inhibitor of epidermal growth factor receptors (EGFR) approved to treat non-small cell lung cancer (NSCLC). However, its high variability may impede its application. The objectives of this analysis were to assess plasma pharmacokinetics and identify covariates that may explain variability in icotinib absorption and/or disposition following single dose of icotinib in healthy volunteers. Data from two clinical studies (n = 22) were analyzed. One study was designed as three-period and Latin-squared (six sequence) trial to evaluate dose proportionality, and the other one was designed as two-way crossover trial to evaluate food effect on pharmacokinetics (PK) characters. Icotinib concentrations in plasma were analyzed using non-linear mixed-effects model (NONMEM) method. The model was used to assess influence of food, demographic characteristics, measurements of blood biochemistry, and CYP2C19 genotype on PK characters of icotinib in humans. The final model was diagnosed by goodness-of-fit plots and evaluated by visual predictive check (VPC) and bootstrap methods. A two-compartment model with saturated absorption character was developed to capture icotinib pharmacokinetics. Typical value of clearance, distribution clearance, central volume of distribution, maximum absorption rate were 29.5 L/h, 24.9 L/h, 18.5 L, 122.2 L and 204,245 μg/h, respectively. When icotinib was administrated with food, bioavailability was estimated to be increased by 48%. Inter-occasion variability was identified to affect on maximum absorption rate constant in food-effect study. CL was identified to be significantly influenced by age, albumin concentration (ALB), and CYP2C19 genotype. No obvious bias was found by VPC and bootstrap methods. The developed model can capture icotinib pharmacokinetics well in healthy volunteers. Food intake can increase icotinib exposure. Three covariates, age, albumin concentration, and CYP2C19 genotype, were identified to significantly affect icotinib PK profiles in healthy subjects.
NASA Astrophysics Data System (ADS)
Cruvellier, Nelly; Lasseur, Christophe; Poughon, Laurent; Creuly, Catherine; Dussap, Gilles
Nitrogen is a key element for the life and its balance on Earth is regulated by the nitrogen cycle. This loop includes several steps among which nitrification that permits the transformation of the ammonium into nitrate. The MELiSSA loop is an artificial ecosystem designed for life support systems (LSS). It is based on the carbon and nitrogen cycles and the recycling of the non-edible part of the higher plants and the waste produced by the crew. In this order, all the wastes are collected in the first compartment to degrade them into organic acids and CO2. These compounds are joining the second compartment which is a photoheterotrophic compartment where at the outlet an organic-free medium containing ammonium is produced. This solution will be the substrate of the third compartment where nitrification is done. This compartment has to oxidize the ammonium into nitrate, and this biological reaction needs two steps. In the MELiSSA loop, the nitrification is carried out by two bacteria: Nitrosomonas europaea ATCC® 19718™ which is oxidizing ammonia into nitrite and Nitrobacter winogradskyi ATCC® 25391™ which is producing nitrate from nitrite in the third compartment. These two bacteria are growing in axenic conditions on a fixed bed bioreactor filled with Biostyr® beads. The nitrogen compounds are controlled by Ionic Chromatography and colorimetric titration for each sample. The work presented here deals with the culture of both bacteria in pure cultures and mixed cultures in stirred and aerated bioreactors of different volumes. The first aim of our work is the characterization of the bacteria growth in bioreactors and in the nitrifying fixed-bed column. The experimental results confirm that the growth is slow; the maximal growth rate in suspended cultures is 0.054h-1 for Nitrosomonas europaea and 0.022h-1 for Nitrobacter winogradskyi. Mixed cultures are difficult to control and operate but one could be done for more than 500 hours. The characterization of the bacteria will be used to calibrate the nitrification model which will be the basis of the control model for managing the nitrification process in the MELiSSA loop. The experimental results highlighted the use of online measurement of base addition and oxygen consumption as possible parameters for the control of the nitrification process. Keywords: Nitrosomonas europaea, Nitrobacter winogradskyi, MELiSSA, bioreactor
Sobol, Eyal; Bialer, Meir
2004-05-01
In the one-compartment model following i.v. administration the mean residence time (MRT) of a drug is always greater than its half-life (t(1/2)). However, following i.v. administration, drug plasma concentration (C) versus time (t) is best described by a two-compartment model or a two exponential equation:C=Ae(-alpha t)+Be(-beta t), where A and B are concentration unit-coefficients and alpha and beta are exponential coefficients. The relationships between t(1/2) and MRT in the two-compartment model have not been explored and it is not clear whether in this model too MRT is always greater than t(1/2). In the current paper new equations have been developed that describe the relationships between the terminal t(1/2) (or t(1/2 beta)) and MRT in the two-compartment model following administration of i.v. bolus, i.v. infusion (zero order input) and oral administration (first order input). A critical value (CV) equals to the quotient of (1-ln2) and (1-beta/alpha) (CV=(1-ln2)/(1-beta/alpha)=0.307/(1-beta/alpha)) has been derived and was compared with the fraction (f(1)) of drug elimination or AUC (AUC-area under C vs t curve) associated with the first exponential term of the two-compartment equation (f(1)=A/alpha/AUC). Following i.v. bolus, CV ranges between a minimal value of 0.307 (1-ln2) and infinity. As long as f(1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acikgoez, Ali; Department of Surgery, Universitaet Leipzig, Liebig Str. 20, D-04103 Leipzig; Karim, Najibulla
2009-01-15
Drug biotransformation is one of the most important parameters of preclinical screening tests for the registration of new drug candidates. Conventional existing tests rely on nonhuman models which deliver an incomplete metabolic profile of drugs due to the lack of proper CYP450 expression as seen in human liver in vivo. In order to overcome this limitation, we used an organotypical model of human primary hepatocytes for the biotransformation of the drug diazepam with special reference to metabolites in both the cell matrix phase and supernatant and its interaction of three inducers (phenobarbital, dexamethasone, aroclor 1254) in different time responses (1,more » 2, 4, 8, 24 h). Phenobarbital showed the strongest inducing effect in generating desmethyldiazepam and induced up to a 150 fold increase in oxazepam-content which correlates with the increased availability of the precursor metabolites (temazepam and desmethyldiazepam). Aroclor 1254 and dexamethasone had the strongest inducing effect on temazepam and the second strongest on oxazepam. The strong and overlapping inductive role of phenobarbital strengthens the participation of CYP2B6 and CYP3A in diazepam N-demethylation and CYP3A in temazepam formation. Aroclor 1254 preferentially generated temazepam due to the interaction with CYP3A and potentially CYP2C19. In parallel we represented these data in the form of a mathematical model with two compartments explaining the dynamics of diazepam metabolism with the effect of these other inducers in human primary hepatocytes. The model consists of ten differential equations, with one for each concentration c{sub i,j} (i = diazepam, temazepam, desmethyldiazepam, oxazepam, other metabolites) and one for each compartment (j = cell matrix phase, supernatant), respectively. The parameters p{sub k} (k = 1, 2, 3, 4, 13) are rate constants describing the biotransformation of diazepam and its metabolites and the other parameters (k = 5, 6, 7, 8, 9, 10, 11, 12, 14, 15) explain the concentration changes in the two compartments.« less
Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P
2016-09-01
The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.
Modeling intrinsic electrophysiology of AII amacrine cells: preliminary results.
Apollo, Nick; Grayden, David B; Burkitt, Anthony N; Meffin, Hamish; Kameneva, Tatiana
2013-01-01
In patients who have lost their photoreceptors due to retinal degenerative diseases, it is possible to restore rudimentary vision by electrically stimulating surviving neurons. AII amacrine cells, which reside in the inner plexiform layer, split the signal from rod bipolar cells into ON and OFF cone pathways. As a result, it is of interest to develop a computational model to aid in the understanding of how these cells respond to the electrical stimulation delivered by a prosthetic implant. The aim of this work is to develop and constrain parameters in a single-compartment model of an AII amacrine cell using data from whole-cell patch clamp recordings. This model will be used to explore responses of AII amacrine cells to electrical stimulation. Single-compartment Hodgkin-Huxley-type neural models are simulated in the NEURON environment. Simulations showed successful reproduction of the potassium currentvoltage relationship and some of the spiking properties observed in vitro.
[Modelling of phosphorus transfers during haemodialysis].
Chazot, Guillaume; Lemoine, Sandrine; Juillard, Laurent
2017-04-01
Chronic kidney disease causes hyperphosphatemia, which is associated with increased cardiovascular risk and mortality. In patients with end-stage renal disease, haemodialysis allows the control of hyperphosphatemia. During a 4-h haemodialysis session, between 600 and 700mg of phosphate are extracted from the plasma, whereas the latter contains only 90mg of inorganic phosphate. The precise origin of phosphates remains unknown. The modelling of phosphorus transfers allows to predict the outcome after changes in dialysis prescription (duration, frequency) with simple two-compartment models and to describe the transfers between the different body compartments with more complex models. Work using 31 P nuclear magnetic resonance spectroscopy performed in animals showed an increase in intracellular phosphate concentration and a decrease in intracellular ATP during a haemodialysis session suggesting an intracellular origin of phosphates. Copyright © 2017. Published by Elsevier Masson SAS.
Stage, C; Bergmann, TK; Ferrero‐Milliani, L; Bjerre, D; Thomsen, R; Dalhoff, KP; Rasmussen, HB; Jürgens, G
2016-01-01
The aim of this study was to identify demographic and genetic factors that significantly affect methylphenidate (MPH) pharmacokinetics (PK), and may help explain interindividual variability and further increase the safety of MPH. d‐MPH plasma concentrations, demographic covariates, and carboxylesterase 1 (CES1) genotypes were gathered from 122 healthy adults and analyzed using nonlinear mixed effects modeling. The structural model that best described the data was a two‐compartment disposition model with absorption transit compartments. Novel effects of rs115629050 and CES1 diplotypes, as well as previously reported effects of rs71647871 and body weight, were included in the final model. Assessment of the independent and combined effect of CES1 covariates identified several specific risk factors that may result in severely increased d‐MPH plasma exposure. PMID:27754602
Oscillations in epidemic models with spread of awareness.
Just, Winfried; Saldaña, Joan; Xin, Ying
2018-03-01
We study ODE models of epidemic spreading with a preventive behavioral response that is triggered by awareness of the infection. Previous studies of such models have mostly focused on the impact of the response on the initial growth of an outbreak and the existence and location of endemic equilibria. Here we study the question whether this type of response is sufficient to prevent future flare-ups from low endemic levels if awareness is assumed to decay over time. In the ODE context, such flare-ups would translate into sustained oscillations with significant amplitudes. Our results show that such oscillations are ruled out in Susceptible-Aware-Infectious-Susceptible models with a single compartment of aware hosts, but can occur if we consider two distinct compartments of aware hosts who differ in their willingness to alert other susceptible hosts.
Hepatic function imaging using dynamic Gd-EOB-DTPA enhanced MRI and pharmacokinetic modeling.
Ning, Jia; Yang, Zhiying; Xie, Sheng; Sun, Yongliang; Yuan, Chun; Chen, Huijun
2017-10-01
To determine whether pharmacokinetic modeling parameters with different output assumptions of dynamic contrast-enhanced MRI (DCE-MRI) using Gd-EOB-DTPA correlate with serum-based liver function tests, and compare the goodness of fit of the different output assumptions. A 6-min DCE-MRI protocol was performed in 38 patients. Four dual-input two-compartment models with different output assumptions and a published one-compartment model were used to calculate hepatic function parameters. The Akaike information criterion fitting error was used to evaluate the goodness of fit. Imaging-based hepatic function parameters were compared with blood chemistry using correlation with multiple comparison correction. The dual-input two-compartment model assuming venous flow equals arterial flow plus portal venous flow and no bile duct output better described the liver tissue enhancement with low fitting error and high correlation with blood chemistry. The relative uptake rate Kir derived from this model was found to be significantly correlated with direct bilirubin (r = -0.52, P = 0.015), prealbumin concentration (r = 0.58, P = 0.015), and prothrombin time (r = -0.51, P = 0.026). It is feasible to evaluate hepatic function by proper output assumptions. The relative uptake rate has the potential to serve as a biomarker of function. Magn Reson Med 78:1488-1495, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Oscillation mechanics of the respiratory system.
Bates, Jason H T; Irvin, Charles G; Farré, Ramon; Hantos, Zoltán
2011-07-01
The mechanical impedance of the respiratory system defines the pressure profile required to drive a unit of oscillatory flow into the lungs. Impedance is a function of oscillation frequency, and is measured using the forced oscillation technique. Digital signal processing methods, most notably the Fourier transform, are used to calculate impedance from measured oscillatory pressures and flows. Impedance is a complex function of frequency, having both real and imaginary parts that vary with frequency in ways that can be used empirically to distinguish normal lung function from a variety of different pathologies. The most useful diagnostic information is gained when anatomically based mathematical models are fit to measurements of impedance. The simplest such model consists of a single flow-resistive conduit connecting to a single elastic compartment. Models of greater complexity may have two or more compartments, and provide more accurate fits to impedance measurements over a variety of different frequency ranges. The model that currently enjoys the widest application in studies of animal models of lung disease consists of a single airway serving an alveolar compartment comprising tissue with a constant-phase impedance. This model has been shown to fit very accurately to a wide range of impedance data, yet contains only four free parameters, and as such is highly parsimonious. The measurement of impedance in human patients is also now rapidly gaining acceptance, and promises to provide a more comprehensible assessment of lung function than parameters derived from conventional spirometry. © 2011 American Physiological Society.
Quantification of Dynamic 11C-Phenytoin PET Studies.
Mansor, Syahir; Boellaard, Ronald; Froklage, Femke E; Bakker, Esther D M; Yaqub, Maqsood; Voskuyl, Rob A; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan
2015-09-01
The overexpression of P-glycoprotein (Pgp) is thought to be an important mechanism of pharmacoresistance in epilepsy. Recently, (11)C-phenytoin has been evaluated preclinically as a tracer for Pgp. The aim of the present study was to assess the optimal plasma kinetic model for quantification of (11)C-phenytoin studies in humans. Dynamic (11)C-phenytoin PET scans of 6 healthy volunteers with arterial sampling were acquired twice on the same day and analyzed using single- and 2-tissue-compartment models with and without a blood volume parameter. Global and regional test-retest (TRT) variability was determined for both plasma to tissue rate constant (K1) and volume of distribution (VT). According to the Akaike information criterion, the reversible single-tissue-compartment model with blood volume parameter was the preferred plasma input model. Mean TRT variability ranged from 1.5% to 16.9% for K1 and from 0.5% to 5.8% for VT. Larger volumes of interest showed better repeatabilities than smaller regions. A 45-min scan provided essentially the same K1 and VT values as a 60-min scan. A reversible single-tissue-compartment model with blood volume seems to be a good candidate model for quantification of dynamic (11)C-phenytoin studies. Scan duration may be reduced to 45 min without notable loss of accuracy and precision of both K1 and VT, although this still needs to be confirmed under pathologic conditions. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Technical Reports Server (NTRS)
Loftin, K. C.; Conkin, J.; Powell, M. R.
1997-01-01
BACKGROUND: Several previous studies indicated that exercise during prebreathe with 100% O2 decreased the incidence of hypobaric decompression sickness (DCS). We report a meta-analysis of these investigations combined with a new study in our laboratory to develop a statistical model as a predictive tool for DCS. HYPOTHESIS: Exercise during prebreathe increases N2 elimination in a theoretical 360-min half-time compartment decreasing the incidence of DCS. METHODS: A dose-response probability tissue ratio (TR) model with 95% confidence limits was created for two groups, prebreathe with exercise (n = 113) and resting prebreathe (n = 113), using nonlinear regression analysis with maximum likelihood optimization. RESULTS: The model predicted that prebreathe exercise would reduce the residual N2 in a 360-min half-time compartment to a level analogous to that in a 180-min compartment. This finding supported the hypothesis. The incidence of DCS for the exercise prebreathe group was significantly decreased (Chi-Square = 17.1, p < 0.0001) from the resting prebreathe group. CONCLUSIONS: The results suggested that exercise during prebreathe increases tissue perfusion and N2 elimination approximately 2-fold and markedly lowers the risk of DCS. Based on the model, the prebreathe duration may be reduced from 240 min to a predicted 91 min for the protocol in our study, but this remains to be verified. The model provides a useful planning tool to develop and test appropriate prebreathe exercise protocols and to predict DCS risks for astronauts.
The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics
Łuczkiewicz, Piotr; Daszkiewicz, Karol; Chróścielewski, Jacek; Witkowski, Wojciech; Winklewski, Pawel J.
2016-01-01
Objective Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. Methods The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. Results In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. Conclusions We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint. PMID:27936066
A generic biokinetic model for carbon-14 labelled compounds
NASA Astrophysics Data System (ADS)
Manger, Ryan Paul
Carbon-14, a radioactive nuclide, is used in many industrial applications. Due to its wide range of uses in industry, many workers are at risk of accidental internal exposure to 14C. Being a low energy beta emitter, 14C is not a significant external radiation hazard, but the internal consequences posed by 14C are important, especially because of its long half life of 5730 years [46]. The current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) is a conservative estimate of how radiocarbon is treated by the human body. The ICRP generic radiocarbon model consists of a single compartment representing the entire human body. This compartment has a biological half life of 40 days yielding an effective dose coefficient of 5.8x10-10 Sv B q-1 [44, 45, 49, 53, 54]. This overestimates the dose of all radiocarbon compounds that have been studied [96]. An improved model has been developed that includes and alimentary tract, a urinary bladder, CO2 model, and an "Other" compartment used to model systemic tissues. The model can be adapted to replicate any excretion curve and excretion pattern. In addition, the effective dose coefficient produced by the updated model is near the mean effective dose coefficient of carbon compounds that have been considered in this research. The major areas of improvement are: more anatomically significant, a less conservative dose coefficient, and the ability to manipulate the model for known excretion data. Due to the wide variety of carbon compounds, it is suggested that specific biokinetic models be implemented for known radiocarbon substances. If the source of radiocarbon is dietary, then the physiologically based model proposed by Whillans [102] that splits all ingested radiocarbon compounds into carbohydrates, fats, and proteins should be used.
Modeling the pharmacokinetics of extended release pharmaceutical systems
NASA Astrophysics Data System (ADS)
di Muria, Michela; Lamberti, Gaetano; Titomanlio, Giuseppe
2009-03-01
The pharmacokinetic (PK) models predict the hematic concentration of drugs after the administration. In compartment modeling, the body is described by a set of interconnected “vessels” or “compartments”; the modeling consisting of transient mass balances. Usually the orally administered drugs were considered as immediately available: this cannot describe the administration of extended-release systems. In this work we added to the traditional compartment models the ability to account for a delay in administration, relating this delay to in vitro data. Firstly, the method was validated, applying the model to the dosage of nicotine by chewing-gum; the model was tuned by in vitro/in vivo data of drugs (divalproex-sodium and diltiazem) with medium-rate release kinetics, then it was applied in describing in vivo evolutions due to the assumption of fast- and slow-release systems. The model reveals itself predictive, the same of a Level A in vitro/in vivo correlation, but being physically based, it is preferable to a purely statistical method.
Finite element analysis of unicompartmental knee arthroplasty.
Hopkins, Andrew R; New, Andrew M; Rodriguez-y-Baena, Ferdinando; Taylor, Mark
2010-01-01
Concerns over accelerated damage to the untreated compartment of the knee following unicompartmental knee arthroplasty (UKA), as well as the relatively poor success rates observed for lateral as opposed to the medial arthroplasty, remain issues for attention. Finite element analysis (FEA) was used to assess changes to the kinematics and potential for cartilage damage across the knee joint in response to the implantation of the Oxford Mobile Bearing UKA. FE models of lateral and medial compartment arthroplasty were developed, in addition to a healthy natural knee model, to gauge changes incurred through the arthroplasty. Varus-valgus misalignments were introduced to the femoral components to simulate surgical inaccuracy or over-correction. Boundary conditions from the Stanmore knee simulator during the stance phase of level gait were used. AP translations of the tibia in the medial UKA models were comparable to the behaviour of the natural knee models (+/-0.6mm deviation from pre-operative motion). Following lateral UKA, 4.1mm additional posterior translation of the tibia was recorded than predicted for the natural knee. IE rotations of the medial UKA models were less consistent with the pre-operative knee model than the lateral UKA models (7.7 degrees vs. 3.6 degrees deviation). Varus misalignment of the femoral prosthesis was more influential than valgus for medial UKA kinematics, whereas in lateral UKA, a valgus misalignment of the femoral prosthesis was most influential on the kinematics. Resection of the cartilage in the medial compartment reduced the overall risk of progressive OA in the knee, whereas removing the cartilage from the lateral compartment, and in particular introducing a valgus femoral misalignment, increased the overall risk of progressive OA in the knee. Based on these results, under the conditions tested herein, both medial and lateral UKA can be said to induce kinematics of the knee which could be considered broadly comparable to those of the natural knee, and that even a 10 degrees varus-valgus misalignment of the femoral component may not induce highly irregular kinematics. However, elevated posterior translation of the tibia in lateral UKA and large excursions of the insert may explain the higher incidence of bearing dislocation observed in some clinical studies. (c) 2009 IPEM. All rights reserved.
NASA Astrophysics Data System (ADS)
Koch, J.; Jensen, K. H.; Stisen, S.
2017-12-01
Hydrological models that integrate numerical process descriptions across compartments of the water cycle are typically required to undergo thorough model calibration in order to estimate suitable effective model parameters. In this study, we apply a spatially distributed hydrological model code which couples the saturated zone with the unsaturated zone and the energy portioning at the land surface. We conduct a comprehensive multi-constraint model calibration against nine independent observational datasets which reflect both the temporal and the spatial behavior of hydrological response of a 1000km2 large catchment in Denmark. The datasets are obtained from satellite remote sensing and in-situ measurements and cover five keystone hydrological variables: discharge, evapotranspiration, groundwater head, soil moisture and land surface temperature. Results indicate that a balanced optimization can be achieved where errors on objective functions for all nine observational datasets can be reduced simultaneously. The applied calibration framework was tailored with focus on improving the spatial pattern performance; however results suggest that the optimization is still more prone to improve the temporal dimension of model performance. This study features a post-calibration linear uncertainty analysis. This allows quantifying parameter identifiability which is the worth of a specific observational dataset to infer values to model parameters through calibration. Furthermore the ability of an observation to reduce predictive uncertainty is assessed as well. Such findings determine concrete implications on the design of model calibration frameworks and, in more general terms, the acquisition of data in hydrological observatories.
Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.
2014-01-01
Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984
Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis
Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskel...
A PHYSIOLOGICALLY BASED TOXICOKINETIC MODEL FOR LAKE TROUT (SALVELINUS NAMAYCUSH)
A physiologically based toxicokinetic (PB-TK) model for fish, incorporating chemical exchange at the gill and accumulation in five tissue compartments, was used to examine the effect of natural variability in physiological, morphological, and physico-chemical parameters on model ...
Astvad, Karen Marie Thyssen; Meletiadis, Joseph; Whalley, Sarah
2017-01-01
ABSTRACT The invertebrate model organism Galleria mellonella can be used to assess the efficacy of treatment of fungal infection. The fluconazole dose best mimicking human exposure during licensed dosing is unknown. We validated a bioassay for fluconazole detection in hemolymph and determined the fluconazole pharmacokinetics and pharmacodynamics in larval hemolymph in order to estimate a humanized dose for future experiments. A bioassay using 4-mm agar wells, 20 μl hemolymph, and the hypersusceptible Candida albicans DSY2621 was established and compared to a validated liquid chromatography-tandem mass spectrometry (LC–MS-MS) method. G. mellonella larvae were injected with fluconazole (5, 10, and 20 mg/kg of larval weight), and hemolymph was harvested for 24 h for pharmacokinetics calculations. The exposure was compared to the human exposure during standard licensed dosing. The bioassay had a linear standard curve between 1 and 20 mg/liter. Accuracy and coefficients of variation (percent) values were below 10%. The Spearman coefficient between assays was 0.94. Fluconazole larval pharmacokinetics followed one-compartment linear kinetics, with the 24-h area under the hemolymph concentration-time curve (AUC24 h) being 93, 173, and 406 mg · h/liter for the three doses compared to 400 mg · h/liter in humans under licensed treatment. In conclusion, a bioassay was validated for fluconazole determination in hemolymph. The pharmacokinetics was linear. An exposure comparable to the human exposure during standard licensed dosing was obtained with 20 mg/kg. PMID:28760893
2013-10-01
demonstrated that NIRS measurement of hemoglobin oxygen saturation in the tibial compartment provided reliable and sensitive correlation to increases...on 60 healthy participants. Our results indicated that NIRS was able to detect changes in oxygen saturation of muscle with exercise in all 60...Model 41 Introduction 42 Over the last two decades, tissue oxygenation saturation (StO2) measured by near infrared 43 spectroscopy (NIRS) has
Reinforcing properties of the substance P C-fragment analog DiMe-C7 in Carassius auratus.
Mattioli, R; Coelho, J; Martins, A
1996-04-01
The aim of the present study was to investigate whether two substance P (SP) fragments have reinforcing effects in Carassius auratus when the fish were tested in a place-preference experimental model. Fish were placed in a 3-compartment box in which one compartment gives access to two others that are not connected. The time spent in each compartment was recorded for 10 min in order to determine which one was preferred. Twenty-four hours later the fish were given one of the following ip treatments: 1) group VEH (N = 12), injected with teleost saline, 2) group DiMe-C7 (N = 12), injected with 33 micrograms/kg DiMe-C7, and 3) group SP1-7 (N = 12), injected with 167 micrograms/kg SP1-7. Immediately after treatment the fish were kept for 30 min in the compartment that was the least preferred on the day before and this procedure was repeated for 3 days. On the fifth day the fish were retested for 10 min to determine the time spent in each compartment. Two-way analysis of variance with treatments and testing as factors indicated a main effect (P < 0.0025) as well as a testing effect (P < 0.009). The post-hoc Scheffé multiple comparison test indicated that only the DiMe-C7 group presented an increase in the time spent in the paired compartment after treatment. We suggest that the C-terminal fragment of SP has reinforcing effects in Carassius auratus.
Design/Development of Spacecraft and Module Crew Compartments
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.
2010-01-01
This slide presentation reviews the design and development of crew compartments for spacecraft and for modules. The Crew Compartment or Crew Station is defined as the spacecraft interior and all other areas the crewman interfaces inside the cabin, or may potentially interface.It uses examples from all of the human rated spacecraft. It includes information about the process, significant drivers for the design, habitability, definitions of models, mockups, prototypes and trainers, including pictures of each stage in the development from Apollo, pictures of the space shuttle trainers, and International Space Station trainers. It further reviews the size and shape of the Space Shuttle orbiter crew compartment, and the Apollo command module and the lunar module. It also has a chart which reviews the International Space Station (ISS) internal volume by stage. The placement and use of windows is also discussed. Interestingly according to the table presented, the number 1 rated piece of equipment for recreation was viewing windows. The design of crew positions and restraints, crew translation aids and hardware restraints is shown with views of the restraints and handholds used from the Apollo program through the ISS.
Genestie, I; Morin, J P; Vannier, B; Lorenzon, G
1995-07-01
A high degree of functional polarity has been obtained in primary cultures of rabbit kidney proximal tubule cells grown on collagen IV-coated porous membranes. Tight confluency was attained 6 days after seeding and maintained for at least 6 more days, as shown by analysis of paracellular inulin diffusion. From day 6 onward, L-lactate, ammonia, and D-glucose concentration gradient and a pH difference of approximately 1 unit developed between the two nutrient medium compartments. Confluent monolayers expressed organic ion transport properties higher than those formerly reported for other cell models. Transcellular transport of 20 microM tetraethylammonium was directed from basal to apical compartment and was specifically inhibited by mepiperphenidol (1 mM). Unidirectional transport of 2.4 microM p-aminohippurate also occurred from basal to apical compartment, was saturable, and specifically inhibited by probenecid (1 mM). These results suggest that rabbit kidney proximal tubule cells, cultured under the experimental conditions described here, may be a useful model for the in vitro study of highly polarized renal transport processes.
Comparison of multiple methods to measure maternal fat mass in late gestation12
Marshall, Nicole E; Murphy, Elizabeth J; King, Janet C; Haas, E Kate; Lim, Jeong Y; Wiedrick, Jack; Thornburg, Kent L; Purnell, Jonathan Q
2016-01-01
Background: Measurements of maternal fat mass (FM) are important for studies of maternal and fetal health. Common methods of estimating FM have not been previously compared in pregnancy with measurements using more complete body composition models. Objectives: The goal of this pilot study was to compare multiple methods that estimate FM, including 2-, 3- and 4-compartment models in pregnant women at term, and to determine how these measures compare with FM by dual-energy X-ray absorptiometry (DXA) 2 wk postpartum. Design: Forty-one healthy pregnant women with prepregnancy body mass index (in kg/m2) 19 to 46 underwent skinfold thickness (SFT), bioelectrical impedance analysis (BIA), body density (Db) via air displacement plethysmography (ADP), and deuterium dilution of total body water (TBW) with and without adjustments for gestational age using van Raaij (VRJ) equations at 37–38 wk of gestation and 2 wk postpartum to derive 8 estimates of maternal FM. Deming regression analysis and Bland-Altman plots were used to compare methods of FM assessment. Results: Systematic differences in FM estimates were found. Methods for FM estimates from lowest to highest were 4-compartment, DXA, TBW(VRJ), 3-compartment, Db(VRJ), BIA, air displacement plethysmography body density, and SFT ranging from a mean ± SD of 29.5 ± 13.2 kg via 4-compartment to 39.1 ± 11.7 kg via SFT. Compared with postpartum DXA values, Deming regressions revealed no substantial departures from trend lines in maternal FM in late pregnancy for any of the methods. The 4-compartment method showed substantial negative (underestimating) constant bias, and the air displacement plethysmography body density and SFT methods showed positive (overestimating) constant bias. ADP via Db(VRJ) and 3-compartment methods had the highest precision; BIA had the lowest. Conclusions: ADP that uses gestational age-specific equations may provide a reasonable and practical measurement of maternal FM across a spectrum of body weights in late pregnancy. SFT would be acceptable for use in larger studies. This trial was registered at clinicaltrials.gov as NCT02586714. PMID:26888714
Kodati, Devender; Yellu, Narsimhareddy
2017-06-01
Furosemide is a loop diuretic drug frequently indicated in hypertension and fluid overload conditions such as congestive heart failure and hepatic cirrhosis. The purpose of the study was to establish a population pharmacokinetic model for furosemide in Indian hypertensive and fluid overload patients, and to evaluate effects of covariates on the volume of distribution (V/F) and oral clearance (CL/F) of furosemide. A total of 188 furosemide plasma sample concentrations from 63 patients with hypertension or fluid overload conditions were collected in this study. The population pharmacokinetic model for furosemide was built using Phoenix NLME 1.3 software. The covariates included age, sex, body surface area, bodyweight, height and creatinine clearance (CRCL). The pharmacokinetic data of furosemide was adequately explained by a two-compartment linear pharmacokinetic model with first-order absorption and an absorption lag-time. The mean values of CL/F and Vd/F of furosemide in the patients were 15.054Lh -1 and 4.419L, respectively. Analysis of covariates showed that CRCL was significantly influencing the clearance of furosemide. The final population pharmacokinetic model was demonstrated to be appropriate and effective and it can be used to assess the pharmacokinetic parameters of furosemide in Indian patients with hypertension and fluid overload conditions. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.
A Model of the Spatio-temporal Dynamics of Drosophila Eye Disc Development.
Fried, Patrick; Sánchez-Aragón, Máximo; Aguilar-Hidalgo, Daniel; Lehtinen, Birgitta; Casares, Fernando; Iber, Dagmar
2016-09-01
Patterning and growth are linked during early development and have to be tightly controlled to result in a functional tissue or organ. During the development of the Drosophila eye, this linkage is particularly clear: the growth of the eye primordium mainly results from proliferating cells ahead of the morphogenetic furrow (MF), a moving signaling wave that sweeps across the tissue from the posterior to the anterior side, that induces proliferating cells anterior to it to differentiate and become cell cycle quiescent in its wake. Therefore, final eye disc size depends on the proliferation rate of undifferentiated cells and on the speed with which the MF sweeps across the eye disc. We developed a spatio-temporal model of the growing eye disc based on the regulatory interactions controlled by the signals Decapentaplegic (Dpp), Hedgehog (Hh) and the transcription factor Homothorax (Hth) and explored how the signaling patterns affect the movement of the MF and impact on eye disc growth. We used published and new quantitative data to parameterize the model. In particular, two crucial parameter values, the degradation rate of Hth and the diffusion coefficient of Hh, were measured. The model is able to reproduce the linear movement of the MF and the termination of growth of the primordium. We further show that the model can explain several mutant phenotypes, but fails to reproduce the previously observed scaling of the Dpp gradient in the anterior compartment.
Integrating microbial diversity in soil carbon dynamic models parameters
NASA Astrophysics Data System (ADS)
Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie
2015-04-01
Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten sampling time in order to follow the dynamic of residue and soil organic matter mineralization. Diversity, structure and composition of microbial communities have been characterized before incubation time. The dynamic of carbon fluxes through CO2 emissions has been modelled through a simple model. Using statistical tools, relations between parameters of the model and microbial diversity indexes and/or pedological characteristics have been developed and integrated to the model. First results show that global diversity has an impact on the models parameters. Moreover, larger fungi diversity seems to lead to larger parameters representing decomposition rates and/or carbon use efficiencies than bacterial diversity. Classically, pedological factors such as soil pH and texture must also be taken into account.
Developing a physiologically based approach for modeling plutonium decorporation therapy with DTPA.
Kastl, Manuel; Giussani, Augusto; Blanchardon, Eric; Breustedt, Bastian; Fritsch, Paul; Hoeschen, Christoph; Lopez, Maria Antonia
2014-11-01
To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf), respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. RESULTS of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.
Parameterization models for pesticide exposure via crop consumption.
Fantke, Peter; Wieland, Peter; Juraske, Ronnie; Shaddick, Gavin; Itoiz, Eva Sevigné; Friedrich, Rainer; Jolliet, Olivier
2012-12-04
An approach for estimating human exposure to pesticides via consumption of six important food crops is presented that can be used to extend multimedia models applied in health risk and life cycle impact assessment. We first assessed the variation of model output (pesticide residues per kg applied) as a function of model input variables (substance, crop, and environmental properties) including their possible correlations using matrix algebra. We identified five key parameters responsible for between 80% and 93% of the variation in pesticide residues, namely time between substance application and crop harvest, degradation half-lives in crops and on crop surfaces, overall residence times in soil, and substance molecular weight. Partition coefficients also play an important role for fruit trees and tomato (Kow), potato (Koc), and lettuce (Kaw, Kow). Focusing on these parameters, we develop crop-specific models by parametrizing a complex fate and exposure assessment framework. The parametric models thereby reflect the framework's physical and chemical mechanisms and predict pesticide residues in harvest using linear combinations of crop, crop surface, and soil compartments. Parametric model results correspond well with results from the complex framework for 1540 substance-crop combinations with total deviations between a factor 4 (potato) and a factor 66 (lettuce). Predicted residues also correspond well with experimental data previously used to evaluate the complex framework. Pesticide mass in harvest can finally be combined with reduction factors accounting for food processing to estimate human exposure from crop consumption. All parametric models can be easily implemented into existing assessment frameworks.
Starling forces drive intracranial water exchange during normal and pathological states
Linninger, Andreas A.; Xu, Colin; Tangen, Kevin; Hartung, Grant
2017-01-01
Aim To quantify the exchange of water between cerebral compartments, specifically blood, tissue, perivascular pathways, and cerebrospinal fluid-filled spaces, on the basis of experimental data and to propose a dynamic global model of water flux through the entire brain to elucidate functionally relevant fluid exchange phenomena. Methods The mechanistic computer model to predict brain water shifts is discretized by cerebral compartments into nodes. Water and species flux is calculated between these nodes across a network of arcs driven by Hagen-Poiseuille flow (blood), Darcy flow (interstitial fluid transport), and Starling’s Law (transmembrane fluid exchange). Compartment compliance is accounted for using a pressure-volume relationship to enforce the Monro-Kellie doctrine. This nonlinear system of differential equations is solved implicitly using MATLAB software. Results The model predictions of intraventricular osmotic injection caused a pressure rise from 10 to 22 mmHg, followed by a taper to 14 mmHg over 100 minutes. The computational results are compared to experimental data with R2 = 0.929. Moreover, simulated osmotic therapy of systemic (blood) injection reduced intracranial pressure from 25 to 10 mmHg. The modeled volume and intracranial pressure changes following cerebral edema agree with experimental trends observed in animal models with R2 = 0.997. Conclusion The model successfully predicted time course and the efficacy of osmotic therapy for clearing cerebral edema. Furthermore, the mathematical model implicated the perivascular pathways as a possible conduit for water and solute exchange. This was a first step to quantify fluid exchange throughout the brain. PMID:29308830
Investigation of tDCS volume conduction effects in a highly realistic head model
NASA Astrophysics Data System (ADS)
Wagner, S.; Rampersad, S. M.; Aydin, Ü.; Vorwerk, J.; Oostendorp, T. F.; Neuling, T.; Herrmann, C. S.; Stegeman, D. F.; Wolters, C. H.
2014-02-01
Objective. We investigate volume conduction effects in transcranial direct current stimulation (tDCS) and present a guideline for efficient and yet accurate volume conductor modeling in tDCS using our newly-developed finite element (FE) approach. Approach. We developed a new, accurate and fast isoparametric FE approach for high-resolution geometry-adapted hexahedral meshes and tissue anisotropy. To attain a deeper insight into tDCS, we performed computer simulations, starting with a homogenized three-compartment head model and extending this step by step to a six-compartment anisotropic model. Main results. We are able to demonstrate important tDCS effects. First, we find channeling effects of the skin, the skull spongiosa and the cerebrospinal fluid compartments. Second, current vectors tend to be oriented towards the closest higher conducting region. Third, anisotropic WM conductivity causes current flow in directions more parallel to the WM fiber tracts. Fourth, the highest cortical current magnitudes are not only found close to the stimulation sites. Fifth, the median brain current density decreases with increasing distance from the electrodes. Significance. Our results allow us to formulate a guideline for volume conductor modeling in tDCS. We recommend to accurately model the major tissues between the stimulating electrodes and the target areas, while for efficient yet accurate modeling, an exact representation of other tissues is less important. Because for the low-frequency regime in electrophysiology the quasi-static approach is justified, our results should also be valid for at least low-frequency (e.g., below 100 Hz) transcranial alternating current stimulation.
A Physiologically Based Model for Methylmercury in Female American Kestrels
A physiologically based toxicokinetic (PBTK) model was developed to describe the uptake, distribution, and elimination of methylmercury (CH3Hg) in female American kestrels. The model consists of six tissue compartments corresponding to the brain, liver, kidney, gut, red blood cel...
2014-01-01
Introduction The response to exogenous epinephrine (Ep) is difficult to predict given the multitude of factors involved such as broad pharmacokinetic and pharmacodynamic between-subject variabilities, which may be more pronounced in children. We investigated the pharmacokinetics and pharmacodynamics of Ep, co-administered with milrinone, in children who underwent open heart surgical repair for congenital defects following cardiopulmonary bypass, including associated variability factors. Methods Thirty-nine children with a high risk of low cardiac output syndrome were prospectively enrolled. Ep pharmacokinetics, hemodynamic and metabolic effects were analyzed using the non-linear mixed effects modeling software MONOLIX. According to the final model, an Ep dosing simulation was suggested. Results Ep dosing infusions ranged from 0.01 to 0.23 μg.kg-1.min-1 in children whose weight ranged from 2.5 to 58 kg. A one-compartment open model with linear elimination adequately described the Ep concentration-time courses. Bodyweight (BW) was the main covariate influencing clearance (CL) and endogenous Ep production rate (q0) via an allometric relationship: CL(BWi) = θCL x (BWi)3/4 and q0(BWi) = θq0 x (BWi )3/4. The increase in heart rate (HR) and mean arterial pressure (MAP) as a function of Ep concentration were well described using an Emax model. The effect of age was significant on HR and MAP basal level parameters. Assuming that Ep stimulated the production rate of plasma glucose, the increases in plasma glucose and lactate levels were well described by turnover models without any significant effect of age, BW or exogenous glucose supply. Conclusions According to this population analysis, the developmental effects of BW and age explained a part of the pharmacokinetic and pharmacodynamics between-subject variabilities of Ep administration in critically ill children. This approach ultimately leads to a valuable Ep dosing simulation which should help clinicians to determine an appropriate a priori dosing regimen. PMID:24456639
Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T
2016-04-12
The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.
An electrical description of the generation of slow waves in the antrum of the guinea-pig
Edwards, FR; Hirst, GDS
2005-01-01
This paper provides an electrical description of the generation of slow waves in the guinea-pig gastric antrum. A short segment of a circular smooth muscle bundle with an attached network of myenteric interstitial cells of Cajal (ICC-MY) and longitudinal muscle sheet was modelled as three electrical compartments with resistive connexions between the ICC-MY compartment and each of the smooth muscle compartments. The circular smooth muscle layer contains a proportion of intramuscular interstitial cells of Cajal (ICC-IM), responsible for the regenerative component of the slow wave. Hence the equivalent cell representing the circular muscle layer incorporated a mechanism, modelled as a two stage reaction, which produces an intracellular messenger. The first stage of the reaction is proposed to be activated in a voltage-dependent manner as described by Hodgkin and Huxley. A similar mechanism was incorporated into the equivalent cell describing the ICC-MY network. Spontaneous discrete transient depolarizations, termed unitary potentials, are detected in records taken from either bundles of circular smooth muscle containing ICC-IM or from ICC-MY. In the simulation the mean rate of discharge of unitary potentials was allowed to vary with the concentration of messenger according to a conventional dose–effect relationship. Such a mechanism, which describes regenerative potentials generated by the circular muscle layer, also simulated the plateau component of the pacemaker potential in the ICC-MY network. A voltage-sensitive membrane conductance was included in the ICC-MY compartment; this was used to describe the primary component of the pacemaker potential. The model generates a range of membrane potential changes with properties similar to those generated by the three cell types present in the intact tissue. PMID:15613372
Ravichandiran, Mayoorendra; Ravichandiran, Nisanthini; Ravichandiran, Kajeandra; McKee, Nancy H; Richardson, Denyse; Oliver, Michele; Agur, Anne M
2012-04-01
Differential activation of specific regions within a skeletal muscle has been linked to the presence of neuromuscular compartments. However, few studies have investigated the extra- or intramuscular innervation throughout the muscle volume of extensor carpi radialis longus (ECRL) and brevis (ECRB). The aim of this study was to determine the presence of neuromuscular partitions in ECRL and ECRB based on the extra- and intramuscular innervation using three-dimensional modeling. The extra- and intramuscular nerve distribution was digitized and reconstructed in 3D in all the muscle volumes using Autodesk Maya in seven formalin embalmed cadaveric specimens (mean age, 75.7 ± 15.2 years). The intramuscular nerve distribution was modeled in all the muscle volumes. ECRL was found to have two neuromuscular compartments, superficial and deep. One branch from the radial nerve proper was found to innervate ECRL. This branch was divided into anterior and posterior branches to the superficial and deep compartments, respectively. Five innervation patterns were identified in ECRB with partitioning of the muscle belly into two, three, or four compartments, in a proximal to distal direction depending on the number of nerve branches entering the muscle belly. The ECRL and ECRB both demonstrated neuromuscular compartmentalization based on intramuscular innervation. According to the partitioning hypothesis, a muscle may be differentially activated depending on the required function of the muscle, thus allowing multifunctional muscles to contribute to a variety of movements. Therefore, the increased number of neuromuscular partitions in ECRB when compared with ECRL could be due to the need for more differential recruitment in the ECRB depending on force requirements. Copyright © 2011 Wiley Periodicals, Inc.
Zhang, Qian-Qian; Ying, Guang-Guo; Chen, Zhi-Feng; Liu, You-Sheng; Liu, Wang-Rong; Zhao, Jian-Liang
2015-07-01
Climbazole is an antidandruff active ingredient commonly used in personal care products, but little is known about its environmental fate. The aim of this study was to evaluate the fate of climbazole in water, sediment, soil and air compartments of the whole China by using a level III multimedia fugacity model. The usage of climbazole was calculated to be 345 t in the whole China according to the market research data, and after wastewater treatment a total emission of 245 t was discharged into the receiving environment with approximately 93% into the water compartment and 7% into the soil compartment. The developed fugacity model was successfully applied to estimate the contamination levels and mass inventories of climbazole in various environmental compartments of the river basins in China. The predicted environmental concentration ranges of climbazole were: 0.20-367 ng/L in water, and 0.009-25.2 ng/g dry weight in sediment. The highest concentration was mainly found in Haihe River basin and the lowest was in basins of Tibet and Xinjiang regions. The mass inventory of climbazole in the whole China was estimated to be 294 t, with 6.79% in water, 83.7% in sediment, 9.49% in soil, and 0.002% in air. Preliminary risk assessment showed high risks in sediment posed by climbazole in 2 out of 58 basins in China. The medium risks in water and sediment were mostly concentrated in north China. To the best of our knowledge, it is the first report on the emissions and multimedia fate of climbazole in the river basins of the whole China. Copyright © 2015 Elsevier B.V. All rights reserved.
Nakayama, Hidenari; Kimura, Hiroshi; Fujii, Teruo; Sakai, Yasuyuki
2014-06-01
We recently developed a polydimethylsiloxane (PDMS)-based three-compartment microfluidic cocultivation device enabling real-time interactions of different cell populations as an advanced physiologically-relevant cell-based assay. This device had valves and small magnetic stirrer-based internal pumps for easy and flexible perfusion operations. In this study, we applied this device for the evaluation of Irinotecan (CPT-11) toxicity to the lung, because it is detoxified by the liver and accumulated in the fat in humans. We successfully cultured representative three different tissue model cells in each compartment under the individual culture conditions and also in entire perfusion. Growth inhibition of rat lung epithelial cell line L-2, was measured when administered with 50 μM CPT-11 under various cocultivation conditions with respect to the presences and absence of primary rat hepatocytes (liver tissue model) and adipocyte-like cells (fat tissue model) induced from a mouse fibroblast cell line, 3T3-L1. Although CPT-11 showed moderate toxicity to the pure culture of L-2 cells in the device after 72 h of perfusion culture, this was lowered mainly in the presence of the liver tissue. Inhibition of the L-2 cell growth agreed with the area under curve (AUC) values obtained from fluorescent image-based analyses in each compartment. These results demonstrate that developed simple and flexible microfluidic cocultivation device, with appropriate image-based analyses, can be used in evaluating toxicokinetic behaviors of drug candidates in systemic levels. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Gonzalez, Daniel; Chamberlain, James M; Guptill, Jeffrey T; Cohen-Wolkowiez, Michael; Harper, Barrie; Zhao, Jian; Capparelli, Edmund V
2017-08-01
Lorazepam is one of the preferred agents used for intravenous treatment of status epilepticus (SE). We combined data from two pediatric clinical trials to characterize the population pharmacokinetics of intravenous lorazepam in infants and children aged 3 months to 17 years with active SE or a history of SE. We developed a population pharmacokinetic model for lorazepam using the NONMEM software. We then assessed exploratory exposure-response relationships using the overall efficacy and safety study endpoints, and performed dosing simulations. A total of 145 patients contributed 439 pharmacokinetic samples. The median (range) age and dose were 5.4 years (0.3-17.8) and 0.10 mg/kg (0.02-0.18), respectively. A two-compartment pharmacokinetic model with allometric scaling described the data well. In addition to total body weight (WT), younger age was associated with slightly higher weight-normalized clearance (CL). The following relationships characterized the typical values for the central compartment volume (V1), CL, peripheral compartment volume (V2), and intercompartmental CL (Q), using individual subject WT (kg) and age (years): V1 (L) = 0.879*WT; CL (L/h) = 0.115*(Age/4.7) 0.133 *WT 0.75 ; V2 (L) = 0.542*V1; Q (L/h) = 1.45*WT 0.75 . No pharmacokinetic parameters were associated with clinical outcomes. Simulations suggest uniform pediatric dosing (0.1 mg/kg, to a maximum of 4 mg) can be used to achieve concentrations of 50-100 ng/mL in children with SE, which have been previously associated with effective seizure control. The population pharmacokinetics of lorazepam were successfully described using a sparse sampling approach and a two-compartment model in pediatric patients with active SE.
Araújo, Olinda; Pereira, Patrícia; Cesário, Rute; Pacheco, Mário; Raimundo, Joana
2015-06-15
Mercury is a recognized harmful pollutant in aquatic systems but still little is known about its sub-cellular partitioning in wild fish. Mercury concentrations in liver homogenate (whole organ load) and in six sub-cellular compartments were determined in wild Liza aurata from two areas - contaminated (LAR) and reference. Water and sediment contamination was also assessed. Fish from LAR displayed higher total mercury (tHg) organ load as well as in sub-cellular compartments than those from the reference area, reflecting environmental differences. However, spatial differences in percentage of tHg were only observed for mitochondria (Mit) and lysosomes plus microsomes (Lys+Mic). At LAR, Lys+Mic exhibited higher levels of tHg than the other fractions. Interestingly, tHg in Mit, granules (Gran) and heat-denaturable proteins was linearly correlated with the whole organ. Low tHg concentrations in heat stable proteins and Gran suggests that accumulated levels might be below the physiological threshold to activate those detoxification fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lim, Hyeong-Seok; Kim, Su Jin; Noh, Yook-Hwan; Lee, Byung Chul; Jin, Seok-Joon; Park, Hyun Soo; Kim, Soohyeon; Jang, In-Jin; Kim, Sang Eun
2013-03-01
To evaluate the potential usage of D(2) receptor occupancy (D2RO) measured by positron emission tomography (PET) in antipsychotic development. In this randomized, parallel group study, eight healthy male volunteers received oral doses of 0.5 (n = 3), 1 (n = 2), or 3 mg (n = 3) of haloperidol once daily for 7 days. PET's were scanned before haloperidol, and on days 8, 12, with serial pharmacokinetic sampling on day 7. Pharmacokinetics and binding potential to D(2) receptor in putamen and caudate nucleus over time were analyzed using NONMEM, and simulations for the profiles of D2RO over time on various regimens of haloperidol were conducted to find the optimal dosing regimens. One compartment model with a saturable binding compartment, and inhibitory E(max) model in the effect compartment best described the data. Plasma haloperidol concentrations at half-maximal inhibition were 0.791 and 0.650 ng/ml, in putamen and caudate nucleus. Simulation suggested haloperidol 2 mg every 12 h is near the optimal dose. This study showed that sparse D2RO measurements in steady state pharmacodynamic design after multiple dosing could reveal the possibility of treatment effect of D(2) antagonist, and could identify the potential optimal doses for later clinical studies by modeling and simulation.
Bressan, Alexsander K; Kirkpatrick, Andrew W; Ball, Chad G
2016-09-15
Postoperative hemorrhage is a significant cause of morbidity and mortality following liver resection. It typically presents early within the postoperative period, and conservative management is possible in the majority of cases. We present a case of late post-hepatectomy hemorrhage associated with overt abdominal compartment syndrome resulting from a localized functional compartment within the abdomen. A 68-year-old white man was readmitted with sudden onset of upper abdominal pain, vomiting, and hemodynamic instability 8 days after an uneventful hepatic resection for metachronous colon cancer metastasis. A frozen abdomen with adhesions due to complicated previous abdominal surgeries was encountered at the first intervention, but the surgery itself and initial recovery were otherwise unremarkable. Prompt response to fluid resuscitation at admission was followed by a computed tomography of his abdomen that revealed active arterial hemorrhage in the liver resection site and hemoperitoneum (estimated volume <2 L). Selective arteriography successfully identified and embolized a small bleeding branch of his right hepatic artery. He remained hemodynamically stable, but eventually developed overt abdominal compartment syndrome. Surgical exploration confirmed a small volume of ascites and blood clots (1.2 L) under significant pressure in his supramesocolic region, restricted by his frozen lower abdomen, which we evacuated. Dramatic improvement in his ventilatory pressure was immediate. His abdomen was left open and a negative pressure device was placed for temporary abdominal closure. The fascia was formally closed after 48 hours. He was discharged home at postoperative day 6. Intra-abdominal pressure and radiologic findings of intra-abdominal hemorrhage should be carefully interpreted in patients with extensive intra-abdominal adhesions. A high index of suspicion and detailed understanding of abdominal compartment mechanics are paramount for the timely diagnosis of abdominal compartment syndrome in these patients. Clinicians should be aware that abnormal anatomy (such as adhesions) coupled with localized pathophysiology (such as hemorrhage) can create a so-named abdominal intra-compartment syndrome requiring extra vigilance to diagnose.
Wershaw, Robert L.
2004-01-01
Natural organic matter (NOM) has been studied for more than 200 years because of its importance in enhancing soil fertility, soil structure, and water-holding capacity and as a carbon sink in the global carbon cycle. Two different types of models have been proposed for NOM: (1) the humic polymer models and (2) the molecular aggregate models. In the humic polymer models, NOM molecules are depicted as large (humic) polymers that have unique chemical structures that are different from those of the precursor plant degradation products. In the molecular aggregate models, NOM is depicted as being composed of molecular aggregates (supramolecular aggregates) of plant degradation products held together by non-covalent bonds. The preponderance of evidence favors the supramolecular aggregate models. These models were developed by studying the properties of NOM extracted from soils and natural waters, and as such, they provide only a very generalized picture of the structure of NOM aggregates in soils and natural waters prior to extraction. A compartmental model, in which the structure of the NOM in each of the compartments is treated separately, should provide a more accurate representation of NOM in soil and sediment systems. The proposed NOM compartments are: (1) partially degraded plant tissue, (2) biomass from microorganisms, (3) organic coatings on mineral grains, (4) pyrolytic carbon, (5) organic precipitates, and (6) dissolved organic matter (DOM) in interstitial water. Within each of these compartments there are NOM supramolecular aggregates that will be dissolved by the solvent systems that are used by researchers for extraction of NOM from soils and sediments. In natural water systems DOM may be considered as existing in two subcompartments: (1) truly dissolved DOM and (2) colloidal DOM.
Purevsuren, Tserenchimed; Dorj, Ariunzaya; Kim, Kyungsoo; Kim, Yoon Hyuk
2016-04-01
The computational modeling approach has commonly been used to predict knee joint contact forces, muscle forces, and ligament loads during activities of daily living. Knowledge of these forces has several potential applications, for example, within design of equipment to protect the knee joint from injury and to plan adequate rehabilitation protocols, although clinical applications of computational models are still evolving and one of the limiting factors is model validation. The objective of this study was to extend previous modeling technique and to improve the validity of the model prediction using publicly available data set of the fifth "Grand Challenge Competition to Predict In Vivo Knee Loads." A two-stage modeling approach, which combines conventional inverse dynamic analysis (the first stage) with a multi-body subject-specific lower limb model (the second stage), was used to calculate medial and lateral compartment contact forces. The validation was performed by direct comparison of model predictions and experimental measurement of medial and lateral compartment contact forces during normal and turning gait. The model predictions of both medial and lateral contact forces showed strong correlations with experimental measurements in normal gait (r = 0.75 and 0.71) and in turning gait trials (r = 0.86 and 0.72), even though the current technique over-estimated medial compartment contact forces in swing phase. The correlation coefficient, Sprague and Geers metrics, and root mean squared error indicated that the lateral contact forces were predicted better than medial contact forces in comparison with the experimental measurements during both normal and turning gait trials. © IMechE 2016.
Analysis of Seasonal Chlorophyll-a Using An Adjoint Three-Dimensional Ocean Carbon Cycle Model
NASA Astrophysics Data System (ADS)
Tjiputra, J.; Winguth, A.; Polzin, D.
2004-12-01
The misfit between numerical ocean model and observations can be reduced using data assimilation. This can be achieved by optimizing the model parameter values using adjoint model. The adjoint model minimizes the model-data misfit by estimating the sensitivity or gradient of the cost function with respect to initial condition, boundary condition, or parameters. The adjoint technique was used to assimilate seasonal chlorophyll-a data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite to a marine biogeochemical model HAMOCC5.1. An Identical Twin Experiment (ITE) was conducted to test the robustness of the model and the non-linearity level of the forward model. The ITE experiment successfully recovered most of the perturbed parameter to their initial values, and identified the most sensitive ecosystem parameters, which contribute significantly to model-data bias. The regional assimilations of SeaWiFS chlorophyll-a data into the model were able to reduce the model-data misfit (i.e. the cost function) significantly. The cost function reduction mostly occurred in the high latitudes (e.g. the model-data misfit in the northern region during summer season was reduced by 54%). On the other hand, the equatorial regions appear to be relatively stable with no strong reduction in cost function. The optimized parameter set is used to forecast the carbon fluxes between marine ecosystem compartments (e.g. Phytoplankton, Zooplankton, Nutrients, Particulate Organic Carbon, and Dissolved Organic Carbon). The a posteriori model run using the regional best-fit parameterization yields approximately 36 PgC/yr of global net primary productions in the euphotic zone.
Sigmund, Eric E.; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Fieremans, Els; Babb, James S.; Mechlin, Michael; Liu, Kecheng; Kwon, Jane; Mcgorty, KellyAnne; Hodnett, Phil; Bencardino, Jenny
2013-01-01
Purpose To evaluate the performance of diffusion tensor imaging (DTI) in the evaluation of chronic exertional compartment syndrome (CECS) as compared to T2-weighted imaging. Materials and Methods Using an IRB-approved HIPAA-compliant protocol, spectral adiabatic inversion recovery (SPAIR) T2-weighted imaging (T2w) and stimulated echo DTI were applied to 8 healthy volunteers and 14 suspected CECS patients before and after exertion. Longitudinal and transverse diffusion eigenvalues, mean diffusivity (MD), and fractional anisotropy (FA) were measured in 7 calf muscle compartments, which in patients were classified by their response on T2w: normal (<20% change), and CECS (>20% change). Mixed model analysis of variance compared subject groups and compartments in terms of response factors (post-/pre-exercise ratios) of DTI parameters. Results All diffusivities significantly increased (p<0.0001) and FA decreased (p=.0014) with exercise. Longitudinal diffusion responses were significantly smaller than transversal diffusion responses (p<0.0001). 19 of 98 patient compartments were classified as CECS on T2w. MD increased by 3.8±3.4% (volunteer), 7.4±4.2 % (normal), and 9.1±7.0% (CECS) with exercise. Conclusion DTI shows promise as an ancillary imaging method in the diagnosis and understanding of the pathophysiology in CECS. Future studies may explore its utility in predicting response to treatment. PMID:23440764
Fu, Feng; Nowak, Martin A.; Bonhoeffer, Sebastian
2015-01-01
Acquired resistance is one of the major barriers to successful cancer therapy. The development of resistance is commonly attributed to genetic heterogeneity. However, heterogeneity of drug penetration of the tumor microenvironment both on the microscopic level within solid tumors as well as on the macroscopic level across metastases may also contribute to acquired drug resistance. Here we use mathematical models to investigate the effect of drug heterogeneity on the probability of escape from treatment and the time to resistance. Specifically we address scenarios with sufficiently potent therapies that suppress growth of all preexisting genetic variants in the compartment with the highest possible drug concentration. To study the joint effect of drug heterogeneity, growth rate, and evolution of resistance, we analyze a multi-type stochastic branching process describing growth of cancer cells in multiple compartments with different drug concentrations and limited migration between compartments. We show that resistance is likely to arise first in the sanctuary compartment with poor drug penetrations and from there populate non-sanctuary compartments with high drug concentrations. Moreover, we show that only below a threshold rate of cell migration does spatial heterogeneity accelerate resistance evolution, otherwise deterring drug resistance with excessively high migration rates. Our results provide new insights into understanding why cancers tend to quickly become resistant, and that cell migration and the presence of sanctuary sites with little drug exposure are essential to this end. PMID:25789469
Gehring, R; Coetzee, J F; Tarus-Sang, J; Apley, M D
2009-04-01
The objective of this study was to evaluate the plasma pharmacokinetics of ketamine and its active metabolite norketamine administered intravenously at a dose of 0.1 mg/kg together with xylazine (0.05 mg/kg) to control the pain associated with castration in calves. A two-compartment model with an additional metabolite compartment linked to the central compartment was used to simultaneously describe the time-concentration profiles of both ketamine and its major metabolite norketamine. Parameter values estimated from the time-concentration profiles observed in this study were volume of the central compartment (V(c) = 132.82 +/- 68.23 mL/kg), distribution clearance (CL(D) = 15.49 +/- 2.56 mL/min/kg), volume of the peripheral compartment (V(T) = 257.05 +/- 41.65 mL/kg), ketamine clearance by the formation of the norketamine metabolite (CL(2M) = 8.56 +/- 7.37 mL/kg/min) and ketamine clearance by other routes (CL(o) = 16.41 +/- 3.42 mL/kg/min). Previously published data from rats suggest that the metabolite norketamine contributes to the analgesic effect of ketamine, with a potency that is one-third of the parent drug. An understanding of the time-concentration relationships and the disposition of the parent drug and its metabolite is therefore important for a better understanding of the analgesic potential of ketamine in cattle.
The vesosome-- a multicompartment drug delivery vehicle.
Kisak, E T; Coldren, B; Evans, C A; Boyer, C; Zasadzinski, J A
2004-01-01
Assembling structures to divide space controllably and spontaneously into subunits at the nanometer scale is a significant challenge, although one that biology has solved in two distinct ways: prokaryotes and eukaryotes. Prokaryotes have a single compartment delimited by one or more lipid-protein membranes. Eukaryotes have nested-membrane structures that provide internal compartments--such as the cell nucleus and cell organelles in which specialized functions are carried out. We have developed a simple method of creating nested bilayer compartments in vitro via the "interdigitated" bilayer phase formed by adding ethanol to a variety of saturated phospholipids. At temperatures below the gel-liquid crystalline transition, T(m), the interdigitated lipid-ethanol sheets are rigid and flat; when the temperature is raised above T(m), the sheets become flexible and close on themselves and the surrounding solution to form closed compartments. During this closure, the sheets can entrap other vesicles, biological macromolecules, or colloidal particles. The result is efficient and spontaneous encapsulation without disruption of even fragile materials to form biomimetic nano-environments for possible use in drug delivery, colloidal stabilization, or as microreactors. The vesosome structure can take full advantage of the 40 years of progress in liposome development including steric stabilization, pH loading of drugs, and intrinsic biocompatibility. However, the multiple compartments of the vesosome give better protection to the interior contents in serum, leading to extended release of model compounds in comparison to unilamellar liposomes.
Costa, Pedro F; Vaquette, Cédryck; Zhang, Qiyi; Reis, Rui L; Ivanovski, Saso; Hutmacher, Dietmar W
2014-03-01
This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
RLC model of visco-elastic properties of the chest wall
NASA Astrophysics Data System (ADS)
Aliverti, Andrea; Ferrigno, Giancarlo
1996-04-01
The quantification of the visco-elastic properties (resistance (R), inertia (L) and compliance (C)) of the different chest wall compartments (pulmonary rib cage,diaphragmatic rib cage and abdomen) is important to study the status of the passive components of the respiratory system, particularly in selected pathologies. Applying the viscoelastic-electrical analogy to the chest wall, we used an identification method in order to estimate the R, L and C parameters of the different parts of the chest, basing on different models; the input and output measured data were constituted by the volume variations of the different chest wall compartments and by the nasal pressure during controlled intermittent positive pressure ventilation by nasal mask, while the parameters of the system (R, L and C of the different compartments) were to be estimated. Volumes were measured with a new method, recently validated, based on an opto-electronic motion analyzer, able to compute with high accuracy and null invasivity the absolute values and the time variations of the volumes of each of the three compartments. The estimation of the R, L and C parameters has been based on a least-squared criterion, and the minimization has been based on a robustified iterative Gauss-Newton algorithm. The validation of the estimation procedure (fitting) has ben performed computing the percentage root mean square value of the error between the output real data and the output estimated data. The method has been applied to 2 healthy subjects. Also preliminary results have been obtained from 20 subjects affected by neuromuscular diseases (Duchenne Muscular Dystrophy (DMD) and Spinal Muscle Atrophy (SMA)). The results show that: (a) the best-fitting electrical models of the respiratory system are made up by one or three parallel RLC branches supplied by a voltage generator (so considering inertial properties, particularly in the abdominal compartment, and not considering patient/machine connection); (b) there is a significant difference between DMD and SMA groups (the value of resistance and rigidity of the thorax is much higher in SMA patients); (c) the inclusion of the connection patient-ventilator make the models ill-conditioned. We conclude that this method allows a quantitative evaluation of rib cage and abdominal passive characteristics with a good accuracy and through a dynamic measurement and that it could give significant data in physiology and clinics.
A microvascular compartment model validated using 11C-methylglucose liver PET in pigs
NASA Astrophysics Data System (ADS)
Munk, Ole L.; Keiding, Susanne; Baker, Charles; Bass, Ludvik
2018-01-01
The standard compartment model (CM) is widely used to analyse dynamic PET data. The CM is fitted to time-activity curves to estimate rate constants that describe the transport of a tracer between well-mixed compartments. The aim of this study was to develop and validate a more realistic microvascular compartment model (MCM) that includes capillary tracer concentration gradients, backflux from cells into the perfused capillaries and multiple re-uptakes during the passage through a capillary. The MCM incorporates only parameters with clear physiological meaning, it is easy to implement, and it does not require numerical solution. We compared the MCM and CM for the analysis of 3 min dynamic PET data of pig livers (N = 5) following injection of 11C-methylglucose. During PET scans, the tracer concentrations in blood were measured in the abdominal aorta, portal vein and liver vein by manual sampling. We found that the MCM outperformed the CM and that dynamic PET data include information which cannot be extracted using standard CM. The MCM fitted dynamic PET data better than the CM (Akaike values were 46 ± 4 for best MCM fits, and 82 ± 8 for best CM fits; mean ± standard deviation) and extracted physiologically reasonable parameter estimates such as blood perfusion that were in agreement with independent measurements. The difference between model-independent perfusion estimates and the best MCM perfusion estimates was -0.01 ± 0.05 ml/ml/min, whereas the difference was 0.30 ± 0.13 ml/ml/min using the CM. In addition, the MCM predicted the time course of concentrations in the liver vein, a prediction fundamentally unobtainable using the CM as it does not return tracer backflux from cells to capillary blood. The results demonstrate the benefit of using models that include more physiology and that models including concentration gradients should be preferred when analysing the blood-cell exchange of any tracer in any capillary bed.
Forecasting impact injuries of unrestrained occupants in railway vehicle passenger compartments.
Xie, Suchao; Zhou, Hui
2014-01-01
In order to predict the injury parameters of the occupants corresponding to different experimental parameters and to determine impact injury indices conveniently and efficiently, a model forecasting occupant impact injury was established in this work. The work was based on finite experimental observation values obtained by numerical simulation. First, the various factors influencing the impact injuries caused by the interaction between unrestrained occupants and the compartment's internal structures were collated and the most vulnerable regions of the occupant's body were analyzed. Then, the forecast model was set up based on a genetic algorithm-back propagation (GA-BP) hybrid algorithm, which unified the individual characteristics of the back propagation-artificial neural network (BP-ANN) model and the genetic algorithm (GA). The model was well suited to studies of occupant impact injuries and allowed multiple-parameter forecasts of the occupant impact injuries to be realized assuming values for various influencing factors. Finally, the forecast results for three types of secondary collision were analyzed using forecasting accuracy evaluation methods. All of the results showed the ideal accuracy of the forecast model. When an occupant faced a table, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.0 percent and the average relative error (ARE) values did not exceed 3.0 percent. When an occupant faced a seat, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 5.2 percent and the ARE values did not exceed 3.1 percent. When the occupant faced another occupant, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.3 percent and the ARE values did not exceed 3.8 percent. The injury forecast model established in this article reduced repeat experiment times and improved the design efficiency of the internal compartment's structure parameters, and it provided a new way for assessing the safety performance of the interior structural parameters in existing, and newly designed, railway vehicle compartments.
Development of guidelines for optimum baghouse fluid-dynamic-system design. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eskinazi, D.; Gilbert, G.B.
1982-06-01
In recent years, the utility industry has turned to fabric filters as an alternative technology to electrostatic precipitators for particulate emission control from pulverized coal-fired power plants. One aspect of baghouse technology which appears to be of major importance in minimizing the size, cost, and operating pressure drop is the development of ductwork and compartment designs which achieve uniform gas and dust flow distribution to individual compartments and bags within a compartment. The objective of this project was to perform an experimental modeling program to develop design guidelines for optimizing the fluid mechanic performance of baghouses. Tasks included formulation ofmore » the appropriate modeling techniques for analysis of the flow of dust-laden gas through the collector system and extensive experimental analysis of fabric filter duct system design. A matrix of geometric configurations and operating conditions was experimentally investigated to establish the characteristics of an optimum system, to identify the level of fluid mechanic sophistication in current designs, and to experimentally develop new ideas and improved designs. Experimental results indicate that the design of the inlet and outlet manifolds, hopper entrance, hopper region below the tubesheet, and the compartment outlet have not been given sufficient attention. Unsteady flow patterns, poor velocity profiles, recirculation zones, and excessive pressure losses may be associated with these regions. It is evident from the results presented here that the fluid mechanic design of fabric filter systems can be improved significantly.« less
Hernandez-Patlan, D; Solis-Cruz, B; Méndez-Albores, A; Latorre, J D; Hernandez-Velasco, X; Tellez, G; López-Arellano, R
2018-02-01
To compare the conventional plating method vs a fluorometric method using PrestoBlue ® as a dye by determining the antimicrobial activity of two organic acids and curcumin (CUR) against Salmonella Enteritidis in an avian in vitro digestion model that simulates the crop, proventriculus and intestine. A concentration of 10 8 CFU per ml of S. Enteritidis was exposed to groups with different rates of ascorbic acid (AA), boric acid (BA) and CUR. Significant differences were observed when the means of the treatments were compared with the controls in the compartments that simulate the crop and intestine (P < 0·05). Ascorbic acid alone and high rates of AA in the mixtures were the most efficient treatments in the crop compartment. However, in the intestinal compartment BA alone and at different rates in the mixture BA-CUR (1 : 1) were the best treatments to decrease the concentration of S. Enteritidis. The results of this study suggest that there could be an antagonistic bactericidal effect between AA and CUR and AA and BA as well as a synergistic bactericidal effect between BA and CUR. These findings may contribute to the development of a formulation with microencapsulated compounds to liberate them in different compartments to combat S. Enteritidis infections in broiler chickens. © 2017 The Society for Applied Microbiology.
Multi-Compartment T2 Relaxometry Using a Spatially Constrained Multi-Gaussian Model
Raj, Ashish; Pandya, Sneha; Shen, Xiaobo; LoCastro, Eve; Nguyen, Thanh D.; Gauthier, Susan A.
2014-01-01
The brain’s myelin content can be mapped by T2-relaxometry, which resolves multiple differentially relaxing T2 pools from multi-echo MRI. Unfortunately, the conventional fitting procedure is a hard and numerically ill-posed problem. Consequently, the T2 distributions and myelin maps become very sensitive to noise and are frequently difficult to interpret diagnostically. Although regularization can improve stability, it is generally not adequate, particularly at relatively low signal to noise ratio (SNR) of around 100–200. The purpose of this study was to obtain a fitting algorithm which is able to overcome these difficulties and generate usable myelin maps from noisy acquisitions in a realistic scan time. To this end, we restrict the T2 distribution to only 3 distinct resolvable tissue compartments, modeled as Gaussians: myelin water, intra/extra-cellular water and a slow relaxing cerebrospinal fluid compartment. We also impose spatial smoothness expectation that volume fractions and T2 relaxation times of tissue compartments change smoothly within coherent brain regions. The method greatly improves robustness to noise, reduces spatial variations, improves definition of white matter fibers, and enhances detection of demyelinating lesions. Due to efficient design, the additional spatial aspect does not cause an increase in processing time. The proposed method was applied to fast spiral acquisitions on which conventional fitting gives uninterpretable results. While these fast acquisitions suffer from noise and inhomogeneity artifacts, our preliminary results indicate the potential of spatially constrained 3-pool T2 relaxometry. PMID:24896833
Feasibility of Rapid Multitracer PET Tumor Imaging
NASA Astrophysics Data System (ADS)
Kadrmas, D. J.; Rust, T. C.
2005-10-01
Positron emission tomography (PET) can characterize different aspects of tumor physiology using various tracers. PET scans are usually performed using only one tracer since there is no explicit signal for distinguishing multiple tracers. We tested the feasibility of rapidly imaging multiple PET tracers using dynamic imaging techniques, where the signals from each tracer are separated based upon differences in tracer half-life, kinetics, and distribution. Time-activity curve populations for FDG, acetate, ATSM, and PTSM were simulated using appropriate compartment models, and noisy dual-tracer curves were computed by shifting and adding the single-tracer curves. Single-tracer components were then estimated from dual-tracer data using two methods: principal component analysis (PCA)-based fits of single-tracer components to multitracer data, and parallel multitracer compartment models estimating single-tracer rate parameters from multitracer time-activity curves. The PCA analysis found that there is information content present for separating multitracer data, and that tracer separability depends upon tracer kinetics, injection order and timing. Multitracer compartment modeling recovered rate parameters for individual tracers with good accuracy but somewhat higher statistical uncertainty than single-tracer results when the injection delay was >10 min. These approaches to processing rapid multitracer PET data may potentially provide a new tool for characterizing multiple aspects of tumor physiology in vivo.
Martin, François-Pierre J; Montoliu, Ivan; Kochhar, Sunil; Rezzi, Serge
2010-12-01
Over the past decade, the analysis of metabolic data with advanced chemometric techniques has offered the potential to explore functional relationships among biological compartments in relation to the structure and function of the intestine. However, the employed methodologies, generally based on regression modeling techniques, have given emphasis to region-specific metabolic patterns, while providing only limited insights into the spatiotemporal metabolic features of the complex gastrointestinal system. Hence, novel approaches are needed to analyze metabolic data to reconstruct the metabolic biological space associated with the evolving structures and functions of an organ such as the gastrointestinal tract. Here, we report the application of multivariate curve resolution (MCR) methodology to model metabolic relationships along the gastrointestinal compartments in relation to its structure and function using data from our previous metabonomic analysis. The method simultaneously summarizes metabolite occurrence and contribution to continuous metabolic signatures of the different biological compartments of the gut tract. This methodology sheds new light onto the complex web of metabolic interactions with gut symbionts that modulate host cell metabolism in surrounding gut tissues. In the future, such an approach will be key to provide new insights into the dynamic onset of metabolic deregulations involved in region-specific gastrointestinal disorders, such as Crohn's disease or ulcerative colitis.
A physiological pharmacokinetic model describing the disposition of lycopene in healthy men.
Diwadkar-Navsariwala, Veda; Novotny, Janet A; Gustin, David M; Sosman, Jeffery A; Rodvold, Keith A; Crowell, James A; Stacewicz-Sapuntzakis, Maria; Bowen, Phyllis E
2003-10-01
A physiological pharmacokinetic model was developed to describe the disposition of lycopene, delivered as a tomato beverage formulation in five graded doses (10, 30, 60, 90, or 120 mg), for a phase I study in healthy male subjects (five per dose). Blood was collected before dose administration (0 h) and at scheduled intervals until 672 h. Serum concentrations of carotenoids and vitamins were measured by high performance liquid chromatography analysis. The model was comprised of seven compartments: gastrointestinal tract, enterocytes, chylomicrons, plasma lipoproteins, fast-turnover liver, slow-turnover tissues, and a delay compartment before the enterocytes. As predicted, the percent absorption at the 10 mg dose (33.9 +/- 8.1%) was significantly greater than at the higher doses; however, the amount of lycopene absorbed (mg) was not statistically different (mean: 4.69 +/- 0.55 mg) between doses, suggesting a possible saturation of absorptive mechanisms. The slow-turnover tissue compartment served as a slow-depleting reservoir for lycopene, and the liver represented the fast-turnover pool. Independent of dose, 80% of the subjects absorbed less than 6 mg of lycopene. This may have important implications for planning clinical trials with pharmacological doses of lycopene in cancer control and prevention if absorption saturation occurs at levels that are already being consumed in the population.
NASA Astrophysics Data System (ADS)
Nagaosa, Ryuichi S.
2014-08-01
This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.
Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye.
Makoid, M C; Robinson, J R
1979-04-01
The temporal and spatial pattern of [3H]-pilocarpine nitrate distribution in the albino rabbit eye following topical administration was determined. A four-compartment caternary chain model describing this disposition corresponds to the precorneal area, the cornea, the aqueous humor, and the lens and vitreous. Simultaneous computer fitting of data from tissue corresponding to some compartments in the model supported the proposed model. Additional support was provided by the excellent correlation between predicted and observed values in multiple-dosing studies. Several important aspects of ocular drug disposition are evident from the model. The extensive parallel elimination at the absorption site gives rise to an apparent absorption rate constant that is one to two orders of magnitude larger than the true absorption rate constant. In addition, aqueous flow accounts for most of the drug removal. Thus, major effects on absorption and elimination, independent of the drug structure, suggest the possibility of similar pharmacokinetics for vastly different drugs.
Pharmacokinetic evaluation of avicularin using a model-based development approach.
Buqui, Gabriela Amaral; Gouvea, Dayana Rubio; Sy, Sherwin K B; Voelkner, Alexander; Singh, Ravi S P; da Silva, Denise Brentan; Kimura, Elza; Derendorf, Hartmut; Lopes, Norberto Peporine; Diniz, Andrea
2015-03-01
The aim of this study was to use the pharmacokinetic information of avicularin in rats to project a dose for humans using allometric scaling. A highly sensitive and specific bioanalytical assay to determine avicularin concentrations in the plasma was developed and validated for UPLC-MS/MS. The plasma protein binding of avicularin in rat plasma determined by the ultrafiltration method was 64%. The pharmacokinetics of avicularin in nine rats was studied following an intravenous bolus administration of 1 mg/kg and was found to be best described by a two-compartment model using a nonlinear mixed effects modeling approach. The pharmacokinetic parameters were allometrically scaled by body weight and centered to the median rat weight of 0.23 kg, with the power coefficient fixed at 0.75 for clearance and 1 for volume parameters. Avicularin was rapidly eliminated from the systemic circulation within 1 h post-dose, and the avicularin pharmacokinetic was linear up to 5 mg/kg based on exposure comparison to literature data for a 5-mg/kg single dose in rats. Using allometric scaling and Monte Carlo simulation approaches, the rat doses of 1 and 5 mg/kg correspond to the human equivalent doses of 30 and 150 mg, respectively, to achieve comparable plasma avicularin concentrations in humans. Georg Thieme Verlag KG Stuttgart · New York.
Automatic Incubator-type Temperature Control System for Brain Hypothermia Treatment
NASA Astrophysics Data System (ADS)
Gaohua, Lu; Wakamatsu, Hidetoshi
An automatic air-cooling incubator is proposed to replace the manual water-cooling blanket to control the brain tissue temperature for brain hypothermia treatment. Its feasibility is theoretically discussed as follows: First, an adult patient with the cooling incubator is modeled as a linear dynamical patient-incubator biothermal system. The patient is represented by an 18-compartment structure and described by its state equations. The air-cooling incubator provides almost same cooling effect as the water-cooling blanket, if a light breeze of speed around 3 m/s is circulated in the incubator. Then, in order to control the brain temperature automatically, an adaptive-optimal control algorithm is adopted, while the patient-blanket therapeutic system is considered as a reference model. Finally, the brain temperature of the patient-incubator biothermal system is controlled to follow up the given reference temperature course, in which an adaptive algorithm is confirmed useful for unknown environmental change and/or metabolic rate change of the patient in the incubating system. Thus, the present work ensures the development of the automatic air-cooling incubator for a better temperature regulation of the brain hypothermia treatment in ICU.
Human Brain Organoids on a Chip Reveal the Physics of Folding.
Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R; Hanna, Jacob H; Reiner, Orly
2018-05-01
Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a micro-fabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in in vivo , it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.
Human brain organoids on a chip reveal the physics of folding
NASA Astrophysics Data System (ADS)
Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R.; Hanna, Jacob H.; Reiner, Orly
2018-05-01
Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a microfabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.
Curcio, Christine A.; Johnson, Mark; Huang, Jiahn-Dar; Rudolf, Martin
2015-01-01
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. A prominent age-related change in the human retina is the accumulation of histochemically detectable neutral lipid in normal Bruch’s membrane (BrM) throughout adulthood. This change has the potential to have a major impact on physiology of the retinal pigment epithelium (RPE). It occurs in the same compartment as drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD. Here we present evidence from light microscopic histochemistry, ultrastructure, lipid profiling of tissues and isolated lipoproteins, and gene expression analysis that this deposition can be accounted for by esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles constitutively produced by the RPE. This work collectively allows ARMD lesion formation and its aftermath to be conceptualized as a response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (CAD) (Tabas et al., 2007). This approach provides a wide knowledge base and sophisticated clinical armamentarium that can be readily exploited for the development of new model systems and the future benefit of ARMD patients. PMID:19698799
TEST OF A THEORETICAL COMMUTER EXPOSURE MODEL TO VEHICLE EXHAUST IN TRAFFIC
A theoretical model of commuter exposure is presented as a box or cell model with the automobile passenger compartment representing the microenvironment exposed to CO concentrations resulting from vehicle exhaust leaks and emissions from traffic. Equations which describe this sit...
USE OF A PHYSIOLOGICALLY BASED TOXICOKINETIC MODEL TO SIMULATE CHRONIC DIETARY EXPOSURE IN FISH
A physiologically based toxicokinetic (PBTK) model was developed to describe dietary uptake of hydrophobic organic chemicals by fish. The GI tract was modeled as four compartments corresponding to the stomach, pyloric ceca, upper intestine, and lower intestine. Partitioning coeff...
A PBPK model for TCE with specificity for the male LE rat that accurately predicts TCE tissue time-course data has not been developed, although other PBPK models for TCE exist. Development of such a model was the present aim. The PBPK model consisted of 5 compartments: fat; slowl...
Beim Graben, Peter; Rodrigues, Serafim
2012-01-01
We present a biophysical approach for the coupling of neural network activity as resulting from proper dipole currents of cortical pyramidal neurons to the electric field in extracellular fluid. Starting from a reduced three-compartment model of a single pyramidal neuron, we derive an observation model for dendritic dipole currents in extracellular space and thereby for the dendritic field potential (DFP) that contributes to the local field potential (LFP) of a neural population. This work aligns and satisfies the widespread dipole assumption that is motivated by the "open-field" configuration of the DFP around cortical pyramidal cells. Our reduced three-compartment scheme allows to derive networks of leaky integrate-and-fire (LIF) models, which facilitates comparison with existing neural network and observation models. In particular, by means of numerical simulations we compare our approach with an ad hoc model by Mazzoni et al. (2008), and conclude that our biophysically motivated approach yields substantial improvement.
Biothermal Model of Patient for Brain Hypothermia Treatment
NASA Astrophysics Data System (ADS)
Wakamatsu, Hidetoshi; Gaohua, Lu
A biothermal model of patient is proposed and verified for the brain hypothermia treatment, since the conventionally applied biothermal models are inappropriate for their unprecedented application. The model is constructed on the basis of the clinical practice of the pertinent therapy and characterized by the mathematical relation with variable ambient temperatures, in consideration of the clinical treatments such as the vital cardiopulmonary regulation. It has geometrically clear representation of multi-segmental core-shell structure, database of physiological and physical parameters with a systemic state equation setting the initial temperature of each compartment. Its step response gives the time constant about 3 hours in agreement with clinical knowledge. As for the essential property of the model, the dynamic temperature of its face-core compartment is realized, which corresponds to the tympanic membrane temperature measured under the practical anesthesia. From the various simulations consistent with the phenomena of clinical practice, it is concluded that the proposed model is appropriate for the theoretical analysis and clinical application to the brain hypothermia treatment.
NASA Astrophysics Data System (ADS)
Yuen, Anthony C. Y.; Yeoh, Guan H.; Timchenko, Victoria; Cheung, Sherman C. P.; Chan, Qing N.; Chen, Timothy
2017-09-01
An in-house large eddy simulation (LES) based fire field model has been developed for large-scale compartment fire simulations. The model incorporates four major components, including subgrid-scale turbulence, combustion, soot and radiation models which are fully coupled. It is designed to simulate the temporal and fluid dynamical effects of turbulent reaction flow for non-premixed diffusion flame. Parametric studies were performed based on a large-scale fire experiment carried out in a 39-m long test hall facility. Several turbulent Prandtl and Schmidt numbers ranging from 0.2 to 0.5, and Smagorinsky constants ranging from 0.18 to 0.23 were investigated. It was found that the temperature and flow field predictions were most accurate with turbulent Prandtl and Schmidt numbers of 0.3, respectively, and a Smagorinsky constant of 0.2 applied. In addition, by utilising a set of numerically verified key modelling parameters, the smoke filling process was successfully captured by the present LES model.
A biophysical observation model for field potentials of networks of leaky integrate-and-fire neurons
beim Graben, Peter; Rodrigues, Serafim
2013-01-01
We present a biophysical approach for the coupling of neural network activity as resulting from proper dipole currents of cortical pyramidal neurons to the electric field in extracellular fluid. Starting from a reduced three-compartment model of a single pyramidal neuron, we derive an observation model for dendritic dipole currents in extracellular space and thereby for the dendritic field potential (DFP) that contributes to the local field potential (LFP) of a neural population. This work aligns and satisfies the widespread dipole assumption that is motivated by the “open-field” configuration of the DFP around cortical pyramidal cells. Our reduced three-compartment scheme allows to derive networks of leaky integrate-and-fire (LIF) models, which facilitates comparison with existing neural network and observation models. In particular, by means of numerical simulations we compare our approach with an ad hoc model by Mazzoni et al. (2008), and conclude that our biophysically motivated approach yields substantial improvement. PMID:23316157
Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator
Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT
2011-12-13
Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.
Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens
2017-07-01
Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ZHENG, ZHENZHEN; CHOU, CHING-SHAN; YI, TAU-MU; NIE, QING
2013-01-01
Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together these results furnish a detailed description of the factors that influence the tradeoff between a single correctly aligned but poorly polarized stable steady-state solution versus multiple more highly polarized stable steady-state solutions that may be incorrectly aligned with the external gradient. PMID:21936604
Prah, James; Ashley, David; Blount, Benjamin; Case, Martin; Leavens, Teresa; Pleil, Joachim; Cardinali, Frederick
2004-02-01
Methyl tertiary butyl ether (MTBE), a gasoline additive used to increase octane and reduce carbon monoxide emissions and ozone precursors, has contaminated drinking water and can lead to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhalation kinetics, 14 volunteers were exposed to 51.3 microg/ml MTBE dermally in tap water for 1 h, drank 2.8 mg MTBE in 250 ml Gatorade(R), and inhaled 3.1 ppm. MTBE for 1 h. Blood and exhaled breath samples were then obtained. Blood MTBE peaked between 15 and 30 min following oral exposure, at the end of inhalation exposure, and ~5 min after dermal exposure. Elimination by each route was described well by a three-compartment model (Rsq >0.9). The Akaike Information Criterion for the three-compartment model was smaller than the two-compartment model, supporting it over the two-compartment model. One metabolite, tertiary butyl alcohol (TBA), measured in blood slowly increased and plateaued, but it did not return to the pre-exposure baseline at the 24-h follow-up. TBA is very water-soluble and has a blood:air partition ratio of 462, reducing elimination by exhalation. Oral exposure resulted in a significantly greater MTBE metabolism into TBA than by other routes based on a greater blood TBA:MTBE AUC ratio, implying significant first-pass metabolism. The slower TBA elimination may make it a better biomarker of MTBE exposure, though one must consider the exposure route when estimating MTBE exposure from TBA because of first-pass metabolism. Most subjects had a baseline blood TBA of 1-3 ppb. Because TBA is found in consumer products and can be used as a fuel additive, it is not a definitive marker of MTBE exposure. These data provide the risk assessment process of pharmacokinetic information relevant to the media through which most exposures occur-air and drinking water.
Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions
NASA Astrophysics Data System (ADS)
Soltani, S. S.; Cvetkovic, V.; Destouni, G.
2017-12-01
The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow hillslope compartments are controlled by topography, and therefore application and further development of the simple "kinematic pathway" approach is promising for their modeling.
Hopgood, Matthew; Reynolds, Gavin; Barker, Richard
2018-03-30
We use computational fluid dynamics to compare the shear rate and turbulence in an advanced in vitro gastric model (TIMagc) during its simulation of fasted state Migrating Motor Complex phases I and II, with the United States Pharmacopeia paddle dissolution apparatus II (USPII). A specific focus is placed on how shear rate in these apparatus affects erosion-based solid oral dosage forms. The study finds that tablet surface shear rates in TIMagc are strongly time dependant and fluctuate between 0.001 and 360 s -1 . In USPII, tablet surface shear rates are approximately constant for a given paddle speed and increase linearly from 9 s -1 to 36 s -1 as the paddle speed is increased from 25 to 100 rpm. A strong linear relationship is observed between tablet surface shear rate and tablet erosion rate in USPII, whereas TIMagc shows highly variable behavior. The flow regimes present in each apparatus are compared to in vivo predictions using Reynolds number analysis. Reynolds numbers for flow in TIMagc lie predominantly within the predicted in vivo bounds (0.01-30), whereas Reynolds numbers for flow in USPII lie above the predicted upper bound when operating with paddle speeds as low as 25 rpm (33). Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Carbon fuel cells with carbon corrosion suppression
Cooper, John F [Oakland, CA
2012-04-10
An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.
Environmental Risk Assessment Strategy for Nanomaterials.
Scott-Fordsmand, Janeck J; Peijnenburg, Willie J G M; Semenzin, Elena; Nowack, Bernd; Hunt, Neil; Hristozov, Danail; Marcomini, Antonio; Irfan, Muhammad-Adeel; Jiménez, Araceli Sánchez; Landsiedel, Robert; Tran, Lang; Oomen, Agnes G; Bos, Peter M J; Hund-Rinke, Kerstin
2017-10-19
An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models.
Environmental Risk Assessment Strategy for Nanomaterials
Scott-Fordsmand, Janeck J.; Nowack, Bernd; Hunt, Neil; Hristozov, Danail; Marcomini, Antonio; Irfan, Muhammad-Adeel; Jiménez, Araceli Sánchez; Landsiedel, Robert; Tran, Lang; Oomen, Agnes G.; Bos, Peter M. J.
2017-01-01
An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models. PMID:29048395
NASA Astrophysics Data System (ADS)
Doury, Maxime; Dizeux, Alexandre; de Cesare, Alain; Lucidarme, Olivier; Pellot-Barakat, Claire; Bridal, S. Lori; Frouin, Frédérique
2017-02-01
Dynamic contrast-enhanced ultrasound has been proposed to monitor tumor therapy, as a complement to volume measurements. To assess the variability of perfusion parameters in ideal conditions, four consecutive test-retest studies were acquired in a mouse tumor model, using controlled injections. The impact of mathematical modeling on parameter variability was then investigated. Coefficients of variation (CV) of tissue blood volume (BV) and tissue blood flow (BF) based-parameters were estimated inside 32 sub-regions of the tumors, comparing the log-normal (LN) model with a one-compartment model fed by an arterial input function (AIF) and improved by the introduction of a time delay parameter. Relative perfusion parameters were also estimated by normalization of the LN parameters and normalization of the one-compartment parameters estimated with the AIF, using a reference tissue (RT) region. A direct estimation (rRTd) of relative parameters, based on the one-compartment model without using the AIF, was also obtained by using the kinetics inside the RT region. Results of test-retest studies show that absolute regional parameters have high CV, whatever the approach, with median values of about 30% for BV, and 40% for BF. The positive impact of normalization was established, showing a coherent estimation of relative parameters, with reduced CV (about 20% for BV and 30% for BF using the rRTd approach). These values were significantly lower (p < 0.05) than the CV of absolute parameters. The rRTd approach provided the smallest CV and should be preferred for estimating relative perfusion parameters.
Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling
2014-03-01
Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg.