Sample records for linear eddy model

  1. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit Reynolds stress model. Fortunately, the numerical error assessment at most of the axial stations used to compare with measurements clearly indicated that the scale-resolving simulations were improving (i.e. approaching the measured values) as the grid was refined. Hence, unlike a Reynolds-averaged simulation, the hybrid approach provides a mechanism to the end-user for reducing model-form errors.

  2. Stationary Waves of the Ice Age Climate.

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.; Held, Isaac M.

    1988-08-01

    A linearized, steady state, primitive equation model is used to simulate the climatological zonal asymmetries (stationary eddies) in the wind and temperature fields of the 18 000 YBP climate during winter. We compare these results with the eddies simulated in the ice age experiments of Broccoli and Manabe, who used CLIMAP boundary conditions and reduced atmospheric CO2 in an atmospheric general circulation model (GCM) coupled with a static mixed layer ocean model. The agreement between the models is good, indicating that the linear model can be used to evaluate the relative influences of orography, diabatic heating, and transient eddy heat and momentum transports in generating stationary waves. We find that orographic forcing dominates in the ice age climate. The mechanical influence of the continental ice sheets on the atmosphere is responsible for most of the changes between the present day and ice age stationary eddies. This concept of the ice age climate is complicated by the sensitivity of the stationary eddies to the large increase in the magnitude of the zonal mean meridional temperature gradient simulated in the ice age GCM.

  3. Prediction of Transonic Vortex Flows Using Linear and Nonlinear Turbulent Eddy Viscosity Models

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Gatski, Thomas B.

    2000-01-01

    Three-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition or are fully turbulent are performed. To assess the effect of the turbulent stress anisotropy, comparisons are made between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow separation.

  4. Comparison of Laminar and Linear Eddy Model Closures for Combustion Instability Simulations

    DTIC Science & Technology

    2015-07-01

    14. ABSTRACT Unstable liquid rocket engines can produce highly complex dynamic flowfields with features such as rapid changes in temperature and...applicability. In the present study, the linear eddy model (LEM) is applied to an unstable single element liquid rocket engine to assess its performance and to...Sankaran‡ Air Force Research Laboratory, Edwards AFB, CA, 93524 Unstable liquid rocket engines can produce highly complex dynamic flowfields with features

  5. Energy loss due to eddy current in linear transformer driver cores

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.

    2010-07-01

    In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.

  6. The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity in a narrow model bay

    NASA Astrophysics Data System (ADS)

    Deng, Fangjing; Jiang, Wensheng; Feng, Shizuo

    2017-09-01

    The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity (LRV) are studied numerically in a narrow model bay. Three groups of the experiments with different eddy viscosity and different forms of the bottom friction are designed and are carried out in the three kinds of the topography. When the eddy viscosity is obtained from a two-equation turbulence closure model, the pattern of the LRV is more complex than that of the time invariant eddy viscosity case and the intensity is from more than 1.3 times to one order smaller than that of the linear eddy viscosity condition. The LRV are also acquired when the eddy viscosity varies from the flood-averaged one to the ebb-averaged one. It is found that when the flood-averaged eddy viscosity is bigger than the ebb-averaged eddy viscosity (flood-dominated asymmetry), the direction of the breadth-averaged LRV and the 3D LRV is nearly opposite to that when the eddy viscosity asymmetry is reverse (ebb-dominated asymmetry). However, the intensity of the LRV for the ebb-dominated case decreases toward the flood-dominated case as the ratio of the maximum depth in the deep channel and the minimum depth on the shoal increases. The different forms of the bottom friction also play a role in the LRV. The structures of the 3D LRV and the depth-integrated LRV are simpler, and the intensity of the LRV is two times smaller when the linear bottom friction is used than those when the quadratic bottom friction is used.

  7. Parameterization of eddy sensible heat transports in a zonally averaged dynamic model of the atmosphere

    NASA Technical Reports Server (NTRS)

    Genthon, Christophe; Le Treut, Herve; Sadourny, Robert; Jouzel, Jean

    1990-01-01

    A Charney-Branscome based parameterization has been tested as a way of representing the eddy sensible heat transports missing in a zonally averaged dynamic model (ZADM) of the atmosphere. The ZADM used is a zonally averaged version of a general circulation model (GCM). The parameterized transports in the ZADM are gaged against the corresponding fluxes explicitly simulated in the GCM, using the same zonally averaged boundary conditions in both models. The Charney-Branscome approach neglects stationary eddies and transient barotropic disturbances and relies on a set of simplifying assumptions, including the linear appoximation, to describe growing transient baroclinic eddies. Nevertheless, fairly satisfactory results are obtained when the parameterization is performed interactively with the model. Compared with noninteractive tests, a very efficient restoring feedback effect between the modeled zonal-mean climate and the parameterized meridional eddy transport is identified.

  8. 3-D residual eddy current field characterisation: applied to diffusion weighted magnetic resonance imaging.

    PubMed

    O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar

    2013-08-01

    Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.

  9. Influence of magnet eddy current on magnetization characteristics of variable flux memory machine

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang

    2018-05-01

    In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.

  10. One-dimensional wave bottom boundary layer model comparison: specific eddy viscosity and turbulence closure models

    USGS Publications Warehouse

    Puleo, J.A.; Mouraenko, O.; Hanes, D.M.

    2004-01-01

    Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.

  11. Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.

    2016-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.

  12. Impacts of mesoscale eddies in the South China Sea on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh

    2015-09-01

    Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) were investigated. The study was based on a coupled physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale eddies with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic eddies were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic eddies depressed biogeochemical cycles, which are generally controlled by the eddy pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies were revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures were not linearly coupled at the eddy core where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.

  13. Dynamically Consistent Parameterization of Mesoscale Eddies This work aims at parameterization of eddy effects for use in non-eddy-resolving ocean models and focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones.

    NASA Astrophysics Data System (ADS)

    Berloff, P. S.

    2016-12-01

    This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic eddy forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.

  14. Sensitivity Analysis to Turbulent Combustion Models for Combustor-Turbine Interactions

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2017-11-01

    The recently-updated Open National CombustionCode (Open NCC) equipped with alarge-eddy simulation (LES) is applied to model the flow field inside the Energy Efficient Engine (EEE) in conjunction with sensitivity analysis to turbulent combustion models. In this study, we consider three different turbulence-combustion interaction models, the Eddy-Breakup model (EBU), the Linear-Eddy Model (LEM) and the Probability Density Function (PDF)model as well as the laminar chemistry model. Acomprehensive comparison of the flow field and the flame structure will be provided. One of our main interests isto understand how a different model predicts thermal variation on the surface of the first stage vane. Considering that these models are often used in combustor/turbine communities, this study should provide some guidelines on numerical modeling of combustor-turbine interactions.

  15. Linear simulation of the stationary eddies in a GCM. II - The 'Mountain' model

    NASA Technical Reports Server (NTRS)

    Nigam, Sumant; Held, Isaac M.; Lyons, Steven W.

    1988-01-01

    Linear stationary wave theory is used to account for zonal asymmetries of the winter-averaged tropospheric circulation obtained in a GCM. The eddy zonal velocity field in the upper troposphere indicates that the orographic and thermal plus transient contributions are nearly equal in amplitude, while the eddy meridional velocity field (which is dominated by shorter zonal scales) shows the orographic contribution to be dominant. The two contributions are found to be roughly in phase over the east Asian coast, and they contribute roughly equal amounts to the low level Siberian high. Results indicate that the 300 mb extratropical response to tropical forcing reaches 50 gpm over Alaska, and that the responses to sensible heating and lower tropospheric transients are strongly anticorrelated.

  16. Model Validation for Propulsion - On the TFNS and LES Subgrid Models for a Bluff Body Stabilized Flame

    NASA Technical Reports Server (NTRS)

    Wey, Thomas

    2017-01-01

    This paper summarizes the reacting results of simulating a bluff body stabilized flame experiment of Volvo Validation Rig using a releasable edition of the National Combustion Code (NCC). The turbulence models selected to investigate the configuration are the sub-grid scaled kinetic energy coupled large eddy simulation (K-LES) and the time-filtered Navier-Stokes (TFNS) simulation. The turbulence chemistry interaction used is linear eddy mixing (LEM).

  17. Combined chamber-tower approach: Using eddy covariance measurements to cross-validate carbon fluxes modeled from manual chamber campaigns

    NASA Astrophysics Data System (ADS)

    Brümmer, C.; Moffat, A. M.; Huth, V.; Augustin, J.; Herbst, M.; Kutsch, W. L.

    2016-12-01

    Manual carbon dioxide flux measurements with closed chambers at scheduled campaigns are a versatile method to study management effects at small scales in multiple-plot experiments. The eddy covariance technique has the advantage of quasi-continuous measurements but requires large homogeneous areas of a few hectares. To evaluate the uncertainties associated with interpolating from individual campaigns to the whole vegetation period, we installed both techniques at an agricultural site in Northern Germany. The presented comparison covers two cropping seasons, winter oilseed rape in 2012/13 and winter wheat in 2013/14. Modeling half-hourly carbon fluxes from campaigns is commonly performed based on non-linear regressions for the light response and respiration. The daily averages of net CO2 modeled from chamber data deviated from eddy covariance measurements in the range of ± 5 g C m-2 day-1. To understand the observed differences and to disentangle the effects, we performed four additional setups (expert versus default settings of the non-linear regressions based algorithm, purely empirical modeling with artificial neural networks versus non-linear regressions, cross-validating using eddy covariance measurements as campaign fluxes, weekly versus monthly scheduling of campaigns) to model the half-hourly carbon fluxes for the whole vegetation period. The good agreement of the seasonal course of net CO2 at plot and field scale for our agricultural site demonstrates that both techniques are robust and yield consistent results at seasonal time scale even for a managed ecosystem with high temporal dynamics in the fluxes. This allows combining the respective advantages of factorial experiments at plot scale with dense time series data at field scale. Furthermore, the information from the quasi-continuous eddy covariance measurements can be used to derive vegetation proxies to support the interpolation of carbon fluxes in-between the manual chamber campaigns.

  18. A Three-Wave Model of the Stratosphere with Coupled Dynamics, Radiation and Photochemistry. Appendix M

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Zhou, Shuntai; Ko, Malcolm K. W.; Sze, Nien-Dak; Salstein, David; Cady-Pereira, Karen

    1997-01-01

    A zonal mean chemistry transport model (2-D CTM) coupled with a semi-spectral dynamical model is used to simulate the distributions of trace gases in the present day atmosphere. The zonal-mean and eddy equations for the velocity and the geopotential height are solved in the semi-spectral dynamical model. The residual mean circulation is derived from these dynamical variables and used to advect the chemical species in the 2- D CTM. Based on a linearized wave transport equation, the eddy diffusion coefficients for chemical tracers are expressed in terms of the amplitude, frequency and growth rate of dynamical waves; local chemical loss rates; and a time constant parameterizing small scale mixing. The contributions to eddy flux are from the time varying wave amplitude (transient eddy), chemical reactions (chemical eddy) and small scale mixing. In spite of the high truncation in the dynamical module (only three longest waves are resolved), the model has simulated many observed characteristics of stratospheric dynamics and distribution of chemical species including ozone. Compared with the values commonly used in 2-D CTMs, the eddy diffusion coefficients for chemical species calculated in this model are smaller, especially in the subtropics. It is also found that the chemical eddy diffusion has only a small effects in determining the distribution of most slow species, including ozone in the stratosphere.

  19. Eddy current modeling in linear and nonlinear multifilamentary composite materials

    NASA Astrophysics Data System (ADS)

    Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean

    2018-04-01

    In this work, a numerical model is developed for a rapid computation of eddy currents in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.

  20. Ocean acoustic tomography - Travel time biases

    NASA Technical Reports Server (NTRS)

    Spiesberger, J. L.

    1985-01-01

    The travel times of acoustic rays traced through a climatological sound-speed profile are compared with travel times computed through the same profile containing an eddy field. The accuracy of linearizing the relations between the travel time difference and the sound-speed deviation at long ranges is assessed using calculations made for two different eddy fields measured in the eastern Atlantic. Significant nonlinearities are found in some cases, and the relationships of the values of these nonlinearities to the range between source and receiver, to the anomaly size associated with the eddies, and to the positions of the eddies are studied. An analytical model of the nonlinearities is discussed.

  1. Design of permanent magnet eddy current brake for a small scaled electromagnetic launch model

    NASA Astrophysics Data System (ADS)

    Zhou, Shigui; Yu, Haitao; Hu, Minqiang; Huang, Lei

    2012-04-01

    A variable pole-pitch double-sided permanent magnet (PM) linear eddy current brake (LECB) is proposed for a small scaled electromagnetic launch model. A two-dimensional (2D) analytical steady state model is presented for the double-sided PM-LECB, and the expression for the braking force is derived. Based on the analytical model, the material and eddy current skin effect of the conducting plate are analyzed. Moreover, a variable pole-pitch double-sided PM-LECB is proposed for the effective braking of the moving plate. In addition, the braking force is predicted by finite element (FE) analysis, and the simulated results are in good agreement with the analytical model. Finally, a prototype is presented to test the braking profile for validation of the proposed design.

  2. Learning an Eddy Viscosity Model Using Shrinkage and Bayesian Calibration: A Jet-in-Crossflow Case Study

    DOE PAGES

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...

    2017-09-07

    In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less

  3. Learning an Eddy Viscosity Model Using Shrinkage and Bayesian Calibration: A Jet-in-Crossflow Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan

    In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less

  4. Linear Multivariable Regression Models for Prediction of Eddy Dissipation Rate from Available Meteorological Data

    NASA Technical Reports Server (NTRS)

    MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.

    2005-01-01

    Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.

  5. Francis-99 turbine numerical flow simulation of steady state operation using RANS and RANS/LES turbulence model

    NASA Astrophysics Data System (ADS)

    Minakov, A.; Platonov, D.; Sentyabov, A.; Gavrilov, A.

    2017-01-01

    We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at three regimes, using two eddy-viscosity- (EVM) and a Reynolds stress (RSM) RANS models (realizable k-ɛ, k-ω SST, LRR) and detached-eddy-simulations (DES), as well as large-eddy simulations (LES). Comparison of calculation results with the experimental data was carried out. Unlike the linear EVMs, the RSM, DES, and LES reproduced well the mean velocity components, and pressure pulsations in the diffusor draft tube. Despite relatively coarse meshes and insufficient resolution of the near-wall region, LES, DES also reproduced well the intrinsic flow unsteadiness and the dominant flow structures and the associated pressure pulsations in the draft tube.

  6. GEM: a dynamic tracking model for mesoscale eddies in the ocean

    NASA Astrophysics Data System (ADS)

    Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu

    2016-12-01

    The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  7. Prediction of High-Lift Flows using Turbulent Closure Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild

    1997-01-01

    The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.

  8. Testing Munk's hypothesis for submesoscale eddy generation using observations in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Buckingham, Christian E.; Khaleel, Zammath; Lazar, Ayah; Martin, Adrian P.; Allen, John T.; Naveira Garabato, Alberto C.; Thompson, Andrew F.; Vic, Clément

    2017-08-01

    A high-resolution satellite image that reveals a train of coherent, submesoscale (6 km) vortices along the edge of an ocean front is examined in concert with hydrographic measurements in an effort to understand formation mechanisms of the submesoscale eddies. The infrared satellite image consists of ocean surface temperatures at ˜390 m resolution over the midlatitude North Atlantic (48.69°N, 16.19°W). Concomitant altimetric observations coupled with regular spacing of the eddies suggest the eddies result from mesoscale stirring, filamentation, and subsequent frontal instability. While horizontal shear or barotropic instability (BTI) is one mechanism for generating such eddies (Munk's hypothesis), we conclude from linear theory coupled with the in situ data that mixed layer or submesoscale baroclinic instability (BCI) is a more plausible explanation for the observed submesoscale vortices. Here we assume that the frontal disturbance remains in its linear growth stage and is accurately described by linear dynamics. This result likely has greater applicability to the open ocean, i.e., regions where the gradient Rossby number is reduced relative to its value along coasts and within strong current systems. Given that such waters comprise an appreciable percentage of the ocean surface and that energy and buoyancy fluxes differ under BTI and BCI, this result has wider implications for open-ocean energy/buoyancy budgets and parameterizations within ocean general circulation models. In summary, this work provides rare observational evidence of submesoscale eddy generation by BCI in the open ocean.Plain Language SummaryHere, we test Munk's theory for small-scale eddy generation using a unique set of satellite- and ship-based observations. We find that for one particular set of observations in the North Atlantic, the mechanism for eddy generation is not pure horizontal shear, as proposed by Munk et al. (<link href="#jgrc22402-bib-0048"/>) and Munk (<link href="#jgrc22402-bib-0047"/>), but is instead vertical shear, or baroclinic instability. While by itself, this is not a globally important result, taken in the context of mesoscale eddies which are ubiquitous in the World Ocean, this suggests energy exchanges in the more ambient, open ocean are the result of the latter mechanism. In conclusion, submesoscale eddy generation is poorly understood in the ocean and we need to better constrain our geographical and temporal understanding of these processes for representation in coarse-resolution models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JSV...332.3803M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JSV...332.3803M"><span>Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marx, David; Aurégan, Yves</p> <p>2013-07-01</p> <p>Lined ducts are used to reduce noise radiation from ducts in turbofan engines. In certain conditions they may sustain hydrodynamic instabilities. A local linear stability analysis of the flow in a 2D lined channel is performed using a numerical integration of the governing equations. Several model equations are used, one of them taking into account turbulent eddy viscosity, and a realistic turbulent mean flow profile is used that vanishes at the wall. The stability analysis results are compared to published experimental results. Both the model and the experiments show the existence of an unstable mode, and the importance of taking into account eddy viscosity in the model is shown. When this is done, quantities such as the growth rate and the velocity eigenfunctions are shown to agree correctly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100022151','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100022151"><span>A Nonlinear Dynamic Subscale Model for Partially Resolved Numerical Simulation (PRNS)/Very Large Eddy Simulation (VLES) of Internal Non-Reacting Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shih, Tsan-Hsing; Liu, nan-Suey</p> <p>2010-01-01</p> <p>A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1369499-quantifying-residual-eddy-mean-flow-effects-mixing-idealized-circumpolar-current','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1369499-quantifying-residual-eddy-mean-flow-effects-mixing-idealized-circumpolar-current"><span>Quantifying residual, eddy, and mean flow effects on mixing in an idealized circumpolar current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wolfram, Phillip J.; Ringler, Todd D.</p> <p>2017-07-13</p> <p>Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar Current (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA33A2593M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA33A2593M"><span>Understanding the Effects of Lower Boundary Conditions and Eddy Diffusion on the Ionosphere-Thermosphere System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malhotra, G.; Ridley, A. J.; Marsh, D. R.; Wu, C.; Paxton, L. J.</p> <p>2017-12-01</p> <p>The exchange of energy between lower atmospheric regions with the ionosphere-thermosphere (IT) system is not well understood. A number of studies have observed day-to-day and seasonal variabilities in the difference between data and model output of various IT parameters. It is widely speculated that the forcing from the lower atmosphere, variability in weather systems and gravity waves that propagate upward from troposphere into the upper mesosphere and lower thermosphere (MLT) may be responsible for these spatial and temporal variations in the IT region, but their exact nature is unknown. These variabilities can be interpreted in two ways: variations in state (density, temperature, wind) of the upper mesosphere or spatial and temporal changes in the small-scale mixing, or Eddy diffusion that is parameterized within the model.In this study, firstly, we analyze the sensitivity of the thermospheric and ionospheric states - neutral densities, O/N2, total electron content (TEC), peak electron density, and peak electron height - to various lower boundary conditions in the Global Ionosphere Thermosphere Model (GITM). We use WACCM-X and GSWM to drive the lower atmospheric boundary in GITM at 100 km, and compare the results with the current MSIS-driven version of GITM, analyzing which of these simulations match the measurements from GOCE, GUVI, CHAMP, and GPS-derived TEC best. Secondly, we analyze the effect of eddy diffusion in the IT system. The turbulence due to eddy mixing cannot be directly measured and it is a challenge to completely characterize its linear and non-linear effects from other influences, since the eddy diffusion both influences the composition through direct mixing and the temperature structure due to turbulent conduction changes. In this study we input latitudinal and seasonal profiles of eddy diffusion into GITM and then analyze the changes in the thermospheric and ionospheric parameters. These profiles will be derived from both WACC-X simulations and direct observations of errors between the model and data such as GUVI O/N2 ratios and TEC data. In each case, the model results will be compared to data to determine the improvement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.109...44B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.109...44B"><span>Evaluation of a scalar eddy transport coefficient based on geometric constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bachman, S. D.; Marshall, D. P.; Maddison, J. R.; Mak, J.</p> <p>2017-01-01</p> <p>A suite of idealized models is used to evaluate and compare several previously proposed scalings for the eddy transport coefficient in downgradient mesoscale eddy closures. Of special interest in this comparison is a scaling introduced as part of the eddy parameterization framework of Marshall et al. (2012), which is derived using the inherent geometry of the Eliassen-Palm eddy flux tensor. The primary advantage of using this coefficient in a downgradient closure is that all dimensional terms are explicitly specified and the only uncertainty is a nondimensional parameter, α, which is bounded by one in magnitude. In each model a set of passive tracers is initialized, whose flux statistics are used to invert for the eddy-induced tracer transport. Unlike previous work, where this technique has been employed to diagnose the tensor coefficient of a linear flux-gradient relationship, the idealization of these models allows the lateral eddy transport to be described by a scalar coefficient. The skill of the extant scalings is then measured by comparing their predicted values against the coefficients diagnosed using this method. The Marshall et al. (2012), scaling is shown to scale most closely with the diagnosed coefficients across all simulations. It is shown that the skill of this scaling is due to its functional dependence on the total eddy energy, and that this scaling provides an excellent match to the diagnosed fluxes even in the limit of constant α. Possible extensions to this work, including how to incorporate the resultant transport coefficient into the Gent and McWilliams parameterization, are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1369499-quantifying-residual-eddy-mean-flow-effects-mixing-idealized-circumpolar-current','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1369499-quantifying-residual-eddy-mean-flow-effects-mixing-idealized-circumpolar-current"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wolfram, Phillip J.; Ringler, Todd D.</p> <p></p> <p>Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar Current (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2517S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2517S"><span>Automatic tracking of dynamical evolutions of oceanic mesoscale eddies with satellite observation data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Liang; Li, Qiu-Yang</p> <p>2017-04-01</p> <p>The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for satellite-based observational data but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999waph.conf..227V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999waph.conf..227V"><span>Wavelets, non-linearity and turbulence in fusion plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Milligen, B. Ph.</p> <p></p> <p>Introduction Linear spectral analysis tools Wavelet analysis Wavelet spectra and coherence Joint wavelet phase-frequency spectra Non-linear spectral analysis tools Wavelet bispectra and bicoherence Interpretation of the bicoherence Analysis of computer-generated data Coupled van der Pol oscillators A large eddy simulation model for two-fluid plasma turbulence A long wavelength plasma drift wave model Analysis of plasma edge turbulence from Langmuir probe data Radial coherence observed on the TJ-IU torsatron Bicoherence profile at the L/H transition on CCT Conclusions</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27717291','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27717291"><span>Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy</p> <p>2017-03-01</p> <p>The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B44B0379X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B44B0379X"><span>Impacts of mesoscale eddies on biogeochemical cycles in the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiu, P.; Chai, F.; Guo, M.</p> <p>2016-02-01</p> <p>Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) are investigated by using satellite surface chlorophyll concentration, altimeter data, satellite sea surface temperature, and a coupled physical-biogeochemical Pacific Ocean model (ROMS-CoSiNE) simulation for the period from 1991 to 2007. Considering the annual mean, composite analysis reveals that cyclonic eddies are associated with higher concentrations of nutrients, phytoplankton and zooplankton while the anticyclonic eddies are with lower concentrations compared with surrounding waters, which is generally controlled by the eddy pumping mechanism. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies are also revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures are not linearly coupled at the eddy core where plankton grow and composition of the community depend not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship. Considering the seasonal variability, we find eddy pumping mechanisms are generally dominant in winter and eddy advection effects are dominant in summer. Over the space, variability of chlorophyll to the west of Luzon Strait and off northwest of Luzon Island are mainly controlled by eddy pumping mechanism. In regions off the Vietnam coast, chlorophyll distributions are generally associated with horizontal eddy advection. This research highlights different mesoscale mechanisms affecting biological structures that can potentially disturb ocean biogeochemical cycling processes in the South China Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122...23A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122...23A"><span>Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai</p> <p>2017-01-01</p> <p>The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29255277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29255277"><span>Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Renault, Lionel; McWilliams, James C; Masson, Sebastien</p> <p>2017-12-18</p> <p>Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26096666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26096666"><span>PSF mapping-based correction of eddy-current-induced distortions in diffusion-weighted echo-planar imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>In, Myung-Ho; Posnansky, Oleg; Speck, Oliver</p> <p>2016-05-01</p> <p>To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170011522','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170011522"><span>Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nurge, Mark A.; Youngquist, Robert C.</p> <p>2017-01-01</p> <p>Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AmJPh..86..443N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AmJPh..86..443N"><span>Drag and lift forces between a rotating conductive sphere and a cylindrical magnet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.</p> <p>2018-06-01</p> <p>Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A22E..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A22E..02S"><span>On the nonlinear forced response of the North Atlantic atmosphere to meridional shifts of the Gulf Stream path</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seo, H.; Kwon, Y. O.; Joyce, T. M.; Ummenhofer, C.</p> <p>2016-12-01</p> <p>This study examines the North Atlantic atmospheric circulation response to the meridional shift of Gulf Stream path using a large-ensemble, high-resolution, and hemispheric-scale WRF simulations. The model is forced with wintertime SST anomalies derived from a wide range of Gulf Stream shift scenarios. The key result of the model experiments, supported in part by an independent analysis of a reanalysis data set, is that the large-scale, quasi-steady North Atlantic circulation response is unambiguously nonlinear about the sign and amplitude of chosen SST anomalies. This nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation, the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the anomalous southward shift of the North Atlantic eddy-driven jet stream, which is reinforced nearly equally by the high-frequency transient eddy feedback and the low-frequency high-latitude wave breaking events. The result highlights the importance of the intrinsically nonlinear transient eddy dynamics and eddy-mean flow interactions in generating the nonlinear forced response to the meridional shift in the Gulf Stream.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000RScI...71..567B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000RScI...71..567B"><span>Eddy current testing probe with dual half-cylindrical coils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong</p> <p>2000-02-01</p> <p>We have developed a new eddy current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear eddy current on the narrow region within the target medium. The magnitude of eddy current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear eddy current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1024334','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1024334"><span>Modeling of Acoustic Field Statistics for Deep and Shallow Water Environments and 2015 CANAPE Pilot Study Moored Oceanographic Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>into acoustic fluctuation calculations. In the Philippine Sea, models of eddies, internal tides, internal waves, and fine structure ( spice ) are...needed, while in the shallow water case a models of the random linear internal waves and spice are lacking. APPROACH The approach to this research is to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.118...41U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.118...41U"><span>Seasonality of eddy kinetic energy in an eddy permitting global climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uchida, Takaya; Abernathey, Ryan; Smith, Shafer</p> <p>2017-10-01</p> <p>We examine the seasonal cycle of upper-ocean mesoscale turbulence in a high resolution CESM climate simulation. The ocean model component (POP) has 0.1° resolution, mesoscale resolving at low and middle latitudes. Seasonally and regionally resolved wavenumber power spectra are calculated for sea-surface eddy kinetic energy (EKE). Although the interpretation of the spectral slopes in terms of turbulence theory is complicated by the strong presence of dissipation and the narrow inertial range, the EKE spectra consistently show higher power at small scales during winter throughout the ocean. Potential hypotheses for this seasonality are investigated. Diagnostics of baroclinc energy conversion rates and evidence from linear quasigeostrophic stability analysis indicate that seasonally varying mixed-layer instability is responsible for the seasonality in EKE. The ability of this climate model, which is not considered submesoscale resolving, to produce mixed layer instability although damped by dissipation, demonstrates the ubiquity and robustness of this process for modulating upper ocean EKE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JAP....79.4678L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JAP....79.4678L"><span>Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Z. J.; Low, T. S.</p> <p>1996-04-01</p> <p>The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960050147','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960050147"><span>Computational Analysis of Static and Dynamic Behaviour of Magnetic Suspensions and Magnetic Bearings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Britcher, Colin P. (Editor); Groom, Nelson J.</p> <p>1996-01-01</p> <p>Static modelling of magnetic bearings is often carried out using magnetic circuit theory. This theory cannot easily include nonlinear effects such as magnetic saturation or the fringing of flux in air-gaps. Modern computational tools are able to accurately model complex magnetic bearing geometries, provided some care is exercised. In magnetic suspension applications, the magnetic fields are highly three-dimensional and require computational tools for the solution of most problems of interest. The dynamics of a magnetic bearing or magnetic suspension system can be strongly affected by eddy currents. Eddy currents are present whenever a time-varying magnetic flux penetrates a conducting medium. The direction of flow of the eddy current is such as to reduce the rate-of-change of flux. Analytic solutions for eddy currents are available for some simplified geometries, but complex geometries must be solved by computation. It is only in recent years that such computations have been considered truly practical. At NASA Langley Research Center, state-of-the-art finite-element computer codes, 'OPERA', 'TOSCA' and 'ELEKTRA' have recently been installed and applied to the magnetostatic and eddy current problems. This paper reviews results of theoretical analyses which suggest general forms of mathematical models for eddy currents, together with computational results. A simplified circuit-based eddy current model proposed appears to predict the observed trends in the case of large eddy current circuits in conducting non-magnetic material. A much more difficult case is seen to be that of eddy currents in magnetic material, or in non-magnetic material at higher frequencies, due to the lower skin depths. Even here, the dissipative behavior has been shown to yield at least somewhat to linear modelling. Magnetostatic and eddy current computations have been carried out relating to the Annular Suspension and Pointing System, a prototype for a space payload pointing and vibration isolation system, where the magnetic actuator geometry resembles a conventional magnetic bearing. Magnetostatic computations provide estimates of flux density within airgaps and the iron core material, fringing at the pole faces and the net force generated. Eddy current computations provide coil inductance, power dissipation and the phase lag in the magnetic field, all as functions of excitation frequency. Here, the dynamics of the magnetic bearings, notably the rise time of forces with changing currents, are found to be very strongly affected by eddy currents, even at quite low frequencies. Results are also compared to experimental measurements of the performance of a large-gap magnetic suspension system, the Large Angle Magnetic Suspension Test Fixture (LAMSTF). Eddy current effects are again shown to significantly affect the dynamics of the system. Some consideration is given to the ease and accuracy of computation, specifically relating to OPERA/TOSCA/ELEKTRA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJCFD..30...89R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJCFD..30...89R"><span>RAS one-equation turbulence model with non-singular eddy-viscosity coefficient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rahman, M. M.; Agarwal, R. K.; Siikonen, T.</p> <p>2016-02-01</p> <p>A simplified consistency formulation for Pk/ε (production to dissipation ratio) is devised to obtain a non-singular Cμ (coefficient of eddy-viscosity) in the explicit algebraic Reynolds stress model of Gatski and Speziale. The coefficient Cμ depends non-linearly on both rotational/irrotational strains and is used in the framework of an improved RAS (Rahman-Agarwal-Siikonen) one-equation turbulence model to calculate a few well-documented turbulent flows, yielding predictions in good agreement with the direct numerical simulation and experimental data. The strain-dependent Cμ assists the RAS model in constructing the coefficients and functions such as to benefit complex flows with non-equilibrium turbulence. Comparisons with the Spalart-Allmaras one-equation model and the shear stress transport k-ω model demonstrate that Cμ improves the response of RAS model to non-equilibrium effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSV...346..229H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSV...346..229H"><span>A frequency domain linearized Navier-Stokes method including acoustic damping by eddy viscosity using RANS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holmberg, Andreas; Kierkegaard, Axel; Weng, Chenyang</p> <p>2015-06-01</p> <p>In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic field in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynold's stress, due to the acoustic field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-ε turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is. A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850011256','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850011256"><span>Computer studies of baroclinic flow. [Atmospheric General Circulation Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gall, R.</p> <p>1985-01-01</p> <p>Programs necessary for computing the transition curve on the regime diagram for the atmospheric general circulation experiment (AGOE) were completed and used to determine the regime diagram for the rotating annulus and some axisymmetric flows for one possible AGOE configuration. The effect of geometrical constraints on the size of eddies developing from a basic state is being examined. In AGOE, the geometric constraint should be the width of the shear zone or the baroclinic zone. Linear and nonlinear models are to be used to examine both barotropic and baroclinic flows. The results should help explain the scale selection mechanism of baroclinic eddies in the atmosphere experimental models such as AGOE, and the multiple vortex phenomenon in tornadoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG21A0131P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG21A0131P"><span>The Stability of Outcropping Ocean Eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paldor, N.; Cohen, Y.; Dvorkin, Y.</p> <p>2017-12-01</p> <p>In the end of the last century numerous ship-borne observations and linear instability studies have addressed the long life span of meso-scale ocean eddies. These eddies are observed to persist in the ocean for periods of 2-3 years with little deformation. As eddy instabilities occur because Rossby waves in the surrounding (assumed motionless) ocean interact with various waves in the eddy itself, the stability was attributed to some eddy structure that hinders such wave-wave interactions. However, instabilities with growthrates of the order of the inertial period were found in various multilayer models including hypothesized structures and several observed eddy structures. A solution to the difference between instability theory and observed stability was ultimately suggested by relaxing the assumption of a motionless ocean that surrounds the eddy and prescribing the mean flow in the ocean such that it counterbalances the depth changes imposed by the eddy while maintaining a constant PV-ocean. This hypothesis was successfully applied to Gaussian eddies for mathematical simplicity. Yet, the Gaussian eddy has no surface front - thus avoiding instabilities that involve frontal waves - and it disagrees with observation that clearly show that most eddies have surface fronts. Here the constant PV ocean hypothesis is applied to two frontal eddies: constant PV-eddies and solidly rotating eddy. A complete account of the mean flow of the coupled eddy-ocean system is analyzed using a canonical formulation of the gradient balance. The phase speeds of waves in the eddy-ocean system are computed by a shooting method. Both eddies are found to be unstable in motionless ocean, yet in a constant PV-ocean no instabilities are found using the exact same numerical search. While many eddy structures can be hypothesized there are only a handful of physical mechanisms for instability and in these eddies the assumed constant PV-ocean negates many of these physical mechanisms for instability. This implies that meso-scale eddies should be stable in a constant PV ocean, regardless to their structure, which is not precisely one of the above mentioned. This theory stimulates observations of the ocean under the eddies. To maintain the uniform PV value, relative vorticity must develop in the ocean under the eddy as it moves in the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23172807','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23172807"><span>Correction of eddy current distortions in high angular resolution diffusion imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhuang, Jiancheng; Lu, Zhong-Lin; Vidal, Christine Bouteiller; Damasio, Hanna</p> <p>2013-06-01</p> <p>To correct distortions caused by eddy currents induced by large diffusion gradients during high angular resolution diffusion imaging without any auxiliary reference scans. Image distortion parameters were obtained by image coregistration, performed only between diffusion-weighted images with close diffusion gradient orientations. A linear model that describes distortion parameters (translation, scale, and shear) as a function of diffusion gradient directions was numerically computed to allow individualized distortion correction for every diffusion-weighted image. The assumptions of the algorithm were successfully verified in a series of experiments on phantom and human scans. Application of the proposed algorithm in high angular resolution diffusion images markedly reduced eddy current distortions when compared to results obtained with previously published methods. The method can correct eddy current artifacts in the high angular resolution diffusion images, and it avoids the problematic procedure of cross-correlating images with significantly different contrasts resulting from very different gradient orientations or strengths. Copyright © 2012 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1235329-evaluation-machine-learning-algorithms-prediction-regions-high-reynolds-averaged-navier-stokes-uncertainty','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1235329-evaluation-machine-learning-algorithms-prediction-regions-high-reynolds-averaged-navier-stokes-uncertainty"><span>Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ling, Julia; Templeton, Jeremy Alan</p> <p>2015-08-04</p> <p>Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests.more » The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. As a result, feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940017225','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940017225"><span>A new eddy current model for magnetic bearing control system design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Feeley, Joseph J.; Ahlstrom, Daniel J.</p> <p>1992-01-01</p> <p>This paper describes a new VLSI-based controller for the implementation of a Linear-Quadratic-Gaussian (LQG) theory-based control system. Use of the controller is demonstrated by design of a controller for a magnetic bearing and its performance is evaluated by computer simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4390T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4390T"><span>Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Angela C. I.; Stoy, Paul C.; Hirata, Ryuichi; Musin, Kevin K.; Aeries, Edward B.; Wenceslaus, Joseph; Melling, Lulie</p> <p>2018-05-01</p> <p>Tropical biogenic sources are a likely cause of the recent increase in global atmospheric methane concentration. To improve our understanding of tropical methane sources, we used the eddy covariance technique to measure CH4 flux (FCH4) between a tropical peat forest ecosystem and the atmosphere in Malaysian Borneo over a 2-month period during the wet season. Mean daily FCH4 during the measurement period, on the order of 0.024 g C-CH4·m-2·day-1, was similar to eddy covariance FCH4 measurements from tropical rice agroecosystems and boreal fen ecosystems. A linear modeling analysis demonstrated that air temperature (Tair) was critical for modeling FCH4 before the water table breached the surface and that water table alone explained some 20% of observed FCH4 variability once standing water emerged. Future research should measure FCH4 on an annual basis from multiple tropical ecosystems to better constrain tropical biogenic methane sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDP39001Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDP39001Y"><span>Andreas Acrivos Dissertation Award Talk: Modeling drag forces and velocity fluctuations in wall-bounded flows at high Reynolds numbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiang</p> <p>2017-11-01</p> <p>The sizes of fluid motions in wall-bounded flows scale approximately as their distances from the wall. At high Reynolds numbers, resolving near-wall, small-scale, yet momentum-transferring eddies are computationally intensive, and to alleviate the strict near-wall grid resolution requirement, a wall model is usually used. The wall model of interest here is the integral wall model. This model parameterizes the near-wall sub-grid velocity profile as being comprised of a linear inner-layer and a logarithmic meso-layer with one additional term that accounts for the effects of flow acceleration, pressure gradients etc. We use the integral wall model for wall-modeled large-eddy simulations (WMLES) of turbulent boundary layers over rough walls. The effects of rough-wall topology on drag forces are investigated. A rough-wall model is then developed based on considerations of such effects, which are now known as mutual sheltering among roughness elements. Last, we discuss briefly a new interpretation of the Townsend attached eddy hypothesis-the hierarchical random additive process model (HRAP). The analogy between the energy cascade and the momentum cascade is mathematically formal as HRAP follows the multi-fractal formulism, which was extensively used for the energy cascade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DFDG26002M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DFDG26002M"><span>A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McDermott, Randall; Weinschenk, Craig</p> <p>2013-11-01</p> <p>A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDG13003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDG13003S"><span>Direct Measurements of the Baroclinic Instability in the Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadek, Mahmoud; Aluie, Hussein; Hecht, Matthew; Vallis, Geoffrey</p> <p>2016-11-01</p> <p>The ocean is mechanically driven by wind and buoyancy at the surface which produce sloping isopycnals with a reservoir of available potential energy (APE). Large scale APE can be converted to kinetic energy via the baroclinic instability, which produces mesoscale eddies. Mesoscale eddies are ubiquitous in mid- and high-latitudes, and play a primary role in determining the strength and trajectories of currents and in generating intrinsic climate variability. The widespread belief that mesoscale eddies are generated through baroclinic instability is based on general accord between observations and linear stability analysis and the predicted behavior of nonlinear models. However, these models are unable to give us quantitative evidence of the extent to which the instability is responsible for eddy generation at various locations in the ocean. To this end, we implement a new coarse-graining framework, recently developed to study flow on a sphere, to directly analyze the baroclinic instability as a function of scale and geographic location, and implement it using strongly eddying high-resolution simulations in the North Atlantic and in the Southern Ocean. The results give us new information about location and intensity of the instability in both physical and spectral space. Partial support was provided by National Science Foundation (NSF) Grant OCE-1259794, US Department of Energy (US DOE) Grant DE-SC0014318, and the LANL LDRD program through Project Number 20150568ER.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.7086F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.7086F"><span>Analysis of albedo versus cloud fraction relationships in liquid water clouds using heuristic models and large eddy simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feingold, Graham; Balsells, Joseph; Glassmeier, Franziska; Yamaguchi, Takanobu; Kazil, Jan; McComiskey, Allison</p> <p>2017-07-01</p> <p>The relationship between the albedo of a cloudy scene A and cloud fraction fc is studied with the aid of heuristic models of stratocumulus and cumulus clouds. Existing work has shown that scene albedo increases monotonically with increasing cloud fraction but that the relationship varies from linear to superlinear. The reasons for these differences in functional dependence are traced to the relationship between cloud deepening and cloud widening. When clouds deepen with no significant increase in fc (e.g., in solid stratocumulus), the relationship between A and fc is linear. When clouds widen as they deepen, as in cumulus cloud fields, the relationship is superlinear. A simple heuristic model of a cumulus cloud field with a power law size distribution shows that the superlinear A-fc behavior is traced out either through random variation in cloud size distribution parameters or as the cloud field oscillates between a relative abundance of small clouds (steep slopes on a log-log plot) and a relative abundance of large clouds (flat slopes). Oscillations of this kind manifest in large eddy simulation of trade wind cumulus where the slope and intercept of the power law fit to the cloud size distribution are highly correlated. Further analysis of the large eddy model-generated cloud fields suggests that cumulus clouds grow larger and deeper as their underlying plumes aggregate; this is followed by breakup of large plumes and a tendency to smaller clouds. The cloud and thermal size distributions oscillate back and forth approximately in unison.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016098','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016098"><span>Assessment of Turbulence-Chemistry Interaction Models in the National Combustion Code (NCC) - Part I</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wey, Thomas Changju; Liu, Nan-suey</p> <p>2011-01-01</p> <p>This paper describes the implementations of the linear-eddy model (LEM) and an Eulerian FDF/PDF model in the National Combustion Code (NCC) for the simulation of turbulent combustion. The impacts of these two models, along with the so called laminar chemistry model, are then illustrated via the preliminary results from two combustion systems: a nine-element gas fueled combustor and a single-element liquid fueled combustor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5284P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5284P"><span>A Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parsakhoo, Zahra; Shao, Yaping</p> <p>2017-04-01</p> <p>Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160007531','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160007531"><span>Reference Solutions for Benchmark Turbulent Flows in Three Dimensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Diskin, Boris; Thomas, James L.; Pandya, Mohagna J.; Rumsey, Christopher L.</p> <p>2016-01-01</p> <p>A grid convergence study is performed to establish benchmark solutions for turbulent flows in three dimensions (3D) in support of turbulence-model verification campaign at the Turbulence Modeling Resource (TMR) website. The three benchmark cases are subsonic flows around a 3D bump and a hemisphere-cylinder configuration and a supersonic internal flow through a square duct. Reference solutions are computed for Reynolds Averaged Navier Stokes equations with the Spalart-Allmaras turbulence model using a linear eddy-viscosity model for the external flows and a nonlinear eddy-viscosity model based on a quadratic constitutive relation for the internal flow. The study involves three widely-used practical computational fluid dynamics codes developed and supported at NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions computed with these three codes on families of consistently refined grids are presented. Grid-to-grid and code-to-code variations are described in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22407993-non-modal-analytical-method-predict-turbulent-properties-applied-hasegawa-wakatani-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22407993-non-modal-analytical-method-predict-turbulent-properties-applied-hasegawa-wakatani-model"><span>A non-modal analytical method to predict turbulent properties applied to the Hasegawa-Wakatani model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Friedman, B., E-mail: friedman11@llnl.gov; Lawrence Livermore National Laboratory, Livermore, California 94550; Carter, T. A.</p> <p>2015-01-15</p> <p>Linear eigenmode analysis often fails to describe turbulence in model systems that have non-normal linear operators and thus nonorthogonal eigenmodes, which can cause fluctuations to transiently grow faster than expected from eigenmode analysis. When combined with energetically conservative nonlinear mode mixing, transient growth can lead to sustained turbulence even in the absence of eigenmode instability. Since linear operators ultimately provide the turbulent fluctuations with energy, it is useful to define a growth rate that takes into account non-modal effects, allowing for prediction of energy injection, transport levels, and possibly even turbulent onset in the subcritical regime. We define such amore » non-modal growth rate using a relatively simple model of the statistical effect that the nonlinearities have on cross-phases and amplitude ratios of the system state variables. In particular, we model the nonlinearities as delta-function-like, periodic forces that randomize the state variables once every eddy turnover time. Furthermore, we estimate the eddy turnover time to be the inverse of the least stable eigenmode frequency or growth rate, which allows for prediction without nonlinear numerical simulation. We test this procedure on the 2D and 3D Hasegawa-Wakatani model [A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983)] and find that the non-modal growth rate is a good predictor of energy injection rates, especially in the strongly non-normal, fully developed turbulence regime.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395522','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395522"><span>A non-modal analytical method to predict turbulent properties applied to the Hasegawa-Wakatani model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Friedman, B.; Carter, T. A.</p> <p>2015-01-15</p> <p>Linear eigenmode analysis often fails to describe turbulence in model systems that have non-normal linear operators and thus nonorthogonal eigenmodes, which can cause fluctuations to transiently grow faster than expected from eigenmode analysis. When combined with energetically conservative nonlinear mode mixing, transient growth can lead to sustained turbulence even in the absence of eigenmode instability. Since linear operators ultimately provide the turbulent fluctuations with energy, it is useful to define a growth rate that takes into account non-modal effects, allowing for prediction of energy injection, transport levels, and possibly even turbulent onset in the subcritical regime. Here, we define suchmore » a non-modal growth rate using a relatively simple model of the statistical effect that the nonlinearities have on cross-phases and amplitude ratios of the system state variables. In particular, we model the nonlinearities as delta-function-like, periodic forces that randomize the state variables once every eddy turnover time. Furthermore, we estimate the eddy turnover time to be the inverse of the least stable eigenmode frequency or growth rate, which allows for prediction without nonlinear numerical simulation. Also, we test this procedure on the 2D and 3D Hasegawa-Wakatani model [A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983)] and find that the non-modal growth rate is a good predictor of energy injection rates, especially in the strongly non-normal, fully developed turbulence regime.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870050640&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870050640&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplanetary%2Bmotion"><span>Effects of eddy initial conditions on nonlinear forcing of planetary scale waves by amplifying baroclinic eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Young, Richard E.</p> <p>1986-01-01</p> <p>The previous study of Young and Villere concerning growth of planetary scale waves forced by wave-wave interactions of amplifying intermediate scale baroclinic eddies is extended to investigate effects of different eddy initial conditions. A global, spectral, primitive equation model is used for the calculations. For every set of eddy initial conditions considered, growth rates of planetary modes are considerably greater than growth rates computed from linear instability theory for a fixed zonally independent basic state. However, values of growth rates ranged over a factor of 3 depending on the particular set of eddy initial conditions used. Nonlinear forcing of planetary modes via wave-wave coupling becomes more important than baroclinic growth on the basic state at small values of the intermediate-scale modal amplitudes. The relative importance of direct transfer of kinetic energy from intermediate scales of motion to a planetary mode, compared to baroclinic conversion of available potential energy to kinetic energy within that planetary mode, depends on the individual case. In all cases, however, the transfer of either kinetic or available potential energy to the planetary modes was accomplished principally by wave-wave transfer from intermediate scale eddies, rather than from the zonally averaged state. The zonal wavenumber 2 planetary mode was prominent in all solutions, even in those for which eddy initial conditions were such that a different planetary mode was selectively forced at the start. General characteristics of the structural evolution of the planetary wave components of total heat and momentum flux, and modal structures themselves, were relatively insensitive to variations in eddy initial conditions, even though quantitative details varied from case to case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1333570-reynolds-averaged-turbulence-modelling-using-deep-neural-networks-embedded-invariance','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1333570-reynolds-averaged-turbulence-modelling-using-deep-neural-networks-embedded-invariance"><span>Reynolds averaged turbulence modelling using deep neural networks with embedded invariance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy</p> <p>2016-10-18</p> <p>There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property.more » Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1333570','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1333570"><span>Reynolds averaged turbulence modelling using deep neural networks with embedded invariance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy</p> <p></p> <p>There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property.more » Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780023440','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780023440"><span>Large eddy simulation of incompressible turbulent channel flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moin, P.; Reynolds, W. C.; Ferziger, J. H.</p> <p>1978-01-01</p> <p>The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8763F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8763F"><span>Effect of mesoscale oceanic eddies on mid-latitude storm-tracks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foussard, Alexis; Lapeyre, Guillaume; Plougonven, Riwal</p> <p>2017-04-01</p> <p>Sharp sea surface temperature (SST) gradients associated with oceanic western boundary currents (WBC) exert an influence on the position and intensity of mid-latitude storm-tracks. This occurs through strong surface baroclinicity maintained by cross frontal SST gradient and deep vertical atmospheric motion due to convection on the warm flank of the WBC. However the additional role of mesoscale oceanic structures (30-300km) has not yet been explored although they have a non-negligible influence on surface heat fluxes. Using the Weather Research and Forecasting model, we investigate the potential role of these oceanic eddies in the case of an idealized atmospheric mid-latitude storm track forced by a mesoscale oceanic eddy field superposed with a large-scale SST gradient. Surface latent and sensible fluxes are shown to react with a non-linear response to the SST variations, providing additional heat and moisture supply at large scales. The atmospheric response is not restricted to the boundary layer but reaches the free troposphere, especially through increased water vapor vertical transport and latent heat release. This additional heating in presence of eddies is balanced by a shift of the storm-track and its poleward heat flux toward high latitudes, with amplitude depending on atmospheric configuration and eddies amplitude. We also explore how this displacement of perturbations changes the position and structure of the mid-latitude jet through eddy momentum fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040086862','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040086862"><span>Computation of Turbulent Wake Flows in Variable Pressure Gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duquesne, N.; Carlson, J. R.; Rumsey, C. L.; Gatski, T. B.</p> <p>1999-01-01</p> <p>Transport aircraft performance is strongly influenced by the effectiveness of high-lift systems. Developing wakes generated by the airfoil elements are subjected to strong pressure gradients and can thicken very rapidly, limiting maximum lift. This paper focuses on the effects of various pressure gradients on developing symmetric wakes and on the ability of a linear eddy viscosity model and a non-linear explicit algebraic stress model to accurately predict their downstream evolution. In order to reduce the uncertainties arising from numerical issues when assessing the performance of turbulence models, three different numerical codes with the same turbulence models are used. Results are compared to available experimental data to assess the accuracy of the computational results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29145500','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29145500"><span>Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Jianwei; Zhang, Weimin; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi</p> <p>2017-01-01</p> <p>Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5690613','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5690613"><span>Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Jianwei; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi</p> <p>2017-01-01</p> <p>Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing. PMID:29145500</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960011376','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960011376"><span>Advanced analysis technique for the evaluation of linear alternators and linear motors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holliday, Jeffrey C.</p> <p>1995-01-01</p> <p>A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5024127','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5024127"><span>Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.</p> <p>2016-01-01</p> <p>Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009IJTIA.129.1022Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009IJTIA.129.1022Y"><span>Development of Interior Permanent Magnet Motors with Concentrated Windings for Reducing Magnet Eddy Current Loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamazaki, Katsumi; Kanou, Yuji; Fukushima, Yu; Ohki, Shunji; Nezu, Akira; Ikemi, Takeshi; Mizokami, Ryoichi</p> <p></p> <p>In this paper, we present the development of interior magnet motors with concentrated windings, which reduce the eddy current loss of the magnets. First, the mechanism of the magnet eddy current loss generation is investigated by a simple linear magnetic circuit. Due to the consideration, an automatic optimization method using an adaptive finite element method is carried out to determine the stator and rotor shapes, which decrease the eddy current loss of the magnet. The determined stator and rotor are manufactured in order to proof the effectiveness by the measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990021335','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990021335"><span>Collective Interaction in a Linear Array of Supersonic Rectangular Jets: A Linear Spatial Instability Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miles, Jeffrey Hilton</p> <p>1999-01-01</p> <p>A linear spatial instability model for multiple spatially periodic supersonic rectangular jets is solved using Floquet-Bloch theory. It is assumed that in the region of interest a coherent wave can propagate. For the case studied large spatial growth rates are found. This work is motivated by an increase in mixing found in experimental measurements of spatially periodic supersonic rectangular jets with phase-locked screech and edge tone feedback locked subsonic jets. The results obtained in this paper suggests that phase-locked screech or edge tones may produce correlated spatially periodic jet flow downstream of the nozzles which creates a large span wise multi-nozzle region where a coherent wave can propagate. The large spatial growth rates for eddies obtained by model calculation herein are related to the increased mixing since eddies are the primary mechanism that transfer energy from the mean flow to the large turbulent structures. Calculations of spacial growth rates will be presented for a set of relative Mach numbers and spacings for which experimental measurements have been made. Calculations of spatial growth rates are presented for relative Mach numbers from 1.25 to 1.75 with ratios of nozzle spacing to nozzle width ratios from s/w(sub N) = 4 to s/w(sub N) = 13.7. The model may be of significant scientific and engineering value in the quest to understand and construct supersonic mixer-ejector nozzles which provide increased mixing and reduced noise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994PhDT.......217B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994PhDT.......217B"><span>Novel Techniques for Pulsed Field Gradient NMR Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brey, William Wallace</p> <p></p> <p>Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find application in research areas ranging from functional imaging to NMR microscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPJ11141H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPJ11141H"><span>Modeling MHD Equilibrium and Dynamics with Non-Axisymmetric Resistive Walls in LTX and HBT-EP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, C.; Levesque, J.; Boyle, D. P.; Hughes, P.</p> <p>2017-10-01</p> <p>In experimental magnetized plasmas, currents in the first wall, vacuum vessel, and other conducting structures can have a strong influence on plasma shape and dynamics. These effects are complicated by the 3D nature of these structures, which dictate available current paths. Results from simulations to study the effect of external currents on plasmas in two different experiments will be presented: 1) The arbitrary geometry, 3D extended MHD code PSI-Tet is applied to study linear and non-linear plasma dynamics in the High Beta Tokamak (HBT-EP) focusing on toroidal asymmetries in the adjustable conducting wall. 2) Equilibrium reconstructions of the Lithium Tokamak eXperiment (LTX) in the presence of non-axisymmetric eddy currents. An axisymmetric model is used to reconstruct the plasma equilibrium, using the PSI-Tri code, along with a set of fixed 3D eddy current distributions in the first wall and vacuum vessel [C. Hansen et al., PoP Apr. 2017]. Simulations of detailed experimental geometries are enabled by use of the PSI-Tet code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-Tet and PSI-Tri will also be presented. This work supported by US DOE contract DE-SC0016256.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23112623','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23112623"><span>A wide linear range Eddy Current Displacement Sensor equipped with dual-coil probe applied in the Magnetic Suspension Flywheel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fang, Jiancheng; Wen, Tong</p> <p>2012-01-01</p> <p>The Eddy Current Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002STIN...0290709K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002STIN...0290709K"><span>Development of Computational Aeroacoustics Code for Jet Noise and Flow Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keith, Theo G., Jr.; Hixon, Duane R.</p> <p>2002-07-01</p> <p>Accurate prediction of jet fan and exhaust plume flow and noise generation and propagation is very important in developing advanced aircraft engines that will pass current and future noise regulations. In jet fan flows as well as exhaust plumes, two major sources of noise are present: large-scale, coherent instabilities and small-scale turbulent eddies. In previous work for the NASA Glenn Research Center, three strategies have been explored in an effort to computationally predict the noise radiation from supersonic jet exhaust plumes. In order from the least expensive computationally to the most expensive computationally, these are: 1) Linearized Euler equations (LEE). 2) Very Large Eddy Simulations (VLES). 3) Large Eddy Simulations (LES). The first method solves the linearized Euler equations (LEE). These equations are obtained by linearizing about a given mean flow and the neglecting viscous effects. In this way, the noise from large-scale instabilities can be found for a given mean flow. The linearized Euler equations are computationally inexpensive, and have produced good noise results for supersonic jets where the large-scale instability noise dominates, as well as for the tone noise from a jet engine blade row. However, these linear equations do not predict the absolute magnitude of the noise; instead, only the relative magnitude is predicted. Also, the predicted disturbances do not modify the mean flow, removing a physical mechanism by which the amplitude of the disturbance may be controlled. Recent research for isolated airfoils' indicates that this may not affect the solution greatly at low frequencies. The second method addresses some of the concerns raised by the LEE method. In this approach, called Very Large Eddy Simulation (VLES), the unsteady Reynolds averaged Navier-Stokes equations are solved directly using a high-accuracy computational aeroacoustics numerical scheme. With the addition of a two-equation turbulence model and the use of a relatively coarse grid, the numerical solution is effectively filtered into a directly calculated mean flow with the small-scale turbulence being modeled, and an unsteady large-scale component that is also being directly calculated. In this way, the unsteady disturbances are calculated in a nonlinear way, with a direct effect on the mean flow. This method is not as fast as the LEE approach, but does have many advantages to recommend it; however, like the LEE approach, only the effect of the largest unsteady structures will be captured. An initial calculation was performed on a supersonic jet exhaust plume, with promising results, but the calculation was hampered by the explicit time marching scheme that was employed. This explicit scheme required a very small time step to resolve the nozzle boundary layer, which caused a long run time. Current work is focused on testing a lower-order implicit time marching method to combat this problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040085981','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040085981"><span>A Study of Grid Resolution, Transition and Turbulence Model Using the Transonic Simple Straked Delta Wing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bartels, Robert E.</p> <p>2001-01-01</p> <p>Three-dimensional transonic flow over a delta wing is investigated using several turbulence models. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition aft of the leading edge or are fully turbulent are performed. These computations show that grid resolution, transition location and turbulence model significantly affect the 3D flowfield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PApGe.174..413S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PApGe.174..413S"><span>Universal Inverse Power-Law Distribution for Fractal Fluctuations in Dynamical Systems: Applications for Predictability of Inter-Annual Variability of Indian and USA Region Rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selvam, A. M.</p> <p>2017-01-01</p> <p>Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference to possible prediction of climate change. Model concepts, if correct, rule out unambiguously, linear trends in climate. Climate change will only be manifested as increase or decrease in the natural variability. However, more stringent tests of model concepts and predictions are required before applications to such an important issue as climate change. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate (O'Gorman in Curr Clim Change Rep 1:49-59, 2015).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC23D1092Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC23D1092Z"><span>Long-term Trends and Variability of Eddy Activities in the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, M.; von Storch, H.</p> <p>2017-12-01</p> <p>For constructing empirical downscaling models and projecting possible future states of eddy activities in the South China Sea (SCS), long-term statistical characteristics of the SCS eddy are needed. We use a daily global eddy-resolving model product named STORM covering the period of 1950-2010. This simulation has employed the MPI-OM model with a mean horizontal resolution of 10km and been driven by the NCEP reanalysis-1 data set. An eddy detection and tracking algorithm operating on the gridded sea surface height anomaly (SSHA) fields was developed. A set of parameters for the criteria in the SCS are determined through sensitivity tests. Our method detected more than 6000 eddy tracks in the South China Sea. For all of them, eddy diameters, track length, eddy intensity, eddy lifetime and eddy frequency were determined. The long-term trends and variability of those properties also has been derived. Most of the eddies propagate westward. Nearly 100 eddies travel longer than 1000km, and over 800 eddies have a lifespan of more than 2 months. Furthermore, for building the statistical empirical model, the relationship between the SCS eddy statistics and the large-scale atmospheric and oceanic phenomena has been investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CTM....22..237W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CTM....22..237W"><span>Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn</p> <p>2018-03-01</p> <p>Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890014529','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890014529"><span>Eddy current damper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ellis, R. C.; Fink, R. A.; Rich, R. W.</p> <p>1989-01-01</p> <p>A high torque capacity eddy current damper used as a rate limiting device for a large solar array deployment mechanism is discussed. The eddy current damper eliminates the problems associated with the outgassing or leaking of damping fluids. It also provides performance advantages such as damping torque rates, which are truly linear with respect to input speed, continuous 360 degree operation in both directions of rotation, wide operating temperature range, and the capability of convenient adjustment of damping rates by the user without disassembly or special tools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29j5103D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29j5103D"><span>A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.</p> <p>2017-10-01</p> <p>At the crossroad between flow topology analysis and turbulence modeling, a priori studies are a reliable tool to understand the underlying physics of the subgrid-scale (SGS) motions in turbulent flows. In this paper, properties of the SGS features in the framework of a large-eddy simulation are studied for a turbulent Rayleigh-Bénard convection (RBC). To do so, data from direct numerical simulation (DNS) of a turbulent air-filled RBC in a rectangular cavity of aspect ratio unity and π spanwise open-ended distance are used at two Rayleigh numbers R a ∈{1 08,1 010 } [Dabbagh et al., "On the evolution of flow topology in turbulent Rayleigh-Bénard convection," Phys. Fluids 28, 115105 (2016)]. First, DNS at Ra = 108 is used to assess the performance of eddy-viscosity models such as QR, Wall-Adapting Local Eddy-viscosity (WALE), and the recent S3PQR-models proposed by Trias et al. ["Building proper invariants for eddy-viscosity subgrid-scale models," Phys. Fluids 27, 065103 (2015)]. The outcomes imply that the eddy-viscosity modeling smoothes the coarse-grained viscous straining and retrieves fairly well the effect of the kinetic unfiltered scales in order to reproduce the coherent large scales. However, these models fail to approach the exact evolution of the SGS heat flux and are incapable to reproduce well the further dominant rotational enstrophy pertaining to the buoyant production. Afterwards, the key ingredients of eddy-viscosity, νt, and eddy-diffusivity, κt, are calculated a priori and revealed positive prevalent values to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. The topological analysis suggests that the effective turbulent diffusion paradigm and the hypothesis of a constant turbulent Prandtl number are only applicable in the large-scale strain-dominated areas in the bulk. It is shown that the bulk-dominated rotational structures of vortex-stretching (and its synchronous viscous dissipative structures) hold the highest positive values of νt; however, the zones of backscatter energy and counter-gradient heat transport are related to the areas of compressed focal vorticity. More arguments have been attained through a priori investigation of the alignment trends imposed by existing parameterizations for the SGS heat flux, tested here inside RBC. It is shown that the parameterizations based linearly on the resolved thermal gradient are invalid in RBC. Alternatively, the tensor-diffusivity approach becomes a crucial choice of modeling the SGS heat flux, in particular, the tensorial diffusivity that includes the SGS stress tensor. This and other crucial scrutinies on a future modeling to the SGS heat flux in RBC are sought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP42A..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP42A..04G"><span>Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia, M. H.</p> <p>2016-12-01</p> <p>Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity Som Dutta1, Paul Fischer2, Marcelo H. Garcia11Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 2Department of Computer Science and Department of MechSE, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 Since the seminal work of Niño and Garcia [1994], one-way coupled Lagrangian particle tracking has been used extensively for modeling sediment transport. Over time, the Lagrangian particle tracking method has been coupled with Eulerian flow simulations, ranging from Reynolds Averaged Navier-Stokes (RANS) based models to Detached Eddy Simulations (DES) [Escauriaza and Sotiropoulos, 2011]. Advent of high performance computing (HPC) platforms and faster algorithms have resulted in the work of Dutta et al. [2016], where Lagrangian particle tracking was coupled with high-resolution Large Eddy Simulations (LES) to model the complex and highly non-linear phenomenon of Bulle-Effect at diversions. Despite all the advancements in using Lagrangian particle tracking, there has not been a study that looks in detail at the limits of the model in the context of sediment transport, and also analyzes the sensitivity of the various force formulation in the force balance equation of the particles. Niño and Garcia [1994] did a similar analysis, but the vertical flow velocity distribution was modeled as the log-law. The current study extends the analysis by modeling the flow using high-resolution LES at a Reynolds number comparable to experiments of Niño et al. [1994]. Dutta et al., (2016), Large Eddy Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016 - Constantinescu, Garcia & Hanes (Eds), Taylor & Francis Group, London, 101-109. Escauriaza and Sotiropoulos, (2011), Lagrangian model of bed-load transport in turbulent junction flows, Journal of Fluid Mechanics, 666,36-76. Niño and García, (1994), Gravel saltation: 2. Modeling, Water Resources Research, 30(6),1915-1924. Niño et al., (1994), Gravel saltation: 1. Experiments, Water Resources Research, 30(6), 1907-1914.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.114....1R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.114....1R"><span>A comparison of the structure, properties, and water mass composition of quasi-isotropic eddies in western boundary currents in an eddy-resolving ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rykova, Tatiana; Oke, Peter R.; Griffin, David A.</p> <p>2017-06-01</p> <p>Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AIPC.1581.1448R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AIPC.1581.1448R"><span>Determination of linear defect depths from eddy currents disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramos, Helena Geirinhas; Rocha, Tiago; Pasadas, Dário; Ribeiro, Artur Lopes</p> <p>2014-02-01</p> <p>One of the still open problems in the inspection research concerns the determination of the maximum depth to which a surface defect goes. Eddy current testing being one of the most sensitive well established inspection methods, able to detect and characterize different type of defects in conductive materials, is an adequate technique to solve this problem. This paper reports a study concerning the disturbances in the magnetic field and in the lines of current due to a machined linear defect having different depths in order to extract relevant information that allows the determination of the defect characteristics. The image of the eddy currents (EC) is paramount to understand the physical phenomena involved. The EC images for this study are generated using a commercial finite element model (FLUX). The excitation used produces a uniform magnetic field on the plate under test in the absence of defects and the disturbances due to the defects are compared with those obtained from experimental measurements. In order to increase the limited penetration depth of the method giant magnetoresistors (GMR) are used to lower the working frequency. The geometry of the excitation planar coil produces a uniform magnetic field on an area of around the GMR sensor, inducing a uniform eddy current distribution on the plate. In the presence of defects in the material surface, the lines of currents inside the material are deviated from their uniform direction and the magnetic field produced by these currents is sensed by the GMR sensor. Besides the theoretical study of the electromagnetic system, the paper describes the experiments that have been carried out to support the theory and conclusions are drawn for cracks having different depths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhFl...24h5101V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhFl...24h5101V"><span>A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verma, Aman; Mahesh, Krishnan</p> <p>2012-08-01</p> <p>The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27376306','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27376306"><span>Design of Diaphragm and Coil for Stable Performance of an Eddy Current Type Pressure Sensor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Hyo Ryeol; Lee, Gil Seung; Kim, Hwa Young; Ahn, Jung Hwan</p> <p>2016-07-01</p> <p>The aim of this work was to develop an eddy current type pressure sensor and investigate its fundamental characteristics affected by the mechanical and electrical design parameters of sensor. The sensor has two key components, i.e., diaphragm and coil. On the condition that the outer diameter of sensor is 10 mm, two key parts should be designed so as to keep a good linearity and sensitivity. Experiments showed that aluminum is the best target material for eddy current detection. A round-grooved diaphragm is suggested in order to measure more precisely its deflection caused by applied pressures. The design parameters of a round-grooved diaphragm can be selected depending on the measuring requirements. A developed pressure sensor with diaphragm of t = 0.2 mm and w = 1.05 mm was verified to measure pressure up to 10 MPa with very good linearity and errors of less than 0.16%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3793V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3793V"><span>Toward finding a universally applicable parameterization of the β factor for Relaxed Eddy Accumulation applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogl, Teresa; Hrdina, Amy; Thomas, Christoph</p> <p>2016-04-01</p> <p>The traditional eddy covariance (EC) technique requires the use of fast responding sensors (≥ 10 Hz) that do not exist for many chemical species found in the atmosphere. In this case, the Relaxed Eddy Accumulation (REA) method offers a means to calculate fluxes of trace gases and other scalar quantities (Businger and Oncley, 1990) and was originally derived from the eddy accumulation method (EA) first proposed by Desjardins (1972). While REA lessens the requirements for sensors and sampling and thus offers practical appeal, it introduces a dependence of the computed flux from a proportionality factor β. The accuracy of the REA fluxes hinges upon the correct determination of β, which was found to vary between 0.40 and 0.63 (Milne et al., 1999, Ammann and Meixner, 2002, Ruppert et al., 2006). However, formulating a universally valid parameterization for β instead of empirical evaluation has remained a conundrum and has been a main limitation for REA. In this study we take a fresh look at the dependencies and mathematical models of β by analyzing eddy covariance (EC) data and REA simulations for two field experiments in drastically contrasting environments: an exclusively physically driven environment in the Dry Valleys of Antarctica, and a biologically active system in a grassland in Germany. The main objective is to work toward a model parameterization for β that can be applied over wide range of surface conditions and forcings without the need for empirical evaluation, which is not possible for most REA applications. Our study discusses two different models to define β: (i) based upon scalar-scalar similarity, in which a different scalar is measured with fast-response sensors as a proxy for the scalar of interest, here referred to as β0; and (ii) computed solely from the vertical wind statistics, assuming a linear relationship between the scalar of interest and the vertical wind speed, referred to as βw. Results are presented for the carbon-dioxide, latent and sensible heat fluxes across the contrasting environments. First, the choice of an appropriate scalar to calculate β0 is discussed considering the sources and sinks of each scalar with an emphasis on the carbon dioxide flux, which shows strongly dissimilar dynamics between the Antarctic ecosystem and the grassland. Secondly, the impact of atmospheric stability on both β models is investigated. In a next step, we attempt to find a physically meaningful explanation for the overestimation of the REA scalar fluxes compared to those from EC for using βw. We do so by analyzing the probability density function (pdf) and its statistical moments for the vertical wind speed. We found its pdf to be non-Gaussian for the majority of cases, and detected a close to linear relationship of its kurtosis with βw. Finally, in an attempt to provide practical guidance for field measurements, we integrate our findings and propose an enhanced model parameterization, and evaluate the differences between our new model and a constant β. Ammann, C. and Meixner, F.X. (2002) Stability dependence of the relaxed eddy accumulation coefficient for various scalar quantities. J. Geophys. Res. 107. ACL7.1-ACL7.9 doi:10.1029/2001JD000649 Businger, J.A., Oncley, S.P. (1990) Flux measurement with conditional sampling. J. Atmos. Ocean. Tech. 7:349-352. Desjardins, R. L. (1972) A study of carbon-dioxide and sensible heat fluxes using the eddy correlation technique, Ph.D. dissertation, Cornell University, 189 pp. Desjardins, R.L. (1977) Description and evaluation of sensible heat flux detector. Boundary-Layer Meteorol. 11:147-154. Katul, G., Finkelstein, P. L., Clarke, J. F., and Ellestad, T. G. (1996) An Investigation of the Conditional Sampling Methods Used to Estimate Fluxes of Active, Reactive and Passive Scalars. J. Appl. Meteorol. 35: 1835-1845. Milne, R., Beverland, I. J., Hargreaves, K., and Moncrieff, J. B. (1999) Variation of the beta coefficient in the relaxed eddy accumulation method. Boundary-Layer Meteorol. 93: 211-225. Ruppert, J. ATEM software for atmospheric turbulent exchange measurements using eddy covariance and relaxed eddy accumulation systems: Bayreuth whole-air REA system setup, Universität Bayreuth, Abt. Mikrometeorologie, Print, ISSN 1614-8916, Arbeitsergebnisse 28, 29 S, 2005 Ruppert, J., Thomas, C., and Foken, T. (2006) scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol. 120: 39-63.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP43C1901B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP43C1901B"><span>Large Eddy Simulations of a Bottom Boundary Layer Under a Shallow Geostrophic Front</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bateman, S. P.; Simeonov, J.; Calantoni, J.</p> <p>2017-12-01</p> <p>The unstratified surf zone and the stratified shelf waters are often separated by dynamic fronts that can strongly impact the character of the Ekman bottom boundary layer. Here, we use large eddy simulations to study the turbulent bottom boundary layer associated with a geostrophic current on a stratified shelf of uniform depth. The simulations are initialized with a spatially uniform vertical shear that is in geostrophic balance with a pressure gradient due to a linear horizontal temperature variation. Superposed on the temperature front is a stable vertical temperature gradient. As turbulence develops near the bottom, the turbulence-induced mixing gradually erodes the initial uniform temperature stratification and a well-mixed layer grows in height until the turbulence becomes fully developed. The simulations provide the spatial distribution of the turbulent dissipation and the Reynolds stresses in the fully developed boundary layer. We vary the initial linear stratification and investigate its effect on the height of the bottom boundary layer and the turbulence statistics. The results are compared to previous models and simulations of stratified bottom Ekman layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900063522&hterms=moisture+condensation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmoisture%2Bcondensation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900063522&hterms=moisture+condensation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmoisture%2Bcondensation"><span>Development of a two-dimensional zonally averaged statistical-dynamical model. III - The parameterization of the eddy fluxes of heat and moisture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stone, Peter H.; Yao, Mao-Sung</p> <p>1990-01-01</p> <p>A number of perpetual January simulations are carried out with a two-dimensional zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with zonally symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JCoPh.301...77M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JCoPh.301...77M"><span>Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marras, Simone; Nazarov, Murtazo; Giraldo, Francis X.</p> <p>2015-11-01</p> <p>The high order spectral element approximation of the Euler equations is stabilized via a dynamic sub-grid scale model (Dyn-SGS). This model was originally designed for linear finite elements to solve compressible flows at large Mach numbers. We extend its application to high-order spectral elements to solve the Euler equations of low Mach number stratified flows. The major justification of this work is twofold: stabilization and large eddy simulation are achieved via one scheme only. Because the diffusion coefficients of the regularization stresses obtained via Dyn-SGS are residual-based, the effect of the artificial diffusion is minimal in the regions where the solution is smooth. The direct consequence is that the nominal convergence rate of the high-order solution of smooth problems is not degraded. To our knowledge, this is the first application in atmospheric modeling of a spectral element model stabilized by an eddy viscosity scheme that, by construction, may fulfill stabilization requirements, can model turbulence via LES, and is completely free of a user-tunable parameter. From its derivation, it will be immediately clear that Dyn-SGS is independent of the numerical method; it could be implemented in a discontinuous Galerkin, finite volume, or other environments alike. Preliminary discontinuous Galerkin results are reported as well. The straightforward extension to non-linear scalar problems is also described. A suite of 1D, 2D, and 3D test cases is used to assess the method, with some comparison against the results obtained with the most known Lilly-Smagorinsky SGS model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970011284&hterms=fashion+models&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfashion%2Bmodels','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970011284&hterms=fashion+models&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfashion%2Bmodels"><span>A Particle Representation Model for the Deformation of Homogeneous Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kassinos, S. C.; Reynolds, W. C.</p> <p>1996-01-01</p> <p>In simple flows, where the mean deformation rates are mild and the turbulence has time to come to equilibrium with the mean flow, the Reynolds stresses are determined by the applied strain rate. Hence in these flows, it is often adequate to use an eddy-viscosity representation. The modern family of kappa-epsilon models has been very useful in predicting near equilibrium turbulent flows, where the rms deformation rate S is small compared to the reciprocal time scale of the turbulence (epsilon/kappa). In modern engineering applications, turbulence models are quite often required to predict flows with very rapid deformations (large S kappa/epsilon). In these flows, the structure takes some time to respond and eddy viscosity models are inadequate. The response of turbulence to rapid deformations is given by rapid distortion theory (RDT). Under RDT the nonlinear effects due to turbulence-turbulence interactions are neglected in the governing equations, but even when linearized in this fashion, the governing equations are unclosed at the one-point level due to the non-locality of the pressure fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8760B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8760B"><span>Toward variational assimilation of SARAL/Altika altimeter data in a North Atlantic circulation model at eddy-permitting resolution: assessment of a NEMO-based 4D-VAR system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouttier, Pierre-Antoine; Brankart, Jean-Michel; Candille, Guillem; Vidard, Arthur; Blayo, Eric; Verron, Jacques; Brasseur, Pierre</p> <p>2015-04-01</p> <p>In this project, the response of a variational data assimilation system based on NEMO and its linear tangent and adjoint model is investigated using a 4DVAR algorithm into a North-Atlantic model at eddy-permitting resolution. The assimilated data consist of Jason-2 and SARAL/AltiKA dataset collected during the 2013-2014 period. The main objective is to explore the robustness of the 4DVAR algorithm in the context of a realistic turbulent oceanic circulation at mid-latitude constrained by multi-satellite altimetry missions. This work relies on two previous studies. First, a study with similar objectives was performed based on academic double-gyre turbulent model and synthetic SARAL/AltiKA data, using the same DA experimental framework. Its main goal was to investigate the impact of turbulence on variational DA methods performance. The comparison with this previous work will bring to light the methodological and physical issues encountered by variational DA algorithms in a realistic context at similar, eddy-permitting spatial resolution. We also have demonstrated how a dataset mimicking future SWOT observations improves 4DVAR incremental performances at eddy-permitting resolution. Then, in the context of the OSTST and FP7 SANGOMA projects, an ensemble DA experiment based on the same model and observational datasets has been realized (see poster by Brasseur et al.). This work offers the opportunity to compare efficiency, pros and cons of both DA methods in the context of KA-band altimetric data, at spatial resolution commonly used today for research and operational applications. In this poster we will present the validation plan proposed to evaluate the skill of variational experiment vs. ensemble assimilation experiments covering the same period using independent observations (e.g. from Cryosat-2 mission).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029894','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029894"><span>Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yuan, W.; Liu, S.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, Allen H.; Goulden, M.L.; Hollinger, D.Y.; Hu, Y.; Law, B.E.; Stoy, Paul C.; Vesala, T.; Wofsy, S.C.</p> <p>2007-01-01</p> <p>The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OPhy...15..107W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OPhy...15..107W"><span>Field analysis & eddy current losses calculation in five-phase tubular actuator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waindok, Andrzej; Tomczuk, Bronislaw</p> <p>2017-12-01</p> <p>Field analysis including eddy currents in the magnetic core of five-phase permanent magnet tubular linear actuator (TLA) has been carried out. The eddy currents induced in the magnetic core cause the losses which have been calculated. The results from 2D finite element (FE) analysis have been compared with those from 3D calculations. The losses in the mover of the five-phase actuator are much lower than the losses in its stator. That is why the former ones can be neglected in the computer aided designing. The calculation results have been verified experimentally</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21106418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21106418"><span>Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin</p> <p>2011-01-01</p> <p>In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5193B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5193B"><span>Southern Ocean eddy compensation in a forced eddy-resolving GCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruun Poulsen, Mads; Jochum, Markus; Eden, Carsten; Nuterman, Roman</p> <p>2017-04-01</p> <p>Contemporary eddy-resolving model studies have demonstrated that the common parameterisation of isopycnal mixing in the ocean is subject to limitations in the Southern Ocean where the mesoscale eddies are of leading order importance to the dynamics. We here present forced simulations from the Community Earth System Model on a global {1/10}° and 1° horizontal grid, the latter employing an eddy parameterisation, where the strength of the zonal wind stress south of 25°S has been varied. With a 50% zonally symmetric increase of the wind stress, we show that the two models arrive at two radically different solutions in terms of the large-scale circulation, with an increase of the deep inflow of water to the Southern Ocean at 40°S by 50% in the high resolution model against 20% at coarse resolution. Together with a weaker vertical displacement of the pycnocline in the 1° model, these results suggest that the parameterised eddies have an overly strong compensating effect on the water mass transformation compared to the explicit eddies. Implications for eddy mixing parameterisations will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCoPh.361..231B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCoPh.361..231B"><span>Regularization method for large eddy simulations of shock-turbulence interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braun, N. O.; Pullin, D. I.; Meiron, D. I.</p> <p>2018-05-01</p> <p>The rapid change in scales over a shock has the potential to introduce unique difficulties in Large Eddy Simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as k - 5 / 3, and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with Direct Numerical Simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960050148','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960050148"><span>Dynamics of Permanent-Magnet Biased Active Magnetic Bearings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fukata, Satoru; Yutani, Kazuyuki</p> <p>1996-01-01</p> <p>Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDG30001B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDG30001B"><span>Large-eddy simulation of the passage of a shock wave through homogeneous turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braun, N. O.; Pullin, D. I.; Meiron, D. I.</p> <p>2017-11-01</p> <p>The passage of a nominally plane shockwave through homogeneous, compressible turbulence is a canonical problem representative of flows seen in supernovae, supersonic combustion engines, and inertial confinement fusion. The interaction of isotropic turbulence with a stationary normal shockwave is considered at inertial range Taylor Reynolds numbers, Reλ = 100 - 2500 , using Large Eddy Simulation (LES). The unresolved, subgrid terms are approximated by the stretched-vortex model (Kosovic et al., 2002), which allows self-consistent reconstruction of the subgrid contributions to the turbulent statistics of interest. The mesh is adaptively refined in the vicinity of the shock to resolve small amplitude shock oscillations, and the implications of mesh refinement on the subgrid modeling are considered. Simulations are performed at a range of shock Mach numbers, Ms = 1.2 - 3.0 , and turbulent Mach numbers, Mt = 0.06 - 0.18 , to explore the parameter space of the interaction at high Reynolds number. The LES shows reasonable agreement with linear analysis and lower Reynolds number direct numerical simulations. LANL Subcontract 305963.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.tmp...10D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.tmp...10D"><span>Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeLeon, Rey; Sandusky, Micah; Senocak, Inanc</p> <p>2018-02-01</p> <p>We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.167..399D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.167..399D"><span>Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeLeon, Rey; Sandusky, Micah; Senocak, Inanc</p> <p>2018-06-01</p> <p>We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DPPCP8106H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DPPCP8106H"><span>Initial Ferritic Wall Mode studies on HBT-EP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.</p> <p>2013-10-01</p> <p>Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710193P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710193P"><span>Eddy-driven low-frequency variability: physics and observability through altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Penduff, Thierry; Sérazin, Guillaume; Arbic, Brian; Mueller, Malte; Richman, James G.; Shriver, Jay F.; Morten, Andrew J.; Scott, Robert B.</p> <p>2015-04-01</p> <p>Model studies have revealed the propensity of the eddying ocean circulation to generate strong low-frequency variability (LFV) intrinsically, i.e. without low-frequency atmospheric variability. In the present study, gridded satellite altimeter products, idealized quasi-geostrophic (QG) turbulent simulations, and realistic high-resolution global ocean simulations are used to study the spontaneous tendency of mesoscale (relatively high frequency and high wavenumber) kinetic energy to non-linearly cascade towards larger time and space scales. The QG model reveals that large-scale variability, arising from the well-known spatial inverse cascade, is associated with low frequencies. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing (by large-scale shear) and friction playing secondary roles. In realistic simulations, nonlinearities also generally drive kinetic energy to low frequencies and low wavenumbers. In some, but not all, regions of the gridded altimeter product, surface kinetic energy is also found to cascade toward low frequencies. Exercises conducted with the realistic model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies seen in some regions between the direction of frequency cascade in models versus gridded altimeter maps. Finally, the range of frequencies that are highly energized and engaged these cascades appears much greater than the range of highly energized and engaged wavenumbers. Global eddying simulations, performed in the context of the CHAOCEAN project in collaboration with the CAREER project, provide estimates of the range of timescales that these oceanic nonlinearities are likely to feed without external variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990063249','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990063249"><span>Annual Research Briefs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spinks, Debra (Compiler)</p> <p>1997-01-01</p> <p>This report contains the 1997 annual progress reports of the research fellows and students supported by the Center for Turbulence Research (CTR). Titles include: Invariant modeling in large-eddy simulation of turbulence; Validation of large-eddy simulation in a plain asymmetric diffuser; Progress in large-eddy simulation of trailing-edge turbulence and aeronautics; Resolution requirements in large-eddy simulations of shear flows; A general theory of discrete filtering for LES in complex geometry; On the use of discrete filters for large eddy simulation; Wall models in large eddy simulation of separated flow; Perspectives for ensemble average LES; Anisotropic grid-based formulas for subgrid-scale models; Some modeling requirements for wall models in large eddy simulation; Numerical simulation of 3D turbulent boundary layers using the V2F model; Accurate modeling of impinging jet heat transfer; Application of turbulence models to high-lift airfoils; Advances in structure-based turbulence modeling; Incorporating realistic chemistry into direct numerical simulations of turbulent non-premixed combustion; Effects of small-scale structure on turbulent mixing; Turbulent premixed combustion in the laminar flamelet and the thin reaction zone regime; Large eddy simulation of combustion instabilities in turbulent premixed burners; On the generation of vorticity at a free-surface; Active control of turbulent channel flow; A generalized framework for robust control in fluid mechanics; Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries; and DNS of shock boundary-layer interaction - preliminary results for compression ramp flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870015072','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870015072"><span>Application of physical parameter identification to finite-element models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.</p> <p>1987-01-01</p> <p>The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120..113W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120..113W"><span>Forced and intrinsic variability in the response to increased wind stress of an idealized Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, Chris; Hughes, Chris W.; Blundell, Jeffrey R.</p> <p>2015-01-01</p> <p>use ensemble runs of a three layer, quasi-geostrophic idealized Southern Ocean model to explore the roles of forced and intrinsic variability in response to a linear increase of wind stress imposed over a 30 year period. We find no increase of eastward circumpolar volume transport in response to the increased wind stress. A large part of the resulting time series can be explained by a response in which the eddy kinetic energy is linearly proportional to the wind stress with a possible time lag, but no statistically significant lag is found. However, this simple relationship is not the whole story: several intrinsic time scales also influence the response. We find an e-folding time scale for growth of small perturbations of 1-2 weeks. The energy budget for intrinsic variability at periods shorter than a year is dominated by exchange between kinetic and potential energy. At longer time scales, we find an intrinsic mode with period in the region of 15 years, which is dominated by changes in potential energy and frictional dissipation in a manner consistent with that seen by Hogg and Blundell (2006). A similar mode influences the response to changing wind stress. This influence, robust to perturbations, is different from the supposed linear relationship between wind stress and eddy kinetic energy, and persists for 5-10 years in this model, suggestive of a forced oscillatory mode with period of around 15 years. If present in the real ocean, such a mode would imply a degree of predictability of Southern Ocean dynamics on multiyear time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A44C..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A44C..02R"><span>Jet and storm track variability and change: adiabatic QG zonal averages and beyond... (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, W. A.</p> <p>2013-12-01</p> <p>The zonally averaged structures of extratropical jets and stormtracks, their slow variations, and their responses to climate change are all tightly constrained on the one hand by thermal wind balance and the necessary application of eddy torques to produce zonally averaged meridional motion, and, on the other hand, by the necessity that eddies propagate upshear to extract energy from the mean flow. Combining these constraints with the well developed theory of linear Rossby-wave propagation on zonally symmetric basic states has led to a large and growing number of plausible mechanisms to explain observed and modeled jet/storm track variability and responses to climate change and idealized forcing. Hidden within zonal averages is the reality that most baroclinic eddy activity is destroyed at the same latitude at which is generated: from one end to another of the fixed stormtracks in the Northern Hemisphere and baroclinic wave packets in the Southern Hemisphere. Ignored within adiabatic QG theory is the reality that baroclinic eddies gain significant energy from latent heating that involves sub-syntopic scale structures and dynamics. Here we use results from high-resolution regional and global simulations of the Northern Hemisphere storm tracks to explore the importance of non-zonal and diabatic dynamics in influencing jet change and variability and their influences on the much-studied zonal means.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1806k0015B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1806k0015B"><span>Model development and validation of geometrically complex eddy current coils using finite element methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Alexander; Eviston, Connor</p> <p>2017-02-01</p> <p>Multiple FEM models of complex eddy current coil geometries were created and validated to calculate the change of impedance due to the presence of a notch. Capable realistic simulations of eddy current inspections are required for model assisted probability of detection (MAPOD) studies, inversion algorithms, experimental verification, and tailored probe design for NDE applications. An FEM solver was chosen to model complex real world situations including varying probe dimensions and orientations along with complex probe geometries. This will also enable creation of a probe model library database with variable parameters. Verification and validation was performed using other commercially available eddy current modeling software as well as experimentally collected benchmark data. Data analysis and comparison showed that the created models were able to correctly model the probe and conductor interactions and accurately calculate the change in impedance of several experimental scenarios with acceptable error. The promising results of the models enabled the start of an eddy current probe model library to give experimenters easy access to powerful parameter based eddy current models for alternate project applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040191710&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmit','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040191710&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmit"><span>Subduction in an Eddy-Resolving State Estimate of the Northeast Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gebbie, Geoffrey</p> <p>2004-01-01</p> <p>Are eddies an important contributor to subduction in the eastern subtropical gyre? Here, an adjoint model is used to combine a regional, eddy-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a synthesis of a variety of in- situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MTI General Circulation Model. The adjoint method is successful because the Northeast Atlantic Ocean is only weakly nonlinear. The state estimate provides a physically-interpretable, eddy-resolving information source to diagnose subduction. Estimates of eddy subduction for the eastern subtropical gyre of the North Atlantic are larger than previously calculated from parameterizations in coarse-resolution models. Furthermore, eddy subduction rates have typical magnitudes of 15% of the total subduction rate. Eddies contribute as much as 1 Sverdrup to water-mass transformation, and hence subduction, in the North Equatorial Current and the Azores Current. The findings of this thesis imply that the inability to resolve or accurately parameterize eddy subduction in climate models would lead to an accumulation of error in the structure of the main thermocline, even in the relatively-quiescent eastern subtropical gyre.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2k3801G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2k3801G"><span>Simulations of eddy kinetic energy transport in barotropic turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grooms, Ian</p> <p>2017-11-01</p> <p>Eddy energy transport in rotating two-dimensional turbulence is investigated using numerical simulation. Stochastic forcing is used to generate an inhomogeneous field of turbulence and the time-mean energy profile is diagnosed. An advective-diffusive model for the transport is fit to the simulation data by requiring the model to accurately predict the observed time-mean energy distribution. Isotropic harmonic diffusion of energy is found to be an accurate model in the case of uniform, solid-body background rotation (the f plane), with a diffusivity that scales reasonably well with a mixing-length law κ ∝V ℓ , where V and ℓ are characteristic eddy velocity and length scales. Passive tracer dynamics are added and it is found that the energy diffusivity is 75 % of the tracer diffusivity. The addition of a differential background rotation with constant vorticity gradient β leads to significant changes to the energy transport. The eddies generate and interact with a mean flow that advects the eddy energy. Mean advection plus anisotropic diffusion (with reduced diffusivity in the direction of the background vorticity gradient) is moderately accurate for flows with scale separation between the eddies and mean flow, but anisotropic diffusion becomes a much less accurate model of the transport when scale separation breaks down. Finally, it is observed that the time-mean eddy energy does not look like the actual eddy energy distribution at any instant of time. In the future, stochastic models of the eddy energy transport may prove more useful than models of the mean transport for predicting realistic eddy energy distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BoLMe.148..333S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BoLMe.148..333S"><span>Large-Eddy Atmosphere-Land-Surface Modelling over Heterogeneous Surfaces: Model Development and Comparison with Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shao, Yaping; Liu, Shaofeng; Schween, Jan H.; Crewell, Susanne</p> <p>2013-08-01</p> <p>A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere-land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W { m }^{-2}, due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcDyn..66..539W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcDyn..66..539W"><span>Can a minimalist model of wind forced baroclinic Rossby waves produce reasonable results?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watanabe, Wandrey B.; Polito, Paulo S.; da Silveira, Ilson C. A.</p> <p>2016-04-01</p> <p>The linear theory predicts that Rossby waves are the large scale mechanism of adjustment to perturbations of the geophysical fluid. Satellite measurements of sea level anomaly (SLA) provided sturdy evidence of the existence of these waves. Recent studies suggest that the variability in the altimeter records is mostly due to mesoscale nonlinear eddies and challenges the original interpretation of westward propagating features as Rossby waves. The objective of this work is to test whether a classic linear dynamic model is a reasonable explanation for the observed SLA. A linear-reduced gravity non-dispersive Rossby wave model is used to estimate the SLA forced by direct and remote wind stress. Correlations between model results and observations are up to 0.88. The best agreement is in the tropical region of all ocean basins. These correlations decrease towards insignificance in mid-latitudes. The relative contributions of eastern boundary (remote) forcing and local wind forcing in the generation of Rossby waves are also estimated and suggest that the main wave forming mechanism is the remote forcing. Results suggest that linear long baroclinic Rossby wave dynamics explain a significant part of the SLA annual variability at least in the tropical oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A12E..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A12E..03R"><span>Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.</p> <p>2014-12-01</p> <p>Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001ApPhL..78..383L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001ApPhL..78..383L"><span>High resolution eddy current microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.</p> <p>2001-01-01</p> <p>We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000089716&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000089716&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DEddy%2Bcurrent"><span>Linear and Nonlinear Analysis of Magnetic Bearing Bandwidth Due to Eddy Current Limitations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kenny, Andrew; Palazzolo, Alan</p> <p>2000-01-01</p> <p>Finite element analysis was used to study the bandwidth of alloy hyperco50a and silicon iron laminated rotors and stators in magnetic bearings. A three dimensional model was made of a heteropolar bearing in which all the flux circulated in the plane of the rotor and stator laminate. A three dimensional model of a plate similar to the region of a pole near the gap was also studied with a very fine mesh. Nonlinear time transient solutions for the net flux carried by the plate were compared to steady state time harmonic solutions. Both linear and quasi-nonlinear steady state time harmonic solutions were calculated and compared. The finite element solutions for power loss and flux bandwidth were compared to those determined from classical analytical solutions to Maxwell's equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.8901L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.8901L"><span>Toward relaxed eddy accumulation measurements of sediment-water exchange in aquatic ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemaire, Bruno J.; Noss, Christian; Lorke, Andreas</p> <p>2017-09-01</p> <p>Solute transport across the sediment-water interface has major implications for water quality and biogeochemical cycling in aquatic ecosystems. Existing measurement techniques, however, are not capable of resolving sediment-water fluxes of most constituents under in situ flow conditions. We investigated whether relaxed eddy accumulation (REA), a micrometeorological technique with conditional sampling of turbulent updrafts and downdrafts, can be adapted to the aquatic environment. We simulated REA fluxes by reanalyzing eddy covariance measurements from a riverine lake. We found that the empirical coefficient that relates mass fluxes to the concentration difference between both REA samples is invariant with scalar and flow and responds as predicted by a joint Gaussian distribution of linearly correlated variables. Simulated REA fluxes differed on average by around 30% from eddy covariance fluxes (mean absolute error). Assessment of the lower quantification limit suggests that REA can potentially be applied for measuring benthic fluxes of a new range of constituents that cannot be assessed by standard eddy covariance methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1004485','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1004485"><span>Advances in Turbulent Combustion Dynamics Simulations in Bluff-Body Stabilized Flames-Body Stabilized Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-11-30</p> <p>Master’s Thesis 3. DATES COVERED (From - To) 01 Nov 2015 – 30 Nov 2015 4. TITLE AND SUBTITLE Advances in Turbulent Combustion Dynamics Simulations...the three main aspects of bluff-body stabilized flames: stationary combustion , lean blow-out, and thermo-acoustic instabilities. For the cases of...stationary combustion and lean blow-out, an improved version of the Linear Eddy Model approach is used, while in the case of thermo-acoustic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGeo...12.2809M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGeo...12.2809M"><span>Bayesian inversions of a dynamic vegetation model at four European grassland sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minet, J.; Laloy, E.; Tychon, B.; Francois, L.</p> <p>2015-05-01</p> <p>Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m-2 day-1 and 0.50 to 1.28 mm day-1, respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........40Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........40Z"><span>A Study of the Southern Ocean: Mean State, Eddy Genesis & Demise, and Energy Pathways</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zajaczkovski, Uriel</p> <p></p> <p>The Southern Ocean (SO), due to its deep penetrating jets and eddies, is well-suited for studies that combine surface and sub-surface data. This thesis explores the use of Argo profiles and sea surface height ( SSH) altimeter data from a statistical point of view. A linear regression analysis of SSH and hydrographic data reveals that the altimeter can explain, on average, about 35% of the variance contained in the hydrographic fields and more than 95% if estimated locally. Correlation maxima are found at mid-depth, where dynamics are dominated by geostrophy. Near the surface, diabatic processes are significant, and the variance explained by the altimeter is lower. Since SSH variability is associated with eddies, the regression of SSH with temperature (T) and salinity (S) shows the relative importance of S vs T in controlling density anomalies. The AAIW salinity minimum separates two distinct regions; above the minimum density changes are dominated by T, while below the minimum S dominates over T. The regression analysis provides a method to remove eddy variability, effectively reducing the variance of the hydrographic fields. We use satellite altimetry and output from an assimilating numerical model to show that the SO has two distinct eddy motion regimes. North and south of the Antarctic Circumpolar Current (ACC), eddies propagate westward with a mean meridional drift directed poleward for cyclonic eddies (CEs) and equatorward for anticyclonic eddies (AEs). Eddies formed within the boundaries of the ACC have an effective eastward propagation with respect to the mean deep ACC flow, and the mean meridional drift is reversed, with warm-core AEs propagating poleward and cold-core CEs propagating equatorward. This circulation pattern drives downgradient eddy heat transport, which could potentially transport a significant fraction (24 to 60 x 1013 W) of the net poleward ACC eddy heat flux. We show that the generation of relatively large amplitude eddies is not a ubiquitous feature of the SO but rather a phenomenon that is constrained to five isolated, well-defined "hotspots". These hotspots are located downstream of major topographic features, with their boundaries closely following f/H contours. Eddies generated in these locations show no evidence of a bias in polarity and decay within the boundaries of the generation area. Eddies tend to disperse along f/H contours rather than following lines of latitude. We found enhanced values of both buoyancy (BP) and shear production (SP) inside the hotspots, with BP one order of magnitude larger than SP. This is consistent with baroclinic instability being the main mechanism of eddy generation. The mean potential density field estimated from Argo floats shows that inside the hotspots, isopycnal slopes are steep, indicating availability of potential energy. The hotspots identified in this thesis overlap with previously identified regions of standing meanders. We provide evidence that hotspot locations can be explained by the combined effect of topography, standing meanders that enhance baroclinic instability, and availability of potential energy to generate eddies via baroclinic instabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B33A0633K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B33A0633K"><span>Gap-filling methods to impute eddy covariance flux data by preserving variance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kunwor, S.; Staudhammer, C. L.; Starr, G.; Loescher, H. W.</p> <p>2015-12-01</p> <p>To represent carbon dynamics, in terms of exchange of CO2 between the terrestrial ecosystem and the atmosphere, eddy covariance (EC) data has been collected using eddy flux towers from various sites across globe for more than two decades. However, measurements from EC data are missing for various reasons: precipitation, routine maintenance, or lack of vertical turbulence. In order to have estimates of net ecosystem exchange of carbon dioxide (NEE) with high precision and accuracy, robust gap-filling methods to impute missing data are required. While the methods used so far have provided robust estimates of the mean value of NEE, little attention has been paid to preserving the variance structures embodied by the flux data. Preserving the variance of these data will provide unbiased and precise estimates of NEE over time, which mimic natural fluctuations. We used a non-linear regression approach with moving windows of different lengths (15, 30, and 60-days) to estimate non-linear regression parameters for one year of flux data from a long-leaf pine site at the Joseph Jones Ecological Research Center. We used as our base the Michaelis-Menten and Van't Hoff functions. We assessed the potential physiological drivers of these parameters with linear models using micrometeorological predictors. We then used a parameter prediction approach to refine the non-linear gap-filling equations based on micrometeorological conditions. This provides us an opportunity to incorporate additional variables, such as vapor pressure deficit (VPD) and volumetric water content (VWC) into the equations. Our preliminary results indicate that improvements in gap-filling can be gained with a 30-day moving window with additional micrometeorological predictors (as indicated by lower root mean square error (RMSE) of the predicted values of NEE). Our next steps are to use these parameter predictions from moving windows to gap-fill the data with and without incorporation of potential driver variables of the parameters traditionally used. Then, comparisons of the predicted values from these methods and 'traditional' gap-filling methods (using 12 fixed monthly windows) will be assessed to show the scale of preserving variance. Further, this method will be applied to impute artificially created gaps for analyzing if variance is preserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.127....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.127....1B"><span>Dynamically consistent parameterization of mesoscale eddies. Part III: Deterministic approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berloff, Pavel</p> <p>2018-07-01</p> <p>This work continues development of dynamically consistent parameterizations for representing mesoscale eddy effects in non-eddy-resolving and eddy-permitting ocean circulation models and focuses on the classical double-gyre problem, in which the main dynamic eddy effects maintain eastward jet extension of the western boundary currents and its adjacent recirculation zones via eddy backscatter mechanism. Despite its fundamental importance, this mechanism remains poorly understood, and in this paper we, first, study it and, then, propose and test its novel parameterization. We start by decomposing the reference eddy-resolving flow solution into the large-scale and eddy components defined by spatial filtering, rather than by the Reynolds decomposition. Next, we find that the eastward jet and its recirculations are robustly present not only in the large-scale flow itself, but also in the rectified time-mean eddies, and in the transient rectified eddy component, which consists of highly anisotropic ribbons of the opposite-sign potential vorticity anomalies straddling the instantaneous eastward jet core and being responsible for its continuous amplification. The transient rectified component is separated from the flow by a novel remapping method. We hypothesize that the above three components of the eastward jet are ultimately driven by the small-scale transient eddy forcing via the eddy backscatter mechanism, rather than by the mean eddy forcing and large-scale nonlinearities. We verify this hypothesis by progressively turning down the backscatter and observing the induced flow anomalies. The backscatter analysis leads us to formulating the key eddy parameterization hypothesis: in an eddy-permitting model at least partially resolved eddy backscatter can be significantly amplified to improve the flow solution. Such amplification is a simple and novel eddy parameterization framework implemented here in terms of local, deterministic flow roughening controlled by single parameter. We test the parameterization skills in an hierarchy of non-eddy-resolving and eddy-permitting modifications of the original model and demonstrate, that indeed it can be highly efficient for restoring the eastward jet extension and its adjacent recirculation zones. The new deterministic parameterization framework not only combines remarkable simplicity with good performance but also is dynamically transparent, therefore, it provides a powerful alternative to the common eddy diffusion and emerging stochastic parameterizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27386549','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27386549"><span>Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dufois, François; Hardman-Mountford, Nick J; Greenwood, Jim; Richardson, Anthony J; Feng, Ming; Matear, Richard J</p> <p>2016-05-01</p> <p>Mesoscale eddies are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular eddy-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic eddies because of upwelling inside the eddy, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of eddies within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical eddies are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by eddies. These results establish a new paradigm for anticyclonic eddies in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...166..108L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...166..108L"><span>Processes influencing formation of low-salinity high-biomass lenses near the edge of the Ross Ice Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yizhen; McGillicuddy, Dennis J.; Dinniman, Michael S.; Klinck, John M.</p> <p>2017-02-01</p> <p>Both remotely sensed and in situ observations in austral summer of early 2012 in the Ross Sea suggest the presence of cold, low-salinity, and high-biomass eddies along the edge of the Ross Ice Shelf (RIS). Satellite measurements include sea surface temperature and ocean color, and shipboard data sets include hydrographic profiles, towed instrumentation, and underway acoustic Doppler current profilers. Idealized model simulations are utilized to examine the processes responsible for ice shelf eddy formation. 3-D model simulations produce similar cold and fresh eddies, although the simulated vertical lenses are quantitatively thinner than observed. Model sensitivity tests show that both basal melting underneath the ice shelf and irregularity of the ice shelf edge facilitate generation of cold and fresh eddies. 2-D model simulations further suggest that both basal melting and downwelling-favorable winds play crucial roles in forming a thick layer of low-salinity water observed along the edge of the RIS. These properties may have been entrained into the observed eddies, whereas that entrainment process was not captured in the specific eddy formation events studied in our 3-D model-which may explain the discrepancy between the simulated and observed eddies, at least in part. Additional sensitivity experiments imply that uncertainties associated with background stratification and wind stress may also explain why the model underestimates the thickness of the low-salinity lens in the eddy interiors. Our study highlights the importance of incorporating accurate wind forcing, basal melting, and ice shelf irregularity for simulating eddy formation near the RIS edge. The processes responsible for generating the high phytoplankton biomass inside these eddies remain to be elucidated. Appendix B. Details for the basal melting and mechanical forcing by the ice shelf edge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740018807','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740018807"><span>Polar symmetric flow of a viscous compressible atmosphere; an application to Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pirraglia, J. A.</p> <p>1974-01-01</p> <p>The atmosphere is assumed to be driven by a polar symmetric temperature field and the equations of motion in pressure ratio coordinates are linearized by considering the zero order in terms of a thermal Rossby number R delta I/(2a omega) sq where delta T is a measure of the latitudinal temperature gradient. When the eddy viscosity is greater than 1 million sq cm/sec, the boundary layer extends far up into the atmosphere, making the geostrophic approximation invalid for the bulk of the atmosphere. A temperature model for Mars was used which was based on Mariner 9 infrared spectral data with a 30% increase in the depth averaged temperature from the winter pole to the subsolar point. The results obtained for the increase in surface pressure from the subsolar point to the winter pole, as a function of eddy viscosity and with no-slip conditions imposed at the surface, are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5046U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5046U"><span>Eddy-driven nutrient transport and associated upper-ocean primary production along the Kuroshio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu</p> <p>2017-06-01</p> <p>The Kuroshio is one of the most energetic western boundary currents accompanied by vigorous eddy activity both on mesoscale and submesoscale, which affects biogeochemical processes in the upper ocean. We examine the primary production around the Kuroshio off Japan using a climatological ocean modeling based on the Regional Oceanic Modeling System (ROMS) coupled with a nitrogen-based nutrient, phytoplankton and zooplankton, and detritus (NPZD) biogeochemical model in a submesoscale eddy-permitting configuration. The model indicates significant differences of the biogeochemical responses to eddy activities in the Kuroshio Region (KR) and Kuroshio Extension Region (KE). In the KR, persisting cyclonic eddies developed between the Kuroshio and coastline are responsible for upwelling-induced eutrophication. However, the eddy-induced vertical nutrient flux counteracts and promotes pronounced southward and downward diapycnal nutrient transport from the mixed-layer down beneath the main body of the Kuroshio, which suppresses the near-surface productivity. In contrast, the KE has a 23.5% higher productivity than the KR, even at comparable eddy intensity. Upward nutrient transport prevails near the surface due to predominant cyclonic eddies, particularly to the north of the KE, where the downward transport barely occurs, except at depths deeper than 400 m and to a much smaller degree than in the KR. The eddy energy conversion analysis reveals that the combination of shear instability around the mainstream of the Kuroshio with prominent baroclinic instability near the Kuroshio front is essential for the generation of eddies in the KR, leading to the increase of the eddy-induced vertical nitrate transport around the Kuroshio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005OcMod...8....1C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005OcMod...8....1C"><span>Modeling mesoscale eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Canuto, V. M.; Dubovikov, M. S.</p> <p></p> <p>Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale eddies, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale diffusivity κM and for the mesoscale kinetic energy K in terms of the large-scale fields. The predicted κM( z) agrees with that of heuristic models. The complete mesoscale model in isopycnal coordinates is presented in Appendix D and can be used in coarse resolution ocean global circulation models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........54J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........54J"><span>Turbulent flow separation in three-dimensional asymmetric diffusers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeyapaul, Elbert</p> <p>2011-12-01</p> <p>Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of streamwise and transverse velocity, however the wall pressure is under predicted. An improved EARSM model is developed by correcting the coefficients, which predicts a more accurate wall pressure. There exists scope for improvement of this model, by including convective effects and dynamics of velocity gradient invariants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA54A..08P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA54A..08P"><span>Seasonal Variability in Global Eddy Diffusion and the Effect on Thermospheric Neutral Density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pilinski, M.; Crowley, G.</p> <p>2014-12-01</p> <p>We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time between January 2004 and January 2008 were estimated from residuals of neutral density measurements made by the CHallenging Minisatellite Payload (CHAMP) and simulations made using the Thermosphere Ionosphere Mesosphere Electrodynamics - Global Circulation Model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy-diffusivity models. The eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the RMS difference between the TIME-GCM model and density data from a variety of satellites is reduced by an average of 5%. This result, indicates that global thermospheric density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates how eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are some limitations of this method, which are discussed, including that the latitude-dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion consistent with diffusion observations made by other techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRA..120.3097P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRA..120.3097P"><span>Seasonal variability in global eddy diffusion and the effect on neutral density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pilinski, M. D.; Crowley, G.</p> <p>2015-04-01</p> <p>We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy diffusivity models. Eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5% when compared to density data from a variety of satellites, indicating that the fidelity of global density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion which is also consistent with diffusion observations made by other techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930022371','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930022371"><span>An integrated eddy current detection and imaging system on a silicon chip</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Henderson, H. Thurman; Kartalia, K. P.; Dury, Joseph D.</p> <p>1991-01-01</p> <p>Eddy current probes have been used for many years for numerous sensing applications including crack detection in metals. However, these applications have traditionally used the eddy current effect in the form of a physically wound single or different probe pairs which of necessity must be made quite large compared to microelectronics dimensions. Also, the traditional wound probe can only take a point reading, although that point might include tens of individual cracks or crack arrays; thus, conventional eddy current probes are beset by two major problems: (1) no detailed information can be obtained about the crack or crack array; and (2) for applications such as quality assurance, a vast amount of time must be taken to scan a complete surface. Laboratory efforts have been made to fabricate linear arrays of single turn probes in a thick film format on a ceramic substrate as well as in a flexible cable format; however, such efforts inherently suffer from relatively large size requirements as well as sensitivity issues. Preliminary efforts to fully extend eddy current probing from a point or single dimensional level to a two dimensional micro-eddy current format on a silicon chip, which might overcome all of the above problems, are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDH23003R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDH23003R"><span>Anisotropic mesoscale eddy transport in ocean general circulation models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan</p> <p>2014-11-01</p> <p>In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...426...75I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...426...75I"><span>Analysis and numerical modelling of eddy current damper for vibration problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irazu, L.; Elejabarrieta, M. J.</p> <p>2018-07-01</p> <p>This work discusses a contactless eddy current damper, which is used to attenuate structural vibration. Eddy currents can remove energy from dynamic systems without any contact and, thus, without adding mass or modifying the rigidity of the structure. An experimental modal analysis of a cantilever beam in the absence of and under a partial magnetic field is conducted in the bandwidth of 01 kHz. The results show that the eddy current phenomenon can attenuate the vibration of the entire structure without modifying the natural frequencies or the mode shapes of the structure itself. In this study, a new inverse method to numerically determine the dynamic properties of the contactless eddy current damper is proposed. The proposed inverse method and the eddy current model based on a lineal viscous force are validated by a practical application. The numerically obtained transfer function correlates with the experimental one, thus showing good agreement in the entire bandwidth of 01 kHz. The proposed method provides an easy and quick tool to model and predict the dynamic behaviour of the contactless eddy current damper, thereby avoiding the use of complex analytical models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRC..118..301M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRC..118..301M"><span>A numerical modeling study of the East Australian Current encircling and overwashing a warm-core eddy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacDonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.</p> <p>2013-01-01</p> <p><title type="main">AbstractWarm-core eddies (WCEs) often form in the meanders of Western Boundary Currents (WBCs). WCEs are frequently overwashed with less dense waters sourced from the WBC. We use the Regional Ocean Modelling System to investigate the ocean state during the overwashing of one such WCE in October 2008 in the East Australian Current (EAC). Comparisons of model outputs with satellite sea surface temperature and vertical profiles show that the model provides a realistic simulation of the eddy during the period when the EAC encircled and then overwashed the eddy. During the encircling stage, an eddy with closed circulation persisted at depth. In the surface EAC water entered from the north, encircled the eddy and exited to the east. The overwashing stage was initiated by the expulsion of cyclonic vorticity. For the following 8 days after the expulsion, waters from the EAC washed over the top of the eddy, transferring heat and anticyclonic vorticity radially-inward. After approximately one rotation period of overwashing, the eddy separated. The overwashing creates a two-layer system that forms a subsurface maximum velocity at the interface of the two layers. Analysis of water mass properties, Eulerian tracer dynamics, and Lagrangian particle tracks show that the original eddy sinks 10-50 m during the overwashing period. Overwashing has been observed in many WBCs and occurs in most WCEs in the western Tasman Sea.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960049744','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960049744"><span>Transport Coefficients in weakly compressible turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubinstein, Robert; Erlebacher, Gordon</p> <p>1996-01-01</p> <p>A theory of transport coefficients in weakly compressible turbulence is derived by applying Yoshizawa's two-scale direct interaction approximation to the compressible equations of motion linearized about a state of incompressible turbulence. The result is a generalization of the eddy viscosity representation of incompressible turbulence. In addition to the usual incompressible eddy viscosity, the calculation generates eddy diffusivities for entropy and pressure, and an effective bulk viscosity acting on the mean flow. The compressible fluctuations also generate an effective turbulent mean pressure and corrections to the speed of sound. Finally, a prediction unique to Yoshizawa's two-scale approximation is that terms containing gradients of incompressible turbulence quantities also appear in the mean flow equations. The form these terms take is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA230835','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA230835"><span>Large Eddy Simulation ... Where Do We Stand? International Workshop Held in St. Petersburg Beach, Florida on 19-21 December 1990.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1990-01-01</p> <p>S. Orszag, Chairman 1. P. Moin Some Issues in Computation of Turbulent Flows. 2. M. Lesieur, P. Comte, X. Normand, 0. Metais and A. Silveira Spectral...Richtmeyer’s computational experience with one-dimensional shock waves (1950) indicated the value of a non-linear artificial viscosity. Charney and... computer architecture and the advantages of semi-Lagrangian advective schemes may lure large-scale atmospheric modelers back to finite-difference</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...143..206K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...143..206K"><span>Eddy-induced transport of the Kuroshio warm water around the Ryukyu Islands in the East China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamidaira, Yuki; Uchiyama, Yusuke; Mitarai, Satoshi</p> <p>2017-07-01</p> <p>In this study, an oceanic downscaling model in a double-nested configuration was used to investigate the role played by the Kuroshio warm current in preserving and maintaining biological diversity in the coral coasts around the Ryukyu Islands (Japan). A comparison of the modeled data demonstrated that the innermost submesoscale eddy-resolving model successfully reproduced the synoptic and mesoscale oceanic structures even without data assimilation. The Kuroshio flows on the shelf break of the East China Sea approximately 150-200 km from the islands; therefore, eddy-induced transient processes are essential to the lateral transport of material within the strip between the Kuroshio and the islands. The model indicated an evident predominance of submesoscale anticyclonic eddies over cyclonic eddies near the surface of this strip. An energy conversion analysis relevant to the eddy-generation mechanisms revealed that a combination of both the shear instability due to the Kuroshio and the topography and baroclinic instability around the Kuroshio front jointly provoke these near-surface anticyclonic eddies, as well as the subsurface cyclonic eddies that are shed around the shelf break. Both surface and subsurface eddies fit within the submesoscale, and they are energized more as the grid resolution of the model is increased. An eddy heat flux (EHF) analysis was performed with decomposition into the divergent (dEHF) and rotational (rEHF) components. The rEHF vectors appeared along the temperature variance contours by following the Kuroshio, whereas the dEHF properly measured the transverse transport normal to the Kuroshio's path. The diagnostic EHF analysis demonstrated that an asymmetric dEHF occurs within the surface mixed layer, which promotes eastward transport toward the islands. Conversely, below the mixed layer, a negative dEHF tongue is formed that promotes the subsurface westward warm water transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1650..361L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1650..361L"><span>Determination of crack depth in aluminum using eddy currents and GMR sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.</p> <p>2015-03-01</p> <p>In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020043256','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020043256"><span>Large Eddy Simulation of a Turbulent Jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Webb, A. T.; Mansour, Nagi N.</p> <p>2001-01-01</p> <p>Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V43F..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V43F..04P"><span>Eddy Flow during Magma Emplacement: The Basemelt Sill, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petford, N.; Mirhadizadeh, S.</p> <p>2014-12-01</p> <p>The McMurdo Dry Valleys magmatic system, Antarctica, forms part of the Ferrar dolerite Large Igneous Province. Comprising a vertical stack of interconnected sills, the complex provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle macrostructure of a congested magma slurry1. Image-based numerical modelling where the intrusion geometry defines its own unique finite element mesh allows simulations of the flow regime to be made that incorporate realistic magma particle size and flow geometries obtained directly from field measurements. One testable outcome relates to the origin of rhythmic layering where analytical results imply the sheared suspension intersects the phase space for particle Reynolds and Peclet number flow characteristic of macroscopic structures formation2. Another relates to potentially novel crystal-liquid segregation due to the formation of eddies locally at undulating contacts at the floor and roof of the intrusion. The eddies are transient and mechanical in origin, unrelated to well-known fluid dynamical effects around obstacles where flow is turbulent. Numerical particle tracing reveals that these low Re number eddies can both trap (remove) and eject particles back into the magma at a later time according to their mass density. This trapping mechanism has potential to develop local variations in structure (layering) and magma chemistry that may otherwise not occur where the contact between magma and country rock is linear. Simulations indicate that eddy formation is best developed where magma viscosity is in the range 1-102 Pa s. Higher viscosities (> 103 Pa s) tend to dampen the effect implying eddy development is most likely a transient feature. However, it is nice to think that something as simple as a bumpy contact could impart physical and by implication chemical diversity in igneous rocks. 1Marsh, D.B. (2004), A magmatic mush column Rosetta stone: the McMurdo Dry Valleys of Antarcica. EOS, 85, 497-502. 2Petford, N. (2009), Which Effective Viscosity? Mineralogical Magazine, 73, 167-191. Fig. 1. Numerical simulation in the geometry showing magma flow field and eddy formation where circulating magma is trapped. Streamlines track particle orbits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5169M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5169M"><span>A model study of sediment transport across the shelf break</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marchal, Olivier</p> <p>2017-04-01</p> <p>A variety of dynamical processes can contribute to the transport of material (e.g., particulate matter) across the shelf break - the region separating the continental shelf from the continental slope. Among these processes are (i) the reflection of internal waves on the outer shelf and upper slope, and (ii) the instability of hydrographic fronts, roughly aligned with isobaths, that are often present at the shelf break. On the one hand, internal waves reflecting on a sloping boundary can produce bottom shear stresses that are large enough to resuspend non-cohesive sediments into the water column. On the other hand, eddies shed from unstable shelf break fronts can incorporate into their core particle-rich waters from the outer shelf and upper slope, and transport these waters offshore. Here we present numerical experiments with a three-dimensional numerical model of ocean circulation and sediment transport, which illustrate the joint effect of internal waves and eddies on sediment transport across the shelf break. The model is based on the primitive equations and terrain-following coordinates. The model domain is square and idealized, comprising a flat continental shelf, a constant continental slope, and a flat abyssal basin. The model grid has O(1 km) horizontal resolution, so that (sub)mesoscale eddies observed in the vicinity of shelf breaks, such as south of New England, can be represented in detail. Internal waves are excited through the specification of a periodic variation in the across-slope component of velocity at the offshore boundary of the domain, and eddies are generated from the baroclinic instability of a shelf break jet that is initially in strict thermal wind balance. Numerical experiments are conducted that are characterized by (i) different slopes of internal wave characteristics relative to the continental slope, representing sub-critical, critical, and super-critical regimes, and (ii) different values for the dimensionless ratios that emerge from the linear stability analysis of shelf break fronts. Emphasis is placed on the physical conditions that are conducive to the formation and maintenance of bottom and intermediate nepheloid layers - the particle-rich layers that are often observed near oceanic margins in the traces of optical instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33R..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33R..08M"><span>Tangent linear super-parameterization: attributable, decomposable moist processes for tropical variability studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mapes, B. E.; Kelly, P.; Song, S.; Hu, I. K.; Kuang, Z.</p> <p>2015-12-01</p> <p>An economical 10-layer global primitive equation solver is driven by time-independent forcing terms, derived from a training process, to produce a realisting eddying basic state with a tracer q trained to act like water vapor mixing ratio. Within this basic state, linearized anomaly moist physics in the column are applied in the form of a 20x20 matrix. The control matrix was derived from the results of Kuang (2010, 2012) who fitted a linear response function from a cloud resolving model in a state of deep convecting equilibrium. By editing this matrix in physical space and eigenspace, scaling and clipping its action, and optionally adding terms for processes that do not conserve moist statice energy (radiation, surface fluxes), we can decompose and explain the model's diverse moist process coupled variability. Recitified effects of this variability on the general circulation and climate, even in strictly zero-mean centered anomaly physic cases, also are sometimes surprising.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CSR...156...23Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CSR...156...23Z"><span>On the phase lag of turbulent dissipation in rotating tidal flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Qianjiang; Wu, Jiaxue</p> <p>2018-03-01</p> <p>Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...26L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...26L"><span>Response of eddy activities to localized diabatic heating in Held-Suarez simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Yanluan; Zhang, Jishi; Li, Xingrui; Deng, Yi</p> <p>2018-01-01</p> <p>Widespread air pollutions, such as black carbon over East Asia in recent years, could induce a localized diabatic heating, and thus lead to localized static stability and meridional temperature gradient (MTG) changes. Although effect of static stability and MTG on eddies has been addressed by the linear baroclinic instability theory, impacts of a localized heating on mid-latitude eddy activities have not been well explored and quantified. Via a series of idealized global Held-Suarez simulations with different magnitudes of localized heating at different altitudes and latitudes, responses of mid-latitude eddy activity and circulation to these temperature perturbations are systematically investigated. Climatologically, the localized heating in the lower atmosphere induces a wave-like response of eddy activity near the mid-latitude jet stream. Over the heating region, eddy activity tends to be weakening due to the increased static stability. However, there are cyclonic anomalies over the upstream and downstream of the heating region. The zonal mean eddy activity weakens along the baroclinic zone due to reduced MTG and increased static stability. Furthermore, the response of eddy activity increased as the heating magnitude is increased and moved to higher altitudes. The influence of the heating decreases as the heating is prescribed further away from the climatological mid-latitude jet. This implies that the localized heating is most effective over the region with the maximum baroclinicity. Besides, enhanced storm track downstream of the localized heating area found here suggests that increased aerosols over East Asia might strengthen the North Pacific storm track.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30d0909J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30d0909J"><span>Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi</p> <p>2018-04-01</p> <p>A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..201C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..201C"><span>Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crews, L.; Sundfjord, A.; Albretsen, J.; Hattermann, T.</p> <p>2018-01-01</p> <p>Mesoscale eddies are known to transport heat and biogeochemical properties from Arctic Ocean boundary currents to basin interiors. Previous hydrographic surveys and model results suggest that eddy formation may be common in the Atlantic Water (AW) inflow area north of Svalbard, but no quantitative eddy survey has yet been done for the region. Here vorticity and water property signatures are used to identify and track AW eddies in an eddy-resolving sea ice-ocean model. The boundary current sheds AW eddies along most of the length of the continental slope considered, from the western Yermak Plateau to 40°E, though eddies forming east of 20°E are likely more important for slope-to-basin transport. Eddy formation seasonality reflects seasonal stability properties of the boundary current in the eastern portion of the study domain, but on and immediately east of the Yermak Plateau enhanced eddy formation during summer merits further investigation. AW eddies tend to be anticyclonic, have radii close to the local deformation radius, and be centered in the halocline. They transport roughly 0.16 Sv of AW and, due to their warm cores, 1.0 TW away from the boundary current. These findings suggest eddies may be important for halocline ventilation in the Eurasian Basin, as has been shown for Pacific Water eddies in the Canadian Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..115.3011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..115.3011S"><span>An analytical model of capped turbulent oscillatory bottom boundary layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shimizu, Kenji</p> <p>2010-03-01</p> <p>An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A23L..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A23L..07S"><span>Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.</p> <p>2017-12-01</p> <p>The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDH27003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDH27003H"><span>The turbulent cascade of individual eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huertas-Cerdeira, Cecilia; Lozano-Durán, Adrián; Jiménez, Javier</p> <p>2014-11-01</p> <p>The merging and splitting processes of Reynolds-stress carrying structures in the inertial range of scales are studied through their time-resolved evolution in channels at Reλ = 100 - 200 . Mergers and splits coexist during the whole life of the structures, and are responsible for a substantial part of their growth and decay. Each interaction involves two or more eddies and results in little overall volume loss or gain. Most of them involve a small eddy that merges with, or splits from, a significantly larger one. Accordingly, if merge and split indexes are respectively defined as the maximum number of times that a structure has merged from its birth or will split until its death, the mean eddy volume grows linearly with both indexes, suggesting an accretion process rather than a hierarchical fragmentation. However, a non-negligible number of interactions involve eddies of similar scale, with a second probability peak of the volume of the smaller parent or child at 0.3 times that of the resulting or preceding structure. Funded by the Multiflow project of the ERC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/181972-ocean-large-eddy-simulation-langmuir-circulations-convection-surface-mixed-layer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/181972-ocean-large-eddy-simulation-langmuir-circulations-convection-surface-mixed-layer"><span>An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Skyllingstad, E.D.; Denbo, D.W.</p> <p></p> <p>Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970025579','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970025579"><span>Collective Interaction of a Compressible Periodic Parallel Jet Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miles, Jeffrey Hilton</p> <p>1997-01-01</p> <p>A linear instability model for multiple spatially periodic supersonic rectangular jets is solved using Floquet-Bloch theory. The disturbance environment is investigated using a two dimensional perturbation of a mean flow. For all cases large temporal growth rates are found. This work is motivated by an increase in mixing found in experimental measurements of spatially periodic supersonic rectangular jets with phase-locked screech. The results obtained in this paper suggests that phase-locked screech or edge tones may produce correlated spatially periodic jet flow downstream of the nozzles which creates a large span wise multi-nozzle region where a disturbance can propagate. The large temporal growth rates for eddies obtained by model calculation herein are related to the increased mixing since eddies are the primary mechanism that transfer energy from the mean flow to the large turbulent structures. Calculations of growth rates are presented for a range of Mach numbers and nozzle spacings corresponding to experimental test conditions where screech synchronized phase locking was observed. The model may be of significant scientific and engineering value in the quest to understand and construct supersonic mixer-ejector nozzles which provide increased mixing and reduced noise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDG15006A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDG15006A"><span>Broadening of cloud droplet spectra through turbulent entrainment and eddy hopping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abade, Gustavo; Grabowski, Wojciech; Pawlowska, Hanna</p> <p>2017-11-01</p> <p>This work discusses the effect of cloud turbulence and turbulent entrainment on the evolution of the cloud droplet-size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events, modeled as a random Poisson process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate and the mean fraction of environmental air entrained in an event are specified as external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. They are either unactivated cloud condensation nuclei (CCN) or cloud droplets that form from activated CCN. The model accounts for the transport of environmental CCN into the cloud by the entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using a linear model. We show that turbulence plays an important role in aiding entrained CCN to activate, providing a source of small cloud droplets and thus broadening the droplet size distribution. Further simulation results will be reported at the meeting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDM15004K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDM15004K"><span>An economical model for simulating droplet spectrum evolution in turbulent cloud chambers and wind tunnels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krueger, Steven; Cantrell, W.; Niedermeier, D.; Shaw, R.; Stratmann, F.</p> <p>2017-11-01</p> <p>Although airborne instruments provide detailed information about the microphysical structure of clouds, the measurements provide only a few snapshots of each cloud. Deducing the droplet spectrum evolution from such measurements is next to impossible. We are using two alternative approaches: laboratory studies and numerical simulations. The former relies on a new turbulent cloud chamber (the Pi Chamber) at Michigan Technical University, as well as the first humid turbulent wind tunnel (LACIS-T) at the Leibniz Institute for Tropospheric Research. Both produce conditions for droplet growth (i.e., supersaturation) by mixing saturated vapor at different temperatures. The Pi Chamber produces turbulence by inducing Rayleigh-Bénard convection, while the wind tunnel generates turbulence with a grid. We are using the Explicit Mixing Parcel Model (EMPM) to numerically simulate droplet spectrum evolution in these flows. The EMPM explicitly links turbulent mixing and droplet spectrum evolution by representing a turbulent flow in a 1D domain with the linear eddy model. The EMPM can economically span scales from those of the smallest turbulent eddies to those of the largest. The EMPM grows or evaporates thousands of individual cloud droplets according to their local environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN33A0103B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN33A0103B"><span>Tools and Methods for Visualization of Mesoscale Ocean Eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.</p> <p>2017-12-01</p> <p>Mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean eddies from 3D modeling results, to visually show the ocean eddy story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. The basic method uses the Okubu-Weiss parameter to define eddy cores but could be adapted to alternative specifications of an eddy. Stored results include pixel-lists for each eddy instance, tracking metadata for eddy paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display eddies along an eddy path. Individual eddies can then be selected and viewed independently or an eddy path can be viewed in the context of all eddy paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean eddies, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore eddy characteristics at multiple scales from ocean basin to individual eddy. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available datasets, to specify the variables (such as temperature or salinity) to display on the isosurfaces, and to choose the scale and orientation of the view. These techniques allow an oceanographer to browse the data based on eddy paths and individual eddies rather than slices or volumes of data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18681706','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18681706"><span>Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P</p> <p>2008-07-01</p> <p>We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26163010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26163010"><span>Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gent, Peter R</p> <p>2016-01-01</p> <p>Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920021408','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920021408"><span>On the Subgrid-Scale Modeling of Compressible Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Squires, Kyle; Zeman, Otto</p> <p>1990-01-01</p> <p>A new sub-grid scale model is presented for the large-eddy simulation of compressible turbulence. In the proposed model, compressibility contributions have been incorporated in the sub-grid scale eddy viscosity which, in the incompressible limit, reduce to a form originally proposed by Smagorinsky (1963). The model has been tested against a simple extension of the traditional Smagorinsky eddy viscosity model using simulations of decaying, compressible homogeneous turbulence. Simulation results show that the proposed model provides greater dissipation of the compressive modes of the resolved-scale velocity field than does the Smagorinsky eddy viscosity model. For an initial r.m.s. turbulence Mach number of 1.0, simulations performed using the Smagorinsky model become physically unrealizable (i.e., negative energies) because of the inability of the model to sufficiently dissipate fluctuations due to resolved scale velocity dilations. The proposed model is able to provide the necessary dissipation of this energy and maintain the realizability of the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate energy independent of the Kolmogorov energy cascade. A possible parameterization of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2847B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2847B"><span>Striations and preferred eddy tracks triggered by topographic steering of the background flow in the eastern South Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belmadani, Ali; Concha, Emilio; Donoso, David; Chaigneau, Alexis; Colas, François; Maximenko, Nikolai; Di Lorenzo, Emanuele</p> <p>2017-04-01</p> <p>In recent years, persistent quasi-zonal jets or striations have been ubiquitously detected in the world ocean using satellite and in situ data as well as numerical models. This study aims at determining the role of mesoscale eddies in the generation and persistence of striations off Chile in the eastern South Pacific. A 50 year climatological integration of an eddy-resolving numerical ocean model is used to assess the long-term persistence of striations. Automated eddy tracking algorithms are applied to the model outputs and altimetry data. Results reveal that striations coincide with both polarized eddy tracks and the offshore formation of new eddies in the subtropical front and coastal transition zone, without any significant decay over time that discards random eddies as a primary driver of the striations. Localized patches of vortex stretching and relative vorticity advection, alternating meridionally near the eastern edge of the subtropical front, are associated with topographic steering of the background flow in the presence of steep topography, and with baroclinically and barotropically unstable meridional flow. These sinks and sources of vorticity are suggested to generate the banded structure further west, consistently with a β-plume mechanism. On the other hand, zonal/meridional eddy advection of relative vorticity and the associated Reynolds stress covariance are consistent with eddy deformation over rough topography and participate to sustain the striations in the far field. Shear instability of mean striations is proposed to feedback onto the eddy field, acting to maintain the subtropical front eddy streets and thus the striations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5186H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5186H"><span>Automated detection of Lagrangian eddies and coherent transport of heat and salinity in the Agulhas leakage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huhn, Florian; Haller, George</p> <p>2014-05-01</p> <p>Haller and Beron-Vera(2013) have recently introduced a new objective method to detect coherent Lagrangian eddies in turbulence. They find that closed null-geodesics of a generalized Green-Lagrange strain tensor act as coherent Lagrangian eddy boundaries, showing near-zero and uniform material stretching. We make use of this method to develop an automated detection procedure for coherent Lagrangian eddies in large-scale ocean data. We apply our results to a recent 3D general circulation model, the Southern Ocean State Estimate (SOSE), with focus on the South Atlantic Ocean and the inter-ocean exchange between the Indian and Atlantic ocean. We detect a large number of coherent Lagrangian eddies and present statistics of their properties. The largest and most circular eddy boundaries represent Lagrangian Agulhas rings. Circular regions inside these rings with higher temperature and salinity than the surrounding waters can be explained by the coherent eddy boundaries that enclose and isolate the eddy interiors. We compare eddy boundaries at different depths with eddy boundaries obtained from geostrophic velocities derived from the model's sea surface height (SSH). The transport of mass, heat and salinity enclosed by coherent eddies through a section in the Cape basin is quantified and compared to the non-coherent transport by the background flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970014671','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970014671"><span>A priori testing of subgrid-scale models for the velocity-pressure and vorticity-velocity formulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.</p> <p>1996-01-01</p> <p>Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGeo....7.2061I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGeo....7.2061I"><span>Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.</p> <p>2010-07-01</p> <p>Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JPhD...42g5001E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JPhD...42g5001E"><span>A novel eddy current damper: theory and experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebrahimi, Babak; Khamesee, Mir Behrad; Golnaraghi, Farid</p> <p>2009-04-01</p> <p>A novel eddy current damper is developed and its damping characteristics are studied analytically and experimentally. The proposed eddy current damper consists of a conductor as an outer tube, and an array of axially magnetized ring-shaped permanent magnets separated by iron pole pieces as a mover. The relative movement of the magnets and the conductor causes the conductor to undergo motional eddy currents. Since the eddy currents produce a repulsive force that is proportional to the velocity of the conductor, the moving magnet and the conductor behave as a viscous damper. The eddy current generation causes the vibration to dissipate through the Joule heating generated in the conductor part. An accurate, analytical model of the system is obtained by applying electromagnetic theory to estimate the damping properties of the proposed eddy current damper. A prototype eddy current damper is fabricated, and experiments are carried out to verify the accuracy of the theoretical model. The experimental test bed consists of a one-degree-of-freedom vibration isolation system and is used for the frequency and transient time response analysis of the system. The eddy current damper model has a 0.1 m s-2 (4.8%) RMS error in the estimation of the mass acceleration. A damping coefficient as high as 53 Ns m-1 is achievable with the fabricated prototype. This novel eddy current damper is an oil-free, inexpensive damper that is applicable in various vibration isolation systems such as precision machinery, micro-mechanical suspension systems and structure vibration isolation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4740428','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4740428"><span>Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Lixiao; Li, Peiliang; Xie, Shang-Ping; Liu, Qinyu; Liu, Cong; Gao, Wendian</p> <p>2016-01-01</p> <p>While modelling studies suggest that mesoscale eddies strengthen the subduction of mode waters, this eddy effect has never been observed in the field. Here we report results from a field campaign from March 2014 that captured the eddy effects on mode-water subduction south of the Kuroshio Extension east of Japan. The experiment deployed 17 Argo floats in an anticyclonic eddy (AC) with enhanced daily sampling. Analysis of over 3,000 hydrographic profiles following the AC reveals that potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AC core, with enhanced subduction near the southeastern rim of the AC. There, the southward eddy flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by eddy lateral advection is comparable in magnitude to that by the mean flow—an effect that needs to be better represented in climate models. PMID:26829888</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911172M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911172M"><span>Non-local Second Order Closure Scheme for Boundary Layer Turbulence and Convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Bettina; Schneider, Tapio</p> <p>2017-04-01</p> <p>There has been scientific consensus that the uncertainty in the cloud feedback remains the largest source of uncertainty in the prediction of climate parameters like climate sensitivity. To narrow down this uncertainty, not only a better physical understanding of cloud and boundary layer processes is required, but specifically the representation of boundary layer processes in models has to be improved. General climate models use separate parameterisation schemes to model the different boundary layer processes like small-scale turbulence, shallow and deep convection. Small scale turbulence is usually modelled by local diffusive parameterisation schemes, which truncate the hierarchy of moment equations at first order and use second-order equations only to estimate closure parameters. In contrast, the representation of convection requires higher order statistical moments to capture their more complex structure, such as narrow updrafts in a quasi-steady environment. Truncations of moment equations at second order may lead to more accurate parameterizations. At the same time, they offer an opportunity to take spatially correlated structures (e.g., plumes) into account, which are known to be important for convective dynamics. In this project, we study the potential and limits of local and non-local second order closure schemes. A truncation of the momentum equations at second order represents the same dynamics as a quasi-linear version of the equations of motion. We study the three-dimensional quasi-linear dynamics in dry and moist convection by implementing it in a LES model (PyCLES) and compare it to a fully non-linear LES. In the quasi-linear LES, interactions among turbulent eddies are suppressed but nonlinear eddy—mean flow interactions are retained, as they are in the second order closure. In physical terms, suppressing eddy—eddy interactions amounts to suppressing, e.g., interactions among convective plumes, while retaining interactions between plumes and the environment (e.g., entrainment and detrainment). In a second part, we employ the possibility to include non-local statistical correlations in a second-order closure scheme. Such non-local correlations allow to directly incorporate the spatially coherent structures that occur in the form of convective updrafts penetrating the boundary layer. This allows us to extend the work that has been done using assumed-PDF schemes for parameterising boundary layer turbulence and shallow convection in a non-local sense.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930007407','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930007407"><span>A Realizable Reynolds Stress Algebraic Equation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.</p> <p>1993-01-01</p> <p>The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9907D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9907D"><span>The Solomon Sea eddy activity from a 1/36° regional model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques</p> <p>2013-04-01</p> <p>In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is expected to provide observations of small-scale sea level variability, spectral analysis is performed from the 1/36° resolution realistic model in order to characterize the finer scale signals in the Solomon sea region. The preliminary SSH spectral analysis shows a k-4 slope, in good agreement with the suface quasigeostrophic (SQG) turbulence theory. Keywords: Solomon Sea; meso-scale activity; eddy detection, tracking and properties; wavenumber spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JCli....5..271K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JCli....5..271K"><span>The General Circulation Model Response to a North Pacific SST Anomaly: Dependence on Time Scale and Pattern Polarity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kushnir, Yochanan; Lau, Ngar-Cheung</p> <p>1992-04-01</p> <p>A general circulation model was integrated with perpetual January conditions and prescribed sea surface temperature (SST) anomalies in the North Pacific. A characteristic pattern with a warm region centered northeast of Hawaii and a cold region along the western seaboard of North America was alternately added to and subtracted from the climatological SST field. Long 1350-day runs, as well as short 180-day runs, each starting from different initial conditions, were performed. The results were compared to a control integration with climatological SSTs.The model's quasi-stationary response does not exhibit a simple linear relationship with the polarity of the prescribed SST anomaly. In the short runs with a negative SST anomaly over the central ocean, a large negative height anomaly, with an equivalent barotropic vertical structure, occurs over the Gulf of Alaska. For the same SST forcing, the long run yields a different response pattern in which an anomalous high prevails over northern Canada and the Alaskan Peninsula. A significant reduction in the northward heat flux associated with baroclinic eddies and a concomitant reduction in convective heating occur along the model's Pacific storm track. In the runs with a positive SST anomaly over the central ocean, the average height response during the first 90-day period of the short runs is too weak to be significant. In the subsequent 90-day period and in the long run an equivalent barotropic low occurs downstream from the warm SST anomaly. All positive anomaly runs exhibit little change in baroclinic eddy activity or in the patterns of latent heat release. Horizontal momentum transports by baroclinic eddies appear to help sustain the quasi-stationary response in the height field regardless of the polarity of the SST anomaly. These results emphasize the important role played by baroclinic eddies in determining the quasi-stationary response to midlatitude SST anomalies. Differences between the response patterns of the short and long integrations may be relevant to future experimental design for studying air-sea interactions in the extratropies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27958434','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27958434"><span>Detecting defects in marine structures by using eddy current infrared thermography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Swiderski, W</p> <p>2016-12-01</p> <p>Eddy current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of eddy current NDT and IR thermography, this technique uses induced eddy currents to heat test samples. In this way, IR thermography allows the visualization of eddy current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of eddy current IR thermography procedures in application to marine structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910056939&hterms=stress+relationship&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstress%2Brelationship','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910056939&hterms=stress+relationship&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstress%2Brelationship"><span>Eddy damping, backscatter, and subgrid stresses in subgrid modeling of turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhou, YE</p> <p>1991-01-01</p> <p>The Brief Report demonstrates the relationship of eddy-viscosity models to subgrid stresses. A formula that determines the relative importance of the cross stress and the Reynolds stress for the net eddy-damping and backscatter contributions is derived. The cross-stress term with sharp-cut filtering is identified as an important quantity to model. These concepts could prove useful as a basis for constructing specific models for the Reynolds and cross stresses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730019429','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730019429"><span>The relationship between eddy-transport and second-order closure models for stratified media and for vortices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Donaldson, C. D.</p> <p>1973-01-01</p> <p>The question is considered of how complex a model should be used for the calculation of turbulent shear flows. At the present time there are models varying in complexity from very simple eddy-transport models to models in which all the equations for the nonzero second-order correlations are solved simultaneously with the equations for the mean variables. A discussion is presented of the relationship between these two models of turbulent shear flow. Two types of motion are discussed: first, turbulent shear flow in a stratified medium and, second, the motion in a turbulent line vortex. These two cases are instructive because in the first example eddy-transport methods have proven reasonably effective, whereas in the second, they have led to erroneous conclusions. It is not generally appreciated that the simplest form of eddy-transport theory can be derived from second-order closure models of turbulent flow by a suitably limiting process. This limiting process and the suitability of eddy-transport modeling for stratified media and line vortices are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDD28008Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDD28008Y"><span>An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles</p> <p>2014-11-01</p> <p>A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AIPC.1581.1352K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AIPC.1581.1352K"><span>A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krause, T. W.; Babbar, V. K.; Underhill, P. R.</p> <p>2014-02-01</p> <p>Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1030898','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1030898"><span>Best Practices for Evaluating the Capability of Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) Techniques for Damage Characterization (Post-Print)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-02-10</p> <p>a wide range of part, environmental and damage conditions. Best practices of using models are presented for both an eddy current NDE sizing and...to assess the reliability of NDE and SHM characterization capability. Best practices of using models are presented for both an eddy current NDE... EDDY CURRENT NDE CASE STUDY An eddy current crack sizing case study is presented to highlight examples of some of these complex characteristics of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031117&hterms=recruitment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drecruitment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031117&hterms=recruitment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drecruitment"><span>Wave-current interaction study in the Gulf of Alaska for detection of eddies by synthetic aperture radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Peng, Chich Y.; Schumacher, James D.</p> <p>1994-01-01</p> <p>High resolution Esa Remote Sensing Satellite-1 (ERS-1) Synthetic Aperture Radar (SAR) images are used to detect a mesoscale eddy. Such features limit dispersal of pollock larvae and therefore likely influence recruitment of fish in the Gulf of Alaska. During high sea states and high winds, the direct surface signature of the eddy was not clearly visible, but the wave refraction in the eddy area was observed. The rays of the wave field are traced out directly from the SAR image. The ray pattern gives information on the refraction pattern and on the relative variation of the wave energy along a ray through wave current interaction. These observations are simulated by a ray-tracing model which incorporates a surface current field associated with the eddy. The numerical results of the model show that the waves are refracted and diverge in the eddy field with energy density decreasing. The model-data comparison for each ray shows the model predictions are in good agreement with the SAR data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGD....12.1791M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGD....12.1791M"><span>Bayesian inversions of a dynamic vegetation model in four European grassland sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minet, J.; Laloy, E.; Tychon, B.; François, L.</p> <p>2015-01-01</p> <p>Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB dynamic vegetation model (DVM) with ten unknown parameters, using the DREAM(ZS) Markov chain Monte Carlo (MCMC) sampler. We compare model inversions considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a~priori or jointly inferred with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root-mean-square error (RMSE) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19 g C m-2 day-1, 1.04 to 1.56 g C m-2 day-1, and 0.50 to 1.28 mm day-1, respectively. In validation, mismatches between measured and simulated data are larger, but still with Nash-Sutcliffe efficiency scores above 0.5 for three out of the four sites. Although measurement errors associated with eddy covariance data are known to be heteroscedastic, we showed that assuming a classical linear heteroscedastic model of the residual errors in the inversion do not fully remove heteroscedasticity. Since the employed heteroscedastic error model allows for larger deviations between simulated and measured data as the magnitude of the measured data increases, this error model expectedly lead to poorer data fitting compared to inversions considering a constant variance of the residual errors. Furthermore, sampling the residual error variances along with model parameters results in overall similar model parameter posterior distributions as those obtained by fixing these variances beforehand, while slightly improving model performance. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides model behaviour, difference between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics. Lastly, the possibility of finding a common set of parameters among the four experimental sites is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GBioC..29.1421M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GBioC..29.1421M"><span>An observational assessment of the influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Adrian P.; Lévy, Marina; van Gennip, Simon; Pardo, Silvia; Srokosz, Meric; Allen, John; Painter, Stuart C.; Pidcock, Roz</p> <p>2015-09-01</p> <p>Numerous observations demonstrate that considerable spatial variability exists in components of the marine planktonic ecosystem at the mesoscale and submesoscale (100 km-1 km). The causes and consequences of physical processes at these scales ("eddy advection") influencing biogeochemistry have received much attention. Less studied, the nonlinear nature of most ecological and biogeochemical interactions means that such spatial variability has consequences for regional estimates of processes including primary production and grazing, independent of the physical processes. This effect has been termed "eddy reactions." Models remain our most powerful tools for extrapolating hypotheses for biogeochemistry to global scales and to permit future projections. The spatial resolution of most climate and global biogeochemical models means that processes at the mesoscale and submesoscale are poorly resolved. Modeling work has previously suggested that the neglected eddy reactions may be almost as large as the mean field estimates in some cases. This study seeks to quantify the relative size of eddy and mean reactions observationally, using in situ and satellite data. For primary production, grazing, and zooplankton mortality the eddy reactions are between 7% and 15% of the mean reactions. These should be regarded as preliminary estimates to encourage further observational estimates and not taken as a justification for ignoring eddy reactions. Compared to modeling estimates, there are inconsistencies in the relative magnitude of eddy reactions and in correlations which are a major control on their magnitude. One possibility is that models exhibit much stronger spatial correlations than are found in reality, effectively amplifying the magnitude of eddy reactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRC..118..399K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRC..118..399K"><span>Physical characteristics and dynamics of the coastal Latex09 Eddy derived from in situ data and numerical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Dekeyser, I.; Nencioli, F.</p> <p>2013-01-01</p> <p>investigate the dynamics of a coastal anticyclonic eddy in the western part of the Gulf of Lion (GoL) in the northwestern Mediterranean Sea during the Latex campaign in the summer 2009 (Latex09). The sampling strategy combines sea surface temperature satellite imagery, hull-mounted acoustic Doppler current profiler data, conductivity-temperature-depth casts, and drifter trajectories. Our measurements reveal an anticyclonic eddy (Latex09 eddy) with a diameter of 23 km and maximum depth of 31 m, centered at 3°34'E, 42°33'N. We use a high resolution, three-dimensional, primitive equation numerical model to investigate its generation process and evolution. The model is able to reproduce the observed eddy, in particular its size and position. The model results suggest that the Latex09 eddy is induced by a large anticyclonic circulation in the northwestern part of the GoL, pushed and squeezed toward the coast by a meander of the Northern Current. This represents a new generation mechanism that has not been reported before. The post generation dynamics of the eddy is also captured by the model. The collision of the Latex09 eddy with Cape Creus results in a transient structure, which is depicted by the trajectories of two Lagrangian drifters during Latex09. The transient structure and its advection lead to a transfer of mass and vorticity from the GoL to the Catalan shelf, indicating the importance of mesoscale structures in modulating such exchanges in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMagR.265...52T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMagR.265...52T"><span>Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart</p> <p>2016-04-01</p> <p>An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910015372','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910015372"><span>The impact of greenhouse climate change on the energetics and hydrologic processes of mid-latitude transient eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Branscome, Lee E.; Gutowski, William J., Jr.</p> <p>1991-01-01</p> <p>Atmospheric transient eddies contribute significantly to mid-latitude energy and water vapor transports. Changes in the global climate, as induced by greenhouse enhancement, will likely alter transient eddy behavior. Unraveling all the feedbacks that occur in general circulation models (GCMs) can be difficult. The transient eddies are isolated from the feedbacks and are focused on the response of the eddies to zonal-mean climate changes that result from CO2-doubling. Using a primitive-equation spectral model, the impact of climate change on the life cycles of transient eddies is examined. Transient eddy behavior in experiments is compared with initial conditions that are given by the zonal-mean climates of the GCMs with current and doubled amounts of CO2. The smaller meridional temperature gradient in a doubled CO2 climate leads to a reduction in eddy kinetic energy, especially in the subtropics. The decrease in subtropical eddy energy is related to a substantial reduction in equatorward flux of eddy activity during the latter part of the life cycle. The reduction in equatorward energy flux alters the moisture cycle. Eddy meridional transport of water vapor is shifted slightly poleward and subtropical precipitation is reduced. The water vapor transport exhibits a relatively small change in magnitude, compared to changes in eddy energy, due to the compensating effect of higher specific humidity in the doubled-CO2 climate. An increase in high-latitude precipitation is related to the poleward shift in eddy water vapor flux. Surface evaporation amplifies climatic changes in water vapor transport and precipitation in the experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9209G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9209G"><span>Complementary Use of Glider Data, Altimetry, and Model for Exploring Mesoscale Eddies in the Tropical Pacific Solomon Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gourdeau, L.; Verron, J.; Chaigneau, A.; Cravatte, S.; Kessler, W.</p> <p>2017-11-01</p> <p>Mesoscale activity is an important component of the Solomon Sea circulation that interacts with the energetic low-latitude western boundary currents of the South Tropical Pacific Ocean carrying waters of subtropical origin before joining the equatorial Pacific. Mixing associated with mesoscale activity could explain water mass transformation observed in the Solomon Sea that likely impacts El Niño Southern Oscillation dynamics. This study makes synergetic use of glider data, altimetry, and high-resolution model for exploring mesoscale eddies, especially their vertical structures, and their role on the Solomon Sea circulation. The description of individual eddies observed by altimetry and gliders provides the first elements to characterize the 3-D structure of these tropical eddies, and confirms the usefulness of the model to access a more universal view of such eddies. Mesoscale eddies appear to have a vertical extension limited to the Surface Waters (SW) and the Upper Thermocline Water (UTW), i.e., the first 140-150 m depth. Most of the eddies are nonlinear, meaning that eddies can trap and transport water properties. But they weakly interact with the deep New Guinea Coastal Undercurrent that is a key piece of the equatorial circulation. Anticyclonic eddies are particularly efficient to advect salty and warm SW coming from the intrusion of equatorial Pacific waters at Solomon Strait, and to impact the characteristics of the New Guinea Coastal Current. Cyclonic eddies are particularly efficient to transport South Pacific Tropical Water (SPTW) anomalies from the North Vanuatu Jet and to erode by diapycnal mixing the high SPTW salinity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-05-18/pdf/2011-11928.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-05-18/pdf/2011-11928.pdf"><span>76 FR 28632 - Airworthiness Directives; The Boeing Company Model 737-300, -400, and -500 Series Airplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-05-18</p> <p>... doing internal eddy current inspections, or repairing the crack. As an alternative to the external eddy current inspections, the AD provides for internal eddy current and detailed inspections for cracks in the... 5, 2011, we issued Emergency AD 2011-08-51, which requires repetitive external eddy current...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1106N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1106N"><span>Baroclinic Adjustment of the Eddy-Driven Jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novak, Lenka; Ambaum, Maarten H. P.; Harvey, Ben J.</p> <p>2017-04-01</p> <p>The prediction of poleward shift in the midlatitude eddy-driven jets due to anthropogenic climate change is now a robust feature of climate models, but the magnitude of this shift or the processes responsible for it are less certain. This uncertainty comes from the complex response in storm tracks to large-scale forcing and their nonlinear modulation of the jet. This study uses global circulation models to reveal a relationship between eddy growth rate (referred to as baroclinicity) and eddy activity, whereby baroclinicity responds most rapidly to an eddy-dissipating forcing whereas eddy activity responds most rapidly to a baroclinicity-replenishing forcing. This nonlinearity can be generally explained using a two-dimensional dynamical system essentially describing the baroclinic adjustment as a predator-prey relationship. Despite this nonlinearity, the barotropic changes in the eddy-driven jet appear to be of a comparable magnitude for the ranges of both types of forcing tested in this study. It is implied that while changes in eddy activity or baroclinicity may indicate the sign of latitudinal jet shifting, the precise magnitude of this shifting is a result of a balance between these two quantities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OcDyn..61..991G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OcDyn..61..991G"><span>Eddy resolving modelling of the Gulf of Lions and Catalan Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garreau, Pierre; Garnier, Valérie; Schaeffer, Amandine</p> <p>2011-07-01</p> <p>The generation process of strong long-lived eddies flowing southwestwards along the Catalan slope was revealed through numerical modelling and in situ observations. Careful analyses of a particular event in autumn 2007 demonstrated a link between a "LATEX" eddy, which remained in the southwestern corner of the Gulf of Lions and a "CATALAN" eddy, which moved along the Catalan Shelf, since the death of the former gave birth to the latter. The origin of such eddies was found to be an accumulation of potential energy in the southwestern corner of the Gulf of Lions: under the influence of the negative wind stress curl associated with the Tramontane, a warm and less dense water body can be isolated and fed by a coastal current carrying warm water from the Catalan Sea. In summer, this structure can grow and intensify to generate a strong anticyclonic eddy. After a long period of Tramontane, a burst of southeasterlies and northerlies appeared to detach the "LATEX" eddy, which flowed out of the Gulf of Lions, migrating along the Catalan continental slope and continued into the Balearic Sea as the "CATALAN" eddy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910264Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910264Y"><span>Description of the Lofoten Basin Eddy using three years of Seaglider observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Lusha; Bosse, Anthony; Fer, Ilker; Arild Orvik, Kjell; Magnus Bruvik, Erik; Hessevik, Idar; Kvalsund, Karsten</p> <p>2017-04-01</p> <p>The Lofoten Basin of the Norwegian Sea is an area where the warm Atlantic Water is subject to the greatest heat losses anywhere in the Nordic Seas. The region is recognized as an area of intense mesoscale activity, including eddies shed from the Norwegian slope current and a long-lived, deep, anticyclonic eddy residing in the central part of the basin (the Lofoten Basin Eddy, LBE). Here we use observations from Seagliders, collected in five missions between July 2012 and April 2015, to describe the LBE in unprecedented detail. The missions were concentrated to sample the LBE repeatedly, allowing for multiple realizations of radial sections across the eddy. The LBE has a mean radius of 18 ± 4 km, and propagates cyclonically with a mean speed of approximately 3-4 cm s-1. The anticyclonic azimuthal peak velocity varies between 0.5 and 0.7 m s-1, located between 680 and 860 m depth, and 16 and 25 km radial distance to the eddy center. The contribution of geostrophy in the cyclogeostrophic balance is approximately 50%, which indicates the importance of the non-linear effects. The relative vorticity representative of the core exhibits large values between -0.7f to -0.9f, where f is the local Coriolis parameter. The eddy core is long-lived (at least two years from May 2013 to March 2015), has characteristic values of Conservative Temperature of 4.8°C and Absolute Salinity of 35.34 g kg-1, and deepens to approximately 730 m in wintertime. A comparison of the eddy properties to those inferred from automated tracking of satellite altimeter observations shows that while the location of eddy center is detected accurately to within 5 km, the altimeter inferred vorticity is underestimated and the radius overestimated, each approximately by a factor of 2, because of excessive smoothing relative to the small eddy radius.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24880880','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24880880"><span>Characterization and correction of eddy-current artifacts in unipolar and bipolar diffusion sequences using magnetic field monitoring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Rachel W; von Deuster, Constantin; Giese, Daniel; Stoeck, Christian T; Harmer, Jack; Aitken, Andrew P; Atkinson, David; Kozerke, Sebastian</p> <p>2014-07-01</p> <p>Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, eddy currents in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and corrected for using a magnetic field monitoring approach in combination with higher-order image reconstruction. From the field-camera measurements, increased levels of second-order eddy currents were quantified in the unipolar sequence relative to the bipolar diffusion sequence while zeroth and linear orders were found to be similar between both sequences. Second-order image reconstruction based on field-monitoring data resulted in reduced spatial misalignment artifacts and residual displacements of less than 0.43 mm and 0.29 mm (in the unipolar and bipolar sequences, respectively) after second-order eddy-current correction. Results demonstrate the need for second-order correction in unipolar encoding schemes but also show that bipolar sequences benefit from second-order reconstruction to correct for incomplete intrinsic cancellation of eddy-currents. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4297L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4297L"><span>Using eddy covariance to measure the dependence of air-sea CO2 exchange rate on friction velocity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Landwehr, Sebastian; Miller, Scott D.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Ward, Brian</p> <p>2018-03-01</p> <p>Parameterisation of the air-sea gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of air-sea interaction research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for air-sea flux measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC) measurements.Here, we present a revised analysis of eddy covariance measurements of air-sea CO2 and momentum fluxes from the Southern Ocean Surface Ocean Aerosol Production (SOAP) study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u*) than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3-23 m s-1), the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean-Atmosphere Response Experiment (COARE) model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..4312234A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..4312234A"><span>Oceanic eddy detection and lifetime forecast using machine learning methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashkezari, Mohammad D.; Hill, Christopher N.; Follett, Christopher N.; Forget, Gaël.; Follows, Michael J.</p> <p>2016-12-01</p> <p>We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS13E..04D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS13E..04D"><span>Process Contributions to Cool Java SST Anomalies at the Onset of Positive Indian Ocean Dipole Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delman, A. S.; McClean, J.; Sprintall, J.; Talley, L. D.</p> <p>2016-12-01</p> <p>The seasonal upwelling region along the south coast of Java is the first area to exhibit the negative SST anomalies associated with positive Indian Ocean Dipole (pIOD) events. The seasonal cooling in austral winter is driven by local wind forcing; however, recent observational studies have suggested that the anomalous Java cooling that starts during May-July of pIOD years is driven largely by intraseasonal wind variability along the equator, which forces upwelling Kelvin waves that propagate to the coast of Java. Using observations and an eddy-active ocean GCM simulation, the impacts of local wind stress and remotely-forced Kelvin waves are assessed and compared to the effects of mesoscale eddies and outflows from nearby Lombok Strait. A Kelvin wave coefficient computed from altimetry data shows anomalous levels of upwelling Kelvin wave activity during May-July of all pIOD years, indicating that Kelvin waves are an important and perhaps necessary precondition for pIOD events. Correlation analyses also suggest that flows through Lombok Strait and winds along the Indonesian Throughflow may be influential, though their impacts are more difficult to isolate. Composite temperature budgets from the ocean GCM indicate that advection and diabatic vertical mixing are the primary mechanisms for anomalous mixed layer cooling south of Java. The advection term is further decomposed by linearly regressing model velocity and temperature anomalies onto indices representing each process. According to this process decomposition, the local wind stress and Kelvin waves together account for most of the anomalous advective cooling, though the anomalous cooling effect of local wind stress may be overestimated in the model due to wind and stratification biases. The process decomposition also shows a very modest warming effect from mesoscale eddies. These results demonstrate both the IOD's resemblance to ENSO in the importance of Kelvin waves for its evolution, and notable differences from ENSO that arise from the complex interplay of local winds, planetary waves, stratification, eddies, and topography in the Indonesian region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1197090-improving-representation-convective-transport-scale-aware-parameterization-part-ii-analysis-cloud-resolving-model-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1197090-improving-representation-convective-transport-scale-aware-parameterization-part-ii-analysis-cloud-resolving-model-simulations"><span>Improving Representation of Convective Transport for Scale-Aware Parameterization, Part II: Analysis of Cloud-Resolving Model Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Yi-Chin; Fan, Jiwen; Zhang, Guang J.</p> <p>2015-04-27</p> <p>Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the mid-latitude continental and the tropical regions are conducted and evaluated, we examine the scale-dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraftmore » eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of 38 mid-latitude continental convection. We show that the single updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as 3 updrafts can account for the internal variability of updrafts well. Based on evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950020867','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950020867"><span>A cryogenic scan mechanism for use in Fourier transform spectrometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hakun, Claef F.; Blumenstock, Kenneth A.</p> <p>1995-01-01</p> <p>This paper describes the requirements, design, assembly and testing of the linear Scan Mechanism (SM) of the Composite Infrared Spectrometer (CIRS) Instrument. The mechanism consists of an over constrained flexible structure, an innovative moving magnet actuator, passive eddy current dampers, a Differential Eddy Current (DEC) sensor, Optical Limit Sensors (OLS), and a launch lock. Although all the components of the mechanism are discussed, the flexible structure and the magnetic components are the primary focus. Several problems encountered and solutions implemented during the development of the scan mechanism are also described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-01-13/pdf/2011-585.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-01-13/pdf/2011-585.pdf"><span>76 FR 2281 - Airworthiness Directives; BAE SYSTEMS (OPERATIONS) LIMITED Model BAe 146 Airplanes, and Model...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-01-13</p> <p>... this AD, perform an external eddy current inspection of the forward fuselage skin to detect cracking... paragraphs (j)(1), (j)(2), and (j)(3) of this AD, do an external eddy current inspection of the forward... this AD, do an external eddy current inspection of the forward fuselage skin to detect cracking, in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-02-04/pdf/2010-1690.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-02-04/pdf/2010-1690.pdf"><span>75 FR 5692 - Airworthiness Directives; The Boeing Company Model 747-200C and -200F Series Airplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-02-04</p> <p>... all Model 747-200C and -200F series airplanes. This AD requires a high frequency eddy current (HFEC... on July 6, 2009 (74 FR 31894). That NPRM proposed to require a high frequency eddy current inspection..., whichever occurs later: Do an open-hole high frequency eddy current (HFEC) inspection of all the fastener...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29g5105C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29g5105C"><span>Effect of artificial length scales in large eddy simulation of a neutral atmospheric boundary layer flow: A simple solution to log-layer mismatch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatterjee, Tanmoy; Peet, Yulia T.</p> <p>2017-07-01</p> <p>A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27475575','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27475575"><span>3D analysis of eddy current loss in the permanent magnet coupling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Zina; Meng, Zhuo</p> <p>2016-07-01</p> <p>This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CliPD...9..297B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CliPD...9..297B"><span>A Last Glacial Maximum world-ocean simulation at eddy-permitting resolution - Part 1: Experimental design and basic evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballarotta, M.; Brodeau, L.; Brandefelt, J.; Lundberg, P.; Döös, K.</p> <p>2013-01-01</p> <p>Most state-of-the-art climate models include a coarsely resolved oceanic component, which has difficulties in capturing detailed dynamics, and therefore eddy-permitting/eddy-resolving simulations have been developed to reproduce the observed World Ocean. In this study, an eddy-permitting numerical experiment is conducted to simulate the global ocean state for a period of the Last Glacial Maximum (LGM, ~ 26 500 to 19 000 yr ago) and to investigate the improvements due to taking into account these higher spatial scales. The ocean general circulation model is forced by a 49-yr sample of LGM atmospheric fields constructed from a quasi-equilibrated climate-model simulation. The initial state and the bottom boundary condition conform to the Paleoclimate Modelling Intercomparison Project (PMIP) recommendations. Before evaluating the model efficiency in representing the paleo-proxy reconstruction of the surface state, the LGM experiment is in this first part of the investigation, compared with a present-day eddy-permitting hindcast simulation as well as with the available PMIP results. It is shown that the LGM eddy-permitting simulation is consistent with the quasi-equilibrated climate-model simulation, but large discrepancies are found with the PMIP model analyses, probably due to the different equilibration states. The strongest meridional gradients of the sea-surface temperature are located near 40° N and S, this due to particularly large North-Atlantic and Southern-Ocean sea-ice covers. These also modify the locations of the convection sites (where deep-water forms) and most of the LGM Conveyor Belt circulation consequently takes place in a thinner layer than today. Despite some discrepancies with other LGM simulations, a glacial state is captured and the eddy-permitting simulation undertaken here yielded a useful set of data for comparisons with paleo-proxy reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDG34005R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDG34005R"><span>Nonlinear forcing in the resolvent analysis of wall-turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosenberg, Kevin; Lozano Duran, Adrian; Towne, Aaron; McKeon, Beverley</p> <p>2016-11-01</p> <p>The resolvent analysis of McKeon and Sharma formulates the Navier-Stokes equations as an input/output system in which the nonlinearity is treated as a forcing that acts upon the linear dynamics to yield a velocity response across wavenumber/frequency space. DNS data for a low Reynolds number turbulent channel (Reτ = 180) is used to investigate the structure of the nonlinear forcing directly. Specifically, we explore the spatio-temporal scales where the forcing is active and analyze its interplay with the linear amplification mechanisms present in the resolvent operator. This work could provide insight into self-sustaining processes in wall-turbulence and inform the modeling of scale interactions in large eddy simulations. We gratefully acknowledge Stanford's Center for Turbulence Research for support of this work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910059544&hterms=firenze&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dfirenze','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910059544&hterms=firenze&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dfirenze"><span>Three-dimensional Navier-Stokes analysis of turbine passage heat transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ameri, Ali A.; Arnone, Andrea</p> <p>1991-01-01</p> <p>The three-dimensional Reynolds-averaged Navier-Stokes equations are numerically solved to obtain the pressure distribution and heat transfer rates on the endwalls and the blades of two linear turbine cascades. The TRAF3D code which has recently been developed in a joint project between researchers from the University of Florence and NASA Lewis Research Center is used. The effect of turbulence is taken into account by using the eddy viscosity hypothesis and the two-layer mixing length model of Baldwin and Lomax. Predictions of surface heat transfer are made for Langston's cascade and compared with the data obtained for that cascade by Graziani. The comparison was found to be favorable. The code is also applied to a linear transonic rotor cascade to predict the pressure distributions and heat transfer rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950008437','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950008437"><span>Modelling of eddy currents related to large angle magnetic suspension test fixture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Britcher, Colin P.; Foster, Lucas E.</p> <p>1994-01-01</p> <p>This report presents a preliminary analysis of the mathematical modelling of eddy current effects in a large-gap magnetic suspension system. It is shown that eddy currents can significantly affect the dynamic behavior and control of these systems, but are amenable to measurement and modelling. A theoretical framework is presented, together with a comparison of computed and experimental data related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDL26012A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDL26012A"><span>Thermo-fluid-dynamics of turbulent boundary layer over a moving continuous flat sheet in a parallel free stream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team</p> <p>2014-11-01</p> <p>The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.125..106B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.125..106B"><span>Some effects of horizontal discretization on linear baroclinic and symmetric instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barham, William; Bachman, Scott; Grooms, Ian</p> <p>2018-05-01</p> <p>The effects of horizontal discretization on linear baroclinic and symmetric instabilities are investigated by analyzing the behavior of the hydrostatic Eady problem in ocean models on the B and C grids. On the C grid a spurious baroclinic instability appears at small wavelengths. This instability does not disappear as the grid scale decreases; instead, it simply moves to smaller horizontal scales. The peak growth rate of the spurious instability is independent of the grid scale as the latter decreases. It is equal to cf /√{Ri} where Ri is the balanced Richardson number, f is the Coriolis parameter, and c is a nondimensional constant that depends on the Richardson number. As the Richardson number increases c increases towards an upper bound of approximately 1/2; for large Richardson numbers the spurious instability is faster than the Eady instability. To suppress the spurious instability it is recommended to use fourth-order centered tracer advection along with biharmonic viscosity and diffusion with coefficients (Δx) 4 f /(32√{Ri}) or larger where Δx is the grid scale. On the B grid, the growth rates of baroclinic and symmetric instabilities are too small, and converge upwards towards the correct values as the grid scale decreases; no spurious instabilities are observed. In B grid models at eddy-permitting resolution, the reduced growth rate of baroclinic instability may contribute to partially-resolved eddies being too weak. On the C grid the growth rate of symmetric instability is better (larger) than on the B grid, and converges upwards towards the correct value as the grid scale decreases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870050550&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870050550&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DEddy%2Bcurrent"><span>The influence of eddy currents on magnetic actuator performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zmood, R. B.; Anand, D. K.; Kirk, J. A.</p> <p>1987-01-01</p> <p>The present investigation of the effects of eddy currents on EM actuators' transient performance notes that a transfer function representation encompassing a first-order model of the eddy current influence can be useful in control system analysis. The method can be extended to represent the higher-order effects of eddy currents for actuators that cannot be represented by semiinfinite planes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010048921','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010048921"><span>Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)</p> <p>2001-01-01</p> <p>Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhFl...26d5112M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhFl...26d5112M"><span>Quasi-laminar stability and sensitivity analyses for turbulent flows: Prediction of low-frequency unsteadiness and passive control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mettot, Clément; Sipp, Denis; Bézard, Hervé</p> <p>2014-04-01</p> <p>This article presents a quasi-laminar stability approach to identify in high-Reynolds number flows the dominant low-frequencies and to design passive control means to shift these frequencies. The approach is based on a global linear stability analysis of mean-flows, which correspond to the time-average of the unsteady flows. Contrary to the previous work by Meliga et al. ["Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability," Phys. Fluids 24, 061701 (2012)], we use the linearized Navier-Stokes equations based solely on the molecular viscosity (leaving aside any turbulence model and any eddy viscosity) to extract the least stable direct and adjoint global modes of the flow. Then, we compute the frequency sensitivity maps of these modes, so as to predict before hand where a small control cylinder optimally shifts the frequency of the flow. In the case of the D-shaped cylinder studied by Parezanović and Cadot [J. Fluid Mech. 693, 115 (2012)], we show that the present approach well captures the frequency of the flow and recovers accurately the frequency control maps obtained experimentally. The results are close to those already obtained by Meliga et al., who used a more complex approach in which turbulence models played a central role. The present approach is simpler and may be applied to a broader range of flows since it is tractable as soon as mean-flows — which can be obtained either numerically from simulations (Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), unsteady Reynolds-Averaged-Navier-Stokes (RANS), steady RANS) or from experimental measurements (Particle Image Velocimetry - PIV) — are available. We also discuss how the influence of the control cylinder on the mean-flow may be more accurately predicted by determining an eddy-viscosity from numerical simulations or experimental measurements. From a technical point of view, we finally show how an existing compressible numerical simulation code may be used in a black-box manner to extract the global modes and sensitivity maps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CSR....63S..90B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CSR....63S..90B"><span>Transient tidal eddy motion in the western Gulf of Maine, part 1: Primary structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, W. S.; Marques, G. M.</p> <p>2013-07-01</p> <p>High frequency radar-derived surface current maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) eddy motion associated with the strong regional tidal currents. To better elucidate the kinematics and dynamics of these transient tidal eddy motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP current measurements in 13m depth were augmented by historical current measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal currents in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW eddy motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model current comparison required that the model bottom current drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW eddy motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal current maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the eddy motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of eddy motion vorticity; while in the somewhat deeper Outer Zone subregion (33m) bottom current lateral shear and water column stretching/squashing was significant in modulating the eddy motion. We conclude that the transient eddy motions in the GSC region are phase eddies that accompany the change of tide across the GSC and are (1) generated by bottom stress gradients in the shallower nearshore - an issue which needs to be better understood for improved future forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24B2956R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24B2956R"><span>Anisotropic Shear Dispersion Parameterization for Mesoscale Eddy Transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reckinger, S. J.; Fox-Kemper, B.</p> <p>2016-02-01</p> <p>The effects of mesoscale eddies are universally treated isotropically in general circulation models. However, the processes that the parameterization approximates, such as shear dispersion, typically have strongly anisotropic characteristics. The Gent-McWilliams/Redi mesoscale eddy parameterization is extended for anisotropy and tested using 1-degree Community Earth System Model (CESM) simulations. The sensitivity of the model to anisotropy includes a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. The parameterization is further extended to include the effects of unresolved shear dispersion, which sets the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-07-01/pdf/2010-15982.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-07-01/pdf/2010-15982.pdf"><span>75 FR 38061 - Airworthiness Directives; Airbus Model A300 B4-600 Series Airplanes; Model A300 B4-600R Series...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-07-01</p> <p>... dimensional measurement of the holes, and doing corrective actions if necessary; doing an eddy current... dimensional measurement of the holes, doing an eddy current inspection of the holes for cracking, doing a cold... the effective date of this AD, prior to doing any cold working process, determine if an eddy current...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNG43B1574A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNG43B1574A"><span>Nonlinear Eddy-Eddy Interactions in Dry Atmospheres Macroturbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ait Chaalal, F.; Schneider, T.</p> <p>2012-12-01</p> <p>The statistical moment equations derived from the atmospheric equation of motions are not closed. However neglecting the large-scale eddy-eddy nonlinear interactions in an idealized dry general circulation model (GCM), which is equivalent to truncating the moment equations at the second order, can reproduce some of the features of the general circulation ([1]), highlighting the significance of eddy-mean flow interactions and the weakness of eddy-eddy interactions in atmospheric macroturbulence ([2]). The goal of the present study is to provide new insight into the rôle of these eddy-eddy interactions and discuss the relevance of a simple stochastic parametrization to represent them. We investigate in detail the general circulation in an idealized dry GCM, comparing full simulations with simulations where the eddy-eddy interactions are removed. The radiative processes are parametrized through Newtonian relaxation toward a radiative-equilibrium state with a prescribed equator to pole temperature contrast. A convection scheme relaxing toward a prescribed convective vertical lapse rate mimics some aspects of moist convection. The study is performed over a wide range of parameters covering the planetary rotation rate, the equator to pole temperature contrast and the vertical lapse rate. Particular attention is given to the wave-mean flow interactions and to the spectral budget. It is found that the no eddy-eddy simulations perform well when the baroclinic activity is weaker, for example for lower equator to pole temperature contrasts or higher rotation rates: the mean meridional circulation is well reproduced, with realistic eddy-driven jets and energy-containing eddy length scales of the order of the Rossby deformation radius. For a stronger baroclinic activity the no eddy-eddy model does not achieve a realistic isotropization of the eddies, the meridional circulation is compressed in the meridional direction and secondary eddy-driven jets emerge. In addition, the baroclinic wave activity does not reach the upper troposphere in association with a very weak or absent Rossby wave absorption in the upper subtropical troposphere. Understanding these deficiencies and the rôle of the eddy-eddy nonlinear interactions in determining the mean meridional circulation paves the way to the development of stochastic third order moments parametrizations, to eventually build GCMs that directly solve for the flow statistics and that could provide a deeper understanding of anthropogenic and natural climate changes. [1] O'Gorman, P. A., & Schneider, T. 2007, Geophysical Research Letters, 34, 22801 [2] Schneider, T., and C. C. Walker, 2006, Journal of the Atmospheric Sciences, 63, 1569-1586.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002STIN...0307848S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002STIN...0307848S"><span>Wake Vortex Prediction Models for Decay and Transport Within Stratified Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Switzer, George F.; Proctor, Fred H.</p> <p>2002-01-01</p> <p>This paper proposes two simple models to predict vortex transport and decay. The models are determined empirically from results of three-dimensional large eddy simulations, and are applicable to wake vortices out of ground effect and not subjected to environmental winds. The results, from the large eddy simulations assume a range of ambient turbulence and stratification levels. The models and the results from the large eddy simulations support the hypothesis that the decay of the vortex hazard is decoupled from its change in descent rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26852418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26852418"><span>Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart</p> <p>2016-04-01</p> <p>An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26097744','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26097744"><span>A daily global mesoscale ocean eddy dataset from satellite altimetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Faghmous, James H; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin</p> <p>2015-01-01</p> <p>Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993-2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4460914','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4460914"><span>A daily global mesoscale ocean eddy dataset from satellite altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Faghmous, James H.; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin</p> <p>2015-01-01</p> <p>Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993–2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System. PMID:26097744</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1030928','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1030928"><span>Model based Inverse Methods for Sizing Cracks of Varying Shape and Location in Bolt hole Eddy Current (BHEC) Inspections (Postprint)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-02-10</p> <p>using bolt hole eddy current (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole eddy current (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ32003V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ32003V"><span>Subduction at upper ocean fronts by baroclinic instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verma, Vicky; Pham, Hieu T.; Radhakrishnan, Anand; Sarkar, Sutanu</p> <p>2017-11-01</p> <p>Large eddy simulations of upper ocean fronts that are initially in geostrophic balance show that the linear and subsequent nonlinear evolution of baroclinic intability are effective in restratifying the front. During the growth of baroclinic instability, the front develops thin regions with enhanced vertical vorticity, i.e., vorticity filaments. Moreover, the vorticity filaments organize into submesoscale eddies. The subsequent frontal dynamics is dominated by the vorticity filaments and the submesoscale eddies. Diagnosis of the horizontal force balance reveals that the regions occupied by these coherent structures have significantly large imbalance, and are characterized by large vertical velocity. High density fluid from the heavier side of the front is subducted by the vertical velocity to the bottom of the mixed layer. The process of subduction is illustrated by Lagrangian tracking of fluid particles released at a fixed depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.3517L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.3517L"><span>Dynamical analysis of a satellite-observed anticyclonic eddy in the northern Bering Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yineng; Li, Xiaofeng; Wang, Jia; Peng, Shiqiu</p> <p>2016-05-01</p> <p>The characteristics and evolution of a satellite-observed anticyclonic eddy in the northern Bering Sea during March and April 1999 are investigated using a three-dimensional Princeton Ocean Model (POM). The anticyclonic-like current pattern and asymmetric feature of the eddy were clearly seen in the synthetic aperture radar (SAR), sea surface temperature, and ocean color images in April 1999. The results from model simulation reveal the three-dimensional structure of the anticyclonic eddy, its movement, and dissipation. Energy analysis indicates that the barotropic instability (BTI) is the main energy source for the growth of the anticyclonic eddy. The momentum analysis further reveals that the larger magnitude of the barotropic pressure gradient in the meridional direction causes the asymmetry of the anticyclonic eddy in the zonal and meridional directions, while the different magnitudes of the meridional baroclinic pressure gradient are responsible for the different intensity of currents between the northern and southern parts of the anticyclonic eddy. This article was corrected on 23 JUL 2016. See the end of the full text for details.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL28008S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL28008S"><span>Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel</p> <p>2017-11-01</p> <p>We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP53E1038K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP53E1038K"><span>Reynolds Stress Distributions and the Measurement and Calculation of Eddy Viscosity in Gravity Currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelly, R. W.; Chalk, C.; Dorrell, R. M.; Peakall, J.; Burns, A. D.; Keevil, G. M.; Thomas, R. E.; Williams, G.</p> <p>2016-12-01</p> <p>In the natural environment, gravity currents transport large volumes of sediment great distances and are often considered one of the most important mechanisms for sediment transport in ocean basins. Deposits from many individual submarine gravity currents, turbidites, ultimately form submarine fan systems. These are the largest sedimentary systems on the planet and contain valuable hydrocarbon reserves. Moreover, the impact of these currents on submarine technologies and seafloor infrastructure can be devastating and therefore they are of significant interest to a wide range of industries. Here we present experimental, numerical and theoretical models of time-averaged turbulent shear stresses, i.e. Reynolds stresses. Reynolds stresses can be conceptually parameterised by an eddy viscosity parameter that relates chaotic fluid motion to diffusive type processes. As such, it is a useful parameter for indicating the extent of internal mixing and is used extensively in both numerical and analytical modelling of both open-channel and gravity driven flows. However, a lack of knowledge of the turbulent structure of gravity currents limits many hydro- and morphodynamic models. High resolution 3-dimensional experimental velocity data, gathered using acoustic Doppler profiling velocimetry, enabled direct calculation of stresses and eddy viscosity. Comparison of experimental data to CFD and analytical models allowed the testing of eddy viscosity-based turbulent mixing models. The calculated eddy viscosity profile is parabolic in nature in both the upper and lower shear layers. However, an apparent breakdown in the Boussinesq hypothesis (used to calculate the eddy viscosity and upon which many numerical models are based) is observed in the region of the current around the velocity maximum. With the use of accompanying density data it is suggested that the effect of stratification on eddy viscosity is significant and alternative formulations may be required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2290W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2290W"><span>Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj</p> <p>2016-04-01</p> <p>In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GBioC..32..226F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GBioC..32..226F"><span>Biogeochemical Role of Subsurface Coherent Eddies in the Ocean: Tracer Cannonballs, Hypoxic Storms, and Microbial Stewpots?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frenger, Ivy; Bianchi, Daniele; Stührenberg, Carolin; Oschlies, Andreas; Dunne, John; Deutsch, Curtis; Galbraith, Eric; Schütte, Florian</p> <p>2018-02-01</p> <p>Subsurface eddies are known features of ocean circulation, but the sparsity of observations prevents an assessment of their importance for biogeochemistry. Here we use a global eddying (0.1°) ocean-biogeochemical model to carry out a census of subsurface coherent eddies originating from eastern boundary upwelling systems (EBUS) and quantify their biogeochemical effects as they propagate westward into the subtropical gyres. While most eddies exist for a few months, moving over distances of hundreds of kilometers, a small fraction (<5%) of long-lived eddies propagates over distances greater than 1,000 km, carrying the oxygen-poor and nutrient-rich signature of EBUS into the gyre interiors. In the Pacific, transport by subsurface coherent eddies accounts for roughly 10% of the offshore transport of oxygen and nutrients in pycnocline waters. This "leakage" of subsurface waters can be a significant fraction of the transport by nutrient-rich poleward undercurrents and may contribute to the well-known reduction of productivity by eddies in EBUS. Furthermore, at the density layer of their cores, eddies decrease climatological oxygen locally by close to 10%, thereby expanding oxygen minimum zones. Finally, eddies represent low-oxygen extreme events in otherwise oxygenated waters, increasing the area of hypoxic waters by several percent and producing dramatic short-term changes that may play an important ecological role. Capturing these nonlocal effects in global climate models, which typically include noneddying oceans, would require dedicated parameterizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....14680S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....14680S"><span>Maximum entropy production principle for geostrophic turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sommeria, J.; Bouchet, F.; Chavanis, P. H.</p> <p>2003-04-01</p> <p>In 2D turbulence, complex stirring leads to the formation of steady organized states, once fine scale fluctuations have been filtered out. This self-organization can be explained in terms of statistical equilibrium for vorticity, as the most likely outcome of vorticity parcel rearrangements with the constraints of the conservation laws. A mixing entropy describing the vorticity rearrangements is introduced. Extension to the shallow water system has been proposed by Chavanis P.H. and Sommeria J. (2002), Phys. Rev. E. Generalization to multi-layer geostrophic flows is formally straightforward. Outside equilibrium, eddy fluxes should drive the system toward equilibrium, in the spirit of non equilibrium linear thermodynamics. This can been formalized in terms of a principle of maximum entropy production (MEP), as shown by Robert and Sommeria (1991), Phys. Rev. Lett. 69. Then a parameterization of eddy fluxes is obtained, involving an eddy diffusivity plus a drift term acting at larger scale. These two terms balance each other at equilibrium, resulting in a non trivial steady flow, which is the mean state of the statistical equilibrium. Applications of this eddy parametrization will be presented, in the context of oceanic circulation and Jupiter's Great Red Spot. Quantitative tests will be discussed, obtained by comparisons with direct numerical simulations. Kinetic models, inspired from plasma physics, provide a more precise description of the relaxation toward equilibrium, as shown by Chavanis P.H. 2000 ``Quasilinear theory of the 2D Euler equation'', Phys. Rev. Lett. 84. This approach provides relaxation equations with a form similar to the MEP, but not identical. In conclusion, the MEP provides the right trends of the system but its precise justification remains elusive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009IJTIA.129..342S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009IJTIA.129..342S"><span>Rail Brake System Using a Linear Induction Motor for Dynamic Braking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo</p> <p></p> <p>One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1122319-tidal-residual-eddies-effect-water-exchange-puget-sound','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1122319-tidal-residual-eddies-effect-water-exchange-puget-sound"><span>Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Zhaoqing; Wang, Taiping</p> <p></p> <p>Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies existmore » in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29657336','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29657336"><span>The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao</p> <p>2017-08-01</p> <p>Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950036344&hterms=slope+stability&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dslope%2Bstability','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950036344&hterms=slope+stability&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dslope%2Bstability"><span>The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhou, Shuntai; Stone, Peter H.</p> <p>1993-01-01</p> <p>Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23818162','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23818162"><span>Multilayer integral method for simulation of eddy currents in thin volumes of arbitrary geometry produced by MRI gradient coils.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sanchez Lopez, Hector; Freschi, Fabio; Trakic, Adnan; Smith, Elliot; Herbert, Jeremy; Fuentes, Miguel; Wilson, Stephen; Liu, Limei; Repetto, Maurizio; Crozier, Stuart</p> <p>2014-05-01</p> <p>This article aims to present a fast, efficient and accurate multi-layer integral method (MIM) for the evaluation of complex spatiotemporal eddy currents in nonmagnetic and thin volumes of irregular geometries induced by arbitrary arrangements of gradient coils. The volume of interest is divided into a number of layers, wherein the thickness of each layer is assumed to be smaller than the skin depth and where one of the linear dimensions is much smaller than the remaining two dimensions. The diffusion equation of the current density is solved both in time-harmonic and transient domain. The experimentally measured magnetic fields produced by the coil and the induced eddy currents as well as the corresponding time-decay constants were in close agreement with the results produced by the MIM. Relevant parameters such as power loss and force induced by the eddy currents in a split cryostat were simulated using the MIM. The proposed method is capable of accurately simulating the current diffusion process inside thin volumes, such as the magnet cryostat. The method permits the priori-calculation of optimal pre-emphasis parameters. The MIM enables unified designs of gradient coil-magnet structures for an optimal mitigation of deleterious eddy current effects. Copyright © 2013 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31A1362B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31A1362B"><span>Impact of Preferred Eddy Tracks on Transport and Mixing in the Eastern South Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belmadani, A.; Donoso, D.; Auger, P. A.; Chaigneau, A.</p> <p>2017-12-01</p> <p>Mesoscale eddies, which play a fundamental role in the transport of mass, heat, nutrients, and biota across the oceans, have been suggested to propagate preferently along specific tracks. These preferred pathways, also called eddy trains, are near-zonal due to westward drift of individual vortices, and tend to be polarized (ie alternatively dominated by anticyclonic/cyclonic eddies), coinciding with the recently discovered latent striations (quasi-zonal mesoscale jet-like features). While significant effort has been made to understand the dynamics of striations and their interplay with mesoscale eddies, the impact of repeated eddy tracks on physical (temperature, salinity), biogeochemical (oxygen, carbon, nutrients) and other tracers (e.g. chlorophyll, marine debris) has received little attention. Here we report on the results of numerical modeling experiments that simulate the impact of preferred eddy tracks on the transport and mixing of water particles in the Eastern South Pacific off Chile. A 30-year interannual simulation of the oceanic circulation in this region has been performed over 1984-2013 with the ROMS (Regional Oceanic Modeling System) at an eddy-resolving resolution (10 km). Objective tracking of mesoscale coherent vortices is obtained using automated methods, allowing to compute the contribution of eddies to the ocean circulation. Preferred eddy tracks are further isolated from the more random eddies, by comparing the distances between individual tracks and the striated pattern in long-term mean eddy polarity with a least-squares approach. The remaining non-eddying flow may also be decomposed into time-mean and anomalous circulation, and/or small- and large-scale circulation. Neutrally-buoyant Lagrangian floats are then released uniformly into the various flow components as well as the total flow, and tracked forward in time with the ARIANE software. The dispersion patterns of water particles are used to estimate the respective contributions of organized and random eddies, mean flow, large-scale perturbations etc. to mixing properties and transport pathways. Float release into the full flow inside selected vortices is also used to document the impact of eddy trains on the transformation of water masses inferred from changes in temperature/salinity along float trajectories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......129L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......129L"><span>Fast solver for large scale eddy current non-destructive evaluation problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lei, Naiguang</p> <p></p> <p>Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two-dimension raster scan data typically takes one to two days on a dedicated eight-core PC. A novel direct integral solver for eddy current problems and GPU-based implementation is also investigated in this research to reduce the computational time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1057033','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1057033"><span>Calculation of Eddy Currents In the CTH Vacuum Vessel and Coil Frame</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>A. Zolfaghari, A. Brooks, A. Michaels, J. Hanson, and G. Hartwell</p> <p>2012-09-25</p> <p>Knowledge of eddy currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the eddy currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B ≤ 0.7 T), the primary driver of the eddy currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are usedmore » to calculate eddy current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the eddy currents in the structures. SPARK code was used to calculate the eddy currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the eddy currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. __________________________________________________« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24998887','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24998887"><span>Using eddy currents for noninvasive in vivo pH monitoring for bone tissue engineering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beck-Broichsitter, Benedicta E; Daschner, Frank; Christofzik, David W; Knöchel, Reinhard; Wiltfang, Jörg; Becker, Stephan T</p> <p>2015-03-01</p> <p>The metabolic processes that regulate bone healing and bone induction in tissue engineering models are not fully understood. Eddy current excitation is widely used in technical approaches and in the food industry. The aim of this study was to establish eddy current excitation for monitoring metabolic processes during heterotopic osteoinduction in vivo. Hydroxyapatite scaffolds were implanted into the musculus latissimus dorsi of six rats. Bone morphogenetic protein 2 (BMP-2) was applied 1 and 2 weeks after implantation. Weekly eddy current excitation measurements were performed. Additionally, invasive pH measurements were obtained from the scaffolds using fiber optic detection devices. Correlations between the eddy current measurements and the metabolic values were calculated. The eddy current measurements and pH values decreased significantly in the first 2 weeks of the study, followed by a steady increase and stabilization at higher levels towards the end of the study. The measurement curves and statistical evaluations indicated a significant correlation between the resonance frequency values of the eddy current excitation measurements and the observed pH levels (p = 0.0041). This innovative technique was capable of noninvasively monitoring metabolic processes in living tissues according to pH values, showing a direct correlation between eddy current excitation and pH in an in vivo tissue engineering model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/862902','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/862902"><span>Eddy current gauge for monitoring displacement using printed circuit coil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Visioli, Jr., Armando J.</p> <p>1977-01-01</p> <p>A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24B2941S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24B2941S"><span>A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutyrin, G.</p> <p>2016-02-01</p> <p>In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.1213R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.1213R"><span>Modeling the Wake of the Marquesas Archipelago</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raapoto, H.; Martinez, E.; Petrenko, A.; Doglioli, A. M.; Maes, C.</p> <p>2018-02-01</p> <p>In this study, a high-resolution (˜2.5 km) numerical model was set up to investigate the fine-scale activity within the region of the Marquesas archipelago. This has never been performed before. The robustness of the model results is assessed by comparison with remote sensing and in situ observations. Our results highlight regions of warm waters leeward of the different islands with high eddy kinetic energy (EKE) on their sides. The analysis of energy conversion terms reveals contributions to EKE variability by wind, baroclinic, and barotropic instabilities. The use of a geometry-based eddy detection algorithm reveals the generation of cyclonic and anticyclonic eddies in the wake of the largest islands, with both an inshore and offshore effect. Maximum eddy activity occurs in austral winter following the seasonality of both wind stress and EKE intensity. Most eddies have a radius between 20 and 30 km and are generally cyclonic rather than anticyclonic. Significant vertical velocities are observed in the proximity of the islands, associated with topographically induced flow separation. Eddy trapping inshore waters are advected offshore in the wake of the islands. The overall influence of these fine-scale dynamics could explain the strong biological enhancement of the archipelago.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31A1381R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31A1381R"><span>Modelling the Wake of the Marquesas Archipelago</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raapoto, H.; Martinez, E. C.; Petrenko, A. A.; Doglioli, A. M.; Maes, C.</p> <p>2017-12-01</p> <p>In this study, a high-resolution ( 2.5 km) numerical model was set up to investigate the fine-scale activity within the region of the Marquesas archipelago where a strong biological enhancement occurs. This has never been performed before. The robustness of the model results is assessed by comparison with remote sensing and in situ observations. Our results highlight regions of warm waters leeward of the different islands with high eddy kinetic energy (EKE) on their sides. The analysis of energy conversion terms reveals contributions to EKE variability by wind, baroclinic and barotropic instabilities. The use of a geometry-based eddy detection algorithm reveals eddy generation in the wake of the largest islands, with both an inshore and offshore effect. Maximum eddy activity occurs in austral winter following the seasonality of both wind stress and EKE intensity. Most eddies have a radius between 20 and 30 km and are generally cyclonic rather than anticyclonic. Significant vertical velocities are observed in the proximity of the islands, associated with topography induced flow separation. Eddy trapping inshore waters are advected offshore in the wake of the islands. The overall influence of these fine-scale dynamics could explain the strong biological enhancement of the archipelago.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930018371','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930018371"><span>A constitutive model for the forces of a magnetic bearing including eddy currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, D. L.; Hebbale, K. V.</p> <p>1993-01-01</p> <p>A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67.1313C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67.1313C"><span>Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro</p> <p>2017-10-01</p> <p>The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS31C2027L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS31C2027L"><span>The Dynamics of Eddy Fluxes and Jet-Scale Overturning Circulations and its Impact on the Mixed Layer Formation in the Indo-Western Pacific Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LI, Q.; Lee, S.</p> <p>2016-12-01</p> <p>The relationship between Antarctic Circumpolar Current (ACC) jets and eddy fluxes in the Indo-western Pacific Southern Ocean (90°E-145°E) is investigated using an eddy-resolving model. In this region, transient eddy momentum flux convergence occurs at the latitude of the primary jet core, whereas eddy buoyancy flux is located over a broader region that encompasses the jet and the inter-jet minimum. In a small sector (120°E-144°E) where jets are especially zonal, a spatial and temporal decomposition of the eddy fluxes further reveals that fast eddies act to accelerate the jet with the maximum eddy momentum flux convergence at the jet center, while slow eddies tend to decelerate the zonal current at the inter-jet minimum. Transformed Eulerian mean (TEM) diagnostics reveals that the eddy momentum contribution accelerates the jets at all model depths, whereas the buoyancy flux contribution decelerates the jets at depths below 600 m. In ocean sectors where the jets are relatively well defined, there exist jet-scale overturning circulations (JSOC) with sinking motion on the equatorward flank, and rising motion on the poleward flank of the jets. The location and structure of these thermally indirect circulations suggest that they are driven by the eddy momentum flux convergence, much like the Ferrel cell in the atmosphere. This study also found that the JSOC plays a significant role in the oceanic heat transport and that it also contributes to the formation of a thin band of mixed layer that exists on the equatorward flank of the Indo-western Pacific ACC jets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003IJCFD..17..433C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003IJCFD..17..433C"><span>Detached-Eddy Simulations of Attached and Detached Boundary Layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caruelle, B.; Ducros, F.</p> <p>2003-12-01</p> <p>This article presents Detached-Eddy Simulations (DESs) of attached and detached turbulent boundary layers. This hybrid Reynolds Averaged Navier-Stokes (RANS) / Large Eddy Simulation (LES) model goes continuously from RANS to LES according to the mesh definition. We propose a parametric study of the model over two "academic" configurations, in order to get information on the influence of the mesh to correctly treat complex flow with attached and detached boundary layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050061082','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050061082"><span>Study of Near-Surface Models in Large-Eddy Simulations of a Neutrally Stratified Atmospheric Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.</p> <p>2004-01-01</p> <p>Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..264..465M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..264..465M"><span>The solsticial pause on Mars: 2 modelling and investigation of causes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mulholland, David P.; Lewis, Stephen R.; Read, Peter L.; Madeleine, Jean-Baptiste; Forget, Francois</p> <p>2016-01-01</p> <p>The martian solsticial pause, presented in a companion paper (Lewis et al., 2016), was investigated further through a series of model runs using the UK version of the LMD/UK Mars Global Climate Model. It was found that the pause could not be adequately reproduced if radiatively active water ice clouds were omitted from the model. When clouds were used, along with a realistic time-dependent dust opacity distribution, a substantial minimum in near-surface transient eddy activity formed around solstice in both hemispheres. The net effect of the clouds in the model is, by altering the thermal structure of the atmosphere, to decrease the vertical shear of the westerly jet near the surface around solstice, and thus reduce baroclinic growth rates. A similar effect was seen under conditions of large dust loading, implying that northern midlatitude eddy activity will tend to become suppressed after a period of intense flushing storm formation around the northern cap edge. Suppression of baroclinic eddy generation by the barotropic component of the flow and via diabatic eddy dissipation were also investigated as possible mechanisms leading to the formation of the solsticial pause but were found not to make major contributions. Zonal variations in topography were found to be important, as their presence results in weakened transient eddies around winter solstice in both hemispheres, through modification of the near-surface flow. The zonal topographic asymmetry appears to be the primary reason for the weakness of eddy activity in the southern hemisphere relative to the northern hemisphere, and the ultimate cause of the solsticial pause in both hemispheres. The meridional topographic gradient was found to exert a much weaker influence on near-surface transient eddies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GMS...177.....H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GMS...177.....H"><span>Ocean Modeling in an Eddying Regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hecht, Matthew W.; Hasumi, Hiroyasu</p> <p></p> <p>This monograph is the first to survey progress in realistic simulation in a strongly eddying regime made possible by recent increases in computational capability. Its contributors comprise the leading researchers in this important and constantly evolving field. Divided into three parts, • Oceanographic Processes and Regimes: Fundamental Questions • Ocean Dynamics and State: From Regional to Global Scale, and • Modeling at the Mesoscale: State of the Art and Future Directions the volume details important advances in physical oceanography based on eddy resolving ocean modeling. It captures the state of the art and discusses issues that ocean modelers must consider in order to effectively contribute to advancing current knowledge, from subtleties of the underlying fluid dynamical equations to meaningful comparison with oceanographic observations and leading-edge model development. It summarizes many of the important results which have emerged from ocean modeling in an eddying regime, for those interested broadly in the physical science. More technical topics are intended to address the concerns of those actively working in the field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820003522','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820003522"><span>Higher-level simulations of turbulent flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ferziger, J. H.</p> <p>1981-01-01</p> <p>The fundamentals of large eddy simulation are considered and the approaches to it are compared. Subgrid scale models and the development of models for the Reynolds-averaged equations are discussed as well as the use of full simulation in testing these models. Numerical methods used in simulating large eddies, the simulation of homogeneous flows, and results from full and large scale eddy simulations of such flows are examined. Free shear flows are considered with emphasis on the mixing layer and wake simulation. Wall-bounded flow (channel flow) and recent work on the boundary layer are also discussed. Applications of large eddy simulation and full simulation in meteorological and environmental contexts are included along with a look at the direction in which work is proceeding and what can be expected from higher-level simulation in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008DSRII..55.1389J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008DSRII..55.1389J"><span>The distributions of, and relationship between, 3He and nitrate in eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jenkins, W. J.; McGillicuddy, D. J., Jr.; Lott, D. E., III</p> <p>2008-05-01</p> <p>We present and discuss the distribution of 3He and its relationship to nutrients in two eddies (cyclone C1 and anticyclone A4) with a view towards examining eddy-related mechanisms whereby nutrients are transported from the upper 200-300 m into the euphotic zone of the Sargasso Sea. The different behavior of these tracers in the euphotic zone results in changes in their distributions and relationships that may provide important clues as to the nature of physical and biological processes involved. The cyclonic eddy (C1) is characterized by substantial 3He excesses within the euphotic zone. The distribution of this excess 3He is strongly suggestive of both past and recent ongoing deep-water injection into the euphotic zone. Crude mass balance calculations suggest that an average of approximately 1.4±0.7 mol m -2 of nitrate has been introduced into the euphotic zone of eddy C1, consistent with the integrated apparent oxygen utilization anomaly in the aphotic zone below. The 3He-NO 3 relationship within the eddy deviates substantially from the linear thermocline trend, suggestive of incomplete drawdown of nutrients and/or substantial mixing between euphotic and aphotic zone waters. Anticyclone (A4) displays a simpler 3He-NO 3 relationship, but is relatively impoverished in euphotic zone excess 3He. We suggest that because of the relatively strong upwelling and lateral divergence of water the residence time of upwelled 3He is relatively short within the euphotic zone of this eddy. An estimate of the recently upwelled nutrient inventory, based on the excess 3He observed in A4's lower euphotic zone, is stoichiometrically consistent with the oxygen maximum observed in the euphotic zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BGeo...13.1049S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BGeo...13.1049S"><span>Challenges in modeling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.</p> <p>2016-02-01</p> <p>Recent years have shown an increase in harmful algal blooms in the Northwest Arabian Sea and Gulf of Oman, raising the question of whether climate change will accelerate this trend. This has led us to examine whether the Earth System Models used to simulate phytoplankton productivity accurately capture bloom dynamics in this region - both in terms of the annual cycle and interannual variability. Satellite data (SeaWIFS ocean color) show two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. On a regional scale, interannual variability of the wintertime bloom is dominated by cyclonic eddies which vary in location from one year to another. Two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The models fail to capture both the magnitude of the wintertime bloom and its modulation by eddies in part because of their failure to capture the observed sharp thermocline and/or nutricline in this region. When CM2.6 is able to capture such features in the Southern part of the basin, eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). For the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf - something that is poorly done in global models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDL35005A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDL35005A"><span>Fluid-structure interaction of turbulent boundary layer over a compliant surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anantharamu, Sreevatsa; Mahesh, Krishnan</p> <p>2016-11-01</p> <p>Turbulent flows induce unsteady loads on surfaces in contact with them, which affect material stresses, surface vibrations and far-field acoustics. We are developing a numerical methodology to study the coupled interaction of a turbulent boundary layer with the underlying surface. The surface is modeled as a linear elastic solid, while the fluid follows the spatially filtered incompressible Navier-Stokes equations. An incompressible Large Eddy Simulation finite volume flow approach based on the algorithm of Mahesh et al. is used in the fluid domain. The discrete kinetic energy conserving property of the method ensures robustness at high Reynolds number. The linear elastic model in the solid domain is integrated in space using finite element method and in time using the Newmark time integration method. The fluid and solid domain solvers are coupled using both weak and strong coupling methods. Details of the algorithm, validation, and relevant results will be presented. This work is supported by NSWCCD, ONR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960029062','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960029062"><span>On the Use of Linearized Euler Equations in the Prediction of Jet Noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mankbadi, Reda R.; Hixon, R.; Shih, S.-H.; Povinelli, L. A.</p> <p>1995-01-01</p> <p>Linearized Euler equations are used to simulate supersonic jet noise generation and propagation. Special attention is given to boundary treatment. The resulting solution is stable and nearly free from boundary reflections without the need for artificial dissipation, filtering, or a sponge layer. The computed solution is in good agreement with theory and observation and is much less CPU-intensive as compared to large-eddy simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.4444C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.4444C"><span>The formation processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Yu-Lin; Miyazawa, Yasumasa; Oey, Lie-Yauw; Kodaira, Tsubasa; Huang, Shihming</p> <p>2017-05-01</p> <p>In this study, we investigate the processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean based on the in situ chlorophyll data obtained from 52 cruises conducted by the Japan Meteorological Agency together with idealized numerical simulations. Both the observation and model results suggest that chlorophyll/phytoplankton concentrations are higher in cold than in warm eddies in near-surface water (z > -70 m). In the idealized simulation, the isopycnal movements associated with upwelling/downwelling transport phytoplankton and nutrients to different vertical depths during eddy formation (stage A). Phytoplankton and nutrients in cold eddies is transported toward shallower waters while those in warm eddies move toward deeper waters. In the period after the eddy has formed (stage B), sunlight and initially upwelled nutrients together promote the growth of phytoplankton in cold eddies. Phytoplankton in warm eddies decays due to insufficient sunlight in deeper waters. In stage B, upwelling and downwelling coexist in both warm and cold eddies, contributing nearly equally to vertical displacement. The upwelling/downwelling-induced nitrate flux accounts for a small percentage (˜3%) of the total nitrate flux in stage B. The vertical velocity caused by propagating eddies, therefore, is not the primary factor causing differences in phytoplankton concentrations between stage-B warm and cold eddies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-06-29/pdf/2011-16368.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-06-29/pdf/2011-16368.pdf"><span>76 FR 38072 - Airworthiness Directives; The Boeing Company Model 777 Airplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-06-29</p> <p>... above. This proposed AD would require repetitive detailed inspection and high frequency eddy current... high frequency eddy current (HFEC) inspection for cracks in the WCS web pockets of spanwise beams... = 160 frequency eddy current inspection per hour = $4,250 inspection cycle. airplanes x $4,250 of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-06-25/pdf/2012-14546.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-06-25/pdf/2012-14546.pdf"><span>77 FR 37788 - Airworthiness Directives; Fokker Services B.V. Airplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-06-25</p> <p>... Model F.28 Mark 0100 airplane. This AD requires repetitive low frequency eddy current inspections of the... described above, this [EASA] AD requires repetitive [low frequency eddy current] inspections of the forward... eddy current inspection of the forward fuselage butt-joints for cracks, in accordance with the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890002010','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890002010"><span>Derivation of revised formulae for eddy viscous forces used in the ocean general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Ru Ling</p> <p>1988-01-01</p> <p>Presented is a re-derivation of the eddy viscous dissipation tensor commonly used in present oceanographic general circulation models. When isotropy is imposed, the currently-used form of the tensor fails to return to the laplacian operator. In this paper, the source of this error is identified in a consistent derivation of the tensor in both rectangular and earth spherical coordinates, and the correct form of the eddy viscous tensor is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......221G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......221G"><span>Effects of Saharan Mineral Dust Aerosols on the Dynamics of an Idealized African Easterly Jet-African Easterly Wave System over North Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grogan, Dustin Francis Phillip</p> <p></p> <p>The central objective of this work is to examine the direct radiative effects of Saharan mineral dust aerosols on the dynamics of African easterly waves (AEWs) and the African easterly jet (AEJ). Achieving this objective is built around two tasks that use the Weather Research and Forecasting (WRF) model coupled to an online dust model (WRF-dust model). The first task (Chapter 2) examines the linear dynamics of AEWs; the second task (Chapter 3) examines the nonlinear evolution of AEWs and their interactions with the AEJ. In Chapter 2, the direct radiative effects of dust on the linear dynamics of AEWs are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the generation of eddy available potential energy (APE) by the dust field. The generation of eddy APE is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis calculates the linear dynamics of AEWs using zonally averaged basic states for wind, temperature and dust consistent with summertime conditions over North Africa. For the fastest growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from tau=1.0 to tau=2.5. A local energetics analysis shows that for tau=1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation of APE and conversions of energy are co-located and occur where the meridional dust gradient is maximized near the critical layer, i.e., where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis. In Chapter 3, the direct radiative effects of dust on the evolution of AEJ-AEW system are examined using the WRF-dust model. The model is initialized with zonal-mean distributions of wind, temperature and dust used in linear study (Chapter 2). The dust modifies the lifecycle of the AEWs in the following way: the domain-averaged eddy kinetic energy (EKE) is enhanced during the linear and nonlinear growth phases, reaching a larger peak amplitude that subsequently decays more rapidly, eventually equilibrating at lower amplitude. The increase in EKE during the growth phases is due to local increases in barotropic energy conversions in the dust plume north of the AEJ. The dust-modified, rapidly decaying phase is primarily associated with enhanced barotropic decay that occurs near the top of the plume north of the AEJ. The timing of peak EKE depends on the initial dust concentration. Throughout the evolution of the AEJ-AEW system, the dust increases the maximum zonal-mean wind speeds. The increase is due to the dust-modified mean meridional circulation during the AEW growth phase and the dust-modified wave fluxes during the AEW decay phase. During AEW growth, the dust-modified maximum wind speeds are also displaced farther southward and upward, which is due to the enhanced wave fluxes decelerating the flow more efficiently north of the AEJ. These changes to the AEJ structure affect the critical surface, which expands vertically and meridionally as the AEW grows to finite amplitude. The dust-modified effects on the evolution of the AEJ-AEW system are discussed in light of tropical cyclogenesis. By better understanding the direct radiative effects of dust on the AEJ-AEW system, we can expect improvements in the modeling, forecasting and understanding of the connection between AEWs and the meteorology over North Africa and the Eastern Atlantic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNG13A..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNG13A..05W"><span>Ingredients of the Eddy Soup: A Geometric Decomposition of Eddy-Mean Flow Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waterman, S.; Lilly, J. M.</p> <p>2014-12-01</p> <p>Understanding eddy-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing eddy effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/eddy stress tensor that describes eddy fluxes, also encodes information about eddy size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes eddy-mean flow interactions in terms of a geometric description of the eddy motion, and illustrate it with an application to an unstable jet. Specifically we show that the eddy vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the eddy kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into eddy-mean flow interactions in a number of ways. It identifies the ingredients of the eddy motion that have a mean flow forcing effect, it links eddy effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving eddy shape and orientation, and not just eddy size/energy, to accurately represent eddy feedback effects. These concepts will be both discussed and illustrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...68C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...68C"><span>Linear and nonlinear winter atmospheric responses to extreme phases of low frequency Pacific sea surface temperature variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Dandan; Wu, Qigang; Hu, Aixue; Yao, Yonghong; Liu, Shizuo; Schroeder, Steven R.; Yang, Fucheng</p> <p>2018-02-01</p> <p>This study examines Northern Hemisphere winter (DJFM) atmospheric responses to opposite strong phases of interdecadal (low frequency, LF) Pacific sea surface temperature (SST) forcing, which resembles El Niño-Southern Oscillation (ENSO) on a longer time scale, in observations and GFDL and CAM4 model simulations. Over the Pacific-North America (PNA) sector, linear observed responses of 500-hPa height (Z500) anomalies resemble the PNA teleconnection pattern, but show a PNA-like nonlinear response because of a westward Z500 shift in the negative (LF-) relative to the positive LF (LF+) phase. Significant extratropical linear responses include a North Atlantic Oscillation (NAO)-like Z500 anomaly, a dipole-like Z500 anomaly over northern Eurasia associated with warming over mid-high latitude Eurasia, and a Southern Annular anomaly pattern associated with warming in southern land areas. Significant nonlinear Z500 responses also include a NAO-like anomaly pattern. Models forced by LF+ and LF- SST anomalies reproduce many aspects of observed linear and nonlinear responses over the Pacific-North America sector, and linear responses over southern land, but not in the North Atlantic-European sector and Eurasia. Both models simulate PNA-like linear responses in the North Pacific-North America region similar to observed, but show larger PNA-like LF+ responses, resulting in a PNA nonlinear response. The nonlinear PNA responses result from both nonlinear western tropical Pacific rainfall changes and extratropical transient eddy feedbacks. With LF tropical Pacific forcing only (LFTP+ and LFTP-, climatological SST elsewhere), CAM4 simulates a significant NAO response to LFTP-, including a linear negative and nonlinear positive NAO response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7j5303L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7j5303L"><span>Analytical modeling and analysis of magnetic field and torque for novel axial flux eddy current couplers with PM excitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin</p> <p>2017-10-01</p> <p>Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840043529&hterms=kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dkinetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840043529&hterms=kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dkinetic%2Benergy"><span>A comparison of observed and numerically predicted eddy kinetic energy budgets for a developing extratropical cyclone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dare, P. M.; Smith, P. J.</p> <p>1983-01-01</p> <p>The eddy kinetic energy budget is calculated for a 48-hour forecast of an intense occluding winter cyclone associated with a strong well-developed jet stream. The model output consists of the initialized (1200 GMT January 9, 1975) and the 12, 24, 36, and 48 hour forecast fields from the Drexel/NCAR Limited Area Mesoscale Prediction System (LAMPS) model. The LAMPS forecast compares well with observations for the first 24 hours, but then overdevelops the low-level cyclone while inadequately developing the upper-air wave and jet. Eddy kinetic energy was found to be concentrated in the upper-troposphere with maxima flanking the primary trough. The increases in kinetic energy were found to be due to an excess of the primary source term of kinetic energy content, which is the horizontal flux of eddy kinetic energy over the primary sinks, and the generation and dissipation of eddy kinetic energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1031984','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1031984"><span>Effects of Angular Variation on Split D Differential Eddy Current Probe Response (Postprint)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-02-10</p> <p>AFRL-RX-WP-JA-2016-0327 EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT) Ryan D...March 2014 – 22 September 2015 4. TITLE AND SUBTITLE EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT...last few years have seen increased levels of complexity added to push the state-of-the-art modeling software used in eddy current NDE today. The added</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1111428B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1111428B"><span>Internal and forced eddy variability in the Labrador Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.</p> <p>2009-04-01</p> <p>Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both eddy shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the eddies drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme eddy activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable eddy-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the eddy generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of eddy generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the eddy kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9980B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9980B"><span>Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik</p> <p>2017-12-01</p> <p>The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001TellA..53..526H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001TellA..53..526H"><span>Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huck, Thierry; Vallis, Geoffrey K.</p> <p>2001-08-01</p> <p>What can we learn from performing a linear stability analysis of the large-scale ocean circulation? Can we predict from the basic state the occurrence of interdecadal oscillations, such as might be found in a forward integration of the full equations of motion? If so, do the structure and period of the linearly unstable modes resemble those found in a forward integration? We pursue here a preliminary study of these questions for a case in idealized geometry, in which the full nonlinear behavior can also be explored through forward integrations. Specifically, we perform a three-dimensional linear stability analysis of the thermally-driven circulation of the planetary geostrophic equations. We examine the resulting eigenvalues and eigenfunctions, comparing them with the structure of the interdecadal oscillations found in the fully nonlinear model in various parameter regimes. We obtain a steady state by running the time-dependent, nonlinear model to equilibrium using restoring boundary conditions on surface temperature. If the surface heat fluxes are then diagnosed, and these values applied as constant flux boundary conditions, the nonlinear model switches into a state of perpetual, finite amplitude, interdecadal oscillations. We construct a linearized version of the model by empirically evaluating the tangent linear matrix at the steady state, under both restoring and constant-flux boundary conditions. An eigen-analysis shows there are no unstable eigenmodes of the linearized model with restoring conditions. In contrast, under constant flux conditions, we find a single unstable eigenmode that shows a striking resemblance to the fully-developed oscillations in terms of three-dimensional structure, period and growth rate. The mode may be damped through either surface restoring boundary conditions or sufficiently large horizontal tracer diffusion. The success of this simple numerical method in idealized geometry suggests applications in the study of the stability of the ocean circulation in more realistic configurations, and the possibility of predicting potential oceanic modes, even weakly damped, that might be excited by stochastic atmospheric forcing or mesoscale ocean eddies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1806k0006U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1806k0006U"><span>Finite element model study of the effect of corner rounding on detectability of corner cracks using bolt hole eddy current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Underhill, P. R.; Krause, T. W.</p> <p>2017-02-01</p> <p>Recent work has shown that the detectability of corner cracks in bolt-holes is compromised when rounding of corners arises, as might occur during bolt-hole removal. Probability of Detection (POD) studies normally require a large number of samples of both fatigue cracks and electric discharge machined notches. In the particular instance of rounding of bolt-hole corners the generation of such a large set of samples representing the full spectrum of potential rounding would be prohibitive. In this paper, the application of Finite Element Method (FEM) modeling is used to supplement the study of detection of cracks forming at the rounded corners of bolt-holes. FEM models show that rounding of the corner of the bolt-hole reduces the size of the response to a corner crack to a greater extent than can be accounted for by loss of crack area. This reduced sensitivity can be ascribed to a lower concentration of eddy currents at the rounded corner surface and greater lift-off of pick-up coils relative to that of a straight-edge corner. A rounding with a radius of 0.4 mm (.016 inch) showed a 20% reduction in the strength of the crack signal. Assuming linearity of the crack signal with crack size, this would suggest an increase in the minimum detectable size by 25%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122..716V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122..716V"><span>Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verma, Manish; Schimel, David; Evans, Bradley; Frankenberg, Christian; Beringer, Jason; Drewry, Darren T.; Magney, Troy; Marang, Ian; Hutley, Lindsay; Moore, Caitlin; Eldering, Annmarie</p> <p>2017-03-01</p> <p>Recent studies have utilized coarse spatial and temporal resolution remotely sensed solar-induced fluorescence (SIF) for modeling terrestrial gross primary productivity (GPP) at regional scales. Although these studies have demonstrated the potential of SIF, there have been concerns about the ecophysiological basis of the relationship between SIF and GPP in different environmental conditions. Launched in 2014, the Orbiting Carbon Observatory-2 (OCO-2) has enabled fine-scale (1.3 by 2.5 km) retrievals of SIF that are comparable with measurements recorded at eddy covariance towers. In this study, we examine the effect of environmental conditions on the relationship of OCO-2 SIF with tower GPP over the course of a growing season at a well-characterized natural grassland site. Combining OCO-2 SIF and eddy covariance tower data with a canopy radiative transfer and an ecosystem model, we also assess the potential of OCO-2 SIF to constrain the estimates of Vcmax, one of the most important parameters in ecosystem models. Based on the results, we suggest that although environmental conditions play a role in determining the nature of relationship between SIF and GPP, overall, the linear relationship is more robust at ecosystem scale than the theory based on leaf-level processes might suggest. Our study also shows that the ability of SIF to constrain Vcmax is weak at the selected site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6114L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6114L"><span>From large-eddy simulation to multi-UAVs sampling of shallow cumulus clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamraoui, Fayçal; Roberts, Greg; Burnet, Frédéric</p> <p>2016-04-01</p> <p>In-situ sampling of clouds that can provide simultaneous measurements at satisfying spatio-temporal resolutions to capture 3D small scale physical processes continues to present challenges. This project (SKYSCANNER) aims at bringing together cloud sampling strategies using a swarm of unmanned aerial vehicles (UAVs) based on Large-eddy simulation (LES). The multi-UAV-based field campaigns with a personalized sampling strategy for individual clouds and cloud fields will significantly improve the understanding of the unresolved cloud physical processes. An extensive set of LES experiments for case studies from ARM-SGP site have been performed using MesoNH model at high resolutions down to 10 m. The carried out simulations led to establishing a macroscopic model that quantifies the interrelationship between micro- and macrophysical properties of shallow convective clouds. Both the geometry and evolution of individual clouds are critical to multi-UAV cloud sampling and path planning. The preliminary findings of the current project reveal several linear relationships that associate many cloud geometric parameters to cloud related meteorological variables. In addition, the horizontal wind speed indicates a proportional impact on cloud number concentration as well as triggering and prolonging the occurrence of cumulus clouds. In the framework of the joint collaboration that involves a Multidisciplinary Team (including institutes specializing in aviation, robotics and atmospheric science), this model will be a reference point for multi-UAVs sampling strategies and path planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/934579','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/934579"><span>Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aman Behal; Sunil Kumar; Goodarz Ahmadi</p> <p>2007-08-05</p> <p>Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant modelmore » and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B23E0509M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B23E0509M"><span>Modeling Energy and Mass Fluxes Over a Vineyard Using the Acasa Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marras, S.; Bellucco, V.; Pyles, D.; Falk, M.; Sirca, C.; Duce, P.; Snyder, R. L.; Paw U, K.; Spano, D.</p> <p>2012-12-01</p> <p>Energy and mass fluxes are widely monitored over natural ecosystems by the Eddy Covariance (EC) towers within the FLUXNET monitoring network. Only a few studies focused on EC measurements over tree crops and vines, and there is a lack of information useful to parameterize crop and flux models over such systems. The aim of this study was to improve our knowledge about the performance of the land surface model ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) in estimating energy, water, and carbon fluxes over a typical Mediterranean vineyard located in Southern Sardinia (Italy). ACASA estimates turbulent fluxes per 20 canopy layers (10 layers within and 10 above the canopy) and 15 soil layers, using third-order closure equations. CO2 fluxes are estimated using a combination of Ball-Berry and Farquhar equations. The model parameters derived from literature, from a previous work conducted in Tuscany (Italy) and from direct measurements collected in the experimental site of this study. An Eddy Covariance measurement tower was installed to continuously monitor sensible and latent heat, and CO2 fluxes, in conjunction with a net radiometer, and soil heat flux plates from June 2009. A meteorological station was also set up for ancillary measurements. Model performance was evaluated by RMSE and linear regression statistics. Results for the energy balance components and CO2 exchanges will be presented. Detailed analysis was devoted to evaluate the model ability in estimating the vineyard evapotranspiration. This term of the energy balance is, in fact, important for farmers since they are mainly interested in quantify crop water requirements for a better irrigation management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3663W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3663W"><span>Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj</p> <p>2017-04-01</p> <p>In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10.1175/JCLI-D-15-0746.1</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010APS..DPPNP9023A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010APS..DPPNP9023A"><span>Design of an Integrated Plasma Control System and Extension of XSCTools to Ignitor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albanese, R.; Ambrosino, G.; Artaserse, G.; Pironti, A.; Rubinacci, G.; Villone, F.; Ramogida, G.</p> <p>2010-11-01</p> <p>The performance of the integrated system for vertical stability, shape and plasma current control for the Ignitor machine has been assessed by means of the CREATELlinearized model of plasma responseootnotetextR. Albanese, F. Villone, Nucl. Fusion 38, 723 (1998) against a set of disturbances for the reference 11 MA limiter configuration and the 9 MA Double Null configuration. A new design, based on the methodology of the eXtreme Shape Controller (XSC) at JET, has been tested : by using all the shape control circuits with the exception of those used to control the vertical stability is possible to control up to four independent linear combinations of the 36 plasma-wall gaps. The results point out a substantial improvement in shape recovery, especially in the presence of a disturbance in li. The new shape controller can also automatically generate, via feedback control, new plasma shapes in the proximity of a given equilibrium configuration. The XSC ToolsootnotetextG. Ambrosino, R. Albanese et al., Fus. Eng.& Des. 74, 521 (2005) have been adapted and extended to develop linearized Ignitor models including 2D eddy currents and to solve inverse linearized plasma equilibria.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25571425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25571425"><span>BRAIN initiative: fast and parallel solver for real-time monitoring of the eddy current in the brain for TMS applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sabouni, Abas; Pouliot, Philippe; Shmuel, Amir; Lesage, Frederic</p> <p>2014-01-01</p> <p>This paper introduce a fast and efficient solver for simulating the induced (eddy) current distribution in the brain during transcranial magnetic stimulation procedure. This solver has been integrated with MRI and neuronavigation software to accurately model the electromagnetic field and show eddy current in the head almost in real-time. To examine the performance of the proposed technique, we used a 3D anatomically accurate MRI model of the 25 year old female subject.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-03-16/pdf/2011-6097.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-03-16/pdf/2011-6097.pdf"><span>76 FR 14349 - Airworthiness Directives; British Aerospace Regional Aircraft Model HP.137 Jetstream Mk.1...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-03-16</p> <p>... (FC). For the reasons described above, this AD requires initial and repetitive eddy current... requires initial and repetitive eddy current inspections, and depending on findings, accomplishment of... (landings) on the MLG after the effective date of this AD, whichever occurs later, eddy current inspect all...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-09-21/pdf/2011-24270.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-09-21/pdf/2011-24270.pdf"><span>76 FR 58416 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model L...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-09-21</p> <p>... specifies a bolt hole eddy current inspection to verify the cracking. The corrective actions for cracking... specified in paragraph (k) of this AD, do eddy current non-destructive inspections (NDI) and detailed... secondary eddy current inspection to detect cracking of fastener holes with suspected crack indications; in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-03-29/pdf/2012-7535.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-03-29/pdf/2012-7535.pdf"><span>77 FR 18963 - Airworthiness Directives; MD Helicopters, Inc.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-03-29</p> <p>...) Model MD900 helicopters. The existing AD requires a visual inspection, and if necessary, an eddy current... with an airworthy lower hub. If there is no crack as a result of the visual inspection, eddy current... nondestructive eddy current inspection of the lower hub. That AD was prompted by cracks found on four lower hubs...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25430380','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25430380"><span>Effect of asymmetrical eddy currents on magnetic diagnosis signals for equilibrium reconstruction in the Sino-UNIted Spherical Tokamak.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Y Z; Tan, Y; Gao, Z; Wang, L</p> <p>2014-11-01</p> <p>The vacuum vessel of Sino-UNIted Spherical Tokamak was split into two insulated hemispheres, both of which were insulated from the central cylinder. The eddy currents flowing in the vacuum vessel would become asymmetrical due to discontinuity. A 3D finite elements model was applied in order to study the eddy currents. The modeling results indicated that when the Poloidal Field (PF) was applied, the induced eddy currents would flow in the toroidal direction in the center of the hemispheres and would be forced to turn to the poloidal and radial directions due to the insulated slit. Since the eddy currents converged on the top and bottom of the vessel, the current densities there tended to be much higher than those in the equatorial plane were. Moreover, the eddy currents on the top and bottom of vacuum vessel had the same direction when the current flowed in the PF coils. These features resulted in the leading phases of signals on the top and bottom flux loops when compared with the PF waveforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28964228','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28964228"><span>Determination of eddy current response with magnetic measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B</p> <p>2017-09-01</p> <p>Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.490a2078B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.490a2078B"><span>Numerical modelling of electromagnetic loads on fusion device structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben</p> <p>2014-03-01</p> <p>In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA621273','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA621273"><span>Multi-Decadal Variability in the Bering Sea: A Synthesis of Model Results and Observations from 1948 to the Present</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-12-01</p> <p>stated that the development and use of high-resolution Arctic climate and systems models are important stepping stones for dedicated studies of...W., J. L. Clement Kinney, D. C. Marble , and J. Jakacki, 2008: Towards eddy resolving models of the Arctic Ocean: Ocean Modeling in an Eddying</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.115...42P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.115...42P"><span>Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank</p> <p>2017-07-01</p> <p>Two parameterizations for horizontal mixing of momentum and tracers by subgrid mesoscale eddies are implemented in a high-resolution global ocean model. These parameterizations follow on the techniques of large eddy simulation (LES). The theory underlying one parameterization (2D Leith due to Leith, 1996) is that of enstrophy cascades in two-dimensional turbulence, while the other (QG Leith) is designed for potential enstrophy cascades in quasi-geostrophic turbulence. Simulations using each of these parameterizations are compared with a control simulation using standard biharmonic horizontal mixing.Simulations using the 2D Leith and QG Leith parameterizations are more realistic than those using biharmonic mixing. In particular, the 2D Leith and QG Leith simulations have more energy in resolved mesoscale eddies, have a spectral slope more consistent with turbulence theory (an inertial enstrophy or potential enstrophy cascade), have bottom drag and vertical viscosity as the primary sinks of energy instead of lateral friction, and have isoneutral parameterized mesoscale tracer transport. The parameterization choice also affects mass transports, but the impact varies regionally in magnitude and sign.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9744J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9744J"><span>Eddy-Kuroshio Interactions: Local and Remote Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jan, Sen; Mensah, Vigan; Andres, Magdalena; Chang, Ming-Huei; Yang, Yiing Jang</p> <p>2017-12-01</p> <p>Quasi-geostrophic mesoscale eddies regularly impinge on the Kuroshio in the western North Pacific, but the processes underlying the evolution of these eddy-Kuroshio interactions have not yet been thoroughly investigated in the literature. Here this interaction is examined with results from a semi-idealized three-dimensional numerical model and observations from four pressure-sensor equipped inverted echo sounders (PIESs) in a zonal section east of Taiwan and satellite altimeters. Both the observations and numerical simulations suggest that, during the interaction of a cyclonic eddy with the Kuroshio, the circular eddy is deformed into an elliptic shape with the major axis in the northwest-southeast direction, before being dissipated; the poleward velocity and associated Kuroshio transport decrease and the sea level and pycnocline slopes across the Kuroshio weaken. In contrast, for an anticyclonic eddy during the eddy-Kuroshio interaction, variations in the velocity, sea level, and isopycnal depth are reversed; the circular eddy is also deformed to an ellipse but with the major axis parallel to the Kuroshio. The model results also demonstrate that the velocity field is modified first and consequently the SSH and isopycnal depth evolve during the interaction. Furthermore, due to the combined effect of impingement latitude and realistic topography, some eddy-Kuroshio interactions east of Taiwan are found to have remote effects, both in the Luzon Strait and on the East China Sea shelf northeast of Taiwan.<abstract type="synopsis"><title type="main">Plain Language SummaryMesoscale eddies are everywhere in the ocean. These ocean swirls of either clockwise or counterclockwise spinning with diameter of about 100-300 km and rounding current speed of about 0.5 m/s, carrying energy and certain type of water mass, move westward and eventually reach the western boundary of each ocean. The evolution of these eddies and the interaction which occurs when they encounter the western boundary current, e.g. the Kuroshio in the western North Pacific, is important in redistributing ocean energy and, in turn, shaping the large scale ocean circulation. This study focuses on the processes underlying the interaction of nonlinear mesoscale eddies with the Kuroshio, which have not yet been thoroughly investigated in the literature. Using pressure-sensor equipped echo sounder and satellite observations interpreted in the context of semi-idealized numerical simulations, this study find (1) locally, eddy arrivals modify velocity structure in the Kuroshio first, followed by changes in sea level and isopycnal depths leading to seesaw-like variations of the sea level and density slopes across the Kuroshio, and (2) modeled remote effects, i.e., Kuroshio intrusions, manifest in the Luzon Strait and on the East China Sea shelf and depend on the eddies' impingement latitude, strength, and polarity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGD....12.9651S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGD....12.9651S"><span>Challenges in modelling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.</p> <p>2015-07-01</p> <p>We examine interannual variability of phytoplankton blooms in northwestern Arabian Sea and Gulf of Oman. Satellite data (SeaWIFS ocean color) shows two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. A pronounced anti-correlation between the AVISO sea surface height anomaly (SSHA) and chlorophyll is found during the wintertime bloom. On a regional scale, interannual variability of the wintertime bloom is thus dominated by cyclonic eddies which vary in location from one year to another. These results were compared against the outputs from three different 3-D Earth System models. We show that two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The southern part of the domain is a region with a much sharper thermocline and nutricline relatively close to the surface, in which eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). We suggest that for the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0775990','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0775990"><span>Eddy Viscosity for Variable Density Coflowing Streams,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GeoRL..3724401G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GeoRL..3724401G"><span>Transport driven by eddy momentum fluxes in the Gulf Stream Extension region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greatbatch, R. J.; Zhai, X.; Claus, M.; Czeschel, L.; Rath, W.</p> <p>2010-12-01</p> <p>The importance of the Gulf Stream Extension region in climate and seasonal prediction research is being increasingly recognised. Here we use satellite-derived eddy momentum fluxes to drive a shallow water model for the North Atlantic Ocean that includes the realistic ocean bottom topography. The results show that the eddy momentum fluxes can drive significant transport, sufficient to explain the observed increase in transport of the Gulf Stream following its separation from the coast at Cape Hatteras, as well as the observed recirculation gyres. The model also captures recirculating gyres seen in the mean sea surface height field within the North Atlantic Current system east of the Grand Banks of Newfoundland, including a representation of the Mann Eddy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PalOc..31..564V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PalOc..31..564V"><span>Effects of Drake Passage on a strongly eddying global ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viebahn, Jan P.; von der Heydt, Anna S.; Le Bars, Dewi; Dijkstra, Henk A.</p> <p>2016-05-01</p> <p>The climate impact of ocean gateway openings during the Eocene-Oligocene transition is still under debate. Previous model studies employed grid resolutions at which the impact of mesoscale eddies has to be parameterized. We present results of a state-of-the-art eddy-resolving global ocean model with a closed Drake Passage and compare with results of the same model at noneddying resolution. An analysis of the pathways of heat by decomposing the meridional heat transport into eddy, horizontal, and overturning circulation components indicates that the model behavior on the large scale is qualitatively similar at both resolutions. Closing Drake Passage induces (i) sea surface warming around Antarctica due to equatorward expansion of the subpolar gyres, (ii) the collapse of the overturning circulation related to North Atlantic Deep Water formation leading to surface cooling in the North Atlantic, and (iii) significant equatorward eddy heat transport near Antarctica. However, quantitative details significantly depend on the chosen resolution. The warming around Antarctica is substantially larger for the noneddying configuration (˜5.5°C) than for the eddying configuration (˜2.5°C). This is a consequence of the subpolar mean flow which partitions differently into gyres and circumpolar current at different resolutions. We conclude that for a deciphering of the different mechanisms active in Eocene-Oligocene climate change detailed analyses of the pathways of heat in the different climate subsystems are crucial in order to clearly identify the physical processes actually at work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940019677','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940019677"><span>Toward large eddy simulation of turbulent flow over an airfoil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Choi, Haecheon</p> <p>1993-01-01</p> <p>The flow field over an airfoil contains several distinct flow characteristics, e.g. laminar, transitional, turbulent boundary layer flow, flow separation, unstable free shear layers, and a wake. This diversity of flow regimes taxes the presently available Reynolds averaged turbulence models. Such models are generally tuned to predict a particular flow regime, and adjustments are necessary for the prediction of a different flow regime. Similar difficulties are likely to emerge when the large eddy simulation technique is applied with the widely used Smagorinsky model. This model has not been successful in correctly representing different turbulent flow fields with a single universal constant and has an incorrect near-wall behavior. Germano et al. (1991) and Ghosal, Lund & Moin have developed a new subgrid-scale model, the dynamic model, which is very promising in alleviating many of the persistent inadequacies of the Smagorinsky model: the model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model has been remarkably successful in prediction of several turbulent and transitional flows. We plan to simulate turbulent flow over a '2D' airfoil using the large eddy simulation technique. Our primary objective is to assess the performance of the newly developed dynamic subgrid-scale model for computation of complex flows about aircraft components and to compare the results with those obtained using the Reynolds average approach and experiments. The present computation represents the first application of large eddy simulation to a flow of aeronautical interest and a key demonstration of the capabilities of the large eddy simulation technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014220','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014220"><span>Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas</p> <p>2011-01-01</p> <p>A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4043158','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4043158"><span>Nonlinear flight dynamics and stability of hovering model insects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liang, Bin; Sun, Mao</p> <p>2013-01-01</p> <p>Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-08-24/pdf/2011-21668.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-08-24/pdf/2011-21668.pdf"><span>76 FR 52901 - Airworthiness Directives; The Boeing Company Model 757-200, -200PF, and -200CB Series Airplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-08-24</p> <p>... if necessary. This proposed AD would also add an option for the high frequency eddy current... also adds an optional ultrasonic inspection for the high frequency eddy current inspection to detect... proposed AD would also add an option for the high frequency eddy current inspection for cracking of the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-07-15/pdf/2011-17421.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-07-15/pdf/2011-17421.pdf"><span>76 FR 41662 - Airworthiness Directives; MD Helicopters, Inc. Model MD900 Helicopters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-07-15</p> <p>... different compliance time; adds an eddy current inspection; retains the requirement to replace a cracked... and recurring 300-hour visual and eddy current inspections of the lower hub for a crack and, if there... AD requires a visual inspection, and if necessary, an eddy current inspection of the lower hub for a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950016030','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950016030"><span>Local dynamic subgrid-scale models in channel flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cabot, William H.</p> <p>1994-01-01</p> <p>The dynamic subgrid-scale (SGS) model has given good results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow, and in the LES of channel flow, using averaging in two or three homogeneous directions (the DA model). In order to simulate flows in general, complex geometries (with few or no homogeneous directions), the dynamic SGS model needs to be applied at a local level in a numerically stable way. Channel flow, which is inhomogeneous and wall-bounded flow in only one direction, provides a good initial test for local SGS models. Tests of the dynamic localization model were performed previously in channel flow using a pseudospectral code and good results were obtained. Numerical instability due to persistently negative eddy viscosity was avoided by either constraining the eddy viscosity to be positive or by limiting the time that eddy viscosities could remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk model, however, was too expensive to run in the pseudospectral code due to a large near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was then to implement the DLk model in a second-order central finite difference channel code, in which the auxiliary k equation could be integrated implicitly in time at great reduction in cost, and to assess its performance in comparison with the plane-averaged dynamic model or with no model at all, and with direct numerical simulation (DNS) and/or experimental data. Other local dynamic SGS models have been proposed recently, e.g., constrained dynamic models with random backscatter, and with eddy viscosity terms that are averaged in time over material path lines rather than in space. Another objective was to incorporate and test these models in channel flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT.......187P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT.......187P"><span>Large eddy simulation of bluff body stabilized premixed and partially premixed combustion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Porumbel, Ionut</p> <p></p> <p>Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The main goal of the thesis is the study of the equivalence ratio effect on flame stability and dynamics in premixed and partially premixed flames. An LES numerical algorithm able to handle the entire range of combustion regimes and equivalence ratios is developed for this purpose. The algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions, without user intervention. Algorithm validation is achieved by conducting LES of reactive and non-reactive flow. Comparison with experimental data shows good agreement for both mean and unsteady flow properties. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. In LEMLES, the reaction-diffusion equation is not filtered, but resolved on a linear domain and the model maintains validity. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface when compared to EBULES. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction, the flame structure shows higher complexity, and the far field spreading of the wake is closer to the experimental observations. Three premixed (φ = 0.6, 0.65, and 0.75) cases are simulated. As expected, for the leaner case (φ = 0.6) the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case (φ = 0.75), the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release. The ignition delay in the lean case (φ = 0.6) is larger when compared to the rich case (φ = 0.75), in correlation with the instantaneous flame stretch. Partially premixed combustion is simulated for cases where the transverse profile of the inflow equivalence ratio is variable. The simulations show that for mixtures leaner in the core the vortical pattern tends towards anti-symmetry and the heat release decreases, resulting also in instability of the flame. For mixtures richer in the core, the flame displays sinusoidal flapping that results in larger wake spreading. The numerical simulations presented in this study employed simple, one-step chemical mechanisms. More accurate predictions of flame stability will require the use of detailed chemistry, raising the computational cost of the simulation. To address this issue, a novel algorithm for training Artificial Neural Networks (ANN) for prediction of the chemical source terms has been implemented and tested. Compared to earlier methods, such as reaction rate tabulation, the main advantages of the ANN method are in CPU time and disk space and memory reduction. The results of the testing indicate reasonable algorithm accuracy although some regions of the flame exhibit relatively significant differences compared to direct integration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730019427','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730019427"><span>A kinematic eddy viscosity model including the influence of density variations and preturbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cohen, L. S.</p> <p>1973-01-01</p> <p>A model for the kinematic eddy viscosity was developed which accounts for the turbulence produced as a result of jet interactions between adjacent streams as well as the turbulence initially present in the streams. In order to describe the turbulence contribution from jet interaction, the eddy viscosity suggested by Prandtl was adopted, and a modification was introduced to account for the effect of density variation through the mixing layer. The form of the modification was ascertained from a study of the compressible turbulent boundary layer on a flat plate. A kinematic eddy viscosity relation which corresponds to the initial turbulence contribution was derived by employing arguments used by Prandtl in his mixing length hypothesis. The resulting expression for self-preserving flow is similar to that which describes the mixing of a submerged jet. Application of the model has led to analytical predictions which are in good agreement with available turbulent mixing experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170001444&hterms=john+maxwell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Djohn%2Bmaxwell','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170001444&hterms=john+maxwell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Djohn%2Bmaxwell"><span>The dependence of the oceans MOC on mesoscale eddy diffusivities: A model study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marshall, John; Scott, Jeffery R.; Romanou, Anastasia; Kelley, Maxwell; Leboissetier, Anthony</p> <p>2017-01-01</p> <p>The dependence of the depth and strength of the ocean's global meridional overturning cells (MOC) on the specification of mesoscale eddy diffusivity (K) is explored in two ocean models. The GISS and MIT ocean models are driven by the same prescribed forcing fields, configured in similar ways, spun up to equilibrium for a range of K 's and the resulting MOCs mapped and documented. Scaling laws implicit in modern theories of the MOC are used to rationalize the results. In all calculations the K used in the computation of eddy-induced circulation and that used in the representation of eddy stirring along neutral surfaces, is set to the same value but is changed across experiments. We are able to connect changes in the strength and depth of the Atlantic MOC, the southern ocean upwelling MOC, and the deep cell emanating from Antarctica, to changes in K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.3635K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.3635K"><span>A Kolmogorov-Brutsaert structure function model for evaporation into a turbulent atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katul, Gabriel; Liu, Heping</p> <p>2017-05-01</p> <p>In 1965, Brutsaert proposed a model that predicted mean evaporation rate E¯ from rough surfaces to scale with the 3/4 power law of the friction velocity (u∗) and the square-root of molecular diffusivity (Dm) for water vapor. In arriving at these results, a number of assumptions were made regarding the surface renewal rate describing the contact durations between eddies and the evaporating surface, the diffusional mass process from the surface into eddies, and the cascade of turbulent kinetic energy sustaining the eddy renewal process itself. The working hypothesis explored here is that E¯˜<msqrt>Dm</msqrt>u∗3/4 is a direct outcome of the Kolmogorov scaling for inertial subrange eddies modified to include viscous cutoff thereby bypassing the need for a surface renewal assumption. It is demonstrated that Brutsaert's model for E¯ may be more general than its original derivation implied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150005564&hterms=convection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dconvection','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150005564&hterms=convection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dconvection"><span>Stochastic Convection Parameterizations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios</p> <p>2012-01-01</p> <p>computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900011987','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900011987"><span>PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady</p> <p>1990-01-01</p> <p>A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 1 is the Analysis Description, and describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28265023','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28265023"><span>Linearized simulation of flow over wind farms and complex terrains.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Segalini, Antonio</p> <p>2017-04-13</p> <p>The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RSPTA.37560099S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RSPTA.37560099S"><span>Linearized simulation of flow over wind farms and complex terrains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Segalini, Antonio</p> <p>2017-03-01</p> <p>The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results. This article is part of the themed issue 'Wind energy in complex terrains'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.124....1P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.124....1P"><span>Parameterized and resolved Southern Ocean eddy compensation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman</p> <p>2018-04-01</p> <p>The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC14D2096T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC14D2096T"><span>Birth, life and death of an Anticyclonic eddy in the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres, R.; Sallee, J. B.; Schwarz, J.; Hosegood, P. J.; Taylor, J. R.; Adams, K.; Bachman, S.; Stamper, M. A.</p> <p>2016-02-01</p> <p>The Antarctic Circumpolar Current (ACC) is a climatically relevant frontal structure of global importance, which regularly develops instabilities growing into meanders, and eventually evolving into long-lived anticyclonic eddies. These eddies exhibit sustained primary productivity that can last several months fuelled by local resupply of nutrients. During April-May 2015 we conducted an intensive field experiment in the Southern Ocean where we sampled and tracked an ACC meander as it developed into an eddy and later vanished some 90 days later. The physical characteristics of the meander and eddy were observed with a combination of high resolution hydrography, ADCP and turbulence observations, in addition to biogeochemical observations of nutrients and phytoplankton. The life and death of the eddy was subsequently tracked through Argo, BIO-Argo Lagrangian profilers and remote sensing. In this presentation we will use observations and ecosystem modelling to discuss the physical processes that sustain the observed high Chlorophyll levels in the eddy and explore how the eddy evolution impacts the rate of nutrient supply and how this translates into the observed changes in chlorophyll. We will discuss the relevance of eddy formation to Chlorophyll and productivity in the region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1227629-prognostic-residual-mean-flow-ocean-general-circulation-model-its-relation-prognostic-eulerian-mean-flow','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1227629-prognostic-residual-mean-flow-ocean-general-circulation-model-its-relation-prognostic-eulerian-mean-flow"><span>Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Saenz, Juan A.; Chen, Qingshan; Ringler, Todd</p> <p>2015-05-19</p> <p>Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFD.E2001G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFD.E2001G"><span>Perturbations of the magnetic induction in a bubbly liquid metal flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guichou, Rafael; Tordjeman, Philippe; Bergez, Wladimir; Zamansky, Remi; Paumel, Kevin</p> <p>2017-11-01</p> <p>The presence of bubbles in liquid metal flow subject to AC magnetic field modifies the distribution of eddy currents in the fluid. This situation is encountered in metallurgy and nuclear industry for Sodium Fast Reactors. We will show that the perturbation of the eddy currents can be measured by an Eddy Current Flowmeter coupled with a lock-in amplifier. The experiments point out that the demodulated signal allows to detect the presence of a single bubble in the flow. The signal is sensitive both to the diameter and the relative position of the bubble. Then, we will present a model of a potential perturbation of the current density caused by a bubble and the distortion of the magnetic field. The eddy current distribution is calculated from the induction equation. This model is derived from a potential flow around a spherical particle. The total vector potential is the sum of the vector potential in the liquid metal flow without bubbles and the perturbated vector potential due to the presence of a bubble. The model is then compared to the experimental measurements realized with the eddy current flow meter for various bubble diameters in galinstan. The very good agreement between model and experiments validates the relevance of the perturbative approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870008197','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870008197"><span>Quasi-geostrophic free mode models of long-lived Jovian eddies: Forcing mechanisms and crucial observational tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Read, P. L.</p> <p>1986-01-01</p> <p>Observations of Jupiter and Saturn long-lived eddies, such as Jupiter's Great Red Spot and White Ovals, are presently compared with laboratory experiments and corresponding numerical simulations for free thermal convection in a rotating fluid that is subject to horizontal differential heating and cooling. Difficulties in determining the essential processes maintaining and dissipating stable eddies, on the basis of global energy budget studies, are discussed; such difficulties do not arise in considerations of the flow's potential vorticity budget. On Jupiter, diabatically forced and transient eddy-driven flows primarily differ in the implied role of transient eddies in transporting potential vorticity across closed geostrophic streamlines in the time mean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940035736&hterms=Computer+Definition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DComputer%2BDefinition','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940035736&hterms=Computer+Definition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DComputer%2BDefinition"><span>Lumley's PODT definition of large eddies and a trio of numerical procedures. [Proper Orthogonal Decomposition Theorem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Payne, Fred R.</p> <p>1992-01-01</p> <p>Lumley's 1967 Moscow paper provided, for the first time, a completely rational definition of the physically-useful term 'large eddy', popular for a half-century. The numerical procedures based upon his results are: (1) PODT (Proper Orthogonal Decomposition Theorem), which extracts the Large Eddy structure of stochastic processes from physical or computer simulation two-point covariances, and 2) LEIM (Large-Eddy Interaction Model), a predictive scheme for the dynamical large eddies based upon higher order turbulence modeling. Earlier Lumley's work (1964) forms the basis for the final member of the triad of numerical procedures: this predicts the global neutral modes of turbulence which have surprising agreement with both structural eigenmodes and those obtained from the dynamical equations. The ultimate goal of improved engineering design tools for turbulence may be near at hand, partly due to the power and storage of 'supermicrocomputer' workstations finally becoming adequate for the demanding numerics of these procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1230063','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1230063"><span>Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hutchings, Jennifer; Joseph, Renu</p> <p>2013-09-14</p> <p>The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-07-02/pdf/2010-16046.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-07-02/pdf/2010-16046.pdf"><span>75 FR 38404 - Airworthiness Directives; The Boeing Company Model 747-100B, 747-200B, 747-200F, 747-300, 747-400...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-07-02</p> <p>... airplanes. This AD requires repetitive detailed and high frequency eddy current inspections of the forward... high frequency eddy current (HFEC) inspections of the forward and aft sides of the strut front spar... date of this AD, whichever occurs later: Perform a detailed inspection and a high frequency eddy...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-18/pdf/2011-3653.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-18/pdf/2011-3653.pdf"><span>76 FR 9495 - Airworthiness Directives; Air Tractor, Inc. Models AT-802 and AT-802A Airplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-18</p> <p>...-18, which requires you to repetitively inspect (using the eddy current method) the two outboard... through 0101 and AT-802A-0092 through 0101: To perform, using the eddy current method, two inspections at... through 0178 and AT-802A-0102 through 0178 to perform using the eddy current method, two inspections at 5...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-10-26/pdf/2011-27669.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-10-26/pdf/2011-27669.pdf"><span>76 FR 66209 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-10-26</p> <p>... option is to conduct an eddy current inspection and the other option is to conduct a visual inspection... eddy current inspection, at an average labor rate of $85 per work hour. Required parts would cost about... using either an eddy current inspection in accordance with paragraphs B.(1)(a) through B.(1)(o) or using...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1949n0007C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1949n0007C"><span>Eddy current analysis of cracks grown from surface defects and non-metallic particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cherry, Matthew R.; Hutson, Alisha; Aldrin, John C.; Shank, Jared</p> <p>2018-04-01</p> <p>Eddy current methods are sensitive to any discrete change in conductivity. Traditionally this has been used to determine the presence of a crack. However, other features that are not cracks such as non-metallic inclusions, carbide stringers and surface voids can cause an eddy current indication that could potentially lead to a reject of an in-service component. These features may not actually be lifelimiting, meaning NDE methods could reject components with remaining useful life. In-depth analysis of signals from eddy current sensors could provide a means of sorting between rejectable indications and false-calls from geometric and non-conductive features. In this project, cracks were grown from voids and non-metallic inclusions in a nickel-based super-alloy and eddy current analysis was performed on multiple intermediate steps of fatigue. Data were collected with multiple different ECT probes and at multiple frequencies, and the results were analyzed. The results show how cracks growing from non-metallic features can skew eddy current signals and make characterization a challenge. Modeling and simulation was performed with multiple analysis codes, and the models were found to be in good agreement with the data for cracks growing away from voids and non-metallic inclusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT........15K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT........15K"><span>Turbulent convection in an anelastic rotating sphere: A model for the circulation on the giant planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaspi, Yohai</p> <p></p> <p>This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary vorticity gradient is in the opposite direction, due to the spherical geometry in the interior. We further study these interior dynamics using a simplified barotropic annulus model, which shows that the planetary vorticity radial variation causes the eddy angular momentum flux divergence, which drives the superrotating equatorial flow. In addition we study the interaction of the interior dynamics with a stable exterior weather layer, using a quasigeostrophic two layer channel model on a beta plane, where the columnar interior is therefore represented by a negative beta effect. We find that baroclinic instability of even a weak shear can drive strong, stable multiple zonal jets. For this model we find an analytic nonlinear solution, truncated to one growing mode, that exhibits a multiple jet meridional structure, driven by the nonlinear interaction between the eddies. Finally, given the density field from our 3D convection model we derive the high order gravitational spectra of Jupiter, which is a measurable quantity for the upcoming JUNO mission to Jupiter. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29641755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29641755"><span>Wall function treatment for bubbly boundary layers at low void fractions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Soares, Daniel V; Bitencourt, Marcelo C; Loureiro, Juliana B R; Silva Freire, Atila P</p> <p>2018-01-01</p> <p>The present work investigates the role of different treatments of the lower boundary condition on the numerical prediction of bubbly flows. Two different wall function formulations are tested against experimental data obtained for bubbly boundary layers: (i) a new analytical solution derived through asymptotic techniques and (ii) the previous formulation of Troshko and Hassan (IJHMT, 44, 871-875, 2001a). A modified k-e model is used to close the averaged Navier-Stokes equations together with the hypothesis that turbulence can be modelled by a linear superposition of bubble and shear induced eddy viscosities. The work shows, in particular, how four corrections must the implemented in the standard single-phase k-e model to account for the effects of bubbles. The numerical implementation of the near wall functions is made through a finite elements code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970025581','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970025581"><span>Predicting NonInertial Effects with Algebraic Stress Models which Account for Dissipation Rate Anisotropies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jongen, T.; Machiels, L.; Gatski, T. B.</p> <p>1997-01-01</p> <p>Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coriolis-modified eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the turbulent model validation. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...10324737F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...10324737F"><span>South Atlantic Ocean circulation: Simulation experiments with a quasi-geostrophic model and assimilation of TOPEX/POSEIDON and ERS 1 altimeter data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Florenchie, P.; Verron, J.</p> <p>1998-10-01</p> <p>Simulation experiments of South Atlantic Ocean circulations are conducted with a 1/6°, four-layered, quasi-geostrophic model. By means of a simple nudging data assimilation procedure along satellite tracks, TOPEX/POSEIDON and ERS 1 altimeter measurements are introduced into the model to control the simulation of the basin-scale circulation for the period from October 1992 to September 1994. The model circulation appears to be strongly influenced by the introduction of altimeter data, offering a consistent picture of South Atlantic Ocean circulations. Comparisons with observations show that the assimilating model successfully simulates the kinematic behavior of a large number of surface circulation components. The assimilation procedure enables us to produce schematic diagrams of South Atlantic circulation in which patterns ranging from basin-scale currents to mesoscale eddies are portrayed in a realistic way, with respect to their complexity. The major features of the South Atlantic circulation are described and analyzed, with special emphasis on the Brazil-Malvinas Confluence region, the Subtropical Gyre with the formation of frontal structures, and the Agulhas Retroflection. The Agulhas eddy-shedding process has been studied extensively. Fourteen eddies appear to be shed during the 2-year experiment. Because of their strong surface topographic signature, Agulhas eddies have been tracked continuously during the assimilation experiment as they cross the South Atlantic basin westward. Other effects of the assimilation procedure are shown, such as the intensification of the Subtropical Gyre, the appearance of a strong seasonal cycle in the Brazil Current transport, and the increase of the mean Brazil Current transport. This last result, combined with the westward oriention of the Agulhas eddies' trajectories, leads to a southward transport of mean eddy kinetic energy across 30°S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920014807','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920014807"><span>Kolmogorov Behavior of Near-Wall Turbulence and Its Application in Turbulence Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shih, Tsan-Hsing; Lumley, John L.</p> <p>1992-01-01</p> <p>The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder and followers. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterized by Kolmogorov microscales. According to this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become Kolmogorov eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As an example, the concept is incorporated in the standard k-epsilon model which is then applied to channel and boundary flows. Using appropriate boundary conditions (based on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-modification to the k-epsilon equations (including model constants). Results compare very well with the DNS and experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1227629','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1227629"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Saenz, Juan A.; Chen, Qingshan; Ringler, Todd</p> <p></p> <p>Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8342M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8342M"><span>Evaluating CMEMS products in the Western Mediterranean using multiplatform in situ data and an eddy tracker</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mason, Evan; Burgoa, Nadia; Pascual, Ananda; Sánchez-Román, Antonio; Tintoré, Joaquín; Ruiz, Simón</p> <p>2017-04-01</p> <p>Assessment of three CMEMS forecast modelling products (MEDSEA, IBI and GLOBAL) available for the Western Mediterranean has been done for the period 2013-2016. The final objective is to contribute to the improvement of these products by providing feedback to the Monitoring and Forecasting Centers (MFCs). To achieve this objective, a multiplatform approach, combining in-situ and satellite data in synergy with numerical simulations is followed. We present new results on the mesoscale content of three operational models operating in the Western Mediterranean, based on standard statistical analysis and an automated eddy tracker (py-eddy-tracker, v2.1.0; Mason et al., 2014). Properties such as eddy radius, amplitude, polarity, eddy center and tracks have been produced for the three products. For each product the eddy tracker is run over the same period, at a sampling frequency of 1 day. The parameters used for the tracking are the same for each product. Eddy tracks reveal clear areas of dominance of either cyclones or anticyclones. These patterns are visible in all three products. In addition, CMEMS products have been evaluated for specific dates, using high-resolution multiplatform observations from different field experiments carried out in the Western Mediterranean. This study is a contribution to the MedSUB project, funded by Copernicus Marine Service within the Service Evolution 21-SE-CALL1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG13A..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG13A..04G"><span>QNSE Theory of Turbulence in Rotating Fluids and the Nastrom & Gage Spectrum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galperin, B.</p> <p>2017-12-01</p> <p>An analytical theory of turbulence, the quasi-normal scale elimination (QNSE), has been developed for neutrally stratified rotating flows. The theory provides near-first principle framework for the representation of flow anisotropization under the action of rotation. The anisotropization reveals itself in the emergence of different eddy viscosities and eddy diffusivities in different directions and directional dependence of the kinetic and potential energies spectra. In addition, there are also phenomena of componentality, eddy viscosities are different for different velocity components, and the onset of the inverse energy cascade. The anisotropization increases with increasing scale. The characteristic scales for the crossover between the turbulence and inertial wave domains is the Woods scale, LΩ = [ɛ/(2Ω)3)]1/2, ɛ being the rate of the viscous dissipation, which is analogous to the Ozmidov scale in flows with stable stratification. Rapid rotation renders the horizontal eddy viscosity negative, and in order to preserve it positive, a weak rotation limit is invoked. Within that limit, an analytical theory of the transition from the Kolmogorov to a rotation-dominated turbulence regime is developed. The dispersion relation of linear inertial waves is unaffected by turbulence while all one-dimensional energy spectra undergo steepening from the Kolmogorov -5/3 to the -3 slope. The longitudinal and transverse spectra are congruent with the famous atmospheric spectra by Nastrom & Gage. Thus, for the first time, these spectra are obtained within an analytical theory. QNSE explains the latitudinal dependence of the spectra and lends itself for practical applications in simulations of atmospheric and oceanic flows as it produces closed expressions for the eddy viscosities and eddy diffusivities. The Nastrom & Gage spectra also apply to the oceanic flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JFM...551...19C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JFM...551...19C"><span>A model relating Eulerian spatial and temporal velocity correlations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cholemari, Murali R.; Arakeri, Jaywant H.</p> <p>2006-03-01</p> <p>In this paper we propose a model to relate Eulerian spatial and temporal velocity autocorrelations in homogeneous, isotropic and stationary turbulence. We model the decorrelation as the eddies of various scales becoming decorrelated. This enables us to connect the spatial and temporal separations required for a certain decorrelation through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation, we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads to a spatial separation from the temporal correlation and a temporal separation from the spatial correlation, at any given value of the correlation relating the two correlations. We test the model using experimental data from a stationary axisymmetric turbulent flow with homogeneity along the axis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120000925','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120000925"><span>Estimation of Eddy Dissipation Rates from Mesoscale Model Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahmad, Nashat N.; Proctor, Fred H.</p> <p>2012-01-01</p> <p>The Eddy Dissipation Rate is an important metric for representing the intensity of atmospheric turbulence and is used as an input parameter for predicting the decay of aircraft wake vortices. In this study, the forecasts of eddy dissipation rates obtained from the current state-of-the-art mesoscale model are evaluated for terminal area applications. The Weather Research and Forecast mesoscale model is used to simulate the planetary boundary layer at high horizontal and vertical mesh resolutions. The Bougeault-Lacarrer and the Mellor-Yamada-Janji schemes implemented in the Weather Research and Forecast model are evaluated against data collected during the National Aeronautics and Space Administration s Memphis Wake Vortex Field Experiment. Comparisons with other observations are included as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OcMod..36..133I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OcMod..36..133I"><span>How does the Red Sea outflow water interact with Gulf of Aden Eddies?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ilıcak, Mehmet; Özgökmen, Tamay M.; Johns, William E.</p> <p></p> <p>As the Red Sea overflow water (RSOW) enters the Gulf of Aden (GOA), it interacts with a sequence of nearly barotropic, mesoscale eddies originating in the Indian Ocean. To investigate how these eddies impact the dispersal and eastward transport of the RSOW toward the Indian Ocean, a high resolution 3D regional model is employed to explore systematically the interaction between the RSOW and mesoscale eddies. Two types of experiments are conducted. In the first set, we simulate the behavior of RSOW in the presence of an idealized cyclone and an idealized anticyclone. The second type of simulation involves nesting of the regional model (ROMS) within a data-assimilating global model (HYCOM), in which a sequence of mesoscale eddies entering the Gulf of Aden is realistically captured. This simulation is integrated for one year, and includes a simple representation of the seasonality of the RSOW. Bower et al. (2002) suggest that the Red Sea overflow might be a western boundary undercurrent. Consistent with these expectations, the idealized simulations show that the preferred pathway of the RSOW in the absence of eddies is along the coast of Somalia (southern continental shelf) as a western boundary undercurrent. Simultaneously, a cyclonic circulation is generated in the far western GOA due to vortex stretching by the descending outflow. The presence of a cyclone in the western GOA increases the peak RSOW transport, but the cyclone itself rapidly loses its coherence after interacting with the rough topography in the western GOA. The presence of an anticyclone tends to block the preferred boundary pathway and inhibits the eastward transport of the RSOW. The eddies also result in substantially increased mixing of the RSOW in the western GOA. On the basis of the more realistic ROMS experiment, it is found that the modeled RSOW leaves the western part of the Gulf of Aden in short episodic bursts with transports that are an order of magnitude greater than that associated with the quasi-steady RSOW inflow into GOA. Such enhancement in RSOW transport is shown to be induced by cyclonic eddies that cause a rapid discharge of RSOW from the western part of the GOA. We conclude that mesoscale eddies play a key role in the transport and mixing of the RSOW within GOA.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.123...98D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.123...98D"><span>Understanding variability of the Southern Ocean overturning circulation in CORE-II models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Downes, S. M.; Spence, P.; Hogg, A. M.</p> <p>2018-03-01</p> <p>The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.819N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.819N"><span>Downscaling modelling system for multi-scale air quality forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nuterman, R.; Baklanov, A.; Mahura, A.; Amstrup, B.; Weismann, J.</p> <p>2010-09-01</p> <p>Urban modelling for real meteorological situations, in general, considers only a small part of the urban area in a micro-meteorological model, and urban heterogeneities outside a modelling domain affect micro-scale processes. Therefore, it is important to build a chain of models of different scales with nesting of higher resolution models into larger scale lower resolution models. Usually, the up-scaled city- or meso-scale models consider parameterisations of urban effects or statistical descriptions of the urban morphology, whereas the micro-scale (street canyon) models are obstacle-resolved and they consider a detailed geometry of the buildings and the urban canopy. The developed system consists of the meso-, urban- and street-scale models. First, it is the Numerical Weather Prediction (HIgh Resolution Limited Area Model) model combined with Atmospheric Chemistry Transport (the Comprehensive Air quality Model with extensions) model. Several levels of urban parameterisation are considered. They are chosen depending on selected scales and resolutions. For regional scale, the urban parameterisation is based on the roughness and flux corrections approach; for urban scale - building effects parameterisation. Modern methods of computational fluid dynamics allow solving environmental problems connected with atmospheric transport of pollutants within urban canopy in a presence of penetrable (vegetation) and impenetrable (buildings) obstacles. For local- and micro-scales nesting the Micro-scale Model for Urban Environment is applied. This is a comprehensive obstacle-resolved urban wind-flow and dispersion model based on the Reynolds averaged Navier-Stokes approach and several turbulent closures, i.e. k -ɛ linear eddy-viscosity model, k - ɛ non-linear eddy-viscosity model and Reynolds stress model. Boundary and initial conditions for the micro-scale model are used from the up-scaled models with corresponding interpolation conserving the mass. For the boundaries a kind of Dirichlet condition is chosen to provide the values based on interpolation from the coarse to the fine grid. When the roughness approach is changed to the obstacle-resolved one in the nested model, the interpolation procedure will increase the computational time (due to additional iterations) for meteorological/ chemical fields inside the urban sub-layer. In such situations, as a possible alternative, the perturbation approach can be applied. Here, the effects of main meteorological variables and chemical species are considered as a sum of two components: background (large-scale) values, described by the coarse-resolution model, and perturbations (micro-scale) features, obtained from the nested fine resolution model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930006604','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930006604"><span>Lumley's energy cascade dissipation rate model for boundary-free turbulent shear flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duncan, B. S.</p> <p>1992-01-01</p> <p>True dissipation occurs mainly at the highest wavenumbers where the eddy sizes are comparatively small. These high wavenumbers receive their energy through the spectral cascade of energy starting with the largest eddies spilling energy into the smaller eddies, passing through each wavenumber until it is dissipated at the microscopic scale. However, a small percentage of the energy does not spill continuously through the cascade but is instantly passed to the higher wavenumbers. Consequently, the smallest eddies receive a certain amount of energy almost immediately. As the spectral energy cascade continues, the highest wavenumber needs a certain time to receive all the energy which has been transferred from the largest eddies. As such, there is a time delay, of the order of tau, between the generation of energy by the largest eddies and the eventual dissipation of this energy. For equilibrium turbulence at high Reynolds numbers, there is a wide range where energy is neither produced by the large eddies nor dissipated by viscosity, but is conserved and passed from wavenumber to higher wavenumbers. The rate at which energy cascades from one wavenumber to another is proportional to the energy contained within that wavenumber. This rate is constant and has been used in the past as a dissipation rate of turbulent kinetic energy. However, this is true only in steady, equilibrium turbulence. Most dissipation models contend that the production of dissipation is proportional to the production of energy and that the destruction of dissipation is proportional to the destruction of energy. In essence, these models state that the change in the dissipation rate is proportional to the change in the kinetic energy. This assumption is obviously incorrect for the case where there is no production of turbulent energy, yet energy continues to cascade from large to small eddies. If the time lag between the onset on the energy cascade to the destruction of energy at the microscale can be modeled, then there will be a better representation of the dissipation process. Development of an energy cascade time scale equation is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT........55C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT........55C"><span>Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Claycomb, James Ronald</p> <p>1998-10-01</p> <p>Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003APS..DFD.KG004H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003APS..DFD.KG004H"><span>A Nonlinear Interactions Approximation Model for Large-Eddy Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haliloglu, Mehmet U.; Akhavan, Rayhaneh</p> <p>2003-11-01</p> <p>A new approach to LES modelling is proposed based on direct approximation of the nonlinear terms \\overlineu_iuj in the filtered Navier-Stokes equations, instead of the subgrid-scale stress, τ_ij. The proposed model, which we call the Nonlinear Interactions Approximation (NIA) model, uses graded filters and deconvolution to parameterize the local interactions across the LES cutoff, and a Smagorinsky eddy viscosity term to parameterize the distant interactions. A dynamic procedure is used to determine the unknown eddy viscosity coefficient, rendering the model free of adjustable parameters. The proposed NIA model has been applied to LES of turbulent channel flows at Re_τ ≈ 210 and Re_τ ≈ 570. The results show good agreement with DNS not only for the mean and resolved second-order turbulence statistics but also for the full (resolved plus subgrid) Reynolds stress and turbulence intensities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21371028-pulsed-eddy-current-thickness-measurement-selective-phase-corrosion-nickel-aluminum-bronze-valves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21371028-pulsed-eddy-current-thickness-measurement-selective-phase-corrosion-nickel-aluminum-bronze-valves"><span>PULSED EDDY CURRENT THICKNESS MEASUREMENT OF SELECTIVE PHASE CORROSION ON NICKEL ALUMINUM BRONZE VALVES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Krause, T. W.; Harlley, D.; Babbar, V. K.</p> <p></p> <p>Nickel Aluminum Bronze (NAB) is a material with marine environment applications that under certain conditions can undergo selective phase corrosion (SPC). SPC involves the removal of minority elements while leaving behind a copper matrix. Pulsed eddy current (PEC) was evaluated for determination of SPC thickness on a NAB valve section with access from the surface corroded side. A primarily linear response of PEC amplitude, up to the maximum available SPC thickness of 4 mm was observed. The combination of reduced conductivity and permeability in the SPC phase relative to the base NAB was used to explain the observed sensitivity ofmore » PEC to SPC thickness variations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007DSRII..54..789W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007DSRII..54..789W"><span>The Leeuwin Current and its eddies: An introductory overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waite, A. M.; Thompson, P. A.; Pesant, S.; Feng, M.; Beckley, L. E.; Domingues, C. M.; Gaughan, D.; Hanson, C. E.; Holl, C. M.; Koslow, T.; Meuleners, M.; Montoya, J. P.; Moore, T.; Muhling, B. A.; Paterson, H.; Rennie, S.; Strzelecki, J.; Twomey, L.</p> <p>2007-04-01</p> <p>The Leeuwin Current (LC) is an anomalous poleward-flowing eastern boundary current that carries warm, low-salinity water southward along the coast of Western Australia. We present an introduction to a new body of work on the physical and biological dynamics of the LC and its eddies, collected in this Special Issue of Deep-Sea Research II, including (1) several modelling efforts aimed at understanding LC dynamics and eddy generation, (2) papers from regional surveys of primary productivity and nitrogen uptake patterns in the LC, and (3) the first detailed field investigations of the biological oceanography of LC mesoscale eddies. Key results in papers collected here include insight into the source regions of the LC and the Leeuwin Undercurrent (LUC), the energetic interactions of the LC and LUC, and their roles in the generation of warm-core (WC) and cold-core (CC) eddies, respectively. In near-shore waters, the dynamics of upwelling were found to control the spatio-temporal variability of primary production, and important latitudinal differences were found in the fraction of production driven by nitrate (the f-ratio). The ubiquitous deep chlorophyll maximum within LC was found to be a significant contributor to total water column production within the region. WC eddies including a single large eddy studied in 2000 contained relatively elevated chlorophyll a concentrations thought to originate at least in part from the continental shelf/shelf break region and to have been incorporated during eddy formation. During the Eddies 2003 voyage, a more detailed study comparing the WC and CC eddies illuminated more mechanistic details of the unusual dynamics and ecology of the eddies. Food web analysis suggested that the WC eddy had an enhanced "classic" food web, with more concentrated mesozooplankton and larger diatom populations than in the CC eddy. Finally, implications for fisheries management are addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27910585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27910585"><span>The eddy current probe array for Keda Torus eXperiment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong</p> <p>2016-11-01</p> <p>In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the eddy current present. Also, the effect of eddy currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an eddy current probe array, detects the eddy current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these eddy currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the eddy currents over the entire shell. Magnetic field and eddy current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by eddy current probes. As the conductivity of the composite shell is high, the eddy current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced eddy currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the eddy currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal eddy currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-02-04/pdf/2010-2192.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-02-04/pdf/2010-2192.pdf"><span>75 FR 5677 - Airworthiness Directives; The Boeing Company Model 767-200, -300, and -300F Series Airplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-02-04</p> <p>... detailed and eddy current inspections to detect cracks and corrosion of certain midspar fuse pins, and... addition to longitudinal cracks. In addition, eddy current inspection of the midspar fuse pins in..., 311T3102-3, 311T3102-4, 311T2102-1 or 311T2102-2: Do a detailed inspection and an eddy current inspection...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RuPhJ..60.1880S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RuPhJ..60.1880S"><span>Magnetic Field of Conductive Objects as Superposition of Elementary Eddy Currents and Eddy Current Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sukhanov, D. Ya.; Zav'yalova, K. V.</p> <p>2018-03-01</p> <p>The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-06-23/pdf/2010-14982.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-06-23/pdf/2010-14982.pdf"><span>75 FR 35611 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, and MD-10-10F...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-06-23</p> <p>... one-time high frequency eddy current inspection of fastener holes for cracks at the left and right... frequency eddy current inspection of fastener holes for cracks at the left and right side wing rear spar... frequency eddy current inspection for cracking of fastener holes at the left and right side wing rear spar...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-01-19/pdf/2010-699.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-01-19/pdf/2010-699.pdf"><span>75 FR 2831 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, and MD-10-10F...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-01-19</p> <p>... proposed AD would require a one-time high frequency eddy current inspection of fastener holes for cracks at... high frequency eddy current inspection of fastener holes for cracking at the left and right side wing... of this AD, do a one-time high frequency eddy current inspection for cracking of fastener holes at...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-04-02/pdf/2010-7458.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-04-02/pdf/2010-7458.pdf"><span>75 FR 16683 - Airworthiness Directives; The Boeing Company Model 777-200LR and -300ER Series Airplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-04-02</p> <p>... eddy current inspection for cracking of the keyway of the fuel tank access door cutout on the left and... frequency eddy current (HFEC) inspection for cracking at the keyway of the fuel tank access door cutout on... frequency eddy current (HFEC) inspection for cracking of the keyway of the fuel tank access door cutout on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-01-12/pdf/2010-33333.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-01-12/pdf/2010-33333.pdf"><span>76 FR 1990 - Airworthiness Directives; Pilatus Aircraft Ltd. Models PC-6, PC-6-H1, PC-6-H2, PC-6/350, PC-6/350...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-01-12</p> <p>... eddy current and visual inspections of the upper wing strut fitting for evidence of cracks, wear and/or... permitted extending the intervals for the repetitive eddy current and visual inspections from 100 Flight... the applicability and to require repetitive eddy current and visual inspections of the upper wing...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-10-07/pdf/2010-25289.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-10-07/pdf/2010-25289.pdf"><span>75 FR 62005 - Airworthiness Directives; Pilatus Aircraft Ltd. Models PC-6, PC-6-H1, PC-6-H2, PC-6/350, PC-6/350...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-10-07</p> <p>... the applicability and to require repetitive eddy current and visual inspections of the upper wing... the applicability and to require repetitive eddy current and visual inspections of the upper wing... Emergency AD 2007-0241-E to extend the applicability and to require repetitive eddy current and visual...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992GeoRL..19.1463L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992GeoRL..19.1463L"><span>An investigation into the causes of stratospheric ozone loss in the southern Australasian region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehmann, P.; Karoly, D. J.; Newmann, P. A.; Clarkson, T. S.; Matthews, W. A.</p> <p>1992-07-01</p> <p>Measurements of total ozone at Macquarie Island (55 deg S, 159 deg E) reveal statistically significant reductions of approximately twelve percent during July to September when comparing the mean levels for 1987-90 with those in the seventies. In order to investigate the possibility that these ozone changes may not be a result of dynamic variability of the stratosphere, a simple linear model of ozone was created from statistical analysis of tropopause height and isentropic transient eddy heat flux, which were assumed representative of the dominant dynamic influences. Comparison of measured and modeled ozone indicates that the recent downward trend in ozone at Macquarie Island is not related to stratospheric dynamic variability and therefore suggests another mechanism, possibly changes in photochemical destruction of ozone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120..677E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120..677E"><span>Cyclonic entrainment of preconditioned shelf waters into a frontal eddy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.</p> <p>2015-02-01</p> <p>The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43J..05Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43J..05Z"><span>On the Roles of Upper- versus Lower-level Thermal Forcing in Shifting the Eddy-Driven Jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Y.; Nie, Y.; Chen, G.; Yang, X. Q.</p> <p>2017-12-01</p> <p>One most drastic atmospheric change in the global warming scenario is the increase in temperature over tropical upper-troposphere and polar surface. The strong warming over those two area alters the spacial distributions of the baroclinicity in the upper-troposphere of subtropics and in the lower-level of subpolar region, with competing effects on the mid-latitude atmospheric circulation. The final destination of the eddy-driven jet in future climate could be "a tug of war" between the impacts of such upper- versus lower-level thermal forcing. In this study, the roles of upper- versus lower-level thermal forcing in shifting the eddy-driven jet are investigated using a nonlinear multi-level quasi-geostrophic channel model. All of our sensitivity experiments show that the latitudinal position of the eddy-driven jet is more sensitive to the upper-level thermal forcing. Such upper-level dominance over the lower-level forcing can be attributed to the different mechanisms through which eddy-driven jet responses to them. The upper-level thermal forcing induces a jet shift mainly by affecting the baroclinic generation of eddies, which supports the latitudinal shift of the eddy momentum flux convergence. The jet response to the lower-level thermal forcing, however, is strongly "eddy dissipation control". The lower-level forcing, by changing the baroclinicity in the lower troposphere, induces a direct thermal zonal wind response in the upper level thus modifies the nonlinear wave breaking and the resultant irreversible eddy mixing, which amplifies the latitudinal shift of the eddy-driven jet. Whether the eddy response is "generation control" or "dissipation control" may strongly depend on the eddy behavior in its baroclinic processes. Only the anomalous eddy generation that penetrates into the upper troposphere can have a striking impact on the eddy momentum flux, which pushes the jet shift more efficiently and dominates the eddy response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26521001','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26521001"><span>Note: Void effects on eddy current distortion in two-phase liquid metal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M</p> <p>2015-10-01</p> <p>A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870055068&hterms=empiricism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dempiricism','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870055068&hterms=empiricism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dempiricism"><span>Development of Large-Eddy Interaction Model for inhomogeneous turbulent flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hong, S. K.; Payne, F. R.</p> <p>1987-01-01</p> <p>The objective of this paper is to demonstrate the applicability of a currently proposed model, with minimum empiricism, for calculation of the Reynolds stresses and other turbulence structural quantities in a channel. The current Large-Eddy Interaction Model not only yields Reynolds stresses but also presents an opportunity to illuminate typical characteristic motions of large-scale turbulence and the phenomenological aspects of engineering models for two Reynolds numbers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70135102','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70135102"><span>Vertical structure of mean cross-shore currents across a barred surf zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haines, John W.; Sallenger, Asbury H.</p> <p>1994-01-01</p> <p>Mean cross-shore currents observed across a barred surf zone are compared to model predictions. The model is based on a simplified momentum balance with a turbulent boundary layer at the bed. Turbulent exchange is parameterized by an eddy viscosity formulation, with the eddy viscosity Aυ independent of time and the vertical coordinate. Mean currents result from gradients due to wave breaking and shoaling, and the presence of a mean setup of the free surface. Descriptions of the wave field are provided by the wave transformation model of Thornton and Guza [1983]. The wave transformation model adequately reproduces the observed wave heights across the surf zone. The mean current model successfully reproduces the observed cross-shore flows. Both observations and predictions show predominantly offshore flow with onshore flow restricted to a relatively thin surface layer. Successful application of the mean flow model requires an eddy viscosity which varies horizontally across the surf zone. Attempts are made to parameterize this variation with some success. The data does not discriminate between alternative parameterizations proposed. The overall variability in eddy viscosity suggested by the model fitting should be resolvable by field measurements of the turbulent stresses. Consistent shortcomings of the parameterizations, and the overall modeling effort, suggest avenues for further development and data collection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1129306-eddy-fluxes-sensitivity-water-cycle-spatial-resolution-idealized-regional-aquaplanet-model-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1129306-eddy-fluxes-sensitivity-water-cycle-spatial-resolution-idealized-regional-aquaplanet-model-simulations"><span>Eddy Fluxes and Sensitivity of the Water Cycle to Spatial Resolution in Idealized Regional Aquaplanet Model Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hagos, Samson M.; Leung, Lai-Yung R.; Gustafson, William I.</p> <p>2014-02-28</p> <p>A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddies fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effect, on the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides the potential for reducing thismore » sensitivity by representing the unresolved eddies by their marginally resolved counterparts.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19163660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19163660"><span>The numeric calculation of eddy current distributions in transcranial magnetic stimulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsuyama, Seichi; Hyodo, Akira; Sekino, Masaki; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji</p> <p>2008-01-01</p> <p>Transcranial magnetic stimulation (TMS) is a method to stimulate neurons in the brain. It is necessary to obtain eddy current distributions and determine parameters such as position, radius and bend-angle of the coil to stimulate target area exactly. In this study, we performed FEM-based numerical simulations of eddy current induced by TMS using three-dimentional human head model with inhomogeneous conductivity. We used double-cone coil and changed the coil radius and bend-angle of coil. The result of computer simulation showed that as coil radius increases, the eddy current became stronger everywhere. And coil with bend-angle of 22.5 degrees induced stronger eddy current than the coil with bendangle of 0 degrees. Meanwhile, when the bend-angle was 45 degrees, eddy current became weaker than these two cases. This simulation allowed us to determine appropriate parameter easier.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880043995&hterms=group+theory&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgroup%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880043995&hterms=group+theory&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgroup%2Btheory"><span>Renormalization-group theory for the eddy viscosity in subgrid modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhou, YE; Vahala, George; Hossain, Murshed</p> <p>1988-01-01</p> <p>Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41B2267H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41B2267H"><span>Annular Mode Dynamics: Eddy Feedbacks and the Underlying Mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hassanzadeh, P.; Ma, D.; Kuang, Z.</p> <p>2017-12-01</p> <p>Annular modes are the leading modes the extratropical circulation variability in both hemispheres on intraseasonal to interannual timescales. Temporal persistence and an equivalent-barotropic dipolar wind anomaly are the key spatio-temporal characteristics of the annular modes. The potential source(s) of this persistence, and in particular, whether there is a contribution from a positive eddy-jet feedback, are still unclear (e.g., Lorenz and Hartmann, 2001; Byrne et al., 2016). The mechanism of this feedback, and how it depends on processes such as surface friction, is also not well understood (e.g., Robinson, 2000; Gerber et al., 2007). In this study, we utilize the recently calculated Linear Response Function (LRF) of an idealized GCM (Hassanzadeh and Kuang, 2016). The LRF enables us to accurately calculate the response of eddy momentum/heat fluxes to the zonal-mean zonal wind and temperature anomalies of the annular mode. Using this information: 1) We confirm the existence of a positive eddy-jet feedback in the annular mode of the idealized GCM and accurately quantify the magnitude of this feedback; 2) We quantify the contribution of key processes (e.g., eddy momentum/heat fluxes and surface friction) to the annular mode dynamics in the idealized GCM. We show that as proposed by Robinson (2000), the baroclinic component of the annular mode and surface friction are essential for the positive eddy-jet feedback. Results show that this feedback increases the persistence of the annular mode by a factor of two. We also show that the barotropic component of the annular mode alone does not lead to persistence. In fact, the eddy-jet feedback for the barotropic component is negative because of the dominance of the barotropic governor effect. 3) Using the results of 1, we evaluate the underlying assumptions and accuracy of the statistical methods previously developed for quantifying the eddy-jet feedback (Lorenz and Hartmann, 2001; Simpson et al., 2013) and introduce a new statistical method that shows superior accuracy. We apply the new method to reanalysis data to quantify the eddy-jet feedback for the Southern Annular Mode. The key findings of 1-3 and their implications for our understanding of the annular mode dynamics will be discussed in this presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=325742','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=325742"><span>Modeling uncertainty of evapotranspiration measurements from multiple eddy covariance towers over a crop canopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>All measurements have random error associated with them. With fluxes in an eddy covariance system, measurement error can been modelled in several ways, often involving a statistical description of turbulence at its core. Using a field experiment with four towers, we generated four replicates of meas...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18818151','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18818151"><span>The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thompson, Andrew F</p> <p>2008-12-28</p> <p>Although the Antarctic Circumpolar Current (ACC) is the longest and the strongest oceanic current on the Earth and is the primary means of inter-basin exchange, it remains one of the most poorly represented components of global climate models. Accurately describing the circulation of the ACC is made difficult owing to the prominent role that mesoscale eddies and jets, oceanic equivalents of atmospheric storms and storm tracks, have in setting the density structure and transport properties of the current. The successes and limitations of different representations of eddy processes in models of the ACC are considered, with particular attention given to how the circulation responds to changes in wind forcing. The dynamics of energetic eddies and topographically steered jets may both temper and enhance the sensitivity of different aspects of the ACC's circulation to changes in climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PlST...14..855J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PlST...14..855J"><span>Electromagnetic Modeling of the Passive Stabilization Loop at EAST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao</p> <p>2012-09-01</p> <p>A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A53G..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A53G..02T"><span>Multi-Scale Modeling and the Eddy-Diffusivity/Mass-Flux (EDMF) Parameterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teixeira, J.</p> <p>2015-12-01</p> <p>Turbulence and convection play a fundamental role in many key weather and climate science topics. Unfortunately, current atmospheric models cannot explicitly resolve most turbulent and convective flow. Because of this fact, turbulence and convection in the atmosphere has to be parameterized - i.e. equations describing the dynamical evolution of the statistical properties of turbulence and convection motions have to be devised. Recently a variety of different models have been developed that attempt at simulating the atmosphere using variable resolution. A key problem however is that parameterizations are in general not explicitly aware of the resolution - the scale awareness problem. In this context, we will present and discuss a specific approach, the Eddy-Diffusivity/Mass-Flux (EDMF) parameterization, that not only is in itself a multi-scale parameterization but it is also particularly well suited to deal with the scale-awareness problems that plague current variable-resolution models. It does so by representing small-scale turbulence using a classic Eddy-Diffusivity (ED) method, and the larger-scale (boundary layer and tropospheric-scale) eddies as a variety of plumes using the Mass-Flux (MF) concept.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDG30007R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDG30007R"><span>Anisotropic shear dispersion parameterization for ocean eddy transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reckinger, Scott; Fox-Kemper, Baylor</p> <p>2015-11-01</p> <p>The effects of mesoscale eddies are universally treated isotropically in global ocean general circulation models. However, observations and simulations demonstrate that the mesoscale processes that the parameterization is intended to represent, such as shear dispersion, are typified by strong anisotropy. We extend the Gent-McWilliams/Redi mesoscale eddy parameterization to include anisotropy and test the effects of varying levels of anisotropy in 1-degree Community Earth System Model (CESM) simulations. Anisotropy has many effects on the simulated climate, including a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, impacts on the meridional overturning circulation and ocean energy and tracer uptake, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. A process-based parameterization to approximate the effects of unresolved shear dispersion is also used to set the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24831111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24831111"><span>A combined experimental and finite element analysis method for the estimation of eddy-current loss in NdFeB magnets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude</p> <p>2014-05-14</p> <p>NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhFl...28i3603M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhFl...28i3603M"><span>Interaction of monopoles, dipoles, and turbulence with a shear flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marques Rosas Fernandes, V. H.; Kamp, L. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.</p> <p>2016-09-01</p> <p>Direct numerical simulations have been conducted to examine the evolution of eddies in the presence of large-scale shear flows. The numerical experiments consist of initial-value-problems in which monopolar and dipolar vortices as well as driven turbulence are superposed on a plane Couette or Poiseuille flow in a periodic two-dimensional channel. The evolution of the flow has been examined for different shear rates of the background flow and different widths of the channel. Results found for retro-grade and pro-grade monopolar vortices are consistent with those found in the literature. Boundary layer vorticity, however, can significantly modify the straining and erosion of monopolar vortices normally seen for unbounded domains. Dipolar vortices are shown to be much more robust coherent structures in a large-scale shear flow than monopolar eddies. An analytical model for their trajectories, which are determined by self-advection and advection and rotation by the shear flow, is presented. Turbulent kinetic energy is effectively suppressed by the shearing action of the background flow provided that the shear is linear (Couette flow) and of sufficient strength. Nonlinear shear as present in the Poiseuille flow seems to even increase the turbulence strength especially for high shear rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990024947','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990024947"><span>A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bui, Trong T.</p> <p>1999-01-01</p> <p>A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996DSRI...43.1475P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996DSRI...43.1475P"><span>The eddy cannon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pichevin, Thierry; Nof, Doron</p> <p>1996-09-01</p> <p>A new nonlinear mechanism for the generation of "Meddies" by a cape is proposed. The essence of the new process is that the flow-force associated with any steady current that curves back on itself around a cape cannot be balanced without generating and shedding eddies. The process is modeled as follows. A westward flowing density current advances along a zonal wall and turns eastward after reaching the edge of the wall (i.e. the Cape of St Vincent). Integration of the steady (and inviscid) momentum equation along the wall gives the long-shore flow-force and shows that, no matter what the details of the turning process are, such a scenario is impossible. It corresponds to an unbalanced flow-force and, therefore, cannot exist. Namely, in an analogy to a rocket, the zonal longshore current forces the entire system to the west. A flow field that can compensate for such a force is westward drifting eddies that push the system to the east. In a similar fashion to the backward push associated with a firing cannon, the westward moving eddies (bullets) balance the integrated momentum of the flow around the cape. Nonlinear solutions are constructed analytically using an approach that enables one to compute the eddies' size and generation frequency without solving for the incredibly complicated details of the generation process itself. The method takes advantage of the fact that, after each eddy is generated, the system returns to its original structure. It is based on the integration of the momentum equation (for periodic flows) over a control volume and a perturbation expansion in ɛ, the ratio between the eddies' westward drift and the parent current speed. It is found that, because of the relatively small size of the Mediterranean eddies, β is not a sufficiently strong mechanism to remove the eddies (from the Cape of St Vincent) at the observed frequency. It is, therefore, concluded that westward advection must also take place. Specifically, it is found that an advection of 2 cm s -1 will remove (and generate) a Meddy once every 50 days or so and an advection of 5 cm s -1 will remove a Meddy every 17 days. "Kitchen-type" laboratory experiments on a rotating table show that, indeed, a flow that curves back on itself produces an eddy next to the tip of the cape. However, since neither significant β nor advection was present in the laboratory, the laboratory eddy was not shed during the limited time that the experiment was in progress. Numerical simulations (using the Bleck and Boudra isopycnic model) demonstrate, however, that eddies are constantly shed as predicted by the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP53F1042D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP53F1042D"><span>Numerical modeling of hydrodynamics and sediment transport at diversions: why depth-averaged models are not able to capture the inherent physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dutta, S.; Tassi, P.; Fischer, P.; Wang, D.; Garcia, M. H.</p> <p>2016-12-01</p> <p>Diversions are a subset of asymmetric bifurcations, where one of the channels after bifurcation continues along the direction of the original channel, often referred to as the main-channel. Diversions are not only built for river-engineering purposes, e.g. navigational canals, channels to divert water and sediment to rebuild deltas etc.; they can also be formed naturally, e.g. chute cutoffs. Thus correct prediction of the hydrodynamics and sediment transport at a diversion is essential. One of the first extensive studies on diversion was conducted by Bulle [1926], where it was found that compared to discharge of water; a disproportionately higher amount of bed-load sediment entered the lateral-channel at the diversion. Hence, this phenomenon is known as the Bulle-Effect. Recent studies have used high-resolution Large Eddy Simulation (LES) [Dutta et al., 2016a] and Reynolds Averaged Navier-Stokes (RANS) based three-dimensional hydrodynamics model [Dutta et al., 2016b] to unravel the mechanism behind the aforementioned non-linear phenomenon. Such studies have shown that the Bulle-Effect is caused by a stark difference between the flow structure near the bottom of a channel, and near the top of a channel. These findings hint towards the possible failure of 2D shallow water based numerical models in simulating the hydrodynamics and the sediment transport at a diversion correctly. The current study analyzes the hydrodynamics and sediment transport at a 90-degree diversion across five different models of increasing complexity, starting from a 2D depth-averaged hydrodynamics model to a high-resolution LES. This comparative study will provide a clear indication of the minimum amount of complexity a model should inculcate in order to capture the Bulle-Effect relatively well. Bulle, (1926), Untersuchungen ber die geschiebeableitung bei der spaltung von wasserlufen, Technical Report, V.D.I. Verlag, Berlin, Germany Dutta et al., (2016), Large Eddy Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016, Taylor & Francis Group, 101-109 Dutta et al., (2016), Three-Dimensional Numerical Modeling of Bulle-Effect: the non-linear distribution of near-bed sediment at fluvial diversions, submitted to Earth Surface Processes and Landforms, Wiley</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..834S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..834S"><span>Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris</p> <p>2018-01-01</p> <p>Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/43568','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/43568"><span>Modeling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ranjeet John; Jiquan Chen; Asko Noormets; Xiangming Xiao; Jianye Xu; Nan Lu; Shiping Chen</p> <p>2013-01-01</p> <p>We evaluate the modelling of carbon fluxes from eddy covariance (EC) tower observations in different water-limited land-cover/land-use (LCLU) and biome types in semi-arid Inner Mongolia, China. The vegetation photosynthesis model (VPM) and modified VPM (MVPM), driven by the enhanced vegetation index (EVI) and land-surface water index (LSWI), which were derived from the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986JGR....91.9624S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986JGR....91.9624S"><span>Observed and modeled mesoscale variability near the Gulf Stream and Kuroshio Extension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmitz, William J.; Holland, William R.</p> <p>1986-08-01</p> <p>Our earliest intercomparisons between western North Atlantic data and eddy-resolving two-layer quasi-geostrophic symmetric-double-gyre steady wind-forced numerical model results focused on the amplitudes and largest horizontal scales in patterns of eddy kinetic energy, primarily abyssal. Here, intercomparisons are extended to recent eight-layer model runs and new data which allow expansion of the investigation to the Kuroshio Extension and throughout much of the water column. Two numerical experiments are shown to have realistic zonal, vertical, and temporal eddy scales in the vicinity of the Kuroshio Extension in one case and the Gulf Stream in the other. Model zonal mean speeds are larger than observed, but vertical shears are in general agreement with the data. A longitudinal displacement between the maximum intensity in surface and abyssal eddy fields as observed for the North Atlantic is not found in the model results. The numerical simulations examined are highly idealized, notably with respect to basin shape, topography, wind-forcing, and of course dissipation. Therefore the zero-order agreement between modeled and observed basic characteristics of mid-latitude jets and their associated eddy fields suggests that such properties are predominantly determined by the physical mechanisms which dominate the models, where the fluctuations are the result of instability processes. The comparatively high vertical resolution of the model is needed to compare with new higher-resolution data as well as for dynamical reasons, although the precise number of layers required either kinematically or dynamically (or numerically) has not been determined; we estimate four to six when no attempt is made to account for bottom- or near-surface-intensified phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810017071','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810017071"><span>Integrated and spectral energetics of the GLAS general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tenenbaum, J.</p> <p>1981-01-01</p> <p>Integrated and spectral error energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level. General circulation model spectral energetics predictions are compared with the corresponding observational spectra on a day by day basis. Eddy kinetic energy can be correct while significant errors occur in the kinetic energy of wavenumber three. Single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetic and potential energy are demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-10-27/pdf/2011-27599.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-10-27/pdf/2011-27599.pdf"><span>76 FR 66620 - Airworthiness Directives; Bombardier, Inc. Model CL-215-1A10, CL-215-6B11 (CL-215T Variant), and...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-10-27</p> <p>... effective date of this AD: Perform an in situ eddy current inspection for cracks on the forward lug of the...-6B11 (CL-415 Variant) airplanes). Thereafter, repeat the in situ eddy current inspection at intervals not to exceed 165 land landings. (2) If no crack is found: Repeat the in situ eddy current inspection...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/21291','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/21291"><span>Statistical modeling of ecosystem respiration using eddy covariance data: Maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Andrew D. Richardson; David Y. Hollinger; David Y. Hollinger</p> <p>2005-01-01</p> <p>Whether the goal is to fill gaps in the flux record, or to extract physiological parameters from eddy covariance data, researchers are frequently interested in fitting simple models of ecosystem physiology to measured data. Presently, there is no consensus on the best models to use, or the ideal optimization criteria. We demonstrate that, given our estimates of the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DFD.ND005T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DFD.ND005T"><span>Tests of dynamic Lagrangian eddy viscosity models in Large Eddy Simulations of flow over three-dimensional bluff bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B.</p> <p>2004-11-01</p> <p>Large Eddy Simulations (LES) of atmospheric boundary-layer air movement in urban environments are especially challenging due to complex ground topography. Typically in such applications, fairly coarse grids must be used where the subgrid-scale (SGS) model is expected to play a crucial role. A LES code using pseudo-spectral discretization in horizontal planes and second-order differencing in the vertical is implemented in conjunction with the immersed boundary method to incorporate complex ground topography, with the classic equilibrium log-law boundary condition in the new-wall region, and with several versions of the eddy-viscosity model: (1) the constant-coefficient Smagorinsky model, (2) the dynamic, scale-invariant Lagrangian model, and (3) the dynamic, scale-dependent Lagrangian model. Other planar-averaged type dynamic models are not suitable because spatial averaging is not possible without directions of statistical homogeneity. These SGS models are tested in LES of flow around a square cylinder and of flow over surface-mounted cubes. Effects on the mean flow are documented and found not to be major. Dynamic Lagrangian models give a physically more realistic SGS viscosity field, and in general, the scale-dependent Lagrangian model produces larger Smagorinsky coefficient than the scale-invariant one, leading to reduced distributions of resolved rms velocities especially in the boundary layers near the bluff bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11D1910B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11D1910B"><span>The Role of Ocean Eddies in the Southern Ocean Response to Observed Greenhouse Gas Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bilgen, S. I.; Kirtman, B. P.</p> <p>2017-12-01</p> <p>The Southern Ocean (SO) is crucial to understanding the possible future response to a changing climate. This is a principal region where energy is conveyed to the ocean by the westerly winds and it is here that mesoscale ocean eddies field dominate meridional heat and momentum transport. Compared to the Arctic, the Antarctic and the surrounding SO have a "delayed warming" anthropogenic greenhouse gas (GHG) response. Understanding the role of the ocean dynamics in modulating the mesoscale atmosphere-ocean interactions in the SO in a fully coupled regime is crucial to efforts aimed at predicting the consequences of the warming and variability to the climate system. The response of model run at multiple resolutions (eddy permitting, eddy resolving) to both GHG forcing and historical forcing are examined in NCAR CCSM4 with four experiments. The first simulation, 0.5° atmosphere coupled to ocean and sea ice components with 1° resolution (LR). The second simulation uses the identical atmospheric model but coupled to 0.1° ocean and sea ice component models (HR). For the third and fourth experiments, the global ocean is simulated for LR an HR models, and a climate change scenario are produced by applying a fixed (present-day) CO2 concentration. The analysis focuses on the last 55 years of two individual 155 year simulations. We discuss results from a set of state-of-art model experiments in comparison with observational estimates and explore mechanisms by examining sea surface temperature, westerly winds, surface heat flux, ocean heat transport. In LR simulations, the patterns and mechanisms of SO changes under GHG forcing are similar to those over the historical period: warming is damped southward of the ACC and enhanced to the north, however major changes between the HR simulations are explored. We find that in recent decades the Southern Annual Mode has shown a distinct upward trend, the result of an anthropogenic global warming. Also, HR simulations show that strengthening of the SAM and associated surface wind stress have been invoked to posit enhancement in the strength of the upwelling of the MOC, and increases eddy activity of the ACC. The results also indicate that eddy-permitting models are not able to capture the eddy-driven SST response since ocean dynamics is playing crucial role in the HR simulation but not in the LR models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26635077','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26635077"><span>Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao</p> <p>2015-12-04</p> <p>High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/945563','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/945563"><span>Nesting large-eddy simulations within mesoscale simulations for wind energy applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lundquist, J K; Mirocha, J D; Chow, F K</p> <p>2008-09-08</p> <p>With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting thatmore » a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988ATJHT.110..583N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988ATJHT.110..583N"><span>A two-equation model for heat transport in wall turbulent shear flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nagano, Y.; Kim, C.</p> <p>1988-08-01</p> <p>A new proposal for closing the energy equation is presented at the two-equation level of turbulence modeling. The eddy diffusivity concept is used in modeling. However, just as the eddy viscosity is determined from solutions of the k and epsilon equations, so the eddy diffusivity for heat is given as functions of temperature variance, and the dissipation rate of temperature fluctuations, together with k and epsilon. Thus, the proposed model does not require any questionable assumptions for the 'turbulent Prandtl number'. Modeled forms of the equations are developed to account for the physical effects of molecular Prandtl number and near-wall turbulence. The model is tested by application to a flat-plate boundary layer, the thermal entrance region of a pipe, and the turbulent heat transfer in fluids over a wide range of the Prandtl number. Agreement with the experiment is generally very satisfactory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...51L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...51L"><span>Impact of Gulf Stream SST biases on the global atmospheric circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Robert W.; Woollings, Tim J.; Hoskins, Brian J.; Williams, Keith D.; O'Reilly, Christopher H.; Masato, Giacomo</p> <p>2018-02-01</p> <p>The UK Met Office Unified Model in the Global Coupled 2 (GC2) configuration has a warm bias of up to almost 7 K in the Gulf Stream SSTs in the winter season, which is associated with surface heat flux biases and potentially related to biases in the atmospheric circulation. The role of this SST bias is examined with a focus on the tropospheric response by performing three sensitivity experiments. The SST biases are imposed on the atmosphere-only configuration of the model over a small and medium section of the Gulf Stream, and also the wider North Atlantic. Here we show that the dynamical response to this anomalous Gulf Stream heating (and associated shifting and changing SST gradients) is to enhance vertical motion in the transient eddies over the Gulf Stream, rather than balance the heating with a linear dynamical meridional wind or meridional eddy heat transport. Together with the imposed Gulf Stream heating bias, the response affects the troposphere not only locally but also in remote regions of the Northern Hemisphere via a planetary Rossby wave response. The sensitivity experiments partially reproduce some of the differences in the coupled configuration of the model relative to the atmosphere-only configuration and to the ERA-Interim reanalysis. These biases may have implications for the ability of the model to respond correctly to variability or changes in the Gulf Stream. Better global prediction therefore requires particular focus on reducing any large western boundary current SST biases in these regions of high ocean-atmosphere interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1185020-new-class-finite-element-variational-multiscale-turbulence-models-incompressible-magnetohydrodynamics','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1185020-new-class-finite-element-variational-multiscale-turbulence-models-incompressible-magnetohydrodynamics"><span>A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...</p> <p>2015-04-29</p> <p>New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001127','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001127"><span>Multigrid calculation of three-dimensional viscous cascade flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arnone, A.; Liou, M.-S.; Povinelli, L. A.</p> <p>1991-01-01</p> <p>A 3-D code for viscous cascade flow prediction was developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full multigrid method. The Baldwin-Lomax eddy viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910069131&hterms=firenze&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfirenze','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910069131&hterms=firenze&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfirenze"><span>Multigrid calculation of three-dimensional viscous cascade flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arnone, A.; Liou, M.-S.; Povinelli, L. A.</p> <p>1991-01-01</p> <p>A three-dimensional code for viscous cascade flow prediction has been developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full-multigrid method. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large-scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49082','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49082"><span>Large eddy simulation of forest canopy flow for wildland fire modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Eric Mueller; William Mell; Albert Simeoni</p> <p>2014-01-01</p> <p>Large eddy simulation (LES) based computational fluid dynamics (CFD) simulators have obtained increasing attention in the wildland fire research community, as these tools allow the inclusion of important driving physics. However, due to the complexity of the models, individual aspects must be isolated and tested rigorously to ensure meaningful results. As wind is a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800028699&hterms=atmospheric+pollution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Datmospheric%2Bpollution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800028699&hterms=atmospheric+pollution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Datmospheric%2Bpollution"><span>Finite-element numerical modeling of atmospheric turbulent boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, H. N.; Kao, S. K.</p> <p>1979-01-01</p> <p>A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930038699&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930038699&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEddy%2Bcurrent"><span>Modeling and strain gauging of eddy current repulsion deicing systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Samuel O.</p> <p>1993-01-01</p> <p>Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CTM....21..925W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CTM....21..925W"><span>Large eddy simulation of piloted pulverised coal combustion using extended flamelet/progress variable model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wen, Xu; Luo, Kun; Jin, Hanhui; Fan, Jianren</p> <p>2017-09-01</p> <p>An extended flamelet/progress variable (EFPV) model for simulating pulverised coal combustion (PCC) in the context of large eddy simulation (LES) is proposed, in which devolatilisation, char surface reaction and radiation are all taken into account. The pulverised coal particles are tracked in the Lagrangian framework with various sub-models and the sub-grid scale (SGS) effects of turbulent velocity and scalar fluctuations on the coal particles are modelled by the velocity-scalar joint filtered density function (VSJFDF) model. The presented model is then evaluated by LES of an experimental piloted coal jet flame and comparing the numerical results with the experimental data and the results from the eddy break up (EBU) model. Detailed quantitative comparisons are carried out. It is found that the proposed model performs much better than the EBU model on radial velocity and species concentrations predictions. Comparing against the adiabatic counterpart, we find that the predicted temperature is evidently lowered and agrees well with the experimental data if the conditional sampling method is adopted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960022296','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960022296"><span>A family of dynamic models for large-eddy simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carati, D.; Jansen, K.; Lund, T.</p> <p>1995-01-01</p> <p>Since its first application, the dynamic procedure has been recognized as an effective means to compute rather than prescribe the unknown coefficients that appear in a subgrid-scale model for Large-Eddy Simulation (LES). The dynamic procedure is usually used to determine the nondimensional coefficient in the Smagorinsky (1963) model. In reality the procedure is quite general and it is not limited to the Smagorinsky model by any theoretical or practical constraints. The purpose of this note is to consider a generalized family of dynamic eddy viscosity models that do not necessarily rely on the local equilibrium assumption built into the Smagorinsky model. By invoking an inertial range assumption, it will be shown that the coefficients in the new models need not be nondimensional. This additional degree of freedom allows the use of models that are scaled on traditionally unknown quantities such as the dissipation rate. In certain cases, the dynamic models with dimensional coefficients are simpler to implement, and allow for a 30% reduction in the number of required filtering operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCoPh.359....1R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCoPh.359....1R"><span>An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasthofer, U.; Wall, W. A.; Gravemeier, V.</p> <p>2018-04-01</p> <p>A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016587','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016587"><span>Detached-Eddy Simulation Based on the v2-f Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jee, Sol Keun; Shariff, Karim</p> <p>2012-01-01</p> <p>Detached eddy simulation (DES) based on the v2-f RANS model is proposed. This RANS model incorporates the anisotropy of near-wall turbulence which is absent in other RANS models commonly used in the DES community. In LES mode, the proposed DES formulation reduces to a transport equation for the subgrid-scale kinetic energy. The constant, CDES, required by this model was calibrated by simulating isotropic turbulence. In the final paper, DES simulations of canonical separated flows will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170005181','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170005181"><span>Model Validation for Propulsion - On the TFNS and LES Subgrid Models for a Bluff Body Stabilized Flame</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wey, Thomas</p> <p>2017-01-01</p> <p>With advances in computational power and availability of distributed computers, the use of even the most complex of turbulent chemical interaction models in combustors and coupled analysis of combustors and turbines is now possible and more and more affordable for realistic geometries. Recent more stringent emission standards have enticed the development of more fuel-efficient and low-emission combustion system for aircraft gas turbine applications. It is known that the NOx emissions tend to increase dramatically with increasing flame temperature. It is well known that the major difficulty, when modeling the turbulence-chemistry interaction, lies in the high non-linearity of the reaction rate expressed in terms of the temperature and species mass fractions. The transport filtered density function (FDF) model and the linear eddy model (LEM), which both use local instantaneous values of the temperature and mass fractions, have been shown to often provide more accurate results of turbulent combustion. In the present, the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models, LEM-like and EUPDF-like, capable of emulating the major processes occurring in the turbulence-chemistry interaction will be used to perform reacting flow simulations of a selected test case. The selected test case from the Volvo Validation Rig was documented by Sjunnesson.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA624858','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA624858"><span>Eddy Effects in the General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>against real-world data in cooperation with William S. Kessler and Hristina Hristova from PMEL (Solomon Sea), and Satoshi Mitarai and Taichi Sakagami from...refined grids, starting with basin-wide eddy permitting resolutions (although substantially finer than that used in climate modeling), and downscaling it...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-05-10/pdf/2011-11335.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-05-10/pdf/2011-11335.pdf"><span>76 FR 26962 - Airworthiness Directives; Airbus Model A300 B2-1C, A300 B2-203, A300 B2K-3C, A300-B4-103, A300 B4...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-05-10</p> <p>... repetitive detailed inspections for disbonding and cracking of the fuselage inner doubler; eddy current and... detailed inspections for disbonding and cracking of the fuselage inner doubler; eddy current and ultrasonic... or Modification if Necessary (g) For airplanes on which an eddy current inspection of the ``special...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..274...49B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..274...49B"><span>Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.</p> <p>2018-01-01</p> <p>The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910000981','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910000981"><span>Eddy current inspection of graphite fiber components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Workman, G. L.; Bryson, C. C.</p> <p>1990-01-01</p> <p>The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015FrME...10....1Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015FrME...10....1Q"><span>Eddy current measurement of the thickness of top Cu film of the multilayer interconnects in the integrated circuit (IC) manufacturing process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qu, Zilian; Meng, Yonggang; Zhao, Qian</p> <p>2015-03-01</p> <p>This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO12D..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO12D..07B"><span>Mesoscale Atmosphere-Ocean Coupling Enhances the Transfer of Wind Energy into the Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrne, D.; Munnich, M.; Frenger, I.; Gruber, N.</p> <p>2016-02-01</p> <p>Ocean eddies receive their energy mainly from the atmospheric energy input at large scales, while it is thought that direct atmosphere-ocean interactions at this scale contribute little to the eddies' energy balance. If anything, the prevailing view is that mesoscale atmosphere-ocean interactions lead to a reduction of the energy transfer from the atmosphere to the ocean. From satellite observations, modelling studies and theory, we present results in contrast to this. Specifically, we describe a novel mechanism that provides a new energy pathway from the atmosphere into the ocean that directly injects energy at the mesoscale, shortcutting the classical main pathway from the larger scales. Our hypothesis is based upon recent evidence that the `coupling strength' i.e., the magnitude of the atmospheric response to underlying sea surface temperature anomalies associated with eddies, is dependent upon the background wind speed. We argue that ocean eddies rarely live in an area of constant background wind, particularly not in the Southern Ocean, and that the horizontal gradients in the wind across ocean eddies lead to an increased/decreased work on one side of the eddy that is not compensated for on the other. Essentially, this asymmetry provides a `spin up' or a `spin down' forcing such that the net result is an increase in kinetic energy for both warm and cold core eddies that reside in a negative wind gradient and a decrease in kinetic energy when they are located in a positive wind gradient. This result has strong implications for the Southern Ocean, where large regions of positive and negative wind gradients exist on both sides of the wind maximum. We show from diagnosing the local eddy scale and domain wide energy balance in a high-resolution coupled atmosphere-ocean regional model in the South Atlantic, there are different energy transfers in the two regions and due to the different eddy abundances that this mechanism increases the net kinetic energy contained in the ocean mesoscale eddy field by up to 10-15%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029623&hterms=coastal+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcoastal%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029623&hterms=coastal+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcoastal%2Bzone"><span>A numerical analysis of shipboard and coastal zone color scanner time series of new production within Gulf Stream cyclonic eddies in the South Atlantic Bight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pribble, J. Raymond; Walsh, John J.; Dieterle, Dwight A.; Mueller-Karger, Frank E.</p> <p>1994-01-01</p> <p>Eddy-induced upwelling occurs along the western edge of the Gulf Stream between Cape Canaveral, Florida, and Cape Hatteras, North Carolina, in the South Atlantic Bight (SAB). Coastal zone color scanner images of 1-km resolution spanning the period April 13-21, 1979, were processed to examine these eddy features in relation to concurrent shipboard and current/temperature measurements at moored arrays. A quasi-one-dimensional (z), time dependent biological model, using only nitrate as a nutrient source, has been combined with a three-dimensional physical model in an attempt to replicate the observed phytoplankton field at the northward edge of an eddy. The model is applicable only to the SAB south of the Charleston Bump, at approximately 31.5 deg N, since no feature analogous to the bump exists in the model bathymetry. The modeled chlorophyll, nitrate, and primary production fields of the euphotic zone are very similar to those obtained from the satellite and shipboard data at the leading edges of the observed eddies south of the Charleston Bump. The horizontal and vertical simulated fluxes of nitrate and chlorophyll show that only approximately 10% of the upwelled nitrate is utilized by the phytoplankton of the modeled grid box on the northern edge of the cyclone, while approximately 75% is lost horizontally, with the remainder still in the euphotic zone after the 10-day period of the model. Loss of chlorophyll due to sinking is very small in this strong upwelling region of the cyclone. The model is relatively insensitive to variations in the sinking parameterization and the external nitrate and chlorophyll fields but is very sensitive to a reduction of the maximum potential growth rate to half that measured. Given the success of this model in simulating the new production of the selcted upwelling region, other upwelling regions for which measurements or successful models of physical and biological quantities and rates exist could be modeled similarly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840009460','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840009460"><span>Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bardino, J.; Ferziger, J. H.; Reynolds, W. C.</p> <p>1983-01-01</p> <p>The physical bases of large eddy simulation and subgrid modeling are studied. A subgrid scale similarity model is developed that can account for system rotation. Large eddy simulations of homogeneous shear flows with system rotation were carried out. Apparently contradictory experimental results were explained. The main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation. Experimental results are shown to be affected by conditions at the turbulence producing grid, which make the initial states a function of the rotation rate. A two equation model is proposed that accounts for effects of rotation and shows good agreement with experimental results. In addition, a Reynolds stress model is developed that represents the turbulence structure of homogeneous shear flows very well and can account also for the effects of system rotation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.193...10C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.193...10C"><span>Large-eddy simulations of a Salt Lake Valley cold-air pool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crosman, Erik T.; Horel, John D.</p> <p>2017-09-01</p> <p>Persistent cold-air pools are often poorly forecast by mesoscale numerical weather prediction models, in part due to inadequate parameterization of planetary boundary-layer physics in stable atmospheric conditions, and also because of errors in the initialization and treatment of the model surface state. In this study, an improved numerical simulation of the 27-30 January 2011 cold-air pool in Utah's Great Salt Lake Basin is obtained using a large-eddy simulation with more realistic surface state characterization. Compared to a Weather Research and Forecasting model configuration run as a mesoscale model with a planetary boundary-layer scheme where turbulence is highly parameterized, the large-eddy simulation more accurately captured turbulent interactions between the stable boundary-layer and flow aloft. The simulations were also found to be sensitive to variations in the Great Salt Lake temperature and Salt Lake Valley snow cover, illustrating the importance of land surface state in modelling cold-air pools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011012','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011012"><span>Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 1: Analysis description</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Towne, Charles E.; Schwab, John R.; Bui, Trong T.</p> <p>1993-01-01</p> <p>A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. The governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models are described in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940012054','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940012054"><span>Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Towne, Charles E.; Schwab, John R.; Bui, Trong T.</p> <p>1993-01-01</p> <p>A computer code called Proteus 3D has been developed to solve the three dimensional, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized. The governing equations are solved in generalized non-orthogonal body-fitted coordinates by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042065','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042065"><span>Estimating seasonal evapotranspiration from temporal satellite images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.</p> <p>2012-01-01</p> <p>Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194854','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194854"><span>Transient eddy formation around headlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Signell, Richard P.; Geyer, W. Rockwell</p> <p>1991-01-01</p> <p>Eddies with length scales of 1-10 km are commonly observed in coastal waters and play an important role in the dispersion of water-borne materials. The generation and evolution of these eddies by oscillatory tidal flow around coastal headlands is investigated with analytical and numerical models. Using shallow water depth-averaged vorticity dynamics, eddies are shown to form when flow separation occurs near the tip of the headland, causing intense vorticity generated along the headland to be injected into the interior. An analytic boundary layer model demonstrates that flow separation occurs when the pressure gradient along the boundary switches from favoring (accelerating) to adverse (decelerating), and its occurrence depends principally on three parameters: the aspect ratio [b/a], where b and a are characteristic width and length scales of the headland; [H/CDa], where H is the water depth, CD is the depth-averaged drag coefficient; and [Uo/aa], where Uo and a are the magnitude and frequency of the far-field tidal flow. Simulations with a depth-averaged numerical model show a wide range of responses to changes in these parameters, including cases where no separation occurs, cases where only one eddy exists at a given time, and cases where bottom friction is weak enough that eddies produced during successive tidal cycles coexist, interacting strongly with each other. These simulations also demonstrate that in unsteady flow, a strong start-up vortex forms after the flow separates, leading to a much more intense patch of vorticity and stronger recirculation than found in steady flow. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHI54A1836M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHI54A1836M"><span>Eddy Generation and Shedding in a Tidally Energetic Channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McIlvenny, J.; Gillibrand, P. A.; Walters, R. A.</p> <p>2016-02-01</p> <p>The Pentland Firth in northern Scotland, and its subsidiary channel the Inner Sound, are currently under scrutiny as the first tidal energy array in the world is installed during 2016. The tidal flows in the channel and sound have been intensively observed and modelled in recent years, and the turbulent nature of the flow, with features of eddy generation and shedding, is becoming increasingly well known. Turbulence and eddies pose potential risks to the turbine infrastructure through enhanced stress on the blades, while understanding environmental effects of energy extraction also requires accurate simulation of the hydrodynamics of the flow. Here, we apply a mixed finite element/finite volume hydrodynamic model to the northern Scottish shelf, with a particular focus on flows through the Pentland Firth and the Inner Sound. We use an unstructured grid model, which allows the open boundaries to be far removed from the region of interest, while still allowing a grid spacing of 40m in the Inner Sound. The model employs semi-implicit techniques to solve the momentum and free surface equations, and semi-Lagrangian methods to solve the material derivative in the momentum equation, making it fast, robust and accurate and suitable for simulating flows in irregular coastal ocean environments. The model is well suited to address questions relating to tidal energy potential. We present numerical simulations of tidal currents in The Pentland Firth and Inner Sound. Observed velocities in the Inner Sound, measured by moored ADCP deployments, reach speeds of up to 5 m s-1 and the model successfully reproduces these strong currents. In the simulations, eddies are formed by interactions between the strong flow and the northern and southern headlands on the island of Stroma; some of these eddies are trapped and remain locked in position, whereas others are shed and transported away from the generation zone. We track the development and advection of eddies in relation to the site of the tidal energy farm, and we compare the simulated locations of eddies with observed seabed sediment distributions in the Inner Sound. Simulations with and without the presence of tidal turbines in the Inner Sound are presented, and the potential impact of the turbines on sediment dynamics is considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97e3301R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97e3301R"><span>Moving magnets in a micromagnetic finite-difference framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rissanen, Ilari; Laurson, Lasse</p> <p>2018-05-01</p> <p>We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880053846&hterms=diffusion+concept&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddiffusion%2Bconcept','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880053846&hterms=diffusion+concept&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddiffusion%2Bconcept"><span>Venus' superrotation, mixing length theory and eddy diffusion - A parametric study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Harris, I.; Schatten, K. H.; Stevens-Rayburn, D. R.; Chan, K. L.</p> <p>1988-01-01</p> <p>The concept of the Hadley mechanism is adopted to describe the axisymmetric circulation of the Venus atmosphere. It is shown that, for the atmosphere of a slowly rotating planet such as Venus, a form of the nonliner 'closure' (self-consistent solution) of the fluid dynamics system which constrains the magnitude of the eddy diffusion coefficients can be postulated. A nonlinear one-layer spectral model of the zonally symmetric circulation was then used to establish the relationship between the heat source, the meridional circulation, and the eddy diffusion coefficients, yielding large zonal velocities. Computer experiments indicated that proportional changes in the heat source and eddy diffusion coefficients do not significantly change the zonal velocities. It was also found that, for large eddy diffusion coefficients, the meridional velocity is virtually constant; below a threshold in the diffusion rate, the meridional velocity decreases; and, for large eddy diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67.1047R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67.1047R"><span>Using a dynamical advection to reconstruct a part of the SSH evolution in the context of SWOT, application to the Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rogé, Marine; Morrow, Rosemary; Ubelmann, Clément; Dibarboure, Gérald</p> <p>2017-08-01</p> <p>The main oceanographic objective of the future SWOT mission is to better characterize the ocean mesoscale and sub-mesoscale circulation, by observing a finer range of ocean topography dynamics down to 20 km wavelength. Despite the very high spatial resolution of the future satellite, it will not capture the time evolution of the shorter mesoscale signals, such as the formation and evolution of small eddies. SWOT will have an exact repeat cycle of 21 days, with near repeats around 5-10 days, depending on the latitude. Here, we investigate a technique to reconstruct the missing 2D SSH signal in the time between two satellite revisits. We use the dynamical interpolation (DI) technique developed by Ubelmann et al. (2015). Based on potential vorticity (hereafter PV) conservation using a one and a half layer quasi-geostrophic model, it features an active advection of the SSH field. This model has been tested in energetic open ocean regions such as the Gulf Stream and the Californian Current, and has given promising results. Here, we test this model in the Western Mediterranean Sea, a lower energy region with complex small scale physics, and compare the SSH reconstruction with the high-resolution Symphonie model. We investigate an extension of the simple dynamical model including a separated mean circulation. We find that the DI gives a 16-18% improvement in the reconstruction of the surface height and eddy kinetic energy fields, compared with a simple linear interpolation, and a 37% improvement in the Northern Current subregion. Reconstruction errors are higher during winter and autumn but statistically, the improvement from the DI is also better for these seasons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010069260','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010069260"><span>Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)</p> <p>2001-01-01</p> <p>A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JFM...541...21H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JFM...541...21H"><span>Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hutchins, N.; Hambleton, W. T.; Marusic, Ivan</p> <p>2005-10-01</p> <p>This work can be viewed as a reprise of Head & Bandyopadhyay's (J. Fluid Mech. vol. 107, p. 297) original boundary-layer visualization study although in this instance we make use of stereo particle image velocimetry (PIV), techniques to obtain a quantitative view of the turbulent structure. By arranging the laser light-sheet and image plane of a stereo PIV system in inclined spanwise/wall-normal planes (inclined at both 45(°) and 135(°) to the streamwise axis) a unique quantitative view of the turbulent boundary layer is obtained. Experiments are repeated across a range of Reynolds numbers, Re_{tau} {≈} 690-2800. Despite numerous experimental challenges (due to the large out-of-plane velocity components), mean flow and Reynolds stress profiles indicate that the salient features of the turbulent flow have been well resolved. The data are analysed with specific attention to a proposed hairpin eddy model. In-plane two-dimensional swirl is used to identify vortical eddy structures piercing the inclined planes. The vast majority of this activity occurs in the 135(°) plane, indicating an inclined eddy structure, and Biot-Savart law calculations are carried out to aid in the discussion. Conditional averaging and linear stochastic estimation results also support the presence of inclined eddies, arranged about low-speed regions. In the 135(°) plane, instantaneous swirl patterns exhibit a predisposition for counter-rotating vortex pairs (arranged with an ejection at their confluence). Such arrangements are consistent with the hairpin packet model. Correlation and scaling results show outer-scaling to be the correct way to quantify the characteristic spanwise length scale across the log and wake regions of the boundary layers (for the range of Reynolds numbers tested). A closer investigation of two-point velocity correlation contours indicates the occurrence of a distinct two-regime behaviour, in which contours (and hence streamwise velocity fluctuations) either appear to be ‘attached’ to the buffer region, or ‘detaching’ from it. The demarcation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall awake description of turbulent boundary layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28928408','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28928408"><span>Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin</p> <p>2017-09-19</p> <p>In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7958','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7958"><span>Satellite-based modeling of gross primary production in an evergreen needleleaf forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Xiangming Xiao; David Hollinger; John Aber; Mike Goltz; Eric A. Davidson; Qingyuan Zhang; Berrien Moore III</p> <p>2004-01-01</p> <p>The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CO2, between the atmosphere and terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a variety of C02 eddy flux tower sites. In this paper, we develop a new, satellite-based Vegetation Photosynthesis Model (VPM) to estimate the seasonal dynamcs...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950020348','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950020348"><span>Extension to the dynamic modeling of the large angle magnetic suspension test fixture. M.S. Thesis - Old Dominion Univ., May 1995 Progress Report, 1 Nov. 1994 - 30 Apr. 1995</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Foster, Lucas E.; Britcher, Colin P.</p> <p>1995-01-01</p> <p>The Large Angle Magnetic Suspension Test Fixture (LAMSTF) is a laboratory scale proof-of-concept system. The configuration is unique in that the electromagnets are mounted in a circular planar array. A mathematical model of the system had previously been developed, but was shown to have inaccuracies. These inaccuracies showed up in the step responses. Eddy currents were found to be the major cause of the modeling errors. In the original system, eddy currents existed in the aluminum baseplate, iron cores, and the sensor support frame. An attempt to include the eddy current dynamics in the system model is presented. The dynamics of a dummy sensor ring were added to the system. Adding the eddy current dynamics to the simulation improves the way it compares to the actual experiment. Also presented is a new method of determining the yaw angle of the suspended element. From the coil currents the yaw angle can be determined and the controller can be updated to suspend at the new current. This method has been used to demonstrate a 360 degree yaw angle rotation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS43C1285C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS43C1285C"><span>A Multi-wavenumber Theory for Eddy Diffusivities: Applications to the DIMES Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, R.; Gille, S. T.; McClean, J.; Flierl, G.; Griesel, A.</p> <p>2014-12-01</p> <p>Climate models are sensitive to the representation of ocean mixing processes. This has motivated recent efforts to collect observations aimed at improving mixing estimates and parameterizations. The US/UK field program Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), begun in 2009, is providing such estimates upstream of and within the Drake Passage. This region is characterized by topography, and strong zonal jets. In previous studies, mixing length theories, based on the assumption that eddies are dominated by a single wavenumber and phase speed, were formulated to represent the estimated mixing patterns in jets. However, in spite of the success of the single wavenumber theory in some other scenarios, it does not effectively predict the vertical structures of observed eddy diffusivities in the DIMES area. Considering that eddy motions encompass a wide range of wavenumbers, which all contribute to mixing, in this study we formulated a multi-wavenumber theory to predict eddy mixing rates. We test our theory for a domain encompassing the entire Southern Ocean. We estimated eddy diffusivities and mixing lengths from one million numerical floats in a global eddying model. These float-based mixing estimates were compared with the predictions from both the single-wavenumber and the multi-wavenumber theories. Our preliminary results in the DIMES area indicate that, compared to the single-wavenumber theory, the multi-wavenumber theory better predicts the vertical mixing structures in the vast areas where the mean flow is weak; however in the intense jet region, both theories have similar predictive skill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930071469&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930071469&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doceans%2Btide"><span>Ocean tides for satellite geodesy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dickman, S. R.</p> <p>1990-01-01</p> <p>Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920021412&hterms=wall+turbulence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwall%2Bturbulence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920021412&hterms=wall+turbulence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwall%2Bturbulence"><span>One-equation near-wall turbulence modeling with the aid of direct simulation data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rodi, W.; Mansour, N. N.</p> <p>1990-01-01</p> <p>The length scales appearing in the relations for the eddy viscosity and dissipation rate in one-equation models were evaluated from direct numerical simulation data for developed channel and boundary-layer flow at two Reynolds numbers each. To prepare the ground for the evaluation, the distribution of the most relevant mean-flow and turbulence quantities is presented and discussed with respect to Reynolds-number influence and to differences between channel and boundary-layer flow. An alternative model is also examined in which bar-(v'(exp 2))(exp 1/2) is used as velocity scale instead of k(exp 1/2). With this velocity scale, the length scales now appearing in the model follow very closely a linear relationship near the wall so that no damping is necessary. For the determination of bar-v'(exp 2) in the context of a one-equation model, a correlation is provided between bar-(v'(exp 2))/k and bar-(u'v')/k.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.3015B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.3015B"><span>The importance of radiation for semiempirical water-use efficiency models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus</p> <p>2017-06-01</p> <p>Water-use efficiency (WUE) is a fundamental property for the coupling of carbon and water cycles in plants and ecosystems. Existing model formulations predicting this variable differ in the type of response of WUE to the atmospheric vapor pressure deficit of water (VPD). We tested a representative WUE model on the ecosystem scale at 110 eddy covariance sites of the FLUXNET initiative by predicting evapotranspiration (ET) based on gross primary productivity (GPP) and VPD. We found that introducing an intercept term in the formulation increases model performance considerably, indicating that an additional factor needs to be considered. We demonstrate that this intercept term varies seasonally and we subsequently associate it with radiation. Replacing the constant intercept term with a linear function of global radiation was found to further improve model predictions of ET. Our new semiempirical ecosystem WUE formulation indicates that, averaged over all sites, this radiation term accounts for up to half (39-47 %) of transpiration. These empirical findings challenge the current understanding of water-use efficiency on the ecosystem scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A51D3062M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A51D3062M"><span>WRF Model Simulations of Terrain-Driven Atmospheric Eddies in Marine Stratocumulus Clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muller, B. M.; Herbster, C. G.; Mosher, F. R.</p> <p>2014-12-01</p> <p>It is not unusual to observe atmospheric eddies in satellite imagery of the marine stratus and stratocumulus clouds that characterize the summertime weather of the California coastal region and near-shore oceanic environment. The winds of the marine atmospheric boundary layer (MABL) over the ocean interact with the high terrain of prominent headlands and islands to create order-10 km scale areas of swirling air that can contain a cloud-free eye, 180-degree wind reversals at the surface over a period of minutes, and may be associated with mixing and turbulence between the high-humidity air of the MABL and the much warmer and drier inversion layer air above. However, synoptic and even subsynoptic surface weather measurements, and the synoptic upper-air observing network are inadequate, or in some cases, completely unable, to detect and characterize the formation, movement, and even the existence of the eddies. They can literally slip between land-based surface observation locations, or stay over the near-shore ocean environment where there may be no surface meteorological measurements. This study presents Weather Research and Forecasting (WRF) Model simulations of these small-scale, terrain-driven, atmospheric features in the MABL from cases detected in GOES satellite imagery. The purpose is to use model output to diagnose the formation mechanisms, sources of vorticity, and the air flow in and around the eddies. Satellite imagery is compared to simulated atmospheric variables to validate features generated within the model atmosphere, and model output is employed as a surrogate atmosphere to better understand the atmospheric characteristics of the eddies. Model air parcel trajectories are estimated to trace the movement and sources of the air contained in and around these often-observed, but seldom-measured features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA470198','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA470198"><span>Tropical Wave-Induced Oceanic Eddies at Cabo Corrientes and the Maria Islands, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-05-30</p> <p>Waves Induce Oceanic Eddies at Cabo Corrientes and the Maria Islands, Mexico 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0601153N 6. AUTHOR(S) 5d...Research Laboratory (NRL) Layered Ocean Model (NLOM) show the existence of anticyclonic eddies in the Cabo Corrientes - Maria Islands region off the...Mexican West Coast. Analysis of the results demonstrates that: (1) The Cabo Corrientes - Maria Islands region is characterized by mean poleward coastal</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910046740&hterms=group+theory&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgroup%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910046740&hterms=group+theory&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgroup%2Btheory"><span>Application of renormalization group theory to the large-eddy simulation of transitional boundary layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Lund, Thomas S.</p> <p>1990-01-01</p> <p>An eddy viscosity model based on the renormalization group theory of Yakhot and Orszag (1986) is applied to the large-eddy simulation of transition in a flat-plate boundary layer. The simulation predicts with satisfactory accuracy the mean velocity and Reynolds stress profiles, as well as the development of the important scales of motion. The evolution of the structures characteristic of the nonlinear stages of transition is also predicted reasonably well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960026148','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960026148"><span>Evaluation of Subgrid-Scale Models for Large Eddy Simulation of Compressible Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blaisdell, Gregory A.</p> <p>1996-01-01</p> <p>The objective of this project was to evaluate and develop subgrid-scale (SGS) turbulence models for large eddy simulations (LES) of compressible flows. During the first phase of the project results from LES using the dynamic SGS model were compared to those of direct numerical simulations (DNS) of compressible homogeneous turbulence. The second phase of the project involved implementing the dynamic SGS model in a NASA code for simulating supersonic flow over a flat-plate. The model has been successfully coded and a series of simulations has been completed. One of the major findings of the work is that numerical errors associated with the finite differencing scheme used in the code can overwhelm the SGS model and adversely affect the LES results. Attached to this overview are three submitted papers: 'Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence'; 'The effect of the formulation of nonlinear terms on aliasing errors in spectral methods'; and 'Large-Eddy Simulation of a Spatially Evolving Compressible Boundary Layer Flow'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA609717','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA609717"><span>Geostrophic Turbulence in the Frequency-Wavenumber Domain: Eddy-Driven Low-Frequency Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-01-01</p> <p>in ASFMRS. Previous studies of oceanic frequency– wavenumber spectra include Wunsch and Stammer (1995), Chelton and Schlax (1996), Farrar (2008...ASFMRS. However, the realistic eddying ocean model utilized here is the Hy- brid Coordinate Ocean Model (HYCOM; Chassignet et al. 2007 ), in place of...the Naval Research Laboratory (NRL) Layered Ocean Model (NLOM; Hurlburt and AUGUST 2014 ARB I C ET AL . 2051 Thompson 1980; Shriver et al. 2007 ) used</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EPJWC..4501031F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EPJWC..4501031F"><span>Large Eddy Simulation of stratified flows over structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fuka, V.; Brechler, J.</p> <p>2013-04-01</p> <p>We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.7897K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.7897K"><span>The Dynamics of Cuba Anticyclones (CubANs) and Interaction With the Loop Current/Florida Current System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kourafalou, Vassiliki; Androulidakis, Yannis; Le Hénaff, Matthieu; Kang, HeeSook</p> <p>2017-10-01</p> <p>Mesoscale anticyclonic eddies along the northern Cuban coast (CubANs) have been identified in the Straits of Florida, associated with the northward shift of the Florida Current (FC) and the anticyclonic curvature of the Loop Current (LC) at the western entrance of the Straits. The dynamics of CubAN eddies and their interaction with the LC/FC system are described for the first time using satellite, drifter and buoy data, and a high-resolution model. It is shown that the evolution of CubANs to the south of the FC front complements the evolution of cyclonic eddies to the north of the FC, advancing previous studies on synergy between FC meandering and eddy activity. Two types of CubAN eddies are characterized: (a) a main anticyclonic cell (type "A") within the core of the LC during retracted phase conditions, associated with the process of LC Eddy (LCE) shedding from an extended LC, and (b) an individual, distinct anticyclonic eddy that is released from the main LC core and is advected eastward, along the northern Cuban coast (type "B"). There are also mixed cases, when the process of LCE shedding has started, so a type "A" CubAN is being formed, in the presence of one or more eastward progressing type "B" eddies. CubAN evolution is associated with an increased mixed layer and weaker stratification of the upper ocean along the eddy's track. The cyclonic activity along the Cuban coast and wind-induced upwelling events also contribute to the evolution and fate of the CubAN eddies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA586450','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA586450"><span>Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-08-26</p> <p>Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-08-04/pdf/2011-19476.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-08-04/pdf/2011-19476.pdf"><span>76 FR 47056 - Airworthiness Directives; Pratt & Whitney (PW) Models PW4074 and PW4077 Turbofan Engines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-08-04</p> <p>... AD using a drawdown plan that includes a borescope inspection (BSI) or eddy current inspection (ECI... inspection (BSI) or eddy current inspection (ECI) of the disk rim according to the following schedule: (i...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880010894&hterms=saber&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsaber','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880010894&hterms=saber&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsaber"><span>Calculation of the distributed loads on the blades of individual multiblade propellers in axial flow using linear and nonlinear lifting surface theories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pesetskaya, N. N.; Timofeev, I. YA.; Shipilov, S. D.</p> <p>1988-01-01</p> <p>In recent years much attention has been given to the development of methods and programs for the calculation of the aerodynamic characteristics of multiblade, saber-shaped air propellers. Most existing methods are based on the theory of lifting lines. Elsewhere, the theory of a lifting surface is used to calculate screw and lifting propellers. In this work, methods of discrete eddies are described for the calculation of the aerodynamic characteristics of propellers using the linear and nonlinear theories of lifting surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000090556','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000090556"><span>Turbulence Model Predictions of Strongly Curved Flow in a U-Duct</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rumsey, Christopher L.; Gatski, Thomas B.; Morrison, Joseph H.</p> <p>2000-01-01</p> <p>The ability of three types of turbulence models to accurately predict the effects of curvature on the flow in a U-duct is studied. An explicit algebraic stress model performs slightly better than one- or two-equation linear eddy viscosity models, although it is necessary to fully account for the variation of the production-to-dissipation-rate ratio in the algebraic stress model formulation. In their original formulations, none of these turbulence models fully captures the suppressed turbulence near the convex wall, whereas a full Reynolds stress model does. Some of the underlying assumptions used in the development of algebraic stress models are investigated and compared with the computed flowfield from the full Reynolds stress model. Through this analysis, the assumption of Reynolds stress anisotropy equilibrium used in the algebraic stress model formulation is found to be incorrect in regions of strong curvature. By the accounting for the local variation of the principal axes of the strain rate tensor, the explicit algebraic stress model correctly predicts the suppressed turbulence in the outer part of the boundary layer near the convex wall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.461.3864A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.461.3864A"><span>Shock-turbulence interaction in core-collapse supernovae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdikamalov, Ernazar; Zhaksylykov, Azamat; Radice, David; Berdibek, Shapagat</p> <p>2016-10-01</p> <p>Nuclear shell burning in the final stages of the lives of massive stars is accompanied by strong turbulent convection. The resulting fluctuations aid supernova explosion by amplifying the non-radial flow in the post-shock region. In this work, we investigate the physical mechanism behind this amplification using a linear perturbation theory. We model the shock wave as a one-dimensional planar discontinuity and consider its interaction with vorticity and entropy perturbations in the upstream flow. We find that, as the perturbations cross the shock, their total turbulent kinetic energy is amplified by a factor of ˜2, while the average linear size of turbulent eddies decreases by about the same factor. These values are not sensitive to the parameters of the upstream turbulence and the nuclear dissociation efficiency at the shock. Finally, we discuss the implication of our results for the supernova explosion mechanism. We show that the upstream perturbations can decrease the critical neutrino luminosity for producing explosion by several per cent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910013248','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910013248"><span>Magnetostrictive direct drive motor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Naik, Dipak; Dehoff, P. H.</p> <p>1991-01-01</p> <p>Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhDT.........5L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhDT.........5L"><span>Atmospheric chemistry and transport modeling in the outer solar system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Yuan-Tai (Anthony)</p> <p>2001-11-01</p> <p>This thesis consists of 1-D and 2-D photochemical- dynamical modeling in the upper atmospheres of outer planets. For 1-D modeling, a unified hydrocarbon photochemical model has been studied in Jupiter, Saturn, Uranus, Neptune, and Titan, by comparing with the Voyager observations, and the recent measurements of methyl radicals by ISO in Saturn and Neptune. The CH3 observation implies a kinetically sensitive test to the measured and estimated hydrocarbon rate constants at low temperatures. We identify the key reactions that control the concentrations of CH3 in the model, such as the three-body recombination reaction, CH3 + CH3 + M --> C 2H6 + M, and the recycling reaction H + CH3 + M --> CH4 + M. The results show reasonable agreement with ISO values. In Chapter 4, the detection of PH3 in the lower stratosphere and upper troposphere of Jupiter has provided a photochemical- dynamical coupling model to derive the eddy diffusion coefficient in the upper troposphere of Jupiter. Using a two-layers photochemical model with updated photodissociation cross-sections and chemical rate constants for NH3 and PH 3, we find that the upper tropospheric eddy diffusion coefficient <10 5 cm2 sec-1, and the deeper tropospheric value >106 cm2 sec-1, are required to match the derived PH3 vertical profile by the observation. The best-fit functional form derivation of eddy diffusion coefficient in the upper troposphere of Jupiter above 400 mbar is K = 2.0 × 104 (n/2.2 × 1019)-0.5 cm 2 sec-1. On the other hand, Chapter 5 demonstrates a dynamical-only 2-D model of C2H6 providing a complete test for the current 2-D transport models in Jovian lower stratosphere and upper troposphere (270 to 0.1 mbar pressure levels). Different combinations of residual advection, horizontal eddy dispersion, and vertical eddy mixing are examined at different latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1358666-equilibrium-reconstruction-eddy-currents-lithium-tokamak-experiment','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1358666-equilibrium-reconstruction-eddy-currents-lithium-tokamak-experiment"><span>Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...</p> <p>2017-04-18</p> <p>Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The eddy current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D eddy currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..812O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..812O"><span>Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.</p> <p>2018-02-01</p> <p>The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1949p0002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1949p0002B"><span>Temperature sensitivity study of eddy current and digital gauge probes for nuclear fuel rod oxide measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beck, Faith R.; Lind, R. Paul; Smith, James A.</p> <p>2018-04-01</p> <p>Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: eddy current and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the eddy current and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the eddy current and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990111593','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990111593"><span>Large Eddy Simulations and Turbulence Modeling for Film Cooling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Acharya, Sumanta</p> <p>1999-01-01</p> <p>The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41D..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41D..05S"><span>Recent Ship, Satellite and Autonomous Observations of Southern Ocean Eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strutton, P. G.; Moreau, S.; Llort, J.; Phillips, H. E.; Patel, R.; Della Penna, A.; Langlais, C.; Lenton, A.; Matear, R.; Dawson, H.; Boyd, P. W.</p> <p>2016-12-01</p> <p>The Southern Ocean is the area of greatest uncertainty regarding the exchange of CO2 between the ocean and atmosphere. It is also a region of abundant energetic eddies that significantly impact circulation and biogeochemistry. In the Indian sector of the Southern Ocean, cyclonic eddies are unusual in that they are upwelling favorable, as for cyclonic eddies elsewhere, but during summer they are low in silicate and phytoplankton biomass. The reverse is true for anticyclonic eddies in that they have counter-intuitive positive chlorophyll anomalies in summer. Similar but less obvious patterns occur in the Pacific and Atlantic sectors. Using ship, satellite and autonomous observations in the region south of Australia, the physical and biogeochemical signatures of both types of eddies were documented in 2016. A cyclonic eddy that lived for seven weeks exhibited doming isopycnals indicative of upwelling. However, low surface silicate and chlorophyll concentrations appeared to be characteristic of surface waters to the south where the eddy formed. Higher chlorophyll was confined to filaments at the eddy edge. Surface nitrate and phosphate concentrations were more than sufficient for a bloom of non-siliceous phytoplankton to occur. Acoustic observations from a high resolution TRIAXUS transect through the eddy documented high zooplankton biomass in the upper 150m. It is hypothesized that a non-diatom bloom was prevented by grazing pressure, but light may have also been an important limiting resource in late summer (April). Two SOCCOM floats that were deployed in the eddy field continued to monitor the physics, nitrate and bio-optics through the transition to winter. These observations across complementary platforms have identified and then explained the reason for these unexpected biological anomalies in an energetic and globally important region of the global ocean. Understanding the role of eddies in this region will be critical to the representation of mesoscale processes in models used to simulate and project ocean biogeochemistry and carbon uptake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820011855','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820011855"><span>Integrated and spectral energetics of the GLAS general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tenenbaum, J.</p> <p>1982-01-01</p> <p>Integrated and spectral error energetics of the GLAS General circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level, particularly above strong initial jet streams associated in part with regions of steep terrain. The spectral error growth study represents the first comparison of general circulation model spectral energetics predictions with the corresponding observational spectra on a day by day basis. The major conclusion is that eddy kinetics energy can be correct while significant errors occur in the kinetic energy of wavenumber 3. Both the model and observations show evidence of single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetics and potential energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFD.D9004H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFD.D9004H"><span>Numerical modeling of turbulent swirling flow in a multi-inlet vortex nanoprecipitation reactor using dynamic DDES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.</p> <p>2015-11-01</p> <p>The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-02-24/pdf/2012-4286.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-02-24/pdf/2012-4286.pdf"><span>77 FR 11017 - Airworthiness Directives; Pratt & Whitney (PW) Models PW4074 and PW4077 Turbofan Engines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-02-24</p> <p>... (BSI) or eddy current inspection (ECI) of the disk outer rim front rail for cracks prior to... date of this AD. (ii) Perform a borescope inspection (BSI) or eddy current inspection (ECI) of the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-06-23/pdf/2010-14977.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-06-23/pdf/2010-14977.pdf"><span>75 FR 35609 - Airworthiness Directives; The Boeing Company Model 777-200LR and -300ER Series Airplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-06-23</p> <p>... frequency eddy current inspection for cracking of the keyway of the fuel tank access door cutout on the left... NPRM proposed to require doing a high frequency eddy current inspection for [[Page 35610</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA621343','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA621343"><span>North Atlantic Coast Comprehensive Study (NACCS) Coastal Storm Model Simulations: Waves and Water Levels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-08-01</p> <p>published in the NGA’s DNCs, with distinct values assigned to areas of sand, gravel, clay , etc. ERDC/CHL TR-15-14 94 6.5.2 Lateral eddy viscosity As with...6.5.1 Manning’s n bottom friction coefficient ................................................................... 93 6.5.2 Lateral eddy viscosity ...this study include (1) Manning’s n bottom friction coefficient, (2) lateral eddy viscosity , (3) land cover effects on winds (also referred to as</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA609525','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA609525"><span>The Mesoscale Eddies and Kuroshio Transport in the Western North Pacific East of Taiwan from 8-year (2003-2010) Model Reanalysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-07-25</p> <p>EOF . SVD 1 Introduction Mesoscale eddies are abundant in the ocean. Chelton et al. ( 2007 ), based on 10 years of altimetry sea surface height anomaly...transport. The dynamic height has a strong annual signal due to steric variations (Wang and Koblinsky 1996; Stammer 1997). Since our study is...JOE.2004.838334 Chelton DB, Schlax MG, Samelson RM, deSzoeke RA ( 2007 ) Global observations of large oceanic eddies. Geophys Res Lett 34, L15606. doi</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/29056','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/29056"><span>Evapotranspiration estimates from eddy covariance towers and hydrologic modeling in managed forests in Northern Wisconsin, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ge Sun; A. Noormets; J. Chen; S.G. McNulty</p> <p>2008-01-01</p> <p>Direct measurement of ecosystem evapotranspiration by the eddy covariance method and simulation modeling were employed to quantify the growing season (May–October) evapotranspiration (ET) of eight forest ecosystems representing a management gradient in dominant forest types and age classes in the Upper Great Lakes Region from 2002 to 2003. We measured net exchange of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JGRC..109.7007W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JGRC..109.7007W"><span>Circulation in the South China Sea during summer 2000 as obtained from observations and a generalized topography-following ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Huiqun; Yuan, Yaochu; Guan, Weibing; Lou, Ruyun; Wang, Kangshan</p> <p>2004-07-01</p> <p>On the basis of the recently obtained hydrographic data in the South China Sea, the improved Princeton Ocean Model with a generalized topography-following coordinate system is used to study the circulation in the region during summer 2000. Several sensitivity experiments are carried out to achieve reasonable model parameters for the South China Sea (SCS). It is shown from the resting stratification experiments that the generalized topography-following coordinate scheme is better than the standard sigma grid scheme for reducing the pressure gradient errors. The combination of sea surface height anomaly derived from TOPEX/Poseidon and numerical results with both diagnostic and semidiagnostic simulations provides a consistent circulation pattern for the SCS in August, and the main circulation features can be summarized as follows: (1) There is a notable anticyclonic warm eddy southeast of Vietnam with a horizontal scale of ˜300 km, and there is a cyclonic cold eddy. The simultaneous existence of these cold and warm eddies is one of the important circulation characteristics in the SCS during summer 2000. (2) A secondary cold eddy is found east of Vietnam. (3) The northwestern part of the SCS is dominated by an anticyclonic circulation system. (4) There is also a secondary warm eddy southwest off the Luzon Island. (5) A cyclonic eddy is found west off the Borneo Island. (6) A western intensification phenomenon obviously occurs in the SCS. The dynamical mechanisms of the above-mentioned circulation pattern in the SCS are the interaction between the wind stress and bottom topography and the joint effect of baroclinicity and relief.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A54C..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A54C..02M"><span>Continuous Flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) Method of Measuring Size-Resolved Sea-Salt Particle Fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meskhidze, N.; Royalty, T. M.; Phillips, B.; Dawson, K. W.; Petters, M. D.; Reed, R.; Weinstein, J.; Hook, D.; Wiener, R.</p> <p>2017-12-01</p> <p>The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here we present the design, testing, and analysis of data collected through the first instrument capable of measuring hygroscopicity-based, size-resolved particle fluxes using a continuous-flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) technique. The different components of the instrument were extensively tested inside the US Environmental Protection Agency's Aerosol Test Facility for sea-salt and ammoniums sulfate particle fluxes. The new REA system design does not require particle accumulation, therefore avoids the diffusional wall losses associated with long residence times of particles inside the air collectors of the traditional REA devices. The Hy-Res REA system used in this study includes a 3-D sonic anemometer, two fast-response solenoid valves, two Condensation Particle Counters (CPCs), a Scanning Mobility Particle Sizer (SMPS), and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). A linear relationship was found between the sea-salt particle fluxes measured by eddy covariance and REA techniques, with comparable theoretical (0.34) and measured (0.39) proportionality constants. The sea-salt particle detection limit of the Hy-Res REA flux system is estimated to be 6x105 m-2s-1. For the conditions of ammonium sulfate and sea-salt particles of comparable source strength and location, the continuous-flow Hy-Res REA instrument was able to achieve better than 90% accuracy of measuring the sea-salt particle fluxes. In principle, the instrument can be applied to measure fluxes of particles of variable size and distinct hygroscopic properties (i.e., mineral dust, black carbon, etc.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29421088','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29421088"><span>Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brach, Laurent; Deixonne, Patrick; Bernard, Marie-France; Durand, Edmée; Desjean, Marie-Christine; Perez, Emile; van Sebille, Erik; Ter Halle, Alexandra</p> <p>2018-01-01</p> <p>There are fundamental gaps in our understanding of the fates of microplastics in the ocean, which must be overcome if the severity of this pollution is to be fully assessed. The predominant pattern is high accumulation of microplastic in subtropical gyres. Using in situ measurements from the 7th Continent expedition in the North Atlantic subtropical gyre, data from satellite observations and models, we show how microplastic concentrations were up to 9.4 times higher in an anticyclonic eddy explored, compared to the cyclonic eddy. Although our sample size is small, this is the first suggestive evidence that mesoscale eddies might trap, concentrate and potentially transport microplastics. As eddies are known to congregate nutrients and organisms, this phenomenon should be considered with regards to the potential impact of plastic pollution on the ecosystem in the open ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.110...49J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.110...49J"><span>A note on: "A Gaussian-product stochastic Gent-McWilliams parameterization"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jansen, Malte F.</p> <p>2017-02-01</p> <p>This note builds on a recent article by Grooms (2016), which introduces a new stochastic parameterization for eddy buoyancy fluxes. The closure proposed by Grooms accounts for the fact that eddy fluxes arise as the product of two approximately Gaussian variables, which in turn leads to a distinctly non-Gaussian distribution. The directionality of the stochastic eddy fluxes, however, remains somewhat ad-hoc and depends on the reference frame of the chosen coordinate system. This note presents a modification of the approach proposed by Grooms, which eliminates this shortcoming. Eddy fluxes are computed based on a stochastic mixing length model, which leads to a frame invariant formulation. As in the original closure proposed by Grooms, eddy fluxes are proportional to the product of two Gaussian variables, and the parameterization reduces to the Gent and McWilliams parameterization for the mean buyoancy fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880067914&hterms=Good+Reasons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DGood%2BReasons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880067914&hterms=Good+Reasons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DGood%2BReasons"><span>The eddy transport of nonconserved trace species derived from satellite data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Anne K.; Lyjak, Lawrence V.; Gille, John C.</p> <p>1988-01-01</p> <p>Using the approach of the Garcia and Solomon (1983) model and data obtained by the LIMS instrument on Nimbus 7, the chemical eddy transport matrix for planetary waves was calculated, and the chemical eddy contribution to the components of the matrix obtained from the LIMS satellite observations was computed using specified photochemical damping time scales. The dominant component of the transport matrices for several winter months were obtained for ozone, nitric acid, and quasi-geostrophic potential vorticity (PV), and the parameterized transports of these were compared with the 'exact' transports, computed directly from the eddy LIMS data. The results indicate that the chemical eddy effect can account for most of the observed ozone transport in early winter, decreasing to less than half in late winter. The agreement between the parameterized and observed nitric acid and PV was not as good. Reasons for this are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSV...389..250O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSV...389..250O"><span>Effect of eddy current damping on phononic band gaps generated by locally resonant periodic structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozkaya, Efe; Yilmaz, Cetin</p> <p>2017-02-01</p> <p>The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713994H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713994H"><span>Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby</p> <p>2015-04-01</p> <p>Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930002270','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930002270"><span>Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Freund, Roland W.</p> <p>1991-01-01</p> <p>We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7e6667K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7e6667K"><span>Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho</p> <p>2017-05-01</p> <p>This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27364521','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27364521"><span>Feasibility of conductivity imaging using subject eddy currents induced by switching of MRI gradients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oran, Omer Faruk; Ider, Yusuf Ziya</p> <p>2017-05-01</p> <p>To investigate the feasibility of low-frequency conductivity imaging based on measuring the magnetic field due to subject eddy currents induced by switching of MRI z-gradients. We developed a simulation model for calculating subject eddy currents and the magnetic fields they generate (subject eddy fields). The inverse problem of obtaining conductivity distribution from subject eddy fields was formulated as a convection-reaction partial differential equation. For measuring subject eddy fields, a modified spin-echo pulse sequence was used to determine the contribution of subject eddy fields to MR phase images. In the simulations, successful conductivity reconstructions were obtained by solving the derived convection-reaction equation, suggesting that the proposed reconstruction algorithm performs well under ideal conditions. However, the level of the calculated phase due to the subject eddy field in a representative object indicates that this phase is below the noise level and cannot be measured with an uncertainty sufficiently low for accurate conductivity reconstruction. Furthermore, some artifacts other than random noise were observed in the measured phases, which are discussed in relation to the effects of system imperfections during readout. Low-frequency conductivity imaging does not seem feasible using basic pulse sequences such as spin-echo on a clinical MRI scanner. Magn Reson Med 77:1926-1937, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21458339','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21458339"><span>Software compensation of eddy current fields in multislice high order dynamic shimming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sengupta, Saikat; Avison, Malcolm J; Gore, John C; Brian Welch, E</p> <p>2011-06-01</p> <p>Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by eddy current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of eddy field compensation (EFC) applied to higher order shim induced eddy current fields in multislice DS. This method does not require shim shielding, extra hardware for eddy current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term eddy fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware eddy current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based eddy current compensation required in 2nd and 3rd order DS. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020021570&hterms=nolan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dnolan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020021570&hterms=nolan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dnolan"><span>Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.</p> <p>2001-01-01</p> <p>A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.120...83C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.120...83C"><span>Can we reconstruct mean and eddy fluxes from Argo floats?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chapman, Christopher; Sallée, Jean-Baptiste</p> <p>2017-12-01</p> <p>The capacity of deep velocity estimates provided by the Argo float array to reconstruct both mean and eddying quantities, such as the heat flux, is addressed using an idealized eddy resolving numerical model, designed to be representative of the Southern Ocean. The model is seeded with 450 "virtual" Argo floats, which are then advected by the model fields for 10 years. The role of temporal sampling, array density and length of the float experiment are then systematically investigated by comparing the reconstructed velocity, eddy kinetic energy and heat-flux from the virtual Argo floats with the "true" values from the model output. We find that although errors in all three quantities decrease with increasing temporal sampling rate, number of floats and experiment duration, the error approaches an asymptotic limit. Thus, as these parameters exceed this limit, only marginal reductions in the error are observed. The parameters of the real Argo array, when scaled to match those of the virtual Argo array, generally fall near to, or within, the asymptotic region. Using the numerical model, a method for the calculation of cross-stream heat-fluxes is demonstrated. This methodology is then applied to 5 years of Argo derived velocities using the ANDRO dataset of Ollitrault & Rannou (2013) in order to estimate the eddy heat flux at 1000m depth across the Polar Front in the Southern Ocean. The heat-flux is concentrated in regions downstream of large bathymetric features, consistent with the results of previous studies. 2 ± 0.5 TW of heat transport across the Polar Front at this depth is found, with more than 90% of that total concentrated in less than 20% of the total longitudes spanned by the front. Finally, the implications of this work for monitoring the ocean climate are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915539A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915539A"><span>Multi-platform validation of a high-resolution model in the Western Mediterranean Sea: insight into spatial-temporal variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aguiar, Eva; Mourre, Baptiste; Heslop, Emma; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín</p> <p>2017-04-01</p> <p>This study focuses on the validation of the high resolution Western Mediterranean Operational model (WMOP) developed at SOCIB, the Balearic Islands Coastal Observing and Forecasting System. The Mediterranean Sea is often seen as a small scale ocean laboratory where energetic eddies, fronts and circulation features have important ecological consequences. The Medclic project is a program between "La Caixa" Foundation and SOCIB which aims at characterizing and forecasting the "oceanic weather" in the Western Mediterranean Sea, specifically investigating the interactions between the general circulation and mesoscale processes. We use a WMOP 2009-2015 free run hindcast simulation and available observational datasets (altimetry, moorings and gliders) to both assess the numerical simulation and investigate the ocean variability. WMOP has a 2-km spatial resolution and uses CMEMS Mediterranean products as initial and boundary conditions, with surface forcing from the high-resolution Spanish Meteorological Agency model HIRLAM. Different aspects of the spatial and temporal variability in the model are validated from local to regional and basin scales: (1) the principal axis of variability of the surface circulation using altimetry and moorings along the Iberian coast, (2) the inter-annual changes of the surface flows incorporating also glider data, (3) the propagation of mesoscale eddies formed in the Algerian sub-basin using altimetry, and (4) the statistical properties of eddies (number, rotation, size) applying an eddy tracker detection method in the Western Mediterranean Sea. With these key points evaluated in the model, EOF analysis of sea surface height maps are used to investigate spatial patterns of variability associated with eddies, gyres and the basis-scale circulation and so gain insight into the interconnections between sub-basins, as well as the interactions between physical processes at different scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSV...354..132W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSV...354..132W"><span>On the calculation of the complex wavenumber of plane waves in rigid-walled low-Mach-number turbulent pipe flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir</p> <p>2015-10-01</p> <p>A numerical method for calculating the wavenumbers of axisymmetric plane waves in rigid-walled low-Mach-number turbulent flows is proposed, which is based on solving the linearized Navier-Stokes equations with an eddy-viscosity model. In addition, theoretical models for the wavenumbers are reviewed, and the main effects (the viscothermal effects, the mean flow convection and refraction effects, the turbulent absorption, and the moderate compressibility effects) which may influence the sound propagation are discussed. Compared to the theoretical models, the proposed numerical method has the advantage of potentially including more effects in the computed wavenumbers. The numerical results of the wavenumbers are compared with the reviewed theoretical models, as well as experimental data from the literature. It shows that the proposed numerical method can give satisfactory prediction of both the real part (phase shift) and the imaginary part (attenuation) of the measured wavenumbers, especially when the refraction effects or the turbulent absorption effects become important.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910006682','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910006682"><span>Modelling the transitional boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Narasimha, R.</p> <p>1990-01-01</p> <p>Recent developments in the modelling of the transition zone in the boundary layer are reviewed (the zone being defined as extending from the station where intermittency begins to depart from zero to that where it is nearly unity). The value of using a new non-dimensional spot formation rate parameter, and the importance of allowing for so-called subtransitions within the transition zone, are both stressed. Models do reasonably well in constant pressure 2-dimensional flows, but in the presence of strong pressure gradients further improvements are needed. The linear combination approach works surprisingly well in most cases, but would not be so successful in situations where a purely laminar boundary layer would separate but a transitional one would not. Intermittency-weighted eddy viscosity methods do not predict peak surface parameters well without the introduction of an overshooting transition function whose connection with the spot theory of transition is obscure. Suggestions are made for further work that now appears necessary for developing improved models of the transition zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7677R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7677R"><span>Lateral eddy diffusivity estimates from simulated and observed drifter trajectories: a case study for the Agulhas Current system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rühs, Siren; Zhurbas, Victor; Durgadoo, Jonathan V.; Biastoch, Arne</p> <p>2017-04-01</p> <p>The Lagrangian description of fluid motion by sets of individual particle trajectories is extensively used to characterize connectivity between distinct oceanic locations. One important factor influencing the connectivity is the average rate of particle dispersal, generally quantified as Lagrangian diffusivity. In addition to Lagrangian observing programs, Lagrangian analyses are performed by advecting particles with the simulated flow field of ocean general circulation models (OGCMs). However, depending on the spatio-temporal model resolution, not all scale-dependent processes are explicitly resolved in the simulated velocity fields. Consequently, the dispersal of advective Lagrangian trajectories has been assumed not to be sufficiently diffusive compared to observed particle spreading. In this study we present a detailed analysis of the spatially variable lateral eddy diffusivity characteristics of advective drifter trajectories simulated with realistically forced OGCMs and compare them with estimates based on observed drifter trajectories. The extended Agulhas Current system around South Africa, known for its intricate mesoscale dynamics, serves as a test case. We show that a state-of-the-art eddy-resolving OGCM indeed features theoretically derived dispersion characteristics for diffusive regimes and realistically represents Lagrangian eddy diffusivity characteristics obtained from observed surface drifter trajectories. The estimates for the maximum and asymptotic lateral single-particle eddy diffusivities obtained from the observed and simulated drifter trajectories show a good agreement in their spatial pattern and magnitude. We further assess the sensitivity of the simulated lateral eddy diffusivity estimates to the temporal and lateral OGCM output resolution and examine the impact of the different eddy diffusivity characteristics on the Lagrangian connectivity between the Indian Ocean and the South Atlantic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B13D0647X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B13D0647X"><span>Comparison of Landfill Methane Oxidation Measured Using Stable Isotope Analysis and CO2/CH4 Fluxes Measured by the Eddy Covariance Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, L.; Chanton, J.; McDermitt, D. K.; Li, J.; Green, R. B.</p> <p>2015-12-01</p> <p>Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate methane oxidation fraction when the anaerobic CO2 / CH4 production ratio is known, or can be estimated. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2 / CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested using carbon dioxide emission rates (fluxes) and methane emission rates (fluxes) measured using the eddy covariance method over a one year period at the Turkey Run landfill in Georgia, USA. The CO2 / CH4 production ratio was estimated by measuring CO2 and CH4 concentrations in air sampled under anaerobic conditions deep inside the landfill. We also used a mass balance approach to independently estimate fractional oxidation based on stable isotope measurements (δ13C of methane) of gas samples taken from deep inside the landfill and just above the landfill surface. Results from the two independent methods agree well. The model will be described and methane oxidation will be discussed in relation to wind direction, location at the landfill, and age of the deposited refuse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29a5105S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29a5105S"><span>Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel</p> <p>2017-01-01</p> <p>We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3163721','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3163721"><span>Quantification and Compensation of Eddy-Current-Induced Magnetic Field Gradients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Spees, William M.; Buhl, Niels; Sun, Peng; Ackerman, Joseph J.H.; Neil, Jeffrey J.; Garbow, Joel R.</p> <p>2011-01-01</p> <p>Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or 6-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom’s free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner’s gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. PMID:21764614</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21764614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21764614"><span>Quantification and compensation of eddy-current-induced magnetic-field gradients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spees, William M; Buhl, Niels; Sun, Peng; Ackerman, Joseph J H; Neil, Jeffrey J; Garbow, Joel R</p> <p>2011-09-01</p> <p>Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or six-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom's free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner's gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThCFD..31...33N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThCFD..31...33N"><span>Stability and modal analysis of shock/boundary layer interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio</p> <p>2017-02-01</p> <p>The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.126...56B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.126...56B"><span>The relationship between a deformation-based eddy parameterization and the LANS-α turbulence model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bachman, Scott D.; Anstey, James A.; Zanna, Laure</p> <p>2018-06-01</p> <p>A recent class of ocean eddy parameterizations proposed by Porta Mana and Zanna (2014) and Anstey and Zanna (2017) modeled the large-scale flow as a non-Newtonian fluid whose subgridscale eddy stress is a nonlinear function of the deformation. This idea, while largely new to ocean modeling, has a history in turbulence modeling dating at least back to Rivlin (1957). The new class of parameterizations results in equations that resemble the Lagrangian-averaged Navier-Stokes-α model (LANS-α, e.g., Holm et al., 1998a). In this note we employ basic tensor mathematics to highlight the similarities between these turbulence models using component-free notation. We extend the Anstey and Zanna (2017) parameterization, which was originally presented in 2D, to 3D, and derive variants of this closure that arise when the full non-Newtonian stress tensor is used. Despite the mathematical similarities between the non-Newtonian and LANS-α models which might provide insight into numerical implementation, the input and dissipation of kinetic energy between these two turbulent models differ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ACP....15.7457X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ACP....15.7457X"><span>Stably stratified canopy flow in complex terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, X.; Yi, C.; Kutter, E.</p> <p>2015-07-01</p> <p>Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011WRR....47.5545M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011WRR....47.5545M"><span>Estimation of evaporation and sensible heat flux from open water using a large-aperture scintillometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McJannet, D. L.; Cook, F. J.; McGloin, R. P.; McGowan, H. A.; Burn, S.</p> <p>2011-05-01</p> <p>The use of scintillometers to determine sensible and latent heat flux is becoming increasingly common because of their ability to quantify convective fluxes over distances of hundreds of meters to several kilometers. The majority of investigations using scintillometry have focused on processes above land surfaces, but here we propose a new methodology for obtaining sensible and latent heat fluxes from a scintillometer deployed over open water. This methodology has been tested by comparison with eddy covariance measurements and through comparison with alternative scintillometer calculation approaches that are commonly used in the literature. The methodology is based on linearization of the Bowen ratio, which is a common assumption in models such as Penman's model and its derivatives. Comparison of latent heat flux estimates from the eddy covariance system and the scintillometer showed excellent agreement across a range of weather conditions and flux rates, giving a high level of confidence in scintillometry-derived latent heat fluxes. The proposed approach produced better estimates than other scintillometry calculation methods because of the reliance of alternative methods on measurements of water temperature or water body heat storage, which are both notoriously hard to quantify. The proposed methodology requires less instrumentation than alternative scintillometer calculation approaches, and the spatial scales of required measurements are arguably more compatible. In addition to scintillometer measurements of the structure parameter of the refractive index of air, the only measurements required are atmospheric pressure, air temperature, humidity, and wind speed at one height over the water body.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28709096','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28709096"><span>Extensive green roof CO2 exchange and its seasonal variation quantified by eddy covariance measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heusinger, Jannik; Weber, Stephan</p> <p>2017-12-31</p> <p>The CO 2 surface-atmosphere exchange of an unirrigated, extensive green roof in Berlin, Germany was measured by means of the eddy covariance method over a full annual cycle. The present analysis focusses on the cumulative green roof net ecosystem exchange of CO 2 (NEE), on its seasonal variation and on green roof physiological characteristics by applying a canopy (A-g s ) model. The green roof was a carbon sink with an annual cumulative NEE of -313gCO 2 m -2 year - 1 , equivalent to -85gCm -2 year - 1 . Three established CO 2 flux gap-filling methods were applied to estimate NEE and to study the performance during different meteorological situations. A best estimate NEE time series was established, which chooses the gap filling method with the highest performance. During dry periods daytime carbon uptake was shown to decline linearly with substrate moisture below a threshold of 0.05m 3 m -3 , whereas night-time respiration was unaffected by substrate moisture variation. The roof turned into a temporary C source during dry conditions in summer 2015. We conclude that the carbon uptake of the present green roof can be optimized when substrate moisture is kept above 0.05m 3 m -3 . Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1949w0016S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1949w0016S"><span>The use of fractional order derivatives for eddy current non-destructive testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sikora, Ryszard; Grzywacz, Bogdan; Chady, Tomasz</p> <p>2018-04-01</p> <p>The paper presents the possibility of using the fractional derivatives for non-destructive testing when a multi-frequency method based on eddy current is applied. It is shown that frequency characteristics obtained during tests can be approximated by characteristics of a proposed model in the form of fractional order transfer function, and values of parameters of this model can be utilized for detection and identification of defects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDH21005K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDH21005K"><span>Wall Modeled Large Eddy Simulation of Airfoil Trailing Edge Noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kocheemoolayil, Joseph; Lele, Sanjiva</p> <p>2014-11-01</p> <p>Large eddy simulation (LES) of airfoil trailing edge noise has largely been restricted to low Reynolds numbers due to prohibitive computational cost. Wall modeled LES (WMLES) is a computationally cheaper alternative that makes full-scale Reynolds numbers relevant to large wind turbines accessible. A systematic investigation of trailing edge noise prediction using WMLES is conducted. Detailed comparisons are made with experimental data. The stress boundary condition from a wall model does not constrain the fluctuating velocity to vanish at the wall. This limitation has profound implications for trailing edge noise prediction. The simulation over-predicts the intensity of fluctuating wall pressure and far-field noise. An improved wall model formulation that minimizes the over-prediction of fluctuating wall pressure is proposed and carefully validated. The flow configurations chosen for the study are from the workshop on benchmark problems for airframe noise computations. The large eddy simulation database is used to examine the adequacy of scaling laws that quantify the dependence of trailing edge noise on Mach number, Reynolds number and angle of attack. Simplifying assumptions invoked in engineering approaches towards predicting trailing edge noise are critically evaluated. We gratefully acknowledge financial support from GE Global Research and thank Cascade Technologies Inc. for providing access to their massively-parallel large eddy simulation framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26317555','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26317555"><span>Influence of a Decaying Cyclonic Eddy on Biogenic Silica and Particulate Organic Carbon in the Tropical South China Sea Based on 234Th-238U Disequilibrium.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Weifeng; Chen, Min; Zheng, Minfang; He, Zhigang; Zhang, Xinxing; Qiu, Yusheng; Xu, Wangbin; Ma, Lili; Lin, Zhiyu; Hu, Wangjiang; Zeng, Jian</p> <p>2015-01-01</p> <p>Eddies play a critical role in regulating the biological pump by pumping new nutrients to the euphotic zone. However, the effects of cyclonic eddies on particle export are not well understood. Here, biogenic silica (BSi) and particulate organic carbon (POC) exports were examined inside and outside a decaying cyclonic eddy using 234Th-238U disequilibria in the tropical South China Sea. For the eddy and outside stations, the average concentrations of BSi in the euphotic zone were 0.17±0.09 μmol L-1 (mean±sd, n = 20) and 0.21±0.06 μmol L-1 (n = 34). The POC concentrations were 1.42±0.56 μmol L-1 (n = 34) and 1.30±0.46 μmol L-1 (n = 51). Both BSi and POC abundances did not show change at the 95% confidence level. Based on the 234Th-238U model, BSi export fluxes in the eddy averaged 0.18±0.15 mmol Si m-2 d-1, which was comparable with the 0.40±0.20 mmol Si m-2 d-1 outside the eddy. Similarly, the average POC export fluxes were 1.5±1.4 mmol C m-2 d-1 and 1.9±1.3 mmol C m-2 d-1 for the eddy and outside stations. From these results we concluded that cyclonic eddies in their decaying phase have little effect on the abundance and export of biogenic particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4552670','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4552670"><span>Influence of a Decaying Cyclonic Eddy on Biogenic Silica and Particulate Organic Carbon in the Tropical South China Sea Based on 234Th-238U Disequilibrium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Weifeng; Chen, Min; Zheng, Minfang; He, Zhigang; Zhang, Xinxing; Qiu, Yusheng; Xu, Wangbin; Ma, Lili; Lin, Zhiyu; Hu, Wangjiang; Zeng, Jian</p> <p>2015-01-01</p> <p>Eddies play a critical role in regulating the biological pump by pumping new nutrients to the euphotic zone. However, the effects of cyclonic eddies on particle export are not well understood. Here, biogenic silica (BSi) and particulate organic carbon (POC) exports were examined inside and outside a decaying cyclonic eddy using 234Th-238U disequilibria in the tropical South China Sea. For the eddy and outside stations, the average concentrations of BSi in the euphotic zone were 0.17±0.09 μmol L-1 (mean±sd, n = 20) and 0.21±0.06 μmol L-1 (n = 34). The POC concentrations were 1.42±0.56 μmol L-1 (n = 34) and 1.30±0.46 μmol L-1 (n = 51). Both BSi and POC abundances did not show change at the 95% confidence level. Based on the 234Th-238U model, BSi export fluxes in the eddy averaged 0.18±0.15 mmol Si m-2 d-1, which was comparable with the 0.40±0.20 mmol Si m-2 d-1 outside the eddy. Similarly, the average POC export fluxes were 1.5±1.4 mmol C m-2 d-1 and 1.9±1.3 mmol C m-2 d-1 for the eddy and outside stations. From these results we concluded that cyclonic eddies in their decaying phase have little effect on the abundance and export of biogenic particles. PMID:26317555</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.3405W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.3405W"><span>Hydrological and Biogeochemical Controls on Absorption and Fluorescence of Dissolved Organic Matter in the Northern South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Chao; Guo, Weidong; Li, Yan; Stubbins, Aron; Li, Yizhen; Song, Guodong; Wang, Lei; Cheng, Yuanyue</p> <p>2017-12-01</p> <p>The Kuroshio intrusion from the West Philippine Sea (WPS) and mesoscale eddies are important hydrological features in the northern South China Sea (SCS). In this study, absorption and fluorescence of dissolved organic matter (CDOM and FDOM) were determined to assess the impact of these hydrological features on DOM dynamics in the SCS. DOM in the upper 100 m of the northern SCS had higher absorption, fluorescence, and degree of humification than in the Kuroshio Current of the WPS. The results of an isopycnal mixing model showed that CDOM and humic-like FDOM inventories in the upper 100 m of the SCS were modulated by the Kuroshio intrusion. However, protein-like FDOM was influenced by in situ processes. This basic trend was modified by mesoscale eddies, three of which were encountered during the fieldwork (one warm eddy and two cold eddies). DOM optical properties inside the warm eddy resembled those of DOM in the WPS, indicating that warm eddies could derive from the Kuroshio Current through Luzon Strait. DOM at the center of cold eddies was enriched in humic-like fluorescence and had lower spectral slopes than in eddy-free waters, suggesting inputs of humic-rich DOM from upwelling and enhanced productivity inside the eddy. Excess CDOM and FDOM in northern SCS intermediate water led to export to the Pacific Ocean interior, potentially delivering refractory carbon to the deep ocean. This study demonstrated that DOM optical properties are promising tools to study active marginal sea-open ocean interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..307..150H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..307..150H"><span>Detection of Northern Hemisphere transient eddies at Gale Crater Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haberle, Robert M.; Juárez, Manuel de la Torre; Kahre, Melinda A.; Kass, David M.; Barnes, Jeffrey R.; Hollingsworth, Jeffery L.; Harri, Ari-Matti; Kahanpää, Henrik</p> <p>2018-06-01</p> <p>The Rover Environmental Monitoring Station (REMS) on the Curiosity Rover is operating in the Southern Hemisphere of Mars and is detecting synoptic period oscillations in the pressure data that we attribute to Northern Hemisphere transient eddies. We base this interpretation on the similarity in the periods of the eddies and their seasonal variations with those observed in northern midlatitudes by Viking Lander 2 (VL-2) 18 Mars years earlier. Further support for this interpretation comes from global circulation modeling which shows similar behavior in the transient eddies at the grid points closest to Curiosity and VL-2. These observations provide the first in situ evidence that the frontal systems often associated with "Flushing Dust Storms" do cross the equator and extend into the Southern Hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231639','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231639"><span>Non-Destructive Techniques Based on Eddy Current Testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto</p> <p>2011-01-01</p> <p>Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1033443','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1033443"><span>Large-Eddy Simulation of Wind-Plant Aerodynamics: Preprint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Churchfield, M. J.; Lee, S.; Moriarty, P. J.</p> <p></p> <p>In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done wind plant large-eddy simulations with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performingmore » this type of simulation. We have used the OpenFOAM CFD toolbox to create our solver.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22163754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22163754"><span>Non-destructive techniques based on eddy current testing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto</p> <p>2011-01-01</p> <p>Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ECSS..104...80C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ECSS..104...80C"><span>A sensitivity analysis of low salinity habitats simulated by a hydrodynamic model in the Manatee River estuary in Florida, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, XinJian</p> <p>2012-06-01</p> <p>This paper presents a sensitivity study of simulated availability of low salinity habitats by a hydrodynamic model for the Manatee River estuary located in the southwest portion of the Florida peninsula. The purpose of the modeling study was to establish a regulatory minimum freshwater flow rate required to prevent the estuarine ecosystem from significant harm. The model used in the study was a multi-block model that dynamically couples a three-dimensional (3D) hydrodynamic model with a laterally averaged (2DV) hydrodynamic model. The model was calibrated and verified against measured real-time data of surface elevation and salinity at five stations during March 2005-July 2006. The calibrated model was then used to conduct a series of scenario runs to investigate effects of the flow reduction on salinity distributions in the Manatee River estuary. Based on simulated salinity distribution in the estuary, water volumes, bottom areas and shoreline lengths for salinity less than certain predefined values were calculated and analyzed to help establish the minimum freshwater flow rate for the estuarine system. The sensitivity analysis conducted during the modeling study for the Manatee River estuary examined effects of the bottom roughness, ambient vertical eddy viscosity/diffusivity, horizontal eddy viscosity/diffusivity, and ungauged flow on the model results and identified the relative importance of these model parameters (input data) to the outcome of the availability of low salinity habitats. It is found that the ambient vertical eddy viscosity/diffusivity is the most influential factor controlling the model outcome, while the horizontal eddy viscosity/diffusivity is the least influential one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..497Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..497Z"><span>Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael</p> <p>2018-01-01</p> <p>The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22918621','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22918621"><span>Eddy current compensation for delta relaxation enhanced MR by dynamic reference phase modulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoelscher, Uvo Christoph; Jakob, Peter M</p> <p>2013-04-01</p> <p>Eddy current compensation by dynamic reference phase modulation (eDREAM) is a compensation method for eddy current fields induced by B 0 field-cycling which occur in delta relaxation enhanced MR (dreMR) imaging. The presented method is based on a dynamic frequency adjustment and prevents eddy current related artifacts. It is easy to implement and can be completely realized in software for any imaging sequence. In this paper, the theory of eDREAM is derived and two applications are demonstrated. The theory describes how to model the behavior of the eddy currents and how to implement the compensation. Phantom and in vivo measurements are carried out and demonstrate the benefits of eDREAM. A comparison of images acquired with and without eDREAM shows a significant improvement in dreMR image quality. Images without eDREAM suffer from severe artifacts and do not allow proper interpretation while images with eDREAM are artifact free. In vivo experiments demonstrate that dreMR imaging without eDREAM is not feasible as artifacts completely change the image contrast. eDREAM is a flexible eddy current compensation for dreMR. It is capable of completely removing the influence of eddy currents such that the dreMR images do not suffer from artifacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..271..207W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..271..207W"><span>The variability, structure and energy conversion of the northern hemisphere traveling waves simulated in a Mars general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Huiqun; Toigo, Anthony D.</p> <p>2016-06-01</p> <p>Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4991J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4991J"><span>Arctic Ocean Freshwater Content and Its Decadal Memory of Sea-Level Pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Helen L.; Cornish, Sam B.; Kostov, Yavor; Beer, Emma; Lique, Camille</p> <p>2018-05-01</p> <p>Arctic freshwater content (FWC) has increased significantly over the last two decades, with potential future implications for the Atlantic meridional overturning circulation downstream. We investigate the relationship between Arctic FWC and atmospheric circulation in the control run of a coupled climate model. Multiple linear lagged regression is used to extract the response of total Arctic FWC to a hypothetical step increase in the principal components of sea-level pressure. The results demonstrate that the FWC adjusts on a decadal timescale, consistent with the idea that wind-driven ocean dynamics and eddies determine the response of Arctic Ocean circulation and properties to a change in surface forcing, as suggested by idealized models and theory. Convolving the response of FWC to a change in sea-level pressure with historical sea-level pressure variations reveals that the recent observed increase in Arctic FWC is related to natural variations in sea-level pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1547..577J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1547..577J"><span>Simulation of hydrodynamics using large eddy simulation-second-order moment model in circulating fluidized beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu</p> <p>2013-07-01</p> <p>Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJTIA.131..219S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJTIA.131..219S"><span>Excitation Method of Linear-Motor-Type Rail Brake without Using Power Sources by Dynamic Braking with Zero Electrical Output</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo</p> <p></p> <p>The eddy current rail brake is a type of braking system used in railway vehicles. Because of problems such as rail heating and problems associated with ensuring that power is supplied when the feeder malfunctions, this braking system has not been used for practical applications in Japan. Therefore, we proposed the use of linear induction motor (LIM) technology in eddy current rail brake systems. The LIM rail brake driven by dynamic braking can reduce rail heating and generate the energy required for self-excitation. In this paper, we present an excitation system and control method for the LIM rail brake driven by “dynamic braking with zero electrical output”. The proposed system is based on the concept that the LIM rail brake can be energized without using excitation power sources such as a feeder circuit and that high reliability can be realized by providing an independent excitation system. We have studied this system and conducted verification tests using a prototype LIM rail brake on a roller rig. The results show that the system performance is adequate for commercializing the proposed system, in which the LIM rail brake is driven without using any excitation power source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG21A0119P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG21A0119P"><span>A scaling law for the mixing efficiency in weakly rotating unforced stratified turbulence in the atmosphere and the oceans based on the slowing down of energy transfer to the small scales because of waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pouquet, A.; Marino, R.; Rosenberg, D. L.; Herbert, C.</p> <p>2017-12-01</p> <p>We present a simple model for the scaling properties of the flux Richardson number R_f (the ratio of buoyancy flux B to total momentum flux B/[B+ɛ_V]) in weakly rotating unforced stratified flows characterized by their Rossby, Froude and Reynolds numbers Ro, Fr and Re. The model is based on: (i) quasi-equipartition between kinetic and potential modes, because of gravity waves and statistical equilibria; (ii) sub-dominant vertical velocity compared to the rms value of the velocity, U, due to the dominance of two-dimensional modes and the incompressibility condition; and (iii) slowing-down and weakening of the energy transfer to small scales due to eddy-wave interactions in a weak-turbulence temporal framework where the transfer time τ_{transf} is lengthened by the inverse Froude number, namely τ_{transf}=τ_{NL}^2/τ_{w}, τ_{NL}=L/U and τ_{w}=1/N being respectively the eddy turn-over time and the wave (Brunt Vaissala) period, with L a charaacteristic scale. Three regimes in Fr, as for stratified flows, are observed using a large data base: dominant waves, eddy-wave interactions and strong turbulence. In terms of the turbulence intensity (or buoyancy Reynolds number) R_I=ɛ_V/[νN^2], with ν the viscosity and ɛ_V the kinetic energy dissipation rate, these regimes are delimited by R_I˜0.1 and R_I˜280. In the intermediate regime, the phenomenology predicts and the numerical data confirms that a linear growth in Fr is obtained for the effective kinetic energy transfer when compared to its dimensional evaluation U^3/L. Defining the mixing efficiency as Γ_f=R_f/[1-R_f], the model allows for the prediction of the scaling Γ_f˜R_I^{-1/2}, observed previously at high Froude number, but which we also find for the intermediate regime. Thus, Γ_f is not constant, contrary to the classical Osborn model, as also found in several studies without rotation. As turbulence strengthens, smaller buoyancy fluxes point to a decoupling of the velocity and temperature fluctuations, the latter becoming passive and independent of U, and one can recover the same R_I^{-1/2} scaling in the strong turbulence regime as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BoLMe.165...29G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BoLMe.165...29G"><span>Air-Parcel Residence Times Within Forest Canopies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerken, Tobias; Chamecki, Marcelo; Fuentes, Jose D.</p> <p>2017-10-01</p> <p>We present a theoretical model, based on a simple model of turbulent diffusion and first-order chemical kinetics, to determine air-parcel residence times and the out-of-canopy export of reactive gases emitted within forest canopies under neutral conditions. Theoretical predictions of the air-parcel residence time are compared to values derived from large-eddy simulation for a range of canopy architectures and turbulence levels under neutral stratification. Median air-parcel residence times range from a few sec in the upper canopy to approximately 30 min near the ground and the distribution of residence times is skewed towards longer times in the lower canopy. While the predicted probability density functions from the theoretical model and large-eddy simulation are in good agreement with each other, the theoretical model requires only information on canopy height and eddy diffusivities inside the canopy. The eddy-diffusivity model developed additionally requires the friction velocity at canopy top and a parametrized profile of the standard deviation of vertical velocity. The theoretical model of air-parcel residence times is extended to include first-order chemical reactions over a range of of Damköhler numbers ( Da) characteristic of plant-emitted hydrocarbons. The resulting out-of-canopy export fractions range from near 1 for Da =10^{-3} to less than 0.3 at Da = 10. These results highlight the necessity for dense and tall forests to include the impacts of air-parcel residence times when calculating the out-of-canopy export fraction for reactive trace gases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010487','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010487"><span>The Influence of Slope Breaks on Lava Flow Surface Disruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert</p> <p>2014-01-01</p> <p>Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC14A0956S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC14A0956S"><span>Biogeochemical responses to meso- and submesoscale oceanic variability in the Kuroshio region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzue, Y.; Uchiyama, Y.; Yamazaki, H.</p> <p>2016-02-01</p> <p>Influences of the Kuroshio and associated meso- and submesoscale variability due to frontally- and topographically-induced eddies on biogeochemical processes in the Kuroshio region off Japan are examined with a synoptic downscaling ocean modeling using the UCLA version of ROMS (Shchepetkin and McWilliams, 2005; 2008) coupled with an NPZD (nutrient, phyto/zooplanktons and detritus) nitrogen-based biogeochemical model (e.g., Fasham et al., 1990). The hydrodynamic model is initialized and forced by the JCOPE2 assimilative oceanic reanalysis (Miyazawa et al., 2009) with a horizontal grid resolution of 1/12o (dx ≈ 10 km) to convey the basin-scale information including the transient Kuroshio path though the parent ROMS-L1 model (dx = 3 km) and the child ROMS-L2 model (dx = 1 km) successively with the one-way offline nesting technique (Mason et al., 2011). The JMA GPV-MSM assimilative atmospheric reanalysis (dx = 6 km) is used to force both the ROMS models, while the NPZD model is configured according to Gruber et al. (2006). The model result is extensively compared with satellite (e.g., AVISO, MODIS/Aqua Chl.a) and in-situ data (e.g., the JMA's ship measurement) to confirm good agreement. The submesoscale eddy-resolving L2 output exhibits that intermediate water containing abundant nutrients occasionally surfaces by localized upwelling associated with cyclonic eddies, and that high Chl.a concentration appears around the Kuroshio Front. Furthermore, it is found that meso- and submesoscale eddies developed between the Kuroshio and the coastline also influence on the nearshore biogeochemical productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940007816','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940007816"><span>A normal stress subgrid-scale eddy viscosity model in large eddy simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horiuti, K.; Mansour, N. N.; Kim, John J.</p> <p>1993-01-01</p> <p>The Smagorinsky subgrid-scale eddy viscosity model (SGS-EVM) is commonly used in large eddy simulations (LES) to represent the effects of the unresolved scales on the resolved scales. This model is known to be limited because its constant must be optimized in different flows, and it must be modified with a damping function to account for near-wall effects. The recent dynamic model is designed to overcome these limitations but is compositionally intensive as compared to the traditional SGS-EVM. In a recent study using direct numerical simulation data, Horiuti has shown that these drawbacks are due mainly to the use of an improper velocity scale in the SGS-EVM. He also proposed the use of the subgrid-scale normal stress as a new velocity scale that was inspired by a high-order anisotropic representation model. The testing of Horiuti, however, was conducted using DNS data from a low Reynolds number channel flow simulation. It was felt that further testing at higher Reynolds numbers and also using different flows (other than wall-bounded shear flows) were necessary steps needed to establish the validity of the new model. This is the primary motivation of the present study. The objective is to test the new model using DNS databases of high Reynolds number channel and fully developed turbulent mixing layer flows. The use of both channel (wall-bounded) and mixing layer flows is important for the development of accurate LES models because these two flows encompass many characteristic features of complex turbulent flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21280830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21280830"><span>Magnetic shield for turbomolecular pump of the Magnetized Plasma Linear Experimental device at Saha Institute of Nuclear Physics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath</p> <p>2011-01-01</p> <p>The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24801556','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24801556"><span>Large eddy simulation of transitional flow in an idealized stenotic blood vessel: evaluation of subgrid scale models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H</p> <p>2014-07-01</p> <p>In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1031053','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1031053"><span>Seasonal cycle of volume transport through Kerama Gap revealed by a 20-year global HYbrid Coordinate Ocean Model reanalysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-11-10</p> <p>the mean inflow into the ECS does not Z. Yu et al. / Ocean Modelling 96 (2015) 203–213 207 1995 1997 2000 2002 2005 2007 2010 2012 −20 −10 0 10 20 T...performed and the leading mode of the annual steric ef- ect ( Stammer , 1997) was also removed. Depending on the eddy lo- ation, the same type of eddy</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA565941','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA565941"><span>Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-06-01</p> <p>atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and precipitation at the ocean...surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by temperature and salinity, the...days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning oceanic dynamical</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950016033','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950016033"><span>Large-eddy simulation of a boundary layer with concave streamwise curvature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lund, Thomas S.</p> <p>1994-01-01</p> <p>Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001315','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001315"><span>DPW-VI Results Using FUN3D with Focus on k-kL-MEAH2015 (k-kL) Turbulence Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abdol-Hamid, K. S.; Carlson, Jan-Renee; Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Park, Michael A.</p> <p>2017-01-01</p> <p>The Common Research Model wing-body configuration is investigated with the k-kL-MEAH2015 turbulence model implemented in FUN3D. This includes results presented at the Sixth Drag Prediction Workshop and additional results generated after the workshop with a nonlinear Quadratic Constitutive Relation (QCR) variant of the same turbulence model. The workshop provided grids are used, and a uniform grid refinement study is performed at the design condition. A large variation between results with and without a reconstruction limiter is exhibited on "medium" grid sizes, indicating that the medium grid size is too coarse for drawing conclusions in comparison with experiment. This variation is reduced with grid refinement. At a fixed angle of attack near design conditions, the QCR variant yielded decreased lift and drag compared with the linear eddy-viscosity model by an amount that was approximately constant with grid refinement. The k-kL-MEAH2015 turbulence model produced wing root junction flow behavior consistent with wind tunnel observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1392559','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1392559"><span>Report for Oregon State University Reporting Period: June 2016 to June 2017</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hutchings, Jennifer</p> <p></p> <p>The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDH34003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDH34003S"><span>Subgrid-scale models for large-eddy simulation of rotating turbulent flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silvis, Maurits; Trias, Xavier; Abkar, Mahdi; Bae, Hyunji Jane; Lozano-Duran, Adrian; Verstappen, Roel</p> <p>2016-11-01</p> <p>This paper discusses subgrid models for large-eddy simulation of anisotropic flows using anisotropic grids. In particular, we are looking into ways to model not only the subgrid dissipation, but also transport processes, since these are expected to play an important role in rotating turbulent flows. We therefore consider subgrid-scale models of the form τ = - 2νt S +μt (SΩ - ΩS) , where the eddy-viscosity νt is given by the minimum-dissipation model, μt represents a transport coefficient; S is the symmetric part of the velocity gradient and Ω the skew-symmetric part. To incorporate the effect of mesh anisotropy the filter length is taken in such a way that it minimizes the difference between the turbulent stress in physical and computational space, where the physical space is covered by an anisotropic mesh and the computational space is isotropic. The resulting model is successfully tested for rotating homogeneous isotropic turbulence and rotating plane-channel flows. The research was largely carried out during the CTR SP 2016. M.S, and R.V. acknowledge the financial support to attend this Summer Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NTE....26...57M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NTE....26...57M"><span>Numerical modelling as a cost-reduction tool for probability of detection of bolt hole eddy current testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.</p> <p>2011-03-01</p> <p>Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of eddy current testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the eddy current signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for eddy current signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled eddy current signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JCli...10.1616Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JCli...10.1616Z"><span>Model-Simulated Northern Winter Cyclone and Anticyclone Activity under a Greenhouse Warming Scenario.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yi; Wang, Wei-Chyung</p> <p>1997-07-01</p> <p>Two 100-yr equilibrium simulations from the NCAR Community Climate Model coupled to a nondynamic slab ocean are used to investigate the activity of northern winter extratropical cyclones and anticyclones under a greenhouse warming scenario. The first simulation uses the 1990 observed CO2, CH4, N2O, CFC-11, and CFC-12 concentrations, and the second adopts the year 2050 concentrations according to the Intergovernmental Panel on Climate Change business-as-usual scenario. Variables that describe the characteristic properties of the cyclone-scale eddies, such as surface cyclone and anticyclone frequency and the bandpassed root-mean-square of 500-hPa geopotential height, along with the Eady growth rate maximum, form a framework for the analysis of the cyclone and anticyclone activity.Objective criteria are developed for identifying cyclone and anticyclone occurrences based on the 1000-hPa geopotential height and vorticity fields and tested using ECMWF analyses. The potential changes of the eddy activity under the greenhouse warming climate are then examined. Results indicate that the activity of cyclone-scale eddies decreases under the greenhouse warming scenario. This is not only reflected in the surface cyclone and anticyclone frequency and in the bandpassed rms of 500-hPa geopotential height, but is also discerned from the Eady growth rate maximum. Based on the analysis, three different physical mechanisms responsible for the decreased eddy activity are discussed: 1) a decrease of the extratropical meridional temperature gradient from the surface to the midtroposphere, 2) a reduction in the land-sea thermal contrast in the east coastal regions of the Asian and North American continents, and 3) an increase in the eddy meridional latent heat fluxes. Uncertainties in the results related to the limitations of the model and the model equilibrium simulations are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005OcDyn..55..526B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005OcDyn..55..526B"><span>Maintenance of headland-associated linear sandbanks: modelling the secondary flows and sediment transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berthot, Alexis; Pattiaratchi, Charitha</p> <p>2005-12-01</p> <p>Linear sandbanks are located globally in areas where there are strong currents and an abundance of sand. In the recent years, these sandbanks have become of strategic interest as a potential source of marine aggregates (sand and gravel) and mineral deposits. They form the seaward boundary of the nearshore zone and therefore are important for the stability of the coastal system. They also commonly reach the sea surface and thus pose a threat to navigation. Headland-associated linear sandbanks are a specific type of sandbanks which are located in the lee of coastal topographic features such as headlands and islands. Interaction between tidal currents and topographic features generate complex three-dimensional circulation patterns that significantly influence the distribution of sediments in the vicinity of the feature. Field and numerical model investigations of the three-dimensional flow structure have been undertaken on the Levillain Shoal, a headland-associated linear sandbank present in the lee of Cape Levillain (Shark Bay, Western Australia). The field data indicated the presence of secondary flows near the tip of the cape and around the bank which were re-produced in the numerical simulations. Numerical results have shown that residual eddies are not representative of the sediment transport and that secondary currents enhance the convergence of sediment towards the sandbank. Maintenance processes have been investigated. Sediment transport paths near the cape and the bank indicate that the sandbank is part of a sand circulation cell where the sand is circulating around the bank with exchanges between the sandbank and the headland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WiEn...21..474L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WiEn...21..474L"><span>Modeling space-time correlations of velocity fluctuations in wind farms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael</p> <p>2018-07-01</p> <p>An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7333E..0XF','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7333E..0XF"><span>Advanced flow noise reducing acoustic sensor arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fine, Kevin; Drzymkowski, Mark; Cleckler, Jay</p> <p>2009-05-01</p> <p>SARA, Inc. has developed microphone arrays that are as effective at reducing flow noise as foam windscreens and sufficiently rugged for tough battlefield environments. These flow noise reducing (FNR) sensors have a metal body and are flat and conformally mounted so they can be attached to the roofs of land vehicles and are resistant to scrapes from branches. Flow noise at low Mach numbers is created by turbulent eddies moving with the fluid flow and inducing pressure variations on microphones. Our FNR sensors average the pressure over the diameter (~20 cm) of their apertures, reducing the noise created by all but the very largest eddies. This is in contrast to the acoustic wave which has negligible variation over the aperture at the frequencies of interest (f less or equal than 400 Hz). We have also post-processed the signals to further reduce the flow noise. Two microphones separated along the flow direction exhibit highly correlated noise. The time shift of the correlation corresponds to the time for the eddies in the flow to travel between the microphones. We have created linear microphone arrays parallel to the flow and have reduced flow noise as much as 10 to 15 dB by subtracting time-shifted signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160005936','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160005936"><span>Design and Application of Hybrid Magnetic Field-Eddy Current Probe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John</p> <p>2013-01-01</p> <p>The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4222531','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4222531"><span>Rapid Measurement and Correction of Phase Errors from B0 Eddy Currents: Impact on Image Quality for Non-Cartesian Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.</p> <p>2014-01-01</p> <p>Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.18002054L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.18002054L"><span>Large-Eddy Simulation of Internal Flow through Human Vocal Folds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lasota, Martin; Šidlof, Petr</p> <p>2018-06-01</p> <p>The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS31H..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS31H..06T"><span>Observed and Simulated Eddy Diffusivity Upstream of the Drake Passage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tulloch, R.; Ferrari, R. M.; Marshall, J.</p> <p>2012-12-01</p> <p>Estimates of eddy diffusivity in the Southern Ocean are poorly constrained due to lack of observations. We compare the first direct estimate of isopycnal eddy diffusivity upstream of the Drake Passage (from Ledwell et al. 2011) with a numerical simulation. The estimate is computed from a point tracer release as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We find that the observational diffusivity estimate of about 500m^2/s at 1500m depth is close to that computed in a data-constrained, 1/20th of a degree simulation of the Drake Passage region. This tracer estimate also agrees with Lagrangian float calculations in the model. The role of mean flow suppression of eddy diffusivity at shallower depths will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960038336&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtemperature%2Bvariability','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960038336&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtemperature%2Bvariability"><span>Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari</p> <p>1995-01-01</p> <p>We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.3897B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.3897B"><span>Annular modes and apparent eddy feedbacks in the Southern Hemisphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrne, Nicholas J.; Shepherd, Theodore G.; Woollings, Tim; Plumb, R. Alan</p> <p>2016-04-01</p> <p>Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27667877','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27667877"><span>Annular modes and apparent eddy feedbacks in the Southern Hemisphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Byrne, Nicholas J; Shepherd, Theodore G; Woollings, Tim; Plumb, R Alan</p> <p>2016-04-28</p> <p>Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930003687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930003687"><span>Automated eddy current analysis of materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Workman, Gary L.</p> <p>1991-01-01</p> <p>The use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures is described. A major emphasis was also placed upon incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) was a goal in the overall concept and is essential for the final implementation for the expert systems interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of a flaw can be performed. A robotic workcell using eddy current transducers for the inspection of carbon filament materials with improved sensitivity was developed. Improved coupling efficiencies achieved with the E-probes and horseshoe probes are exceptional for graphite fibers. The eddy current supervisory system and expert system was partially developed on a MacIvory system. Continued utilization of finite element models for predetermining eddy current signals was shown to be useful in this work, both for understanding how electromagnetic fields interact with graphite fibers, and also for use in determining how to develop the knowledge base. Sufficient data was taken to indicate that the E-probe and the horseshoe probe can be useful eddy current transducers for inspecting graphite fiber components. The lacking component at this time is a large enough probe to have sensitivity in both the far and near field of a thick graphite epoxy component.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC21A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC21A..05M"><span>Influence of Kuroshio Oceanic Eddies on North Pacific Weather Patterns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, X.; Chang, P.; Saravanan, R.; Montuoro, R.; Hsieh, J. S.; Wu, D.; Lin, X.; Wu, L.; Jing, Z.</p> <p>2016-02-01</p> <p>High-resolution satellite observations reveal energetic meso-scale ocean eddy activity and positive correlation between meso-scale sea surface temperature (SST) and surface wind along oceanic frontal zones, such as the Kuroshio and Gulf Stream, suggesting a potential role of meso-scale oceanic eddies in forcing the atmosphere. Using a 27 km horizontal resolution Weather Research Forecasting (WRF) model forced with observed daily SST at 0.09° spatial resolution during boreal winter season, two ensembles of 10 WRF simulations, in one of which meso-scale SST variability induced by ocean eddies was suppressed, were conducted in the North Pacific to study the local and remote influence of meso-scale oceanic eddies in the Kuroshio Extention Region (KER) on the atmosphere. Suppression of meso-scale oceanic eddies results in a deep tropospheric response along and downstream of the KER, including a significant decrease (increase) in winter season mean rainfall along the KER (west coast of US), a reduction of storm genesis in the KER, and a southward shift of the jet stream and North Pacific storm track in the eastern North Pacific. The simulated local and remote rainfall response to meso-scale oceanic eddies in the KER is also supported by observational analysis. A mechanism invoking moist baroclinic instability is proposed as a plausible explanation for the linkage between meso-scale oceanic eddies in the KER and large-scale atmospheric response in the North Pacific. It is argued that meso-scale oceanic eddies can have a rectified effect on planetary boundary layer moisture, the stability of the lower atmosphere and latent heat release, which in turn affect cyclogenesis. The accumulated effect of the altered storm development downstream further contributes to the equivalent barotropic mean flow change in the eastern North Pacific basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29865189','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29865189"><span>A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Tao; He, Yuting; Du, Jinqiang</p> <p>2018-06-01</p> <p>This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>