Explicit 2-D Hydrodynamic FEM Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine
2015-08-01
Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in individual muscle force. However, it is not known if this relationship remains valid for higher intensities. The aim of this study was to determine: (i) the relationship between muscle shear elastic modulus and muscle torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bagno, A. M.
2017-03-01
The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed
Elastic and mechanical softening in boron-doped diamond
Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.
2017-01-01
Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50–3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials. PMID:28233808
Elastic and mechanical softening in boron-doped diamond
NASA Astrophysics Data System (ADS)
Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.
2017-02-01
Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50-3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.
Wave propagation problem for a micropolar elastic waveguide
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.
2018-04-01
A propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The mathematical model of the linear (or even nonlinear) micropolar elasticity is also expanded to a field theory model by variational least action integral and the least action principle. The governing coupled vector differential equations of the linear micropolar elasticity are given. The translational displacements and microrotations in the harmonic coupled wave are decomposed into potential and vortex parts. Calibrating equations providing simplification of the equations for the wave potentials are proposed. The coupled differential equations are then reduced to uncoupled ones and finally to the Helmholtz wave equations. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency range.
A model for compression-weakening materials and the elastic fields due to contractile cells
NASA Astrophysics Data System (ADS)
Rosakis, Phoebus; Notbohm, Jacob; Ravichandran, Guruswami
2015-12-01
We construct a homogeneous, nonlinear elastic constitutive law that models aspects of the mechanical behavior of inhomogeneous fibrin networks. Fibers in such networks buckle when in compression. We model this as a loss of stiffness in compression in the stress-strain relations of the homogeneous constitutive model. Problems that model a contracting biological cell in a finite matrix are solved. It is found that matrix displacements and stresses induced by cell contraction decay slower (with distance from the cell) in a compression weakening material than linear elasticity would predict. This points toward a mechanism for long-range cell mechanosensing. In contrast, an expanding cell would induce displacements that decay faster than in a linear elastic matrix.
NASA Astrophysics Data System (ADS)
Bruschini, Enrico; Speziale, Sergio; Bosi, Ferdinando; Andreozzi, Giovanni B.
2018-03-01
We investigated by a multi-analytical approach (Brillouin scattering, X-ray diffraction and electron microprobe) the dependence of the elastic properties on the chemical composition of six spinels in the series (Mg1-x ,Fe x )Al2O4 (0 ≤ x ≤ 0.5). With the exception of C 12, all the elastic moduli (C 11, C 44, K S0 and G) are insensitive to chemical composition for low iron concentration, while they decrease linearly for higher Fe2+ content. Only C 12 shows a continuous linear increase with increasing Fe2+ across the whole compositional range under investigation. The high cation disorder showed by the sample with x = 0.202 has little or no influence on the elastic parameters. The range 0.202 < x < 0.388 bounds the percolation threshold (p c) for nearest neighbor interaction of Fe in the cation sublattices of the spinel structure. Below x = 0.202, the iron atoms are diluted in the system and far from each other, and the elastic moduli are nearly constant. Above x = 0.388, Fe atoms form extended interconnected clusters and show a cooperative behavior thus affecting the single-crystal elastic moduli. The elastic anisotropy largely increases with the introduction of Fe2+ in substitution of magnesium in spinel. This behavior is different with respect to other spinels containing transition metals such as Mn2+ and Co2+.
NASA Astrophysics Data System (ADS)
Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.
2016-10-01
The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.
A new Hysteretic Nonlinear Energy Sink (HNES)
NASA Astrophysics Data System (ADS)
Tsiatas, George C.; Charalampakis, Aristotelis E.
2018-07-01
The behavior of a new Hysteretic Nonlinear Energy Sink (HNES) coupled to a linear primary oscillator is investigated in shock mitigation. Apart from a small mass and a nonlinear elastic spring of the Duffing oscillator, the HNES is also comprised of a purely hysteretic and a linear elastic spring of potentially negative stiffness, connected in parallel. The Bouc-Wen model is used to describe the force produced by both the purely hysteretic and linear elastic springs. Coupling the primary oscillator with the HNES, three nonlinear equations of motion are derived in terms of the two displacements and the dimensionless hysteretic variable, which are integrated numerically using the analog equation method. The performance of the HNES is examined by quantifying the percentage of the initially induced energy in the primary system that is passively transferred and dissipated by the HNES. Remarkable results are achieved for a wide range of initial input energies. The great performance of the HNES is mostly evidenced when the linear spring stiffness takes on negative values.
NASA Astrophysics Data System (ADS)
Kwon, Oh Kuen; Lee, Jun Ha; Kim, Ki-Sub; Kang, Jeong Won
2013-01-01
We propose schematics for an ultra-sensitive pressure sensor based on graphene-nanoribbon (GNR) and investigate its electromechanical properties using classical molecular dynamics simulations and piezo-electricity theory. Since the top plate applied to the actual pressure is large whereas the contact area on the GNR is very small, both the sensitivity and the sensing range can be adjusted by controlling the aspect ratio between the top plate and the contact point areas. Our calculation shows that the electrical conductivity of GNRs can be tuned by the applied pressure and the electric conductance of the deflected GNR linearly increases with increasing applied pressure for the linear elastic region in low pressure below the cut-off point. In the curves for both the deflection and potential energy, the linear elastic regime in low pressure was explicitly separated with the non-linear elastic regime in high pressure. The proposed GNR-based nanoelectromechanical devices have great potential for application as electromechanical memory, relay or switching devices.
Relationship between tendon stiffness and failure: a metaanalysis
LaCroix, Andrew S.; Duenwald-Kuehl, Sarah E.; Lakes, Roderic S.
2013-01-01
Tendon is a highly specialized, hierarchical tissue designed to transfer forces from muscle to bone; complex viscoelastic and anisotropic behaviors have been extensively characterized for specific subsets of tendons. Reported mechanical data consistently show a pseudoelastic, stress-vs.-strain behavior with a linear slope after an initial toe region. Many studies report a linear, elastic modulus, or Young's modulus (hereafter called elastic modulus) and ultimate stress for their tendon specimens. Individually, these studies are unable to provide a broader, interstudy understanding of tendon mechanical behavior. Herein we present a metaanalysis of pooled mechanical data from a representative sample of tendons from different species. These data include healthy tendons and those altered by injury and healing, genetic modification, allograft preparation, mechanical environment, and age. Fifty studies were selected and analyzed. Despite a wide range of mechanical properties between and within species, elastic modulus and ultimate stress are highly correlated (R2 = 0.785), suggesting that tendon failure is highly strain-dependent. Furthermore, this relationship was observed to be predictable over controlled ranges of elastic moduli, as would be typical of any individual species. With the knowledge gained through this metaanalysis, noninvasive tools could measure elastic modulus in vivo and reasonably predict ultimate stress (or structural compromise) for diseased or injured tendon. PMID:23599401
NASA Astrophysics Data System (ADS)
Guz, A. N.; Bagno, A. M.
2017-07-01
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.
Mechanical design in arteries.
Shadwick, R E
1999-12-01
The most important mechanical property of the artery wall is its non-linear elasticity. Over the last century, this has been well-documented in vessels in many animals, from humans to lobsters. Arteries must be distensible to provide capacitance and pulse-smoothing in the circulation, but they must also be stable to inflation over a range of pressure. These mechanical requirements are met by strain-dependent increases in the elastic modulus of the vascular wall, manifest by a J-shaped stress-strain curve, as typically exhibited by other soft biological tissues. All vertebrates and invertebrates with closed circulatory systems have arteries with this non-linear behaviour, but specific tissue properties vary to give correct function for the physiological pressure range of each species. In all cases, the non-linear elasticity is a product of the parallel arrangement of rubbery and stiff connective tissue elements in the artery wall, and differences in composition and tissue architecture can account for the observed variations in mechanical properties. This phenomenon is most pronounced in large whales, in which very high compliance in the aortic arch and exceptionally low compliance in the descending aorta occur, and is correlated with specific modifications in the arterial structure.
Quasistatic elastoplasticity via Peridynamics: existence and localization
NASA Astrophysics Data System (ADS)
Kružík, Martin; Mora-Corral, Carlos; Stefanelli, Ulisse
2018-04-01
Peridynamics is a nonlocal continuum mechanical theory based on minimal regularity on the deformations. Its key trait is that of replacing local constitutive relations featuring spacial differential operators with integrals over differences of displacement fields over a suitable positive interaction range. The advantage of such perspective is that of directly including nonregular situations, in which discontinuities in the displacement field may occur. In the linearized elastic setting, the mechanical foundation of the theory and its mathematical amenability have been thoroughly analyzed in the last years. We present here the extension of Peridynamics to linearized elastoplasticity. This calls for considering the time evolution of elastic and plastic variables, as the effect of a combination of elastic energy storage and plastic energy dissipation mechanisms. The quasistatic evolution problem is variationally reformulated and solved by time discretization. In addition, by a rigorous evolutive Γ -convergence argument we prove that the nonlocal peridynamic model converges to classic local elastoplasticity as the interaction range goes to zero.
NASA Astrophysics Data System (ADS)
Erum, Nazia; Azhar Iqbal, Muhammad
2018-02-01
Density functional theory (DFT) is employed to calculate the effect of pressure variation on electronic structure, elastic parameters, mechanical durability, and thermodynamic aspects of SrRbF3, in combination with Quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which cubic stability of SrRbF3 fluoroperovskite remains valid. Significant influence of compression on wide range of elastic parameters and related mechanical properties have been discussed, to utilize this material in low birefringence lens fabrication technology. Apart of linear dependence on elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. Moreover, successful prediction of important thermodynamic aspects such as volume expansion coefficient (α), Debye temperature (θ D), heat capacities (Cp and Cv) are also done within wide pressure and temperature ranges.
Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)
NASA Astrophysics Data System (ADS)
Harris, John G.
2001-10-01
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines
Emergence of linear elasticity from the atomistic description of matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cakir, Abdullah, E-mail: acakir@ntu.edu.sg; Pica Ciamarra, Massimo; Dipartimento di Scienze Fisiche, CNR–SPIN, Università di Napoli Federico II, I-80126 Napoli
2016-08-07
We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of themore » fluctuations of the local elastic constants close to the jamming transition.« less
NASA Astrophysics Data System (ADS)
Erum, Nazia; Azhar Iqbal, Muhammad
2017-09-01
The effect of pressure variation on stability, structural parameters, elastic constants, mechanical, electronic and thermodynamic properties of cubic SrKF3 fluoroperovskite have been investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with Quasi-harmonic Debye model in which the phonon effects are considered. The calculated lattice parameters show a prominent decrease in lattice constant and bonds length with the increase in pressure. The application of pressure from 0 to 25 GPa reveals a predominant characteristic associated with widening of bandgap with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. We have successfully computed variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities at pressure and temperature in the range of 0-25 GPa and 0-600 K.
Large poroelastic deformation of a soft material
NASA Astrophysics Data System (ADS)
MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.
2014-11-01
Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.
Tensile and compressive stress-strain behavior of heat treated boron-aluminum
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Tenney, D. R.; Herakovich, C. T.
1978-01-01
An experimental study was conducted to assess the effects of heat treatment and cyclic mechanical loading on the tensile and compressive stress-strain behavior of six boron-aluminum composites having different laminate orientations and being subjected to different heat treatments. The heat treatments were as-fabricated, T6, and T6N consisting of T6 treatment followed by cryogenic quench in liquid nitrogen prior to testing. All laminates were tested in monotonic and cyclic compression, while the tensile-test data are taken from the literature for comparison purposes. It is shown that the linear elastic range of the T6- and T6N-condition specimens is larger than that of the as-fabricated specimens, and that cyclic loading in tension or compression strain hardens the specimens and extends the linear elastic range. For laminates containing 0-deg plies, the stress-strain behavior upon unloading is found to be nonlinear, whereas the other laminates exhibit a linear behavior upon unloading. Specimens in the T6 and T6N conditions show higher strain hardening than the as-fabricated specimens.
The Value Range of Contact Stiffness Factor between Pile and Soil Based on Penalty Function
NASA Astrophysics Data System (ADS)
Chen, Sandy H. L.; Wu, Xinliu
2018-03-01
The value range of contact stiffness factor based on penalty function is studied when we use finite element software ANSYS to analyze contact problems, take single pile and soil of a certain project for example, the normal contact between pile and soil is analyzed with 2D simplified model in horizontal load. The study shows that when adopting linear elastic model to simulate soil, the maximum contact pressure and penetration approach steady value as the contact stiffness factor increases. The reasonable value range of contact stiffness factor reduces as the underlying element thickness decreases, but the rule reverses when refers to the soil stiffness. If choose DP model to simulate soil, the stiffness factor should be magnified 100 times compares to the elastic model regardless of the soil bears small force and still in elastic deformation stage or into the plastic deformation stage. When the soil bears big force and into plastic deformation stage, the value range of stiffness factor relates to the plastic strain range of the soil, and reduces as the horizontal load increases.
NASA Astrophysics Data System (ADS)
Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy
2011-08-01
Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.
NASA Astrophysics Data System (ADS)
Tennakoon, Sumudu P.
Relaxor ferroelectric lead magnesium niobate-lead titanate (PMN-PT) material exhibits exceptional electromechanical properties. The material undergoes a series of structural phase transitions with changes in temperature and the chemical composition. The work covered in this dissertation seek to gain insight into the phase diagram of PMN-PT using temperature and pressure dependence of the elastic properties. Single crystal PMN-PT with a composition near morphotropic phase boundary (MPB) was investigated using a resonant ultrasound spectroscopy (RUS) methodologies in the temperature range of 293 K - 800 K and the pressure range from near vacuum to 3.4 MPa. At atmospheric pressure, significantly high acoustic attenuation of PMN-PT is observed at temperatures below 400 K. A strong stiffening is observed in the temperature range of 400 K - 673 K, followed by a gradual softening at higher temperatures. With varying pressure, an increased pressure sensitivity of the elastic properties of PMN-PT is observed at the temperatures in the stiffening phase. Elastic behavior at elevated temperatures and pressures were studied for correlations with the ferroelectric domains at temperatures below the Curie temperature (TC), the locally polarized nano-regions, and an existence of pseudo-cubic crystalline at higher temperatures between (TC and TB). Thermoelectric lanthanum tellurides and skutterudites are being investigated by NASA's Jet Propulsion Laboratory for advanced thermoelectric generates (TEGs). Effects of nickel (Ni) doping on elastic properties of lanthanum tellurides at elevated temperatures were investigated in the temperature range of 293 K - 800 K. A linear stiffening was observed with increasing the Ni content in the material. Elastic properties of p-type and n-type bismuth-based skutterudites were investigated in the temperature range of 293 K - 723 K. Elastic properties of rare-earth doped strontium titanate were also investigated in the temperature range of 293 K - 750 K.
NASA Astrophysics Data System (ADS)
Zidi, Y.; Méçabih, S.; Abbar, B.; Amari, S.
2018-02-01
We have investigated the structural, electronic and elastic properties of transition-metal carbides ZnxNb1-xC alloys in the range of 0 ≤ x ≤ 1 using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) and GGA + U (where U is the Hubbard correlation terms) approach is used to perform the calculations presented here. The lattice parameters, the bulk modulus, its pressure derivative and the elastic constants were determined. We have obtained Young's modulus, shear modulus, Poisson's ratio, anisotropy factor by the aid of the calculated elastic constants. We discuss the total and partial densities of states and charge densities.
Thermophoretically induced large-scale deformations around microscopic heat centers
NASA Astrophysics Data System (ADS)
Puljiz, Mate; Orlishausen, Michael; Köhler, Werner; Menzel, Andreas M.
2016-05-01
Selectively heating a microscopic colloidal particle embedded in a soft elastic matrix is a situation of high practical relevance. For instance, during hyperthermic cancer treatment, cell tissue surrounding heated magnetic colloidal particles is destroyed. Experiments on soft elastic polymeric matrices suggest a very long-ranged, non-decaying radial component of the thermophoretically induced displacement fields around the microscopic heat centers. We theoretically confirm this conjecture using a macroscopic hydrodynamic two-fluid description. Both thermophoretic and elastic effects are included in this theory. Indeed, we find that the elasticity of the environment can cause the experimentally observed large-scale radial displacements in the embedding matrix. Additional experiments confirm the central role of elasticity. Finally, a linearly decaying radial component of the displacement field in the experiments is attributed to the finite size of the experimental sample. Similar results are obtained from our theoretical analysis under modified boundary conditions.
Evaluation of a Nonlinear Finite Element Program - ABAQUS.
1983-03-15
anisotropic properties. * MATEXP - Linearly elastic thermal expansions with isotropic, orthotropic and anisotropic properties. * MATELG - Linearly...elastic materials for general sections (options available for beam and shell elements). • MATEXG - Linearly elastic thermal expansions for general...decomposition of a matrix. * Q-R algorithm • Vector normalization, etc. Obviously, by consolidating all the utility subroutines in a library, ABAQUS has
An analysis of hypercritical states in elastic and inelastic systems
NASA Astrophysics Data System (ADS)
Kowalczk, Maciej
The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.
Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds
NASA Astrophysics Data System (ADS)
Yalameha, Shahram; Vaez, Aminollah
2018-04-01
In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.
A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2018-01-01
A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.
Adhesive Properties of Polyacrylate Gels
NASA Astrophysics Data System (ADS)
Flanigan, Cynthia; Shull, Kenneth
1998-03-01
Soft, low-modulus gels provide an interesting opportunity to examine small adhesive interactions between two bodies in contact. As shown through dynamic rheological studies, our materials undergo a rapid gelation as they are cooled from a viscous liquid at elevated temperatures to a soft, elastic solid at room temperature. At low temperatures, the gels exhibit a linearly elastic response and display moduli close to 100Pa, thereby forming materials with great potential for quantifying weak adhesive interactions with a variety of bodies ranging from polymer surfaces to biological entities. Our current studies focus on investigating interfacial effects by performing axisymmetric adhesion tests with a model polyacrylate gel formed by diluting the copolymer poly(methyl methacrylate)-poly(n-butyl acrylate)-poly(methyl methacrylate) to a 5-15 percent solution in 2-ethyl hexanol, a selective solvent for the midblock. We have explored two different experimental geometries including a hemispherical rigid indenter of glass pressed into a gel layer of varying thicknesses, and a soft, gel cap in contact with a rigid polymer surface. By simultaneously measuring the applied load, displacement between the two bodies, and contact area during loading cycles, we are able to employ a linearly elastic fracture mechanics analysis to obtain estimates of the gel's modulus over a range of polymer concentrations, and G, the energy release rate.
The Shock and Vibration Digest. Volume 18, Number 12
1986-12-01
practical msthods for fracture mechanics analysis. Linear elastic methods can yield useful results. Elas- dc-plasdc methods are becoming useful with...geometry factors. Fracture mechanics analysis based on linear elastic concepts developed in the 1960s has become established during the last decade as...2) is slightly conservative [2,3]. Materials that ran be treated with linear elastic fracture mechanics usually belong in this category. No
Elastic robot control - Nonlinear inversion and linear stabilization
NASA Technical Reports Server (NTRS)
Singh, S. N.; Schy, A. A.
1986-01-01
An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).
Contoyannis, Paul; Hurley, Jeremiah; Grootendorst, Paul; Jeon, Sung-Hee; Tamblyn, Robyn
2005-09-01
The price elasticity of demand for prescription drugs is a crucial parameter of interest in designing pharmaceutical benefit plans. Estimating the elasticity using micro-data, however, is challenging because insurance coverage that includes deductibles, co-insurance provisions and maximum expenditure limits create a non-linear price schedule, making price endogenous (a function of drug consumption). In this paper we exploit an exogenous change in cost-sharing within the Quebec (Canada) public Pharmacare program to estimate the price elasticity of expenditure for drugs using IV methods. This approach corrects for the endogeneity of price and incorporates the concept of a 'rational' consumer who factors into consumption decisions the price they expect to face at the margin given their expected needs. The IV method is adapted from an approach developed in the public finance literature used to estimate income responses to changes in tax schedules. The instrument is based on the price an individual would face under the new cost-sharing policy if their consumption remained at the pre-policy level. Our preferred specification leads to expenditure elasticities that are in the low range of previous estimates (between -0.12 and -0.16). Naïve OLS estimates are between 1 and 4 times these magnitudes. (c) 2005 John Wiley & Sons, Ltd.
A comparison between different finite elements for elastic and aero-elastic analyses.
Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani
2017-11-01
In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.
Polymer concentration and properties of elastic turbulence in a von Karman swirling flow
NASA Astrophysics Data System (ADS)
Jun, Yonggun; Steinberg, Victor
2017-10-01
We report detailed experimental studies of statistical, scaling, and spectral properties of elastic turbulence (ET) in a von Karman swirling flow between rotating and stationary disks of polymer solutions in a wide, from dilute to semidilute entangled, range of polymer concentrations ϕ . The main message of the investigation is that the variation of ϕ just weakly modifies statistical, scaling, and spectral properties of ET in a swirling flow. The qualitative difference between dilute and semidilute unentangled versus semidilute entangled polymer solutions is found in the dependence of the critical Weissenberg number Wic of the elastic instability threshold on ϕ . The control parameter of the problem, the Weissenberg number Wi, is defined as the ratio of the nonlinear elastic stress to dissipation via linear stress relaxation and quantifies the degree of polymer stretching. The power-law scaling of the friction coefficient on Wi/Wic characterizes the ET regime with the exponent independent of ϕ . The torque Γ and pressure p power spectra show power-law decays with well-defined exponents, which has values independent of Wi and ϕ separately at 100 ≤ϕ ≤900 ppm and 1600 ≤ϕ ≤2300 ppm ranges. Another unexpected observation is the presence of two types of the boundary layers, horizontal and vertical, distinguished by their role in the energy pumping and dissipation, which has width dependence on Wi and ϕ differs drastically. In the case of the vertical boundary layer near the driving disk, wvv is independent of Wi/Wic and linearly decreases with ϕ /ϕ * , while in the case of the horizontal boundary layer wvh its width is independent of ϕ /ϕ * , linearly decreases with Wi/Wic , and is about five times smaller than wvv. Moreover, these Wi and ϕ dependencies of the vertical and horizontal boundary layer widths are found in accordance with the inverse turbulent intensity calculated inside the boundary layers Vθh/Vθh rms and Vθv/Vθv rms , respectively. Specifically, the dependence of Vθv/Vθv rms in the vertical boundary layer on Wi and ϕ agrees with a recent theoretical prediction [S. Belan, A. Chernych, and V. Lebedev, Boundary layer of elastic turbulence (unpublished)].
AB INITIO STUDY OF PHONON DISPERSION AND ELASTIC PROPERTIES OF L12 INTERMETALLICS Ti3Al AND Y3Al
NASA Astrophysics Data System (ADS)
Arikan, N.; Ersen, M.; Ocak, H. Y.; Iyigör, A.; Candan, A.; UǦUR, Ş.; UǦUR, G.; Khenata, R.; Varshney, D.
2013-12-01
In this paper, the structural, elastic and phonon properties of Ti3Al and Y3Al in L12(Cu3Al) phase are studied by performing first-principles calculations within the generalized gradient approximation. The calculated lattice constants, static bulk moduli, first-order pressure derivative of bulk moduli and elastic constants for both compounds are reported. The phonon dispersion curves along several high-symmetry lines at the Brillouin zone, together with the corresponding phonon density of states, are determined using the first-principles linear-response approach of the density functional perturbation theory. Temperature variations of specific heat in the range of 0-500 K are obtained using the quasi-harmonic model.
Chakrabarti, Aditi; Chaudhury, Manoj K
2013-12-17
We report some experimental observations regarding a new type of long-range interaction between rigid particles that prevails when they are suspended in an ultrasoft elastic gel. A denser particle submerges itself to a considerable depth inside the gel and becomes elasto-buoyant by balancing its weight against the elastic force exerted by the surrounding medium. By virtue of a large elasto-capillary length, the surface of the gel wraps around the particle and closes to create a line singularity connecting the particle to the free surface of the gel. A substantial amount of tensile strain is thus developed in the gel network parallel to the free surface that penetrates to a significant depth inside the gel. The field of this tensile strain is rather long-range because of a large gravito-elastic correlation length and sufficiently strong to pull two submerged particles into contact. The particles move toward each other with an effective force following an inverse linear distance law. When more monomers or dimers of the particles are released inside the gel, they orient rather freely inside the capsules where they are located and attract each other to form closely packed clusters. Eventually, these clusters themselves interact and coalesce. This is an emergent phenomenon in which gravity, capillarity, and elasticity work in tandem to create a long-range interaction. We also present the results of a related experiment, in which a particle suspended inside a thickness-graded gel moves accompanied by the continuous folding and the relaxation of the gel's surface.
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less
Three-dimensional modeling of flexible pavements : research implementation plan.
DOT National Transportation Integrated Search
2006-02-14
Many of the asphalt pavement analysis programs are based on linear elastic models. A linear viscoelastic models : would be superior to linear elastic models for analyzing the response of asphalt concrete pavements to loads. There : is a need to devel...
Elasto-Plastic Analysis of Tee Joints Using HOT-SMAC
NASA Technical Reports Server (NTRS)
Arnold, Steve M. (Technical Monitor); Bednarcyk, Brett A.; Yarrington, Phillip W.
2004-01-01
The Higher Order Theory - Structural/Micro Analysis Code (HOT-SMAC) software package is applied to analyze the linearly elastic and elasto-plastic response of adhesively bonded tee joints. Joints of this type are finding an increasing number of applications with the increased use of composite materials within advanced aerospace vehicles, and improved tools for the design and analysis of these joints are needed. The linearly elastic results of the code are validated vs. finite element analysis results from the literature under different loading and boundary conditions, and new results are generated to investigate the inelastic behavior of the tee joint. The comparison with the finite element results indicates that HOT-SMAC is an efficient and accurate alternative to the finite element method and has a great deal of potential as an analysis tool for a wide range of bonded joints.
Rajendran, V; Begum, A Nishara; Azooz, M A; el Batal, F H
2002-11-01
Bioactive glasses of the system SiO2-Na2O-CaO-P2O5 have been prepared by the normal melting and annealing technique. The elastic moduli, attenuation, Vickers hardness, fracture toughness and fracture surface energy have been obtained using the known method at room temperature. The temperature dependence of elastic moduli and attenuation measurements have been extended over a wide range of temperature from 150 to 500 K. The SiO2 content dependence of velocities, attenuation, elastic moduli, and other parameters show an interesting observation at 45 wt% of SiO2 by exhibiting an anomalous behaviour. A linear relation is developed for Tg, which explores the influence of Na2O on SiO2-Na2O-CaO-P2O5 bioactive glasses. The measured hardness, fracture toughness and fracture surface energy show a linear relation with Young's modulus. It is also interesting to note that the observed results are functions of polymerisation and the number of non-bridging oxygens (NBO) prevailing in the network with change in SiO2 content. The temperature dependence of velocities, attenuation and elastic moduli show the existence of softening in the glass network structure as temperature increases.
NASA Astrophysics Data System (ADS)
Stepanova, Larisa; Bronnikov, Sergej
2018-03-01
The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.
The effect of topography of upper-mantle discontinuities on SS precursors
NASA Astrophysics Data System (ADS)
Koroni, Maria; Trampert, Jeannot
2016-01-01
Using the spectral-element method, we explored the effect of topography of upper-mantle discontinuities on the traveltimes of SS precursors recorded on transverse component seismograms. The latter are routinely used to infer the topography of mantle transition zone discontinuities. The step from precursory traveltimes to topographic changes is mainly done using linearised ray theory, or sometimes using finite-frequency kernels. We simulated exact seismograms in 1-D and 3-D elastic models of the mantle. In a second simulation, we added topography to the discontinuities. We compared the waveforms obtained with and without topography by cross correlation of the SS precursors. Since we did not add noise, the precursors are visible in individual seismograms without the need of stacking. The resulting time anomalies were then converted into topographic variations and compared to the original topographic models. Based on the correlation between initial and inferred models, and provided that ray coverage is good, we found that linearised ray theory gives a relatively good idea on the location of the uplifts and depressions of the discontinuities. It seriously underestimates the amplitude of the topographic variations by a factor ranging between 2 and 7. Real data depend on the 3-D elastic structure and the topography. All studies to date correct for the 3-D elastic effects assuming that the traveltimes can be linearly decomposed into a structure and a discontinuity part. We found a strong non-linearity in this decomposition which cannot be modelled without a fully non-linear inversion for elastic structure and discontinuities simultaneously.
Glynne-Jones, Peter; Mishra, Puja P; Boltryk, Rosemary J; Hill, Martyn
2013-04-01
A finite element based method is presented for calculating the acoustic radiation force on arbitrarily shaped elastic and fluid particles. Importantly for future applications, this development will permit the modeling of acoustic forces on complex structures such as biological cells, and the interactions between them and other bodies. The model is based on a non-viscous approximation, allowing the results from an efficient, numerical, linear scattering model to provide the basis for the second-order forces. Simulation times are of the order of a few seconds for an axi-symmetric structure. The model is verified against a range of existing analytical solutions (typical accuracy better than 0.1%), including those for cylinders, elastic spheres that are of significant size compared to the acoustic wavelength, and spheroidal particles.
NASA Astrophysics Data System (ADS)
Dasbiswas, K.; Alster, E.; Safran, S. A.
2016-06-01
Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.
NASA Astrophysics Data System (ADS)
Erum, Nazia; Azhar Iqbal, Muhammad
2017-12-01
The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0-25 GPa and 0-600 K. All the calculated optical properties such as the complex dielectric function ɛ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.
Porter, Marianne E; Ewoldt, Randy H; Long, John H
2016-09-15
During swimming in dogfish sharks, Squalus acanthias, both the intervertebral joints and the vertebral centra undergo significant strain. To investigate this system, unique among vertebrates, we cyclically bent isolated segments of 10 vertebrae and nine joints. For the first time in the biomechanics of fish vertebral columns, we simultaneously characterized non-linear elasticity and viscosity throughout the bending oscillation, extending recently proposed techniques for large-amplitude oscillatory shear (LAOS) characterization to large-amplitude oscillatory bending (LAOB). The vertebral column segments behave as non-linear viscoelastic springs. Elastic properties dominate for all frequencies and curvatures tested, increasing as either variable increases. Non-linearities within a bending cycle are most in evidence at the highest frequency, 2.0 Hz, and curvature, 5 m -1 Viscous bending properties are greatest at low frequencies and high curvatures, with non-linear effects occurring at all frequencies and curvatures. The range of mechanical behaviors includes that of springs and brakes, with smooth transitions between them that allow for continuously variable power transmission by the vertebral column to assist in the mechanics of undulatory propulsion. © 2016. Published by The Company of Biologists Ltd.
Observing (non)linear lattice dynamics in graphite by ultrafast Kikuchi diffraction
Liang, Wenxi; Vanacore, Giovanni M.; Zewail, Ahmed H.
2014-01-01
In materials, the nature of the strain–stress relationship, which is fundamental to their properties, is determined by both the linear and nonlinear elastic responses. Whereas the linear response can be measured by various techniques, the nonlinear behavior is nontrivial to probe and to reveal its nature. Here, we report the methodology of time-resolved Kikuchi diffraction for mapping the (non)linear elastic response of nanoscale graphite following an ultrafast, impulsive strain excitation. It is found that the longitudinal wave propagating along the c-axis exhibits echoes with a frequency of 9.1 GHz, which indicates the reflections of strain between the two surfaces of the material with a speed of ∼4 km/s. Because Kikuchi diffraction enables the probing of strain in the transverse direction, we also observed a higher-frequency mode at 75.5 GHz, which has a relatively long lifetime, on the order of milliseconds. The fluence dependence and the polarization properties of this nonlinear mode are entirely different from those of the linear, longitudinal mode, and here we suggest a localized breather motion in the a-b plane as the origin of the nonlinear shear dynamics. The approach presented in this contribution has the potential for a wide range of applications because most crystalline materials exhibit Kikuchi diffraction. PMID:24706785
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
NASA Astrophysics Data System (ADS)
Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.
2017-07-01
In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.
Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti)more » by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.« less
NASA Technical Reports Server (NTRS)
Lee, Y. M.
1971-01-01
Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.
THE PASSIVE PROPERTIES OF MUSCLE FIBERS ARE VELOCITY DEPENDENT
Rehorn, Michael R.; Schroer, Alison K.; Blemker, Silvia S.
2014-01-01
The passive properties of skeletal muscle play an important role in muscle function. While the passive quasi-static elastic properties of muscle fibers have been well characterized, the dynamic visco-elastic passive behavior of fibers has garnered less attention. In particular, it is unclear how the visco-elastic properties are influenced by lengthening velocity, in particular for the range of physiologically relevant velocities. The goals of this work were to: (i) measure the effects of lengthening velocity on the peak stresses within single muscle fibers to determine how passive behavior changes over a range of physiologically relevant lengthening rates (0.1–10 Lo/s), and (ii) develop a mathematical model of fiber viscoelasticity based on these measurements. We found that passive properties depend on strain rate, in particular at the low loading rates (0.1–3 Lo/s), and that the measured behavior can be predicted across a range of loading rates and time histories with a quasi-linear viscoelastic model. In the future, these results can be used to determine the impact of viscoelastic behavior on intramuscular stresses and forces during a variety of dynamic movements. PMID:24360198
NASA Technical Reports Server (NTRS)
Jurenko, Robert J.; Bush, T. Jason; Ottander, John A.
2014-01-01
A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes both quadratically constrained least squares (LSQI) and Direct Shape Mapping (DSM) algorithms to determine physical displacements. This approach is applicable to the simulation of the elastic behavior of launch vehicles and other structures that utilize multiple LTI finite element model (FEM) derived mode sets that are propagated throughout time. The time invariant nature of the elastic data for discrete segments of the launch vehicle trajectory presents a problem of how to properly transition between models while preserving motion across the transition. In addition, energy may vary between flex models when using a truncated mode set. The LSQI-DSM algorithm can accommodate significant changes in energy between FEM models and carries elastic motion across FEM model transitions. Compared with previous approaches, the LSQI-DSM algorithm shows improvements ranging from a significant reduction to a complete removal of transients across FEM model transitions as well as maintaining elastic motion from the prior state.
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, Gerald W.; Mahadevan, L.
1987-01-01
A hybrid stress finite element method is developed for accurate stress and vibration analysis of problems in linear anisotropic elasticity. A modified form of the Hellinger-Reissner principle is formulated for dynamic analysis and an algorithm for the determination of the anisotropic elastic and compliance constants from experimental data is developed. These schemes were implemented in a finite element program for static and dynamic analysis of linear anisotropic two dimensional elasticity problems. Specific numerical examples are considered to verify the accuracy of the hybrid stress approach and compare it with that of the standard displacement method, especially for highly anisotropic materials. It is that the hybrid stress approach gives much better results than the displacement method. Preliminary work on extensions of this method to three dimensional elasticity is discussed, and the stress shape functions necessary for this extension are included.
Water Holding as Determinant for the Elastically Stored Energy in Protein-Based Gels.
Pouvreau, Laurice; van Wijlen, Emke; Klok, Jan; Urbonaite, Vaida; Munialo, Claire D; de Jongh, Harmen H J
2016-04-01
To evaluate the importance of the water holding capacity for the elastically stored energy of protein gels, a range of gels were created from proteins from different origin (plant: pea and soy proteins, and animal: whey, blood plasma, egg white proteins, and ovalbumin) varying in network morphology set by the protein concentration, pH, ionic strength, or the presence of specific ions. The results showed that the observed positive and linear relation between water holding (WH) and elastically stored energy (RE) is generic for globular protein gels studied. The slopes of this relation are comparable for all globular protein gels (except for soy protein gels) whereas the intercept is close to 0 for most of the systems except for ovalbumin and egg white gels. The slope and intercept obtained allows one to predict the impact of tuning WH, by gel morphology or network stiffness, on the mechanical deformation of the protein-based gel. Addition of charged polysaccharides to a protein system leads to a deviation from the linear relation between WH and RE and this deviation coincides with a change in phase behavior. © 2016 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Perreard, I. M.; Pattison, A. J.; Doyley, M.; McGarry, M. D. J.; Barani, Z.; Van Houten, E. E.; Weaver, J. B.; Paulsen, K. D.
2010-11-01
The mechanical model commonly used in magnetic resonance elastography (MRE) is linear elasticity. However, soft tissue may exhibit frequency- and direction-dependent (FDD) shear moduli in response to an induced excitation causing a purely linear elastic model to provide an inaccurate image reconstruction of its mechanical properties. The goal of this study was to characterize the effects of reconstructing FDD data using a linear elastic inversion (LEI) algorithm. Linear and FDD phantoms were manufactured and LEI images were obtained from time-harmonic MRE acquisitions with variations in frequency and driving signal amplitude. LEI responses to artificially imposed uniform phase shifts in the displacement data from both purely linear elastic and FDD phantoms were also evaluated. Of the variety of FDD phantoms considered, LEI appeared to tolerate viscoelastic data-model mismatch better than deviations caused by poroelastic and anisotropic mechanical properties in terms of visual image contrast. However, the estimated shear modulus values were substantially incorrect relative to independent mechanical measurements even in the successful viscoelastic cases and the variations in mean values with changes in experimental conditions associated with uniform phase shifts, driving signal frequency and amplitude were unpredictable. Overall, use of LEI to reconstruct data acquired in phantoms with FDD material properties provided biased results under the best conditions and significant artifacts in the worst cases. These findings suggest that the success with which LEI is applied to MRE data in tissue will depend on the underlying mechanical characteristics of the tissues and/or organs systems of clinical interest.
Perreard, I M; Pattison, A J; Doyley, M; McGarry, M D J; Barani, Z; Van Houten, E E; Weaver, J B; Paulsen, K D
2010-11-21
The mechanical model commonly used in magnetic resonance elastography (MRE) is linear elasticity. However, soft tissue may exhibit frequency- and direction-dependent (FDD) shear moduli in response to an induced excitation causing a purely linear elastic model to provide an inaccurate image reconstruction of its mechanical properties. The goal of this study was to characterize the effects of reconstructing FDD data using a linear elastic inversion (LEI) algorithm. Linear and FDD phantoms were manufactured and LEI images were obtained from time-harmonic MRE acquisitions with variations in frequency and driving signal amplitude. LEI responses to artificially imposed uniform phase shifts in the displacement data from both purely linear elastic and FDD phantoms were also evaluated. Of the variety of FDD phantoms considered, LEI appeared to tolerate viscoelastic data-model mismatch better than deviations caused by poroelastic and anisotropic mechanical properties in terms of visual image contrast. However, the estimated shear modulus values were substantially incorrect relative to independent mechanical measurements even in the successful viscoelastic cases and the variations in mean values with changes in experimental conditions associated with uniform phase shifts, driving signal frequency and amplitude were unpredictable. Overall, use of LEI to reconstruct data acquired in phantoms with FDD material properties provided biased results under the best conditions and significant artifacts in the worst cases. These findings suggest that the success with which LEI is applied to MRE data in tissue will depend on the underlying mechanical characteristics of the tissues and/or organs systems of clinical interest.
Compaction trends of full stiffness tensor and fluid permeability in artificial shales
NASA Astrophysics Data System (ADS)
Beloborodov, Roman; Pervukhina, Marina; Lebedev, Maxim
2018-03-01
We present a methodology and describe a set-up that allows simultaneous acquisition of all five elastic coefficients of a transversely isotropic (TI) medium and its permeability in the direction parallel to the symmetry axis during mechanical compaction experiments. We apply the approach to synthetic shale samples and investigate the role of composition and applied stress on their elastic and transport properties. Compaction trends for the five elastic coefficients that fully characterize TI anisotropy of artificial shales are obtained for a porosity range from 40 per cent to 15 per cent. A linear increase of elastic coefficients with decreasing porosity is observed. The permeability acquired with the pressure-oscillation technique exhibits exponential decrease with decreasing porosity. Strong correlations are observed between an axial fluid permeability and seismic attributes, namely, VP/VS ratio and acoustic impedance, measured in the same direction. These correlations might be used to derive permeability of shales from seismic data given that their mineralogical composition is known.
NASA Astrophysics Data System (ADS)
Musari, A. A.; Orukombo, S. A.
2018-03-01
Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.
Molecular Dynamics Simulation Studies of Fracture in Two Dimensions
1980-05-01
reversibility of trajectories. The microscopic elastic constants, dispersion relation and phonon spectrum of the system were determined by lattice dynamics. These... linear elasticity theory of a two-dimensional crack embedded in an infinite medium. System con- sists of 436 particles arranged in a tri- angular lattice ...satisfying these demands. In evaluating the mechanical energy of his model, Griffith used a result from linear elasticity theory, namely that for any body
NASA Astrophysics Data System (ADS)
Miyake, Susumu; Kasashima, Takashi; Yamazaki, Masato; Okimura, Yasuyuki; Nagata, Hajime; Hosaka, Hiroshi; Morita, Takeshi
2018-07-01
The high power properties of piezoelectric transducers were evaluated considering a complex nonlinear elastic constant. The piezoelectric LCR equivalent circuit with nonlinear circuit parameters was utilized to measure them. The deformed admittance curve of piezoelectric transducers was measured under a high stress and the complex nonlinear elastic constant was calculated by curve fitting. Transducers with various piezoelectric materials, Pb(Zr,Ti)O3, (K,Na)NbO3, and Ba(Zr,Ti)O3–(Ba,Ca)TiO3, were investigated by the proposed method. The measured complex nonlinear elastic constant strongly depends on the linear elastic and piezoelectric constants. This relationship indicates that piezoelectric high power properties can be controlled by modifying the linear elastic and piezoelectric constants.
NASA Technical Reports Server (NTRS)
Prosser, William H.
1987-01-01
The theoretical treatment of linear and nonlinear elasticity in a unidirectionally fiber reinforced composite as well as measurements for a unidirectional graphite/epoxy composite (T300/5208) are presented. Linear elastic properties were measured by both ultrasonic and strain gage measurements. The nonlinear properties were determined by measuring changes in ultrasonic natural phase velocity with a pulsed phase locked loop interferometer as a function of stress and temperature. These measurements provide the basis for further investigations into the relationship between nonlinear elastic properties and other important properties such as strength and fiber-matrix interfacial stength in graphite/epoxy composites.
A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element
Sun, Zhibo; Liu, Jinhao; Yu, Chunzhan; Zheng, Yili
2016-01-01
This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. PMID:27657089
NASA Astrophysics Data System (ADS)
Deymier, P. A.; Runge, K.
2018-03-01
A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.
NASA Astrophysics Data System (ADS)
Hagemann, Alexander; Rohr, Karl; Stiehl, H. Siegfried
2000-06-01
In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images w.r.t. intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic, and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our approach has been tested using synthetic as well as tomographic images. It turns out from experiments, that the integrated treatment of rigid, elastic, and fluid regions significantly improves the prediction results in comparison to a pure linear elastic model.
The Single-Crystal Elasticity of Yttria (Y2O3) to High Temperature
NASA Technical Reports Server (NTRS)
Kriven, Waltraud M.; Palko, James W.; Sinogeikin, Stanislav V.; Bass, Jay D.; Sayir, Ali; Levine, Stanley R. (Technical Monitor)
2000-01-01
The single-crystal elastic moduli of yttria have been measured by Brillouin spectroscopy up to 1200 C. The room temperature values obtained are C11 = 223.6 +/- 0.6 GPa, C44 = 74.6 +/- 0.5 GPa, and C12 = 112.4 +/- 1.0 GPa. The resulting bulk and (Voigt-Reuss-Hill) shear moduli are K = 149.5 +/- 1.0 GPa and G(sub VRH) = 66.3 +/- 0.8 GPa, respectively. These agree much more closely with experimental values reported for polycrystalline samples than do previous single-crystal measurements. Linear least squares regressions to the variation of bulk and shear moduli with temperature result in derivatives of dK/dT = -17 +/- 2 MPa/degC and dG(sub VRH)/dT = -8 +/- 2 MPa/degC. Elastic anisotropy was found to remain essentially constant over the temperature range studied.
Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Xiuxia; Li, Jiabo; Li, Jun
2014-09-07
High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformationmore » (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained.« less
NASA Astrophysics Data System (ADS)
Puljiz, Mate; Menzel, Andreas M.
2017-05-01
Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance, for the fabrication of elastic composite materials. We theoretically analyze the following situation. Rigid spherical inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads to elastic matrix deformations, and in turn results in mutual long-ranged matrix-mediated interactions between the inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate the displacements and rotations of the inclusions from the externally imposed or induced forces and torques. Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.
ON THE DECOMPOSITION OF STRESS AND STRAIN TENSORS INTO SPHERICAL AND DEVIATORIC PARTS
Augusti, G.; Martin, J. B.; Prager, W.
1969-01-01
It is well known that Hooke's law for a linearly elastic, isotropic solid may be written in the form of two relations that involve only the spherical or only the deviatoric parts of the tensors of stress and strain. The example of the linearly elastic, transversely isotropic solid is used to show that this decomposition is not, in general, feasible for linearly elastic, anisotropic solids. The discussion is extended to a large class of work-hardening rigid, plastic solids, and it is shown that the considered decomposition can only be achieved for the incompressible solids of this class. PMID:16591754
Elastic metamaterial beam with remotely tunable stiffness
NASA Astrophysics Data System (ADS)
Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.
2016-02-01
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Cell model and elastic moduli of disordered solids - Low temperature limit
NASA Technical Reports Server (NTRS)
Peng, S. T. J.; Landel, R. F.; Moacanin, J.; Simha, Robert; Papazoglou, Elisabeth
1987-01-01
The cell theory has been previously employed to compute the equation of state of a disordered condensed system. It is now generalized to include anisotropic stresses. The condition of affine deformation is adopted, transforming an orginally spherical into an ellipsoidal cell. With a Lennard-Jones n-m potential between nonbonded centers, the formal expression for the deformational free energy is derived. It is to be evaluated in the limit of the linear elastic range. Since the bulk modulus in this limit is already known, it is convenient to consider a uniaxial deformation. To begin with, restrictions are made to the low-temperature limit in the absence of entropy contributions. Young's modulus and Poisson's ratio then follow.
Solving the Problem of Bending of Multiply Connected Plates with Elastic Inclusions
NASA Astrophysics Data System (ADS)
Kaloerov, S. A.; Koshkin, A. A.
2017-11-01
This paper describes a method for determining the strain state of a thin anisotropic plate with elastic arbitrarily arranged elliptical inclusions. Complex potentials are used to reduce the problem to determining functions of generalized complex variables, which, in turn, comes down to an overdetermined system of linear algebraic equations, solved by singular expansions. This paper presents the results of numerical calculations that helped establish the influence of rigidity of elastic inclusions, distances between inclusions, and their geometric characteristics on the bending moments occurring in the plate. It is found that the specific properties of distribution of moments near the apexes of linear elastic inclusions, characterized by moment intensity coefficients, occur only in the case of sufficiently rigid and elastic inclusions.
An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime
NASA Astrophysics Data System (ADS)
Vajente, G.; Quintero, E. A.; Ni, X.; Arai, K.; Gustafson, E. K.; Robertson, N. A.; Sanchez, E. J.; Greer, J. R.; Adhikari, R. X.
2016-06-01
Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10-15 m/ √{ Hz } in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.
Critical Nucleation Length for Accelerating Frictional Slip
NASA Astrophysics Data System (ADS)
Aldam, Michael; Weikamp, Marc; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran
2017-11-01
The spontaneous nucleation of accelerating slip along slowly driven frictional interfaces is central to a broad range of geophysical, physical, and engineering systems, with particularly far-reaching implications for earthquake physics. A common approach to this problem associates nucleation with an instability of an expanding creep patch upon surpassing a critical length Lc. The critical nucleation length Lc is conventionally obtained from a spring-block linear stability analysis extended to interfaces separating elastically deformable bodies using model-dependent fracture mechanics estimates. We propose an alternative approach in which the critical nucleation length is obtained from a related linear stability analysis of homogeneous sliding along interfaces separating elastically deformable bodies. For elastically identical half-spaces and rate-and-state friction, the two approaches are shown to yield Lc that features the same scaling structure, but with substantially different numerical prefactors, resulting in a significantly larger Lc in our approach. The proposed approach is also shown to be naturally applicable to finite-size systems and bimaterial interfaces, for which various analytic results are derived. To quantitatively test the proposed approach, we performed inertial Finite-Element-Method calculations for a finite-size two-dimensional elastically deformable body in rate-and-state frictional contact with a rigid body under sideway loading. We show that the theoretically predicted Lc and its finite-size dependence are in reasonably good quantitative agreement with the full numerical solutions, lending support to the proposed approach. These results offer a theoretical framework for predicting rapid slip nucleation along frictional interfaces.
2017-01-01
The mechanical response of a homogeneous isotropic linearly elastic material can be fully characterized by two physical constants, the Young’s modulus and the Poisson’s ratio, which can be derived by simple tensile experiments. Any other linear elastic parameter can be obtained from these two constants. By contrast, the physical responses of nonlinear elastic materials are generally described by parameters which are scalar functions of the deformation, and their particular choice is not always clear. Here, we review in a unified theoretical framework several nonlinear constitutive parameters, including the stretch modulus, the shear modulus and the Poisson function, that are defined for homogeneous isotropic hyperelastic materials and are measurable under axial or shear experimental tests. These parameters represent changes in the material properties as the deformation progresses, and can be identified with their linear equivalent when the deformations are small. Universal relations between certain of these parameters are further established, and then used to quantify nonlinear elastic responses in several hyperelastic models for rubber, soft tissue and foams. The general parameters identified here can also be viewed as a flexible basis for coupling elastic responses in multi-scale processes, where an open challenge is the transfer of meaningful information between scales. PMID:29225507
Demand for prescription drugs under non-linear pricing in Medicare Part D.
Jung, Kyoungrae; Feldman, Roger; McBean, A Marshall
2014-03-01
We estimate the price elasticity of prescription drug use in Medicare Part D, which features a non-linear price schedule due to a coverage gap. We analyze patterns of drug utilization prior to the coverage gap, where the "effective price" is higher than the actual copayment for drugs because consumers anticipate that more spending will make them more likely to reach the gap. We find that enrollees' total pre-gap drug spending is sensitive to their effective prices: the estimated price elasticity of drug spending ranges between [Formula: see text]0.14 and [Formula: see text]0.36. This finding suggests that filling in the coverage gap, as mandated by the health care reform legislation passed in 2010, will influence drug utilization prior to the gap. A simulation analysis indicates that closing the gap could increase Part D spending by a larger amount than projected, with additional pre-gap costs among those who do not hit the gap.
NASA Astrophysics Data System (ADS)
Whiteley, J. P.
2017-10-01
Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.
Two Propositions on the Application of Point Elasticities to Finite Price Changes.
ERIC Educational Resources Information Center
Daskin, Alan J.
1992-01-01
Considers counterintuitive propositions about using point elasticities to estimate quantity changes in response to price changes. Suggests that elasticity increases with price along a linear demand curve, but falling quantity demand offsets it. Argues that point elasticity with finite percentage change in price only approximates percentage change…
Variational Theory of Motion of Curved, Twisted and Extensible Elastic Rods
1993-01-18
nonlinear theory such as questions of existence of solutions and global behavior have been carried out by Antman (1976). His basic work entitled "The...Aerosp. Ens. Q017/018 16 REFERENCES Antman , S.S., "Ordinary Differential Equations of Non-Linear ElastIcity 1: Foundatious of the Theories of Non-Linearly...Elutic rods and Shells," A.R.M.A. 61 (1976), 307-351. Antman , S.S., "The Theory of Rods", Handbuch der Physik, Vol. Vla/2, Springer-Verlq, Berlin
Boundary Korn Inequality and Neumann Problems in Homogenization of Systems of Elasticity
NASA Astrophysics Data System (ADS)
Geng, Jun; Shen, Zhongwei; Song, Liang
2017-06-01
This paper is concerned with a family of elliptic systems of linear elasticity with rapidly oscillating periodic coefficients, arising in the theory of homogenization. We establish uniform optimal regularity estimates for solutions of Neumann problems in a bounded Lipschitz domain with L 2 boundary data. The proof relies on a boundary Korn inequality for solutions of systems of linear elasticity and uses a large-scale Rellich estimate obtained in Shen (Anal PDE, arXiv:1505.00694v2).
Effects of ionizing radiation on extracellular matrix
NASA Astrophysics Data System (ADS)
Mohamed, F.; Bradley, D. A.; Winlove, C. P.
2007-09-01
The extracellular matrix is a ubiquitous and important component of tissues. We investigated the effects of ionizing radiation on the physical properties of its principal macromolecular components, pericardial collagen, ligament elastin and hyaluronan, a representative glycosaminoglycan. Samples were exposed to X-rays from an electron linear accelerator in the range of 10-100 Gy to cover the range of irradiation exposure during radiotherapy. A uniaxial mechanical testing protocol was used to characterize the fibrous proteins. For pericardial tissue the major change was an increase in the elastic modulus in the toe region of the curve (⩽20% strain), from 23±18 kPa for controls to 57±22 kPa at a dose of 10 Gy ( p=0.01, α=0.05). At larger strain (⩾20% strain), the elastic modulus in the linear region decreased from 1.92±0.70 MPa for control pericardium tissue to 1.31±0.56 MPa ( p=0.01, α=0.05) for 10 Gy X-irradiated sample. Similar observations have been made previously on tendon collagen at larger strains. For elastin, the stress-strain relationship was linear up to 30% strain, but the elastic modulus decreased significantly with irradiation (controls 626±65 kPa, irradiated 474±121 kPa ( p=0.02, α=0.05), at 10 Gy X-irradiation). The results suggest that for collagen the primary effect of irradiation is generation of additional cross-links, while for elastin chain scissions are important. The viscosity of HA (at 1.25% w/v and 0.125% w/v) was measured by both cone and plate and capillary viscometry, the former providing measurement at uniform shear rate and the latter providing a more sensitive indication of changes at low viscosity. Both techniques revealed a dose-dependent reduction in viscosity (from 3400±194 cP for controls to 1500±88 cP at a shear rate of 2 s -1 and dose of 75 Gy), again suggesting depolymerization.
Flexible multibody simulation of automotive systems with non-modal model reduction techniques
NASA Astrophysics Data System (ADS)
Shiiba, Taichi; Fehr, Jörg; Eberhard, Peter
2012-12-01
The stiffness of the body structure of an automobile has a strong relationship with its noise, vibration, and harshness (NVH) characteristics. In this paper, the effect of the stiffness of the body structure upon ride quality is discussed with flexible multibody dynamics. In flexible multibody simulation, the local elastic deformation of the vehicle has been described traditionally with modal shape functions. Recently, linear model reduction techniques from system dynamics and mathematics came into the focus to find more sophisticated elastic shape functions. In this work, the NVH-relevant states of a racing kart are simulated, whereas the elastic shape functions are calculated with modern model reduction techniques like moment matching by projection on Krylov-subspaces, singular value decomposition-based reduction techniques, and combinations of those. The whole elastic multibody vehicle model consisting of tyres, steering, axle, etc. is considered, and an excitation with a vibration characteristics in a wide frequency range is evaluated in this paper. The accuracy and the calculation performance of those modern model reduction techniques is investigated including a comparison of the modal reduction approach.
Compositional dependence of elastic moduli for transition-metal oxide spinels
NASA Astrophysics Data System (ADS)
Reichmann, H. J.; Jacobsen, S. D.; Boffa Ballaran, T.
2012-12-01
Spinel phases (AB2O4) are common non-silicate oxides in the Earth's crust and upper mantle. A characteristic of this mineral group is the ability to host a wide range of transition metals. Here we summarize the influence of transition metals (Fe, Zn, and Mn) on the pressure dependence of elastic moduli of related spinels (magnetite, gahnite, and franklinite) using GHz-ultrasonic interferometry. Measurements were carried out up to 10 GPa in diamond-anvil cells using hydrostatic pressure media. Transition metals with unfilled 3d orbitals strongly influence the elastic properties of spinels. Franklinite (Zn,Mn)Fe2O4 and magnetite Fe3O4 with transition metals on both A and B cation sites exhibit pressure-induced mode softening of C44, whereas C44 of gahnite(ZnAl2O4) and spinel (MgAl2O4) exhibit positive pressure derivatives of the shear moduli. Spinels with two transition elements tend to undergo phase changes at a lower pressure than those with none or only one transition metal. Along the Mn-Zn solid solution, the variation of moduli with composition is non-linear, and a mid-range franklinite composition studied here shows a minimum in C44 compared with either end-member: MnFe2O 4 or ZnFe2O4. In general, the linear variation of sound velocity with density (Birch's Law) is followed by spinels, however spinels containing only one or no transition metals follow a distinct slope from those containing transition metals on both A and B sites. The Cauchy relation, 0.5(C12 - C44) = P is fulfilled by spinels with only one or no transition metals, suggesting that that Coulomb interactions dominate. Spinels with two transition metals fail to meet the Cauchy relation, indicating strong directional dependence and covalent character of bonding. The bonding character of transition metals is crucial to understanding the elastic behavior of natural and synthetic spinel solid solutions containing transition metals.
Giersch, C; Cornish-Bowden, A
1996-10-07
The double modulation method for determining the elasticities of pathway enzymes, originally devised by Kacser & Burns (Biochem. Soc. Trans. 7, 1149-1160, 1979), is extended to pathways of complex topological structure, including branching and feedback loops. An explicit system of linear equations for the unknown elasticities is derived. The constraints imposed on this linear system imply that modulations of more than one enzyme are not necessarily independent. Simple combinatorial rules are described for identifying without using any algebra the set of independent modulations that allow the determination of the elasticities of any enzyme. By repeated application, the minimum numbers of modulations required to determine the elasticities of all enzymes of a given pathway can be determined. The procedure is illustrated with numerous examples.
Temperature dependence of single-crystal elastic constants of flux-grown alpha-GaPO(4).
Armand, P; Beaurain, M; Rufflé, B; Menaert, B; Papet, P
2009-06-01
The lattice parameter change with respect to temperature (T) has been measured using high-temperature powder X-ray diffraction techniques for high-temperature flux-grown GaPO(4) single crystals with the alpha-quartz structure. The lattice and the volume linear thermal expansion coefficients in the temperature range 303-1173 K were computed from the X-ray data. The percentage linear thermal expansions along the a and c axes at 1173 K are 1.5 and 0.51, respectively. The temperature dependence of the mass density rho of flux-grown GaPO(4) single crystals was evaluated using the volume thermal expansion coefficient alpha(V)(T) = 3.291 x 10(-5) - 2.786 x 10(-8) [T] + 4.598 x 10(-11)[T](2). Single-crystal high-resolution Brillouin spectroscopy measurements have been carried out at ambient pressure from 303 to 1123 K to determine the elastic constants C(IJ) of high-temperature flux-grown GaPO(4) material. The single-crystal elastic moduli were calculated using the sound velocities via the measured Brillouin frequency shifts Deltanu(B). These are, to our knowledge, the highest temperatures at which single-crystal elastic constants of alpha-GaPO(4) have been measured. Most of the room-temperature elastic constant values measured on flux-grown GaPO(4) material are higher than the ones found for hydrothermally grown GaPO(4) single crystals. The fourth-order temperature coefficients of both the Brillouin frequency shifts T(nuB)((n)) and the single-crystal elastic moduli T(C(IJ))((n)) were obtained. The first-order temperature coefficients of the C(IJ) are in excellent agreement with previous reports on low-temperature hydrothermally grown alpha-GaPO(4) single crystals, while small discrepancies in the higher-order temperature coefficients are observed. This is explained in terms of the OH content in the GaPO(4) network, which is an important parameter in the crystal thermal behavior.
1992-12-01
desirable. In this study, the proposed model consists of a thick-walled, highly deformable elastic tube in which the blood flow is described by linearized ...presented a mechanical model consisting of linearized Navier-Stokes and finite elasticity equations to predict blood pooling under acceleration stress... linear multielement model of the cardiovascular system which can calculate blood pressures and flows at any point in the cardio- vascular system. It
Pressure-volume relationships and elastance in the knee joint of the dog.
Nade, S; Newbold, P J
1984-12-01
This study has investigated changes in intra-articular hydrostatic pressure in the knee joints of normal dogs in response to continuous and stepwise infusions of fluids. The relationship between pressure and volume in the joint was examined over the pressure range of -8 to +50 mmHg, and also at much higher pressures often associated with joint disease or injury. The effects of joint angle and dog weight on the pressure-volume relationship and on elastance of the dogs' knees were also examined. With liquid paraffin B.P. the pressure was found to increase more with each unit volume infused at subatmospheric pressures than at pressures around atmospheric, and increased more again at higher pressures. The pressure-volume curve with saline infusions was affected by egress of fluid from the joint at supra-atmospheric pressure. Above +5 mmHg the rise in pressure per unit volume infused was less than that for paraffin at the same volume. Elastance and compliance of the normal joint capsule were calculated from the pressure-volume data. Elastance was high at subatmospheric pressures, decreased rapidly as atmospheric pressure was approached and rose as a linear function of pressure above 12 mmHg. The biphasic shape of the elastance-pressure curve is discussed, and explanations for the shape are suggested. After intra-articular pressure in the knee was raised by infusion of paraffin oil the joint was moved through the range of positions from 125 deg extension to 50 deg flexion. Intra-articular pressure did not change across the range 125-110 deg. However, increasing the angle of flexion from 110 to 50 deg resulted in a rise in pressure which became steeper for each volume increment. Increasing intra-articular fluid volume caused a decrease in the total range of movement of the joint. The pressure-volume curves measured at extended angles of 110, 125 and 140 deg, where the starting pressures were subatmospheric, were the same. At flexed joint positions of 80 and 50 deg, where the starting pressures were supra-atmospheric, the pressure-volume curves became steeper with greater flexion. Elastance of the joint tissues increased with flexion. The elastance at each joint angle depended also on the volume or pressure. Significant differences were found to exist between pressure-volume curves for three groups of animals of different weight.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Gat, Amir; Friedman, Yonathan
2017-11-01
The characteristic time of low-Reynolds number fluid-structure interaction scales linearly with the ratio of fluid viscosity to solid Young's modulus. For sufficiently large values of Young's modulus, both time- and length-scales of the viscous-elastic dynamics may be similar to acoustic time- and length-scales. However, the requirement of dominant viscous effects limits the validity of such regimes to micro-configurations. We here study the dynamics of an acoustic plane wave impinging on the surface of a layered sphere, immersed within an inviscid fluid, and composed of an inner elastic sphere, a creeping fluid layer and an external elastic shell. We focus on configurations with similar viscous-elastic and acoustic time- and length-scales, where the viscous-elastic speed of interaction between the creeping layer and the elastic regions is similar to the speed of sound. By expanding the linearized spherical Reynolds equation into the relevant spectral series solution for the hyperbolic elastic regions, a global stiffness matrix of the layered elastic sphere was obtained. This work relates viscous-elastic dynamics to acoustic scattering and may pave the way to the design of novel meta-materials with unique acoustic properties. ISF 818/13.
Simulation model of a twin-tail, high performance airplane
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.; Arbuckle, P. Douglas; Hoffler, Keith D.
1992-01-01
The mathematical model and associated computer program to simulate a twin-tailed high performance fighter airplane (McDonnell Douglas F/A-18) are described. The simulation program is written in the Advanced Continuous Simulation Language. The simulation math model includes the nonlinear six degree-of-freedom rigid-body equations, an engine model, sensors, and first order actuators with rate and position limiting. A simplified form of the F/A-18 digital control laws (version 8.3.3) are implemented. The simulated control law includes only inner loop augmentation in the up and away flight mode. The aerodynamic forces and moments are calculated from a wind-tunnel-derived database using table look-ups with linear interpolation. The aerodynamic database has an angle-of-attack range of -10 to +90 and a sideslip range of -20 to +20 degrees. The effects of elastic deformation are incorporated in a quasi-static-elastic manner. Elastic degrees of freedom are not actively simulated. In the engine model, the throttle-commanded steady-state thrust level and the dynamic response characteristics of the engine are based on airflow rate as determined from a table look-up. Afterburner dynamics are switched in at a threshold based on the engine airflow and commanded thrust.
NASA Astrophysics Data System (ADS)
Nadkarni, Neel; Daraio, Chiara; Kochmann, Dennis M.
2014-08-01
We investigate the nonlinear dynamics of a periodic chain of bistable elements consisting of masses connected by elastic springs whose constraint arrangement gives rise to a large-deformation snap-through instability. We show that the resulting negative-stiffness effect produces three different regimes of (linear and nonlinear) wave propagation in the periodic medium, depending on the wave amplitude. At small amplitudes, linear elastic waves experience dispersion that is controllable by the geometry and by the level of precompression. At moderate to large amplitudes, solitary waves arise in the weakly and strongly nonlinear regime. For each case, we present closed-form analytical solutions and we confirm our theoretical findings by specific numerical examples. The precompression reveals a class of wave propagation for a partially positive and negative potential. The presented results highlight opportunities in the design of mechanical metamaterials based on negative-stiffness elements, which go beyond current concepts primarily based on linear elastic wave propagation. Our findings shed light on the rich effective dynamics achievable by nonlinear small-scale instabilities in solids and structures.
Viscoelastic effect on acoustic band gaps in polymer-fluid composites
NASA Astrophysics Data System (ADS)
Merheb, B.; Deymier, P. A.; Muralidharan, K.; Bucay, J.; Jain, M.; Aloshyna-Lesuffleur, M.; Greger, R. W.; Mohanty, S.; Berker, A.
2009-10-01
In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals.
Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography
Perriñez, Phillip R.; Kennedy, Francis E.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.
2010-01-01
Elastography is an emerging imaging technique that focuses on assessing the resistance to deformation of soft biological tissues in vivo. Magnetic resonance elastography (MRE) uses measured displacement fields resulting from low-amplitude, low-frequency (10 Hz–1 kHz) time-harmonic vibration to recover images of the elastic property distribution of tissues including breast, liver, muscle, prostate, and brain. While many soft tissues display complex time-dependent behavior not described by linear elasticity, the models most commonly employed in MRE parameter reconstructions are based on elastic assumptions. Further, elasticity models fail to include the interstitial fluid phase present in vivo. Alternative continuum models, such as consolidation theory, are able to represent tissue and other materials comprising two distinct phases, generally consisting of a porous elastic solid and penetrating fluid. MRE reconstructions of simulated elastic and poroelastic phantoms were performed to investigate the limitations of current-elasticity-based methods in producing accurate elastic parameter estimates in poroelastic media. The results indicate that linearly elastic reconstructions of fluid-saturated porous media at amplitudes and frequencies relevant to steady-state MRE can yield misleading effective property distributions resulting from the complex interaction between their solid and fluid phases. PMID:19272864
NASA Astrophysics Data System (ADS)
Pepi, John W.
2017-08-01
Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.
NASA Astrophysics Data System (ADS)
Licht, Christian; Tran Thu Ha
2005-02-01
We consider the small transient motions of a coupled system constituted by a linearly elastic body and two heavy, incompressible, non-Newtonian fluids.Through a formulation in terms of non-linear evolution equations in Hilbert spaces of possible states with finite mechanical energy, we obtain existence and uniqueness results and study the influence of gravity. To cite this article: C. Licht, Tran Thu Ha, C. R. Mecanique 333 (2005).
Analysis and control of hourglass instabilities in underintegrated linear and nonlinear elasticity
NASA Technical Reports Server (NTRS)
Jacquotte, Olivier P.; Oden, J. Tinsley
1994-01-01
Methods are described to identify and correct a bad finite element approximation of the governing operator obtained when under-integration is used in numerical code for several model problems: the Poisson problem, the linear elasticity problem, and for problems in the nonlinear theory of elasticity. For each of these problems, the reason for the occurrence of instabilities is given, a way to control or eliminate them is presented, and theorems of existence, uniqueness, and convergence for the given methods are established. Finally, numerical results are included which illustrate the theory.
Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis.
Mahata, Paritosh; Das, Sovan Lal
2017-05-01
We carry out a linear elastic analysis to study wavy structure generation on lipid membrane by peripheral membrane proteins. We model the lipid membrane as linearly elastic and anisotropic material. The hydrophobic insertion by proteins into the lipid membrane has been idealized as penetration of rigid rod-like inclusions into the membrane and the electrostatic interaction between protein and membrane has been modeled by a distributed surface traction acting on the membrane surface. With the proposed model we study curvature generation by several binding domains of peripheral membrane proteins containing BAR domains and amphipathic alpha-helices. It is observed that electrostatic interaction is essential for curvature generation by the BAR domains. © 2017 Federation of European Biochemical Societies.
Elasticity Imaging of Polymeric Media
Sridhar, Mallika; Liu, Jie; Insana, Michael F.
2009-01-01
Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasistatic (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (1–10 s) fluid flows and slow (50–400 s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease. PMID:17408331
Temperature dependence of elastic and strength properties of T300/5208 graphite-epoxy
NASA Technical Reports Server (NTRS)
Milkovich, S. M.; Herakovich, C. T.
1984-01-01
Experimental results are presented for the elastic and strength properties of T300/5208 graphite-epoxy at room temperature, 116K (-250 F), and 394K (+250 F). Results are presented for unidirectional 0, 90, and 45 degree laminates, and + or - 30, + or - 45, and + or - 60 degree angle-ply laminates. The stress-strain behavior of the 0 and 90 degree laminates is essentially linear for all three temperatures and that the stress-strain behavior of all other laminates is linear at 116K. A second-order curve provides the best fit for the temperature is linear at 116K. A second-order curve provides the best fit for the temperature dependence of the elastic modulus of all laminates and for the principal shear modulus. Poisson's ratio appears to vary linearly with temperature. all moduli decrease with increasing temperature except for E (sub 1) which exhibits a small increase. The strength temperature dependence is also quadratic for all laminates except the 0 degree - laminate which exhibits linear temperature dependence. In many cases the temperature dependence of properties is nearly linear.
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
Stability Analysis of an Encapsulated Microbubble against Gas Diffusion
Katiyar, Amit; Sarkar, Kausik
2009-01-01
Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although, bubbles, containing gases other than air is considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided. PMID:20005522
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ezzedine, S. M.; Petersson, A.; Sjogreen, B.; Vorobiev, O.; Pitarka, A.; Antoun, T.; Walter, W. R.
2016-12-01
Motions from underground explosions are governed by non-linear hydrodynamic response of material. However, the numerical calculation of this non-linear constitutive behavior is computationally intensive in contrast to the elastic and acoustic linear wave propagation solvers. Here, we develop a hybrid modeling approach with one-way hydrodynamic-to-elastic coupling in three dimensions in order to propagate explosion generated ground motions from the non-linear near-source region to the far-field. Near source motions are computed using GEODYN-L, a Lagrangian hydrodynamics code for high-energy loading of earth materials. Motions on a dense grid of points sampled on two nested shells located beyond the non-linear damaged zone are saved, and then passed to SW4, an anelastic anisotropic fourth order finite difference code for seismic wave modeling. Our coupling strategy is based on the decomposition and uniqueness theorems where motions are introduced into SW4 as a boundary source and continue to propagate as elastic waves at a much lower computational cost than by using GEODYN-L to cover the entire near- and the far-field domain. The accuracy of the numerical calculations and the coupling strategy is demonstrated in cases with a purely elastic medium as well as non-linear medium. Our hybrid modeling approach is applied to SPE-4' and SPE-5 which are the most recent underground chemical explosions conducted at the Nevada National Security Site (NNSS) where the Source Physics Experiments (SPE) are performed. Our strategy by design is capable of incorporating complex non-linear effects near the source as well as volumetric and topographic material heterogeneity along the propagation path to receiver, and provides new prospects for modeling and understanding explosion generated seismic waveforms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698608.
Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples
NASA Technical Reports Server (NTRS)
Hsu, Su-Yuen; Chang, Chau-Lyan
2007-01-01
Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion
QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeheskel, O.
2008-02-28
The elastic moduli of {gamma}-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a toolmore » for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals.« less
A 3/D finite element approach for metal matrix composites based on micromechanical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.
Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less
Unusual Stiffening and Elastic Response of Polyisobutylene Nanometric Thin Films
NASA Astrophysics Data System (ADS)
Yoon, Heedong; Wigham, Caleb; McKenna, Gregory
The TTU bubble inflation technique was used to study the elastic response and unusual stiffening behavior of nanometirc polyisobutylene (PIB) films. Mechanical properties and surface tension of PIB films were measured through the strain-stress response for film thicknesses ranging from 13 nm to 126 nm. The tests were performed at room temperature, far above the glass transition temperature of PIB. It is found that the stiffening increases with decreasing film thickness, while the surface tension is independent of the film thickness. Similar to the prior bubble inflation measurements in polymeric thin films, the thickness dependence of the stiffening followed a power law behavior in this case of Ds h1.5. These results are consistent with the Ngai et al proposition that rubbery stiffening is related to the separation of the α relaxation and Rouse modes. In addition, we compare stiffening index (S) with fragility (m) based on our prior observation that the S follows a linear behavior with dynamic m. Unlike other polymeric materials seen in prior bubble inflation measurements, the S of PIB does not follow the linear behavior with m.
Instability of fiber-reinforced viscoelastic composite plates to in-plane compressive loads
NASA Technical Reports Server (NTRS)
Chandiramani, N. K.; Librescu, L.
1990-01-01
This study analyzes the stability behavior of unidirectional fiber-reinforced composite plates with viscoelastic material behavior subject to in-plane biaxial compressive edge loads. To predict the effective time-dependent material properties, elastic fibers embedded in a linearly viscoelastic matrix are examined. The micromechanical relations developed for a transversely isotropic medium are discussed along with the correspondence principle of linear viscoelasticity. It is concluded that the stability boundary obtained for a viscoelastic plate is lower (more critical) than its elastic counterpart, and the transverse shear deformation effects are more pronounced in viscoelastic plates than in their elastic counterparts.
High-Temperature Electromechanical Characterization of AlN Single Crystals.
Kim, Taeyang; Kim, Jinwook; Dalmau, Rafael; Schlesser, Raoul; Preble, Edward; Jiang, Xiaoning
2015-10-01
Hexagonal AlN is a non-ferroelectric material and does not have any phase transition up to its melting point (>2000°C), which indicates the potential use of AlN for high-temperature sensing. In this work, the elastic, dielectric, and piezoelectric constants of AlN single crystals were investigated at elevated temperatures up to 1000°C by the resonance method. We used resonators of five different modes to obtain a complete set of material constants of AlN single crystals. The electrical resistivity of AlN at elevated temperature (1000°C) was found to be greater than 5 × 10(10) Ω · cm. The resonance frequency of the resonators, which was mainly determined by the elastic compliances, decreased linearly with increasing temperature, and was characterized by a relatively low temperature coefficient of frequency, in the range of -20 to -36 ppm/°C. For all the investigated resonator modes, the elastic constants and the electromechanical coupling factors exhibited excellent temperature stability, with small variations over the full temperature range, <11.2% and <17%, respectively. Of particular significance is that due to the pyroelectricity of AlN, both the dielectric and the piezoelectric constants had high thermal resistivity even at extreme high temperature (1000°C). Therefore, high electrical resistivity, temperature independence of electromechanical properties, as well as high thermal resistivity of the elastic, dielectric, and piezoelectric properties, suggest that AlN single crystals are a promising candidate for high-temperature piezoelectric sensing applications.
Genetic analyses of linear profiling data on 3-year-old Swedish Warmblood horses.
Viklund, Å; Eriksson, S
2018-02-01
A linear profiling protocol was introduced in 2013 at tests for 3-year-old Swedish Warmblood horses. In this protocol, traits are subjectively described on a nine-point linear scale from one biological extreme to the other. This complements the traditional scoring where horses are evaluated in relation to the breeding objective. This study aimed to investigate the suitability of the linear information for genetic evaluation. Data on 22 conformation traits, 17 movement traits, 14 jumping traits and one temperament trait from 3,410 horses tested between 2013 and 2016 were analysed using an animal model. For conformation traits, the heritabilities ranged from 0.10 for description of hock joint from behind to 0.52 for shape of the neck. For movement traits, the highest heritability (0.54) was estimated for elasticity in trot and the lowest (0.08) for energy in walk. The heritabilities for jumping traits ranged from 0.05 for the ability to focus on the assignment to 0.57 for scope. Genetic correlations between linear traits and corresponding traditionally scored traits were strong (-0.37 to in many cases <-0.9). The results show that the linear information is suitable for genetic evaluation and can be a useful tool for breeders. © 2018 Blackwell Verlag GmbH.
Dissecting the Impact of Matrix Anchorage and Elasticity in Cell Adhesion
Pompe, Tilo; Glorius, Stefan; Bischoff, Thomas; Uhlmann, Ina; Kaufmann, Martin; Brenner, Sebastian; Werner, Carsten
2009-01-01
Abstract Extracellular matrices determine cellular fate decisions through the regulation of intracellular force and stress. Previous studies suggest that matrix stiffness and ligand anchorage cause distinct signaling effects. We show herein how defined noncovalent anchorage of adhesion ligands to elastic substrates allows for dissection of intracellular adhesion signaling pathways related to matrix stiffness and receptor forces. Quantitative analysis of the mechanical balance in cell adhesion using traction force microscopy revealed distinct scalings of the strain energy imparted by the cells on the substrates dependent either on matrix stiffness or on receptor force. Those scalings suggested the applicability of a linear elastic theoretical framework for the description of cell adhesion in a certain parameter range, which is cell-type-dependent. Besides the deconvolution of biophysical adhesion signaling, site-specific phosphorylation of focal adhesion kinase, dependent either on matrix stiffness or on receptor force, also demonstrated the dissection of biochemical signaling events in our approach. Moreover, the net contractile moment of the adherent cells and their strain energy exerted on the elastic substrate was found to be a robust measure of cell adhesion with a unifying power-law scaling exponent of 1.5 independent of matrix stiffness. PMID:19843448
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, B.
1994-12-31
This paper describes an elastic-plastic fracture mechanics (EPFM) study of shallow weld-toe cracks. Two limiting crack configurations, plane strain edge crack and semi-circular surface crack in fillet welded T-butt plate joint, were analyzed using the finite element method. Crack depth ranging from 2 to 40% of plate thickness were considered. The elastic-plastic analysis, assuming power-law hardening relationship and Mises yield criterion, was based on incremental plasticity theory. Tension and bending loads applied were monotonically increased to a level causing relatively large scale yielding at the crack tip. Effects of weld-notch geometry and ductile material modeling on prediction of fracture mechanicsmore » characterizing parameter were assessed. It was found that the weld-notch effect reduces and the effect of material modeling increases as crack depth increases. Material modeling is less important than geometric modeling in analysis of very shallow cracks but is more important for relatively deeper cracks, e.g. crack depth more than 20% of thickness. The effect of material modeling can be assessed using a simplified structural model. Weld magnification factors derived assuming linear elastic conditions can be applied to EPFM characterization.« less
Analytical Solution for the Aeroelastic Response of a Two-Dimensional Elastic Plate in Axial Flow
NASA Astrophysics Data System (ADS)
Medina, Cory; Kang, Chang-Kwon
2017-11-01
The aeroelastic response of an elastic plate in an unsteady flow describes many engineering problems from bio-locomotion, deforming airfoils, to energy harvesting. However, the analysis is challenging because the shape of the plate is a priori unknown. This study presents an analytical model that can predict the two-way tightly coupled aeroelastic response of a two-dimensional elastic plate including the effects of plate curvature along the flow direction. The plate deforms due to the dynamic balance of wing inertia, elastic restoring force, and aerodynamic force. The coupled model utilizes the linearized Euler-Bernoulli beam theory for the structural model and thin airfoil theory as presented by Theodorsen, which assumes incompressible potential flow, for the aerodynamic model. The coupled equations of motion are solved via Galerkin's method, where closed form solutions for the plate deformation are obtained by deriving the unsteady aerodynamic pressure with respect to the plate normal functions, expressed in a Chebyshev polynomial expansion. Stability analysis is performed for a range of mass ratios obtaining the flutter velocities and corresponding frequencies and the results agree well with the results reported in the literature.
Stress relaxation study of fillers for directly compressed tablets
Rehula, M.; Adamek, R.; Spacek, V.
2012-01-01
It is possible to assess viscoelastic properties of materials by means of the stress relaxation test. This method records the decrease in pressing power in a tablet at its constant height. The cited method was used to evaluate the time-dependent deformation for six various materials: microcrystalline cellulose, cellulose powder, hydroxypropyl methylcellulose, mannitol, lactose monohydrate, and hydrogen phosphate monohydrate. The decrease in pressing powering of a tablet during a 180 s period was described mathematically by the parameters of three exponential equations, where the whole course of the stress relaxation is divided into three individual processes (instant elastic deformation, retarded elastic deformation and permanent plastic deformation). Three values of the moduli of plasticity and elasticity were calculated for each compound. The values of elastic parameters ATi have a strong relationship with bulk density. The plastic parameters PTi represent particle tendency to form bonds. The values of plasticity in the third process PT3 ranged from 400 to 600 MPas. Mannitol had higher plasticity and lactose monohydrate on the contrary reduced plasticity. A linear relation exists between AT3 and PT3 for the third process. No similar interpretation of moduli calculated on the basis of three exponential equations has been realized yet. PMID:24850972
Couple stress theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models
NASA Astrophysics Data System (ADS)
Zozulya, V. V.
2017-01-01
New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.
Improved Indentation Test for Measuring Nonlinear Elasticity
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2004-01-01
A cylindrical-punch indentation technique has been developed as a means of measuring the nonlinear elastic responses of materials -- more specifically, for measuring the moduli of elasticity of materials in cases in which these moduli vary with applied loads. This technique offers no advantage for characterizing materials that exhibit purely linear elastic responses (constant moduli of elasticity, independent of applied loads). However, the technique offers a significant advantage for characterizing such important materials as plasma-sprayed thermal-barrier coatings, which, in cyclic loading, exhibit nonlinear elasticity with hysteresis related to compaction and sliding within their microstructures.
Mechanical behaviour of the human atria.
Bellini, Chiara; Di Martino, Elena S; Federico, Salvatore
2013-07-01
This work was aimed at providing a local mechanical characterisation of tissues from the healthy human atria. Thirty-two tissue specimens were harvested from nine adult subjects whose death was not directly related to cardiovascular diseases. Tissues were kept in Tyrode's solution and tested using a planar biaxial device. Results showed that tissues from healthy human atria undergo large deformations under in-plane distributed tensions roughly corresponding to an in vivo pressure of 15 mmHg. The material was modelled as hyperelastic and a Fung-type elastic strain energy potential was chosen. This class of potentials is based on a function of a quadratic form in the components of the Green-Lagrange strain tensor, and it has been previously proved that the fourth-order tensor of this quadratic form is proportional to the linear elasticity tensor of the linearised theory. This has three important consequences: (i) the coefficients in Fung-type potentials have a precise physical meaning; (ii) whenever a microstructural description for the linear elasticity tensor is available, this is automatically inherited by the Fung-type potential; (iii) because of the presence of the linear elasticity tensor in the definition of a Fung-type potential, each of the three normal stresses is coupled with all three normal strains.We propose to include information on the microstructure of the atrium by writing the linear elasticity tensor as the volumetric-fraction-weighed sum of the linear elasticity tensors of the three constituents of the tissue: the ground matrix, the main fibre family and the secondary fibre family. To the best of our knowledge, this is the first time that a Fung-type potential is given a precise structural meaning, based on the directions and the material properties of the fibres. Because of the coupling between normal strains and normal stresses, this structurally-based Fung-type potential allows for discriminating among all testing protocols in planar biaxial stretch.
A Galerkin approximation for linear elastic shallow shells
NASA Astrophysics Data System (ADS)
Figueiredo, I. N.; Trabucho, L.
1992-03-01
This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.
Obusek, J P; Holt, K G; Rosenstein, R M
1995-07-01
Human leg swinging is modeled as the harmonic motion of a hybrid mass-spring pendulum. The cycle period is determined by a gravitational component and an elastic component, which is provided by the attachment of a soft-tissue/muscular spring of variable stiffness. To confirm that the stiffness of the spring changes with alterations in the inertial properties of the oscillator and that stiffness is relevant for the control of cycle period, we conducted this study in which the simple pendulum equivalent length was experimentally manipulated by adding mass to the ankle of a comfortably swinging leg. Twenty-four young, healthy adults were videotaped as they swung their right leg under four conditions: no added mass and with masses of 2.27, 4.55, and 6.82kg added to the ankle. Strong, linear relationships between the acceleration and displacement of the swinging leg within subjects and conditions were found, confirming the motion's harmonic nature. Cycle period significantly increased with the added mass. However, the observed increases were not as large as would be predicted by the induced changes in the gravitational component alone. These differences were interpreted as being due to increases in the active muscular stiffness. Significant linear increases in the elastic component (and hence stiffness) were demonstrated with increases in the simple pendulum equivalent length in 20 of the individual subjects, with r2 values ranging between 0.89 and 0.99. Significant linear relationships were also demonstrated between the elastic and gravitational components in 22 subjects, with individual r2 values between 0.90 and 0.99.(ABSTRACT TRUNCATED AT 250 WORDS)
Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K
2015-11-01
The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.
Polysoaps: Configurations and Elasticity
NASA Astrophysics Data System (ADS)
Halperin, A.
1997-03-01
Simple polymers are very long, flexible, linear molecules. Amphiphiles, soaps, are small molecules comprising of a part that prefers water over oil and a part that prefers oil over water. By combining the two we arrive at an interesting, little explored, class of materials: Polysoaps. These comprise of a water soluble backbone incorporating, at intervals, covalently bound amphiphilic monomers. In water, the polymerised amphiphiles aggregate into self assembled units known as micelles. This induces a dramatic modification of the spatial configurations of the polymers. What were featureless random coils now exhibit intramolecular, hierachial self organisation. Due to this self organisation it is necessary to modify the paradigms describing the large scale behaviour of these polymers: Their configurations, dimensions and elasticity. Understanding the behaviour of these polymers is of practical interest because of their wide range of industrial applications, ranging from cosmetics to paper coating. It is of fundamental interest because polysoaps are characterised by a rugged free energy landscape that is reminiscent of complex systems such as proteins and glasses. The talk concerns theoretical arguments regarding the following issues: (i) The design parameters that govern the spatial configurations of the polysoaps, (ii) The interaction between polysoaps and free amphiphiles, (iii) The effect of the intramolecular self organisation on the elasticity of the chains.
NASA Technical Reports Server (NTRS)
Majumdar, S.; Kwasny, R.
1985-01-01
High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.
NASA Technical Reports Server (NTRS)
Deng, Xiaomin; Newman, James C., Jr.
1997-01-01
ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.
Slip accumulation and lateral propagation of active normal faults in Afar
NASA Astrophysics Data System (ADS)
Manighetti, I.; King, G. C. P.; Gaudemer, Y.; Scholz, C. H.; Doubre, C.
2001-01-01
We investigate fault growth in Afar, where normal fault systems are known to be currently growing fast and most are propagating to the northwest. Using digital elevation models, we have examined the cumulative slip distribution along 255 faults with lengths ranging from 0.3 to 60 km. Faults exhibiting the elliptical or "bell-shaped" slip profiles predicted by simple linear elastic fracture mechanics or elastic-plastic theories are rare. Most slip profiles are roughly linear for more than half of their length, with overall slopes always <0.035. For the dominant population of NW striking faults and fault systems longer than 2 km, the slip profiles are asymmetric, with slip being maximum near the eastern ends of the profiles where it drops abruptly to zero, whereas slip decreases roughly linearly and tapers in the direction of overall Aden rift propagation. At a more detailed level, most faults appear to be composed of distinct, shorter subfaults or segments, whose slip profiles, while different from one to the next, combine to produce the roughly linear overall slip decrease along the entire fault. On a larger scale, faults cluster into kinematically coupled systems, along which the slip on any scale individual fault or fault system complements that of its neighbors, so that the total slip of the whole system is roughly linearly related to its length, with an average slope again <0.035. We discuss the origin of these quasilinear, asymmetric profiles in terms of "initiation points" where slip starts, and "barriers" where fault propagation is arrested. In the absence of a barrier, slip apparently extends with a roughly linear profile, tapered in the direction of fault propagation.
Stiffness optimization of non-linear elastic structures
Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel
2017-11-13
Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less
Stiffness optimization of non-linear elastic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel
Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less
The Role of Network Architecture in Collagen Mechanics.
Jansen, Karin A; Licup, Albert J; Sharma, Abhinav; Rens, Robbie; MacKintosh, Fred C; Koenderink, Gijsje H
2018-06-05
Collagen forms fibrous networks that reinforce tissues and provide an extracellular matrix for cells. These networks exhibit remarkable strain-stiffening properties that tailor the mechanical functions of tissues and regulate cell behavior. Recent models explain this nonlinear behavior as an intrinsic feature of disordered networks of stiff fibers. Here, we experimentally validate this theoretical framework by measuring the elastic properties of collagen networks over a wide range of self-assembly conditions. We show that the model allows us to quantitatively relate both the linear and nonlinear elastic behavior of collagen networks to their underlying architecture. Specifically, we identify the local coordination number (or connectivity) 〈z〉 as a key architectural parameter that governs the elastic response of collagen. The network elastic response reveals that 〈z〉 decreases from 3.5 to 3 as the polymerization temperature is raised from 26 to 37°C while being weakly dependent on concentration. We furthermore infer a Young's modulus of 1.1 MPa for the collagen fibrils from the linear modulus. Scanning electron microscopy confirms that 〈z〉 is between three and four but is unable to detect the subtle changes in 〈z〉 with polymerization conditions that rheology is sensitive to. Finally, we show that, consistent with the model, the initial stress-stiffening response of collagen networks is controlled by the negative normal stress that builds up under shear. Our work provides a predictive framework to facilitate future studies of the regulatory effect of extracellular matrix molecules on collagen mechanics. Moreover, our findings can aid mechanobiological studies of wound healing, fibrosis, and cancer metastasis, which require collagen matrices with tunable mechanical properties. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Lacouture, Jean-Christoph; Johnson, Paul A; Cohen-Tenoudji, Frederic
2003-03-01
The monitoring of both linear and nonlinear elastic properties of a high performance concrete during curing is presented by application of compressional and shear waves. To follow the linear elastic behavior, both compressional and shear waves are used in wide band pulse echo mode. Through the value of the complex reflection coefficient between the cell material (Lucite) and the concrete within the cell, the elastic moduli are calculated. Simultaneously, the transmission of a continuous compressional sine wave at progressively increasing drive levels permits us to calculate the nonlinear properties by extracting the harmonics amplitudes of the signal. Information regarding the chemical evolution of the concrete based upon the reaction of hydration of cement is obtained by monitoring the temperature inside the sample. These different types of measurements are linked together to interpret the critical behavior.
Creeping gaseous flows through elastic tube and annulus micro-configurations
NASA Astrophysics Data System (ADS)
Elbaz, Shai; Jacob, Hila; Gat, Amir
2016-11-01
Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.
Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C
2010-01-01
Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.
A Conforming Multigrid Method for the Pure Traction Problem of Linear Elasticity: Mixed Formulation
NASA Technical Reports Server (NTRS)
Lee, Chang-Ock
1996-01-01
A multigrid method using conforming P-1 finite element is developed for the two-dimensional pure traction boundary value problem of linear elasticity. The convergence is uniform even as the material becomes nearly incompressible. A heuristic argument for acceleration of the multigrid method is discussed as well. Numerical results with and without this acceleration as well as performance estimates on a parallel computer are included.
The Shock and Vibration Digest. Volume 16, Number 11
1984-11-01
wave [19], a secular equation for Rayleigh waves on ing, seismic risk, and related problems are discussed. the surface of an anisotropic half-space...waves in an !so- tive equation of an elastic-plastic rack medium was....... tropic linear elastic half-space with plane material used; the coefficient...pair of semi-linear hyperbolic partial differential -- " Conditions under which the equations of motion equations governing slow variations in amplitude
NASA Technical Reports Server (NTRS)
Hodges, D. H., Roberta.
1976-01-01
The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.
Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect
Hao, Shijie; Cui, Lishan; Guo, Fangmin; ...
2015-03-09
Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires-orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm 3 that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This research provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-03-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.
NASA Astrophysics Data System (ADS)
Liu, Ying; Song, Huadong; Zhu, Panpan; Lu, Hao; Tang, Qi
2017-08-01
The elasticity of erythrocytes is an important criterion to evaluate the quality of blood. This paper presents a novel research on erythrocytes' elasticity with the application of optical tweezers and the finite element method (FEM) during blood storage. In this work, the erythrocytes with different in vitro times were linearly stretched by trapping force using optical tweezers and the time dependent elasticity of erythrocytes was investigated. The experimental results indicate that the membrane shear moduli of erythrocytes increased with the increasing in vitro time, namely the elasticity was decreasing. Simultaneously, an erythrocyte shell model with two parameters (membrane thickness h and membrane shear modulus H) was built to simulate the linear stretching states of erythrocytes by the FEM, and the simulations conform to the results obtained in the experiment. The evolution process was found that the erythrocytes membrane thicknesses were decreasing. The analysis assumes that the partial proteins and lipid bilayer of erythrocyte membrane were decomposed during the in vitro preservation of blood, which results in thin thickness, weak bending resistance, and losing elasticity of erythrocyte membrane. This study implies that the FEM can be employed to investigate the inward mechanical property changes of erythrocyte in different environments, which also can be a guideline for studying the erythrocyte mechanical state suffered from different diseases.
Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F
2012-01-01
Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g., Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep (RFIC) method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with Shearwave Dispersion Ultrasound Vibrometry (SDUV) is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425
Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F
2012-03-07
Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.
Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect.
Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo
2017-02-17
Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 10⁷ and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10-1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors.
Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect
Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo
2017-01-01
Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 107 and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10–1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors. PMID:28218642
Innovative energy absorbing devices based on composite tubes
NASA Astrophysics Data System (ADS)
Tiwari, Chandrashekhar
Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and geometric nonlinearities that arise from large deformation and fiber reorientation. Developed non-linear analysis predicts the behavior of extension-twist coupled and angle ply flexible matrix composite tubes under multi-axial loadings. The predicted results show close correlation with experimental findings. It was also found that these devices exhibit variations with respect to rate of loading. It was found that the novel energy absorbing devices are capable of providing 4-5 times higher specific energy absorption (SEA) than currently used devices for similar purposes (such as wire bender which has SEA of 3.6 J/g).
Elastic interaction among transition metals in one-dimensional spin-crossover solids
NASA Astrophysics Data System (ADS)
Boukheddaden, K.; Miyashita, S.; Nishino, M.
2007-03-01
We present an exact examination of a one-dimensional (1D) spin-phonon model describing the thermodynamical properties of spin-crossover (SC) solids. This model has the advantage of giving a physical mechanism for the interaction between the SC units. The origin of the interaction comes from the fact that the elastic constant of the spring linking two atoms depends on their electronic states. This leads to local variation of the elastic constant. Up to now, all the statistical studies of this model have been performed in the frame of the mean-field (MF) approach, which is not adequate to describe 1D systems with short-range interactions. An alternative method, based on the variational approach and taking into account the short-range correlations between neighboring molecules, was also suggested, but it consists in an extension of the previous MF approximation. Here, we solve exactly this Hamiltonian in the frame of classical statistical mechanics using the transfer-matrix technique. The temperature dependence of the high spin fraction and that of the total energy are obtained analytically. Our results clearly show that there is a clear tendency to a sharp transition when we tune the elastic constants adequately, which indicates that first-order phase transition takes place at higher dimensions. In addition, we demonstrate the existence of an interesting isomorphism between the present model and Ising model under effective interaction and effective ligand field energy, in which both depend linearly on temperature and both come from the phonon contribution. We have also studied the effect of the pressure (the tension) on the thermodynamical properties of the high spin (HS) fraction and have found a nontrivial pressure effect that while for weak tension values, the low spin state is stabilized for the pressure above a threshold value, it enhances the interaction between the HS states. Finally, we have also introduced elastic interactions between the chains. Treating exactly (in mean field) the intrachain (interchain) contributions, we found that our model leads us to obtain first-order spin transitions when both short- and long-range interactions are ferroelastic. We show also that competing (antiferroelastic short-range and ferroelastic long-range) interactions between spin-state ions reproduce qualitatively the two-step-like spin-crossover transitions.
Soft actuators and soft actuating devices
Yang, Dian; Whitesides, George M.
2017-10-17
A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.
Nonlocal theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models
NASA Astrophysics Data System (ADS)
Zozulya, V. V.
2017-09-01
New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.
NASA Astrophysics Data System (ADS)
Hoffmeister, Brentley Keith
1995-01-01
This thesis seeks to contribute to a better understanding of the physics of interaction of ultrasonic waves with inhomogeneous and anisotropic media, one example of which is the human heart. The clinical success of echocardiography has generated a considerable interest in the development of ultrasonic techniques to measure the elastic properties of heart tissue. It is hypothesized that the elastic properties of myocardium are influenced by the interstitial content and organization of collagen. Collagen, which is the main component of tendon, interconnects the muscle cells of the heart to form locally unidirectional myofibers. This thesis therefore employs ultrasonic techniques to characterize the linear elastic properties of both heart and tendon. The linear elastic properties of tissues possessing a unidirectional arrangement of fibers may be described in terms of five independent elastic stiffness coefficients. Three of these coefficients were determined for formalin fixed specimens of bovine Achilles tendon and human myocardium by measuring the velocity of longitudinal mode ultrasonic pulses as a function of angle of propagation relative to the fiber axis of the tissue. The remaining two coefficients were determined by measuring the velocity of transverse mode ultrasonic waves through these tissues. To overcome technical difficulties associated with the extremely high attenuation of transverse mode waves at low megahertz frequencies, a novel measurement system was developed based on the sampled continuous wave technique. Results of these measurements were used to assess the influence of interstitial collagen, and to model the mechanical properties of heart wall.
Jiang, Jiping; Sharma, Ashish; Sivakumar, Bellie; Wang, Peng
2014-01-15
To uncover climate-water quality relationships in large rivers on a global scale, the present study investigates the climate elasticity of river water quality (CEWQ) using long-term monthly records observed at 14 large rivers. Temperature and precipitation elasticities of 12 water quality parameters, highlighted by N- and P-nutrients, are assessed. General observations on elasticity values show the usefulness of this approach to describe the magnitude of stream water quality responses to climate change, which improves that of simple statistical correlation. Sensitivity type, intensity and variability rank of CEWQ are reported and specific characteristics and mechanism of elasticity of nutrient parameters are also revealed. Among them, the performance of ammonia, total phosphorus-air temperature models, and nitrite, orthophosphorus-precipitation models are the best. Spatial and temporal assessment shows that precipitation elasticity is more variable in space than temperature elasticity and that seasonal variation is more evident for precipitation elasticity than for temperature elasticity. Moreover, both anthropogenic activities and environmental factors are found to impact CEWQ for select variables. The major relationships that can be inferred include: (1) human population has a strong linear correlation with temperature elasticity of turbidity and total phosphorus; and (2) latitude has a strong linear correlation with precipitation elasticity of turbidity and N nutrients. As this work improves our understanding of the relation between climate factors and surface water quality, it is potentially helpful for investigating the effect of climate change on water quality in large rivers, such as on the long-term change of nutrient concentrations. © 2013.
Claessens, T E; Georgakopoulos, D; Afanasyeva, M; Vermeersch, S J; Millar, H D; Stergiopulos, N; Westerhof, N; Verdonck, P R; Segers, P
2006-04-01
The linear time-varying elastance theory is frequently used to describe the change in ventricular stiffness during the cardiac cycle. The concept assumes that all isochrones (i.e., curves that connect pressure-volume data occurring at the same time) are linear and have a common volume intercept. Of specific interest is the steepest isochrone, the end-systolic pressure-volume relationship (ESPVR), of which the slope serves as an index for cardiac contractile function. Pressure-volume measurements, achieved with a combined pressure-conductance catheter in the left ventricle of 13 open-chest anesthetized mice, showed a marked curvilinearity of the isochrones. We therefore analyzed the shape of the isochrones by using six regression algorithms (two linear, two quadratic, and two logarithmic, each with a fixed or time-varying intercept) and discussed the consequences for the elastance concept. Our main observations were 1) the volume intercept varies considerably with time; 2) isochrones are equally well described by using quadratic or logarithmic regression; 3) linear regression with a fixed intercept shows poor correlation (R(2) < 0.75) during isovolumic relaxation and early filling; and 4) logarithmic regression is superior in estimating the fixed volume intercept of the ESPVR. In conclusion, the linear time-varying elastance fails to provide a sufficiently robust model to account for changes in pressure and volume during the cardiac cycle in the mouse ventricle. A new framework accounting for the nonlinear shape of the isochrones needs to be developed.
Crack Growth of a Titanium-Aluminide Alloy under Thermal-Mechanical Fatigue
1988-12-01
the elastic-plastic fracture mechanics ( EPFM ) relations such as the J-integral or crack tip opening displacement (CTOD) must be used. Much more work...has been done in the area of LEFM, using stress intensity factor range AK as a correlating factor, than in EPFM . No matter which type of analysis is...thus obvious that a simple linear summation model such as Heil’s might not be applicable to this material. Other damage mechanisms were then investigated
Dynamical theory of stability for elastic rods with nonlinear curvature and twist
NASA Technical Reports Server (NTRS)
Wauer, J.
1977-01-01
Considering non-linear terms in the curvature as well as in the twist, the governing boundary value problem for lateral bending of elastic, transverse loaded rods is formulated by means of Hamilton's principle. Using the method of small vibrations, the associated linearized equations of stability are derived, which complete the currently accepted relations. The example of the simplest lateral bending problem illustrates the improved effect of the proposed equations.
Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications
NASA Technical Reports Server (NTRS)
Biedron, Robert T,; Thomas, James L.
2009-01-01
An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been extended to handle general mesh movement involving rigid, deforming, and overset meshes. Mesh deformation is achieved through analogy to elastic media by solving the linear elasticity equations. A general method for specifying the motion of moving bodies within the mesh has been implemented that allows for inherited motion through parent-child relationships, enabling simulations involving multiple moving bodies. Several example calculations are shown to illustrate the range of potential applications. For problems in which an isolated body is rotating with a fixed rate, a noninertial reference-frame formulation is available. An example calculation for a tilt-wing rotor is used to demonstrate that the time-dependent moving grid and noninertial formulations produce the same results in the limit of zero time-step size.
Using an elastic magnifier to increase power output and performance of heart-beat harvesters
NASA Astrophysics Data System (ADS)
Galbier, Antonio C.; Karami, M. Amin
2017-09-01
Embedded piezoelectric energy harvesting (PEH) systems in medical pacemakers have been a growing and innovative research area. The goal of these systems, at present, is to remove the pacemaker battery, which makes up 60%-80% of the unit, and replace it with a sustainable power source. This requires that energy harvesting systems provide sufficient power, 1-3 μW, for operating a pacemaker. The goal of this work is to develop, test, and simulate cantilevered energy harvesters with a linear elastic magnifier (LEM). This research hopes to provide insight into the interaction between pacemaker energy harvesters and the heart. By introducing the elastic magnifier into linear and nonlinear systems oscillations of the tip are encouraged into high energy orbits and large tip deflections. A continuous nonlinear model is presented for the bistable piezoelectric energy harvesting (BPEH) system and a one-degree-of-freedom linear mass-spring-damper model is presented for the elastic magnifier. The elastic magnifier will not consider the damping negligible, unlike most models. A physical model was created for the bistable structure and formed to an elastic magnifier. A hydrogel was designed for the experimental model for the LEM. Experimental results show that the BPEH coupled with a LEM (BPEH + LEM) produces more power at certain input frequencies and operates a larger bandwidth than a PEH, BPEH, and a standard piezoelectric energy harvester with the elastic magnifier (PEH + LEM). Numerical simulations are consistent with these results. It was observed that the system enters high-energy and high orbit oscillations and that, ultimately, BPEH systems implemented in medical pacemakers can, if designed properly, have enhanced performance if positioned over the heart.
Blocky inversion of multichannel elastic impedance for elastic parameters
NASA Astrophysics Data System (ADS)
Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza
2018-04-01
Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.
Single-Crystal Elastic Constants of Yttria (Y2O3) Measured to High Temperatures
NASA Technical Reports Server (NTRS)
Sayir, Ali; Palko, James W.; Kriven, Waltraud M.; Sinogeikin, Sergey V.; Bass, Jay D.
2001-01-01
Yttria, or yttrium sesquioxide (Y2O3), has been considered for use in nuclear applications and has gained interest relatively recently for use in infrared optics. Single crystals of yttria have been grown successfully at the NASA Glenn Research Center using a laser-heated float zone technique in a fiber and rod. Such samples allow measurement of the single-crystal elastic properties, and these measurements provide useful property data for the design of components using single crystals. They also yield information as to what degree the elastic properties of yttria ceramics are a result of the intrinsic properties of the yttria crystal in comparison to characteristics that may depend on processing, such as microstructure and intergranular phases, which are common in sintered yttria. The single-crystal elastic moduli are valuable for designing such optical components. In particular, the temperature derivatives of elastic moduli allow the dimensional changes due to heating under physical constraints, as well as acoustic excitation, to be determined. The single-crystal elastic moduli of yttria were measured by Brillouin spectroscopy up to 1200 C. The room-temperature values obtained were C(sub 11) = 223.6 + 0.6 GPa, C(sub 44) = 74.6 + 0.5 GPa, and C(sub 12) = 112.4 + 1.0 GPa. The resulting bulk and (Voigt-Reuss-Hill) shear moduli were K = 149.5 + 1.0 GPa and G(sub VRH) = 66.3 + 0.8 GPa, respectively. Linear least-squares regressions to the variation of bulk and shear moduli with temperature resulted in derivatives of dK/dT = -17 + 2 MPa/C and dG(sub VRH)/dT = -8 + 2 MPa/ C. Elastic anisotropy was found to remain essentially constant over the temperature range studied.
Self-bending elastic waves and obstacle circumventing in wireless power transfer
NASA Astrophysics Data System (ADS)
Tol, S.; Xia, Y.; Ruzzene, M.; Erturk, A.
2017-04-01
We demonstrate self-bending of elastic waves along convex trajectories by means of geometric and phased arrays. Potential applications include ultrasonic imaging and manipulation, wave focusing, and wireless power transfer around obstacles. The basic concept is illustrated through a geometric array, which is designed to implement a phase delay profile among the array elements that leads to self-bending along a specified circular trajectory. Experimental validation is conducted for the lowest asymmetric Lamb wave mode in a thin plate over a range of frequencies to investigate the bandwidth of the approach. Experiments also illustrate the functionality of the array as a transmitter to deliver elastic wave energy to a receiver/harvester located behind a large obstacle for electrical power extraction. It is shown that the trajectory is not distorted by the presence of the obstacle and circumventing is achieved. A linear phased array counterpart of the geometric array is then constructed to illustrate the concept by imposing proper time delays to the array elements, which allows the generation of different trajectories using the same line source. This capability is demonstrated by tailoring the path diameter in the phased array setting, which offers the flexibility and versatility to induce a variety of convex trajectories for self-bending elastic waves.
NASA Astrophysics Data System (ADS)
Benahmed, A.; Bouhemadou, A.; Alqarni, B.; Guechi, N.; Al-Douri, Y.; Khenata, R.; Bin-Omran, S.
2018-05-01
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.
Liu, Yan-Lin; Li, Guo-Yang; He, Ping; Mao, Ze-Qi; Cao, Yanping
2017-01-01
Determining the mechanical properties of brain tissues is essential in such cases as the surgery planning and surgical training using virtual reality based simulators, trauma research and the diagnosis of some diseases that alter the elastic properties of brain tissues. Here, we suggest a protocol to measure the temperature-dependent elastic properties of brain tissues in physiological saline using the shear wave elastography method. Experiments have been conducted on six porcine brains. Our results show that the shear moduli of brain tissues decrease approximately linearly with a slope of -0.041±0.006kPa/°C when the temperature T increases from room temperature (~23°C) to body temperature (~37°C). A case study has been further conducted which shows that the shear moduli are insensitive to the temperature variation when T is in the range of 37 to 43°C and will increase when T is higher than 43°C. With the present experimental setup, temperature-dependent elastic properties of brain tissues can be measured in a simulated physiological environment and a non-destructive manner. Thus the method suggested here offers a unique tool for the mechanical characterization of brain tissues with potential applications in brain biomechanics research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of thermal stresses on frequency band structures of elastic metamaterial plates
NASA Astrophysics Data System (ADS)
Wu, Ying; Yu, Kaiping; Yang, Linyun; Zhao, Rui; Shi, Xiaotian; Tian, Kuo
2018-01-01
We investigate the effect of thermal stresses on the band structure of elastic metamaterial plates by developing a useful finite-element based method. The thermal field is assumed to be uniform throughout the whole plate. Specifically, we find that the stiffness matrix of plate element is comprised of elastic and thermal stresses parts, which can be regarded as a linear function of temperature difference. We additionally demonstrate that the relative magnitudes between elastic properties and thermal stresses will lead to nonlinear effects on frequency band structures based on two different types of metamaterial plates made of single and double inclusions of square plates, respectively. Then, we validate the proposed approach by comparing the band structures with the frequency response curves obtained in finite periodic structures. We conduct sensitivity analysis and discuss in-depth the sensitivities of band structures with respect to temperature difference to quantitatively investigate the effect of thermal stresses on each band. In addition, the coupled effects of thermal stresses and temperature-dependent material properties on the band structure of Aluminum/silicone rubber plate have also been discussed. The proposed method and new findings in this paper extends the ability of existing metamaterial plates by enabling tunability over a wide range of frequencies in thermal environments.
A Lagrangian meshfree method applied to linear and nonlinear elasticity.
Walker, Wade A
2017-01-01
The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.
A Lagrangian meshfree method applied to linear and nonlinear elasticity
2017-01-01
The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code. PMID:29045443
Elastic moduli of δ-Pu 239 reveal aging in real time
Maiorov, Boris; Betts, Jonathan B.; Söderlind, Per; ...
2017-03-28
We study the time evolution (aging) of the elastic moduli of an eight-year-old polycrystalline δ- Pu 2.0 at % Ga alloy (δ-Pu:Ga ) from 295K to nearly 500K in real time using Resonant Ultrasound Spectroscopy (RUS). After 8 years of aging at 295K, the bulk and shear moduli increase at a normalized rate of 0.2%/year and 0.6%/year respectively. As the temperature is raised, two time dependences are observed, an exponential one of about a week, followed by a linear one (constant rate). The linear rate is thermally activated with an activation energy of 0.33+0.06 eV. Above 420K a qualitative changemore » in the time evolution is observed; the bulk modulus decreases with time while the shear modulus continues to stiffen. No change is observed as the α-β transition temperature is crossed as would be expected if a decomposition of δ-Pu:Ga to α-Pu and Pu 3Ga occurred over the temperature range studied. Our results indicate that the main mechanism of aging is creation of defects that are partially annealed starting at T = 420 K.« less
Elastic moduli of δ-Pu 239 reveal aging in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiorov, Boris; Betts, Jonathan B.; Söderlind, Per
We study the time evolution (aging) of the elastic moduli of an eight-year-old polycrystalline δ- Pu 2.0 at % Ga alloy (δ-Pu:Ga ) from 295K to nearly 500K in real time using Resonant Ultrasound Spectroscopy (RUS). After 8 years of aging at 295K, the bulk and shear moduli increase at a normalized rate of 0.2%/year and 0.6%/year respectively. As the temperature is raised, two time dependences are observed, an exponential one of about a week, followed by a linear one (constant rate). The linear rate is thermally activated with an activation energy of 0.33+0.06 eV. Above 420K a qualitative changemore » in the time evolution is observed; the bulk modulus decreases with time while the shear modulus continues to stiffen. No change is observed as the α-β transition temperature is crossed as would be expected if a decomposition of δ-Pu:Ga to α-Pu and Pu 3Ga occurred over the temperature range studied. Our results indicate that the main mechanism of aging is creation of defects that are partially annealed starting at T = 420 K.« less
Frank, Scott D; Collis, Jon M; Odom, Robert I
2015-06-01
Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.
S. Youssefian; J. E. Jakes; N. Rahbar
2017-01-01
A combination of experimental, theoretical and numerical studies is used to investigate the variation of elastic moduli of lignocellulosic (bamboo) fiber cell walls with moisture content (MC). Our Nanoindentation results show that the longitudinal elastic modulus initially increased to a maximum value at about 3% MC and then decreased linearly with increasing MC. In...
NASA Technical Reports Server (NTRS)
James, Mark; Wells, Doug; Allen, Phillip; Wallin, Kim
2017-01-01
Recently proposed modifications to ASTM E399 would provide a new size-insensitive approach to analyzing the force-displacement test record. The proposed size-insensitive linear-elastic fracture toughness, KIsi, targets a consistent 0.5mm crack extension for all specimen sizes by using an offset secant that is a function of the specimen ligament length. The KIsi evaluation also removes the Pmax/PQ criterion and increases the allowable specimen deformation. These latter two changes allow more plasticity at the crack tip, prompting the review undertaken in this work to ensure the validity of this new interpretation of the force-displacement curve. This paper provides a brief review of the proposed KIsi methodology and summarizes a finite element study into the effects of increased crack tip plasticity on the method given the allowance for additional specimen deformation. The study has two primary points of investigation: the effect of crack tip plasticity on compliance change in the force-displacement record and the continued validity of linear-elastic fracture mechanics to describe the crack front conditions. The analytical study illustrates that linear-elastic fracture mechanics assumptions remain valid at the increased deformation limit; however, the influence of plasticity on the compliance change in the test record is problematic. A proposed revision to the validity criteria for the KIsi test method is briefly discussed.
NASA Astrophysics Data System (ADS)
Yuping, Cang; Xiaoling, Yao; Dong, Chen; Fan, Yang; Huiming, Yang
2016-07-01
The ultrasoft pseudo-potential plane wave method combined with the quasi-harmonic approach have been used to study the electronic, elastic and thermodynamic properties of the tetragonal, monoclinic and orthorhombic Ge3N4. The negative formation enthalpies, the satisfactory of Born's criteria and the linear variations of elastic constants with pressure indicate that the three polymorphs can retain their stabilities in the pressure range of 0-25 GPa. The three Ge3N4 are brittle solids at 0 GPa, while they behave in ductile manners in the pressure range of 5-25 GPa. t- and o-Ge3N4 are hard materials but anisotropic. m-Ge3N4 has the largest ductility among the three phases. The results reveal that m-Ge3N4 belongs to an indirect band gap semiconductor, while t- and o-Ge3N4 have direct band gaps. For the thermal properties, several interesting features can be observed above 300 K. o-Ge3N4 exhibits the largest heat capacity, while m-Ge3N4 shows the highest Debye temperature. The results predicted in this work can provide reference data for future experiments. Project supported by the National Natural Science Foundation of China (Nos. 61475132, 11475143, 61501392, 11304141) and the National Training Programs of Innovation and Entrepreneurship for Undergraduates (No. 201510477001).
Elastic properties and short-range structural order in mixed network former glasses.
Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Hynek, David; Keizer, Sydney; Wang, James; Feller, Steve; Martin, Steve W; Kieffer, John
2017-06-21
Elastic properties of alkali containing glasses are of great interest not only because they provide information about overall structural integrity but also they are related to other properties such as thermal conductivity and ion mobility. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. By mixing network formers, the network topology can be changed while keeping the network modifier concentration constant, which allows for the effect of network structure on elastic properties to be analyzed over a wide parametric range. In addition to non-linear, non-additive mixed-glass former effects, maxima are observed in longitudinal, shear and Young's moduli with increasing atomic number density. By combining results from NMR spectroscopy and Brillouin light scattering with a newly developed statistical thermodynamic reaction equilibrium model, it is possible to determine the relative proportions of all network structural units. This new analysis reveals that the structural characteristic predominantly responsible for effective mechanical load transmission in these glasses is a high density of network cations coordinated by four or more bridging oxygens, as it provides for establishing a network of covalent bonds among these cations with connectivity in three dimensions.
NASA Astrophysics Data System (ADS)
Boyko, Evgeniy; Gat, Amir; Bercovici, Moran
2017-11-01
We study viscous-elastic dynamics of a fluid confined between a rigid plate and a finite pre-stretched circular elastic membrane, pinned at its boundaries. The membrane is subjected to forces acting either directly on the membrane or through a pressure distribution in the fluid. Under the assumptions of strong pre-stretching and small deformations of the elastic sheet, and by applying the lubrication approximation for the flow, we derive the Green's function for the resulting linearized 4th order diffusion equation governing the deformation field in cylindrical coordinates. In addition, defining an asymptotic expansion with the ratio of the induced to prescribed tension serving as the small parameter, we reduce the coupled Reynolds and non-linear von-Karman equations to a set of three one-way coupled linear equations. The solutions to these equations provide insight onto the effects of induced tension, and enable simplified prediction of the correction for the deformation field. Funded by the European Research Council (ERC) under the European Union'sHorizon 2020 Research and Innovation Programme, Grant Agreement No. 678734 (MetamorphChip). E.B. is supported by the Adams Fellowship Program.
"LOSA-S" - basic lidar of the CSF "ATMOSPHERE" IAO SB RAS for tropospheric studies
NASA Astrophysics Data System (ADS)
Balin, Yu. S.; Kokhanenko, G. P.; Klemasheva, M. G.; Penner, I. E.; Nasonov, S. V.; Samoilova, S. V.
2017-11-01
Stationary lidar "LOSA-S" of the center of shared facilities (CSF) "ATMOSPHERE" IAO SB RAS is intended for the study of aerosol fields in the boundary layer of the troposphere in the height range 0.5 up to 15 km, as well as for the study of crystal clouds using the polarization unit with linear and circular polarization of radiation. The scheme of simultaneous observation of the elastic and Raman scattering signals when irradiating the medium at the wavelengths of 1064, 532 and 355 nm is realized in the lidar. The lidar is based on the LOTIS-2135 Nd:YAG laser and the receiving specular telescope of the Cassegrain system with the diameter of 300 mm. In addition to the return signals of elastic scattering recorded in analog mode, the lidar records the Raman scattering signals on molecular nitrogen (387 and 607 nm) and water vapor (407 nm) in the photon counting mode. To realize the aforementioned height range, two receiving telescopes are used in the lidar for near and far zones, the signals are recorded by the same photodetectors.
Estimation of the behavior factor of existing RC-MRF buildings
NASA Astrophysics Data System (ADS)
Vona, Marco; Mastroberti, Monica
2018-01-01
In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.
NASA Astrophysics Data System (ADS)
Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna
2017-10-01
The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.
A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc
NASA Astrophysics Data System (ADS)
Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.
2017-01-01
Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.
Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal.
Rovner, Joel B; Borgnia, Dan S; Reich, Daniel H; Leheny, Robert L
2012-10-01
The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n[over ^]. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>π/2, the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θ→π-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.
Linear elastic fracture mechanics primer
NASA Technical Reports Server (NTRS)
Wilson, Christopher D.
1992-01-01
This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.
Linear elastic properties derivation from microstructures representative of transport parameters.
Hoang, Minh Tan; Bonnet, Guy; Tuan Luu, Hoang; Perrot, Camille
2014-06-01
It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport parameters involved in the description of long wavelength acoustic wave propagation and dissipation through real foam samples may also be used as a standpoint to estimate their macroscopic linear elastic properties. Application of the model yields quantitative agreement between numerical homogenization results, available literature data, and experiments. Key contributions of this work include recognizing the importance of membranes and properties of the base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may be used to understand and predict not only the sound absorbing properties of porous materials but also their transmission loss, which is critical for sound insulation problems.
Gaseous Viscous Peeling of Linearly Elastic Substrates
NASA Astrophysics Data System (ADS)
Elbaz, Shai; Jacob, Hila; Gat, Amir
2017-11-01
We study pressure-driven propagation of gas into a micron-scale gap between two linearly elastic substrates. Applying the lubrication approximation, the governing nonlinear evolution equation describes the interaction between elasticity and viscosity, as well as weak rarefaction and low-Mach-number compressibility, characteristic to gaseous microflows. Several physical limits allow simplification of the evolution equation and enable solution by self-similarity. During the peeling process the flow-field transitions between the different limits and the respective approximate solutions. The sequence of limits occurring during the propagation dynamics can be related to the thickness of the prewetting layer of the configuration at rest, yielding an approximate description of the entire peeling dynamics. The results are validated by numerical solutions of the evolution equation. Israel Science Foundation 818/13.
Nguyen Dinh, Duc; Nguyen, Pham Dinh
2017-01-01
Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge–Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors. PMID:29057821
High strength, low stiffness, porous NiTi with superelastic properties.
Greiner, Christian; Oppenheimer, Scott M; Dunand, David C
2005-11-01
Near-stoichiometric NiTi with up to 18% closed porosity was produced by expansion at 1200 degrees C of argon-filled pores trapped by powder metallurgy within a NiTi billet. When optimally heat-treated, NiTi with 6-16% porosity exhibits superelasticity, with recoverable compressive strains up to 6% at a maximum compressive stress up to 1700 MPa. The apparent Young's modulus of NiTi with 16% porosity, measured during uniaxial compression, is in the range of 15-25 GPa (similar to human bone), but is much lower than measured ultrasonically (approximately 40 GPa), or predicted from continuum elastic mechanics. This effect is attributed to the reversible stress-induced transformation contributing to the linear elastic deformation of porous NiTi. The unique combination of low stiffness, high strength, high recoverable strains and large energy absorption of porous superelastic NiTi, together with the known biocompatibility of NiTi, makes this material attractive for bone-implant applications.
High-pressure structural, elastic, and electronic properties of the scintillator host material KMgF3
NASA Astrophysics Data System (ADS)
Vaitheeswaran, G.; Kanchana, V.; Kumar, Ravhi S.; Cornelius, A. L.; Nicol, M. F.; Svane, A.; Delin, A.; Johansson, B.
2007-07-01
The high-pressure structural behavior of the fluoroperovskite KMgF3 is investigated by theory and experiment. Density functional calculations were performed within the local density approximation and the generalized gradient approximation for exchange and correlation effects, as implemented within the full-potential linear muffin-tin orbital method. In situ high-pressure powder x-ray diffraction experiments were performed up to a maximum pressure of 40GPa using synchrotron radiation. We find that the cubic Pm3¯m crystal symmetry persists throughout the pressure range studied. The calculated ground state properties—the equilibrium lattice constant, bulk modulus, and elastic constants—are in good agreement with experimental results. By analyzing the ratio between the bulk and shear moduli, we conclude that KMgF3 is brittle in nature. Under ambient conditions, KMgF3 is found to be an indirect gap insulator, with the gap increasing under pressure.
Interface stresses in fiber-reinforced materials with regular fiber arrangements
NASA Astrophysics Data System (ADS)
Mueller, W. H.; Schmauder, S.
The theory of linear elasticity is used here to analyze the stresses inside and at the surface of fiber-reinforced composites. Plane strain, plane stress, and generalized plane strain are analyzed using the shell model and the BHE model and are numerically studied using finite element analysis. Interface stresses are shown to depend weakly on Poisson's ratio. For equal values of the ratio, generalized plane strain and plane strain results are identical. For small volume fractions up to 40 vol pct of fibers, the shell and the BHE models predict the interface stresses very well over a wide range of elastic mismatches and for different fiber arrangements. At higher volume fractions the stresses are influenced by interactions with neighboring fibers. Introducing an external pressure into the shell model allows the prediction of interface stresses in real composite with isolated or regularly arranged fibers.
Packing Regularities in Biological Structures Relate to Their Dynamics
Jernigan, Robert L.; Kloczkowski, Andrzej
2007-01-01
The high packing density inside proteins leads to certain geometric regularities and also is one of the most important contributors to the high extent of cooperativity manifested by proteins in their cohesive domain motions. The orientations between neighboring non-bonded residues in proteins substantially follow the similar geometric regularities, regardless of whether the residues are on the surface or buried - a direct result of hydrophobicity forces. These orientations are relatively fixed and correspond closely to small deformations from those of the face-centered cubic lattice, which is the way in which identical spheres pack at the highest density. Packing density also is related to the extent of conservation of residues, and we show this relationship for residue packing densities by averaging over a large sample or residue packings. There are three regimes: 1) over a broad range of packing densities the relationship between sequence entropy and inverse packing density is nearly linear, 2) over a limited range of low packing densities the sequence entropy is nearly constant, and 3) at extremely low packing densities the sequence entropy is highly variable. These packing results provide important justification for the simple elastic network models that have been shown for a large number of proteins to represent protein dynamics so successfully, even when the models are extremely coarse-grained. Elastic network models for polymeric chains are simple and could be combined with these protein elastic networks to represent partially denatured parts of proteins. Finally, we show results of applications of the elastic network model to study the functional motions of the ribosome, based on its known structure. These results indicate expected correlations among its components for the step-wise processing steps in protein synthesis, and suggest ways to use these elastic network models to develop more detailed mechanisms - an important possibility, since most experiments yield only static structures. PMID:16957327
Kalkan, Erol; ,
2012-01-01
Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.
Elastic-plastic fracture mechanics of compact bone
NASA Astrophysics Data System (ADS)
Yan, Jiahau
Bone is a composite composed mainly of organics, minerals and water. Most studies on the fracture toughness of bone have been conducted at room temperature. Considering that the body temperature of animals is higher than room temperature, and that bone has a high volumetric percentage of organics (generally, 35--50%), the effect of temperature on fracture toughness of bone should be studied. Single-edged V-shaped notched (SEVN) specimens were prepared to measure the fracture toughness of bovine femur and manatee rib in water at 0, 10, 23, 37 and 50°C. The fracture toughness of bovine femur and manatee rib were found to decrease from 7.0 to 4.3 MPa·m1/2 and from 5.5 to 4.1 MPa·m1/2, respectively, over a temperature range of 50°C. The decreases were attributed to inability of the organics to sustain greater stresses at higher temperatures. We studied the effects of water and organics on fracture toughness of bone using water-free and organics-free SEVN specimens at 23°C. Water-free and organics-free specimens were obtained by placing fresh bone specimen in a furnace at different temperatures. Water and organics significantly affected the fracture toughness of bone. Fracture toughness of the water-free specimens was 44.7% (bovine femur) and 32.4% (manatee rib) less than that of fresh-bone specimens. Fracture toughness of the organics-free specimens was 92.7% (bovine femur) and 91.5% (manatee rib) less than that of fresh bone specimens. Linear Elastic Fracture Mechanics (LEFM) is widely used to study bone. However, bone often has small to moderate scale yielding during testing. We used J integral, an elastic-plastic fracture-mechanics parameter, to study the fracture process of bone. The J integral of bovine femur increased from 6.3 KJ/mm2 at 23°C to 6.7 KJ/mm2 at 37°C. Although the fracture toughness of bovine bone decreases as the temperature increases, the J integral results show a contrary trend. The energy spent in advancing the crack beyond the linear-elastic deformation was much greater than the energy spent in linear-elastic deformation. This could be because bone has at least four toughening mechanisms and a high volumetric percentage of organics (approximately 42% for bovine femur). The J integral is shown to better describe the fracture process of bovine femur and manatee rib.
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
NASA Astrophysics Data System (ADS)
Dansereau, V.; Got, J. L.
2017-12-01
Before a volcanic eruption, the pressurization of the volcanic edifice by a magma reservoir induces earthquakes and damage in the edifice; damage lowers the strength of the edifice and decreases its elastic properties. Anelastic deformations cumulate and lead to rupture and eruption. These deformations translate into surface displacements, measurable via GPS or InSAR (e.g., Kilauea, southern flank, or Piton de la Fournaise, eastern flank).Attempts to represent these processes are usually based on a linear-elastic rheology. More recently, linear elastic-perfectly plastic or elastic-brittle damage approaches were used to explain the time evolution of the surface displacements in basaltic volcanoes before an eruption. However these models are non-linear elastic, and can not account for the anelastic deformation that occurs during the pre-eruptive process. Therefore, they can not be used to represent the complete eruptive cycle, comprising loading and unloading phases. Here we present a new rheological approach for modelling the eruptive cycle called Maxwell-Elasto-Brittle, which incorporates a viscous-like relaxation of the stresses in an elastic-brittle damage framework. This mechanism allows accounting for the anelastic deformations that cumulate and lead to rupture and eruption. The inclusion of healing processes in this model is another step towards a complete spatio-temporal representation of the eruptive cycle. Plane-strain Maxwell-EB modelling of the deformation of a magma reservoir and volcanic edifice will be presented. The model represents the propagation of damage towards the surface and the progressive localization of the deformation along faults under the pressurization of the magma reservoir. This model allows a complete spatio-temporal representation of the rupture process. We will also discuss how available seismicity records and time series of surface displacements could be used jointly to constrain the model.
Hilbert complexes of nonlinear elasticity
NASA Astrophysics Data System (ADS)
Angoshtari, Arzhang; Yavari, Arash
2016-12-01
We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.
Polycrystalline gamma plutonium's elastic moduli versus temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migliori, Albert; Betts, J; Trugman, A
2009-01-01
Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.
Design of pressure-sensing diaphragm for MEMS capacitance diaphragm gauge considering size effect
NASA Astrophysics Data System (ADS)
Li, Gang; Li, Detian; Cheng, Yongjun; Sun, Wenjun; Han, Xiaodong; Wang, Chengxiang
2018-03-01
MEMS capacitance diaphragm gauge with a full range of (1˜1000) Pa is considered for its wide application prospect. The design of pressure-sensing diaphragm is the key to achieve balanced performance for this kind of gauges. The optimization process of the pressure-sensing diaphragm with island design of a capacitance diaphragm gauge based on MEMS technique has been reported in this work. For micro-components in micro scale range, mechanical properties are very different from that in the macro scale range, so the size effect should not be ignored. The modified strain gradient elasticity theory considering size effect has been applied to determine the bending rigidity of the pressure-sensing diaphragm, which is then used in the numerical model to calculate the deflection-pressure relation of the diaphragm. According to the deflection curves, capacitance variation can be determined by integrating over the radius of the diaphragm. At last, the design of the diaphragm has been optimized based on three parameters: sensitivity, linearity and ground capacitance. With this design, a full range of (1˜1000) Pa can be achieved, meanwhile, balanced sensitivity, resolution and linearity can be kept.
High elastic modulus polymer electrolytes
Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel
2013-10-22
A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.
Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J
2017-11-01
The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.
Classical and sequential limit analysis revisited
NASA Astrophysics Data System (ADS)
Leblond, Jean-Baptiste; Kondo, Djimédo; Morin, Léo; Remmal, Almahdi
2018-04-01
Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic-plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity - in the absence of hardening and within a linearized geometrical framework -, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity - although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic-plastic coupling in the specific case considered.
Effects of aging on the architecture of the ileocecal junction in rats
de Brito, Maria Cícera; Chopard, Renato Paulo; Cury, Diego Pulzatto; Watanabe, Ii Sei; Mendes, Cristina Eusébio; Castelucci, Patricia
2016-01-01
AIM: To evaluate the structural organization of the elastic and collagen fibers in the region of the ileocecal transition in 30 young and old male Wistar rats. METHODS: Histology, immunohistochemistry (IHC), transmission electron microscopy and scanning electron microscopy were employed in this study. The results demonstrated that there was a demarcation of the ileocecal region between the ileum and the cecum in both groups. RESULTS: The connective tissue fibers had different distribution patterns in the two groups. IHC revealed the presence of nitric oxide synthase, enteric neurons and smooth muscle fibers in the ileocecal junctions (ICJs) of both groups. Compared to the young group, the elderly group exhibited an increase in collagen type I fibers, a decrease in collagen type III fibers, a decreased linear density of oxytalan elastic fibers, and a greater linear density of elaunin and mature elastic fibers. CONCLUSION: The results revealed changes in the patterns of distribution of collagen and elastic fibers that may lead to a possible decrease in ICJ functionality. PMID:27602243
Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness
NASA Astrophysics Data System (ADS)
Shui, Xin; Wang, Shimin
2018-02-01
The design and characterization of a mechanical vibration absorber are addressed. A distinctive feature of the absorber is its tunable piecewise-linear stiffness, which is realized by means of a slider with two stop-blocks installed constraining the bilateral deflections of the elastic support. A new analytical approach named as the equivalent stiffness technique (EST) is introduced and then employed to obtain the analytical relations of the frequency, amplitude and phase with a view to exhibit a more comprehensive characterization of the absorber. Experiments are conducted to demonstrate the feasibility of the design. The experimental data show good agreement with the analytical results. The final results indicate that the tunable stiffness absorber (TSA) possesses a typical nonlinear characteristic at each given position of the slider, and its stiffness can be tuned in real time over a wide range by adjusting the slider position. Hence the TSA has a large optimum vibration-absorption range together with a wide suppression band around each optimal position, which contributes to its excellent capacity of vibration absorption.
NASA Astrophysics Data System (ADS)
Vásquez Lavín, F. A.; Hernandez, J. I.; Ponce, R. D.; Orrego, S. A.
2017-07-01
During recent decades, water demand estimation has gained considerable attention from scholars. From an econometric perspective, the most used functional forms include log-log and linear specifications. Despite the advances in this field and the relevance for policymaking, little attention has been paid to the functional forms used in these estimations, and most authors have not provided justifications for their selection of functional forms. A discrete continuous choice model of the residential water demand is estimated using six functional forms (log-log, full-log, log-quadratic, semilog, linear, and Stone-Geary), and the expected consumption and price elasticity are evaluated. From a policy perspective, our results highlight the relevance of functional form selection for both the expected consumption and price elasticity.
Ion-neutral-atom sympathetic cooling in a hybrid linear rf Paul and magneto-optical trap
NASA Astrophysics Data System (ADS)
Goodman, D. S.; Sivarajah, I.; Wells, J. E.; Narducci, F. A.; Smith, W. W.
2012-09-01
Long-range polarization forces between ions and neutral atoms result in large elastic scattering cross sections (e.g., ˜106a.u. for Na-Na+ or Na-Ca+ at cold and ultracold temperatures). This suggests that a hybrid ion-neutral trap should offer a general means for significant sympathetic cooling of atomic or molecular ions. We present simion 7.0 simulation results concerning the advantages and limitations of sympathetic cooling within a hybrid trap apparatus consisting of a linear rf Paul trap concentric with a Na magneto-optical trap (MOT). This paper explores the impact of various heating mechanisms on the hybrid system and how parameters related to the MOT, Paul trap, number of ions, and ion species affect the efficiency of the sympathetic cooling.
Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)
Yu, Seungho; Schmidt, Robert D.; Garcia-mendez, Regina; ...
2015-12-16
The oxide known as LLZO, with nominal composition Li 7La 3Zr 2O 12, is a promising solid electrolyte for Li-based batteries due to its high Li-ion conductivity and chemical stability with respect to lithium. Solid electrolytes may also enable the use of metallic Li anodes by serving as a physical barrier that suppresses dendrite initiation and propagation during cycling. Prior linear elasticity models of the Li electrode/solid electrolyte interface suggest that the stability of this interface is highly dependent on the elastic properties of the solid separator. For example, dendritic suppression is predicted to be enhanced as the electrolyte smore » shear modulus increases. In the present study a combination of first-principles calculations, acoustic impulse excitation measurements, and nanoindentation experiments are used to determine the elastic constants and moduli for highconductivity LLZO compositions based on Al and Ta doping. The calculated and measured isotropic shear moduli are in good agreement and fall within the range of 56-61 GPa. These values are an order of magnitude larger than that for Li metal and far exceed the minimum value ( 8.5 GPa) believed to be necessary to suppress dendrite initiation. These data suggest that LLZO exhibits sufficient stiffness to warrant additional development as a solid electrolyte for Li batteries.« less
NASA Astrophysics Data System (ADS)
Hehl, Friedrich W.; Kiefer, Claus
2018-01-01
We perform a short comparison between the local and linear constitutive tensor χ ^{λ ν σ κ } in four-dimensional electrodynamics, the elasticity tensor c^{ijkl} in three-dimensional elasticity theory, and the DeWitt metric G^{abcd} in general relativity, with {a,b,\\ldots =1,2,3}. We find that the DeWitt metric has only six independent components.
1991-01-01
their midsurface counterparts due to the nature of the pin deflection and resulting load transfer. Linear elastic coupon radial stresses also followed... midsurface counterparts. The effects of the nonlinear elastic material behavior were quite evident when viewing the [(0/90)3,01, coupon intralaminar...to the midsurface of the coupon. The nonlinear elastic intralaminar shear stress-strain assumption acted to increase through thickness stresses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.
1993-11-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Interparticle collision of natural sediment grains in water
Schmeeckle, Mark W.; Nelson, Jonathan M.; Pitlick, John; Bennett, James P.
2001-01-01
Elastohydrodynamic theory and measurements of particle impacts on an inclined glass plane in water are used to investigate the mechanics of interparticle collisions in sediment‐transporting flows. A collision Stokes number is proposed as a measure of the momentum of an interparticle collision versus the viscous pressure force in the interstitial gap between colliding particles. The viscous pressure force opposes motion of the particles on approach and rebound. A Stokes number of between 39 and 105 is estimated as the critical range below which particle impacts are completely viscously damped and above which impacts are partially elastic. The critical Stokes number is shown to roughly coincide with the Bagnold number transition between macroviscous and grain inertial debris flows and the transition between damped and partially elastic bed load transport saltation impacts. The nonspherical nature of natural particles significantly alters the motion of the center of mass after a partially elastic collision. The normal to the point of contact between the particles does not necessarily go through the center of mass. Thus normal rebound of the center of mass may not occur. A model of particle motion after rebound for particles of arbitrary shape, conserving both linear and angular momentum, is proposed.
Models for attenuation in marine sediments that incorporate structural relaxation processes
NASA Astrophysics Data System (ADS)
Pierce, Allan D.; Carey, William M.; Lynch, James F.
2005-04-01
Biot's model leads to an attenuation coefficient at low frequencies that is proportional to ω2, and such is consistent with physical models of viscous attenuation of fluid flows through narrow constrictions driven by pressure differences between larger fluid pockets within the granular configuration. Much data suggests, however, that the attenuation coefficient is linear in ω for some sediments and over a wide range of frequencies. A common model that predicts such a dependence stems from theoretical work by Stoll and Bryan [J. Acoust. Soc. Am. 47, 1440 (1970)], in which the elastic constants of the solid frame are taken to be complex numbers, with small constant imaginary parts. Such invariably leads to a linear ω dependence at sufficiently low frequencies and this conflicts with common intuitive notions. The present paper incorporates structural relaxation, with a generalization of the formulations of Hall [Phys. Rev. 73, 775 (1948)] and Nachman, Smith, and Waag [J. Acoust. Soc. Am. 88, 1584 (1990)]. The mathematical form and plausibility of such is established, and it is shown that the dependence is as ω2 at low frequencies, and that a likely realization is one where the dependence is linear in ω at intermediate frequency ranges.
Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
Wu, Kuan-Yi; Su, Yin-Yu; Yu, Ying-Lung; Lin, Kuei-You; Lan, Chao-Chieh
2017-07-01
Powered exoskeletons can facilitate rehabilitation of patients with upper limb disabilities. Designs using rotary motors usually result in bulky exoskeletons to reduce the problem of moving inertia. This paper presents a new linearly actuated elbow exoskeleton that consists of a slider crank mechanism and a linear motor. The linear motor is placed beside the upper arm and closer to shoulder joint. Thus better inertia properties can be achieved while lightweight and compactness are maintained. A passive joint is introduced to compensate for the exoskeleton-elbow misalignment and intersubject size variation. A linear series elastic actuator (SEA) is proposed to obtain accurate force and impedance control at the exoskeleton-elbow interface. Bidirectional actuation between exoskeleton and forearm is verified, which is required for various rehabilitation processes. We expect this exoskeleton can provide a means of robot-aided elbow rehabilitation.
Singh, Jai
2013-01-01
The objective of this study was a thorough reconsideration, within the framework of Newtonian mechanics and work-energy relationships, of the empirically interpreted relationships employed within the CRASH3 damage analysis algorithm in regards to linearity between barrier equivalent velocity (BEV) or peak collision force magnitude and residual damage depth. The CRASH3 damage analysis algorithm was considered, first in terms of the cases of collisions that produced no residual damage, in order to properly explain the damage onset speed and crush resistance terms. Under the modeling constraints of the collision partners representing a closed system and the a priori assumption of linearity between BEV or peak collision force magnitude and residual damage depth, the equations for the sole realistic model were derived. Evaluation of the work-energy relationships for collisions at or below the elastic limit revealed that the BEV or peak collision force magnitude relationships are bifurcated based upon the residual damage depth. Rather than being additive terms from the linear curve fits employed in the CRASH3 damage analysis algorithm, the Campbell b 0 and CRASH3 AL terms represent the maximum values that can be ascribed to the BEV or peak collision force magnitude, respectively, for collisions that produce zero residual damage. Collisions resulting in the production of non-zero residual damage depth already account for the surpassing of the elastic limit during closure and therefore the secondary addition of the elastic limit terms represents a double accounting of the same. This evaluation shows that the current energy absorbed formulation utilized in the CRASH3 damage analysis algorithm extraneously includes terms associated with the A and G stiffness coefficients. This sole realistic model, however, is limited, secondary to reducing the coefficient of restitution to a constant value for all cases in which the residual damage depth is nonzero. Linearity between BEV or peak collision force magnitude and residual damage depth may be applicable for particular ranges of residual damage depth for any given region of any given vehicle. Within the modeling construct employed by the CRASH3 damage algorithm, the case of uniform and ubiquitous linearity cannot be supported. Considerations regarding the inclusion of internal work recovered and restitution for modeling the separation phase change in velocity magnitude should account for not only the effects present during the evaluation of a vehicle-to-vehicle collision of interest but also to the approach taken for modeling the force-deflection response for each collision partner.
Perception of Elasticity in the Kinetic Illusory Object with Phase Differences in Inducer Motion
Masuda, Tomohiro; Sato, Kazuki; Murakoshi, Takuma; Utsumi, Ken; Kimura, Atsushi; Shirai, Nobu; Kanazawa, So; Yamaguchi, Masami K.; Wada, Yuji
2013-01-01
Background It is known that subjective contours are perceived even when a figure involves motion. However, whether this includes the perception of rigidity or deformation of an illusory surface remains unknown. In particular, since most visual stimuli used in previous studies were generated in order to induce illusory rigid objects, the potential perception of material properties such as rigidity or elasticity in these illusory surfaces has not been examined. Here, we elucidate whether the magnitude of phase difference in oscillation influences the visual impressions of an object's elasticity (Experiment 1) and identify whether such elasticity perceptions are accompanied by the shape of the subjective contours, which can be assumed to be strongly correlated with the perception of rigidity (Experiment 2). Methodology/Principal Findings In Experiment 1, the phase differences in the oscillating motion of inducers were controlled to investigate whether they influenced the visual impression of an illusory object's elasticity. The results demonstrated that the impression of the elasticity of an illusory surface with subjective contours was systematically flipped with the degree of phase difference. In Experiment 2, we examined whether the subjective contours of a perceived object appeared linear or curved using multi-dimensional scaling analysis. The results indicated that the contours of a moving illusory object were perceived as more curved than linear in all phase-difference conditions. Conclusions/Significance These findings suggest that the phase difference in an object's motion is a significant factor in the material perception of motion-related elasticity. PMID:24205281
Wrinkle surface instability of an inhomogeneous elastic block with graded stiffness
NASA Astrophysics Data System (ADS)
Yang, Shengyou; Chen, Yi-chao
2017-04-01
Surface instabilities have been studied extensively for both homogeneous materials and film/substrate structures but relatively less for materials with continuously varying properties. This paper studies wrinkle surface instability of a graded neo-Hookean block with exponentially varying modulus under plane strain by using the linear bifurcation analysis. We derive the first variation condition for minimizing the potential energy functional and solve the linearized equations of equilibrium to find the necessary conditions for surface instability. It is found that for a homogeneous block or an inhomogeneous block with increasing modulus from the surface, the critical stretch for surface instability is 0.544 (0.456 strain), which is independent of the geometry and the elastic modulus on the surface of the block. This critical stretch coincides with that reported by Biot (1963 Appl. Sci. Res. 12, 168-182. (doi:10.1007/BF03184638)) 53 years ago for the onset of wrinkle instabilities in a half-space of homogeneous neo-Hookean materials. On the other hand, for an inhomogeneous block with decreasing modulus from the surface, the critical stretch for surface instability ranges from 0.544 to 1 (0-0.456 strain), depending on the modulus gradient, and the length and height of the block. This sheds light on the effects of the material inhomogeneity and structural geometry on surface instability.
The Application of Simulation Method in Isothermal Elastic Natural Gas Pipeline
NASA Astrophysics Data System (ADS)
Xing, Chunlei; Guan, Shiming; Zhao, Yue; Cao, Jinggang; Chu, Yanji
2018-02-01
This Elastic pipeline mathematic model is of crucial importance in natural gas pipeline simulation because of its compliance with the practical industrial cases. The numerical model of elastic pipeline will bring non-linear complexity to the discretized equations. Hence the Newton-Raphson method cannot achieve fast convergence in this kind of problems. Therefore A new Newton Based method with Powell-Wolfe Condition to simulate the Isothermal elastic pipeline flow is presented. The results obtained by the new method aregiven based on the defined boundary conditions. It is shown that the method converges in all cases and reduces significant computational cost.
Li, Yan; Deng, Jianxin; Zhou, Jun; Li, Xueen
2016-11-01
Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings. Viscoelastic mechanical properties of brain tissues in post-puncture insertion are investigated through indentation stress relaxation tests for six interested regions along a planned trajectory. A linear viscoelastic model with a Prony series approximation is fitted to the average load trace of each region using Boltzmann hereditary integral. Shear relaxation moduli of each region are calculated using the parameters of the Prony series approximation. The results show that, in pre-puncture insertion, needle force almost increases linearly with needle displacement. Both fitting lines can perfectly fit the average insertion force. The Young's moduli calculated from the slope of the two fittings are worthy of trust to model linearly or nonlinearly instantaneous elastic responses of brain tissues, respectively. In post-puncture insertion, both region and time significantly affect the viscoelastic behaviors. Six tested regions can be classified into three categories in stiffness. Shear relaxation moduli decay dramatically in short time scales but equilibrium is never truly achieved. The regional and temporal viscoelastic mechanical properties in post-puncture insertion are valuable for guiding probe insertion into each region on the implanting trajectory.
NASA Astrophysics Data System (ADS)
Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja
2018-03-01
The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.
NASA Astrophysics Data System (ADS)
DeLuca, R.
2006-03-01
Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.
The elastic properties of woven polymeric fabric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, W.E.
1989-01-01
The in-plane linear elastic constants of woven fabric are determined in terms of the specific fabric microstructure. The fabric is assumed to be a spatially periodic interlaced network of orthogonal yarns and the individual yarns are modeled as extensible elastica. These results indicate that a significant coupling of bending and stretching effects occurs during deformation. Results of this theoretical analysis compare favorable with measured in-plane elastic constants for Vincel yarn fabrics. 17 refs., 2 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree; Pagare, Gitanjali
2017-10-01
The structural, electronic, magnetic and elastic properties of cubic EuMO3 (M = Ga, In) perovskites has been successfully predicted within well accepted density functional theory using full potential linearized augmented plane wave (FP-LAPW). The structural study reveals ferromagnetic stability for both the compounds. The Hubbard correlation (GGA+U) calculated spin polarized electronic band and density of states presents half-metallic nature for both the compounds. The magnetic moments calculated with different approximations were found to be approximately 6 µ B for EuGaO3 and approximately 7 µ B for EuInO3. The three independent elastic constants (C 11, C 12, C 44) have been used for the prediction of mechanical properties like Young modulus (Y), Shear modulus (G), Poisson ratio (ν), Anisotropic factor (A) under pressure. The B/G ratio presents the ductile nature for both compounds. The thermodynamic parameters like specific heat capacity, thermal expansion, Grüneisen parameter and Debye temperature etc have also been analyzed in the temperature range 0-900 K and pressure range from 0 to 30 GPa.
Calculation of skin-stiffener interface stresses in stiffened composite panels
NASA Technical Reports Server (NTRS)
Cohen, David; Hyer, Michael W.
1987-01-01
A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. Accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. Using this analysis procedure, the influence of geometric nonlinearities and stiffener parameters on the skin-stiffener interface stresses is evaluated.
NASA Astrophysics Data System (ADS)
Tchitchekova, Deyana S.; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel
2014-07-01
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ˜3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
Tchitchekova, Deyana S; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel
2014-07-21
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ∼3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
Elastically Decoupling Dark Matter.
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2016-06-03
We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1 fb range.
Mechanical stress-controlled tunable active frequency-selective surface
NASA Astrophysics Data System (ADS)
Huang, Bo-Cin; Hong, Jian-Wei; Lo, Cheng-Yao
2017-01-01
This study proposes a tunable active frequency-selective surface (AFSS) realized by mechanically expanding or contracting a split-ring resonator (SRR) array. The proposed AFSS transfers mechanical stress from its elastic substrate to the top of the SRR, thereby achieving electromagnetic (EM) modulation without the need for an additional external power supply, meeting the requirements for the target application: the invisibility cloak. The operating mechanism of the proposed AFSS differs from those of other AFSSs, supporting modulations in arbitrary frequencies in the target range. The proposed stress-controlled or strain-induced EM modulation proves the existence of an identical and linear relationship between the strain gradient and the frequency shift, implying its suitability for other EM modulation ranges and applications.
NASA Astrophysics Data System (ADS)
Hoang, Van-Hung; Le, Van-Hoang; Lin, C. D.; Le, Anh-Thu
2017-03-01
By analyzing theoretical results from a numerical solution of the time-dependent Schrödinger equation for atoms in few-cycle bicircular laser pulses, we show that high-energy photoelectron momentum spectra can be used to extract accurate elastic scattering differential cross sections of the target ion with free electrons. We find that the retrieval range for a scattering angle with bicircular pulses is wider than with linearly polarized pulses, although the retrieval method has to be modified to account for different returning directions of the electron in the continuum. This result can be used to extend the range of applicability of ultrafast imaging techniques such as laser-induced electron diffraction and for the accurate characterization of laser pulses.
NASA Astrophysics Data System (ADS)
Spannenberg, Jescica; Atangana, Abdon; Vermeulen, P. D.
2017-09-01
Fractional differentiation has adequate use for investigating real world scenarios related to geological formations associated with elasticity, heterogeneity, viscoelasticity, and the memory effect. Since groundwater systems exist in these geological formations, modelling groundwater recharge as a real world scenario is a challenging task to do because existing recharge estimation methods are governed by linear equations which make use of constant field parameters. This is inadequate because in reality these parameters are a function of both space and time. This study therefore concentrates on modifying the recharge equation governing the EARTH model, by application of the Eton approach. Accordingly, this paper presents a modified equation which is non-linear, and accounts for parameters in a way that it is a function of both space and time. To be more specific, herein, recharge and drainage resistance which are parameters within the equation, became a function of both space and time. Additionally, the study entailed solving the non-linear equation using an iterative method as well as numerical solutions by means of the Crank-Nicolson scheme. The numerical solutions were used alongside the Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu derivatives, so that account was taken for elasticity, heterogeneity, viscoelasticity, and the memory effect. In essence, this paper presents a more adequate model for recharge estimation.
Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien
2012-01-01
Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.
Importance of elastic finite-size effects: Neutral defects in ionic compounds
Burr, P. A.; Cooper, M. W. D.
2017-09-15
Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less
Importance of elastic finite-size effects: Neutral defects in ionic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, P. A.; Cooper, M. W. D.
Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less
Importance of elastic finite-size effects: Neutral defects in ionic compounds
NASA Astrophysics Data System (ADS)
Burr, P. A.; Cooper, M. W. D.
2017-09-01
Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.
Evaluation of flaws in carbon steel piping. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahoor, A.; Gamble, R.M.; Mehta, H.S.
1986-10-01
The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductilemore » tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively.« less
Then, C; Stassen, B; Depta, K; Silber, G
2017-07-01
Mechanical characterization of human superficial facial tissue has important applications in biomedical science, computer assisted forensics, graphics, and consumer goods development. Specifically, the latter may include facial hair removal devices. Predictive accuracy of numerical models and their ability to elucidate biomechanically relevant questions depends on the acquisition of experimental data and mechanical tissue behavior representation. Anisotropic viscoelastic behavioral characterization of human facial tissue, deformed in vivo with finite strain, however, is sparse. Employing an experimental-numerical approach, a procedure is presented to evaluate multidirectional tensile properties of superficial tissue layers of the face in vivo. Specifically, in addition to stress relaxation, displacement-controlled multi-step ramp-and-hold protocols were performed to separate elastic from inelastic properties. For numerical representation, an anisotropic hyperelastic material model in conjunction with a time domain linear viscoelasticity formulation with Prony series was employed. Model parameters were inversely derived, employing finite element models, using multi-criteria optimization. The methodology provides insight into mechanical superficial facial tissue properties. Experimental data shows pronounced anisotropy, especially with large strain. The stress relaxation rate does not depend on the loading direction, but is strain-dependent. Preconditioning eliminates equilibrium hysteresis effects and leads to stress-strain repeatability. In the preconditioned state tissue stiffness and hysteresis insensitivity to strain rate in the applied range is evident. The employed material model fits the nonlinear anisotropic elastic results and the viscoelasticity model reasonably reproduces time-dependent results. Inversely deduced maximum anisotropic long-term shear modulus of linear elasticity is G ∞,max aniso =2.43kPa and instantaneous initial shear modulus at an applied rate of ramp loading is G 0,max aniso =15.38kPa. Derived mechanical model parameters constitute a basis for complex skin interaction simulation. Copyright © 2017. Published by Elsevier Ltd.
Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V
2012-06-01
Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.
Fillet Weld Stress Using Finite Element Methods
NASA Technical Reports Server (NTRS)
Lehnhoff, T. F.; Green, G. W.
1985-01-01
Average elastic Von Mises equivalent stresses were calculated along the throat of a single lap fillet weld. The average elastic stresses were compared to initial yield and to plastic instability conditions to modify conventional design formulas is presented. The factor is a linear function of the thicknesses of the parent plates attached by the fillet weld.
Wave-front singularities for two-dimensional anisotropic elastic waves.
NASA Technical Reports Server (NTRS)
Payton, R. G.
1972-01-01
Wavefront singularities for the displacement functions, associated with the radiation of linear elastic waves from a point source embedded in a finitely strained two-dimensional elastic solid, are examined in detail. It is found that generally the singularities are of order d to the -1/2 power, where d measures distance away from the front. However, in certain exceptional cases singularities of order d to the -n power, where n = 1/4, 2/3, 3/4, may be encountered.
2009-09-01
Sec. 2, while the latter ase—which implicitly includes the effects of image forces of efects in neighboring volume elements—may be more practical rom...versetzungen und eigenspannungen,” Arch . Ration. Mech. Anal., 4, pp. 273–334. 25 Lee, E. H., 1969, “Elastic-Plastic Deformation at Finite Strains,” ASME J...Rev., 73, pp. 373–382. 27 Kroner, E., and Seeger, A., 1959, “Nicht-Lineare Elastizitatstheorie der Verset- zungen und Eigenspannungen,” Arch . Ration
Ab-initio study of electronic structure and elastic properties of ZrC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mund, H. S., E-mail: hmoond@gmail.com; Ahuja, B. L.
2016-05-23
The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.
How tall can gelatin towers be? An introduction to elasticity and buckling
NASA Astrophysics Data System (ADS)
Taberlet, Nicolas; Ferrand, Jérémy; Camus, Élise; Lachaud, Léa; Plihon, Nicolas
2017-12-01
The stability of elastic towers is studied through simple hands-on experiments. Using gelatin-based stackable bricks, one can investigate the maximum height a simple structure can reach before collapsing. We show through experiments and by using the classical linear elastic theory that the main limitation to the height of such towers is the buckling of the elastic structures under their own weight. Moreover, the design and architecture of the towers can be optimized to greatly improve their resistance to self-buckling. To this aim, the maximum height of hollow and tapered towers is investigated. The experimental and theoretical developments presented in this paper can help students grasp the fundamental concepts in elasticity and mechanical stability.
Micromechanical analysis on anisotropy of structured magneto-rheological elastomer
NASA Astrophysics Data System (ADS)
Li, R.; Zhang, Z.; Chen, S. W.; Wang, X. J.
2015-07-01
This paper investigates the equivalent elastic modulus of structured magneto-rheological elastomer (MRE) in the absence of magnetic field. We assume that both matrix and ferromagnetic particles are linear elastic materials, and ferromagnetic particles are embedded in matrix with layer-like structure. The structured composite could be divided into matrix layer and reinforced layer, in which the reinforced layer is composed of matrix and the homogenously distributed ferromagnetic particles in matrix. The equivalent elastic modulus of reinforced layer is analysed by the Mori-Tanaka method. Finite Element Method (FEM) is also carried out to illustrate the relationship between the elastic modulus and the volume fraction of ferromagnetic particles. The results show that the anisotropy of elastic modulus becomes noticeable, as the volume fraction of particles increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezler, P.; Hartzman, M.; Reich, M.
1980-08-01
A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.
Atlan, Michael; Desbiolles, Pierre; Gross, Michel; Coppey-Moisan, Maïté
2010-03-01
We developed a microscope intended to probe, using a parallel heterodyne receiver, the fluctuation spectrum of light quasi-elastically scattered by gold nanoparticles diffusing in viscous fluids. The cutoff frequencies of the recorded spectra scale up linearly with those expected from single-scattering formalism in a wide range of dynamic viscosities (1 to 15 times water viscosity at room temperature). Our scheme enables ensemble-averaged optical fluctuations measurements over multispeckle recordings in low light, at temporal frequencies up to 10 kHz, with a 12 Hz framerate array detector.
Envelope of coda waves for a double couple source due to non-linear elasticity
NASA Astrophysics Data System (ADS)
Calisto, Ignacia; Bataille, Klaus
2014-10-01
Non-linear elasticity has recently been considered as a source of scattering, therefore contributing to the coda of seismic waves, in particular for the case of explosive sources. This idea is analysed further here, theoretically solving the expression for the envelope of coda waves generated by a point moment tensor in order to compare with earthquake data. For weak non-linearities, one can consider each point of the non-linear medium as a source of scattering within a homogeneous and linear medium, for which Green's functions can be used to compute the total displacement of scattered waves. These sources of scattering have specific radiation patterns depending on the incident and scattered P or S waves, respectively. In this approach, the coda envelope depends on three scalar parameters related to the specific non-linearity of the medium; however these parameters only change the scale of the coda envelope. The shape of the coda envelope is sensitive to both the source time function and the intrinsic attenuation. We compare simulations using this model with data from earthquakes in Taiwan, with a good fit.
Elastic and Photoelastic Properties of M(NO3)2, MO (M = Mg, Ca, Sr, Ba)
NASA Astrophysics Data System (ADS)
Zhuravlev, Yu. N.; Korabel'nikov, D. V.
2017-05-01
The paper deals with ab initio investigations of elastic and photoelastic properties of oxides and nitrates of alkaline-earth metals. In gradient approximation of the density functional theory (DFT), these properties are studied with the use of the linear combination of the atomic orbital technique. DFT calculations are done with the CRYSTAL 14 software package. The paper introduces the elastic and photoelastic constants, anisotropy parameters for single-crystalline phases and the elastic modules, hardness, Poisson ratio for polycrystalline phases. Such parameters as sonic speed, Debye temperature, thermal conductivity, and Gruneisen parameter are estimated herein. For the fist time, mechanical stability, anisotropy of elastic and photoelastic properties and their dependences are investigated ab initio in this paper. Experimental results on elastic and photoelastic properties of oxides and nitrates are in good agreement with theoretical calculations.
NASA Astrophysics Data System (ADS)
Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.
2018-01-01
Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.
Phase field benchmark problems for dendritic growth and linear elasticity
Jokisaari, Andrea M.; Voorhees, P. W.; Guyer, Jonathan E.; ...
2018-03-26
We present the second set of benchmark problems for phase field models that are being jointly developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST) along with input from other members in the phase field community. As the integrated computational materials engineering (ICME) approach to materials design has gained traction, there is an increasing need for quantitative phase field results. New algorithms and numerical implementations increase computational capabilities, necessitating standard problems to evaluate their impact on simulated microstructure evolution as well as their computational performance. We propose one benchmark problem formore » solidifiication and dendritic growth in a single-component system, and one problem for linear elasticity via the shape evolution of an elastically constrained precipitate. We demonstrate the utility and sensitivity of the benchmark problems by comparing the results of 1) dendritic growth simulations performed with different time integrators and 2) elastically constrained precipitate simulations with different precipitate sizes, initial conditions, and elastic moduli. As a result, these numerical benchmark problems will provide a consistent basis for evaluating different algorithms, both existing and those to be developed in the future, for accuracy and computational efficiency when applied to simulate physics often incorporated in phase field models.« less
Micropolar curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models
NASA Astrophysics Data System (ADS)
Zozulya, V. V.
2017-01-01
New models for micropolar plane curved rods have been developed. 2-D theory is developed from general 2-D equations of linear micropolar elasticity using a special curvilinear system of coordinates related to the middle line of the rod and special hypothesis based on assumptions that take into account the fact that the rod is thin.High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First stress and strain tensors,vectors of displacements and rotation and body force shave been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then in the same way as in the theory of elasticity, system of differential equations in term of displacements and boundary conditions for Fourier coefficients have been obtained. The Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and 2-D equations of linear micropolar elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scale when taking in to account micropolar couple stress and rotation effects.
Experimental investigation of Rayleigh Taylor instability in elastic-plastic materials
NASA Astrophysics Data System (ADS)
Haley, Aaron Alan; Banerjee, Arindam
2010-11-01
The interface of an elastic-plastic plate accelerated by a fluid of lower density is Rayleigh Taylor (RT) unstable, the growth being mitigated by the mechanical strength of the plate. The instability is observed when metal plates are accelerated by high explosives, in explosive welding, and in volcanic island formation due to the strength of the inner crust. In contrast to the classical case involving Newtonian fluids, RT instability in accelerated solids is not well understood. The difficulties for constructing a theory for the linear growth phase in solids is essentially due to the character of elastic-plastic constitutive properties which has a nonlinear dependence on the magnitude of the rate of deformation. Experimental investigation of the phenomena is difficult due to the exceedingly small time scales (in high energy density experiments) and large measurement uncertainties of material properties. We performed experiments on our Two-Wheel facility to study the linear stage of the incompressible RT instability in elastic-plastic materials (yogurt) whose properties were well characterized. Rotation of the wheels imparted a constant centrifugal acceleration on the material interface that was cut with a small sinusoidal ripple. The controlled initial conditions and precise acceleration amplitudes are levied to investigate transition from elastic to plastic deformation and allow accurate and detailed measurements of flow properties.
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2014-01-01
Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.
Phase field benchmark problems for dendritic growth and linear elasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jokisaari, Andrea M.; Voorhees, P. W.; Guyer, Jonathan E.
We present the second set of benchmark problems for phase field models that are being jointly developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST) along with input from other members in the phase field community. As the integrated computational materials engineering (ICME) approach to materials design has gained traction, there is an increasing need for quantitative phase field results. New algorithms and numerical implementations increase computational capabilities, necessitating standard problems to evaluate their impact on simulated microstructure evolution as well as their computational performance. We propose one benchmark problem formore » solidifiication and dendritic growth in a single-component system, and one problem for linear elasticity via the shape evolution of an elastically constrained precipitate. We demonstrate the utility and sensitivity of the benchmark problems by comparing the results of 1) dendritic growth simulations performed with different time integrators and 2) elastically constrained precipitate simulations with different precipitate sizes, initial conditions, and elastic moduli. As a result, these numerical benchmark problems will provide a consistent basis for evaluating different algorithms, both existing and those to be developed in the future, for accuracy and computational efficiency when applied to simulate physics often incorporated in phase field models.« less
Theoretical investigations on structural, elastic and electronic properties of thallium halides
NASA Astrophysics Data System (ADS)
Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham
2011-04-01
Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.
Approximate formulas for elasticity of the Tornquist functions and some their advantages
NASA Astrophysics Data System (ADS)
Issin, Meyram
2017-09-01
In this article functions of demand for prime necessity, second necessity and luxury goods depending on the income are considered. These functions are called Tornquist functions. By means of the return model the demand for prime necessity goods and second necessity goods are approximately described. Then on the basis of a method of the smallest squares approximate formulas for elasticity of these Tornquist functions are received. To receive an approximate formula for elasticity of function of demand for luxury goods, the linear asymptotic formula is constructed for this function. Some benefits of approximate formulas for elasticity of Tornquist functions are specified.
Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio
2017-01-01
Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517
ELASTIC NET FOR COX'S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM.
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox's proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox's proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Sanyal, S. P., E-mail: sps.physicsbu@gmail.com
2016-05-06
Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time.more » Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.« less
Calculation of open and closed system elastic coefficients for multicomponent solids
NASA Astrophysics Data System (ADS)
Mishin, Y.
2015-06-01
Thermodynamic equilibrium in multicomponent solids subject to mechanical stresses is a complex nonlinear problem whose exact solution requires extensive computations. A few decades ago, Larché and Cahn proposed a linearized solution of the mechanochemical equilibrium problem by introducing the concept of open system elastic coefficients [Acta Metall. 21, 1051 (1973), 10.1016/0001-6160(73)90021-7]. Using the Ni-Al solid solution as a model system, we demonstrate that open system elastic coefficients can be readily computed by semigrand canonical Monte Carlo simulations in conjunction with the shape fluctuation approach. Such coefficients can be derived from a single simulation run, together with other thermodynamic properties needed for prediction of compositional fields in solid solutions containing defects. The proposed calculation approach enables streamlined solutions of mechanochemical equilibrium problems in complex alloys. Second order corrections to the linear theory are extended to multicomponent systems.
Force sensing using 3D displacement measurements in linear elastic bodies
NASA Astrophysics Data System (ADS)
Feng, Xinzeng; Hui, Chung-Yuen
2016-07-01
In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.
NASA Astrophysics Data System (ADS)
Lonchakov, A. T.
2011-04-01
A negative paramagnetic contribution to the dynamic elastic moduli is identified in AIIBVI:3d wide band-gap compounds for the first time. It appears as a paramagnetic elastic, or, briefly, paraelastic, susceptibility. These compounds are found to have a linear temperature dependence for the inverse paraelastic susceptibility. This is explained by a contribution from the diagonal matrix elements of the orbit-lattice interaction operators in the energy of the spin-orbital states of the 3d-ion as a function of applied stress (by analogy with the Curie contribution to the magnetic susceptibility). The inverse paraelastic susceptibility of AIIBVI crystals containing non-Kramers 3d-ions is found to deviate from linearity with decreasing temperature and reaches saturation. This effect is explained by a contribution from nondiagonal matrix elements (analogous to the well known van Vleck contribution to the magnetic susceptibility of paramagnets).
Metamaterials-based sensor to detect and locate nonlinear elastic sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gliozzi, Antonio S.; Scalerandi, Marco; Miniaci, Marco
2015-10-19
In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from themore » propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.« less
Fractional hereditariness of lipid membranes: Instabilities and linearized evolution.
Deseri, L; Pollaci, P; Zingales, M; Dayal, K
2016-05-01
In this work lipid ordering phase changes arising in planar membrane bilayers is investigated both accounting for elasticity alone and for effective viscoelastic response of such assemblies. The mechanical response of such membranes is studied by minimizing the Gibbs free energy which penalizes perturbations of the changes of areal stretch and their gradients only (Deseri and Zurlo, 2013). As material instabilities arise whenever areal stretches characterizing homogeneous configurations lie inside the spinoidal zone of the free energy density, bifurcations from such configurations are shown to occur as oscillatory perturbations of the in-plane displacement. Experimental observations (Espinosa et al., 2011) show a power-law in-plane viscous behavior of lipid structures allowing for an effective viscoelastic behavior of lipid membranes, which falls in the framework of Fractional Hereditariness. A suitable generalization of the variational principle invoked for the elasticity is applied in this case, and the corresponding Euler-Lagrange equation is found together with a set of boundary and initial conditions. Separation of variables allows for showing how Fractional Hereditariness owes bifurcated modes with a larger number of spatial oscillations than the corresponding elastic analog. Indeed, the available range of areal stresses for material instabilities is found to increase with respect to the purely elastic case. Nevertheless, the time evolution of the perturbations solving the Euler-Lagrange equation above exhibits time-decay and the large number of spatial oscillation slowly relaxes, thereby keeping the features of a long-tail type time-response. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.
Larriba, Carlos; Hogan, Christopher J
2013-05-16
Ion/electrical mobility measurements of nanoparticles and polyatomic ions are typically linked to particle/ion physical properties through either application of the Stokes-Millikan relationship or comparison to mobilities predicted from polyatomic models, which assume that gas molecules scatter specularly and elastically from rigid structural models. However, there is a discrepancy between these approaches; when specular, elastic scattering models (i.e., elastic-hard-sphere scattering, EHSS) are applied to polyatomic models of nanometer-scale ions with finite-sized impinging gas molecules, predictions are in substantial disagreement with the Stokes-Millikan equation. To rectify this discrepancy, we developed and tested a new approach for mobility calculations using polyatomic models in which non-specular (diffuse) and inelastic gas-molecule scattering is considered. Two distinct semiempirical models of gas-molecule scattering from particle surfaces were considered. In the first, which has been traditionally invoked in the study of aerosol nanoparticles, 91% of collisions are diffuse and thermally accommodating, and 9% are specular and elastic. In the second, all collisions are considered to be diffuse and accommodating, but the average speed of the gas molecules reemitted from a particle surface is 8% lower than the mean thermal speed at the particle temperature. Both scattering models attempt to mimic exchange between translational, vibrational, and rotational modes of energy during collision, as would be expected during collision between a nonmonoatomic gas molecule and a nonfrozen particle surface. The mobility calculation procedure was applied considering both hard-sphere potentials between gas molecules and the atoms within a particle and the long-range ion-induced dipole (polarization) potential. Predictions were compared to previous measurements in air near room temperature of multiply charged poly(ethylene glycol) (PEG) ions, which range in morphology from compact to highly linear, and singly charged tetraalkylammonium cations. It was found that both non-specular, inelastic scattering rules lead to excellent agreement between predictions and experimental mobility measurements (within 5% of each other) and that polarization potentials must be considered to make correct predictions for high-mobility particles/ions. Conversely, traditional specular, elastic scattering models were found to substantially overestimate the mobilities of both types of ions.
Elastic-plastic models for multi-site damage
NASA Technical Reports Server (NTRS)
Actis, Ricardo L.; Szabo, Barna A.
1994-01-01
This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soederlind, P.; Moriarty, J.A.; Wills, J.M.
1996-06-01
{ital Ab} {ital initio} electronic-structure calculations, based on density-functional theory and a full-potential linear-muffin-tin-orbital method, have been used to predict crystal-structure phase stabilities, elastic constants, and Brillouin-zone-boundary phonons for iron under compression. Total energies for five crystal structures, bcc, fcc, bct, hcp, and dhcp, have been calculated over a wide volume range. In agreement with experiment and previous theoretical calculations, a magnetic bcc ground state is obtained at ambient pressure and a nonmagnetic hcp ground state is found at high pressure, with a predicted bcc {r_arrow} hcp phase transition at about 10 GPa. Also in agreement with very recent diamond-anvil-cellmore » experiments, a metastable dhcp phase is found at high pressure, which remains magnetic and consequently accessible at high temperature up to about 50 GPa. In addition, the bcc structure becomes mechanically unstable at pressures above 2 Mbar (200 GPa) and a metastable, but still magnetic, bct phase ({ital c}/{ital a} {approx_equal} 0.875) develops. For high-pressure nonmagnetic iron, fcc and hcp elastic constants and fcc phonon frequencies have been calculated to above 4 Mbar. These quantities rise smoothly with pressure, but an increasing tendency towards elastic anisotropy as a function of compression is observed, and this has important implications for the solid inner-core of the earth. The fcc elastic-constant and phonon data have also been used in combination with generalized pseudopotential theory to develop many-body interatomic potentials, from which high-temperature thermodynamic properties and melting can be obtained. In this paper, these potentials have been used to calculate full fcc and hcp phonon spectra and corresponding Debye temperatures as a function of compression. {copyright} {ital 1996 The American Physical Society.}« less
A Linear Theory for Inflatable Plates of Arbitrary Shape
NASA Technical Reports Server (NTRS)
McComb, Harvey G., Jr.
1961-01-01
A linear small-deflection theory is developed for the elastic behavior of inflatable plates of which Airmat is an example. Included in the theory are the effects of a small linear taper in the depth of the plate. Solutions are presented for some simple problems in the lateral deflection and vibration of constant-depth rectangular inflatable plates.
NASA Astrophysics Data System (ADS)
Majumdar, Sayantan; Sood, A. K.
2014-06-01
The role of elastic Taylor-Couette flow instabilities in the dynamic nonlinear viscoelastic response of an entangled wormlike micellar fluid is studied by large-amplitude oscillatory shear (LAOS) rheology and in situ polarized light scattering over a wide range of strain and angular frequency values, both above and below the linear crossover point. Well inside the nonlinear regime, higher harmonic decomposition of the resulting stress signal reveals that the normalized third harmonic I3/I1 shows a power-law behavior with strain amplitude. In addition, I3/I1 and the elastic component of stress amplitude σ0E show a very prominent maximum at the strain value where the number density (nv) of the Taylor vortices is maximum. A subsequent increase in applied strain (γ) results in the distortions of the vortices and a concomitant decrease in nv, accompanied by a sharp drop in I3 and σ0E. The peak position of the spatial correlation function of the scattered intensity along the vorticity direction also captures the crossover. Lissajous plots indicate an intracycle strain hardening for the values of γ corresponding to the peak of I3, similar to that observed for hard-sphere glasses.
Lubrication of nonconformal contacts. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jeng, Y. R.
1985-01-01
Minimum film thickness results for piezoviscous-rigid regime of lubrication are developed for a compressible Newtonian fluid with Roelands viscosity. The results provide a basis for the analysis and design of a wide range of machine elements operating in the piezoviscous-rigid regime of lubrication. A new numerical method of calculating elastic deformation in contact stresses is developed using a biquadratic polynomial to approximate the pressure distribution on the whole domain analyzed. The deformation of every node is expressed as a linear combination of the nodal pressures whose coefficients can be combined into an influence coefficient matrix. This approach has the advantages of improved numerical accuracy, less computing time and smaller storage size required for influence matrix. The ideal elastohydrodynamic lubrication is extended to real bearing systems in order to gain an understanding of failure mechanisms in machine elements. The improved elastic deformation calculation is successfully incorporated into the EHL numerical scheme. Using this revised numerical technique and the flow factor model developed by Patir and Cheng (1978) the surface roughness effects on the elastohydrodynamic lubrication of point contact is considered. Conditions typical of an EHL contact in the piezoviscous-elastic regime entrained in pure rolling are investigated. Results are compared with the smooth surface solutions. Experiments are conducted to study the transient EHL effects in instrument ball bearings.
Chemically defined, ultrasoft PDMS elastomers with selectable elasticity for mechanobiology
Heinrichs, Viktor; Dieluweit, Sabine; Stellbrink, Jörg; Pyckhout-Hintzen, Wim; Hersch, Nils; Richter, Dieter
2018-01-01
Living animal cells are strongly influenced by the mechanical properties of their environment. To model physiological conditions ultrasoft cell culture substrates, in some instances with elasticity (Young's modulus) of only 1 kPa, are mandatory. Due to their long shelf life PDMS-based elastomers are a popular choice. However, uncertainty about additives in commercial formulations and difficulties to reach very soft materials limit their use. Here, we produced silicone elastomers from few, chemically defined and commercially available substances. Elastomers exhibited elasticities in the range from 1 kPa to 55 kPa. In detail, a high molecular weight (155 kg/mol), vinyl-terminated linear silicone was crosslinked with a multifunctional (f = 51) crosslinker (a copolymer of dimethyl siloxane and hydrosilane) by a platinum catalyst. The following different strategies towards ultrasoft materials were explored: sparse crosslinking, swelling with inert silicone polymers, and, finally, deliberate introduction of dangling ends into the network (inhibition). Rheological experiments with very low frequencies led to precise viscoelastic characterizations. All strategies enabled tuning of stiffness with the lowest stiffness of ~1 kPa reached by inhibition. This system was also most practical to use. Biocompatibility of materials was tested using primary cortical neurons from rats. Even after several days of cultivation no adverse effects were found. PMID:29624610
Foutz, T L
1991-03-01
A phenomenological model was developed to describe the nonlinear elastic behavior of the avian gastrocnemius tendon. Quasistatic uniaxial tensile tests were used to apply a deformation and resulting load on the tendon at a deformation rate of 5 mm/min. Plots of deformation versus load indicated a nonlinear loading response. By calculating engineering stress and engineering strain, the experimental data were normalized for tendon shape. The elastic response was determined from stress-strain curves and was found to vary with engineering strain. The response to the applied engineering strain could best be described by a mathematical model that combined a linear function and a nonlinear function. Three parameters in the model were developed to represent the nonlinear elastic behavior of the tendon, thereby allowing analysis of elasticity without prior knowledge of engineering strain. This procedure reduced the amount of data needed for the statistical analysis of nonlinear elasticity.
Elastomeric actuator devices for magnetic resonance imaging
NASA Technical Reports Server (NTRS)
Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)
2008-01-01
The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.
Luo, Ningqi; Huang, Yan; Liu, Jing; Chen, Shih-Chi; Wong, Ching Ping; Zhao, Ni
2017-10-01
A versatile flexible piezoresistive sensor should maintain high sensitivity in a wide linear range, and provide a stable and repeatable pressure reading under bending. These properties are often difficult to achieve simultaneously with conventional filler-matrix composite active materials, as tuning of one material component often results in change of multiple sensor properties. Here, a material strategy is developed to realize a 3D graphene-poly(dimethylsiloxane) hollow structure, where the electrical conductivity and mechanical elasticity of the composite can be tuned separately by varying the graphene layer number and the poly(dimethylsiloxane) composition ratio, respectively. As a result, the sensor sensitivity and linear range can be easily improved through a decoupled tuning process, reaching a sensitivity of 15.9 kPa -1 in a 60 kPa linear region, and the sensor also exhibits fast response (1.2 ms rising time) and high stability. Furthermore, by optimizing the density of the graphene percolation network and thickness of the composite, the stability and repeatability of the sensor output under bending are improved, achieving a measurement error below 6% under bending radius variations from -25 to +25 mm. Finally, the potential applications of these sensors in wearable medical devices and robotic vision are explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Finite-thickness effects on the Rayleigh-Taylor instability in accelerated elastic solids
NASA Astrophysics Data System (ADS)
Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
2017-05-01
A physical model has been developed for the linear Rayleigh-Taylor instability of a finite-thickness elastic slab laying on top of a semi-infinite ideal fluid. The model includes the nonideal effects of elasticity as boundary conditions at the top and bottom interfaces of the slab and also takes into account the finite transit time of the elastic waves across the slab thickness. For Atwood number AT=1 , the asymptotic growth rate is found to be in excellent agreement with the exact solution [Plohr and Sharp, Z. Angew. Math. Mech. 49, 786 (1998), 10.1007/s000330050121], and a physical explanation is given for the reduction of the stabilizing effectiveness of the elasticity for the thinner slabs. The feedthrough factor is also calculated.
NASA Astrophysics Data System (ADS)
Sobolev, Stephan; Muldashev, Iskander
2016-04-01
The key achievement of the geodynamic modelling community greatly contributed by the work of Evgenii Burov and his students is application of "realistic" mineral-physics based non-linear rheological models to simulate deformation processes in crust and mantle. Subduction being a type example of such process is an essentially multi-scale phenomenon with the time-scales spanning from geological to earthquake scale with the seismic cycle in-between. In this study we test the possibility to simulate the entire subduction process from rupture (1 min) to geological time (Mln yr) with the single cross-scale thermomechanical model that employs elasticity, mineral-physics constrained non-linear transient viscous rheology and rate-and-state friction plasticity. First we generate a thermo-mechanical model of subduction zone at geological time-scale including a narrow subduction channel with "wet-quartz" visco-elasto-plastic rheology and low static friction. We next introduce in the same model classic rate-and state friction law in subduction channel, leading to stick-slip instability. This model generates spontaneous earthquake sequence. In order to follow in details deformation process during the entire seismic cycle and multiple seismic cycles we use adaptive time-step algorithm changing step from 40 sec during the earthquake to minute-5 year during postseismic and interseismic processes. We observe many interesting deformation patterns and demonstrate that contrary to the conventional ideas, this model predicts that postseismic deformation is controlled by visco-elastic relaxation in the mantle wedge already since hour to day after the great (M>9) earthquakes. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-4year time range.
Contact mechanics for coated spheres that includes the transition from weak to strong adhesion
Reedy, Earl David
2007-09-01
Recently published results for a rigid spherical indenter contacting a thin, linear elastic coating on a rigid planar substrate have been extended to include the case of two contacting spheres, where each sphere is rigid and coated with a thin, linear elastic material. This is done by using an appropriately chosen effective radius and coating modulus. Finally, the earlier work has also been extended to provide analytical results that span the transition between the previously derived Derjaguin–Müller–Toporov (DMT)-like (work of adhesion/coating-modulus ratio is small) and Johnson–Kendall–Roberts (JKR)-like (work of adhesion/coating-modulus ratio is large) limits.
Results of including geometric nonlinearities in an aeroelastic model of an F/A-18
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.
1989-01-01
An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.
Nonlinear reflection of shock shear waves in soft elastic media.
Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël
2010-02-01
For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.
Elastic constants and pressure derivative of elastic constants of Si1-xGex solid solution
NASA Astrophysics Data System (ADS)
Jivani, A. R.; Baria, J. K.; Vyas, P. S.; Jani, A. R.
2013-02-01
Elastic properties of Si1-xGex solid solution with arbitrary (atomic) concentration (x) are studied using the pseudo-alloy atom model based on the pseudopotential theory and on the higher-order perturbation scheme with the application of our own proposed model potential. We have used local-field correction function proposed by Sarkar et al to study Si-Ge system. The Elastic constants and pressure derivatives of elastic constants of the solid solution is investigated with different concentration x of Ge. It is found in the present study that the calculated numerical values of the aforesaid physical properties of Si-Ge system are function of x. The elastic constants (C11, C12 and C44) decrease linearly with increase in concentration x and pressure derivative of elastic constants (C11, C12 and C44) increase with the concentration x of Ge. This study provides better set of theoretical results for such solid solution for further comparison either with theoretical or experimental results.
NASA Astrophysics Data System (ADS)
Waubke, Holger; Kasess, Christian H.
2016-11-01
Devices that emit structure-borne sound are commonly decoupled by elastic components to shield the environment from acoustical noise and vibrations. The elastic elements often have a hysteretic behavior that is typically neglected. In order to take hysteretic behavior into account, Bouc developed a differential equation for such materials, especially joints made of rubber or equipped with dampers. In this work, the Bouc model is solved by means of the Gaussian closure technique based on the Kolmogorov equation. Kolmogorov developed a method to derive probability density functions for arbitrary explicit first-order vector differential equations under white noise excitation using a partial differential equation of a multivariate conditional probability distribution. Up to now no analytical solution of the Kolmogorov equation in conjunction with the Bouc model exists. Therefore a wide range of approximate solutions, especially the statistical linearization, were developed. Using the Gaussian closure technique that is an approximation to the Kolmogorov equation assuming a multivariate Gaussian distribution an analytic solution is derived in this paper for the Bouc model. For the stationary case the two methods yield equivalent results, however, in contrast to statistical linearization the presented solution allows to calculate the transient behavior explicitly. Further, stationary case leads to an implicit set of equations that can be solved iteratively with a small number of iterations and without instabilities for specific parameter sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochrane, Alexander P.; Merrett, Craig G.; Hilton, Harry H.
2014-12-10
The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject tomore » loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. This paper reports on analytical analyses and simulations of the effects of flexibility and time dependent material properties (viscoelasticity) on aerodynamic derivatives and on lateral, longitudinal, directional and spin stability derivatives. Cases of both constant and variable flight and maneuver velocities are considered. Analytical results for maneuvers involving constant and time dependent rolling velocities are analyzed, discussed and evaluated. The relationships between rolling velocity p and aileron angular displacement β as well as control effectiveness are analyzed and discussed in detail for elastic and viscoelastic wings. Such analyses establish the roll effectiveness derivatives (∂[p(t)])/(V{sub ∞}∂β(t)) . Similar studies involving other stability and aerodynamic derivatives are also undertaken. The influence of the twin effects of viscoelastic and elastic materials and of variable flight, rolling, pitching and yawing velocities on longitudinal, lateral and directional are also investigated. Variable flight velocities, encountered during maneuvers, render the usually linear problem at constant velocities into a nonlinear one.« less
Modeling elastic anisotropy in strained heteroepitaxy
NASA Astrophysics Data System (ADS)
Krishna Dixit, Gopal; Ranganathan, Madhav
2017-09-01
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to < 1 0 5 > facets on the surface.
Modeling elastic anisotropy in strained heteroepitaxy.
Dixit, Gopal Krishna; Ranganathan, Madhav
2017-09-20
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.
Brain Mechanical Property Measurement Using MRE with Intrinsic Activation
Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.
2013-01-01
Problem Addressed Many pathologies alter the mechanical properties of tissue. Magnetic resonance elastography (MRE) has been developed to noninvasively characterize these quantities in vivo. Typically, small vibrations are induced in the tissue of interest with an external mechanical actuator. The resulting displacements are measured with phase contrast sequences and are then used to estimate the underlying mechanical property distribution. Several MRE studies have quantified brain tissue properties. However, the cranium and meninges, especially the dura, are very effective at damping externally applied vibrations from penetrating deeply into the brain. Here, we report a method, termed ‘intrinsic activation’, that eliminates the requirement for external vibrations by measuring the motion generated by natural blood vessel pulsation. Methodology A retrospectively gated phase contrast MR angiography sequence was used to record the tissue velocity at eight phases of the cardiac cycle. The velocities were numerically integrated via the Fourier transform to produce the harmonic displacements at each position within the brain. The displacements were then reconstructed into images of the shear modulus based on both linear elastic and poroelastic models. Results, Significance and Potential Impact The mechanical properties produced fall within the range of brain tissue estimates reported in the literature and, equally important, the technique yielded highly reproducible results. The mean shear modulus was 8.1 kPa for linear elastic reconstructions and 2.4 kPa for poroelastic reconstructions where fluid pressure carries a portion of the stress. Gross structures of the brain were visualized, particularly in the poroelastic reconstructions. Intra-subject variability was significantly less than the inter-subject variability in a study of 6 asymptomatic individuals. Further, larger changes in mechanical properties were observed in individuals when examined over time than when the MRE procedures were repeated on the same day. Cardiac pulsation, termed intrinsic activation, produces sufficient motion to allow mechanical properties to be recovered. The poroelastic model is more consistent with the measured data from brain at low frequencies than the linear elastic model. Intrinsic activation allows MR elastography to be performed without a device shaking the head so the patient notices no differences between it and the other sequences in an MR examination. PMID:23079508
Brain mechanical property measurement using MRE with intrinsic activation
NASA Astrophysics Data System (ADS)
Weaver, John B.; Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.
2012-11-01
Many pathologies alter the mechanical properties of tissue. Magnetic resonance elastography (MRE) has been developed to noninvasively characterize these quantities in vivo. Typically, small vibrations are induced in the tissue of interest with an external mechanical actuator. The resulting displacements are measured with phase contrast sequences and are then used to estimate the underlying mechanical property distribution. Several MRE studies have quantified brain tissue properties. However, the cranium and meninges, especially the dura, are very effective at damping externally applied vibrations from penetrating deeply into the brain. Here, we report a method, termed ‘intrinsic activation’, that eliminates the requirement for external vibrations by measuring the motion generated by natural blood vessel pulsation. A retrospectively gated phase contrast MR angiography sequence was used to record the tissue velocity at eight phases of the cardiac cycle. The velocities were numerically integrated via the Fourier transform to produce the harmonic displacements at each position within the brain. The displacements were then reconstructed into images of the shear modulus based on both linear elastic and poroelastic models. The mechanical properties produced fall within the range of brain tissue estimates reported in the literature and, equally important, the technique yielded highly reproducible results. The mean shear modulus was 8.1 kPa for linear elastic reconstructions and 2.4 kPa for poroelastic reconstructions where fluid pressure carries a portion of the stress. Gross structures of the brain were visualized, particularly in the poroelastic reconstructions. Intra-subject variability was significantly less than the inter-subject variability in a study of six asymptomatic individuals. Further, larger changes in mechanical properties were observed in individuals when examined over time than when the MRE procedures were repeated on the same day. Cardiac pulsation, termed intrinsic activation, produces sufficient motion to allow mechanical properties to be recovered. The poroelastic model is more consistent with the measured data from brain at low frequencies than the linear elastic model. Intrinsic activation allows MRE to be performed without a device shaking the head so the patient notices no differences between it and the other sequences in an MR examination.
Rayleigh wave effects in an elastic half-space.
NASA Technical Reports Server (NTRS)
Aggarwal, H. R.
1972-01-01
Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.
Boundary element modelling of dynamic behavior of piecewise homogeneous anisotropic elastic solids
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Markov, I. P.; Litvinchuk, S. Yu
2018-04-01
A traditional direct boundary integral equations method is applied to solve three-dimensional dynamic problems of piecewise homogeneous linear elastic solids. The materials of homogeneous parts are considered to be generally anisotropic. The technique used to solve the boundary integral equations is based on the boundary element method applied together with the Radau IIA convolution quadrature method. A numerical example of suddenly loaded 3D prismatic rod consisting of two subdomains with different anisotropic elastic properties is presented to verify the accuracy of the proposed formulation.
Elasticity of entangled polymer loops: Olympic gels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilgis, T.A.; Otto, M.
1997-08-01
In this Rapid Communication we present a scaling theory for the elasticity of olympic gels, i.e., gels where the elasticity is a consequence of topology only. It is shown that two deformation regimes exist. The first is the nonaffine deformation regime where the free energy scales linear with the deformation. In the large (affine) deformation regime the free energy is shown to scale as F{proportional_to}{lambda}{sup 5/2} where {lambda} is the deformation ratio. Thus a highly non-Hookian stress-strain relation is predicted. {copyright} {ital 1997} {ital The American Physical Society}
Forman, Jason L; de Dios, Eduardo del Pozo; Kent, Richard W
2010-12-01
Injury-predictive finite element (FE) models of the chest must reproduce the structural coupling behavior of the costal cartilage accurately. Gross heterogeneities (the perichondrium and calcifications) may cause models developed based on local material properties to erroneously predict the structural behavior of cartilage segments. This study sought to determine the pseudo-elastic effective material properties required to reproduce the structural behavior of the costal cartilage under loading similar to what might occur in a frontal automobile collision. Twenty-eight segments of cadaveric costal cartilage were subjected to cantilever-like, dynamic loading. Three limited-mesh FE models were then developed for each specimen, having element sizes of 10 mm (typical of current whole-body FE models), 3 mm, and 2 mm. The cartilage was represented as a homogeneous, isotropic, linear elastic material. The elastic moduli of the cartilage models were optimized to fit the anterior-posterior (x-axis) force versus displacement responses observed in the experiments. For a subset of specimens, additional model validation tests were performed under a second boundary condition. The pseudo-elastic effective moduli ranged from 4.8 to 49 MPa, with an average and standard deviation of 22 ± 13.6 MPa. The models were limited in their ability to reproduce the lateral (y-axis) force responses observed in the experiments. The prediction of the x-axis and y-axis forces in the second boundary condition varied. Neither the effective moduli nor the model fit were significantly affected (Student's t-test, p < 0.05) by the model mesh density. The average pseudo-elastic effective moduli were significantly (p < 0.05) greater than local costal cartilage modulus values reported in the literature. These results are consistent with the presence of stiffening heterogeneities within the costal cartilage structure. These effective modulus values may provide guidance for the representation of the costal cartilage in whole-body FE models where these heterogeneities cannot be modeled distinctly.
Responses of runoff to historical and future climate variability over China
NASA Astrophysics Data System (ADS)
Wu, Chuanhao; Hu, Bill X.; Huang, Guoru; Wang, Peng; Xu, Kai
2018-03-01
China has suffered some of the effects of global warming, and one of the potential implications of climate warming is the alteration of the temporal-spatial patterns of water resources. Based on the long-term (1960-2008) water budget data and climate projections from 28 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5), this study investigated the responses of runoff (R) to historical and future climate variability in China at both grid and catchment scales using the Budyko-based elasticity method. Results show that there is a large spatial variation in precipitation (P) elasticity (from 1.1 to 3.2) and potential evaporation (PET) elasticity (from -2.2 to -0.1) across China. The P elasticity is larger in north-eastern and western China than in southern China, while the opposite occurs for PET elasticity. The catchment properties' elasticity of R appears to have a strong non-linear relationship with the mean annual aridity index and tends to be more significant in more arid regions. For the period 1960-2008, the climate contribution to R ranges from -2.4 to 3.6 % yr-1 across China, with the negative contribution in north-eastern China and the positive contribution in western China and some parts of the south-west. The results of climate projections indicate that although there is large uncertainty involved in the 28 GCMs, most project a consistent change in P (or PET) in China at the annual scale. For the period 2071-2100, the mean annual P is projected to increase in most parts of China, especially the western regions, while the mean annual PET is projected to increase in all of China, particularly the southern regions. Furthermore, greater increases are projected for higher emission scenarios. Overall, due to climate change, the arid regions and humid regions of China are projected to become wetter and drier in the period 2071-2100, respectively (relative to the baseline 1971-2000).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stebner, A. P.; Brown, D. W.; Brinson, L. C.
2013-05-27
Polycrystalline, monoclinic nickel-titanium specimens were subjected to tensile and compressive deformations while neutron diffraction spectra were recorded in situ. Using these data, orientation-specific and macroscopic Young's moduli are determined from analysis of linear-elastic deformation exhibited by 13 unique orientations of monoclinic lattices and their relationships to each macroscopic stress and strain. Five of 13 elastic compliance constants are also identified: s{sub 11} = 1.15, s{sub 15} = -1.10, s{sub 22} = 1.34, s{sub 33} = 1.06, s{sub 35} = -1.54, all Multiplication-Sign 10{sup -2} GPa{sup -1}. Through these results, recent atomistic calculations of monoclinic nickel-titanium elastic constants are validated.
NASA Astrophysics Data System (ADS)
Baronian, Vahan; Bourgeois, Laurent; Chapuis, Bastien; Recoquillay, Arnaud
2018-07-01
This paper presents an application of the linear sampling method to ultrasonic non destructive testing of an elastic waveguide. In particular, the NDT context implies that both the solicitations and the measurements are located on the surface of the waveguide and are given in the time domain. Our strategy consists in using a modal formulation of the linear sampling method at multiple frequencies, such modal formulation being justified theoretically in Bourgeois et al (2011 Inverse Problems 27 055001) for rigid obstacles and in Bourgeois and Lunéville (2013 Inverse Problems 29 025017) for cracks. Our strategy requires the inversion of some emission and reception matrices which deserve some special attention due to potential ill-conditioning. The feasibility of our method is proved with the help of artificial data as well as real data.
Differences in price elasticities of demand for health insurance: a systematic review.
Pendzialek, Jonas B; Simic, Dusan; Stock, Stephanie
2016-01-01
Many health insurance systems apply managed competition principles to control costs and quality of health care. Besides other factors, managed competition relies on a sufficient price-elastic demand. This paper presents a systematic review of empirical studies on price elasticity of demand for health insurance. The objective was to identify the differing international ranges of price elasticity and to find socio-economic as well as setting-oriented factors that influence price elasticity. Relevant literature for the topic was identified through a two-step identification process including a systematic search in appropriate databases and further searches within the references of the results. A total of 45 studies from countries such as the USA, Germany, the Netherlands, and Switzerland were found. Clear differences in price elasticity by countries were identified. While empirical studies showed a range between -0.2 and -1.0 for optional primary health insurance in the US, higher price elasticities between -0.6 and -4.2 for Germany and around -2 for Switzerland were calculated for mandatory primary health insurance. Dutch studies found price elasticities below -0.5. In consideration of all relevant studies, age and poorer health status were identified to decrease price elasticity. Other socio-economic factors had an unclear impact or too limited evidence. Premium level, range of premiums, homogeneity of benefits/coverage and degree of forced decision were found to have a major influence on price elasticity in their settings. Further influence was found from supplementary insurance and premium-dependent employer contribution.
Modeling of particle interactions in magnetorheological elastomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biller, A. M., E-mail: kam@icmm.ru; Stolbov, O. V., E-mail: oleg100@gmail.com; Raikher, Yu. L., E-mail: raikher@icmm.ru
2014-09-21
The interaction between two particles made of an isotropic linearly polarizable magnetic material and embedded in an elastomer matrix is studied. In this case, when an external field is imposed, the magnetic attraction of the particles, contrary to point dipoles, is almost wraparound. The exact solution of the magnetic problem in the linear polarization case, although existing, is not practical; to circumvent its use, an interpolation formula is proposed. One more interpolation expression is developed for the resistance of the elastic matrix to the field-induced particle displacements. Minimization of the total energy of the pair reveals its configurational bistability inmore » a certain field range. One of the possible equilibrium states corresponds to the particles dwelling at a distance, the other—to their collapse in a tight dimer. This mesoscopic bistability causes magnetomechanical hysteresis which has important implications for the macroscopic behavior of magnetorheological elastomers.« less
Non-Singular Dislocation Elastic Fields and Linear Elastic Fracture Mechanics
NASA Astrophysics Data System (ADS)
Korsunsky, Alexander M.
2010-03-01
One of the hallmarks of the traditional linear elastic fracture mechanics (LEFM) is the presence of an (integrable) inverse square root singularity of strains and stresses in the vicinity of the crack tip. It is the presence of this singularity that necessitates the introduction of the concepts of stress intensity factor (and its critical value, the fracture toughness) and the energy release rate (and material toughness). This gives rise to the Griffith theory of strength that includes, apart from applied stresses, the considerations of defect size and geometry. A highly successful framework for the solution of crack problems, particularly in the two-dimensional case, due to Muskhelishvili (1953), Bilby and Eshelby (1968) and others, relies on the mathematical concept of dislocation. Special analytical and numerical methods of dealing with the characteristic 1/r (Cauchy) singularity occupy a prominent place within this theory. Recently, in a different context of dislocation dynamics simulations, Cai et al. (2006) proposed a novel means of removing the singularity associated with the dislocation core, by introducing a blunting radius parameter a into the expressions for elastic fields. Here, using the example of two-dimensional elasticity, we demonstrate how the adoption of the similar mathematically expedient tool leads naturally to a non-singular formulation of fracture mechanics problems. This opens an efficient means of treating a variety of crack problems.
Stress stiffening and approximate equations in flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Padilla, Carlos E.; Vonflotow, Andreas H.
1993-01-01
A useful model for open chains of flexible bodies undergoing large rigid body motions, but small elastic deformations, is one in which the equations of motion are linearized in the small elastic deformations and deformation rates. For slow rigid body motions, the correctly linearized, or consistent, set of equations can be compared to prematurely linearized, or inconsistent, equations and to 'oversimplified,' or ruthless, equations through the use of open loop dynamic simulations. It has been shown that the inconsistent model should never be used, while the ruthless model should be used whenever possible. The consistent and inconsistent models differ by stress stiffening terms. These are due to zeroth-order stresses effecting virtual work via nonlinear strain-displacement terms. In this paper we examine in detail the nature of these stress stiffening terms and conclude that they are significant only when the associated zeroth-order stresses approach 'buckling' stresses. Finally it is emphasized that when the stress stiffening terms are negligible the ruthlessly linearized equations should be used.
Characterization of the Nonlinear Elastic Properties of Graphite/Epoxy Composites Using Ultrasound
NASA Technical Reports Server (NTRS)
Prosser, William H.; Green, Robert E., Jr.
1990-01-01
The normalized change in ultrasonic "natural" velocity as a function of stress and temperature was measured in a unidirectional laminate of T300/5208 graphite/epoxy composite using a pulsed phase locked loop ultrasonic interferometer. These measurements were used together with the linear (second order) elastic moduli to calculate some of the nonlinear (third order) moduli of this material.
Forced in-plane vibration of a thick ring on a unilateral elastic foundation
NASA Astrophysics Data System (ADS)
Wang, Chunjian; Ayalew, Beshah; Rhyne, Timothy; Cron, Steve; Dailliez, Benoit
2016-10-01
Most existing studies of a deformable ring on elastic foundation rely on the assumption of a linear foundation. These assumptions are insufficient in cases where the foundation may have a unilateral stiffness that vanishes in compression or tension such as in non-pneumatic tires and bushing bearings. This paper analyzes the in-plane dynamics of such a thick ring on a unilateral elastic foundation, specifically, on a two-parameter unilateral elastic foundation, where the stiffness of the foundation is treated as linear in the circumferential direction but unilateral (i.e. collapsible or tensionless) in the radial direction. The thick ring is modeled as an orthotropic and extensible circular Timoshenko beam. An arbitrarily distributed time-varying in-plane force is considered as the excitation. The Equations of Motion are explicitly derived and a solution method is proposed that uses an implicit Newmark scheme for the time domain solution and an iterative compensation approach to determine the unilateral zone of the foundation at each time step. The dynamic axle force transmission is also analyzed. Illustrative forced vibration responses obtained from the proposed model and solution method are compared with those obtained from a finite element model.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H., Jr.
2002-01-01
The results of an analytical study of the elastic buckling and nonlinear behavior of the liquid-oxygen tank for the new Space Shuttle superlightweight external fuel tank are presented. Selected results that illustrate three distinctly different types of non-linear response phenomena for thin-walled shells which are subjected to combined mechanical and thermal loads are presented. These response phenomena consist of a bifurcation-type buckling response, a short-wavelength non-linear bending response and a non-linear collapse or "snap-through" response associated with a limit point. The effects of initial geometric imperfections on the response characteristics are emphasized. The results illustrate that the buckling and non-linear response of a geometrically imperfect shell structure subjected to complex loading conditions may not be adequately characterized by an elastic linear bifurcation buckling analysis, and that the traditional industry practice of applying a buckling-load knock-down factor can result in an ultraconservative design. Results are also presented that show that a fluid-filled shell can be highly sensitive to initial geometric imperfections, and that the use a buckling-load knock-down factor is needed for this case.
Negative stiffness honeycombs as tunable elastic metamaterials
NASA Astrophysics Data System (ADS)
Goldsberry, Benjamin M.; Haberman, Michael R.
2018-03-01
Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.
Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.
Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe
2013-08-01
We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.
NASA Astrophysics Data System (ADS)
Wang, Changda; Chen, Xuejun; Wei, Peijun; Li, Yueqiu
2017-12-01
The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.
Nanomechanical properties of dental resin-composites.
El-Safty, S; Akhtar, R; Silikas, N; Watts, D C
2012-12-01
To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic moduli and nanohardnesses for bulk-fill and flowable materials were lower than those for conventional nano-hybrid composites. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Shear Strength of Square Graphene Nanoribbons beyond Wrinkling
NASA Astrophysics Data System (ADS)
Ragab, Tarek; Basaran, Cemal
2018-04-01
Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane (x-y) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress-strain diagram beyond the elastic range. The results showed that the average slope of the stress-strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress-strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.
Shear Strength of Square Graphene Nanoribbons beyond Wrinkling
NASA Astrophysics Data System (ADS)
Ragab, Tarek; Basaran, Cemal
2018-07-01
Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane ( x- y) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress-strain diagram beyond the elastic range. The results showed that the average slope of the stress-strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress-strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.
Nonlinear Site Response Validation Studies Using KIK-net Strong Motion Data
NASA Astrophysics Data System (ADS)
Asimaki, D.; Shi, J.
2014-12-01
Earthquake simulations are nowadays producing realistic ground motion time-series in the range of engineering design applications. Of particular significance to engineers are simulations of near-field motions and large magnitude events, for which observations are scarce. With the engineering community slowly adopting the use of simulated ground motions, site response models need to be re-evaluated in terms of their capabilities and limitations to 'translate' the simulated time-series from rock surface output to structural analyses input. In this talk, we evaluate three one-dimensional site response models: linear viscoelastic, equivalent linear and nonlinear. We evaluate the performance of the models by comparing predictions to observations at 30 downhole stations of the Japanese network KIK-Net that have recorded several strong events, including the 2011 Tohoku earthquake. Velocity profiles are used as the only input to all models, while additional parameters such as quality factor, density and nonlinear dynamic soil properties are estimated from empirical correlations. We quantify the differences of ground surface predictions and observations in terms of both seismological and engineering intensity measures, including bias ratios of peak ground response and visual comparisons of elastic spectra, and inelastic to elastic deformation ratio for multiple ductility ratios. We observe that PGV/Vs,30 — as measure of strain— is a better predictor of site nonlinearity than PGA, and that incremental nonlinear analyses are necessary to produce reliable estimates of high-frequency ground motion components at soft sites. We finally discuss the implications of our findings on the parameterization of nonlinear amplification factors in GMPEs, and on the extensive use of equivalent linear analyses in probabilistic seismic hazard procedures.
Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen
2015-08-01
This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.
ELASTIC NET FOR COX’S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox’s proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox’s proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems. PMID:23226932
Interpolation problem for the solutions of linear elasticity equations based on monogenic functions
NASA Astrophysics Data System (ADS)
Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii
2017-11-01
Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.
Compressible Fluids Interacting with a Linear-Elastic Shell
NASA Astrophysics Data System (ADS)
Breit, Dominic; Schwarzacher, Sebastian
2018-05-01
We study the Navier-Stokes equations governing the motion of an isentropic compressible fluid in three dimensions interacting with a flexible shell of Koiter type. The latter one constitutes a moving part of the boundary of the physical domain. Its deformation is modeled by a linearized version of Koiter's elastic energy. We show the existence of weak solutions to the corresponding system of PDEs provided the adiabatic exponent satisfies {γ > 12/7} ({γ >1 } in two dimensions). The solution exists until the moving boundary approaches a self-intersection. This provides a compressible counterpart of the results in Lengeler and Růžičkaka (Arch Ration Mech Anal 211(1):205-255, 2014) on incompressible Navier-Stokes equations.
The elastic theory of shells using geometric algebra
Lasenby, J.; Agarwal, A.
2017-01-01
We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible. PMID:28405404
The elastic theory of shells using geometric algebra.
Gregory, A L; Lasenby, J; Agarwal, A
2017-03-01
We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.
Study of Graphite/Epoxy Composites for Material Flaw Criticality.
1980-11-01
criticality of disbonds with two-dimensional planforms located in laminated graphite/epoxy composites has been examined. Linear elastic fracture...mechanics approach, semi-empirical growth laws and methods of stress analysis based on a modified laminated plate theory have been studied for assessing...growth rates of disbonds in a transverse shear environ- ment. Elastic stability analysis has been utilized for laminates with disbonds subjected to in
2013-01-01
Cracking in asphalt pavement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 2. 2D...metallic binder, figure 1(b)), particulate energetic materials (explosive crystalline grains with polymeric binder, figure 1(c)), asphalt pavement (stone...explosive HMX grains and at grain-matrix interfaces (2). (d) Cracking in asphalt pavement . 2 (i) it is limited by current computing power (even
Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel
2014-04-22
A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.
Non-linear heterogeneous FE approach for FRP strengthened masonry arches
NASA Astrophysics Data System (ADS)
Bertolesi, Elisa; Milani, Gabriele; Fedele, Roberto
2015-12-01
A fast and reliable non-linear heterogeneous FE approach specifically conceived for the analysis of FRP-reinforced masonry arches is presented. The approach proposed relies into the reduction of mortar joints to interfaces exhibiting a non-linear holonomic behavior, with a discretization of bricks by means of four-noded elastic elements. The FRP reinforcement is modeled by means of truss elements with elastic-brittle behavior, where the peak tensile strength is estimated by means of a consolidated approach provided by the Italian guidelines CNR-DT200 on masonry strengthening with fiber materials, where the delamination of the strip from the support is taken into account. The model is validated against some recent experimental results relying into circular masonry arches reinforced at both the intrados and the extrados. Some sensitivity analyses are conducted varying the peak tensile strength of the trusses representing the FRP reinforcement.
Elastic properties and optical absorption studies of mixed alkali borogermanate glasses
NASA Astrophysics Data System (ADS)
Taqiullah, S. M.; Ahmmad, Shaik Kareem; Samee, M. A.; Rahman, Syed
2018-05-01
First time the mixed alkali effect (MAE) has been investigated in the glass system xNa2O-(30-x)Li2O-40B2O3- 30GeO2 (0≤x≤30 mol%) through density and optical absorption studies. The present glasses were prepared by melt quench technique. The density of the present glasses varies non-linearly exhibiting mixed alkali effect. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter. From the absorption edge studies, the values of optical band gap energies for all transitions have been evaluated. It was established that the type of electronic transition in the present glass system is indirect allowed. The indirect optical band gap exhibit non-linear behavior with compositional parameter showing the mixed alkali effect.
Theoretical study of strength of elastic-plastic water-saturated interface under constrained shear
NASA Astrophysics Data System (ADS)
Dimaki, Andrey V.; Shilko, Evgeny V.; Psakhie, Sergey G.
2016-11-01
This paper presents a theoretical study of shear strength of an elastic-plastic water-filled interface between elastic permeable blocks under compression. The medium is described within the discrete element method. The relationship between the stress-strain state of the solid skeleton and pore pressure of a liquid is described in the framework of the Biot's model of poroelasticity. The simulation demonstrates that shear strength of an elastic-plastic interface depends non-linearly on the values of permeability and loading to a great extent. We have proposed an empirical relation that approximates the obtained results of the numerical simulation in assumption of the interplay of dilation of the material and mass transfer of the liquid.
Linear and nonlinear stiffness and friction in biological rhythmic movements.
Beek, P J; Schmidt, R C; Morris, A W; Sim, M Y; Turvey, M T
1995-11-01
Biological rhythmic movements can be viewed as instances of self-sustained oscillators. Auto-oscillatory phenomena must involve a nonlinear friction function, and usually involve a nonlinear elastic function. With respect to rhythmic movements, the question is: What kinds of nonlinear friction and elastic functions are involved? The nonlinear friction functions of the kind identified by Rayleigh (involving terms such as theta3) and van der Pol (involving terms such as theta2theta), and the nonlinear elastic functions identified by Duffing (involving terms such as theta3), constitute elementary nonlinear components for the assembling of self-sustained oscillators, Recently, additional elementary nonlinear friction and stiffness functions expressed, respectively, through terms such as theta2theta3 and thetatheta2, and a methodology for evaluating the contribution of the elementary components to any given cyclic activity have been identified. The methodology uses a quantification of the continuous deviation of oscillatory motion from ideal (harmonic) motion. Multiple regression of this quantity on the elementary linear and nonlinear terms reveals the individual contribution of each term to the oscillator's non-harmonic behavior. In the present article the methodology was applied to the data from three experiments in which human subjects produced pendular rhythmic movements under manipulations of rotational inertia (experiment 1), rotational inertia and frequency (experiment 2), and rotational inertia and amplitude (experiment 3). The analysis revealed that the pendular oscillators assembled in the three experiments were compositionally rich, braiding linear and nonlinear friction and elastic functions in a manner that depended on the nature of the task.
NASA Astrophysics Data System (ADS)
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2018-04-01
We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).
Morozov, Andrey K; Colosi, John A
2017-09-01
Underwater sound scattering by a rough sea surface, ice, or a rough elastic bottom is studied. The study includes both the scattering from the rough boundary and the elastic effects in the solid layer. A coupled mode matrix is approximated by a linear function of one random perturbation parameter such as the ice-thickness or a perturbation of the surface position. A full two-way coupled mode solution is used to derive the stochastic differential equation for the second order statistics in a Markov approximation.
Cointegration of output, capital, labor, and energy
NASA Astrophysics Data System (ADS)
Stresing, R.; Lindenberger, D.; Kã¼mmel, R.
2008-11-01
Cointegration analysis is applied to the linear combinations of the time series of (the logarithms of) output, capital, labor, and energy for Germany, Japan, and the USA since 1960. The computed cointegration vectors represent the output elasticities of the aggregate energy-dependent Cobb-Douglas function. The output elasticities give the economic weights of the production factors capital, labor, and energy. We find that they are for labor much smaller and for energy much larger than the cost shares of these factors. In standard economic theory output elasticities equal cost shares. Our heterodox findings support results obtained with LINEX production functions.
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Ewing, Rodney C.; Pöllmann, Herbert; Salje, Ekhard K. H.
2018-05-01
Two in literature predicted percolation transitions in radiation-damaged zircon (ZrSiO4) were observed experimentally by measurement of the indentation hardness as a function of density and their correlation with the elastic moduli. Percolations occur near 30% and 70% amorphous fractions, where hardness deviates from its linear correlation with the elastic modulus (E), the shear modulus (G) and the bulk modulus (K). The first percolation point pc1 generates a cusp in the hardness versus density evolution, while the second percolation point is seen as a change of slope.
Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papi, M.; Paoletti, P.; Geraghty, B.
We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We examine variations in the collagen fibril diameter, adhesion, elastic modulus and dissipation in the posterior, equatorial and anterior regions of the sclera. The mean fibril diameter, elastic modulus and dissipation increased from the posterior to the anterior region. Collagen fibril diameter correlated linearly with elastic modulus. Our data matches the known macroscopic mechanical behavior of the sclera. We propose that PFQNM has significant potential in ocular biomechanics and biophysics research.
Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack
2016-01-01
This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.
Ross, Craig S.; Maple, Emily; Siegel, Michael; DeJong, William; Naimi, Timothy S.; Padon, Alisa A.; Borzekowski, Dina L.G.; Jernigan, David H.
2015-01-01
Aims: We investigated the population-level relationship between exposure to brand-specific advertising and brand-specific alcohol use among US youth. Methods: We conducted an internet survey of a national sample of 1031 youth, ages 13–20, who had consumed alcohol in the past 30 days. We ascertained all of the alcohol brands respondents consumed in the past 30 days, as well as which of 20 popular television shows they had viewed during that time period. Using a negative binomial regression model, we examined the relationship between aggregated brand-specific exposure to alcohol advertising on the 20 television shows [ad stock, measured in gross rating points (GRPs)] and youth brand-consumption prevalence, while controlling for the average price and overall market share of each brand. Results: Brands with advertising exposure on the 20 television shows had a consumption prevalence about four times higher than brands not advertising on those shows. Brand-level advertising elasticity of demand varied by exposure level, with higher elasticity in the lower exposure range. The estimated advertising elasticity of 0.63 in the lower exposure range indicates that for each 1% increase in advertising exposure, a brand's youth consumption prevalence increases by 0.63%. Conclusions: At the population level, underage youths' exposure to brand-specific advertising was a significant predictor of the consumption prevalence of that brand, independent of each brand's price and overall market share. The non-linearity of the observed relationship suggests that youth advertising exposure may need to be lowered substantially in order to decrease consumption of the most heavily advertised brands. PMID:25754127
Ross, Craig S; Maple, Emily; Siegel, Michael; DeJong, William; Naimi, Timothy S; Padon, Alisa A; Borzekowski, Dina L G; Jernigan, David H
2015-05-01
We investigated the population-level relationship between exposure to brand-specific advertising and brand-specific alcohol use among US youth. We conducted an internet survey of a national sample of 1031 youth, ages 13-20, who had consumed alcohol in the past 30 days. We ascertained all of the alcohol brands respondents consumed in the past 30 days, as well as which of 20 popular television shows they had viewed during that time period. Using a negative binomial regression model, we examined the relationship between aggregated brand-specific exposure to alcohol advertising on the 20 television shows [ad stock, measured in gross rating points (GRPs)] and youth brand-consumption prevalence, while controlling for the average price and overall market share of each brand. Brands with advertising exposure on the 20 television shows had a consumption prevalence about four times higher than brands not advertising on those shows. Brand-level advertising elasticity of demand varied by exposure level, with higher elasticity in the lower exposure range. The estimated advertising elasticity of 0.63 in the lower exposure range indicates that for each 1% increase in advertising exposure, a brand's youth consumption prevalence increases by 0.63%. At the population level, underage youths' exposure to brand-specific advertising was a significant predictor of the consumption prevalence of that brand, independent of each brand's price and overall market share. The non-linearity of the observed relationship suggests that youth advertising exposure may need to be lowered substantially in order to decrease consumption of the most heavily advertised brands. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmed, S. A.; Hassebo, Y. Y.; Gross, B.; Oo, M.; Moshary, F.
2006-09-01
We examine the potential, range of application, and limiting factors of a polarization selection technique, recently devised by us, which takes advantage of naturally occurring polarization properties of scattered sky light to minimize the detected sky background signal and which can be used in conjunction with linearly polarized elastic backscatter lidars to maximize lidar receiver SNR. In this approach, a polarization selective lidar receiver is aligned to minimize detected skylight, while the polarization of the transmitted lidar signal is rotated to maintain maximum lidar backscatter signal throughput to the receiver detector, consequently maximizing detected signal to noise ratio. Results presented include lidar elastic backscatter measurements, at 532 nm which show as much as a factor of √10 improvement in signal-to-noise ratio over conventional un-polarized schemes. For vertically pointing lidars, the largest improvements are limited to symmetric early morning and late afternoon hours. For non-vertical scanning lidars, significant improvements are achievable over much more extended time periods, depending on the specific angle between the lidar and solar axes. A theoretical model that simulates the background skylight within the single scattering approximation showed good agreement with measured SNR improvement factors. Diurnally asymmetric improvement factors, sometimes observed, are explained by measured increases in PWV and subsequent modification of aerosol optical depth by dehydration from morning to afternoon. Finally, since the polarization axis follows the solar azimuth angle even for high aerosol loading, as demonstrated using radiative transfer simulations, it is possible to conceive automation of the technique. In addition, it is shown that while multiple scattering reduces the SNR improvement, the orientation of the minimum noise state remains the same.
NASA Astrophysics Data System (ADS)
Balakina, E. V.; Zotov, N. M.; Fedin, A. P.
2018-02-01
Modeling of the motion of the elastic wheel of the vehicle in real-time is used in the tasks of constructing different models in the creation of wheeled vehicles motion control electronic systems, in the creation of automobile stand-simulators etc. The accuracy and the reliability of simulation of the parameters of the wheel motion in real-time when rolling with a slip within the given road conditions are determined not only by the choice of the model, but also by the inaccuracy and instability of the numerical calculation. It is established that the inaccuracy and instability of the calculation depend on the size of the step of integration and the numerical method being used. The analysis of these inaccuracy and instability when wheel rolling with a slip was made and recommendations for reducing them were developed. It is established that the total allowable range of steps of integration is 0.001.0.005 s; the strongest instability is manifested in the calculation of the angular and linear accelerations of the wheel; the weakest instability is manifested in the calculation of the translational velocity of the wheel and moving of the center of the wheel; the instability is less at large values of slip angle and on more slippery surfaces. A new method of the average acceleration is suggested, which allows to significantly reduce (up to 100%) the manifesting of instability of the solution in the calculation of all parameters of motion of the elastic wheel for different braking conditions and for the entire range of steps of integration. The results of research can be applied to the selection of control algorithms in vehicles motion control electronic systems and in the testing stand-simulators
Measuring the nonlinear elastic properties of tissue-like phantoms.
Erkamp, Ramon Q; Skovoroda, Andrei R; Emelianov, Stanislav Y; O'Donnell, Matthew
2004-04-01
A direct mechanical system simultaneously measuring external force and deformation of samples over a wide dynamic range is used to obtain force-displacement curves of tissue-like phantoms under plain strain deformation. These measurements, covering a wide deformation range, then are used to characterize the nonlinear elastic properties of the phantom materials. The model assumes incompressible media, in which several strain energy potentials are considered. Finite-element analysis is used to evaluate the performance of this material characterization procedure. The procedures developed allow calibration of nonlinear elastic phantoms for elasticity imaging experiments and finite-element simulations.
Preparation and Elastic Moduli of Germanate Glass Containing Lead and Bismuth
Sidek, Hj A. A.; Bahari, Hamid R.; Halimah, Mohamed K.; Yunus, Wan M. M.
2012-01-01
This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO2)60–(PbO)40−x–(½Bi2O3)x where x = 0 to 40 mol%. Their densities with respect of Bi2O3 concentration were determined using Archimedes’ method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B2O3)20–(PbO)80−x–(Bi2O3)x. The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi2O3 content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young’s also increase linearly with addition of Bi2O3 but the bulk modulus did not. The Poisson’s ratio and fractal dimensionality are also found to vary linearly with the Bi2O3 concentration. PMID:22606000
Preparation and elastic moduli of germanate glass containing lead and bismuth.
Sidek, Hj A A; Bahari, Hamid R; Halimah, Mohamed K; Yunus, Wan M M
2012-01-01
This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.
Senf, B; von Sachsen, S; Neugebauer, R; Drossel, W-G; Florek, H-J; Mohr, F W; Etz, C D
2014-11-01
Stent graft fixation in the vessel affects the success of endovascular aneurysm repair. Thereby the radial forces of the stent, which are dependent on several factors, play a significant role. In the presented work, a finite element sensitivity study was performed. The radial forces are 29% lower when using the hyperelastic approach for the vessel compared with linear elastic assumptions. Without the linear elastic modeled plaque, the difference increases to 35%. Modeling plaque with linear elastic material approach results in 8% higher forces than with a hyperelastic characteristic. The significant differences resulting from the investigated simplifications of the material lead to the conclusion that it is important to apply an anisotropic nonlinear approach for the vessel. The oversizing study shows that radial forces increase by 64% (0.54 N) when raising the oversize from 10 to 22%, and no further increase in force can be observed beyond these values (vessel diameter D=12 mm). Starting from an oversize of 24%, the radial force steadily decreases. The findings of the investigation show that besides the oversizing the material properties, the ring design and the vessel characteristics have an influence on radial forces. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Fluid-structure interaction in Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Kempf, Martin Horst Willi
1998-10-01
The linear stability of a viscous fluid between two concentric, rotating cylinders is considered. The inner cylinder is a rigid boundary and the outer cylinder has an elastic layer exposed to the fluid. The subject is motivated by flow between two adjoining rollers in a printing press. The governing equations of the fluid layer are the incompressible Navier-Stokes equations, and the governing equations of the elastic layer are Navier's equations. A narrow gap, neutral stability, and axisymmetric disturbances are assumed. The solution involves a novel technique for treating two layer stability problems, where an exact solution in the elastic layer is used to isolate the problem in the fluid layer. The results show that the presence of the elastic layer has only a slight effect on the critical Taylor numbers for the elastic parameters of modern printing presses. However, there are parameter values where the critical Taylor number is dramatically different than the classical Taylor-Couette problem.
Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels
NASA Astrophysics Data System (ADS)
Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike
2013-06-01
We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.
Gravitational stresses in anisotropic rock masses
Amadei, B.; Savage, W.Z.; Swolfs, H.S.
1987-01-01
This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.
Measurement of Shear Elastic Moduli in Quasi-Incompressible Soft Solids
NASA Astrophysics Data System (ADS)
Rénier, Mathieu; Gennisson, Jean-Luc; Barrière, Christophe; Catheline, Stefan; Tanter, Mickaël; Royer, Daniel; Fink, Mathias
2008-06-01
Recently a nonlinear equation describing the plane shear wave propagation in isotropic quasi-incompressible media has been developed using a new expression of the strain energy density, as a function of the second, third and fourth order shear elastic constants (respectively μ, A, D) [1]. In such a case, the shear nonlinearity parameter βs depends only from these last coefficients. To date, no measurement of the parameter D have been carried out in soft solids. Using a set of two experiments, acoustoelasticity and finite amplitude shear waves, the shear elastic moduli up to the fourth order of soft solids are measured. Firstly, this theoretical background is applied to the acoustoelasticity theory, giving the variations of the shear wave speed as a function of the stress applied to the medium. From such variations, both linear (μ) and third order shear modulus (A) are deduced in agar-gelatin phantoms. Experimentally the radiation force induced by a focused ultrasound beam is used to generate quasi-plane linear shear waves within the medium. Then the shear wave propagation is imaged with an ultrafast ultrasound scanner. Secondly, in order to give rise to finite amplitude plane shear waves, the radiation force generation technique is replaced by a vibrating plate applied at the surface of the phantoms. The propagation is also imaged using the same ultrafast scanner. From the assessment of the third harmonic amplitude, the nonlinearity parameter βS is deduced. Finally, combining these results with the acoustoelasticity experiment, the fourth order modulus (D) is deduced. This set of experiments provides the characterization, up to the fourth order, of the nonlinear shear elastic moduli in quasi-incompressible soft media. Measurements of the A moduli reveal that while the behaviors of both soft solids are close from a linear point of view, the corresponding nonlinear moduli A are quite different. In a 5% agar-gelatin phantom, the fourth order elastic constant D is found to be 30±10 kPa.
A design concept of parallel elasticity extracted from biological muscles for engineered actuators.
Chen, Jie; Jin, Hongzhe; Iida, Fumiya; Zhao, Jie
2016-08-23
Series elastic actuation that takes inspiration from biological muscle-tendon units has been extensively studied and used to address the challenges (e.g. energy efficiency, robustness) existing in purely stiff robots. However, there also exists another form of passive property in biological actuation, parallel elasticity within muscles themselves, and our knowledge of it is limited: for example, there is still no general design strategy for the elasticity profile. When we look at nature, on the other hand, there seems a universal agreement in biological systems: experimental evidence has suggested that a concave-upward elasticity behaviour is exhibited within the muscles of animals. Seeking to draw possible design clues for elasticity in parallel with actuators, we use a simplified joint model to investigate the mechanisms behind this biologically universal preference of muscles. Actuation of the model is identified from general biological joints and further reduced with a specific focus on muscle elasticity aspects, for the sake of easy implementation. By examining various elasticity scenarios, one without elasticity and three with elasticity of different profiles, we find that parallel elasticity generally exerts contradictory influences on energy efficiency and disturbance rejection, due to the mechanical impedance shift thus caused. The trade-off analysis between them also reveals that concave parallel elasticity is able to achieve a more advantageous balance than linear and convex ones. It is expected that the results could contribute to our further understanding of muscle elasticity and provide a theoretical guideline on how to properly design parallel elasticity behaviours for engineering systems such as artificial actuators and robotic joints.
Wrinkle-to-fold transition in soft layers under equi-biaxial strain: A weakly nonlinear analysis
NASA Astrophysics Data System (ADS)
Ciarletta, P.
2014-12-01
Soft materials can experience a mechanical instability when subjected to a finite compression, developing wrinkles which may eventually evolve into folds or creases. The possibility to control the wrinkling network morphology has recently found several applications in many developing fields, such as scaffolds for biomaterials, stretchable electronics and surface micro-fabrication. Albeit much is known of the pattern initiation at the linear stability order, the nonlinear effects driving the pattern selection in soft materials are still unknown. This work aims at investigating the nature of the elastic bifurcation undertaken by a growing soft layer subjected to a equi-biaxial strain. Considering a skin effect at the free surface, the instability thresholds are found to be controlled by a characteristic length, defined by the ratio between capillary energy and bulk elasticity. For the first time, a weakly nonlinear analysis of the wrinkling instability is performed here using the multiple-scale perturbation method applied to the incremental theory in finite elasticity. The Ginzburg-Landau equations are derived for different superposing linear modes. This study proves that a subcritical pitchfork bifurcation drives the observed wrinkle-to-fold transition in swelling gels experiments, favoring the emergence of hexagonal creased patterns, albeit quasi-hexagonal patterns might later emerge because of an expected symmetry break. Moreover, if the surface energy is somewhat comparable to the bulk elastic energy, it has the same stabilizing effect as for fluid instabilities, driving the formation of stable wrinkles, as observed in elastic bi-layered materials.
Quantification of change in vocal fold tissue stiffness relative to depth of artificial damage.
Rohlfs, Anna-Katharina; Schmolke, Sebastian; Clauditz, Till; Hess, Markus; Müller, Frank; Püschel, Klaus; Roemer, Frank W; Schumacher, Udo; Goodyer, Eric
2017-10-01
To quantify changes in the biomechanical properties of human excised vocal folds with defined artificial damage. The linear skin rheometer (LSR) was used to obtain a series of rheological measurements of shear modulus from the surface of 30 human cadaver vocal folds. The tissue samples were initially measured in a native condition and then following varying intensities of thermal damage. Histological examination of each vocal fold was used to determine the depth of artificial alteration. The measured changes in stiffness were correlated with the depth of cell damage. For vocal folds in a pre-damage state the shear modulus values ranged from 537 Pa to 1,651 Pa (female) and from 583 Pa to 1,193 Pa (male). With increasing depth of damage from the intermediate layer of the lamina propria (LP), tissue stiffness increased consistently (compared with native values) following application of thermal damage to the vocal folds. The measurement showed an increase of tissue stiffness when the depth of tissue damage was extending from the intermediate LP layer downwards. Changes in the elastic characteristics of human vocal fold tissue following damage at defined depths were demonstrated in an in vitro experiment. In future, reproducible in vivo measurements of elastic vocal fold tissue alterations may enable phonosurgeons to infer the extent of subepithelial damage from changes in surface elasticity.
Economic and public policy implications of energy pricing in Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgoin, L.
The methods used in examining the role of pricing in energy policy development may apply to many oil-importing countries with foreign exchange constraints. Data are developed by economic sectors on output plus on real factor inputs and factor wages for capital (by a perpetual inventory method), labor and useful energy (adjusted for efficiencies). A constant elasticity of substitution production model using 1965-1982 aggregate energy and nonenergy inputs is used to demonstrate the energy-economy linkages in Costa Rica. Estimates are from the best linear unbiased estimator and from the nonlinear system (structural form) of simultaneous equations jointly estimated by GLS multivariatemore » methods. The elasticity of substitution is 0.98 using only energy source costs and about 0.87-0.89 using energy system costs. The macroeconomic impacts of energy taxation or subsidization in Costa Rica for the range of likely values of the elasticity of substitution suggest that a small energy tax would result in a net national economic gain. Eight energy policy proposals demand management interventions and supply-side enhancements) are formulated for Costa Rica and qualified for five broad criteria according to their likelihood of success. These are chosen since they are believed to promote socioeconomic efficiency, to be politically feasible, and to be administratively implementable; the anticipated degree of popular acceptance and the size of the impact vary.« less
NASA Astrophysics Data System (ADS)
Ertürk, Esra; Gürel, Tanju
2018-05-01
We present an ab initio study of structural, elastic and vibrational properties of transition-metal disilicides NbSi2 and TaSi2. The calculations have been carried out within the density-functional theory and linear-response formalism using norm-conserving pseudopotentials and a plane-wave basis. The calculated lattice parameters, bulk moduli, and elastic constants agree well with previous theoretical and experimental results. The calculated phonon frequencies at the Brillouin zone center are in good agreement with the reported Raman spectra and provide reference values for the future infrared and neutron phonon measurements. Phonon dispersion relations, mode Grüneisen parameters, and total and partial phonon density of states are also discussed. Mode Grüneisen parameters of NbSi2 and TaSi2 at Brillouin zone center show similar trends and all values are found to be positive. From phonon dispersion relations and phonon density of states, we have found a gap around 200 cm-1 for TaSi2, where the frequencies below this gap mainly belong to Ta vibrations and frequencies above the gap is mainly related with Si vibrations. In the case of NbSi2, there is no such gap and both Nb and Si atoms contribute to the phonon density of states in an energy range of 150-270 cm-1.
Computational study of Drucker-Prager plasticity of rock using microtomography
NASA Astrophysics Data System (ADS)
Liu, J.; Sarout, J.; Zhang, M.; Dautriat, J.; Veveakis, M.; Regenauer-Lieb, K.
2016-12-01
Understanding the physics of rocks is essential for the industry of mining and petroleum. Microtomography provides a new way to quantify the relationship between the microstructure and their mechanical and transport properties. Transport and elastic properties have been studied widely while plastic properties are still poorly understood. In this study, we analyse a synthetic sandstone sample for its up-scaled plastic properties from the micro-scale. The computations are based on the representative volume element (RVE). The mechanical RVE was determined by the upper and lower bound finite element computations of elasticity. By comparing with experimental curves, the parameters of the matrix (solid part), which consists of calcite-cemented quartz grains, were investigated and quite accurate values obtained. Analyses deduced the bulk properties of yield stress, cohesion and the angle of friction of the rock with pores. Computations of a series of models of volume-sizes from 240-cube to 400-cube showed almost overlapped stress-strain curves, suggesting that the mechanical RVE determined by elastic computations is valid for plastic yielding. Furthermore, a series of derivative models were created which have similar structure but different porosity values. The analyses of these models showed that yield stress, cohesion and the angle of friction linearly decrease with the porosity increasing in the range of porosity from 8% to 28%. The angle of friction decreases the fastest and cohesion shows the most stable along with porosity.
Experimental investigation and constitutive model for lime mudstone.
Wang, Junbao; Liu, Xinrong; Zhao, Baoyun; Song, Zhanping; Lai, Jinxing
2016-01-01
In order to investigate the mechanical properties of lime mudstone, conventional triaxial compression tests under different confining pressures (0, 5, 15 and 20 MPa) are performed on lime mudstone samples. The test results show that, from the overall perspective of variation law, the axial peak stress, axial peak strain and elastic modulus of lime mudstone tend to gradually increase with increasing confining pressure. In the range of tested confining pressure, the variations in axial peak stress and elastic modulus with confining pressure can be described with linear functions; while the variation in axial peak strain with confining pressure can be reflected with a power function. To describe the axial stress-strain behavior in failure process of lime mudstone, a new constitutive model is proposed, with the model characteristics analyzed and the parameter determination method put forward. Compared with Wang' model, only one parameter n is added to the new model. The comparison of predicted curves from the model and test data indicates that the new model can preferably simulate the strain softening property of lime mudstone and the axial stress-strain response in rock failure process.
NASA Astrophysics Data System (ADS)
Zhang, Sipei; Nakatani, Alan; Griffith, William
Large Amplitude Oscillatory Shear (LAOS) testing has recently taken on renewed interest in the rheological community. It is a very useful tool to probe the viscoelastic response of materials in the non-linear regime. Much of the discussion on polymers in the LAOS field has focused on melts in or near the terminal flow regime. Here we present a LAOS study conducted on a commercial rheometer for acrylic emulsion-based pressure sensitive adhesive (PSA) films in the plateau regime. The films behaved qualitatively similar over an oscillation frequency range of 0.5-5 rad/s. From Fourier transform analysis, the fifth or even the seventh order harmonic could be observed at large applied strains. From stress decomposition analysis or Lissajous curves, inter-cycle elastic softening, or type I behavior, was observed for all films as the strain increases, while intra-cycle strain hardening occurred at strains in the LAOS regime. Overall, as acid content increases, it was found that the trend in elasticity under large applied strains agreed very well with the trend in cohesive strength of the films.
A rate insensitive linear viscoelastic model for soft tissues
Zhang, Wei; Chen, Henry Y.; Kassab, Ghassan S.
2012-01-01
It is well known that many biological soft tissues behave as viscoelastic materials with hysteresis curves being nearly independent of strain rate when loading frequency is varied over a large range. In this work, the rate insensitive feature of biological materials is taken into account by a generalized Maxwell model. To minimize the number of model parameters, it is assumed that the characteristic frequencies of Maxwell elements form a geometric series. As a result, the model is characterized by five material constants: μ0, τ, m, ρ and β, where μ0 is the relaxed elastic modulus, τ the characteristic relaxation time, m the number of Maxwell elements, ρ the gap between characteristic frequencies, and β = μ1/μ0 with μ1 being the elastic modulus of the Maxwell body that has relaxation time τ. The physical basis of the model is motivated by the microstructural architecture of typical soft tissues. The novel model shows excellent fit of relaxation data on the canine aorta and captures the salient features of vascular viscoelasticity with significantly fewer model parameters. PMID:17512585
NASA Astrophysics Data System (ADS)
Mercier, Sylvain; Gratton, Serge; Tardieu, Nicolas; Vasseur, Xavier
2017-12-01
Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method. We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.
Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S
2016-05-01
Sound propagation predictions for ice-covered ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the ice are substantial. Effects due to elasticity in overlying ice can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the ice as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the ice layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent ice thickness and a water sound speed profile similar to those observed during the 2009 Ice Exercise (ICEX) in the Beaufort Sea.
1982-09-01
mechanics ( EPFM ) may be applied to engineering problems to determine material properties related to crack initiation and propagation. Specifically, these...Introduction The application of linear elastic fracture mechanics (LEFM) to engineering fracture analyses has become increasingly widespread and the use...structures to which the particular material was to be applied. The advent of elastic-plastic fracture mechanics ( EPFM ) has proven valuable because a
NASA Astrophysics Data System (ADS)
Heuzé, Thomas
2017-10-01
We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.
Mechanics of Fluctuating Elastic Plates and Fiber Networks
NASA Astrophysics Data System (ADS)
Liang, Xiaojun
Lipid membranes and fiber networks in biological systems perform important mechanical functions at the cellular and tissue levels. In this thesis I delve into two detailed problems--thermal fluctuation of membranes and non-linear compression response of fiber networks. Typically, membrane fluctuations are analysed by decomposing into normal modes or by molecular simulations. In the first part of my thesis, I propose a new semi-analytic method to calculate the partition function of a membrane. The membrane is viewed as a fluctuating von Karman plate and discretized into triangular elements. Its energy is expressed as a function of nodal displacements, and then the partition function and co-variance matrix are computed using Gaussian integrals. I recover well-known results for the dependence of the projected area of a lipid bilayer membrane on the applied tension, and recent simulation results on the ependence of membrane free energy on geometry, spontaneous curvature and tension. As new applications I use this technique to study a membrane with heterogeneity and different boundary conditions. I also use this technique to study solid membranes by taking account of the non-linear coupling of in-plane strains with out-of-plane deflections using a penalty energy, and apply it to graphene, an ultra-thin two-dimensional solid. The scaling of graphene fluctuations with membrane size is recovered. I am able to capture the dependence of the thermal expansion coefficient of graphene on temperature. Next, I study curvature mediated interactions between inclusions in membranes. I assume the inclusions to be rigid, and show that the elastic and entropic forces between them can compete to yield a local maximum in the free energy if the membrane bending modulus is small. If the spacing between the inclusions is less than this local maximum then the attractive entropic forces dominate and the separation between the inclusions will be determined by short range interactions; if the spacing is more than the local maximum then the elastic repulsive forces dominate and the inclusions will move further apart. This technique can be extended to account for entropic effects in other methods which rely on quadratic energies to study the interactions of inclusions in membranes. In the second part of this thesis I study the compression response of two fiber network materials--blood clots and carbon nanotube forests. The stress-strain curve of both materials reveals four characteristic regions, for compression-decompression: 1) linear elastic region; 2) upper plateau or softening region; 3) non-linear elastic region or re-stretching of the network; 4) lower plateau in which dissociation of some newly made connections occurs. This response is described by a phase transition based continuum model. The model is inspired by the observation of one or more moving interfaces across which densified and rarefied phases of fibers co-exist. I use a quasi-static version of the Abeyaratne-Knowles theory of phase transitions for continua with a stick-slip type kinetic law and a nucleation criterion based on the critical stress for buckling to describe the formation and motion of these interfaces in uniaxial compression experiments. Our models could aid the design of biomaterials and carbon nanotube forests to have desired mechanical properties and guide further understanding of their behavior under large deformations.
Fatigue crack growth in unidirectional and cross-ply SCS-6/Timetal 21S titanium matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, D.J.
1994-01-01
Fatigue crack growth in unidirectional and cross-ply SCS-6/ Timetal(R) 21S titanium matrix composite was investigated. Fatigue crack growth tests were performed on (0){sub 4}, (90){sub 4}, and (0/90){sub s} center notch specimens. The (0){sub 4} and (0/90){sub s} fatigue crack growth rates decreased initially. Specimens removed prior to failure were polished to the first row of fibers and intact fibers in the wake of the matrix crack were observed. These bridging fibers reduced the stress intensity range that the matrix material was subjected to, thus reducing the crack growth rate. The crack growth rate eventually increased as fibers failed inmore » the crack wake but the fatigue crack growth rate was still much slower than that of unreinforced Timetal(R) 21S. A model was developed to study the mechanics of a cracked unidirectional composite with any combination of intact and broken fibers in the wake of a matrix crack. The model was correlated to fatigue crack growth rate tests. The model was verified by comparing predicted displacements near the crack surface with Elber gage (1.5 mm gage length extensometer) measurements. The fatigue crack growth rate for the (90){sub 4} specimens was faster than that of unreinforced Timetal(registered trademark) 21S. Elber gage displacement measurements were in agreement with linear elastic fracture mechanics predictions, suggesting that linear elastic fracture mechanics may be applicable to transversely loaded titanium matrix composites.« less
Elastic properties of Sr- and Mg-doped lanthanum gallate at elevated temperature
NASA Astrophysics Data System (ADS)
Okamura, T.; Shimizu, S.; Mogi, M.; Tanimura, M.; Furuya, K.; Munakata, F.
The elastic moduli, i.e., Young's modulus, shear modulus and Poisson's ratio, of a sintered La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ bulk have been experimentally determined in the temperature range from room temperature to 1373 K using a resonance technique. Anomalous elastic properties were observed over a wide temperature range from 473 to 1173 K. In the results for internal friction and in X-ray diffraction measurements at elevated temperature, two varieties of structural changes were seen in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ in the examined temperature range. The results agreed with the findings of a previous crystallographic study of the same composition system by Slater et al. In addition, the temperature range in which a successive structural change occurred in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ was the same as that exhibiting the anomalous elastic properties. Taking all the results together, it can be inferred that the successive structural change in the significant temperature range is responsible for the elastic property anomaly of La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ.
NASA Astrophysics Data System (ADS)
Nield, G. A.; Barletta, V. R.; Bordoni, A.; King, M. A.; Whitehouse, P. L.; Clarke, P. J.; Domack, E. W.
2013-12-01
Since 1995 several ice shelves in the northern Antarctic Peninsula have collapsed and triggered ice-mass unloading, invoking a solid Earth response that has been recorded at GPS stations. The previous attempt to model the observation of rapid uplift following the 2002 breakup of Larsen B Ice Shelf failed, being limited by incomplete knowledge of the pattern of ice unloading and possibly the assumption of an elastic-only mechanism. We make use of a new high resolution dataset of ice elevation change that captures ice-mass loss north of 66°S to show that non-linear uplift of the Palmer GPS station since 2002 cannot be explained by an elastic-only signal. We apply a viscoelastic model with linear Maxwell rheology to predict uplift since 1995. We vary the thickness of the elastic lithosphere and upper mantle viscosity, and test the fit to the Palmer GPS time series. We find a best fitting Earth model with an upper mantle viscosity of less than 2 x 1018 Pa s, much lower than previously modelled, and limited sensitivity to lithospheric thickness. Comparison to vertical velocities from six GPS stations deployed after 2009 (the LARISSA network) verifies the results from the model with reduction of signal from up to 14 mm/yr to up to 3 mm/yr. These sites have a unique spatial arrangement and are ideally placed to record uplift close to the region of largest mass loss. Including the time series of the newer sites in the model tuning produces a narrower range of lithospheric thickness estimates but with the drawback of needing to assume the pre-2009 background uplift rate. The Palmer GPS time series offers a rare opportunity to study the time-evolution of low-viscosity solid earth response to a well-captured ice unloading event.
Computational Modeling of Micro-Crack Induced Attenuation in CFRP Composites
NASA Technical Reports Server (NTRS)
Roberts, R. A.; Leckey, C. A. C.
2012-01-01
A computational study is performed to determine the contribution to ultrasound attenuation in carbon fiber reinforced polymer composite laminates of linear elastic scattering by matrix micro-cracking. Multiple scattering approximations are benchmarked against exact computational approaches. Results support linear scattering as the source of observed increased attenuation in the presence of micro-cracking.
NASA Astrophysics Data System (ADS)
Guchhait, Shyamal; Banerjee, Biswanath
2018-04-01
In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.
NASA Astrophysics Data System (ADS)
Akbarov, S. D.; Ipek, C.
This work studies the influence of the imperfectness of the interface conditions on the dispersion of the axisymmetric longitudinal waves in the pre-strained bi-material hollow cylinder. The investigations are made within the 3D linearized theory of elastic waves in elastic bodies with initial stresses. It is assumed that the materials of the layers of the hollow cylinder are made from hyper elastic compressible materials and the elasticity relations of those are given through the harmonic potential. The shear spring type imperfectness of the interface conditions is considered and the degree of this imperfectness is estimated by the shear-spring parameter. Numerical results on the influence of this parameter on the behavior of the dispersion curves are presented and discussed.
The boundary element method applied to 3D magneto-electro-elastic dynamic problems
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.
2017-11-01
Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.
Discontinuous Galerkin method for coupled problems of compressible flow and elastic structures
NASA Astrophysics Data System (ADS)
Kosík, A.; Feistauer, M.; Hadrava, M.; Horáček, J.
2013-10-01
This paper is concerned with the numerical simulation of the interaction of 2D compressible viscous flow and an elastic structure. We consider the model of dynamical linear elasticity. Each individual problem is discretized in space by the discontinuous Galerkin method (DGM). For the time discretization we can use either the BDF (backward difference formula) method or also the DGM. The time dependence of the domain occupied by the fluid is given by the deformation of the elastic structure adjacent to the flow domain. It is treated with the aid of the Arbitrary Lagrangian-Eulerian (ALE) method. The fluid-structure interaction, given by transient conditions, is realized by an iterative process. The developed method is applied to the simulation of the biomechanical problem containing the onset of the voice production.
NASA Astrophysics Data System (ADS)
Bourourou, Y.; Amari, S.; Yahiaoui, I. E.; Bouhafs, B.
2018-01-01
A first-principles approach is used to predicts the electronic and elastic properties of BaPb2As2 superconductor compound, using full-potential linearized augmented plane wave plus local orbitals (FP-L/APW+lo) scheme within the local density approximation LDA. The calculated equilibrium structural parameter a agree well with the experiment while the c/a ratio is far away from the experimental result. The band structure, density of states, together with the charge density and chemical bonding are discussed. The calculated elastic constants for our compound indicate that it is mechanically stable at ambient pressure. Polycrystalline elastic moduli (Young's, Bulk, shear Modulus and the Poisson's ratio) were calculated according to the Voigte-Reusse-Hill (VRH) average.
3D Modeling Effect of Spherical Inclusions on the Magnetostriction of Bulk Superconductors
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Pan, Baocai
2018-02-01
In this paper, the dependence of the effective magnetostriction of bulk superconductors on the elastic parameters including the volume fraction and elastic modulus ratio is studied by a three-dimensional model consisting of a spherical inclusion-superconducting matrix system. The effect of the elastic modulus and volume fraction on the magnetostriction is also obtained through the magnetostriction loop. The results indicate that the elastic modulus and volume fraction have obvious effects on the effective magnetostriction of the superconducting composite, which gives an explanation about the differences between the experimental and the theoretical results. Furthermore, it is worth pointing out that the linear field dependence of magnetostriction is unique to the Bean model by comparing the curve shapes of the magnetostriction loop with and without inclusion.
NASA Astrophysics Data System (ADS)
Simon, William Kurt
Functional oxide thin films often focus on standard cubic substrates that impose an equal biaxial plane stress condition (sigma11 = sigma22) to the film. These internal stresses in thin films reach magnitudes not easily achieved in bulk materials and represent an important influence on the properties of thin films. Equal biaxial plane stress is a small sub-set of stress conditions. Anisotropic stress (sigma11 ≠ sigma 22) represents a wide range of influences that can be utilized to manipulate the properties of thin films. To investigate these conditions, heteroepitaxial thin films of paraelectric Ba0.6Sr0.4TiO3 (BST) were deposited on [100] and [110] oriented single crystal NdGaO 3 (NGO) substrates. Films were grown in the thickness range of 25 to 1200 nm by Pulsed Laser Deposition. The films grown on [100]NGO substrates were [110] oriented, while [110]NGO substrates resulted in [100] oriented BST films. The [100]BST films exhibit a small variation of the epitaxial misfit with direction: -2.6% and -2.8% along the [010]BST and [001 ]BST directions respectively. The epitaxial misfit for the [110]BST films show a greater variation with direction; -1.9% and -2.8% along the [1¯10]BST, and [001]BST directions respectively. The interfacial dislocations that form to relieve stress are found to be dependant on the growth orientation of the film and to contribute to the degree of elastic and dielectric anisotropy. The variation of the residual strains, with thickness and direction are correlated to the non-linear dielectric permittivity at 10 GHz. The relative permittivity is seen to vary from 150 to 500 with in-plane direction of a single [110]BST film. Tunabilities in the same film vary from 30 to 54%, with the greater tunability occurring along the directions with greater permittivity. Analysis of the non-linear polarization curves illustrate that the higher order permittivity terms, which are responsible for tunability, are all adversely affected by strain and reach an elastically saturated limit regardless of growth orientation or in-plane direction. Through the use of unequal epitaxial strains, anisotropy is imparted to the otherwise spherically symmetric permittivity tensor. This asymmetry allows a single film to have a variable response and fill a variety of performance requirements in microwave passive devices.
The influence of geometric imperfections on the stability of three-layer beams with foam core
NASA Astrophysics Data System (ADS)
Wstawska, Iwona
2017-01-01
The main objective of this work is the numerical analysis (FE analysis) of stability of three-layer beams with metal foam core (alumina foam core). The beams were subjected to pure bending. The analysis of the local buckling was performed. Furthermore, the influence of geometric parameters of the beam and material properties of the core (linear and non-linear model) on critical loads values and buckling shape were also investigated. The calculations were made on a family of beams with different mechanical properties of the core (elastic and elastic-plastic material). In addition, the influence of geometric imperfections on deflection and normal stress values of the core and the faces has been evaluated.
Simulative design in macroscale for prospective application to micro-catheters.
Ha, Cheol Woo
2018-02-09
In this paper, a motion-transforming element is applied to the development of a new catheter device. The motion-transforming element structure allows a reduction of linear movement and converts linear movement to rotational movement. The simulative design of micro-catheters is based on a proposed structure called the Operating Mini Station (OMS). OMS is operated by movement of a motion-transforming element. A new motion-transforming element is designed using multiple links that are connected by hinged joints based on an elastic design. The design of the links and the hinges are optimized for precise and reliable movement of the motion-transforming element. Because of the elastic design, it is possible to realize a catheter that allows various movements in small spaces like capillaries.
NASA Astrophysics Data System (ADS)
BOERTJENS, G. J.; VAN HORSSEN, W. T.
2000-08-01
In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.
NASA Astrophysics Data System (ADS)
Yin, Jiang; Tao, Anxiang; Xu, Pingguang; Ping, Dehai
The present paper involves a fundamental research on microdomain yield behavior of an ultrahigh strength low alloy steel with high temperature tempered bainite. The smooth cylinder specimen was took from deep water mooring chain links from the steel with the chemical composition of 0.23C-0.25Si -0.70Mn-3.55 (Cr+Ni+Mo) -0.13 (V+Nb+Ti) (mass %) ,which was quenched from 1253K and then tempered at 873K Its macroscopic yield strength is 1120MPa and the tensile strength is 1250MPa In-situ neutron diffraction measurements of loading tension have suggested that a good linear elastic deformation can be kept up to 500MPa stress, and then (200) priority non-linear elastic strain, that is the yield of crystal lattice occur at 700MPa and the (110) non-linear elastic strain was found at 800MPa. The (200) and (110) nonlinear elastic strain increases gradually when the stress was further increased, however, the (211) kept its linear elastic deformation stage as before. The sub-microstructural analysis carried out using TEM and additional determine the nature and quantitative analysis has revealed that there are three kinds of alloy carbides: (1) θ-M3C cementites with an average particle size of less than 50 nm which inside laths and lath boundaries; (2) ɛ-M2C formed uniformly within the ferrites with a length of less than 200 nm and width of less than 20 nm; (3) ultra-fine high density MC cohered with matrix α-Fe and its particle size is about 2 nm. The whole microdomain yield behaviour of the material was possibly influenced by the fcc-MC with high density. The results of CLT (constant load), SSRT (slow strain rate) and KIscc test of the present chain in seawater solution indicate, that threshold value of SCC (stress corrosion cracking) stress exceed 0.8 tensile strength and the chain's KIscc value is double of KIscc value of 4340 steel type parts. MC not only form strong hydrogen trap, but also slow down microdomain yield likely by means of increasing yield strength of crystal lattice, thus reduce SCC sensibility of the steel.
Structural, electronic and elastic properties of heavy fermion YbRh2 Laves phase compound
NASA Astrophysics Data System (ADS)
Pawar, Harsha; Shugani, Mani; Aynyas, Mahendra; Sanyal, Sankar P.
2018-05-01
The structural, electronic and elastic properties of YbRh2 Laves phase intermetallic compound which crystallize in cubic (MgCu2-type) structure have been investigated using ab-initio full potential linearized augmented plane wave (FP- LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for this compound which obeys the stability criteria for cubic system.
Identification and control of structures in space
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Quinn, R. D.; Norris, M. A.
1984-01-01
The derivation of the equations of motion for the Spacecraft Control Laboratory Experiment (SCOLE) is reported and the equations of motion of a similar structure orbiting the earth are also derived. The structure is assumed to undergo large rigid-body maneuvers and small elastic deformations. A perturbation approach is proposed whereby the quantities defining the rigid-body maneuver are assumed to be relatively large, with the elastic deformations and deviations from the rigid-body maneuver being relatively small. The perturbation equations have the form of linear equations with time-dependent coefficients. An active control technique can then be formulated to permit maneuvering of the spacecraft and simultaneously suppressing the elastic vibration.
NASA Technical Reports Server (NTRS)
Heyman, J. S.; Allison, S. G.; Salama, K.
1985-01-01
The behavior of higher order elastic properties, which are much more sensitive to material state than are second order properties, has been studied for steel alloys AISI 1016, 1045, 1095, and 8620 by measuring the stress derivative of the acoustic natural velocity to determine the stress acoustic constants (SAC's). Results of these tests show a 20 percent linear variation of SAC's with carbon content as well as even larger variations with prestrain (plastic deformation). The use of higher order elastic characterization permits quantitative evaluation of solids and may prove useful in studies of fatigue and fracture.
Retraction of cold drawn polyethylene: the influence of lamellar thickeness and density
NASA Technical Reports Server (NTRS)
Falender, J. R.; Hansen, D.
1971-01-01
The role of crystal morphology in the retraction of oriented, linear polyethylene was studied utilizing samples crystallized under conditions controlled to vary, separately, lamellar crystal thickness and density. Samples were oriented in a simple shear deformation to a strain of 4.0 prior to measuring retraction tendency in creep and relaxation type tests. Characterizations of specimens were made using wide and small angle X-ray techniques. The specific morphological variations were chosen to test the hypothesis that a long range elastic restoring force can originate in conjunction with deformation of lamellar crystals and the consequent increase in lamellar crystal surface area and surface free energy. The results support this hypothesis.
Retraction of cold-drawn polyethylene - Influence of lamellar thickness and density.
NASA Technical Reports Server (NTRS)
Falender, J. R.; Hansen, D.
1972-01-01
The role of crystal morphology in the retraction of oriented linear polyethylene was studied utilizing samples crystallized under conditions controlled to vary, separately, lamellar crystal thickness and density. Samples were oriented in a simple shear deformation to a strain of 4.0 prior to measuring retraction tendency in creep- and relaxation-type tests. Characterizations of specimens were made using wide- and small-angle x-ray techniques. The specific morphological variations were chosen to test the hypothesis that a long-range elastic restoring force can originate in conjunction with deformation of lamellar crystals and the consequent increase in lamellar crystal surface area and surface free energy. The results support this hypothesis.
Strong mechanoluminescence of Zn2(Ge0.9Si0.1)O4:Mn with weak persistent luminescence
NASA Astrophysics Data System (ADS)
Zhao, Haifeng; Wang, Xusheng; Li, Jun; Li, Yanxia; Yao, Xi
2016-01-01
A novel elastic mechanoluminescence (EML) material Zn2(Ge0.9Si0.1)O4:Mn is reported to exhibit weak persistent luminescence (PL), a dynamic compressive load in the 300-2800 N range, and a nearly perfect linear response. The PL and EML spectra indicate that the EML and PL emissions originate from the 4T1 → 6A1 transition of Mn2+. The thermoluminescence properties reveal the existence of three types of traps. The shallowest trap responsible for a fast decay afterglow may contribute little to the EML. On the other hand, the other two, deeper, trap types, underlie EML.
Extreme-value statistics of work done in stretching a polymer in a gradient flow.
Vucelja, M; Turitsyn, K S; Chertkov, M
2015-02-01
We analyze the statistics of work generated by a gradient flow to stretch a nonlinear polymer. We obtain the large deviation function (LDF) of the work in the full range of appropriate parameters by combining analytical and numerical tools. The LDF shows two distinct asymptotes: "near tails" are linear in work and dominated by coiled polymer configurations, while "far tails" are quadratic in work and correspond to preferentially fully stretched polymers. We find the extreme value statistics of work for several singular elastic potentials, as well as the mean and the dispersion of work near the coil-stretch transition. The dispersion shows a maximum at the transition.
Characterization of the mechanical and physical properties of TD-NiCr (Ni-20Cr-2ThO2) alloy sheet
NASA Technical Reports Server (NTRS)
Fritz, L. J.; Koster, W. P.; Taylor, R. E.
1973-01-01
Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0.025 and 0.051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature. The physical properties measured were thermal conductivity, linear thermal expansion, specific heat, total hemispherical emittance, thermal diffusivity, and electrical conductivity.
Elastic transducers incorporating finite-length optical paths
NASA Astrophysics Data System (ADS)
Peters, Kara J.; Washabaugh, Peter D.
1995-08-01
Frequently, when designing a structure to incorporate integrated sensors, one sacrifices the stiffness of the system to improve sensitivity. However, the use of interferometric displacement sensors that tessellate throughout the volume of a structure has the potential to allow the precision and range of the component measurement to scale with the geometry of the device rather than the maximum strain in the structure. The design of stiff structures that measure all six resultant-load components is described. In addition, an advanced torsion sensor and a linear acceleration transducer are also discussed. Finally, invariant paths are presented that allow the in situ integrity of a structural volume to be monitored with a single pair of displacement sensors.
Wu, Haibin; Liu, Zezhou; Jagota, Anand; Hui, Chung-Yuen
2018-03-07
A line force acting on a soft elastic solid, say due to the surface tension of a liquid drop, can cause significant deformation and the formation of a kink close to the point of force application. Analysis based on linearized elasticity theory shows that sufficiently close to its point of application, the force is borne entirely by the surface stress, not by the elasticity of the substrate; this local balance of three forces is called Neumann's triangle. However, it is not difficult to imagine realistic properties for which this force balance cannot be satisfied. For example, if the line force corresponds to surface tension of water, the numerical values of (unstretched) solid-vapor and solid-liquid surface stresses can easily be such that their sum is insufficient to balance the applied force. In such cases conventional (or naïve) Neumann's triangle of surface forces must break down. Here we study how force balance is rescued from the breakdown of naïve Neumann's triangle by a combination of (a) large hyperelastic deformations of the underlying bulk solid, and (b) increase in surface stress due to surface elasticity (surface stiffening). For a surface with constant surface stress (no surface stiffening), we show that the linearized theory remains accurate if the applied force is less than about 1.3 times the solid surface stress. For a surface in which the surface stress increases linearly with the surface stretch, we find that the Neumann's triangle construction works well as long as we replace the constant surface stress in the naïve Neumann triangle by the actual surface stress underneath the line load.
White, Allison; Abbott, Hannah; Masi, Alfonse T; Henderson, Jacqueline; Nair, Kalyani
2018-06-06
Ankylosing spondylitis is a degenerative and inflammatory rheumatologic disorder that primarily affects the spine. Delayed diagnosis leads to debilitating spinal damage. This study examines biomechanical properties of non-contracting (resting) human lower lumbar myofascia in ankylosing spondylitis patients and matched healthy control subjects. Biomechanical properties of stiffness, frequency, decrement, stress relaxation time, and creep were quantified from 24 ankylosing spondylitis patients (19 male, 5 female) and 24 age- and sex-matched control subjects in prone position on both sides initially and after 10 min rest. Concurrent surface electromyography measurements were performed to ensure resting state. Statistical analyses were conducted, and significance was set at p < 0.05. Decreased lumbar muscle elasticity (inverse of decrement) was primarily correlated with disease duration in ankylosing spondylitis subjects, whereas BMI was the primary correlate in control subjects. In ankylosing spondylitis and control groups, significant positive correlations were observed between the linear elastic properties of stiffness and frequency as well as between the viscoelastic parameters of stress relaxation time and creep. The preceding groups also showed significant negative correlations between the linear elastic and viscoelastic properties. Findings indicate that increased disease duration is associated with decreased tissue elasticity or myofascial degradation. Both ankylosing spondylitis and healthy subjects revealed similar correlations between the linear and viscoelastic properties which suggest that the disease does not directly alter their inherent interrelations. The novel results that stiffness is greater in AS than normal subjects, whereas decrement is significantly correlated with AS disease duration deserves further investigation of the biomechanical properties and their underlying mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.
Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix
NASA Astrophysics Data System (ADS)
Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.
2018-01-01
Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition in PbTiO3 nanocrystals and suppressing in BaTiO3 inclusions some transformations occurring in their bulk counterpart. The constructed phase maps open the possibility to calculate dielectric properties of strained PbTiO3 and BaTiO3 nanocrystals and ferroelectric nanocomposites comprising such crystallites.
NASA Astrophysics Data System (ADS)
Goyal, Deepak
Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of fiber type on the degree of plasticity induced non-linearity in a +/-25° braid depend on the measure of non-linearity. Investigations about the mechanics of load flow in textile composites bring new insights about the textile behavior. For example, the reasons for existence of transverse shear stress under uni-axial loading and occurrence of stress concentrations at certain locations were explained.
Simulation of Blast Loading on an Ultrastructurally-based Computational Model of the Ocular Lens
2016-12-01
organelles. Additionally, the cell membranes demonstrated the classic ball-and-socket loops . For the SEM images, they were placed in two fixatives and mounted...considered (fibrous network and matrix), both components are modelled using a hyper - elastic framework, and the resulting constitutive model is embedded in a...within the framework of hyper - elasticity). Full details on the linearization procedures that were adopted in these previous models or the convergence
Asymptotic analysis of hierarchical martensitic microstructure
NASA Astrophysics Data System (ADS)
Cesana, Pierluigi; Porta, Marcel; Lookman, Turab
2014-12-01
We consider a hierarchical nested microstructure, which also contains a point of singularity (disclination) at the origin, observed in lead orthovanadate. We show how to exactly compute the energy cost and associated displacement field within linearized elasticity by enforcing geometric compatibility of strains across interfaces of the three-phase mixture of distortions (variants) in the microstructure. We prove that the mechanical deformation is purely elastic and discuss the behavior of the system close to the origin.
Projectile penetration into ballistic gelatin.
Swain, M V; Kieser, D C; Shah, S; Kieser, J A
2014-01-01
Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.
Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks
NASA Astrophysics Data System (ADS)
Jakus, Adam E.; Koube, Katie D.; Geisendorfer, Nicholas R.; Shah, Ramille N.
2017-03-01
Here, we present a comprehensive approach for creating robust, elastic, designer Lunar and Martian regolith simulant (LRS and MRS, respectively) architectures using ambient condition, extrusion-based 3D-printing of regolith simulant inks. The LRS and MRS powders are characterized by distinct, highly inhomogeneous morphologies and sizes, where LRS powder particles are highly irregular and jagged and MRS powder particles are rough, but primarily rounded. The inks are synthesized via simple mixing of evaporant, surfactant, and plasticizer solvents, polylactic-co-glycolic acid (30% by solids volume), and regolith simulant powders (70% by solids volume). Both LRS and MRS inks exhibit similar rheological and 3D-printing characteristics, and can be 3D-printed at linear deposition rates of 1-150 mm/s using 300 μm to 1.4 cm-diameter nozzles. The resulting LRS and MRS 3D-printed materials exhibit similar, but distinct internal and external microstructures and material porosity (~20-40%). These microstructures contribute to the rubber-like quasi-static and cyclic mechanical properties of both materials, with young’s moduli ranging from 1.8 to 13.2 MPa and extension to failure exceeding 250% over a range of strain rates (10-1-102 min-1). Finally, we discuss the potential for LRS and MRS ink components to be reclaimed and recycled, as well as be synthesized in resource-limited, extraterrestrial environments.
A new model linking elastic properties and ionic conductivity of mixed network former glasses.
Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Martin, Steve W; Kieffer, John
2018-01-17
Glasses are promising candidate materials for all-solid-state electrolytes for rechargeable batteries due to their outstanding mechanical stability, wide electrochemical stability range, and open structure for potentially high conductivity. Mechanical stiffness and ionic conductivity are two key parameters for solid-state electrolytes. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. With mixed-network formers, the structure of the network changes while the network modifier mole fraction is kept constant, i.e., x = 0.2, which allows us to analyze the effect of the network structure on various properties, including ionic conductivity and elastic properties. Besides the non-linear, non-additive mixed glass former effect, we find that the longitudinal, shear and Young's moduli depend on the combined number density of tetrahedrally and octahedrally coordinated network former elements. These units provide connectivity in three dimensions, which is required for the networks to exhibit restoring forces in response to isotropic and shear deformations. Moreover, the activation energy for modifier cation, Na + , migration is strongly correlated with the bulk modulus, suggesting that the elastic strain energy associated with the passageway dilation for the sodium ions is governed by the bulk modulus of the glass. The detailed analysis provided here gives an estimate for the number of atoms in the vicinity of the migrating cation that are affected by elastic deformation during the activated process. The larger this number and the more compliant the glass network, the lower is the activation energy for the cation jump.
NASA Astrophysics Data System (ADS)
Guechi, N.; Bouhemadou, A.; Bin-Omran, S.; Bourzami, A.; Louail, L.
2018-02-01
We report a detailed investigation of the elastic moduli, electronic band structure, density of states, chemical bonding, electron and hole effective masses, optical response functions and thermoelectric properties of the lead-free halide double perovskites Cs2AgBiCl6 and Cs2AgBiBr6 using the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA-PBEsol) and the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. Because of the presence of heavy elements in the studied compounds, we include the spin-orbit coupling (SOC) effect. Our calculated structural parameters agree very well with the available experimental and theoretical findings. Single-crystal and polycrystalline elastic constants are predicted using the total-energy versus strain approach. Three-dimensional representations of the crystallographic direction dependence on the shear modulus, Young's modulus and Poisson's ratio demonstrate a noticeable elastic anisotropy. The TB-mBJ potential with SOC yields an indirect band gap of 2.44 (1.93) eV for Cs2AgBiCl6 (Cs2AgBiBr6), in good agreement with the existing experimental data. The chemical bonding features are probed via density of states and valence electron density distribution calculations. Optical response functions were predicted from the calculated band structure. Both of the investigated compounds have a significant absorption coefficient (˜ 25 × 104 {cm}^{ - 1} ) in the visible range of sunlight. The thermoelectric properties of the title compounds were investigated using the FP-LAPW approach in combination with the semi-classical Boltzmann transport theory. The Cs2AgBiCl6 and Cs2AgBiBr6 compounds have a large thermopower S, which makes them potential candidates for thermoelectric applications.
Osanai, Osamu; Ohtsuka, Mayumi; Hotta, Mitsuyuki; Kitaharai, Takashi; Takema, Yoshinori
2011-08-01
Skin elasticity has been assessed previously only in the surface layer. We developed a new method that uses tissue strain imaging (TSI) technology, and the aim of this study was to test this new method to assess internal skin elasticity. Using a pressure device with a 12 MHz ultrasound transducer, constant and linear compressions were applied to the cheek skin of 35 volunteers (aged: 20-60 years). The elasticity of each layer (dermis, subcutaneous and muscle) was measured and analyzed using the TSI application software incorporated into the Toshiba Aplio(™) XV ultrasound system. A skin tissue-equivalent phantom, which is a block of material with the acoustic velocity (1530 m/s) of human skin, was collaboratively developed by OST Inc. This phantom was placed between the skin and the transducer as a reference material. Skin elasticity was clearly visualized and quantified in each layer of the skin. Age-dependent decreases in elasticity were determined in all layers of the skin. Among the three internal skin layers, the highest elasticity was determined in the subcutaneous layer followed by the muscle layer. These findings support the validity and sensitivity of the TSI method to assess the elasticity of various layers of skin. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Namani, Ravi
Mechanical properties are essential for understanding diseases that afflict various soft tissues, such as osteoarthritic cartilage and hypertension which alters cardiovascular arteries. Although the linear elastic modulus is routinely measured for hard materials, standard methods are not available for extracting the nonlinear elastic, linear elastic and time-dependent properties of soft tissues. Consequently, the focus of this work is to develop indentation methods for soft biological tissues; since analytical solutions are not available for the general context, finite element simulations are used. First, parametric studies of finite indentation of hyperelastic layers are performed to examine if indentation has the potential to identify nonlinear elastic behavior. To answer this, spherical, flat-ended conical and cylindrical tips are examined and the influence of thickness is exploited. Also the influence of the specimen/substrate boundary condition (slip or non-slip) is clarified. Second, a new inverse method---the hyperelastic extraction algorithm (HPE)---was developed to extract two nonlinear elastic parameters from the indentation force-depth data, which is the basic measurement in an indentation test. The accuracy of the extracted parameters and the influence of noise in measurements on this accuracy were obtained. This showed that the standard Berkovitch tip could only extract one parameter with sufficient accuracy, since the indentation force-depth curve has limited sensitivity to both nonlinear elastic parameters. Third, indentation methods for testing tissues from small animals were explored. New methods for flat-ended conical tips are derived. These account for practical test issues like the difficulty in locating the surface or soft specimens. Also, finite element simulations are explored to elucidate the influence of specimen curvature on the indentation force-depth curve. Fourth, the influence of inhomogeneity and material anisotropy on the extracted "average" linear elastic modulus was studied. The focus here is on murine tibial cartilage, since recent experiments have shown that the modulus measured by a 15 mum tip is considerably larger than that obtained from a 90 mum tip. It is shown that a depth-dependent modulus could give rise to such a size effect. Lastly, parametric studies were performed within the small strain setting to understand the influence of permeability and viscoelastic properties on the indentation stress-relaxation response. The focus here is on cartilage, and specific test protocols (single-step vs. multi-step stress relaxation) are explored. An inverse algorithm was developed to extract the poroviscoelastic parameters. A sensitivity study using this algorithm shows that the instantaneous elastic modulus (which is a measure of the viscous relaxation) can be extracted with very good accuracy, but the permeability and long-time relaxation constant cannot be extracted with good accuracy. The thesis concludes with implications of these studies. The potential and limitations of indentation tests for studying cartilage and other soft tissues is discussed.
Elastic behavior of brain simulants in comparison to porcine brain at different loading velocities.
Falland-Cheung, Lisa; Scholze, Mario; Hammer, Niels; Waddell, J Neil; Tong, Darryl C; Brunton, Paul A
2018-01-01
Blunt force impacts to the head and the resulting internal force transmission to the brain and other cranial tissue are difficult to measure. To model blunt force impact scenarios, the compressive properties resembling tissue elasticity are of importance. Therefore, this study investigated and compared the elastic behavior of gelatin, alginate, agar/glycerol and agar/glycerol/water simulant materials to that of porcine brain in a fresh and unfixed condition. Specimens, 10 × 10 × 10mm 3 , were fabricated and tested at 22°C, apart from gelatin which was conditioned to 4°C prior to testing. For comparison, fresh porcine brains were sourced and prepared to the same dimensions as the simulants. Specimens underwent compression tests at crosshead displacement rates of 2.5, 10 and 16mms -1 (equivalent to strain rates of 0.25, 1 and 1.6s -1 ), obtaining apparent elastic moduli values at different strain rate intervals (0-0.2, 0.2-0.4 and 0.4-0.5). The results of this study indicate that overall all simulant materials had an apparent elastic moduli similar in magnitude across all strain ranges compared to brain, even though comparatively higher, especially the apparent elastic moduli values of alginate. In conclusion, while agar/glycerol/water and agar/glycerol had similar apparent elastic moduli in magnitude and the closest apparent elastic moduli in the initial strain range (E 1 ), gelatin showed the most similar values to fresh porcine brain at the transitional (E 2 ) and higher strain range (E 3 ). The simulant materials and the fresh porcine brain exhibited strain rate dependent behavior, with increasing elastic moduli upon increasing loading velocities. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1986-01-01
The governing coupled flapwise bending, edgewise bending, and torsional equations are derived including third-degree geometric nonlinear elastic terms by making use of the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. These equations are specialized for blades of doubly symmetric cross section with linear variation of pretwist over the blade length. The nonlinear steady state equations and the linearized perturbation equations are solved by using the Galerkin method, and by utilizing the nonrotating normal modes for the shape functions. Parametric results obtained for various cases of rotating blades from the present theoretical formulation are compared to those produced from the finite element code MSC/NASTRAN, and also to those produced from an in-house experimental test rig. It is shown that the spurious instabilities, observed for thin, rotating blades when second degree geometric nonlinearities are used, can be eliminated by including the third-degree elastic nonlinear terms. Furthermore, inclusion of third degree terms improves the correlation between the theory and experiment.
On the Opening of Thick Walled Elastic Tubes: A Fluid-Structure Model for Acid Reflux
NASA Astrophysics Data System (ADS)
Ghosh, Sudip; Kahrilas, Peter
2005-11-01
A coupled fluid-structure mathematical model was developed to quantify rapid opening of thick-walled elastic tubes, a phenomenon underlying biological flows such as gastroesophageal reflux disease (GERD). The wall was modeled using non-linear finite deformation theory to predict space-time radial distention of an axisymmetric tube with luminal fluid flow. Anisotropic azimuthal and longitudinal muscle-induced stresses were incorporated, and interstitial material properties were assumed isotropic and linearly elastic. Fluid flow was modeled using lubrication theory with inertial correction. Opening and flow were driven by a specified inflow pressure and zero pressure gradient was specified at outflow. No-slip and surface force balance were applied at the fluid-wall interface. Viscoelasticity was modeled with ad hoc damping and the evolution of the tube geometry was predicted at mid-layer. A potentially important discovery was made when applied to studies of initiation of opening with GERD: while material stiffness is of minor consequence, small changes in resting lumen distension (˜2 mm diameter) may be a sensitive distinguishing feature of the disease.
NASA Astrophysics Data System (ADS)
Li, Dongna; Li, Xudong; Dai, Jianfeng
2018-06-01
In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.
Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys
NASA Astrophysics Data System (ADS)
Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet
2018-02-01
The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.
NASA Astrophysics Data System (ADS)
Roos, Wouter; Gibbons, Melissa; Klug, William; Wuite, Gijs
2009-03-01
We report nanoindentation experiments by atomic force microscopy on capsids of the Hepatitis B Virus (HBV). HBV is investigated because its capsids can form in either a smaller T=3 or a bigger T=4 configuration, making it an ideal system to test the predictive power of continuum elastic theory to describe nanometre-sized objects. It is shown that for small, consecutive indentations the particles behave reversibly linear and no material fatigue occurs. For larger indentations the particles start to deform non-linearly. The experimental force response fits very well with finite element simulations on coarse grained models of HBV capsids. Furthermore, this also fits with thin shell simulations guided by the F"oppl- von K'arm'an (FvK) number (the dimensionless ratio of stretching and bending stiffness of a thin shell). Both the T=3 and T=4 morphology are very well described by the simulations and the capsid material turns out to have the same Young's modulus, as expected. The presented results demonstrate the surprising strength of continuum elastic theory to describe indentation of viral capsids.
NASA Astrophysics Data System (ADS)
Akbarov, Surkay D.; Cafarova, Fazile I.; Yahnioglu, Nazmiye
2017-02-01
The axisymmetric buckling delamination of the piezoelectric circular sandwich plate with piezoelectric face and elastic (metal) core layers around the interface penny-shaped cracks is investigated. The case is considered where short-circuit conditions with respect to the electrical potential on the upper and lower and also lateral surfaces of face layers are satisfied. It is assumed that the edge surfaces of the cracks have an infinitesimal rotationally symmetric initial imperfection and the development of this imperfection with rotationally symmetric compressive forces acting on the lateral surface of the plate is studied by employing the exact geometrically non-linear field equations and relations of electro-elasticity for piezoelectric materials. Solution to the considered nonlinear problem is reduced to solution of the series boundary value problems derived by applying the linearization procedure with respect to small imperfection of the sought values. Numerical results reveal the effect of piezoelectricity as well as geometrical and material parameters on the critical values are determined numerically by employing finite element method (FEM).
The effect of long-range order on the elastic properties of Cu3Au
NASA Astrophysics Data System (ADS)
Wang, Gui-Sheng; Krisztina Delczeg-Czirjak, Erna; Hu, Qing-Miao; Kokko, Kalevi; Johansson, Börje; Vitos, Levente
2013-02-01
Ab initio calculations, based on the exact muffin-tin orbitals method are used to determine the elastic properties of Cu-Au alloys with Au/Cu ratio 1/3. The compositional disorder is treated within the coherent potential approximation. The lattice parameters and single-crystal elastic constants are calculated for different partially ordered structures ranging from the fully ordered L12 to the random face centered cubic lattice. It is shown that the theoretical elastic constants follow a clear trend with the degree of chemical order: namely, C11 and C12 decrease, whereas C44 remains nearly constant with increasing disorder. The present results are in line with the experimental findings that the impact of the chemical ordering on the fundamental elastic parameters is close to the resolution of the available experimental and theoretical tools.
NASA Astrophysics Data System (ADS)
Łepkowski, S. P.
2008-10-01
We investigate the contribution arising from third-order elasticity to the pressure coefficient of the light emission (dEE/dP) in strained zinc-blende InGaAs/GaAs and InGaN/GaN quantum wells (QWs) grown in a (001) direction. In the framework of the third-order elasticity theory, we develop a model of pressure tuning of strains in these structures, which is then used to determine the coefficient dEE/dP . In the calculations of dEE/dP , we use a consistent set of the second- and third-order elastic constants which has been obtained from ab initio calculations. Our results indicate that the usage of third-order elasticity leads to significant reduction in dEE/dP in strained (001)-oriented InGaAs/GaAs and InGaN/GaN QWs, in comparison to the values of dEE/dP obtained by using the linear theory of elasticity. In the case of InGaAs/GaAs QWs, the values of dEE/dP calculated using third-order elasticity are in reasonable agreement with experimental data. For InGaN/GaN QWs, better agreement between theoretical and experimental values of dEE/dP is obtained when instead of third-order elasticity, pressure dependence of the second-order elastic constants is taken into account.
NASA Astrophysics Data System (ADS)
Terekhina, A. I.; Plekhov, O. A.; Kostina, A. A.; Susmel, L.
2017-06-01
The problem of determining the strength of engineering structures, considering the effects of the non-local fracture in the area of stress concentrators is a great scientific and industrial interest. This work is aimed on modification of the classical theory of critical distance that is known as a method of failure prediction based on linear-elastic analysis in case of elasto-plastic material behaviour to improve the accuracy of estimation of lifetime of notched components. Accounting plasticity has been implemented with the use of the Simplified Johnson-Cook model. Mechanical tests were carried out using a 300 kN electromechanical testing machine Shimadzu AG-X Plus. The cylindrical un-notched specimens and specimens with stress concentrators of titanium alloy Grade2 were tested under tensile loading with different grippers travel speed, which ensured several orders of strain rate. The results of elasto-plastic analyses of stress distributions near a wide variety of notches are presented. The results showed that the use of the modification of the TCD based on elasto-plastic analysis gives us estimates falling within an error interval of ±5-10%, that more accurate predictions than the linear elastic TCD solution. The use of an improved description of the stress-strain state at the notch tip allows introducing the critical distances as a material parameter.
Laser Assisted Free-Free Transition in Electron - Atom Collision
NASA Technical Reports Server (NTRS)
Sinha, C.; Bhatia, A. K.
2011-01-01
Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.
Forecasting volcanic eruptions: the control of elastic-brittle deformation
NASA Astrophysics Data System (ADS)
Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander
2016-04-01
At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear decrease in inverse-rate with time for VT seismicity, which can be extrapolated to an expected eruption time shortly after the inverse rate becomes zero [3]; and, for extension, it identifies preferred inverse-rate gradients of 0.001-0.01, which can be used to distinguish between physically-meaningful and spurious inverse-rate trends. [1] Kilburn CRJ (2012) J Geophys Res, doi: 10.1029/2011JB008703; [2] Robertson R, Kilburn CRJ (2016) Earth Planet Sci Lett, doi: 10.1016/j.epsl.2016.01.003; [3] Voight B (1988) Nature. 332: 125-130.
Design, Optimization and Evaluation of Integrally Stiffened Al 7050 Panel with Curved Stiffeners
NASA Technical Reports Server (NTRS)
Slemp, Wesley C. H.; Bird, R. Keith; Kapania, Rakesh K.; Havens, David; Norris, Ashley; Olliffe, Robert
2011-01-01
A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel was optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis tool named EBF3PanelOpt. The panel was designed for a combined compression-shear loading configuration that is a realistic load case for a typical aircraft wing panel. The panel was loaded beyond buckling and strains and out-of-plane displacements were measured. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis and linear elastic finite element analysis of the panel/test-fixture assembly. The numerical results indicated that the panel buckled at the linearly elastic buckling eigenvalue predicted for the panel/test-fixture assembly. The experimental strains prior to buckling compared well with both the linear and nonlinear finite element model.
Identification of internal properties of fibers and micro-swimmers
NASA Astrophysics Data System (ADS)
Plouraboue, Franck; Thiam, Ibrahima; Delmotte, Blaise; Climent, Eric; PSC Collaboration
2016-11-01
In this presentation we discuss the identifiability of constitutive parameters of passive or active micro-swimmers. We first present a general framework for describing fibers or micro-swimmers using a bead-model description. Using a kinematic constraint formulation to describe fibers, flagellum or cilia, we find explicit linear relationship between elastic constitutive parameters and generalised velocities from computing contact forces. This linear formulation then permits to address explicitly identifiability conditions and solve for parameter identification. We show that both active forcing and passive parameters are both identifiable independently but not simultaneously. We also provide unbiased estimators for elastic parameters as well as active ones in the presence of Langevin-like forcing with Gaussian noise using normal linear regression models and maximum likelihood method. These theoretical results are illustrated in various configurations of relaxed or actuated passives fibers, and active filament of known passive properties, showing the efficiency of the proposed approach for direct parameter identification. The convergence of the proposed estimators is successfully tested numerically.
Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1987-01-01
An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.
NASA Astrophysics Data System (ADS)
Ma, J.; Narayanan, H.; Garikipati, K.; Grosh, K.; Arruda, E. M.
The important mechanisms by which soft collagenous tissues such as ligament and tendon respond to mechanical deformation include non-linear elasticity, viscoelasticity and poroelasticity. These contributions to the mechanical response are modulated by the content and morphology of structural proteins such as type I collagen and elastin, other molecules such as glycosaminoglycans, and fluid. Our ligament and tendon constructs, engineered from either primary cells or bone marrow stromal cells and their autogenous matricies, exhibit histological and mechanical characteristics of native tissues of different levels of maturity. In order to establish whether the constructs have optimal mechanical function for implantation and utility for regenerative medicine, constitutive relationships for the constructs and native tissues at different developmental levels must be established. A micromechanical model incorporating viscoelastic collagen and non-linear elastic elastin is used to describe the non-linear viscoelastic response of our homogeneous engineered constructs in vitro. This model is incorporated within a finite element framework to examine the heterogeneity of the mechanical responses of native ligament and tendon.
Functional similarities in the mechanical design of the aorta in lower vertebrates and mammals.
Gibbons, C A; Shadwick, R E
1989-12-01
The mechanical properties of the aorta from the toad Bufo marinus, the lizard Gekko gecko and the garter snake Thamnophis radix were compared to those of the rat, by inflation of vessel segments in vitro. The arteries of the lower vertebrates, like those of mammals, were compliant, highly resilient, and non-linearly elastic. The elastic modulus of the artery wall was similar in the lower vertebrates and mammals, at their respective mean physiological pressures. We conclude that the aorta in each of these animals is suitably designed to function effectively as an elastic pulse smoothing component in the circulation; differences in the pressure wave transmission characteristics of lower vertebrates and mammals do not result from dissimilarities in arterial elastic properties, but from substantial differences in heart rate of these two groups.
NASA Technical Reports Server (NTRS)
Wu, R. W.; Witmer, E. A.
1972-01-01
Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.
Mathematical modeling of aeroelastic systems
NASA Astrophysics Data System (ADS)
Velmisov, Petr A.; Ankilov, Andrey V.; Semenova, Elizaveta P.
2017-12-01
In the paper, the stability of elastic elements of a class of designs that are in interaction with a gas or liquid flow is investigated. The definition of the stability of an elastic body corresponds to the concept of stability of dynamical systems by Lyapunov. As examples the mathematical models of flowing channels (models of vibration devices) at a subsonic flow and the mathematical models of protective surface at a supersonic flow are considered. Models are described by the related systems of the partial differential equations. An analytic investigation of stability is carried out on the basis of the construction of Lyapunov-type functionals, a numerical investigation is carried out on the basis of the Galerkin method. The various models of the gas-liquid environment (compressed, incompressible) and the various models of a deformable body (elastic linear and elastic nonlinear) are considered.
Sugioka, Hideyuki; Nakano, Naoki
2018-01-01
An artificial cilium using ac electro-osmosis (ACEO) is attractive because of its large potentiality for innovative microfluidic applications. However, the ACEO cilium has not been probed experimentally and has a shortcoming that the working frequency range is very narrow. Thus, we here propose an ACEO elastic actuator having a skew structure that broadens a working frequency range and experimentally demonstrate that the elastic actuator in water can be driven with a high-speed (∼10 Hz) and a wide frequency range (∼0.1 to ∼10 kHz). Moreover, we propose a simple self-consistent model that explains the broadband characteristic due to the skew structure with other characteristics. By comparing the theoretical results with the experimental results, we find that they agree fairly well. We believe that our ACEO elastic actuator will play an important role in microfluidics in the future.
NASA Astrophysics Data System (ADS)
Sugioka, Hideyuki; Nakano, Naoki
2018-01-01
An artificial cilium using ac electro-osmosis (ACEO) is attractive because of its large potentiality for innovative microfluidic applications. However, the ACEO cilium has not been probed experimentally and has a shortcoming that the working frequency range is very narrow. Thus, we here propose an ACEO elastic actuator having a skew structure that broadens a working frequency range and experimentally demonstrate that the elastic actuator in water can be driven with a high-speed (˜10 Hz) and a wide frequency range (˜0.1 to ˜10 kHz). Moreover, we propose a simple self-consistent model that explains the broadband characteristic due to the skew structure with other characteristics. By comparing the theoretical results with the experimental results, we find that they agree fairly well. We believe that our ACEO elastic actuator will play an important role in microfluidics in the future.
Sensitivity analysis of seismic waveforms to upper-mantle discontinuities using the adjoint method
NASA Astrophysics Data System (ADS)
Koroni, Maria; Bozdağ, Ebru; Paulssen, Hanneke; Trampert, Jeannot
2017-09-01
Using spectral-element simulations of wave propagation, we investigated the sensitivity of seismic waveforms, recorded on transverse components, to upper-mantle discontinuities in 1-D and 3-D background models. These sensitivity kernels, or Fréchet derivatives, illustrate the spatial sensitivity to model parameters, of which those for shear wave speed and the surface topography of internal boundaries are discussed in this paper. We focus on the boundaries at 400 and 670 km depth of the mantle transition zone. SS precursors have frequently been used to infer the topography of upper-mantle discontinuities. These seismic phases are underside reflections off these boundaries and are usually analysed in the distance range of 110°-160°. This distance range is chosen to minimize the interference from other waves. We show sensitivity kernels for consecutive time windows at three characteristic epicentral distances within the 110°-160° range. The sensitivity kernels are computed with the adjoint method using synthetic data. From our simulations we can draw three main conclusions: (i) The exact Fréchet derivatives show that in all time windows, and also in those centred on the SS precursors, there is interference from other waves. This explains the difficulty reported in the literature to correct for 3-D shear wave speed perturbations, even if the 3-D structure is perfectly known. (ii) All studies attempting to map the topography of the 400 and 670 km discontinuities to date assume that the traveltimes of SS precursors can be linearly decomposed into a 3-D elastic structure and a topography part. We recently showed that such a linear decomposition is not possible for SS precursors, and the sensitivity kernels presented in this paper explain why. (iii) In agreement with previous work, we show that other parts of the seismograms have greater sensitivity to upper-mantle discontinuities than SS precursors, especially multiply bouncing S waves exploiting the S-wave triplications due to the mantle transition zone. These phases can potentially improve the inference of global topographic variations of the upper-mantle discontinuities in the context of full waveform inversion in a joint inversion for (an)elastic parameters and topography.
Flow Interpretation Implications for Poro-Elastic Modeling
2010-06-01
interpretation of acoustical inversions based on poro-elastic models . I. INTRODUCTION Poro-elastic models for acoustic propagation in sediments arose out of the...porous solid. ii. higher freqency range, J. Acoust . Soc. America, 28, 179– 191, 1956. [11] Bear, J., and Y. Bachmat (Eds.), Introduction to Modeling of...Flow interpretation implications for Poro-Elastic Modeling James K. Fulford Naval Research Laboratory Stennis Space Center Stennis Space Center
NASA Astrophysics Data System (ADS)
Grohs, Jacob R.; Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.
Temperature and humidity fluctuations in operating fuel cells impose significant biaxial stresses in the constrained proton exchange membranes (PEMs) of a fuel cell stack. The strength of the PEM, and its ability to withstand cyclic environment-induced stresses, plays an important role in membrane integrity and consequently, fuel cell durability. In this study, a pressure loaded blister test is used to characterize the biaxial strength of Gore-Select ® series 57 over a range of times and temperatures. Hencky's classical solution for a pressurized circular membrane is used to estimate biaxial strength values from burst pressure measurements. A hereditary integral is employed to construct the linear viscoelastic analog to Hencky's linear elastic exact solution. Biaxial strength master curves are constructed using traditional time-temperature superposition principle techniques and the associated temperature shift factors show good agreement with shift factors obtained from constitutive (stress relaxation) and fracture (knife slit) tests of the material.
Stiffness map of the grasping contact areas of the human hand.
Pérez-González, Antonio; Vergara, Margarita; Sancho-Bru, Joaquin L
2013-10-18
The elasticity and damping of the soft tissues of the hand contribute to dexterity while grasping and also help to stabilise the objects in manipulation tasks. Although some previous works have studied the force-displacement response of the fingertips, the responses in all other regions of the hand that usually participate in grasping have not been analysed to date. In this work we performed experimental measurements in 20 subjects to obtain a stiffness map of the different grasping contact areas of the human hand. A force-displacement apparatus was used to simultaneously measure force and displacement at 39 different points on the hand at six levels of force ranging from 1N to 6N. A non-linear force-displacement response was found for all points, with stiffness increasing with the amount of force applied. Mean stiffness for the different points and force levels was within the range from 0.2N/mm to 7.7N/mm. However, the stiffness range and variation with level of force were found to be different from point to point. A total of 13 regions with similar stiffness behaviours were identified. The stiffness in the fingertips increased linearly with the amount of force applied, while in the palm it remained more constant for the range of forces considered. It is hypothesised that the differences in the stiffness behaviour from one region to another allow these regions to play different roles during grasping. © 2013 Elsevier Ltd. All rights reserved.
2169 steel waveform experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd
2012-11-01
In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included themore » elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.« less
NASA Technical Reports Server (NTRS)
Cai, Zhiqiang; Manteuffel, Thomas A.; McCormick, Stephen F.
1996-01-01
In this paper, we study the least-squares method for the generalized Stokes equations (including linear elasticity) based on the velocity-vorticity-pressure formulation in d = 2 or 3 dimensions. The least squares functional is defined in terms of the sum of the L(exp 2)- and H(exp -1)-norms of the residual equations, which is weighted appropriately by by the Reynolds number. Our approach for establishing ellipticity of the functional does not use ADN theory, but is founded more on basic principles. We also analyze the case where the H(exp -1)-norm in the functional is replaced by a discrete functional to make the computation feasible. We show that the resulting algebraic equations can be uniformly preconditioned by well-known techniques.
Closed-form solution for Eshelby's elliptic inclusion in antiplane elasticity using complex variable
NASA Astrophysics Data System (ADS)
Chen, Y. Z.
2013-12-01
This paper provides a closed-form solution for the Eshelby's elliptic inclusion in antiplane elasticity. In the formulation, the prescribed eigenstarins are not only for the uniform distribution, but also for the linear form. After using the complex variable and the conformal mapping, the continuation condition for the traction and displacement along the interface in the physical plane can be reduced to a condition along the unit circle. The relevant complex potentials defined in the inclusion and the matrix can be separated from the continuation conditions of the traction and displacement along the interface. The expressions of the real strains and stresses in the inclusion from the assumed eigenstrains are presented. Results for the case of linear distribution of eigenstrain are first obtained in the paper.
Sensitivity of inelastic response to numerical integration of strain energy. [for cantilever beam
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1976-01-01
The exact solution to the quasi-static, inelastic response of a cantilever beam of rectangular cross section subjected to a bending moment at the tip is obtained. The material of the beam is assumed to be linearly elastic-linearly strain-hardening. This solution is then compared with three different numerical solutions of the same problem obtained by minimizing the total potential energy using Gaussian quadratures of two different orders and a Newton-Cotes scheme for integrating the strain energy of deformation. Significant differences between the exact dissipative strain energy and its numerical counterpart are emphasized. The consequence of this on the nonlinear transient responses of a beam with solid cross section and that of a thin-walled beam on elastic supports under impulsive loads are examined.
Experimental and theoretical investigation of the elastic moduli of silicate glasses and crystals
NASA Astrophysics Data System (ADS)
Philipps, Katharina; Stoffel, Ralf Peter; Dronskowski, Richard; Conradt, Reinhard
2017-02-01
A combined quantum-mechanical and thermodynamic approach to the mechanical properties of multicomponent silicate glasses is presented. Quantum chemical calculations based on density-functional theory (DFT) on various silicate systems were performed to explore the crystalline polymorphs existing for a given chemical composition. These calculations reproduced the properties of known polymorphs even in systems with extensive polymorphism, like MgSiO3. Properties resting on the atomic and electronic structure, i.e., molar volumes (densities) and bulk moduli were predicted correctly. The theoretical data (molar equilibrium volumes, bulk moduli) were then used to complement the available experimental data. In a phenomenological evaluation, experimental data of bulk moduli, a macroscopic property resting on phononic structure, were found to linearly scale with the ratios of atomic space demand to actual molar volume in a universal way. Silicates ranging from high-pressure polymorphs to glasses were represented by a single master line. This suggests that above the Debye limit (in practice: above room temperature), the elastic waves probe the short range order coordination polyhedra and their next-neighbor linkage only, while the presence or absence of an extended translational symmetry is irrelevant. As a result, glasses can be treated - with respect to the properties investigated - as commensurable members of polymorphic series. Binary glasses fit the very same line as their one-component end-members, again both in the crystalline and glassy state. Finally, it is shown that the macroscopic properties of multicomponent glasses also are linear superpositions of the properties of their constitutional phases (as determined from phase diagrams or by thermochemical calculations) taken in their respective glassy states. This is verified experimentally for heat capacities and Young’s moduli of industrial glass compositions. It can be concluded, that the combined quantum mechanical and thermochemical approach is a truly quantitative approach for the design of glasses with desired mechanical properties, e.g., for the development of high-modulus glasses.
A Focused Fundamental Study of Predicting Materials Degradation & Fatigue. Volume 1
1997-05-31
physical properties are: bulk modulus, shear strength, coefficient of friction, modulus of elasticity/ rigidity and Poisson’s ratio. Each of these physical...acting on a subsurface crack when abrasive motion occurs on the surface using linear elastic fracture mechanics theory. Both mechanisms involve a...The body of the scattering 5 cell was a 4-way Swagelok*(Crawford Fitting Co., Solon, OH) connector with a 1.5 mm hole drilled in the top for
NASA Astrophysics Data System (ADS)
Gladyshev, V. O.; Portnov, D. I.
2016-12-01
The physical mechanism of alteration of intensity of linearly polarized monochromatic electromagnetic radiation with λ = 630 nm in a revolving dielectric disk with a mirror coating is examined. The effect is induced by elastic deformation due to the revolution and by thermoelastic deformation of the optically transparent disk. These deformations result in birefringence, the polarization plane rotation, and a 30-40% change in the intensity of reflected radiation.
Density and mechanical properties of calcium aluminate cement
NASA Astrophysics Data System (ADS)
Ahmed, Syed Taqi Uddin; Ahmmad, Shaik Kareem
2018-04-01
Calcium aluminate cements are a special type of cements which have their composition mainly dominated by the presence of Monocalcium Aluminates. In the present paper for the first time we have shown theoretical density and elastic constants for various calcium aluminate cements. The density of the present CAS decrease with aluminates presents in the cement. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter.
NASA Astrophysics Data System (ADS)
Saikia, C. K.; Ezzedine, S. M.; Vorobiev, O.; Antoun, T.; Woods, M. T.
2017-12-01
The focus of this study is to investigate the effect of the non-linear material properties on synthetic waveforms at receivers located within the elastic region near the non-linear zone around energetic chemical explosions. The primary goal is to characterize the effect of porosity and joint properties. The joint sizes are typically small compared with the wavelength represented by the computational grid, so the calculations become time consuming to properly represent the fidelity of the calculations. In this study, we use GEODYN-L Lagrangian code, where the joints are included explicitly. We simulate a suite of synthetics for chemical explosions in granite, and varying the porosity and joint orientation. Using the generated synthetic waveforms in the elastic region, we calculate displacement spectra and compare them with homogenous medium solutions (i.e., free of porosity and joints). We are attempting to develop a set of correction factors necessary to apply in various field (emplacement) conditions so that the spectral characteristics can be compared to those predicted by the Mueller-Murphy (MM, 1971; Saikia, 2017) and other source functions (Denny and Johnson, 1991; Ford and Walter, 2013) near the elastic radii. Future investigations will include similar analysis for the nuclear explosions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Passive and active ventricular elastances of the left ventricle
Zhong, Liang; Ghista, Dhanjoo N; Ng, Eddie YK; Lim, Soo T
2005-01-01
Background Description of the heart as a pump has been dominated by models based on elastance and compliance. Here, we are presenting a somewhat new concept of time-varying passive and active elastance. The mathematical basis of time-varying elastance of the ventricle is presented. We have defined elastance in terms of the relationship between ventricular pressure and volume, as: dP = EdV + VdE, where E includes passive (Ep) and active (Ea) elastance. By incorporating this concept in left ventricular (LV) models to simulate filling and systolic phases, we have obtained the time-varying expression for Ea and the LV-volume dependent expression for Ep. Methods and Results Using the patient's catheterization-ventriculogram data, the values of passive and active elastance are computed. Ea is expressed as: ; Epis represented as: . Ea is deemed to represent a measure of LV contractility. Hence, Peak dP/dt and ejection fraction (EF) are computed from the monitored data and used as the traditional measures of LV contractility. When our computed peak active elastance (Ea,max) is compared against these traditional indices by linear regression, a high degree of correlation is obtained. As regards Ep, it constitutes a volume-dependent stiffness property of the LV, and is deemed to represent resistance-to-filling. Conclusions Passive and active ventricular elastance formulae can be evaluated from a single-beat P-V data by means of a simple-to-apply LV model. The active elastance (Ea) can be used to characterize the ventricle's contractile state, while passive elastance (Ep) can represent a measure of resistance-to-filling. PMID:15707494
Three-dimensional formulation of dislocation climb
NASA Astrophysics Data System (ADS)
Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.
2015-10-01
We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.
NASA Astrophysics Data System (ADS)
Zhou, Wenge; Fan, Dawei; Liu, Yonggang; Xie, Hongsen
2011-12-01
In situ measurements of elastic wave velocities and electrical conductivities in the three structural directions (normal to foliation Z, perpendicular to lineation in foliation Y and parallel to lineation X) for an amphibolite collected from southwestern margin of the Tarim Basin, northwest China, were carried out in the laboratory. The elastic wave velocity was measured with the combined transmission-reflection method at pressures up to 1.0 GPa (at room temperature) and temperatures up to 700 °C (at 1.0 GPa) and the electrical conductivity was measured with the impedance spectroscopy from 250 to 700 °C at 1.0 GPa. The experimentally determined data included compressional (Vp) and shear wave velocities (Vs), velocity anisotropy (Av), intrinsic pressure and temperature derivatives of Vp and Vs, electrical conductivity (σ), electrical conductivity anisotropy (Aσ) and the parameters of the Arrhenius relationship. Elastic wave velocities increase in the structural directions Z, Y, X, with Vp of 6.63, 6.78 and 6.95 km s-1 and Vs of 3.75, 3.82 and 3.96 km s-1 for Z, Y and X, respectively, at pressure of 1.0 GPa. Elastic wave velocities increase linearly with pressure at room temperature and pressures between 0.25 and 1.0 GPa and decrease linearly with increasing temperature at 1.0 GPa. The pressure coefficients of the sample are in the range of 0.1883-0.2308 km s-1 GPa-1 for Vp and 0.1149-0.1678 km s-1 GPa-1 for Vs. The temperature coefficients are in the range of 2.09-2.35 × 10-4 km s-1 GPa-1 for Vp and 1.28-1.68 × 10-4 km s-1 GPa-1 for Vs. The electrical conductivity increases with increasing temperature, consistent with the Arrhenius relationship. Activation energies for the three structural directions of the amphibolite are in the range of 0.71-0.75 eV. The amphibolite shows velocity anisotropy (4.15-4.86 per cent for Vp and 5.29-5.84 per cent for Vs at 0.25-1.0 GPa) and electrical conductivity anisotropy (11.1-25.2 per cent). Based on the regional crust model and geothermal gradient, velocity and electrical conductivity-depth profiles were calculated for the sample. These profiles were then compared with those derived from seismic reflection/refraction data and from electromagnetic data. Our results showed that the amphibolite sample has Vp and Vs in agreement with those of the middle and lower crust obtained from seismic reflection/refraction data, and σ in accord with that of the lower crust deduced from electromagnetic data. The lower crust of the electromagnetic crust model is roughly equivalent to the middle and lower crust layers of the seismic crust model. Therefore, it is suggest that the amphibolite may be one of the constituents of the present middle and lower crust in the Tarim Basin.
NASA Astrophysics Data System (ADS)
Pawar, H.; Shugani, M.; Aynyas, M.; Sanyal, S. P.
2018-02-01
The structural, electronic and elastic properties of YbTM2 (TM = Ir and Pt) Laves phase intermetallic compounds which crystallize in cubic (MgCu2-type) structure, have been investigated using ab-initio full potential linearized augmented plane wave (FP-LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B‧) are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for these compounds which obey the stability criteria for cubic system.
Hypo-Elastic Model for Lung Parenchyma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Alan D.; Einstein, Daniel R.
2012-03-01
A simple elastic isotropic constitutive model for the spongy tissue in lung is derived from the theory of hypoelasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted by some as indicating extensional anisotropy. In contrast, we show that this behavior arises natural from an analysis of isotropic hypoelastic invariants, and is a likely result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model ismore » characterized against published experimental data for dog lung. Future work includes non-elastic model behavior.« less
Fracture and damage localization in volcanic edifice rocks from El Hierro, Stromboli and Tenerife.
Harnett, Claire E; Benson, Philip M; Rowley, Pete; Fazio, Marco
2018-01-31
We present elastic wave velocity and strength data from a suite of three volcanic rocks taken from the volcanic edifices of El Hierro and Tenerife (Canary Islands, Spain), and Stromboli (Aeolian Islands, Italy). These rocks span a range of porosity and are taken from volcanoes that suffer from edifice instability. We measure elastic wave velocities at known incident angles to the generated through-going fault as a function of imposed strain, and examine the effect of the damage zone on P-wave velocity. Such data are important as field measurements of elastic wave tomography are key tools for understanding volcanic regions, yet hidden fractures are likely to have a significant effect on elastic wave velocity. We then use elastic wave velocity evolution to calculate concomitant crack density evolution which ranges from 0 to 0.17: highest values were correlated to the damage zone in rocks with the highest initial porosity.
Readily fiberizable glasses having a high modulus of elasticity
NASA Technical Reports Server (NTRS)
Bacon, J. F.
1970-01-01
New glass compositions yield composites having higher moduli of elasticity and specific moduli of elasticity than commercially available glasses. Over a reasonable temperature range the glasses have a viscosity of about 20,000 poises. They consist of silica, alumina, magnesia, and beryllia, plus at least one uncommon oxide.
Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals
NASA Astrophysics Data System (ADS)
Zhou, Shuang
Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal (LLC), constructed by mixing LCLC with self-propelled microorganism, bacteria strain called Bacillus subtilis . The coupling between bacterial flow and the nematic long-rang order of the LCLC matrix results in a wealth of intriguing dynamic phenomena, among which are 1) programmable trajectories of bacterial motion guided by patterned director field, 2) cargo particle transportation along such trajectories, 3) local melting of the liquid crystal caused by the bacteria-produced shear flow, 4) birefringence-enabled visualization of microflow generated by nanometer-thick bacterial flagella and 5) activity triggered transition from non-flow uniform state into a flowing one-dimensional pattern and its evolution into a turbulent array of topological defects. In addition, due to the long-rang elastic interaction mediated by the nematic matrix, LLC shows collective dynamics at very low fraction of bacteria, on the order of 0.2%, about 1/10 of bacteria fraction needed in isotropic media for collective motion. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications.
Elastic modulus of phases in Ti–Mo alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei-dong; Liu, Yong, E-mail: yonliu11@aliyun.com; Wu, Hong
2015-08-15
In this work, a series of binary Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were prepared using non-consumable arc melting. The microstructures were investigated by X-ray diffraction and transmission electron microscope, and the elastic modulus was evaluated by nanoindentation testing technique. The evolution of the volume fractions of ω phase was investigated using X-ray photoelectron spectroscopy. The results indicated that the phase constitution and elastic modulus of the Ti–Mo alloys are sensitive to the Mo content. Ti–3.2Mo and Ti–8Mo alloys containing only α and β phases, respectively, have a low elastic modulus. In contrast, Ti–4.5Mo,more » Ti–6Mo, Ti–7Mo alloys, with different contents of ω phase, have a high elastic modulus. A simple micromechanical model was used to calculate the elastic modulus of ω phase (E{sub ω}), which was determined to be 174.354 GPa. - Highlights: • Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were investigated. • XPS was used to investigate the volume fractions of ω phase. • The elastic modulus of Ti–Mo alloys is sensitive to the Mo content. • The elastic modulus of ω phase was determined to be 174.354 GPa.« less
Nonlinear material behaviour of spider silk yields robust webs.
Cranford, Steven W; Tarakanova, Anna; Pugno, Nicola M; Buehler, Markus J
2012-02-01
Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider's many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress--involving softening at a yield point and substantial stiffening at large strain until failure--as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web's structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.
NASA Astrophysics Data System (ADS)
Shishesaz, Mohammad; Shirbani, Meisam Moory; Sedighi, Hamid Mohammad; Hajnayeb, Ali
2018-07-01
In order to effectively design an energy harvesting system for any specific application, a model that accurately characterizes the energy harvesting parameters is needed. In the present paper a novel magneto-electro-elastic (MEE) cantilever beam has been proposed and modeled as an effective means to increase the harvested electrical power in a vibration-based energy harvesting system. The cantilever beam is composed of a linear homogeneous elastic substrate and two MEE layers with perfect bonds between their interfaces. Using the constitutive equations, Gauss's and Faraday's laws, based on the Euler-Bernoulli beam theory, the coupled magneto-electro-mechanical (MeM) differential equations are derived for a harmonic base excitation in the transversal direction with a superimposed small rotation. The resulting equations are then solved analytically to obtain the dynamic behavior as well as the harvested voltages and powers of the proposed energy harvesting system. Finally, parametric numerical studies are used to examine the effect of excitation frequency, external resistive loads, and material properties on the performance of the MEE energy harvester. The study reveals that the implementation of the coil circuit has resulted in an increase in the total useful harvested power. According to the numerical results, any increase in the Young's modulus and density of the substrate layer (across the ranges that have been studied and while the properties of the MEE layer are kept constant), increases the magnitude of the magnetoelectric harvested power in the unimorph MEE energy harvester system.
Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects
NASA Astrophysics Data System (ADS)
Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman
2017-07-01
Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.
Linear movement of plywood and flakeboards as related to the longitudinal movement of wood
B. G. Heebink; E. W. Kuenzi; A. C. Maki
1964-01-01
Veneer, plywood, and flakeboard specimens were subjected to various humidity conditions. Physical and elastic properties of the veneer were determined and the influence of these properties on the movement of plywood and flakeboards fabricated of like material was evaluated, The linear movement of the plywood and flakeboards was closely related to the longitudinal-to-...
Mechanisms Inducing Jet Rotation in Shear-Formed Shaped-Charge Liners.
1990-03-01
of deviatoric strain, and compressibility affects only the equation of state , not the deviatoric stress /strain relation. An anisotropic formulation is...strains, a more accurate scalar equation of state should simultaneously be employed to account for non-linear compressibility effects . A4 A.3 Elastic... obtainable knowing the previous and present cycles’ average stress . However, many non-linear equations
What Do Observations of Postseismic Deformation Tell us About the Rheology of the Lithoshpere?
NASA Astrophysics Data System (ADS)
Fialko, Y.
2006-12-01
Geodetic observations in epicentral areas of large shallow earthquakes reveal transient displacements that typically have the same sense as the coseismic ones, but are about an order of magnitude smaller. A number of different mechanisms has been proposed to explain the observed time-dependent deformation, including afterslip on a deep extension of the seismic rupture, viscous-like response of a substrate below the brittle-ductile transition (e.g., the lower crust or upper mantle), and re-distribution of pore fluids in the upper crust. Distinguishing the relative contributions of these relaxation mechanisms is important before one can make robust inferences about the effective rheology of the upper part of the continental lithosphere. Either the bulk visco-elastic relaxation or afterslip is required to explain large horizontal displacements observed in the aftermath of large strike-slip earthquakes. Both temporal and spatial signatures of postseismic deformation were used to demonstrate that simple linear Maxwell rheologies are not adequate. For non-linear (e.g., powerlaw) rheologies, the surface deformation field may be indistinguishable from that due to afterslip at the early stages of relaxation, when the deformation is localized in high stress areas on the downdip continuation of the earthquake fault. However, at later stages of relaxation visco-elastic models predict appreciable changes in the displacement pattern. In particular, vertical velocities may change sign after viscous flow in the ductile substrate becomes more diffuse. Thus afterslip and non-linear visco-elastic models can be in principle distinguished given a sufficiently long observation period. Fluid flow and poro-elastic effects are incapable of explaining the observed horizontal deformation, but may substantially contribute to vertical postseismic motions, further complicating a discrimination between afterslip and visco-elastic relaxation. I will present space geodetic measurements of postseismic deformation due to several large earthquakes in California and Asia, and discuss implications from these measurements for the crust and upper mantle rheology. The main conclusion is that the deformation patterns are not consistent between different events, suggesting either various contributions from different relaxation mechanisms, or significant variations in crustal rheologies.
Wan, Zhaofei; Liu, Xiaojun; Wang, Xinhong; Liu, Fuqiang; Liu, Weimin; Wu, Yue; Pei, Leilei; Yuan, Zuyi
2014-04-01
Arterial elasticity has been shown to predict cardiovascular disease (CVD) in apparently healthy populations. The present study aimed to explore whether arterial elasticity could predict CVD events in Chinese patients with angiographic coronary artery disease (CAD). Arterial elasticity of 365 patients with angiographic CAD was measured. During follow-up (48 months; range 6-65), 140 CVD events occurred (including 34 deaths). Univariate Cox analysis demonstrated that both large arterial elasticity and small arterial elasticity were significant predictors of CVD events. Multivariate Cox analysis indicated that small arterial elasticity remained significant. Kaplan-Meier analysis showed that the probability of having a CVD event/CVD death increased with a decrease of small arterial elasticity (P < .001, respectively). Decreased small arterial elasticity independently predicts the risk of CVD events in Chinese patients with angiographic CAD.
NASA Astrophysics Data System (ADS)
Nield, Grace A.; Barletta, Valentina R.; Bordoni, Andrea; King, Matt A.; Whitehouse, Pippa L.; Clarke, Peter J.; Domack, Eugene; Scambos, Ted A.; Berthier, Etienne
2014-07-01
Since 1995 several ice shelves in the Northern Antarctic Peninsula have collapsed and triggered ice-mass unloading, invoking a solid Earth response that has been recorded at continuous GPS (cGPS) stations. A previous attempt to model the observation of rapid uplift following the 2002 breakup of Larsen B Ice Shelf was limited by incomplete knowledge of the pattern of ice unloading and possibly the assumption of an elastic-only mechanism. We make use of a new high resolution dataset of ice elevation change that captures ice-mass loss north of 66°S to first show that non-linear uplift of the Palmer cGPS station since 2002 cannot be explained by elastic deformation alone. We apply a viscoelastic model with linear Maxwell rheology to predict uplift since 1995 and test the fit to the Palmer cGPS time series, finding a well constrained upper mantle viscosity but less sensitivity to lithospheric thickness. We further constrain the best fitting Earth model by including six cGPS stations deployed after 2009 (the LARISSA network), with vertical velocities in the range 1.7 to 14.9 mm/yr. This results in a best fitting Earth model with lithospheric thickness of 100-140 km and upper mantle viscosity of 6×1017-2×1018 Pa s - much lower than previously suggested for this region. Combining the LARISSA time series with the Palmer cGPS time series offers a rare opportunity to study the time-evolution of the low-viscosity solid Earth response to a well-captured ice unloading event.
Why glass elasticity affects the thermodynamics and fragility of supercooled liquids
Yan, Le; Düring, Gustavo; Wyart, Matthieu
2013-01-01
Supercooled liquids are characterized by their fragility: The slowing down of the dynamics under cooling is more sudden and the jump of specific heat at the glass transition is generally larger in fragile liquids than in strong ones. Despite the importance of this quantity in classifying liquids, explaining what aspects of the microscopic structure controls fragility remains a challenge. Surprisingly, experiments indicate that the linear elasticity of the glass—a purely local property of the free energy landscape—is a good predictor of fragility. In particular, materials presenting a large excess of soft elastic modes, the so-called boson peak, are strong. This is also the case for network liquids near the rigidity percolation, known to affect elasticity. Here we introduce a model of the glass transition based on the assumption that particles can organize locally into distinct configurations that are coupled spatially via elasticity. The model captures the mentioned observations connecting elasticity and fragility. We find that materials presenting an abundance of soft elastic modes have little elastic frustration: Energy is insensitive to most directions in phase space, leading to a small jump of specific heat. In this framework strong liquids turn out to lie the closest to a critical point associated with a rigidity or jamming transition, and their thermodynamic properties are related to the problem of number partitioning and to Hopfield nets in the limit of small memory. PMID:23576746
Why glass elasticity affects the thermodynamics and fragility of supercooled liquids.
Yan, Le; Düring, Gustavo; Wyart, Matthieu
2013-04-16
Supercooled liquids are characterized by their fragility: The slowing down of the dynamics under cooling is more sudden and the jump of specific heat at the glass transition is generally larger in fragile liquids than in strong ones. Despite the importance of this quantity in classifying liquids, explaining what aspects of the microscopic structure controls fragility remains a challenge. Surprisingly, experiments indicate that the linear elasticity of the glass--a purely local property of the free energy landscape--is a good predictor of fragility. In particular, materials presenting a large excess of soft elastic modes, the so-called boson peak, are strong. This is also the case for network liquids near the rigidity percolation, known to affect elasticity. Here we introduce a model of the glass transition based on the assumption that particles can organize locally into distinct configurations that are coupled spatially via elasticity. The model captures the mentioned observations connecting elasticity and fragility. We find that materials presenting an abundance of soft elastic modes have little elastic frustration: Energy is insensitive to most directions in phase space, leading to a small jump of specific heat. In this framework strong liquids turn out to lie the closest to a critical point associated with a rigidity or jamming transition, and their thermodynamic properties are related to the problem of number partitioning and to Hopfield nets in the limit of small memory.
Application of variational and Galerkin equations to linear and nonlinear finite element analysis
NASA Technical Reports Server (NTRS)
Yu, Y.-Y.
1974-01-01
The paper discusses the application of the variational equation to nonlinear finite element analysis. The problem of beam vibration with large deflection is considered. The variational equation is shown to be flexible in both the solution of a general problem and in the finite element formulation. Difficulties are shown to arise when Galerkin's equations are used in the consideration of the finite element formulation of two-dimensional linear elasticity and of the linear classical beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatima, Bushra, E-mail: bushrafatima25@gmail.com; Acharya, Nikita; Sanyal, Sankar P.
2016-05-06
The structural stability, electronic structure, elastic and mechanical properties of TiZn and ZrZn intermetallics have been studied using ab-initio full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation for exchange and correlation potentials. The various structural parameters, such as lattice constant (a{sub 0}), bulk modulus (B), and its pressure derivative (B’) are analysed and compared. The investigation of elastic constants affirm that both TiZn and ZrZn are elastically stable in CsCl (B{sub 2} phase) structure. The electronic structures have been analysed quantitatively from the band structure which reveals the metallic nature of these compounds. To better illustratemore » the nature of bonding and charge transfer, we have also studied the Fermi surfaces. The three well known criterion of ductility namely Pugh’s rule, Cauchy’s pressure and Frantsevich rule elucidate the ductile nature of these compounds.« less
Mathematical modeling of spinning elastic bodies for modal analysis.
NASA Technical Reports Server (NTRS)
Likins, P. W.; Barbera, F. J.; Baddeley, V.
1973-01-01
The problem of modal analysis of an elastic appendage on a rotating base is examined to establish the relative advantages of various mathematical models of elastic structures and to extract general inferences concerning the magnitude and character of the influence of spin on the natural frequencies and mode shapes of rotating structures. In realization of the first objective, it is concluded that except for a small class of very special cases the elastic continuum model is devoid of useful results, while for constant nominal spin rate the distributed-mass finite-element model is quite generally tractable, since in the latter case the governing equations are always linear, constant-coefficient, ordinary differential equations. Although with both of these alternatives the details of the formulation generally obscure the essence of the problem and permit very little engineering insight to be gained without extensive computation, this difficulty is not encountered when dealing with simple concentrated mass models.
Non-invasive determination of the complete elastic moduli of spider silks
NASA Astrophysics Data System (ADS)
Koski, Kristie J.; Akhenblit, Paul; McKiernan, Keri; Yarger, Jeffery L.
2013-03-01
Spider silks possess nature’s most exceptional mechanical properties, with unrivalled extensibility and high tensile strength. Unfortunately, our understanding of silks is limited because the complete elastic response has never been measured—leaving a stark lack of essential fundamental information. Using non-invasive, non-destructive Brillouin light scattering, we obtain the entire stiffness tensors (revealing negative Poisson’s ratios), refractive indices, and longitudinal and transverse sound velocities for major and minor ampullate spider silks: Argiope aurantia, Latrodectus hesperus, Nephila clavipes, Peucetia viridans. These results completely quantify the linear elastic response for all possible deformation modes, information unobtainable with traditional stress-strain tests. For completeness, we apply the principles of Brillouin imaging to spatially map the elastic stiffnesses on a spider web without deforming or disrupting the web in a non-invasive, non-contact measurement, finding variation among discrete fibres, junctions and glue spots. Finally, we provide the stiffness changes that occur with supercontraction.
Dynamic elasticity measurement for prosthetic socket design.
Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin
2017-07-01
The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.
Elasticity and critical bending moment of model colloidal aggregates.
Pantina, John P; Furst, Eric M
2005-04-08
The bending mechanics of singly bonded colloidal aggregates are measured using laser tweezers. We find that the colloidal bonds are capable of supporting significant torques, providing a direct measurement of the tangential interactions between particles. A critical bending moment marks the limit of linear bending elasticity, past which small-scale rearrangements occur. These mechanical properties underlie the rheology and dynamics of colloidal gels formed by diffusion-limited cluster aggregation, and give critical insight into the contact interactions between Brownian particles.
Dynamic behaviour analysis of an energy accumulation system comprising a composite flywheel
NASA Astrophysics Data System (ADS)
Portnov, G. G.; Kulakov, V. L.; Barinov, I. N.
1994-01-01
A simple system for energy accumulation comprising a rim and a massive shaft with elastic couplings was considered; the shaft runs in elastic damping bearings. Forced vibrations of the flywheel system induced by linear and angular eccentricities of composite rim were investigated. The effect of variation of different parameters of the system (stiffness of bearings, viscous friction coefficients of bearings, mass and moment of inertia of the shaft) on damping of radial and angular forced vibrations has been estimated.
Numerical solution of fluid-structure interaction represented by human vocal folds in airflow
NASA Astrophysics Data System (ADS)
Valášek, J.; Sváček, P.; Horáček, J.
2016-03-01
The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.
Property-Structure-Processing Relations in Polymeric Materials.
1981-07-31
increase indefinitely without indicating actual yield value and R which is a measure of the elastic character of the fluid, approaches a limiting value...appears to increase indefinitely without indicating an- actual yield value and R, which is a measure of the elastic character of the fluid, approaches a...a linear graph when log r is plotted against log x; i.e., ,I has a x" behavior at low x. Since a 0 1, this does not correspond to the classical yield
Fatigue-Crack-Growth Structural Analysis
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1986-01-01
Elastic and plastic deformations calculated under variety of loading conditions. Prediction of fatigue-crack-growth lives made with FatigueCrack-Growth Structural Analysis (FASTRAN) computer program. As cyclic loads are applied to initial crack configuration, FASTRAN predicts crack length and other parameters until complete break occurs. Loads are tensile or compressive and of variable or constant amplitude. FASTRAN incorporates linear-elastic fracture mechanics with modifications of load-interaction effects caused by crack closure. FASTRAN considered research tool, because of lengthy calculation times. FASTRAN written in FORTRAN IV for batch execution.
Concentration Dependent Physical Properties of Ge1-xSnx Solid Solution
NASA Astrophysics Data System (ADS)
Jivani, A. R.; Jani, A. R.
2011-12-01
Our own proposed potential is used to investigate few physical properties like total energy, bulk modulus, pressure derivative of bulk modulus, elastic constants, pressure derivative of elastic constants, Poisson's ratio and Young's modulus of Ge1-xSnx solid solution with x is atomic concentration of α-Sn. The potential combines linear plus quadratic types of electron-ion interaction. First time screening function proposed by Sarkar et al is used to investigate the properties of the Ge-Sn solid solution system.
Miniaturized Stretchable and High-Rate Linear Supercapacitors
NASA Astrophysics Data System (ADS)
Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning
2017-07-01
Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g-1 at the discharge current of 1 A g-1.
Miniaturized Stretchable and High-Rate Linear Supercapacitors.
Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning
2017-12-01
Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g -1 at the discharge current of 1 A g -1 .
Cycle-averaged dynamics of a periodically driven, closed-loop circulation model
NASA Technical Reports Server (NTRS)
Heldt, T.; Chang, J. L.; Chen, J. J. S.; Verghese, G. C.; Mark, R. G.
2005-01-01
Time-varying elastance models have been used extensively in the past to simulate the pulsatile nature of cardiovascular waveforms. Frequently, however, one is interested in dynamics that occur over longer time scales, in which case a detailed simulation of each cardiac contraction becomes computationally burdensome. In this paper, we apply circuit-averaging techniques to a periodically driven, closed-loop, three-compartment recirculation model. The resultant cycle-averaged model is linear and time invariant, and greatly reduces the computational burden. It is also amenable to systematic order reduction methods that lead to further efficiencies. Despite its simplicity, the averaged model captures the dynamics relevant to the representation of a range of cardiovascular reflex mechanisms. c2004 Elsevier Ltd. All rights reserved.
Neutrino Exclusive Charged Current Quasi-Elastic Scattering in MINERvA
NASA Astrophysics Data System (ADS)
Walton, Tammy
2012-03-01
The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present an overview of MINERvA analysis plan for neutrino exclusive charged current quasi-elastic scattering on lead, iron, and carbon.
NASA Astrophysics Data System (ADS)
Merheb, B.; Deymier, P. A.; Jain, M.; Aloshyna-Lesuffleur, M.; Mohanty, S.; Berker, A.; Greger, R. W.
2008-09-01
The transmission of acoustic waves through centimeter-scale elastic and viscoelastic two-dimensional silicone rubber/air phononic crystal structures is investigated theoretically and experimentally. We introduce a finite difference time domain method for two-dimensional elastic and viscoelastic composite structures. Elastic fluid-solid phononic crystals composed of a two-dimensional array of cylindrical air inclusions in a solid rubber matrix, as well as an array of rubber cylinders in an air matrix, are shown to behave similarly to fluid-fluid composite structures. These systems exhibit very wide band gaps in their transmission spectra that extend to frequencies in the audible range of the spectrum. This effect is associated with the very low value of the transverse speed of sound in rubber compared to that of the longitudinal polarization. The difference in transmission between elastic and viscoelastic rubber/air crystals results from attenuation of transmission over a very wide frequency range, leaving only narrow passing bands at very low frequencies. These phononic crystals demonstrate the practical design of elastic or viscoelastic solid rubber/air acoustic band gap sound barriers with small dimensions.
Acoustic and elastic multiple scattering and radiation from cylindrical structures
NASA Astrophysics Data System (ADS)
Amirkulova, Feruza Abdukadirovna
Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an incident wave to produce zero total field over a finite spatial region. The approach precisely determines the necessary source amplitudes and enables a cloaked region to be determined using Graf's theorem. To apply the approach, the infinite series of multipole expansions are truncated, and the accuracy of cloaking is studied by modifying the truncation parameter.
Focal theoretical problems in modulated and martensitic transformations in alloys and perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumhansl, J.A.
Fundamental understanding of the microscopic physic of displacive transformations requires insight into the most remarkable and fascinating feature common to so many of the transformations; the formation of local distortive structures, modulations and more general patterns at the mesoscopic scale, far larger than atomic spacings, much smaller than typical specimen size. These have been extensively studied by metallurgists for some time; but also, they are are manifest in ferroelectrics, in such phenomena as the blue phases'' in chloesteric liquid crystals, and in turbulence. This commonality in such a wide range of materials challenges us to achieve a basic understanding ofmore » the physics of why such local, persistent mesostructures appear. In order to address some of the bigger questions -- microscopics of nucleation and growth, mesoscopic and transitional (precursor) structures, and properties of transformed materials -- we began addressing the limitations of traditional methods for describing the thermodynamics and (elastic) distortions of displacive transformations. Conventional phonon descriptions and linear elasticity (and their contribution of the free energy) are obviously limited to very small distortions and are intrinsically incapable of describing the larger, topology changing displacements that are of essence here.« less
NASA Astrophysics Data System (ADS)
Abid, O. Miloud; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S. Bin; Murtaza, G.; Prakash, Deo; Khenata, R.; Verma, K. D.
2016-05-01
The structural, electronic, elastic, thermoelectric and thermodynamic properties of NbMSb (M = Fe, Ru, Os) half heusler compounds are reported. The full-potential linearized augmented plane wave (FP-LAPW) plus local orbital (lo) method, based on the density functional theory (DFT) was employed for the present study. The equilibrium lattice parameter results are in good compliance with the available experimental measurements. The electronic band structure and Boltzmann transport calculations indicated a narrow indirect energy band gap for the compound having electronic structure favorable for thermoelectric performance as well as with substantial thermopowers at temperature ranges from 300 K to 800 K. Furthermore, good potential for thermoelectric performance (thermopower S ≥ 500 μeV) was found at higher temperature. In addition, the analysis of the charge density, partial and total densities of states (DOS) of three compounds demonstrate their semiconducting, ionic and covalent characters. Conversely, the calculated values of the Poisson's ratio and the B/G ratio indicate their ductile makeup. The thermal properties of the compounds were calculated by quasi-harmonic Debye model as implemented in the GIBBS code.
Fibre-reinforced hydrogels for tissue engineering
NASA Astrophysics Data System (ADS)
Waters, Sarah; Byrne, Helen; Chen, Mike; Dias Castilho, Miguel; Kimpton, Laura; Please, Colin; Whiteley, Jonathan
2017-11-01
Tissue engineers aim to grow replacement tissues in vitro to replace those in the body that have been damaged through age, trauma or disease. One approach is to seed cells within a scaffold consisting of an interconnected 3D-printed lattice of polymer fibres, cast in a hydrogel, and subject the construct (cell-seeded scaffold) to an applied load in a bioreactor. A key question is to understand how this applied load is distributed throughout the construct to the mechanosensitive cells. To address this, we exploit the disparate length scales (small inter-fibre spacing compared with construct dimensions). The fibres are treated as a linear elastic material and the hydrogel as a poroelastic material. We employ homogenisation theory to derive equations governing the material properties of a periodic, elastic-poroelastic composite. To validate the mobel, model solutions are compared to experimental data describing the unconfined compression of the fibre-reinforced hydrogels. The model is used to derive the bulk mechanical properties of a cylindrical construct of the composite material for a range of fibre spacings, and the local mechanical environment experienced by cells embedded within the construct is determined. Funded by the European Union Seventh Framework Programme (FP7/2007-2013).
Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler.
Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku
2017-02-28
The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0-20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler.
Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler
Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku
2017-01-01
The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0–20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler. PMID:28772603
Polymorphism in Bacterial Flagella Suspensions
NASA Astrophysics Data System (ADS)
Schwenger, Walter J.
Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.
Dong, Juncai; Zhu, Hailiang; Chen, Dongliang
2015-01-01
As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed. PMID:26099720
Dong, Juncai; Zhu, Hailiang; Chen, Dongliang
2015-06-23
As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed.
Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.
Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J
2017-09-08
Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.
Resolution analysis of marine seismic full waveform data by Bayesian inversion
NASA Astrophysics Data System (ADS)
Ray, A.; Sekar, A.; Hoversten, G. M.; Albertin, U.
2015-12-01
The Bayesian posterior density function (PDF) of earth models that fit full waveform seismic data convey information on the uncertainty with which the elastic model parameters are resolved. In this work, we apply the trans-dimensional reversible jump Markov Chain Monte Carlo method (RJ-MCMC) for the 1D inversion of noisy synthetic full-waveform seismic data in the frequency-wavenumber domain. While seismic full waveform inversion (FWI) is a powerful method for characterizing subsurface elastic parameters, the uncertainty in the inverted models has remained poorly known, if at all and is highly initial model dependent. The Bayesian method we use is trans-dimensional in that the number of model layers is not fixed, and flexible such that the layer boundaries are free to move around. The resulting parameterization does not require regularization to stabilize the inversion. Depth resolution is traded off with the number of layers, providing an estimate of uncertainty in elastic parameters (compressional and shear velocities Vp and Vs as well as density) with depth. We find that in the absence of additional constraints, Bayesian inversion can result in a wide range of posterior PDFs on Vp, Vs and density. These PDFs range from being clustered around the true model, to those that contain little resolution of any particular features other than those in the near surface, depending on the particular data and target geometry. We present results for a suite of different frequencies and offset ranges, examining the differences in the posterior model densities thus derived. Though these results are for a 1D earth, they are applicable to areas with simple, layered geology and provide valuable insight into the resolving capabilities of FWI, as well as highlight the challenges in solving a highly non-linear problem. The RJ-MCMC method also presents a tantalizing possibility for extension to 2D and 3D Bayesian inversion of full waveform seismic data in the future, as it objectively tackles the problem of model selection (i.e., the number of layers or cells for parameterization), which could ease the computational burden of evaluating forward models with many parameters.
Nonlinear flap-lag axial equations of a rotating beam
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kvaternik, R. G.
1977-01-01
It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.
Heat kernel for the elliptic system of linear elasticity with boundary conditions
NASA Astrophysics Data System (ADS)
Taylor, Justin; Kim, Seick; Brown, Russell
2014-10-01
We consider the elliptic system of linear elasticity with bounded measurable coefficients in a domain where the second Korn inequality holds. We construct heat kernel of the system subject to Dirichlet, Neumann, or mixed boundary condition under the assumption that weak solutions of the elliptic system are Hölder continuous in the interior. Moreover, we show that if weak solutions of the mixed problem are Hölder continuous up to the boundary, then the corresponding heat kernel has a Gaussian bound. In particular, if the domain is a two dimensional Lipschitz domain satisfying a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary condition, then we show that the heat kernel has a Gaussian bound. As an application, we construct Green's function for elliptic mixed problem in such a domain.
Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves
2013-01-01
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
NASA Astrophysics Data System (ADS)
Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme
2017-04-01
Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.
On relative distortion in fingerprint comparison.
Kalka, Nathan D; Hicklin, R Austin
2014-11-01
When fingerprints are deposited, non-uniform pressure in conjunction with the inherent elasticity of friction ridge skin often causes linear and non-linear distortions in the ridge and valley structure. The effects of these distortions must be considered during analysis of fingerprint images. Even when individual prints are not notably distorted, relative distortion between two prints can have a serious impact on comparison. In this paper we discuss several metrics for quantifying and visualizing linear and non-linear fingerprint deformations, and software tools to assist examiners in accounting for distortion in fingerprint comparisons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maeda, Masaki; Takagi, Masayoshi; Suzuki, Ikuo
2000-01-01
Pottasium iodate, KIO3, belongs to the perovskite structure and undergoes successive phase transitions at T1= 212°C, T2= 72.5°C, T3=-15°C, T4=-160°C and T5=-240°C, respectively. The temperature dependences of the dielectric, elastic and piezoelectic properties have been measured in the temperature range from -263°C to 330°C.The superionic conductivity was found in the temperature range above T2. Pronounced dielectric dispersions in the frequency range below 10 kHz were observed around -160°C and -240°C and the data were analyzed by fitting to the Davidson-Cole and Havriliak-Negami dispersion formulas, respectively. Both dielectric anomalies are ascribed to the orientaional glass-transitions. The piezoelectric and elastic properties have been investigsated by the resonance-antiresonance method. The piezoelectric and elastic anomalies were observed at T2 and T3.
Gabel, Frank; Bellissent-Funel, Marie-Claire
2007-01-01
We present a study of C-phycocyanin hydration water dynamics in the presence of trehalose by incoherent elastic neutron scattering. By combining data from two backscattering spectrometers with a 10-fold difference in energy resolution we extract a scattering law S(Q,ω) from the Q-dependence of the elastic intensities without sampling the quasielastic range. The hydration water is described by two dynamically different populations—one diffusing inside a sphere and the other diffusing quasifreely—with a population ratio that depends on temperature. The scattering law derived describes the experimental data from both instruments excellently over a large temperature range (235–320 K). The effective diffusion coefficient extracted is reduced by a factor of 10–15 with respect to bulk water at corresponding temperatures. Our approach demonstrates the benefits and the efficiency of using different energy resolutions in incoherent elastic neutron scattering over a large angular range for the study of biological macromolecules and hydration water. PMID:17350998
Determination of Ice Crust Thickness from Flanking Cracks Along Ridges on Europa
NASA Technical Reports Server (NTRS)
Billings, S. E.; Kattenhorn, S. A.
2002-01-01
We use equations describing the deflection of an elastic plate below a line load to estimate ice crust thickness below ridges on Europa. Using a range of elastic parameters, ice thickness is calculated to fall in the range 0.2 2.6 km. Additional information is contained in the original extended abstract.
Development of Standardized Material Testing Protocols for Prosthetic Liners
Cagle, John C.; Reinhall, Per G.; Hafner, Brian J.; Sanders, Joan E.
2017-01-01
A set of protocols was created to characterize prosthetic liners across six clinically relevant material properties. Properties included compressive elasticity, shear elasticity, tensile elasticity, volumetric elasticity, coefficient of friction (CoF), and thermal conductivity. Eighteen prosthetic liners representing the diverse range of commercial products were evaluated to create test procedures that maximized repeatability, minimized error, and provided clinically meaningful results. Shear and tensile elasticity test designs were augmented with finite element analysis (FEA) to optimize specimen geometries. Results showed that because of the wide range of available liner products, the compressive elasticity and tensile elasticity tests required two test maxima; samples were tested until they met either a strain-based or a stress-based maximum, whichever was reached first. The shear and tensile elasticity tests required that no cyclic conditioning be conducted because of limited endurance of the mounting adhesive with some liner materials. The coefficient of friction test was based on dynamic coefficient of friction, as it proved to be a more reliable measurement than static coefficient of friction. The volumetric elasticity test required that air be released beneath samples in the test chamber before testing. The thermal conductivity test best reflected the clinical environment when thermal grease was omitted and when liner samples were placed under pressure consistent with load bearing conditions. The developed procedures provide a standardized approach for evaluating liner products in the prosthetics industry. Test results can be used to improve clinical selection of liners for individual patients and guide development of new liner products. PMID:28233885
NASA Astrophysics Data System (ADS)
Pan, E.; Chen, J. Y.; Bevis, M.; Bordoni, A.; Barletta, V. R.; Molavi Tabrizi, A.
2015-12-01
We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core the gravity in each layer varies linearly in r with constant density. These approximations dramatically simplify the subsequent mathematical analysis and render closed-form expressions for the expansion coefficients. We implement our solution in a MATLAB code and perform a benchmark which shows both the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth anisotropy on the LLNs.
NASA Astrophysics Data System (ADS)
Schaperow, J.; Cooper, M. G.; Cooley, S. W.; Alam, S.; Smith, L. C.; Lettenmaier, D. P.
2017-12-01
As climate regimes shift, streamflows and our ability to predict them will change, as well. Elasticity of summer minimum streamflow is estimated for 138 unimpaired headwater river basins across the maritime western US mountains to better understand how climatologic variables and geologic characteristics interact to determine the response of summer low flows to winter precipitation (PPT), spring snow water equivalent (SWE), and summertime potential evapotranspiration (PET). Elasticities are calculated using log log linear regression, and linear reservoir storage coefficients are used to represent basin geology. Storage coefficients are estimated using baseflow recession analysis. On average, SWE, PET, and PPT explain about 1/3 of the summertime low flow variance. Snow-dominated basins with long timescales of baseflow recession are least sensitive to changes in SWE, PPT, and PET, while rainfall-dominated, faster draining basins are most sensitive. There are also implications for the predictability of summer low flows. The R2 between streamflow and SWE drops from 0.62 to 0.47 from snow-dominated to rain-dominated basins, while there is no corresponding increase in R2 between streamflow and PPT.
Experiments on stress dependent borehole acoustic waves.
Hsu, Chaur-Jian; Kane, Michael R; Winkler, Kenneth; Wang, Canyun; Johnson, David Linton
2011-10-01
In the laboratory setup, a borehole traverses a dry sandstone formation, which is subjected to a controlled uniaxial stress in the direction perpendicular to the borehole axis. Measurements are made in a single loading-unloading stress cycle from zero to 10 MPa and then back down to zero stress. The applied stress and the presence of the borehole induce anisotropy in the bulk of the material and stress concentration around the borehole, both azimuthally and radially. Acoustic waves are generated and detected in the water-filled borehole, including compressional and shear headwaves, as well as modes of monopole, dipole, quadrupole, and higher order azimuthal symmetries. The linear and non-linear elastic parameters of the formation material are independently quantified, and utilized in conjunction with elastic theories to predict the characteristics of various borehole waves at zero and finite stress conditions. For example, an analytic theory is developed which is successfully used to estimate the changes of monopole tube mode at low frequency resulted from uniaxial stress, utilizing the measured material third order elasticity parameters. Comparisons between various measurements as well as that between experiments and theories are also presented. © 2011 Acoustical Society of America
Porosity Defect Remodeling and Tensile Analysis of Cast Steel
Sun, Linfeng; Liao, Ridong; Lu, Wei; Fu, Sibo
2016-01-01
Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain. PMID:28787919
Symmetry breaking in actin gels - Implications for cellular motility
NASA Astrophysics Data System (ADS)
John, Karin; Peyla, Philippe; Misbah, Chaouqi
2007-03-01
The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.
Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model
NASA Astrophysics Data System (ADS)
Chen, Huaizhen; Zhang, Guangzhi
2018-03-01
Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.
Elastic properties of suspended black phosphorus nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jia-Ying; Li, Yang; Zhen, Liang
2016-01-04
The mechanical properties of black phosphorus (BP) nanosheets suspended over circular holes were measured by an atomic force microscope nanoindentation method. The continuum mechanic model was introduced to calculate the elastic modulus and pretension of BP nanosheets with thicknesses ranging from 14.3 to 34 nm. Elastic modulus of BP nanosheets declines with thickness, and the maximum value is 276 ± 32.4 GPa. Besides, the effective strain of BP ranges from 8 to 17% with a breaking strength of 25 GPa. Our results show that BP nanosheets serve as a promising candidate for flexible electronic applications.
Peculiarities of evolutions of elastic-plastic shock compression waves in different materials
NASA Astrophysics Data System (ADS)
Kanel, G. I.; Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Ashitkov, S. I.; Zaretsky, E. B.
2016-11-01
In the paper, we discuss such unexpected features in the wave evolution in solids as strongly nonlinear uniaxial elastic compression in a picosecond time range, a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface.
NASA Astrophysics Data System (ADS)
Glas, Frank
2003-06-01
We give a fully analytical solution for the displacement and strain fields generated by the coherent elastic relaxation of a type of misfitting inclusions with uniform dilatational eigenstrain lying in a half space, assuming linear isotropic elasticity. The inclusion considered is an infinitely long circular cylinder having an axis parallel to the free surface and truncated by two arbitrarily positioned planes parallel to this surface. These calculations apply in particular to strained semiconductor quantum wires. The calculations are illustrated by examples showing quantitatively that, depending on the depth of the wire under the free surface, the latter may significantly affect the magnitude and the distribution of the various strain components inside the inclusion as well as in the surrounding matrix.
Atomic picture of elastic deformation in a metallic glass
NASA Astrophysics Data System (ADS)
Wang, X. D.; Aryal, S.; Zhong, C.; Ching, W. Y.; Sheng, H. W.; Zhang, H.; Zhang, D. X.; Cao, Q. P.; Jiang, J. Z.
2015-03-01
The tensile behavior of a Ni60Nb40 metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples, mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.
Atomic picture of elastic deformation in a metallic glass.
Wang, X D; Aryal, S; Zhong, C; Ching, W Y; Sheng, H W; Zhang, H; Zhang, D X; Cao, Q P; Jiang, J Z
2015-03-17
The tensile behavior of a Ni60Nb40 metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples, mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.
Atomic picture of elastic deformation in a metallic glass
Wang, X. D.; Aryal, S.; Zhong, C.; ...
2015-03-17
The tensile behavior of a Ni₆₀Nb₄₀ metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples,more » mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.« less
A statistical model of brittle fracture by transgranular cleavage
NASA Astrophysics Data System (ADS)
Lin, Tsann; Evans, A. G.; Ritchie, R. O.
A MODEL for brittle fracture by transgranular cleavage cracking is presented based on the application of weakest link statistics to the critical microstructural fracture mechanisms. The model permits prediction of the macroscopic fracture toughness, KI c, in single phase microstructures containing a known distribution of particles, and defines the critical distance from the crack tip at which the initial cracking event is most probable. The model is developed for unstable fracture ahead of a sharp crack considering both linear elastic and nonlinear elastic ("elastic/plastic") crack tip stress fields. Predictions are evaluated by comparison with experimental results on the low temperature flow and fracture behavior of a low carbon mild steel with a simple ferrite/grain boundary carbide microstructure.
Structural, Electronic and Elastic Properties of Half-Heusler Alloys CrNiZ (Z = Al, Si, Ge and As)
NASA Astrophysics Data System (ADS)
Zitouni, A.; Benstaali, W.; Abbad, A.; Lantri, T.; Bouadjemi, B.; Aziz, Z.
2018-06-01
In the present work, a self-consistent ab-initio calculation using the full- potential linearized augmented plane wave (FP-LAPW) method within the framework of the spin-polarized density functional theory (DFT) was used to study the structural, electronic, magnetic and elastic properties of the half Heusler alloys CrNiZ (Z = Al, Si, Ge and As) in three phases ( α, β and γ phases). The generalized gradient approximation (GGA) described by Perdew-Burke-Ernzerhof (PBE) was used. The results obtained for the spin-polarized band structure and the density of states show a halfmetallic behavior for the four compounds. The elastic constants ( C ij ) show that our compounds are ductile, stiff and anisotropic.
Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped
NASA Astrophysics Data System (ADS)
Papkov, S. O.
2017-11-01
An asymptotically exact solution of the classical problem of elasticity about the steadystate forced vibrations of an elastic rectangular parallelepiped is constructed. The general solution of the vibration equations is constructed in the form of double Fourier series with undetermined coefficients, and an infinite system of linear algebraic equations is obtained for determining these coefficients. An analysis of the infinite system permits determining the asymptotics of the unknowns which are used to convolve the double series in both equations of the infinite systems and the displacement and stress components. The efficiency of this approach is illustrated by numerical examples and comparison with known solutions. The spectrum of the parallelepiped symmetric vibrations is studied for various ratios of its sides.
NASA Astrophysics Data System (ADS)
Soni, Shubhangi; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Structural and elastic properties of transition metal nitrides, XN (X = Co, Fe and Cu), are investigated through an effective inter-ionic potential method. The B3(ZnS) type ambient crystal structure of these compounds undergoes to B1(NaCl) type structure with pressure. Structural phase transition pressure in CoN, FeN and CuN was 35, 55 and 35 GPa, respectively, predicated by computing Gibbs' free energy (G) as a function of pressure and has good agreement with available theoretical results. The elastic properties were also estimated as a function of pressure. It is found that the elastic constants increased linearly with increasing pressure due to stronger hybridization, bonding and covalent properties of constituent elements of a compound.
Normal Stresses, Contraction, and Stiffening in Sheared Elastic Networks
NASA Astrophysics Data System (ADS)
Baumgarten, Karsten; Tighe, Brian P.
2018-04-01
When elastic solids are sheared, a nonlinear effect named after Poynting gives rise to normal stresses or changes in volume. We provide a novel relation between the Poynting effect and the microscopic Grüneisen parameter, which quantifies how stretching shifts vibrational modes. By applying this relation to random spring networks, a minimal model for, e.g., biopolymer gels and solid foams, we find that networks contract or develop tension because they vibrate faster when stretched. The amplitude of the Poynting effect is sensitive to the network's linear elastic moduli, which can be tuned via its preparation protocol and connectivity. Finally, we show that the Poynting effect can be used to predict the finite strain scale where the material stiffens under shear.
A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles.
Yeoman, Mark S; Reddy, Daya; Bowles, Hellmut C; Bezuidenhout, Deon; Zilla, Peter; Franz, Thomas
2010-11-01
Knitted textiles have been used in medical applications due to their high flexibility and low tendency to fray. Their mechanics have, however, received limited attention. A constitutive model for soft tissue using a strain energy function was extended, by including shear and increasing the number and order of coefficients, to represent the non-linear warp-weft coupled mechanics of coarse textile knits under uniaxial tension. The constitutive relationship was implemented in a commercial finite element package. The model and its implementation were verified and validated for uniaxial tension and simple shear using patch tests and physical test data of uniaxial tensile tests of four very different knitted fabric structures. A genetic algorithm with step-wise increase in resolution and linear reduction in range of the search space was developed for the optimization of the fabric model coefficients. The numerically predicted stress-strain curves exhibited non-linear stiffening characteristic for fabrics. For three fabrics, the predicted mechanics correlated well with physical data, at least in one principal direction (warp or weft), and moderately in the other direction. The model exhibited limitations in approximating the linear elastic behavior of the fourth fabric. With proposals to address this limitation and to incorporate time-dependent changes in the fabric mechanics associated with tissue ingrowth, the constitutive model offers a tool for the design of tissue regenerative knit textile implants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Response statistics of rotating shaft with non-linear elastic restoring forces by path integration
NASA Astrophysics Data System (ADS)
Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael
2017-07-01
Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.
NASA Astrophysics Data System (ADS)
Chakrabarti, Aloknath; Mohapatra, Smrutiranjan
2013-09-01
Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates, separated by a gap of finite width, floating horizontally on water of finite depth, are investigated in the present work for a two-dimensional time-harmonic case. Within the frame of linear water wave theory, the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions. Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem. In both the problems, the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates. Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations. The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration. The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.
Capillary fracture of soft gels.
Bostwick, Joshua B; Daniels, Karen E
2013-10-01
A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent.
NASA Astrophysics Data System (ADS)
Hulikal, Srivatsan; Lapusta, Nadia; Bhattacharya, Kaushik
2018-07-01
Friction in static and sliding contact of rough surfaces is important in numerous physical phenomena. We seek to understand macroscopically observed static and sliding contact behavior as the collective response of a large number of microscopic asperities. To that end, we build on Hulikal et al. (2015) and develop an efficient numerical framework that can be used to investigate how the macroscopic response of multiple frictional contacts depends on long-range elastic interactions, different constitutive assumptions about the deforming contacts and their local shear resistance, and surface roughness. We approximate the contact between two rough surfaces as that between a regular array of discrete deformable elements attached to a elastic block and a rigid rough surface. The deformable elements are viscoelastic or elasto/viscoplastic with a range of relaxation times, and the elastic interaction between contacts is long-range. We find that the model reproduces the main macroscopic features of evolution of contact and friction for a range of constitutive models of the elements, suggesting that macroscopic frictional response is robust with respect to the microscopic behavior. Viscoelasticity/viscoplasticity contributes to the increase of friction with contact time and leads to a subtle history dependence. Interestingly, long-range elastic interactions only change the results quantitatively compared to the meanfield response. The developed numerical framework can be used to study how specific observed macroscopic behavior depends on the microscale assumptions. For example, we find that sustained increase in the static friction coefficient during long hold times suggests viscoelastic response of the underlying material with multiple relaxation time scales. We also find that the experimentally observed proportionality of the direct effect in velocity jump experiments to the logarithm of the velocity jump points to a complex material-dependent shear resistance at the microscale.
Numerical study of suspensions of deformable particles.
NASA Astrophysics Data System (ADS)
Brandt, Luca; Rosti, Marco Edoardo
2017-11-01
We consider a model non-Newtonian fluid consisting of a suspension of deformable particles in a Newtonian solvent. Einstein showed in his pioneering work that the relative increase in effective viscosity is a linear function of the particle volume fraction for dilute suspensions of rigid particles. Inertia has been shown to introduce deviations from the behaviour predicted by the different empirical fits, an effect that can be related to an increase of the effective volume fraction. We here focus on the effect of elasticity, i.e. visco-elastic deformable particles. To tackle the problem at hand, we perform three-dimensional Direct Numerical Simulation of a plane Couette flow with a suspension of neutrally buoyant deformable viscous hyper-elastic particles. We show that elasticity produces a shear-thinning effect in elastic suspensions (in comparison to rigid ones) and that it can be understood in terms of a reduction of the effective volume fraction of the suspension. The deformation modifies the particle motion reducing the level of mutual interaction. Normal stress differences will also be considered. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).
Lin, Tungyou; Guyader, Carole Le; Dinov, Ivo; Thompson, Paul; Toga, Arthur; Vese, Luminita
2013-01-01
This paper proposes a numerical algorithm for image registration using energy minimization and nonlinear elasticity regularization. Application to the registration of gene expression data to a neuroanatomical mouse atlas in two dimensions is shown. We apply a nonlinear elasticity regularization to allow larger and smoother deformations, and further enforce optimality constraints on the landmark points distance for better feature matching. To overcome the difficulty of minimizing the nonlinear elasticity functional due to the nonlinearity in the derivatives of the displacement vector field, we introduce a matrix variable to approximate the Jacobian matrix and solve for the simplified Euler-Lagrange equations. By comparison with image registration using linear regularization, experimental results show that the proposed nonlinear elasticity model also needs fewer numerical corrections such as regridding steps for binary image registration, it renders better ground truth, and produces larger mutual information; most importantly, the landmark points distance and L2 dissimilarity measure between the gene expression data and corresponding mouse atlas are smaller compared with the registration model with biharmonic regularization. PMID:24273381
A fluid-structure interaction model of soft robotics using an active strain approach
NASA Astrophysics Data System (ADS)
Hess, Andrew; Lin, Zhaowu; Gao, Tong
2017-11-01
Soft robotic swimmers exhibit rich dynamics that stem from the non-linear interplay of the fluid and immersed soft elastic body. Due to the difficulty of handling the nonlinear two-way coupling of hydrodynamic flow and deforming elastic body, studies of flexible swimmers often employ either one-way coupling strategies with imposed motions of the solid body or some simplified elasticity models. To explore the nonlinear dynamics of soft robots powered by smart soft materials, we develop a computational model to deal with the two-way fluid/elastic structure interactions using the fictitious domain method. To mimic the dynamic response of the functional soft material under external actuations, we assume the solid phase to be neo-Hookean, and employ an active strain approach to incorporate actuation, which is based on the multiplicative decomposition of the deformation gradient tensor. We demonstrate the capability of our algorithm by performing a series of numerical explorations that manipulate an elastic structure with finite thickness, starting from simple rectangular or circular plates to soft robot prototypes such as stingrays and jellyfish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C., E-mail: lichun@nwpu.edu.cn; Shang, J.; Yue, Z.
2015-07-15
In this paper, the basic electronic structures and elastic properties of Ni{sub 3}Al doping with alloying elements (Re, Cr, and Mo) under different pressures have been investigated using first-principles calculations based on density functional theory. It is shown that both alloying elements and external applied pressure contribute positively to the elastic properties of Ni{sub 3}Al, and the configurations of the compounds remain almost unchanged. The calculated elastic constants and moduli increase linearly with the pressure increasing from 0 and 40 GPa. Among the alloying elements studied in the present work, Re exhibits the most significant effect compared with the othermore » elements, showing its practical importance. Especially, if both alloying elements doping and pressure effects are considered simultaneously, which has not been considered previously, the studied compounds exhibit an even better elastic property than the simple superposition of the two influences. Such synergistic effect demonstrates promising applications of Ni-based single crystal superalloys in possible extreme mechanical environments.« less
Nucleon-nucleon elastic scattering analysis to 2.5 GeV
NASA Astrophysics Data System (ADS)
Arndt, Richard A.; Heon Oh, Chang; Strakovsky, Igor I.; Workman, Ron L.; Dohrmann, Frank
1997-12-01
A partial-wave analysis of NN elastic scattering data has been completed. This analysis covers an expanded energy range, from threshold to a laboratory kinetic energy of 2.5 GeV, in order to include recent elastic pp scattering data from the EDDA Collaboration. The results of both single-energy and energy-dependent analyses are described.
Coupled variational formulations of linear elasticity and the DPG methodology
NASA Astrophysics Data System (ADS)
Fuentes, Federico; Keith, Brendan; Demkowicz, Leszek; Le Tallec, Patrick
2017-11-01
This article presents a general approach akin to domain-decomposition methods to solve a single linear PDE, but where each subdomain of a partitioned domain is associated to a distinct variational formulation coming from a mutually well-posed family of broken variational formulations of the original PDE. It can be exploited to solve challenging problems in a variety of physical scenarios where stability or a particular mode of convergence is desired in a part of the domain. The linear elasticity equations are solved in this work, but the approach can be applied to other equations as well. The broken variational formulations, which are essentially extensions of more standard formulations, are characterized by the presence of mesh-dependent broken test spaces and interface trial variables at the boundaries of the elements of the mesh. This allows necessary information to be naturally transmitted between adjacent subdomains, resulting in coupled variational formulations which are then proved to be globally well-posed. They are solved numerically using the DPG methodology, which is especially crafted to produce stable discretizations of broken formulations. Finally, expected convergence rates are verified in two different and illustrative examples.
Marangoni-induced symmetry-breaking pattern selection on viscous fluids
NASA Astrophysics Data System (ADS)
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2016-11-01
Symmetry breaking transitions on curved surfaces are found in a wide range of dissipative systems, ranging from asymmetric cell divisions to structure formation in thin films. Inherent within the nonlinearities are the associated curvilinear geometry, the elastic stretching, bending and the various fluid dynamical processes. We present a generalised Swift-Hohenberg pattern selection theory on a thin, curved and viscous films in the presence of non-trivial Marangoni effect. Testing the theory with experiments on soap bubbles, we observe the film pattern selection to mimic that of the elastic wrinkling morphology on a curved elastic bilayer in regions of slow viscous flow. By examining the local state of damping of surface capillary waves we attempt to establish an equivalence between the Marangoni fluid dynamics and the nonlinear elastic shell theory above the critical wavenumber of the instabilities and propose a possible explanation for the perceived elastic-fluidic duality. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
Drivers willingness to pay progressive rate for street parking.
DOT National Transportation Integrated Search
2015-01-01
This study finds willingness to pay and price elasticity for on-street parking demand using stated : preference data obtained from 238 respondents. Descriptive, statistical and economic analyses including : regression, generalized linear model, and f...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, D; Usmani, N; Sloboda, R
Purpose: To characterize the movement of implanted brachytherapy seeds due to transrectal ultrasound probe-induced prostate deformation and to estimate the effects on prostate dosimetry. Methods: Implanted probe-in and probe-removed seed distributions were reconstructed for 10 patients using C-arm fluoroscopy imaging. The prostate was delineated on ultrasound and registered to the fluoroscopy seeds using a visible subset of seeds and residual needle tracks. A linear tensor and shearing model correlated the seed movement with position. The seed movement model was used to infer the underlying prostate deformation and to simulate the prostate contour without probe compression. Changes in prostate and surrogatemore » urethra dosimetry were calculated. Results: Seed movement patterns reflecting elastic decompression, lateral shearing, and rectal bending were observed. Elastic decompression was characterized by anterior-posterior expansion and superior-inferior and lateral contractions. For lateral shearing, anterior movement up to 6 mm was observed for extraprostatic seeds in the lateral peripheral region. The average intra-prostatic seed movement was 1.3 mm, and the residual after linear modeling was 0.6 mm. Prostate D90 increased by 4 Gy on average (8 Gy max) and was correlated with elastic decompression. For selected patients, lateral shearing resulted in differential change in D90 of 7 Gy between anterior and posterior quadrants, and increase in whole prostate D90 of 4 Gy. Urethra D10 increased by 4 Gy. Conclusion: Seed movement upon probe removal was characterized. The proposed model captured the linear correlation between seed movement and position. Whole prostate dose coverage increased slightly, due to the small but systematic seed movement associated with elastic decompression. Lateral shearing movement increased dose coverage in the anterior-lateral region, at the expense of the posterior-lateral region. The effect on whole prostate D90 was smaller due to the subset of peripheral seeds involved, but lateral shearing movement can have greater consequences for local dose coverage.« less
Three-Dimensional Anisotropic Acoustic and Elastic Full-Waveform Seismic Inversion
NASA Astrophysics Data System (ADS)
Warner, M.; Morgan, J. V.
2013-12-01
Three-dimensional full-waveform inversion is a high-resolution, high-fidelity, quantitative, seismic imaging technique that has advanced rapidly within the oil and gas industry. The method involves the iterative improvement of a starting model using a series of local linearized updates to solve the full non-linear inversion problem. During the inversion, forward modeling employs the full two-way three-dimensional heterogeneous anisotropic acoustic or elastic wave equation to predict the observed raw field data, wiggle-for-wiggle, trace-by-trace. The method is computationally demanding; it is highly parallelized, and runs on large multi-core multi-node clusters. Here, we demonstrate what can be achieved by applying this newly practical technique to several high-density 3D seismic datasets that were acquired to image four contrasting sedimentary targets: a gas cloud above an oil reservoir, a radially faulted dome, buried fluvial channels, and collapse structures overlying an evaporate sequence. We show that the resulting anisotropic p-wave velocity models match in situ measurements in deep boreholes, reproduce detailed structure observed independently on high-resolution seismic reflection sections, accurately predict the raw seismic data, simplify and sharpen reverse-time-migrated reflection images of deeper horizons, and flatten Kirchhoff-migrated common-image gathers. We also show that full-elastic 3D full-waveform inversion of pure pressure data can generate a reasonable shear-wave velocity model for one of these datasets. For two of the four datasets, the inclusion of significant transversely isotropic anisotropy with a vertical axis of symmetry was necessary in order to fit the kinematics of the field data properly. For the faulted dome, the full-waveform-inversion p-wave velocity model recovers the detailed structure of every fault that can be seen on coincident seismic reflection data. Some of the individual faults represent high-velocity zones, some represent low-velocity zones, some have more-complex internal structure, and some are visible merely as offsets between two regions with contrasting velocity. Although this has not yet been demonstrated quantitatively for this dataset, it seems likely that at least some of this fine structure in the recovered velocity model is related to the detailed lithology, strain history and fluid properties within the individual faults. We have here applied this technique to seismic data that were acquired by the extractive industries, however this inversion scheme is immediately scalable and applicable to a much wider range of problems given sufficient quality and density of observed data. Potential targets range from shallow magma chambers beneath active volcanoes, through whole-crustal sections across plate boundaries, to regional and whole-Earth models.
Determination of mechanical properties of polymer film materials
NASA Technical Reports Server (NTRS)
Hughes, E. J.; Rutherford, J. L.
1975-01-01
Five polymeric film materials, Tedlar, Teflon, Kapton H, Kapton F, and a fiberglass reinforced polyimide, PG-402, in thickness ranging from 0.002 to 0.005 inch, were tested over a temperature range of -195 to 200 C in the "machine" and transverse direction to determine: elastic modulus, Poisson's ratio, three percent offset yield stress, fracture stress, and strain to fracture. The elastic modulus, yield stress and fracture stress decreased with increasing temperature for all the materials while the fracture strain increased. Teflon and Tedlar had the greatest temperature dependence and PG-402 the least. At 200 C the Poisson ratio values ranged from 0.39 to 0.5; they diminished as the temperature decreased covering a range of 0.26 to 0.42 at -195 C. Shortening the gauge length from eight inches to one inch increased the strain to fracture and lowered the elastic modulus values.
Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network
Hu, Meng; He, Julong; Zhao, Zhisheng; Strobel, Timothy A.; Hu, Wentao; Yu, Dongli; Sun, Hao; Liu, Lingyu; Li, Zihe; Ma, Mengdong; Kono, Yoshio; Shu, Jinfu; Mao, Ho-kwang; Fei, Yingwei; Shen, Guoyin; Wang, Yanbin; Juhl, Stephen J.; Huang, Jian Yu; Liu, Zhongyuan; Xu, Bo; Tian, Yongjun
2017-01-01
Carbon’s unique ability to have both sp2 and sp3 bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp2-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp3 nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths—more than two times that of commonly used ceramics—and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties. PMID:28630918
Practical solution of plastic deformation problems in elastic-plastic range
NASA Technical Reports Server (NTRS)
Mendelson, A; Manson, S
1957-01-01
A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.
Raman Lidar MERGE Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newsom, Rob; Goldsmith, John; Sivaraman, Chitra
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidars (RLs) are semi-autonomous, land-based, laser remote sensing systems that provide height- and time-resolved measurements of water vapor mixing ratio, temperature, aerosol backscatter, extinction, and linear depolarization ratio from about 200 m to greater than 10 km AGL. These systems transmit at a wavelength of 355 nm with 300 mJ, ~5 ns pulses, and a pulse repetition frequency of 30 Hz. The receiver incorporates nine detection channels, including two water vapor channels at 408 nm, two nitrogen channels at 387 nm, three elastic channels, and twomore » rotational Raman channels for temperature profiling at 354 and 353 nm. Figure 1 illustrates the layout of the ARM RL receiver system. Backscattered light from the atmosphere enters the telescope and is directed into the receiver system (i.e., aft optics). This signal is then split between a narrow-field-of-view radiometer (NFOV) path (blue) and a wide-field-of-view zenith radiometer (WFOV) path (red). The WFOV (2 mrad) path contains three channels (water vapor, nitrogen, and unpolarized elastic), and the NFOV (0.3 mrad) path contains six channels (water vapor, nitrogen, parallel and perpendicular elastic, and two rotational Raman). All nine detection channels use Electron Tubes 9954B photomultiplier tubes (PMTs). The signals from each of the nine PMTs are acquired using transient data recorders from Licel GbR (Berlin, Germany). The Licel data recorders provide simultaneous measurements of both analog photomultiplier current and photon counts at height resolution of 7.5 m and a time resolution of 10 s. The analog signal provides good linearity in the strong signal regime, but poor sensitivity at low signal levels. Conversely, the photo counting signal provides good sensitivity in the weak signal regime, but is strongly nonlinear at higher signal levels. The advantage in recording both signals is that they can be combined (or merged) into a single signal with improved dynamic range. The process of combining the analog and photon counting data has become known as “gluing” (Whiteman et al., 2006).« less
Reyes, Juan C.; Kalkan, Erol
2012-01-01
In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide the most critical EDPs in nonlinear-inelastic domain; however, they tend to produce larger EDPs than as-recorded (arbitrarily oriented) motions.