Cotton-type and joint invariants for linear elliptic systems.
Aslam, A; Mahomed, F M
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.
Cotton-Type and Joint Invariants for Linear Elliptic Systems
Aslam, A.; Mahomed, F. M.
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results. PMID:24453871
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Villarreal, Ramiro
1987-01-01
System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.
NASA Astrophysics Data System (ADS)
Wati, S.; Fitriana, L.; Mardiyana
2018-04-01
Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.
On supporting students' understanding of solving linear equation by using flowchart
NASA Astrophysics Data System (ADS)
Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi
2017-05-01
The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.
Unpacking the Complexity of Linear Equations from a Cognitive Load Theory Perspective
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Phan, Huy P.
2016-01-01
The degree of element interactivity determines the complexity and therefore the intrinsic cognitive load of linear equations. The unpacking of linear equations at the level of operational and relational lines allows the classification of linear equations in a hierarchical level of complexity. Mapping similar operational and relational lines across…
Schwarz maps of algebraic linear ordinary differential equations
NASA Astrophysics Data System (ADS)
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
NASA Astrophysics Data System (ADS)
Hosseini, K.; Ayati, Z.; Ansari, R.
2018-04-01
One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.
Local Linear Observed-Score Equating
ERIC Educational Resources Information Center
Wiberg, Marie; van der Linden, Wim J.
2011-01-01
Two methods of local linear observed-score equating for use with anchor-test and single-group designs are introduced. In an empirical study, the two methods were compared with the current traditional linear methods for observed-score equating. As a criterion, the bias in the equated scores relative to true equating based on Lord's (1980)…
Students’ difficulties in solving linear equation problems
NASA Astrophysics Data System (ADS)
Wati, S.; Fitriana, L.; Mardiyana
2018-03-01
A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.
On solutions of the fifth-order dispersive equations with porous medium type non-linearity
NASA Astrophysics Data System (ADS)
Kocak, Huseyin; Pinar, Zehra
2018-07-01
In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.
On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2017-06-01
Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Quasi-Newton methods for parameter estimation in functional differential equations
NASA Technical Reports Server (NTRS)
Brewer, Dennis W.
1988-01-01
A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.
Equating Scores from Adaptive to Linear Tests
ERIC Educational Resources Information Center
van der Linden, Wim J.
2006-01-01
Two local methods for observed-score equating are applied to the problem of equating an adaptive test to a linear test. In an empirical study, the methods were evaluated against a method based on the test characteristic function (TCF) of the linear test and traditional equipercentile equating applied to the ability estimates on the adaptive test…
2013-08-14
Connectivity Graph; Graph Search; Bounded Disturbances; Linear Time-Varying (LTV); Clohessy - Wiltshire -Hill (CWH) 16. SECURITY CLASSIFICATION OF: 17...the linearization of the relative motion model given by the Hill- Clohessy - Wiltshire (CWH) equations is used [14]. A. Nonlinear equations of motion...equations can be used to describe the motion of the debris. B. Linearized HCW equations in discrete-time For δr << R, the linearized Hill- Clohessy
Newton's method: A link between continuous and discrete solutions of nonlinear problems
NASA Technical Reports Server (NTRS)
Thurston, G. A.
1980-01-01
Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.
User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.
1988-01-01
An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
NASA Astrophysics Data System (ADS)
Nursyahidah, F.; Saputro, B. A.; Rubowo, M. R.
2018-03-01
The aim of this research is to know the students’ understanding of linear equation system in two variables using Ethnomathematics and to acquire learning trajectory of linear equation system in two variables for the second grade of lower secondary school students. This research used methodology of design research that consists of three phases, there are preliminary design, teaching experiment, and retrospective analysis. Subject of this study is 28 second grade students of Sekolah Menengah Pertama (SMP) 37 Semarang. The result of this research shows that the students’ understanding in linear equation system in two variables can be stimulated by using Ethnomathematics in selling buying tradition in Peterongan traditional market in Central Java as a context. All of strategies and model that was applied by students and also their result discussion shows how construction and contribution of students can help them to understand concept of linear equation system in two variables. All the activities that were done by students produce learning trajectory to gain the goal of learning. Each steps of learning trajectory of students have an important role in understanding the concept from informal to the formal level. Learning trajectory using Ethnomathematics that is produced consist of watching video of selling buying activity in Peterongan traditional market to construct linear equation in two variables, determine the solution of linear equation in two variables, construct model of linear equation system in two variables from contextual problem, and solving a contextual problem related to linear equation system in two variables.
NASA Technical Reports Server (NTRS)
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
New Results on the Linear Equating Methods for the Non-Equivalent-Groups Design
ERIC Educational Resources Information Center
von Davier, Alina A.
2008-01-01
The two most common observed-score equating functions are the linear and equipercentile functions. These are often seen as different methods, but von Davier, Holland, and Thayer showed that any equipercentile equating function can be decomposed into linear and nonlinear parts. They emphasized the dominant role of the linear part of the nonlinear…
NASA Technical Reports Server (NTRS)
Kaup, D. J.; Hansen, P. J.; Choudhury, S. Roy; Thomas, Gary E.
1986-01-01
The equations for the single-particle orbits in a nonneutral high density plasma in the presence of inhomogeneous crossed fields are obtained. Using these orbits, the linearized Vlasov equation is solved as an expansion in the orbital radii in the presence of inhomogeneities and density gradients. A model distribution function is introduced whose cold-fluid limit is exactly the same as that used in many previous studies of the cold-fluid equations. This model function is used to reduce the linearized Vlasov-Poisson equations to a second-order ordinary differential equation for the linearized electrostatic potential whose eigenvalue is the perturbation frequency.
ERIC Educational Resources Information Center
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
ERIC Educational Resources Information Center
Chen, Haiwen
2012-01-01
In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…
NASA Astrophysics Data System (ADS)
Camporesi, Roberto
2011-06-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.
Fast wavelet based algorithms for linear evolution equations
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
Note on Solutions to a Class of Nonlinear Singular Integro-Differential Equations,
1986-08-01
KdV) ut + 2uu x +Uxx x a 0, (1) the sine-Gordon equation Uxt a sin u, (2) and the Kadomtsev - Petviashvili (KP) equation (Ut + 2uu x + UXXx)x -3a 2u yy...SOUIN OA LSFNN ! /" / M.. \\boiz A.S ::-:- and ,M.O.. .- :1/1 / NOTE ON SOLUTIONS TO A CLASS OF NON \\ / LINEAR SINGULAR INTEGRO-DIFFERENTIA[ EQUATIONS by...important nonlinear evolution equations which can be linearized. Many of these equations fall into the category of linearization via soliton theory and
NASA Astrophysics Data System (ADS)
Man, Yiu-Kwong
2010-10-01
In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.
A refinement of the combination equations for evaporation
Milly, P.C.D.
1991-01-01
Most combination equations for evaporation rely on a linear expansion of the saturation vapor-pressure curve around the air temperature. Because the temperature at the surface may differ from this temperature by several degrees, and because the saturation vapor-pressure curve is nonlinear, this approximation leads to a certain degree of error in those evaporation equations. It is possible, however, to introduce higher-order polynomial approximations for the saturation vapor-pressure curve and to derive a family of explicit equations for evaporation, having any desired degree of accuracy. Under the linear approximation, the new family of equations for evaporation reduces, in particular cases, to the combination equations of H. L. Penman (Natural evaporation from open water, bare soil and grass, Proc. R. Soc. London, Ser. A193, 120-145, 1948) and of subsequent workers. Comparison of the linear and quadratic approximations leads to a simple approximate expression for the error associated with the linear case. Equations based on the conventional linear approximation consistently underestimate evaporation, sometimes by a substantial amount. ?? 1991 Kluwer Academic Publishers.
Nonlinear Diophantine equation 11 x +13 y = z 2
NASA Astrophysics Data System (ADS)
Sugandha, A.; Tripena, A.; Prabowo, A.; Sukono, F.
2018-03-01
This research aims to obtaining the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2. There are 3 possibilities to obtain the solutions (if any) from the Non Linear Diophantine equation, namely single, multiple, and no solution. This research is conducted in two stages: (1) by utilizing simulation to obtain the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2 and (2) by utilizing congruency theory with its characteristics proven that the Non Linear Diophantine equation has no solution for non negative whole numbers (integers) of x, y, z.
Lie algebras and linear differential equations.
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Simple taper: Taper equations for the field forester
David R. Larsen
2017-01-01
"Simple taper" is set of linear equations that are based on stem taper rates; the intent is to provide taper equation functionality to field foresters. The equation parameters are two taper rates based on differences in diameter outside bark at two points on a tree. The simple taper equations are statistically equivalent to more complex equations. The linear...
ERIC Educational Resources Information Center
Wang, Tianyou
2009-01-01
Holland and colleagues derived a formula for analytical standard error of equating using the delta-method for the kernel equating method. Extending their derivation, this article derives an analytical standard error of equating procedure for the conventional percentile rank-based equipercentile equating with log-linear smoothing. This procedure is…
NASA Astrophysics Data System (ADS)
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.
The spectral applications of Beer-Lambert law for some biological and dosimetric materials
NASA Astrophysics Data System (ADS)
Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.
2014-08-01
The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.
The numerical solution of linear multi-term fractional differential equations: systems of equations
NASA Astrophysics Data System (ADS)
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
2002-11-01
In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.
ERIC Educational Resources Information Center
Chen, Haiwen; Holland, Paul
2010-01-01
In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…
A canonical form of the equation of motion of linear dynamical systems
NASA Astrophysics Data System (ADS)
Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias
2018-03-01
The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Trifonov, A. Yu.
A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.
Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations
ERIC Educational Resources Information Center
Robin, W.
2007-01-01
The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adcock, T. A. A.; Taylor, P. H.
2016-01-15
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less
NASA Technical Reports Server (NTRS)
Cooke, K. L.; Meyer, K. R.
1966-01-01
Extension of problem of singular perturbation for linear scalar constant coefficient differential- difference equation with single retardation to several retardations, noting degenerate equation solution
A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi
2016-09-01
We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Anirban; Ganguly, Anindita; Chatterjee, Saumya Deep
2018-04-01
In this paper the authors have dealt with seven kinds of non-linear Volterra and Fredholm classes of equations. The authors have formulated an algorithm for solving the aforementioned equation types via Hybrid Function (HF) and Triangular Function (TF) piecewise-linear orthogonal approach. In this approach the authors have reduced integral equation or integro-differential equation into equivalent system of simultaneous non-linear equation and have employed either Newton's method or Broyden's method to solve the simultaneous non-linear equations. The authors have calculated the L2-norm error and the max-norm error for both HF and TF method for each kind of equations. Through the illustrated examples, the authors have shown that the HF based algorithm produces stable result, on the contrary TF-computational method yields either stable, anomalous or unstable results.
Gu, Xiao-Jun; Emerson, David R
2014-06-01
Understanding the thermal behavior of a rarefied gas remains a fundamental problem. In the present study, we investigate the predictive capabilities of the regularized 13 and 26 moment equations. In this paper, we consider low-speed problems with small gradients, and to simplify the analysis, a linearized set of moment equations is derived to explore a classic temperature problem. Analytical solutions obtained for the linearized 26 moment equations are compared with available kinetic models and can reliably capture all qualitative trends for the temperature-jump coefficient and the associated temperature defect in the thermal Knudsen layer. In contrast, the linearized 13 moment equations lack the necessary physics to capture these effects and consistently underpredict kinetic theory. The deviation from kinetic theory for the 13 moment equations increases significantly for specular reflection of gas molecules, whereas the 26 moment equations compare well with results from kinetic theory. To improve engineering analyses, expressions for the effective thermal conductivity and Prandtl number in the Knudsen layer are derived with the linearized 26 moment equations.
Encouraging Students to Think Strategically when Learning to Solve Linear Equations
ERIC Educational Resources Information Center
Robson, Daphne; Abell, Walt; Boustead, Therese
2012-01-01
Students who are preparing to study science and engineering need to understand equation solving but adult students returning to study can find this difficult. In this paper, the design of an online resource, Equations2go, for helping students learn to solve linear equations is investigated. Students learning to solve equations need to consider…
FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.; Torrisi, M.; Tracinà, R.
2010-11-01
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.
ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations
NASA Astrophysics Data System (ADS)
Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil
2018-04-01
In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruss, D. E.; Morel, J. E.; Ragusa, J. C.
2013-07-01
Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less
Time and frequency domain analysis of sampled data controllers via mixed operation equations
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1981-01-01
Specification of the mathematical equations required to define the dynamic response of a linear continuous plant, subject to sampled data control, is complicated by the fact that the digital components of the control system cannot be modeled via linear ordinary differential equations. This complication can be overcome by introducing two new mathematical operations; namely, the operation of zero order hold and digial delay. It is shown that by direct utilization of these operations, a set of linear mixed operation equations can be written and used to define the dynamic response characteristics of the controlled system. It also is shown how these linear mixed operation equations lead, in an automatable manner, directly to a set of finite difference equations which are in a format compatible with follow on time and frequency domain analysis methods.
ERIC Educational Resources Information Center
Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.
2009-01-01
This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…
Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles
ERIC Educational Resources Information Center
Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…
LINEAR - DERIVATION AND DEFINITION OF A LINEAR AIRCRAFT MODEL
NASA Technical Reports Server (NTRS)
Duke, E. L.
1994-01-01
The Derivation and Definition of a Linear Model program, LINEAR, provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models. LINEAR was developed to provide a standard, documented, and verified tool to derive linear models for aircraft stability analysis and control law design. Linear system models define the aircraft system in the neighborhood of an analysis point and are determined by the linearization of the nonlinear equations defining vehicle dynamics and sensors. LINEAR numerically determines a linear system model using nonlinear equations of motion and a user supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. LINEAR is capable of extracting both linearized engine effects, such as net thrust, torque, and gyroscopic effects and including these effects in the linear system model. The point at which this linear model is defined is determined either by completely specifying the state and control variables, or by specifying an analysis point on a trajectory and directing the program to determine the control variables and the remaining state variables. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to provide easy selection of state, control, and observation variables to be used in a particular model. Thus, the order of the system model is completely under user control. Further, the program provides the flexibility of allowing alternate formulations of both the state and observation equations. Data describing the aircraft and the test case is input to the program through a terminal or formatted data files. All data can be modified interactively from case to case. The aerodynamic model can be defined in two ways: a set of nondimensional stability and control derivatives for the flight point of interest, or a full non-linear aerodynamic model as used in simulations. LINEAR is written in FORTRAN and has been implemented on a DEC VAX computer operating under VMS with a virtual memory requirement of approximately 296K of 8 bit bytes. Both an interactive and batch version are included. LINEAR was developed in 1988.
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Hosseini, Kamyar; Samadani, Farzan; Raza, Nauman
2018-07-01
A wide range of problems in different fields of the applied sciences especially non-linear optics is described by non-linear Schrödinger's equations (NLSEs). In the present paper, a specific type of NLSEs known as the cubic-quintic non-linear Schrödinger's equation including an anti-cubic term has been studied. The generalized Kudryashov method along with symbolic computation package has been exerted to carry out this objective. As a consequence, a series of optical soliton solutions have formally been retrieved. It is corroborated that the generalized form of Kudryashov method is a direct, effectual, and reliable technique to deal with various types of non-linear Schrödinger's equations.
NASA Technical Reports Server (NTRS)
Clark, William S.; Hall, Kenneth C.
1994-01-01
A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.
NASA Technical Reports Server (NTRS)
Park, K. C.; Belvin, W. Keith
1990-01-01
A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.
Application of variational and Galerkin equations to linear and nonlinear finite element analysis
NASA Technical Reports Server (NTRS)
Yu, Y.-Y.
1974-01-01
The paper discusses the application of the variational equation to nonlinear finite element analysis. The problem of beam vibration with large deflection is considered. The variational equation is shown to be flexible in both the solution of a general problem and in the finite element formulation. Difficulties are shown to arise when Galerkin's equations are used in the consideration of the finite element formulation of two-dimensional linear elasticity and of the linear classical beam.
1980-06-01
sufficient. Dropping the time lag terms, the equations for Xu, Xx’, and X reduce to linear algebraic equations.Y Hence in the quasistatic case the...quasistatic variables now are not described by differential equations but rather by linear algebraic equations. The solution for x0 then is simply -365...matrices for two-bladed rotor 414 7. LINEAR SYSTEM ANALYSIS 425 7,1 State Variable Form 425 7.2 Constant Coefficient System 426 7.2. 1 Eigen-analysis 426
ERIC Educational Resources Information Center
Mallet, D. G.; McCue, S. W.
2009-01-01
The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…
Multigrid Methods for Fully Implicit Oil Reservoir Simulation
NASA Technical Reports Server (NTRS)
Molenaar, J.
1996-01-01
In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for two-phase flow problems with strong heterogeneities and anisotropies is studied. Here we consider both possibilities. Moreover we present a novel way for constructing the coarse grid correction operator in linear multigrid algorithms. This approach has the advantage in that it preserves the sparsity pattern of the fine grid matrix and it can be extended to systems of equations in a straightforward manner. We compare the linear and nonlinear multigrid algorithms by means of a numerical experiment.
DOT National Transportation Integrated Search
2016-09-01
We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...
Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks
The known formulations for steady state hydraulics within looped water distribution networks are re-derived in terms of linear and non-linear transformations of the original set of partly linear and partly non-linear equations that express conservation of mass and energy. All of ...
Perturbations of linear delay differential equations at the verge of instability.
Lingala, N; Namachchivaya, N Sri
2016-06-01
The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.
How Darcy's equation is linked to the linear reservoir at catchment scale
NASA Astrophysics Data System (ADS)
Savenije, Hubert H. G.
2017-04-01
In groundwater hydrology two simple linear equations exist that describe the relation between groundwater flow and the gradient that drives it: Darcy's equation and the linear reservoir. Both equations are empirical at heart: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they show similarity, without having detailed knowledge of the structure of the underlying aquifers it is not trivial to upscale Darcy's equation to the watershed scale. In this paper, a relatively simple connection is provided between the two, based on the assumption that the groundwater system is organized by an efficient drainage network, a mostly invisible pattern that has evolved over geological time scales. This drainage network provides equally distributed resistance to flow along the streamlines that connect the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance.
Polynomial elimination theory and non-linear stability analysis for the Euler equations
NASA Technical Reports Server (NTRS)
Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.
1986-01-01
Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.
NASA Astrophysics Data System (ADS)
Zia, Haider
2017-06-01
This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.
An extended harmonic balance method based on incremental nonlinear control parameters
NASA Astrophysics Data System (ADS)
Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.
2017-02-01
A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.
Theodorakis, Stavros
2003-06-01
We emulate the cubic term Psi(3) in the nonlinear Schrödinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a delta function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Psi(3) one. In particular, it can be used for the nonlinear Schrödinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions.
Dissipative behavior of some fully non-linear KdV-type equations
NASA Astrophysics Data System (ADS)
Brenier, Yann; Levy, Doron
2000-03-01
The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.
NASA Technical Reports Server (NTRS)
Geddes, K. O.
1977-01-01
If a linear ordinary differential equation with polynomial coefficients is converted into integrated form then the formal substitution of a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for deriving the general recurrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.
A General Linear Method for Equating with Small Samples
ERIC Educational Resources Information Center
Albano, Anthony D.
2015-01-01
Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…
ESEA Title I Linking Project. Final Report.
ERIC Educational Resources Information Center
Holmes, Susan E.
The Rasch model for test score equating was compared with three other equating procedures as methods for implementing the norm referenced method (RMC Model A) of evaluating ESEA Title I projects. The Rasch model and its theoretical limitations were described. The three other equating methods used were: linear observed score equating, linear true…
A Factorization Approach to the Linear Regulator Quadratic Cost Problem
NASA Technical Reports Server (NTRS)
Milman, M. H.
1985-01-01
A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.
Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes
ERIC Educational Resources Information Center
Seaman, Brian; Osler, Thomas J.
2004-01-01
A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…
ERIC Educational Resources Information Center
Pirie, Susan E. B.; Martin, Lyndon
1997-01-01
Presents the results of a case study which looked at the mathematics classroom of one teacher trying to teach mathematics with meaning to pupils or lower ability at the secondary level. Contrasts methods of teaching linear equations to a variety of ability levels and uses the Pirie-Kieren model to account for the successful growth in understanding…
NASA Astrophysics Data System (ADS)
Pipkins, Daniel Scott
Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.
A Novel Blast-mitigation Concept for Light Tactical Vehicles
2013-01-01
analysis which utilizes the mass and energy (but not linear momentum ) conservation equations is provided. It should be noted that the identical final...results could be obtained using an analogous analysis which combines the mass and the linear momentum conservation equations. For a calorically...governing mass, linear momentum and energy conservation and heat conduction equations are solved within ABAQUS/ Explicit with a second-order accurate
Liu, Lan; Jiang, Tao
2007-01-01
With the launch of the international HapMap project, the haplotype inference problem has attracted a great deal of attention in the computational biology community recently. In this paper, we study the question of how to efficiently infer haplotypes from genotypes of individuals related by a pedigree without mating loops, assuming that the hereditary process was free of mutations (i.e. the Mendelian law of inheritance) and recombinants. We model the haplotype inference problem as a system of linear equations as in [10] and present an (optimal) linear-time (i.e. O(mn) time) algorithm to generate a particular solution (A particular solution of any linear system is an assignment of numerical values to the variables in the system which satisfies the equations in the system.) to the haplotype inference problem, where m is the number of loci (or markers) in a genotype and n is the number of individuals in the pedigree. Moreover, the algorithm also provides a general solution (A general solution of any linear system is denoted by the span of a basis in the solution space to its associated homogeneous system, offset from the origin by a vector, namely by any particular solution. A general solution for ZRHC is very useful in practice because it allows the end user to efficiently enumerate all solutions for ZRHC and performs tasks such as random sampling.) in O(mn2) time, which is optimal because the size of a general solution could be as large as Theta(mn2). The key ingredients of our construction are (i) a fast consistency checking procedure for the system of linear equations introduced in [10] based on a careful investigation of the relationship between the equations (ii) a novel linear-time method for solving linear equations without invoking the Gaussian elimination method. Although such a fast method for solving equations is not known for general systems of linear equations, we take advantage of the underlying loop-free pedigree graph and some special properties of the linear equations.
Semigroup theory and numerical approximation for equations in linear viscoelasticity
NASA Technical Reports Server (NTRS)
Fabiano, R. H.; Ito, K.
1990-01-01
A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.
Internal null controllability of a linear Schrödinger-KdV system on a bounded interval
NASA Astrophysics Data System (ADS)
Araruna, Fágner D.; Cerpa, Eduardo; Mercado, Alberto; Santos, Maurício C.
2016-01-01
The control of a linear dispersive system coupling a Schrödinger and a linear Korteweg-de Vries equation is studied in this paper. The system can be viewed as three coupled real-valued equations by taking real and imaginary parts in the Schrödinger equation. The internal null controllability is proven by using either one complex-valued control on the Schrödinger equation or two real-valued controls, one on each equation. Notice that the single Schrödinger equation is not known to be controllable with a real-valued control. The standard duality method is used to reduce the controllability property to an observability inequality, which is obtained by means of a Carleman estimates approach.
NASA Astrophysics Data System (ADS)
Kumar, Devendra; Singh, Jagdev; Baleanu, Dumitru
2018-02-01
The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.
NASA Technical Reports Server (NTRS)
Sreenivas, Kidambi; Whitfield, David L.
1995-01-01
Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.
Symbolic Solution of Linear Differential Equations
NASA Technical Reports Server (NTRS)
Feinberg, R. B.; Grooms, R. G.
1981-01-01
An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.
Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations
2008-02-01
Craig interpolants has enabled the development of powerful hardware and software model checking techniques. Efficient algorithms are known for computing...interpolants in rational and real linear arithmetic. We focus on subsets of integer linear arithmetic. Our main results are polynomial time algorithms ...congruences), and linear diophantine disequations. We show the utility of the proposed interpolation algorithms for discovering modular/divisibility predicates
Stress stiffening and approximate equations in flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Padilla, Carlos E.; Vonflotow, Andreas H.
1993-01-01
A useful model for open chains of flexible bodies undergoing large rigid body motions, but small elastic deformations, is one in which the equations of motion are linearized in the small elastic deformations and deformation rates. For slow rigid body motions, the correctly linearized, or consistent, set of equations can be compared to prematurely linearized, or inconsistent, equations and to 'oversimplified,' or ruthless, equations through the use of open loop dynamic simulations. It has been shown that the inconsistent model should never be used, while the ruthless model should be used whenever possible. The consistent and inconsistent models differ by stress stiffening terms. These are due to zeroth-order stresses effecting virtual work via nonlinear strain-displacement terms. In this paper we examine in detail the nature of these stress stiffening terms and conclude that they are significant only when the associated zeroth-order stresses approach 'buckling' stresses. Finally it is emphasized that when the stress stiffening terms are negligible the ruthlessly linearized equations should be used.
A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.; Walton, W. C., Jr.
1982-01-01
A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.
NASA Astrophysics Data System (ADS)
Zhou, L.-Q.; Meleshko, S. V.
2017-07-01
The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.
Chandrasekhar equations for infinite dimensional systems
NASA Technical Reports Server (NTRS)
Ito, K.; Powers, R.
1985-01-01
The existence of Chandrasekhar equations for linear time-invariant systems defined on Hilbert spaces is investigated. An important consequence is that the solution to the evolutional Riccati equation is strongly differentiable in time, and that a strong solution of the Riccati differential equation can be defined. A discussion of the linear-quadratic optimal-control problem for hereditary differential systems is also included.
Whitham modulation theory for the Kadomtsev- Petviashvili equation.
Ablowitz, Mark J; Biondini, Gino; Wang, Qiao
2017-08-01
The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.
Whitham modulation theory for the Kadomtsev- Petviashvili equation
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Biondini, Gino; Wang, Qiao
2017-08-01
The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.
NASA Astrophysics Data System (ADS)
Thomann, Enrique A.; Guenther, Ronald B.
2006-02-01
Explicit formulae for the fundamental solution of the linearized time dependent Navier Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces L p (R 3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.
NASA Technical Reports Server (NTRS)
Cheyney, H., III; Arking, A.
1976-01-01
The equations of radiative transfer in anisotropically scattering media are reformulated as linear operator equations in a single independent variable. The resulting equations are suitable for solution by a variety of standard mathematical techniques. The operators appearing in the resulting equations are in general nonsymmetric; however, it is shown that every bounded linear operator equation can be embedded in a symmetric linear operator equation and a variational solution can be obtained in a straightforward way. For purposes of demonstration, a Rayleigh-Ritz variational method is applied to three problems involving simple phase functions. It is to be noted that the variational technique demonstrated is of general applicability and permits simple solutions for a wide range of otherwise difficult mathematical problems in physics.
Oscillation criteria for half-linear dynamic equations on time scales
NASA Astrophysics Data System (ADS)
Hassan, Taher S.
2008-09-01
This paper is concerned with oscillation of the second-order half-linear dynamic equation(r(t)(x[Delta])[gamma])[Delta]+p(t)x[gamma](t)=0, on a time scale where [gamma] is the quotient of odd positive integers, r(t) and p(t) are positive rd-continuous functions on . Our results solve a problem posed by [R.P. Agarwal, D. O'Regan, S.H. Saker, Philos-type oscillation criteria for second-order half linear dynamic equations, Rocky Mountain J. Math. 37 (2007) 1085-1104; S.H. Saker, Oscillation criteria of second order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005) 375-387] and our results in the special cases when and involve and improve some oscillation results for second-order differential and difference equations; and when , and , etc., our oscillation results are essentially newE Some examples illustrating the importance of our results are also included.
Mathematical Modeling of Chemical Stoichiometry
ERIC Educational Resources Information Center
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
Generalized Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew
2004-01-01
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fike, Jeffrey A.
2013-08-01
The construction of stable reduced order models using Galerkin projection for the Euler or Navier-Stokes equations requires a suitable choice for the inner product. The standard L2 inner product is expected to produce unstable ROMs. For the non-linear Navier-Stokes equations this means the use of an energy inner product. In this report, Galerkin projection for the non-linear Navier-Stokes equations using the L2 inner product is implemented as a first step toward constructing stable ROMs for this set of physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addona, Davide, E-mail: d.addona@campus.unimib.it
2015-08-15
We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.
Program for the solution of multipoint boundary value problems of quasilinear differential equations
NASA Technical Reports Server (NTRS)
1973-01-01
Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.
Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei
2015-05-19
To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.
Corrected Implicit Monte Carlo
Cleveland, Mathew Allen; Wollaber, Allan Benton
2018-01-02
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
Local energy decay for linear wave equations with variable coefficients
NASA Astrophysics Data System (ADS)
Ikehata, Ryo
2005-06-01
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].
Corrected implicit Monte Carlo
NASA Astrophysics Data System (ADS)
Cleveland, M. A.; Wollaber, A. B.
2018-04-01
In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew Allen; Wollaber, Allan Benton
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
NASA Astrophysics Data System (ADS)
See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.
2018-04-01
This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.
Lyapunov stability and its application to systems of ordinary differential equations
NASA Technical Reports Server (NTRS)
Kennedy, E. W.
1979-01-01
An outline and a brief introduction to some of the concepts and implications of Lyapunov stability theory are presented. Various aspects of the theory are illustrated by the inclusion of eight examples, including the Cartesian coordinate equations of the two-body problem, linear and nonlinear (Van der Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel element equations for the unperturbed two-body problem.
Chandrasekhar equations for infinite dimensional systems
NASA Technical Reports Server (NTRS)
Ito, K.; Powers, R. K.
1985-01-01
Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.
Approximating a nonlinear advanced-delayed equation from acoustics
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2016-10-01
We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.
NASA Astrophysics Data System (ADS)
Nutku, Y.
1985-06-01
We point out a class of nonlinear wave equations which admit infinitely many conserved quantities. These equations are characterized by a pair of exact one-forms. The implication that they are closed gives rise to equations, the characteristics and Riemann invariants of which are readily obtained. The construction of the conservation laws requires the solution of a linear second-order equation which can be reduced to canonical form using the Riemann invariants. The hodograph transformation results in a similar linear equation. We discuss also the symplectic structure and Bäcklund transformations associated with these equations.
Algebraic methods for the solution of some linear matrix equations
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.
Using MathCAD to Teach One-Dimensional Graphs
ERIC Educational Resources Information Center
Yushau, B.
2004-01-01
Topics such as linear and nonlinear equations and inequalities, compound inequalities, linear and nonlinear absolute value equations and inequalities, rational equations and inequality are commonly found in college algebra and precalculus textbooks. What is common about these topics is the fact that their solutions and graphs lie in the real line…
A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro, E-mail: p.bargueno@uniandes.edu.co
2015-05-15
In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.
Universal equation for estimating ideal body weight and body weight at any BMI1
Peterson, Courtney M; Thomas, Diana M; Blackburn, George L; Heymsfield, Steven B
2016-01-01
Background: Ideal body weight (IBW) equations and body mass index (BMI) ranges have both been used to delineate healthy or normal weight ranges, although these 2 different approaches are at odds with each other. In particular, past IBW equations are misaligned with BMI values, and unlike BMI, the equations have failed to recognize that there is a range of ideal or target body weights. Objective: For the first time, to our knowledge, we merged the concepts of a linear IBW equation and of defining target body weights in terms of BMI. Design: With the use of calculus and approximations, we derived an easy-to-use linear equation that clinicians can use to calculate both IBW and body weight at any target BMI value. We measured the empirical accuracy of the equation with the use of NHANES data and performed a comparative analysis with past IBW equations. Results: Our linear equation allowed us to calculate body weights for any BMI and height with a mean empirical accuracy of 0.5–0.7% on the basis of NHANES data. Moreover, we showed that our body weight equation directly aligns with BMI values for both men and women, which avoids the overestimation and underestimation problems at the upper and lower ends of the height spectrum that have plagued past IBW equations. Conclusions: Our linear equation increases the sophistication of IBW equations by replacing them with a single universal equation that calculates both IBW and body weight at any target BMI and height. Therefore, our equation is compatible with BMI and can be applied with the use of mental math or a calculator without the need for an app, which makes it a useful tool for both health practitioners and the general public. PMID:27030535
Universal equation for estimating ideal body weight and body weight at any BMI.
Peterson, Courtney M; Thomas, Diana M; Blackburn, George L; Heymsfield, Steven B
2016-05-01
Ideal body weight (IBW) equations and body mass index (BMI) ranges have both been used to delineate healthy or normal weight ranges, although these 2 different approaches are at odds with each other. In particular, past IBW equations are misaligned with BMI values, and unlike BMI, the equations have failed to recognize that there is a range of ideal or target body weights. For the first time, to our knowledge, we merged the concepts of a linear IBW equation and of defining target body weights in terms of BMI. With the use of calculus and approximations, we derived an easy-to-use linear equation that clinicians can use to calculate both IBW and body weight at any target BMI value. We measured the empirical accuracy of the equation with the use of NHANES data and performed a comparative analysis with past IBW equations. Our linear equation allowed us to calculate body weights for any BMI and height with a mean empirical accuracy of 0.5-0.7% on the basis of NHANES data. Moreover, we showed that our body weight equation directly aligns with BMI values for both men and women, which avoids the overestimation and underestimation problems at the upper and lower ends of the height spectrum that have plagued past IBW equations. Our linear equation increases the sophistication of IBW equations by replacing them with a single universal equation that calculates both IBW and body weight at any target BMI and height. Therefore, our equation is compatible with BMI and can be applied with the use of mental math or a calculator without the need for an app, which makes it a useful tool for both health practitioners and the general public. © 2016 American Society for Nutrition.
Linear analysis of auto-organization in Hebbian neural networks.
Carlos Letelier, J; Mpodozis, J
1995-01-01
The self-organization of neurotopies where neural connections follow Hebbian dynamics is framed in terms of linear operator theory. A general and exact equation describing the time evolution of the overall synaptic strength connecting two neural laminae is derived. This linear matricial equation, which is similar to the equations used to describe oscillating systems in physics, is modified by the introduction of non-linear terms, in order to capture self-organizing (or auto-organizing) processes. The behavior of a simple and small system, that contains a non-linearity that mimics a metabolic constraint, is analyzed by computer simulations. The emergence of a simple "order" (or degree of organization) in this low-dimensionality model system is discussed.
Perfect commuting-operator strategies for linear system games
NASA Astrophysics Data System (ADS)
Cleve, Richard; Liu, Li; Slofstra, William
2017-01-01
Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.
Partner symmetries and non-invariant solutions of four-dimensional heavenly equations
NASA Astrophysics Data System (ADS)
Malykh, A. A.; Nutku, Y.; Sheftel, M. B.
2004-07-01
We extend our method of partner symmetries to the hyperbolic complex Monge-Ampère equation and the second heavenly equation of Plebañski. We show the existence of partner symmetries and derive the relations between them. For certain simple choices of partner symmetries the resulting differential constraints together with the original heavenly equations are transformed to systems of linear equations by an appropriate Legendre transformation. The solutions of these linear equations are generically non-invariant. As a consequence we obtain explicitly new classes of heavenly metrics without Killing vectors.
The method of Ritz applied to the equation of Hamilton. [for pendulum systems
NASA Technical Reports Server (NTRS)
Bailey, C. D.
1976-01-01
Without any reference to the theory of differential equations, the initial value problem of the nonlinear, nonconservative double pendulum system is solved by the application of the method of Ritz to the equation of Hamilton. Also shown is an example of the reduction of the traditional eigenvalue problem of linear, homogeneous, differential equations of motion to the solution of a set of nonhomogeneous algebraic equations. No theory of differential equations is used. Solution of the time-space path of the linear oscillator is demonstrated and compared to the exact solution.
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
ERIC Educational Resources Information Center
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria
2010-02-15
For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less
User's manual for LINEAR, a FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.
1987-01-01
This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
NASA Astrophysics Data System (ADS)
Schuch, Dieter
2014-04-01
Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.
Wave propagation problem for a micropolar elastic waveguide
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.
2018-04-01
A propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The mathematical model of the linear (or even nonlinear) micropolar elasticity is also expanded to a field theory model by variational least action integral and the least action principle. The governing coupled vector differential equations of the linear micropolar elasticity are given. The translational displacements and microrotations in the harmonic coupled wave are decomposed into potential and vortex parts. Calibrating equations providing simplification of the equations for the wave potentials are proposed. The coupled differential equations are then reduced to uncoupled ones and finally to the Helmholtz wave equations. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency range.
NASA Astrophysics Data System (ADS)
Andriopoulos, K.; Leach, P. G. L.
2007-04-01
We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painleve-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painleve-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.
Who Will Win?: Predicting the Presidential Election Using Linear Regression
ERIC Educational Resources Information Center
Lamb, John H.
2007-01-01
This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…
NASA Astrophysics Data System (ADS)
Tu, Jin; Yi, Cai-Feng
2008-04-01
In this paper, the authors investigate the growth of solutions of a class of higher order linear differential equationsf(k)+Ak-1f(k-1)+...+A0f=0 when most coefficients in the above equations have the same order with each other, and obtain some results which improve previous results due to K.H. Kwon [K.H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996) 378-387] and ZE-X. Chen [Z.-X. Chen, The growth of solutions of the differential equation f''+e-zf'+Q(z)f=0, Sci. China Ser. A 31 (2001) 775-784 (in Chinese); ZE-X. Chen, On the hyper order of solutions of higher order differential equations, Chinese Ann. Math. Ser. B 24 (2003) 501-508 (in Chinese); Z.-X. Chen, On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B 24 (2004) 52-60 (in Chinese); Z.-X. Chen, C.-C. Yang, Quantitative estimations on the zeros and growth of entire solutions of linear differential equations, Complex Var. 42 (2000) 119-133].
Chandrasekhar equations for infinite dimensional systems. Part 2: Unbounded input and output case
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Powers, Robert K.
1987-01-01
A set of equations known as Chandrasekhar equations arising in the linear quadratic optimal control problem is considered. In this paper, we consider the linear time-invariant system defined in Hilbert spaces involving unbounded input and output operators. For a general class of such systems, the Chandrasekhar equations are derived and the existence, uniqueness, and regularity of the results of their solutions established.
The Shock and Vibration Digest. Volume 16, Number 11
1984-11-01
wave [19], a secular equation for Rayleigh waves on ing, seismic risk, and related problems are discussed. the surface of an anisotropic half-space...waves in an !so- tive equation of an elastic-plastic rack medium was....... tropic linear elastic half-space with plane material used; the coefficient...pair of semi-linear hyperbolic partial differential -- " Conditions under which the equations of motion equations governing slow variations in amplitude
Modified Chapman-Enskog moment approach to diffusive phonon heat transport.
Banach, Zbigniew; Larecki, Wieslaw
2008-12-01
A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity.
Quasi-linear theory via the cumulant expansion approach
NASA Technical Reports Server (NTRS)
Jones, F. C.; Birmingham, T. J.
1974-01-01
The cumulant expansion technique of Kubo was used to derive an intergro-differential equation for f , the average one particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the f equation degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory for this limited class of fluctuations. For more physically realistic fluctuations, however, quasi-linear theory is at best approximate.
Dual exponential polynomials and linear differential equations
NASA Astrophysics Data System (ADS)
Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne
2018-01-01
We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.
GVE-Based Dynamics and Control for Formation Flying Spacecraft
NASA Technical Reports Server (NTRS)
Breger, Louis; How, Jonathan P.
2004-01-01
Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.
Schwarzschild and linear potentials in Mannheim's model of conformal gravity
NASA Astrophysics Data System (ADS)
Phillips, Peter R.
2018-05-01
We study the equations of conformal gravity, as given by Mannheim, in the weak field limit, so that a linear approximation is adequate. Specialising to static fields with spherical symmetry, we obtain a second-order equation for one of the metric functions. We obtain the Green function for this equation, and represent the metric function in the form of integrals over the source. Near a compact source such as the Sun the solution no longer has a form that is compatible with observations. We conclude that a solution of Mannheim type (a Schwarzschild term plus a linear potential of galactic scale) cannot exist for these field equations.
A decentralized process for finding equilibria given by linear equations.
Reiter, S
1994-01-01
I present a decentralized process for finding the equilibria of an economy characterized by a finite number of linear equilibrium conditions. The process finds all equilibria or, if there are none, reports that, in a finite number of steps at most equal to the number of equations. The communication and computational complexity compare favorably with other decentralized processes. The process may also be interpreted as an algorithm for solving a distributed system of linear equations. Comparisons with the Linpack program for LU (lower and upper triangular decomposition of the matrix of the equation system, a version of Gaussian elimination) are presented. PMID:11607486
Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method
NASA Astrophysics Data System (ADS)
Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan
2018-01-01
Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.
Alfvén wave interactions in the solar wind
NASA Astrophysics Data System (ADS)
Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.
2012-11-01
Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.
Squared eigenfunctions for the Sasa-Satsuma equation
NASA Astrophysics Data System (ADS)
Yang, Jianke; Kaup, D. J.
2009-02-01
Squared eigenfunctions are quadratic combinations of Jost functions and adjoint Jost functions which satisfy the linearized equation of an integrable equation. They are needed for various studies related to integrable equations, such as the development of its soliton perturbation theory. In this article, squared eigenfunctions are derived for the Sasa-Satsuma equation whose spectral operator is a 3×3 system, while its linearized operator is a 2×2 system. It is shown that these squared eigenfunctions are sums of two terms, where each term is a product of a Jost function and an adjoint Jost function. The procedure of this derivation consists of two steps: First is to calculate the variations of the potentials via variations of the scattering data by the Riemann-Hilbert method. The second one is to calculate the variations of the scattering data via the variations of the potentials through elementary calculations. While this procedure has been used before on other integrable equations, it is shown here, for the first time, that for a general integrable equation, the functions appearing in these variation relations are precisely the squared eigenfunctions and adjoint squared eigenfunctions satisfying, respectively, the linearized equation and the adjoint linearized equation of the integrable system. This proof clarifies this procedure and provides a unified explanation for previous results of squared eigenfunctions on individual integrable equations. This procedure uses primarily the spectral operator of the Lax pair. Thus two equations in the same integrable hierarchy will share the same squared eigenfunctions (except for a time-dependent factor). In the Appendix, the squared eigenfunctions are presented for the Manakov equations whose spectral operator is closely related to that of the Sasa-Satsuma equation.
Numerical solution of distributed order fractional differential equations
NASA Astrophysics Data System (ADS)
Katsikadelis, John T.
2014-02-01
In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.
Thermal-Interaction Matrix For Resistive Test Structure
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser
1990-01-01
Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.
A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap.
Doroudi, Alireza
2012-01-01
In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method.
NASA Technical Reports Server (NTRS)
Jamison, J. W.
1994-01-01
CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granita, E-mail: granitafc@gmail.com; Bahar, A.
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
Fluid equations with nonlinear wave-particle resonances^
NASA Astrophysics Data System (ADS)
Mattor, Nathan
1997-11-01
We have derived fluid equations that include linear and nonlinear wave-particle resonance effects. This greatly extends previous ``Landau-fluid'' closures, which include linear Landau damping. (G.W. Hammett and F.W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990).^, (Z. Chang and J. D. Callen, Phys. Fluids B 4,) 1167 (1992). The new fluid equations are derived with no approximation regarding nonlinear kinetic interaction, and so additionally include numerous nonlinear kinetic effects. The derivation starts with the electrostatic drift kinetic equation for simplicity, with a Maxwellian distribution function. Fluid closure is accomplished through a simple integration trick applied to the drift kinetic equation, using the property that the nth moment of Maxwellian distribution is related to the nth derivative. The result is a compact closure term appearing in the highest moment equation, a term which involves a plasma dispersion function of the electrostatic field and its derivatives. The new term reduces to the linear closures in appropriate limits, so both approaches retain linear Landau damping. But the nonlinearly closed equations have additional desirable properties. Unlike linear closures, the nonlinear closure retains the time-reversibility of the original kinetic equation. We have shown directly that the nonlinear closure retains at least two nonlinear resonance effects: wave-particle trapping and Compton scattering. Other nonlinear kinetic effects are currently under investigation. The new equations correct two previous discrepancies between kinetic and Landau-fluid predictions, including a propagator discrepancy (N. Mattor, Phys. Fluids B 4,) 3952 (1992). and a numerical discrepancy for the 3-mode shearless bounded slab ITG problem. (S. E. Parker et al.), Phys. Plasmas 1, 1461 (1994). ^* In collaboration with S. E. Parker, Department of Physics, University of Colorado, Boulder. ^ Work performed at LLNL under DoE contract No. W7405-ENG-48.
Preprocessing Inconsistent Linear System for a Meaningful Least Squares Solution
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
Mathematical models of many physical/statistical problems are systems of linear equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.
Preprocessing in Matlab Inconsistent Linear System for a Meaningful Least Squares Solution
NASA Technical Reports Server (NTRS)
Sen, Symal K.; Shaykhian, Gholam Ali
2011-01-01
Mathematical models of many physical/statistical problems are systems of linear equations Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the . minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.
Ho, Yuh-Shan
2006-01-01
A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.
Symmetry operators and decoupled equations for linear fields on black hole spacetimes
NASA Astrophysics Data System (ADS)
Araneda, Bernardo
2017-02-01
In the class of vacuum Petrov type D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a particular case, we find a set of four-dimensional operators that, when composed off shell with the Dirac, Maxwell and linearized gravity equations, give a system of equations for spin weighted scalars associated with the linear fields, that decouple on shell. Using these operator relations we give compact reconstruction formulae for solutions of the original spinor and tensor field equations in terms of solutions of the decoupled scalar equations. We also analyze the role of Killing spinors and Killing-Yano tensors in the spin weight zero equations and, in the case of spherical symmetry, we compare our four-dimensional formulation with the standard 2 + 2 decomposition and particularize to the Schwarzschild-(A)dS black hole. Our results uncover a pattern that generalizes a number of previous results on Teukolsky-like equations and Debye potentials for higher spin fields.
NASA Technical Reports Server (NTRS)
Tam, Sunny W. Y.; Chang, Tom
1995-01-01
The existence of localized regions of intense lower hybrid waves in the auroral ionosphere recently observed by rocket and satellite experiments can be understood by the study of a non-linear two-timescale coupling process. In this Letter, we demonstrate that the leading non-linear term in the standard Musher-Sturman equation vanishes identically in strict two-dimensions (normal to the magnetic field). Instead, the new two-dimensional equation is characterized by a much weaker non-linear term which arises from the ponderomotive force perpendicular to the magnetic field, particularly that due to the ions. The old and new equations are compared by means of time-evolution calculations of wave fields. The results exhibit a remarkable difference in the evolution of the waves as governed by the two equations. Such dissimilar outcomes motivate our investigation of the limitation of Musher-Sturman equation in quasi-two-dimensions. Only within all these limits can Musher-Sturman equation adequately describe the collapse of lower hybrid waves.
Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions
NASA Astrophysics Data System (ADS)
Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.
2018-04-01
A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.
NASA Astrophysics Data System (ADS)
Kokurin, M. Yu.
2010-11-01
A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.
The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization
NASA Technical Reports Server (NTRS)
1980-01-01
Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.
Numerical computation of linear instability of detonations
NASA Astrophysics Data System (ADS)
Kabanov, Dmitry; Kasimov, Aslan
2017-11-01
We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.
A Textbook for a First Course in Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Zingg, D. W.; Pulliam, T. H.; Nixon, David (Technical Monitor)
1999-01-01
This paper describes and discusses the textbook, Fundamentals of Computational Fluid Dynamics by Lomax, Pulliam, and Zingg, which is intended for a graduate level first course in computational fluid dynamics. This textbook emphasizes fundamental concepts in developing, analyzing, and understanding numerical methods for the partial differential equations governing the physics of fluid flow. Its underlying philosophy is that the theory of linear algebra and the attendant eigenanalysis of linear systems provides a mathematical framework to describe and unify most numerical methods in common use in the field of fluid dynamics. Two linear model equations, the linear convection and diffusion equations, are used to illustrate concepts throughout. Emphasis is on the semi-discrete approach, in which the governing partial differential equations (PDE's) are reduced to systems of ordinary differential equations (ODE's) through a discretization of the spatial derivatives. The ordinary differential equations are then reduced to ordinary difference equations (O(Delta)E's) using a time-marching method. This methodology, using the progression from PDE through ODE's to O(Delta)E's, together with the use of the eigensystems of tridiagonal matrices and the theory of O(Delta)E's, gives the book its distinctiveness and provides a sound basis for a deep understanding of fundamental concepts in computational fluid dynamics.
ERIC Educational Resources Information Center
Camporesi, Roberto
2011-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1988-01-01
An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.
Conical Lens for 5-Inch/54 Gun Launched Missile
1981-06-01
Propagation, Interferenceand Diffraction of Light, 2nd ed. (revised), p. 121-124, Pergamon Press, 1964. 10. Anton , Howard, Elementary Linear Algebra , p. 1-21...equations is nonlinear in x, but is linear in the coefficients. Therefore, the techniques of linear algebra can be used on equation (F-13). The method...This thesis assumes the air to be homogenous, isotropic, linear , time indepen- dent (HILT) and free of shock waves in order to investigate the
Experimental quantum computing to solve systems of linear equations.
Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2013-06-07
Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
NASA Astrophysics Data System (ADS)
Agresti, Juri; De Pietri, Roberto; Lusanna, Luca; Martucci, Luca
2004-05-01
In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy {\\hat E}ADM, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of non-harmonic 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) r_{\\bar a}(\\tau ,\\vec \\sigma ), \\pi_{\\bar a}(\\tau ,\\vec \\sigma ), \\bar a = 1,2. We define a Hamiltonian linearization of the theory, i.e. gravitational waves, without introducing any background 4-metric, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in {\\hat E}ADM. We solve all the constraints of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's r_{\\bar a}(\\tau ,\\vec \\sigma ), which replace the two polarizations of the TT harmonic gauge, and that linearized Einstein's equations are satisfied. Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.
ERIC Educational Resources Information Center
Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.
2008-01-01
Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…
Mechanisms Inducing Jet Rotation in Shear-Formed Shaped-Charge Liners.
1990-03-01
of deviatoric strain, and compressibility affects only the equation of state , not the deviatoric stress /strain relation. An anisotropic formulation is...strains, a more accurate scalar equation of state should simultaneously be employed to account for non-linear compressibility effects . A4 A.3 Elastic... obtainable knowing the previous and present cycles’ average stress . However, many non-linear equations
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
NASA Astrophysics Data System (ADS)
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
NASA Astrophysics Data System (ADS)
Yan, Zhenya; Bluman, George
2002-11-01
The special exact solutions of nonlinearly dispersive Boussinesq equations (called B( m, n) equations), utt- uxx- a( un) xx+ b( um) xxxx=0, is investigated by using four direct ansatze. As a result, abundant new compactons: solitons with the absence of infinite wings, solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions of these two equations are obtained. The variant is extended to include linear dispersion to support compactons and solitary patterns in the linearly dispersive Boussinesq equations with m=1. Moreover, another new compacton solution of the special case, B(2,2) equation, is also found.
Nonlinear and linear wave equations for propagation in media with frequency power law losses
NASA Astrophysics Data System (ADS)
Szabo, Thomas L.
2003-10-01
The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.
Flutter and Forced Response Analyses of Cascades using a Two-Dimensional Linearized Euler Solver
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.; Mehmed, O.
1999-01-01
Flutter and forced response analyses for a cascade of blades in subsonic and transonic flow is presented. The structural model for each blade is a typical section with bending and torsion degrees of freedom. The unsteady aerodynamic forces due to bending and torsion motions. and due to a vortical gust disturbance are obtained by solving unsteady linearized Euler equations. The unsteady linearized equations are obtained by linearizing the unsteady nonlinear equations about the steady flow. The predicted unsteady aerodynamic forces include the effect of steady aerodynamic loading due to airfoil shape, thickness and angle of attack. The aeroelastic equations are solved in the frequency domain by coupling the un- steady aerodynamic forces to the aeroelastic solver MISER. The present unsteady aerodynamic solver showed good correlation with published results for both flutter and forced response predictions. Further improvements are required to use the unsteady aerodynamic solver in a design cycle.
Systems of fuzzy equations in structural mechanics
NASA Astrophysics Data System (ADS)
Skalna, Iwona; Rama Rao, M. V.; Pownuk, Andrzej
2008-08-01
Systems of linear and nonlinear equations with fuzzy parameters are relevant to many practical problems arising in structure mechanics, electrical engineering, finance, economics and physics. In this paper three methods for solving such equations are discussed: method for outer interval solution of systems of linear equations depending linearly on interval parameters, fuzzy finite element method proposed by Rama Rao and sensitivity analysis method. The performance and advantages of presented methods are described with illustrative examples. Extended version of the present paper can be downloaded from the web page of the UTEP [I. Skalna, M.V. Rama Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series,
Satellite Formation Control Using Atmospheric Drag
2007-03-01
of the formation. The linearized Clohessy - Wiltshire equations of motion are used to describe the motion of the two-satellite formation about an empty...control methods were applied to both the linear and nonlinear forms of the Clohessy - Wiltshire equations, and the performance of each control method was...r0δθ̈ = −2nδṙ + fθ (2.16) δz̈ = −n2δz + fz (2.17) These three equations are commonly known as Hill’s equations or the Clohessy - Wiltshire (CW
ERIC Educational Resources Information Center
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…
Higher symmetries and exact solutions of linear and nonlinear Schr{umlt o}dinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fushchych, W.I.; Nikitin, A.G.
1997-11-01
A new approach for the analysis of partial differential equations is developed which is characterized by a simultaneous use of higher and conditional symmetries. Higher symmetries of the Schr{umlt o}dinger equation with an arbitrary potential are investigated. Nonlinear determining equations for potentials are solved using reductions to Weierstrass, Painlev{acute e}, and Riccati forms. Algebraic properties of higher order symmetry operators are analyzed. Combinations of higher and conditional symmetries are used to generate families of exact solutions of linear and nonlinear Schr{umlt o}dinger equations. {copyright} {ital 1997 American Institute of Physics.}
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
Comparison of kinetic model for biogas production from corn cob
NASA Astrophysics Data System (ADS)
Shitophyta, L. M.; Maryudi
2018-04-01
Energy demand increases every day, while the energy source especially fossil energy depletes increasingly. One of the solutions to overcome the energy depletion is to provide renewable energies such as biogas. Biogas can be generated by corn cob and food waste. In this study, biogas production was carried out by solid-state anaerobic digestion. The steps of biogas production were the preparation of feedstock, the solid-state anaerobic digestion, and the measurement of biogas volume. This study was conducted on TS content of 20%, 22%, and 24%. The aim of this research was to compare kinetic models of biogas production from corn cob and food waste as a co-digestion using the linear, exponential equation, and first-kinetic models. The result showed that the exponential equation had a better correlation than the linear equation on the ascending graph of biogas production. On the contrary, the linear equation had a better correlation than the exponential equation on the descending graph of biogas production. The correlation values on the first-kinetic model had the smallest value compared to the linear and exponential models.
Calculation of biochemical net reactions and pathways by using matrix operations.
Alberty, R A
1996-01-01
Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633
Krylov subspace methods - Theory, algorithms, and applications
NASA Technical Reports Server (NTRS)
Sad, Youcef
1990-01-01
Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.
HESS Opinions: Linking Darcy's equation to the linear reservoir
NASA Astrophysics Data System (ADS)
Savenije, Hubert H. G.
2018-03-01
In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance
, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.
Classifying bilinear differential equations by linear superposition principle
NASA Astrophysics Data System (ADS)
Zhang, Lijun; Khalique, Chaudry Masood; Ma, Wen-Xiu
2016-09-01
In this paper, we investigate the linear superposition principle of exponential traveling waves to construct a sub-class of N-wave solutions of Hirota bilinear equations. A necessary and sufficient condition for Hirota bilinear equations possessing this specific sub-class of N-wave solutions is presented. We apply this result to find N-wave solutions to the (2+1)-dimensional KP equation, a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation, a (3+1)-dimensional generalized BKP equation and the (2+1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilinear equations possessing N-wave solutions, is considered and a refined 3-step algorithm is proposed. As examples, we construct two very general kinds of Hirota bilinear equations of order 4 possessing N-wave solutions among which one satisfies dispersion relation and another does not satisfy dispersion relation.
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
The classical method of equivalent linearization is extended to a particular class of nonlinear difference equations. It is shown that the method can be used to obtain an approximation of the periodic solutions of these equations. In particular, the parameters of the limit cycle and the limit points can be determined. Three examples illustrating the method are presented.
Diffusion phenomenon for linear dissipative wave equations in an exterior domain
NASA Astrophysics Data System (ADS)
Ikehata, Ryo
Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.
Nonlinear Waves and Inverse Scattering
1989-01-01
transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional
Non-Linear Acoustic Concealed Weapons Detector
2006-05-01
signature analysis 8 the interactions of the beams with concealed objects. The Khokhlov- Zabolotskaya-Kuznetsov ( KZK ) equation is the most widely used...Hamilton developed a finite difference method based on the KZK equation to model pulsed acoustic emissions from axial symmetric sources. Using a...College of William & Mary, we have developed a simulation code using the KZK equation to model non-linear acoustic beams and visualize beam patterns
Fu, Wei; Nijhoff, Frank W
2017-07-01
A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.
LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models
NASA Astrophysics Data System (ADS)
Gueuvoghlanian, E. P.
2001-08-01
A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.
Permanent-magnet linear alternators. I - Fundamental equations. II - Design guidelines
NASA Astrophysics Data System (ADS)
Boldea, I.; Nasar, S. A.
1987-01-01
The general equations of permanent-magnet heteropolar three-phase and single-phase linear alternators, powered by free-piston Stirling engines, are presented, with application to space power stations and domestic applications including solar power plants. The equations are applied to no-load and short-circuit conditions, illustrating the end-effect caused by the speed-reversal process. In the second part, basic design guidelines for a three-phase tubular linear alternator are given, and the procedure is demonstrated with the numerical example of the design of a 25-kVA, 14.4-m/s, 120/220-V, 60-Hz alternator.
Second-order discrete Kalman filtering equations for control-structure interaction simulations
NASA Technical Reports Server (NTRS)
Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.
1991-01-01
A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.
An efficient parallel algorithm for the solution of a tridiagonal linear system of equations
NASA Technical Reports Server (NTRS)
Stone, H. S.
1971-01-01
Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.
Variational formulation for dissipative continua and an incremental J-integral
NASA Astrophysics Data System (ADS)
Rahaman, Md. Masiur; Dhas, Bensingh; Roy, D.; Reddy, J. N.
2018-01-01
Our aim is to rationally formulate a proper variational principle for dissipative (viscoplastic) solids in the presence of inertia forces. As a first step, a consistent linearization of the governing nonlinear partial differential equations (PDEs) is carried out. An additional set of complementary (adjoint) equations is then formed to recover an underlying variational structure for the augmented system of linearized balance laws. This makes it possible to introduce an incremental Lagrangian such that the linearized PDEs, including the complementary equations, become the Euler-Lagrange equations. Continuous groups of symmetries of the linearized PDEs are computed and an analysis is undertaken to identify the variational groups of symmetries of the linearized dissipative system. Application of Noether's theorem leads to the conservation laws (conserved currents) of motion corresponding to the variational symmetries. As a specific outcome, we exploit translational symmetries of the functional in the material space and recover, via Noether's theorem, an incremental J-integral for viscoplastic solids in the presence of inertia forces. Numerical demonstrations are provided through a two-dimensional plane strain numerical simulation of a compact tension specimen of annealed mild steel under dynamic loading.
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
Polynomial compensation, inversion, and approximation of discrete time linear systems
NASA Technical Reports Server (NTRS)
Baram, Yoram
1987-01-01
The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.
A linearized Euler analysis of unsteady flows in turbomachinery
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Crawley, Edward F.
1987-01-01
A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).
Dilations and the Equation of a Line
ERIC Educational Resources Information Center
Yopp, David A.
2016-01-01
Students engage in proportional reasoning when they use covariance and multiple comparisons. Without rich connections to proportional reasoning, students may develop inadequate understandings of linear relationships and the equations that model them. Teachers can improve students' understanding of linear relationships by focusing on realistic…
On Polynomial Solutions of Linear Differential Equations with Polynomial Coefficients
ERIC Educational Resources Information Center
Si, Do Tan
1977-01-01
Demonstrates a method for solving linear differential equations with polynomial coefficients based on the fact that the operators z and D + d/dz are known to be Hermitian conjugates with respect to the Bargman and Louck-Galbraith scalar products. (MLH)
Development and validation of a general purpose linearization program for rigid aircraft models
NASA Technical Reports Server (NTRS)
Duke, E. L.; Antoniewicz, R. F.
1985-01-01
A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.
Waves and instabilities in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.
Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer
NASA Astrophysics Data System (ADS)
Pikichyan, H. V.
2017-07-01
In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.
2008-01-01
exceeds the local water depth. The approximation eliminates the vertical dimension of the elliptic equation that is normally required for the fully non...used for vertical resolution. The shallow water equations (SWE) are a set of non-linear hyperbolic equations. As the equations are derived under...linear standing wave with a wavelength of 10 m in a square 10 m by 10 m basin. The still water depth is 0.5 m. In order to compare with the analytical
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
NASA Astrophysics Data System (ADS)
Whiteley, J. P.
2017-10-01
Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.
NASA Technical Reports Server (NTRS)
Bland, S. R.
1982-01-01
Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.
NASA Astrophysics Data System (ADS)
Ji, Songsong; Yang, Yibo; Pang, Gang; Antoine, Xavier
2018-01-01
The aim of this paper is to design some accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations in rectangular domains. The Laplace transform in time and discrete Fourier transform in space are applied to get Green's functions of the semi-discretized equations in unbounded domains with single-source. An algorithm is given to compute these Green's functions accurately through some recurrence relations. Furthermore, the finite-difference method is used to discretize the reduced problem with accurate boundary conditions. Numerical simulations are presented to illustrate the accuracy of our method in the case of the linear Schrödinger and heat equations. It is shown that the reflection at the corners is correctly eliminated.
MagIC: Fluid dynamics in a spherical shell simulator
NASA Astrophysics Data System (ADS)
Wicht, J.; Gastine, T.; Barik, A.; Putigny, B.; Yadav, R.; Duarte, L.; Dintrans, B.
2017-09-01
MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.
A computationally efficient scheme for the non-linear diffusion equation
NASA Astrophysics Data System (ADS)
Termonia, P.; Van de Vyver, H.
2009-04-01
This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank-Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.
On the solubility of certain classes of non-linear integral equations in p-adic string theory
NASA Astrophysics Data System (ADS)
Khachatryan, Kh. A.
2018-04-01
We study classes of non-linear integral equations that have immediate application to p-adic mathematical physics and to cosmology. We prove existence and uniqueness theorems for non-trivial solutions in the space of bounded functions.
Generating Linear Equations Based on Quantitative Reasoning
ERIC Educational Resources Information Center
Lee, Mi Yeon
2017-01-01
The Common Core's Standards for Mathematical Practice encourage teachers to develop their students' ability to reason abstractly and quantitatively by helping students make sense of quantities and their relationships within problem situations. The seventh-grade content standards include objectives pertaining to developing linear equations in…
Scott, M
2012-08-01
The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic.
NASA Astrophysics Data System (ADS)
Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl
2007-07-01
This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
quantum linear systems subject to non-classical quantum fields. The major outcomes of this project are (i) derivation of quantum filtering equations for...derivation of quantum filtering equations for systems non-classical input states including single photon states, (ii) determination of how linear...history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control
Instability of isolated planar shock waves
2007-06-07
Note that multi-mode perturbations can be treated by the inclusion of additional terms in Eq. (4), but owing to the linear independence of the... Volterra equation Figure 4 shows five examples of the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by...showing the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by numerically solving the Volterra equation in
On the Duffin-Kemmer-Petiau equation with linear potential in the presence of a minimal length
NASA Astrophysics Data System (ADS)
Chargui, Yassine
2018-04-01
We point out an erroneous handling in the literature regarding solutions of the (1 + 1)-dimensional Duffin-Kemmer-Petiau equation with linear potentials in the context of quantum mechanics with minimal length. Furthermore, using Brau's approach, we present a perturbative treatment of the effect of the minimal length on bound-state solutions when a Lorentz-scalar linear potential is applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnich, Glenn; Troessaert, Cedric
2009-04-15
In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.
Recursive linearization of multibody dynamics equations of motion
NASA Technical Reports Server (NTRS)
Lin, Tsung-Chieh; Yae, K. Harold
1989-01-01
The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.
Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla
2010-02-01
Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
NASA Astrophysics Data System (ADS)
Perelomova, Anna
2006-08-01
The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.
On homogeneous second order linear general quantum difference equations.
Faried, Nashat; Shehata, Enas M; El Zafarani, Rasha M
2017-01-01
In this paper, we prove the existence and uniqueness of solutions of the β -Cauchy problem of second order β -difference equations [Formula: see text] [Formula: see text], in a neighborhood of the unique fixed point [Formula: see text] of the strictly increasing continuous function β , defined on an interval [Formula: see text]. These equations are based on the general quantum difference operator [Formula: see text], which is defined by [Formula: see text], [Formula: see text]. We also construct a fundamental set of solutions for the second order linear homogeneous β -difference equations when the coefficients are constants and study the different cases of the roots of their characteristic equations. Finally, we drive the Euler-Cauchy β -difference equation.
NASA Astrophysics Data System (ADS)
Filimonov, M. Yu.
2017-12-01
The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.
On conforming mixed finite element methods for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.
1982-01-01
The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.
NASA Technical Reports Server (NTRS)
Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.
1973-01-01
High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.
A high performance linear equation solver on the VPP500 parallel supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi
1994-12-31
This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.
2013-01-01
application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal
When is quasi-linear theory exact. [particle acceleration
NASA Technical Reports Server (NTRS)
Jones, F. C.; Birmingham, T. J.
1975-01-01
We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.
Method of Conjugate Radii for Solving Linear and Nonlinear Systems
NASA Technical Reports Server (NTRS)
Nachtsheim, Philip R.
1999-01-01
This paper describes a method to solve a system of N linear equations in N steps. A quadratic form is developed involving the sum of the squares of the residuals of the equations. Equating the quadratic form to a constant yields a surface which is an ellipsoid. For different constants, a family of similar ellipsoids can be generated. Starting at an arbitrary point an orthogonal basis is constructed and the center of the family of similar ellipsoids is found in this basis by a sequence of projections. The coordinates of the center in this basis are the solution of linear system of equations. A quadratic form in N variables requires N projections. That is, the current method is an exact method. It is shown that the sequence of projections is equivalent to a special case of the Gram-Schmidt orthogonalization process. The current method enjoys an advantage not shared by the classic Method of Conjugate Gradients. The current method can be extended to nonlinear systems without modification. For nonlinear equations the Method of Conjugate Gradients has to be augmented with a line-search procedure. Results for linear and nonlinear problems are presented.
Abel's Theorem Simplifies Reduction of Order
ERIC Educational Resources Information Center
Green, William R.
2011-01-01
We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.
Nonlinear magnetoacoustic wave propagation with chemical reactions
NASA Astrophysics Data System (ADS)
Margulies, Timothy Scott
2002-11-01
The magnetoacoustic problem with an application to sound wave propagation through electrically conducting fluids such as the ocean in the Earth's magnetic field, liquid metals, or plasmas has been addressed taking into account several simultaneous chemical reactions. Using continuum balance equations for the total mass, linear momentum, energy; as well as Maxwell's electrodynamic equations, a nonlinear beam equation has been developed to generalize the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a fluid with linear viscosity but nonlinear and diffraction effects. Thermodynamic parameters are used and not tailored to only an adiabatic fluid case. The chemical kinetic equations build on a relaxing media approach presented, for example, by K. Naugolnukh and L. Ostrovsky [Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge, 1998)] for a linearized single reaction and thermodynamic pressure equation of state. Approximations for large and small relaxation times and for magnetohydrodynamic parameters [Korsunskii, Sov. Phys. Acoust. 36 (1990)] are examined. Additionally, Cattaneo's equation for heat conduction and its generalization for a memory process rather than a Fourier's law are taken into account. It was introduced for the heat flux depends on the temperature gradient at an earlier time to generate heat pulses of finite speed.
Optimal Control for Stochastic Delay Evolution Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less
NASA Technical Reports Server (NTRS)
Barrett, C. A.
1985-01-01
Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.
Effect of Coannular Flow on Linearized Euler Equation Predictions of Jet Noise
NASA Technical Reports Server (NTRS)
Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.
1997-01-01
An improved version of a previously validated linearized Euler equation solver is used to compute the noise generated by coannular supersonic jets. Results for a single supersonic jet are compared to the results from both a normal velocity profile and an inverted velocity profile supersonic jet.
Teaching Linear Equations: Case Studies from Finland, Flanders and Hungary
ERIC Educational Resources Information Center
Andrews, Paul; Sayers, Judy
2012-01-01
In this paper we compare how three teachers, one from each of Finland, Flanders and Hungary, introduce linear equations to grade 8 students. Five successive lessons were videotaped and analysed qualitatively to determine how teachers, each of whom was defined against local criteria as effective, addressed various literature-derived…
Discovering Linear Equations in Explicit Tables
ERIC Educational Resources Information Center
Burton, Lauren
2017-01-01
When teaching algebra concepts to middle school students, the author often hears questions that echo her own past confusion as a young student learning to write linear equations using data tables that show only input and output values. Students, expected to synthesize the relationship between these values in symbolic representation, grow…
Observed Score Linear Equating with Covariates
ERIC Educational Resources Information Center
Branberg, Kenny; Wiberg, Marie
2011-01-01
This paper examined observed score linear equating in two different data collection designs, the equivalent groups design and the nonequivalent groups design, when information from covariates (i.e., background variables correlated with the test scores) was included. The main purpose of the study was to examine the effect (i.e., bias, variance, and…
From Arithmetic Sequences to Linear Equations
ERIC Educational Resources Information Center
Matsuura, Ryota; Harless, Patrick
2012-01-01
The first part of the article focuses on deriving the essential properties of arithmetic sequences by appealing to students' sense making and reasoning. The second part describes how to guide students to translate their knowledge of arithmetic sequences into an understanding of linear equations. Ryota Matsuura originally wrote these lessons for…
NASA Astrophysics Data System (ADS)
Huang, Xingguo; Sun, Jianguo; Greenhalgh, Stewart
2018-04-01
We present methods for obtaining numerical and analytic solutions of the complex eikonal equation in inhomogeneous acoustic VTI media (transversely isotropic media with a vertical symmetry axis). The key and novel point of the method for obtaining numerical solutions is to transform the problem of solving the highly nonlinear acoustic VTI eikonal equation into one of solving the relatively simple eikonal equation for the background (isotropic) medium and a system of linear partial differential equations. Specifically, to obtain the real and imaginary parts of the complex traveltime in inhomogeneous acoustic VTI media, we generalize a perturbation theory, which was developed earlier for solving the conventional real eikonal equation in inhomogeneous anisotropic media, to the complex eikonal equation in such media. After the perturbation analysis, we obtain two types of equations. One is the complex eikonal equation for the background medium and the other is a system of linearized partial differential equations for the coefficients of the corresponding complex traveltime formulas. To solve the complex eikonal equation for the background medium, we employ an optimization scheme that we developed for solving the complex eikonal equation in isotropic media. Then, to solve the system of linearized partial differential equations for the coefficients of the complex traveltime formulas, we use the finite difference method based on the fast marching strategy. Furthermore, by applying the complex source point method and the paraxial approximation, we develop the analytic solutions of the complex eikonal equation in acoustic VTI media, both for the isotropic and elliptical anisotropic background medium. Our numerical results demonstrate the effectiveness of our derivations and illustrate the influence of the beam widths and the anisotropic parameters on the complex traveltimes.
NASA Astrophysics Data System (ADS)
Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.
2017-11-01
When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.
Numerical Analysis of a Class of THM Coupled Model for Porous Materials
NASA Astrophysics Data System (ADS)
Liu, Tangwei; Zhou, Jingying; Lu, Hongzhi
2018-01-01
We consider the coupled models of the Thermo-hydro-mechanical (THM) problem for porous materials which arises in many engineering applications. Firstly, mathematical models of the THM coupled problem for porous materials were discussed. Secondly, for different cases, some numerical difference schemes of coupled model were constructed, respectively. Finally, aassuming that the original water vapour effect is neglectable and that the volume fraction of liquid phase and the solid phase are constants, the nonlinear equations can be reduced to linear equations. The discrete equations corresponding to the linear equations were solved by the Arnodli method.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
Gyro-Landau fluid models for toroidal geometry
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Dominguez, R. R.; Hammett, G. W.
1992-10-01
Gyro-Landau fluid model equations provide first-order time advancement for a limited number of moments of the gyrokinetic equation, while approximately preserving the effects of the gyroradius averaging and Landau damping. This paper extends the work of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for electrostatic motion parallel to the magnetic field and E×B motion to include the gyroaveraging linearly and the curvature drift motion. The equations are tested by comparing the ion-temperature-gradient mode linear growth rates for the model equations with those of the exact gyrokinetic theory over a full range of parameters.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
The application of MINIQUASI to thermal program boundary and initial value problems
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility of applying the solution techniques of Miniquasi to the set of equations which govern a thermoregulatory model is investigated. For solving nonlinear equations and/or boundary conditions, a Taylor Series expansion is required for linearization of both equations and boundary conditions. The solutions are iterative and in each iteration, a problem like the linear case is solved. It is shown that Miniquasi cannot be applied to the thermoregulatory model as originally planned.
Kumar, K Vasanth; Sivanesan, S
2005-08-31
Comparison analysis of linear least square method and non-linear method for estimating the isotherm parameters was made using the experimental equilibrium data of safranin onto activated carbon at two different solution temperatures 305 and 313 K. Equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm equations. All the three isotherm equations showed a better fit to the experimental equilibrium data. The results showed that non-linear method could be a better way to obtain the isotherm parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crenshaw, Michael E., E-mail: michael.e.crenshaw4.civ@mail.mil
2014-04-15
In a continuum setting, the energy–momentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energy–momentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derivemore » electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energy–momentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the Abraham–Minkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energy–momentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.« less
New Galerkin operational matrices for solving Lane-Emden type equations
NASA Astrophysics Data System (ADS)
Abd-Elhameed, W. M.; Doha, E. H.; Saad, A. S.; Bassuony, M. A.
2016-04-01
Lane-Emden type equations model many phenomena in mathematical physics and astrophysics, such as thermal explosions. This paper is concerned with introducing third and fourth kind Chebyshev-Galerkin operational matrices in order to solve such problems. The principal idea behind the suggested algorithms is based on converting the linear or nonlinear Lane-Emden problem, through the application of suitable spectral methods, into a system of linear or nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of the proposed algorithm in the linear case is that the resulting linear systems are specially structured, and this of course reduces the computational effort required to solve such systems. As an application, we consider the solar model polytrope with n=3 to show that the suggested solutions in this paper are in good agreement with the numerical results.
A conformal approach for the analysis of the non-linear stability of radiation cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk
2013-01-15
The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.
Systems of Inhomogeneous Linear Equations
NASA Astrophysics Data System (ADS)
Scherer, Philipp O. J.
Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.
A Zonal Approach for Prediction of Jet Noise
NASA Technical Reports Server (NTRS)
Shih, S. H.; Hixon, D. R.; Mankbadi, Reda R.
1995-01-01
A zonal approach for direct computation of sound generation and propagation from a supersonic jet is investigated. The present work splits the computational domain into a nonlinear, acoustic-source regime and a linear acoustic wave propagation regime. In the nonlinear regime, the unsteady flow is governed by the large-scale equations, which are the filtered compressible Navier-Stokes equations. In the linear acoustic regime, the sound wave propagation is described by the linearized Euler equations. Computational results are presented for a supersonic jet at M = 2. 1. It is demonstrated that no spurious modes are generated in the matching region and the computational expense is reduced substantially as opposed to fully large-scale simulation.
Simple linear and multivariate regression models.
Rodríguez del Águila, M M; Benítez-Parejo, N
2011-01-01
In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.
Simple Derivation of the Lindblad Equation
ERIC Educational Resources Information Center
Pearle, Philip
2012-01-01
The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is…
Northeastern forest survey revised cubic-foot volume equations
Charles T. Scott
1981-01-01
Cubic-foot volume equations are presented for the 17 species groups used in the forest survey of the 14 northeastern states. The previous cubic- foot volume equations were simple linear in form; the revised cubic-foot volume equations are nonlinear.
NASA Astrophysics Data System (ADS)
Yadav, Manish; Singh, Nitin Kumar
2017-12-01
A comparison of the linear and non-linear regression method in selecting the optimum isotherm among three most commonly used adsorption isotherms (Langmuir, Freundlich, and Redlich-Peterson) was made to the experimental data of fluoride (F) sorption onto Bio-F at a solution temperature of 30 ± 1 °C. The coefficient of correlation (r2) was used to select the best theoretical isotherm among the investigated ones. A total of four Langmuir linear equations were discussed and out of which linear form of most popular Langmuir-1 and Langmuir-2 showed the higher coefficient of determination (0.976 and 0.989) as compared to other Langmuir linear equations. Freundlich and Redlich-Peterson isotherms showed a better fit to the experimental data in linear least-square method, while in non-linear method Redlich-Peterson isotherm equations showed the best fit to the tested data set. The present study showed that the non-linear method could be a better way to obtain the isotherm parameters and represent the most suitable isotherm. Redlich-Peterson isotherm was found to be the best representative (r2 = 0.999) for this sorption system. It is also observed that the values of β are not close to unity, which means the isotherms are approaching the Freundlich but not the Langmuir isotherm.
Iterative algorithms for large sparse linear systems on parallel computers
NASA Technical Reports Server (NTRS)
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
Shape in Picture: Mathematical Description of Shape in Grey-Level Images
1992-09-11
representation is scale-space, derived frrr- the linear isotropic diffusion equation; recently other types of equations have been considered. Multiscale...recognition of dimensions in the general case of an arbitrary denominator is similar to that just explained. 3 Linear Inequalities in the Two-Dimensional...solid region containing all pixels of the space, whose coordinates satisfy a linear inequality. A Um C scspt fr Digital Geometry 41 s a a v--’ -0 7 O
Small-Caliber Projectile Target Impact Angle Determined From Close Proximity Radiographs
2006-10-01
discrete motion data that can be numerically modeled using linear aerodynamic theory or 6-degrees-of- freedom equations of motion. The values of Fφ...Prediction Excel® Spreadsheet shown in figure 9. The Gamma at Impact Spreadsheet uses the linear aerodynamics model , equations 5 and 6, to calculate αT...trajectory angle error via consideration of the RMS fit errors of the actual firings. However, the linear aerodynamics model does not include this effect
Aircraft Airframe Cost Estimation Using a Random Coefficients Model
1979-12-01
approach will also be used here. 2 Model Formulation Several different types of equations could be used for the basic form of the CER, such as linear ...5) Marcotte developed several CER’s for fighter aircraft airframes using the log- linear model . A plot of the residuals from the CER for recurring...of the natural logarithm. Ordinary Least Squares The ordinary least squares procedure starts with the equation for the general linear model . The
Linear network representation of multistate models of transport.
Sandblom, J; Ring, A; Eisenman, G
1982-01-01
By introducing external driving forces in rate-theory models of transport we show how the Eyring rate equations can be transformed into Ohm's law with potentials that obey Kirchhoff's second law. From such a formalism the state diagram of a multioccupancy multicomponent system can be directly converted into linear network with resistors connecting nodal (branch) points and with capacitances connecting each nodal point with a reference point. The external forces appear as emf or current generators in the network. This theory allows the algebraic methods of linear network theory to be used in solving the flux equations for multistate models and is particularly useful for making proper simplifying approximation in models of complex membrane structure. Some general properties of linear network representation are also deduced. It is shown, for instance, that Maxwell's reciprocity relationships of linear networks lead directly to Onsager's relationships in the near equilibrium region. Finally, as an example of the procedure, the equivalent circuit method is used to solve the equations for a few transport models. PMID:7093425
Runge-Kutta Methods for Linear Ordinary Differential Equations
NASA Technical Reports Server (NTRS)
Zingg, David W.; Chisholm, Todd T.
1997-01-01
Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.
A Brief Historical Introduction to Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
The Multifaceted Variable Approach: Selection of Method in Solving Simple Linear Equations
ERIC Educational Resources Information Center
Tahir, Salma; Cavanagh, Michael
2010-01-01
This paper presents a comparison of the solution strategies used by two groups of Year 8 students as they solved linear equations. The experimental group studied algebra following a multifaceted variable approach, while the comparison group used a traditional approach. Students in the experimental group employed different solution strategies,…
Lines of Eigenvectors and Solutions to Systems of Linear Differential Equations
ERIC Educational Resources Information Center
Rasmussen, Chris; Keynes, Michael
2003-01-01
The purpose of this paper is to describe an instructional sequence where students invent a method for locating lines of eigenvectors and corresponding solutions to systems of two first order linear ordinary differential equations with constant coefficients. The significance of this paper is two-fold. First, it represents an innovative alternative…
NASA Technical Reports Server (NTRS)
Packard, A. K.; Sastry, S. S.
1986-01-01
A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.
Three Interpretations of the Matrix Equation Ax = b
ERIC Educational Resources Information Center
Larson, Christine; Zandieh, Michelle
2013-01-01
Many of the central ideas in an introductory undergraduate linear algebra course are closely tied to a set of interpretations of the matrix equation Ax = b (A is a matrix, x and b are vectors): linear combination interpretations, systems interpretations, and transformation interpretations. We consider graphic and symbolic representations for each,…
Secondary Pre-Service Teachers' Algebraic Reasoning about Linear Equation Solving
ERIC Educational Resources Information Center
Alvey, Christina; Hudson, Rick A.; Newton, Jill; Males, Lorraine M.
2016-01-01
This study analyzes the responses of 12 secondary pre-service teachers on two tasks focused on reasoning when solving linear equations. By documenting the choices PSTs made while engaging in these tasks, we gain insight into how new teachers work mathematically, reason algebraically, communicate their thinking, and make pedagogical decisions. We…
Synthesizing Strategies Creatively: Solving Linear Equations
ERIC Educational Resources Information Center
Ponce, Gregorio A.; Tuba, Imre
2015-01-01
New strategies can ignite teachers' imagination to create new lessons or adapt lessons created by others. In this article, the authors present the experience of an algebra teacher and his students solving linear and literal equations and explain how the use of ideas found in past NCTM journals helped bring this lesson to life. The…
A new Newton-like method for solving nonlinear equations.
Saheya, B; Chen, Guo-Qing; Sui, Yun-Kang; Wu, Cai-Ying
2016-01-01
This paper presents an iterative scheme for solving nonline ar equations. We establish a new rational approximation model with linear numerator and denominator which has generalizes the local linear model. We then employ the new approximation for nonlinear equations and propose an improved Newton's method to solve it. The new method revises the Jacobian matrix by a rank one matrix each iteration and obtains the quadratic convergence property. The numerical performance and comparison show that the proposed method is efficient.
NASA Astrophysics Data System (ADS)
Stone, Michael; Goldbart, Paul
2009-07-01
Preface; 1. Calculus of variations; 2. Function spaces; 3. Linear ordinary differential equations; 4. Linear differential operators; 5. Green functions; 6. Partial differential equations; 7. The mathematics of real waves; 8. Special functions; 9. Integral equations; 10. Vectors and tensors; 11. Differential calculus on manifolds; 12. Integration on manifolds; 13. An introduction to differential topology; 14. Group and group representations; 15. Lie groups; 16. The geometry of fibre bundles; 17. Complex analysis I; 18. Applications of complex variables; 19. Special functions and complex variables; Appendixes; Reference; Index.
NASA Technical Reports Server (NTRS)
Korivi, V. M.; Taylor, A. C., III; Newman, P. A.; Hou, G. J.-W.; Jones, H. E.
1992-01-01
An incremental strategy is presented for iteratively solving very large systems of linear equations, which are associated with aerodynamic sensitivity derivatives for advanced CFD codes. It is shown that the left-hand side matrix operator and the well-known factorization algorithm used to solve the nonlinear flow equations can also be used to efficiently solve the linear sensitivity equations. Two airfoil problems are considered as an example: subsonic low Reynolds number laminar flow and transonic high Reynolds number turbulent flow.
Computer programs for the solution of systems of linear algebraic equations
NASA Technical Reports Server (NTRS)
Sequi, W. T.
1973-01-01
FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.
Time domain convergence properties of Lyapunov stable penalty methods
NASA Technical Reports Server (NTRS)
Kurdila, A. J.; Sunkel, John
1991-01-01
Linear hyperbolic partial differential equations are analyzed using standard techniques to show that a sequence of solutions generated by the Liapunov stable penalty equations approaches the solution of the differential-algebraic equations governing the dynamics of multibody problems arising in linear vibrations. The analysis does not require that the system be conservative and does not impose any specific integration scheme. Variational statements are derived which bound the error in approximation by the norm of the constraint violation obtained in the approximate solutions.
Local projection stabilization for linearized Brinkman-Forchheimer-Darcy equation
NASA Astrophysics Data System (ADS)
Skrzypacz, Piotr
2017-09-01
The Local Projection Stabilization (LPS) is presented for the linearized Brinkman-Forchheimer-Darcy equation with high Reynolds numbers. The considered equation can be used to model porous medium flows in chemical reactors of packed bed type. The detailed finite element analysis is presented for the case of nonconstant porosity. The enriched variant of LPS is based on the equal order interpolation for the velocity and pressure. The optimal error bounds for the velocity and pressure errors are justified numerically.
NASA Technical Reports Server (NTRS)
Rosenbaum, J. S.
1976-01-01
If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.
From Feynman rules to conserved quantum numbers, I
NASA Astrophysics Data System (ADS)
Nogueira, P.
2017-05-01
In the context of Quantum Field Theory (QFT) there is often the need to find sets of graph-like diagrams (the so-called Feynman diagrams) for a given physical model. If negative, the answer to the related problem 'Are there any diagrams with this set of external fields?' may settle certain physical questions at once. Here the latter problem is formulated in terms of a system of linear diophantine equations derived from the Lagrangian density, from which necessary conditions for the existence of the required diagrams may be obtained. Those conditions are equalities that look like either linear diophantine equations or linear modular (i.e. congruence) equations, and may be found by means of fairly simple algorithms that involve integer computations. The diophantine equations so obtained represent (particle) number conservation rules, and are related to the conserved (additive) quantum numbers that may be assigned to the fields of the model.
NASA Technical Reports Server (NTRS)
Stamnes, K.; Lie-Svendsen, O.; Rees, M. H.
1991-01-01
The linear Boltzmann equation can be cast in a form mathematically identical to the radiation-transport equation. A multigroup procedure is used to reduce the energy (or velocity) dependence of the transport equation to a series of one-speed problems. Each of these one-speed problems is equivalent to the monochromatic radiative-transfer problem, and existing software is used to solve this problem in slab geometry. The numerical code conserves particles in elastic collisions. Generic examples are provided to illustrate the applicability of this approach. Although this formalism can, in principle, be applied to a variety of test particle or linearized gas dynamics problems, it is particularly well-suited to study the thermalization of suprathermal particles interacting with a background medium when the thermal motion of the background cannot be ignored. Extensions of the formalism to include external forces and spherical geometry are also feasible.
SC-GRAPPA: Self-constraint noniterative GRAPPA reconstruction with closed-form solution.
Ding, Yu; Xue, Hui; Ahmad, Rizwan; Ting, Samuel T; Simonetti, Orlando P
2012-12-01
Parallel MRI (pMRI) reconstruction techniques are commonly used to reduce scan time by undersampling the k-space data. GRAPPA, a k-space based pMRI technique, is widely used clinically because of its robustness. In GRAPPA, the missing k-space data are estimated by solving a set of linear equations; however, this set of equations does not take advantage of the correlations within the missing k-space data. All k-space data in a neighborhood acquired from a phased-array coil are correlated. The correlation can be estimated easily as a self-constraint condition, and formulated as an extra set of linear equations to improve the performance of GRAPPA. The authors propose a modified k-space based pMRI technique called self-constraint GRAPPA (SC-GRAPPA) which combines the linear equations of GRAPPA with these extra equations to solve for the missing k-space data. Since SC-GRAPPA utilizes a least-squares solution of the linear equations, it has a closed-form solution that does not require an iterative solver. The SC-GRAPPA equation was derived by incorporating GRAPPA as a prior estimate. SC-GRAPPA was tested in a uniform phantom and two normal volunteers. MR real-time cardiac cine images with acceleration rate 5 and 6 were reconstructed using GRAPPA and SC-GRAPPA. SC-GRAPPA showed a significantly lower artifact level, and a greater than 10% overall signal-to-noise ratio (SNR) gain over GRAPPA, with more significant SNR gain observed in low-SNR regions of the images. SC-GRAPPA offers improved pMRI reconstruction, and is expected to benefit clinical imaging applications in the future.
ML 3.0 smoothed aggregation user's guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen
2004-05-01
ML is a multigrid preconditioning package intended to solve linear systems of equations Az = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the AZTEC 2.1 and AZTECOO iterative package [15]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and non-symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less
ML 3.1 smoothed aggregation user's guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen
2004-10-01
ML is a multigrid preconditioning package intended to solve linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the Aztec 2.1 and AztecOO iterative package [16]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and nonsymmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less
Use of the Bethe equation for inner-shell ionization by electron impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc
2016-05-14
We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L{sub 3}-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections andmore » available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232–276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.« less
NASA Astrophysics Data System (ADS)
Spannenberg, Jescica; Atangana, Abdon; Vermeulen, P. D.
2017-09-01
Fractional differentiation has adequate use for investigating real world scenarios related to geological formations associated with elasticity, heterogeneity, viscoelasticity, and the memory effect. Since groundwater systems exist in these geological formations, modelling groundwater recharge as a real world scenario is a challenging task to do because existing recharge estimation methods are governed by linear equations which make use of constant field parameters. This is inadequate because in reality these parameters are a function of both space and time. This study therefore concentrates on modifying the recharge equation governing the EARTH model, by application of the Eton approach. Accordingly, this paper presents a modified equation which is non-linear, and accounts for parameters in a way that it is a function of both space and time. To be more specific, herein, recharge and drainage resistance which are parameters within the equation, became a function of both space and time. Additionally, the study entailed solving the non-linear equation using an iterative method as well as numerical solutions by means of the Crank-Nicolson scheme. The numerical solutions were used alongside the Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu derivatives, so that account was taken for elasticity, heterogeneity, viscoelasticity, and the memory effect. In essence, this paper presents a more adequate model for recharge estimation.
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.
1994-01-01
It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.
Nonlinearization and waves in bounded media: old wine in a new bottle
NASA Astrophysics Data System (ADS)
Mortell, Michael P.; Seymour, Brian R.
2017-02-01
We consider problems such as a standing wave in a closed straight tube, a self-sustained oscillation, damped resonance, evolution of resonance and resonance between concentric spheres. These nonlinear problems, and other similar ones, have been solved by a variety of techniques when it is seen that linear theory fails. The unifying approach given here is to initially set up the appropriate linear difference equation, where the difference is the linear travel time. When the linear travel time is replaced by a corrected nonlinear travel time, the nonlinear difference equation yields the required solution.
Tori and chaos in a simple C1-system
NASA Astrophysics Data System (ADS)
Roessler, O. E.; Kahiert, C.; Ughleke, B.
A piecewise-linear autonomous 3-variable ordinary differential equation is presented which permits analytical modeling of chaotic attractors. A once-differentiable system of equations is defined which consists of two linear half-systems which meet along a threshold plane. The trajectories described by each equation is thereby continuous along the divide, forming a one-parameter family of invariant tori. The addition of a damping term produces a system of equations for various chaotic attractors. Extension of the system by means of a 4-variable generalization yields hypertori and hyperchaos. It is noted that the hierarchy established is amenable to analysis by the use of Poincare half-maps. Applications of the systems of ordinary differential equations to modeling turbulent flows are discussed.
Electron-acoustic Instability Simulated By Modified Zakharov Equations
NASA Astrophysics Data System (ADS)
Jásenský, V.; Fiala, V.; Vána, O.; Trávnícek, P.; Hellinger, P.
We present non-linear equations describing processes in plasma when electron - acoustic waves are excited. These waves are present for instance in the vicinity of Earth's bow shock and in the polar ionosphere. Frequently they are excited by an elec- tron beam in a plasma with two electron populations, a cold and hot one. We derive modified Zakharov equations from kinetic theory for such a case together with numer- ical method for solving of this type of equations. Bispectral analysis is used to show which non-linear wave processes are of importance in course of the instability. Finally, we compare these results with similar simulations using Vlasov approach.
Conservation laws and conserved quantities for (1+1)D linearized Boussinesq equations
NASA Astrophysics Data System (ADS)
Carvalho, Cindy; Harley, Charis
2017-05-01
Conservation laws and physical conserved quantities for the (1+1)D linearized Boussinesq equations at a constant water depth are presented. These equations describe incompressible, inviscid, irrotational fluid flow in the form of a non steady solitary wave. A systematic multiplier approach is used to obtain the conservation laws of the system of third order partial differential equations (PDEs) in dimensional form. Physical conserved quantities are derived by integrating the conservation laws in the direction of wave propagation and imposing decaying boundary conditions in the horizontal direction. One of these is a newly discovered conserved quantity which relates to an energy flux density.
Linear transformation and oscillation criteria for Hamiltonian systems
NASA Astrophysics Data System (ADS)
Zheng, Zhaowen
2007-08-01
Using a linear transformation similar to the Kummer transformation, some new oscillation criteria for linear Hamiltonian systems are established. These results generalize and improve the oscillation criteria due to I.S. Kumari and S. Umanaheswaram [I. Sowjaya Kumari, S. Umanaheswaram, Oscillation criteria for linear matrix Hamiltonian systems, J. Differential Equations 165 (2000) 174-198], Q. Yang et al. [Q. Yang, R. Mathsen, S. Zhu, Oscillation theorems for self-adjoint matrix Hamiltonian systems, J. Differential Equations 190 (2003) 306-329], and S. Chen and Z. Zheng [Shaozhu Chen, Zhaowen Zheng, Oscillation criteria of Yan type for linear Hamiltonian systems, Comput. Math. Appl. 46 (2003) 855-862]. These criteria also unify many of known criteria in literature and simplify the proofs.
Bukhvostov-Lipatov model and quantum-classical duality
NASA Astrophysics Data System (ADS)
Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.
2018-02-01
The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.
Zheng, Xiaoming
2017-12-01
The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.
Equilibrium, kinetics and process design of acid yellow 132 adsorption onto red pine sawdust.
Can, Mustafa
2015-01-01
Linear and non-linear regression procedures have been applied to the Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, and Redlich-Peterson isotherms for adsorption of acid yellow 132 (AY132) dye onto red pine (Pinus resinosa) sawdust. The effects of parameters such as particle size, stirring rate, contact time, dye concentration, adsorption dose, pH, and temperature were investigated, and interaction was characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscope. The non-linear method of the Langmuir isotherm equation was found to be the best fitting model to the equilibrium data. The maximum monolayer adsorption capacity was found as 79.5 mg/g. The calculated thermodynamic results suggested that AY132 adsorption onto red pine sawdust was an exothermic, physisorption, and spontaneous process. Kinetics was analyzed by four different kinetic equations using non-linear regression analysis. The pseudo-second-order equation provides the best fit with experimental data.
An approximation theory for the identification of linear thermoelastic systems
NASA Technical Reports Server (NTRS)
Rosen, I. G.; Su, Chien-Hua Frank
1990-01-01
An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.
Linearly exact parallel closures for slab geometry
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun
2013-08-01
Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).
Stochastic modeling of mode interactions via linear parabolized stability equations
NASA Astrophysics Data System (ADS)
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
NASA Astrophysics Data System (ADS)
Tisdell, Christopher C.
2017-11-01
For over 50 years, the learning of teaching of a priori bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to a priori bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving second-order, linear problems with constant co-efficients, we believe it is not pedagogically optimal. Moreover, the Euclidean method becomes pedagogically unwieldy in the proofs involving higher-order cases. The purpose of this work is to propose a simpler pedagogical approach to establish a priori bounds on solutions by considering a different way of measuring the size of a solution to linear problems, which we refer to as the Uber size. The Uber form enables a simplification of pedagogy from the literature and the ideas are accessible to learners who have an understanding of the Fundamental Theorem of Calculus and the exponential function, both usually seen in a first course in calculus. We believe that this work will be of mathematical and pedagogical interest to those who are learning and teaching in the area of differential equations or in any of the numerous disciplines where linear differential equations are used.
Non-linear power spectra in the synchronous gauge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui
2015-05-01
We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented inmore » the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide.more » The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.« less
Standard Errors of Equating Differences: Prior Developments, Extensions, and Simulations
ERIC Educational Resources Information Center
Moses, Tim; Zhang, Wenmin
2011-01-01
The purpose of this article was to extend the use of standard errors for equated score differences (SEEDs) to traditional equating functions. The SEEDs are described in terms of their original proposal for kernel equating functions and extended so that SEEDs for traditional linear and traditional equipercentile equating functions can be computed.…
Proposed solution methodology for the dynamically coupled nonlinear geared rotor mechanics equations
NASA Technical Reports Server (NTRS)
Mitchell, L. D.; David, J. W.
1983-01-01
The equations which describe the three-dimensional motion of an unbalanced rigid disk in a shaft system are nonlinear and contain dynamic-coupling terms. Traditionally, investigators have used an order analysis to justify ignoring the nonlinear terms in the equations of motion, producing a set of linear equations. This paper will show that, when gears are included in such a rotor system, the nonlinear dynamic-coupling terms are potentially as large as the linear terms. Because of this, one must attempt to solve the nonlinear rotor mechanics equations. A solution methodology is investigated to obtain approximate steady-state solutions to these equations. As an example of the use of the technique, a simpler set of equations is solved and the results compared to numerical simulations. These equations represent the forced, steady-state response of a spring-supported pendulum. These equations were chosen because they contain the type of nonlinear terms found in the dynamically-coupled nonlinear rotor equations. The numerical simulations indicate this method is reasonably accurate even when the nonlinearities are large.
Van Vlaenderen, Ilse; Van Bellinghen, Laure-Anne; Meier, Genevieve; Nautrup, Barbara Poulsen
2013-01-22
Indirect herd effect from vaccination of children offers potential for improving the effectiveness of influenza prevention in the remaining unvaccinated population. Static models used in cost-effectiveness analyses cannot dynamically capture herd effects. The objective of this study was to develop a methodology to allow herd effect associated with vaccinating children against seasonal influenza to be incorporated into static models evaluating the cost-effectiveness of influenza vaccination. Two previously published linear equations for approximation of herd effects in general were compared with the results of a structured literature review undertaken using PubMed searches to identify data on herd effects specific to influenza vaccination. A linear function was fitted to point estimates from the literature using the sum of squared residuals. The literature review identified 21 publications on 20 studies for inclusion. Six studies provided data on a mathematical relationship between effective vaccine coverage in subgroups and reduction of influenza infection in a larger unvaccinated population. These supported a linear relationship when effective vaccine coverage in a subgroup population was between 20% and 80%. Three studies evaluating herd effect at a community level, specifically induced by vaccinating children, provided point estimates for fitting linear equations. The fitted linear equation for herd protection in the target population for vaccination (children) was slightly less conservative than a previously published equation for herd effects in general. The fitted linear equation for herd protection in the non-target population was considerably less conservative than the previously published equation. This method of approximating herd effect requires simple adjustments to the annual baseline risk of influenza in static models: (1) for the age group targeted by the childhood vaccination strategy (i.e. children); and (2) for other age groups not targeted (e.g. adults and/or elderly). Two approximations provide a linear relationship between effective coverage and reduction in the risk of infection. The first is a conservative approximation, recommended as a base-case for cost-effectiveness evaluations. The second, fitted to data extracted from a structured literature review, provides a less conservative estimate of herd effect, recommended for sensitivity analyses.
Frequency analysis via the method of moment functionals
NASA Technical Reports Server (NTRS)
Pearson, A. E.; Pan, J. Q.
1990-01-01
Several variants are presented of a linear-in-parameters least squares formulation for determining the transfer function of a stable linear system at specified frequencies given a finite set of Fourier series coefficients calculated from transient nonstationary input-output data. The basis of the technique is Shinbrot's classical method of moment functionals using complex Fourier based modulating functions to convert a differential equation model on a finite time interval into an algebraic equation which depends linearly on frequency-related parameters.
Regularization of Grad’s 13 -Moment-Equations in Kinetic Gas Theory
2011-01-01
variant of the moment method has been proposed by Eu (1980) and is used, e.g., in Myong (2001). Recently, a maximum- entropy 10-moment system has been used...small amplitude linear waves, the R13 system is linearly stable in time for all modes and wave lengths. The instability of the Burnett system indicates...Boltzmann equation. Related to the problem of global hyperbolicity is the questions of the existence of an entropy law for the R13 system . In the linear
A Maple package for computing Gröbner bases for linear recurrence relations
NASA Astrophysics Data System (ADS)
Gerdt, Vladimir P.; Robertz, Daniel
2006-04-01
A Maple package for computing Gröbner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two possible applications are illustrated by simple examples of the Laplace equation and a one-loop scalar integral of propagator type.
N-soliton interactions: Effects of linear and nonlinear gain and loss
NASA Astrophysics Data System (ADS)
Carretero-González, R.; Gerdjikov, V. S.; Todorov, M. D.
2017-10-01
We analyze the dynamical behavior of the N-soliton train in the adiabatic approximation of the nonlinear Schrödinger equation perturbed simultaneously by linear and nonlinear gain/loss terms. We derive the corresponding perturbed complex Toda chain in the case of a combination of linear, cubic, and/or quintic terms. We show that the soliton interactions dynamics for this reduced PCTC model compares favorably to full numerical results of the original perturbed nonlinear Schrödinger equation.
Computing anticipatory systems with incursion and hyperincursion
NASA Astrophysics Data System (ADS)
Dubois, Daniel M.
1998-07-01
An anticipatory system is a system which contains a model of itself and/or of its environment in view of computing its present state as a function of the prediction of the model. With the concepts of incursion and hyperincursion, anticipatory discrete systems can be modelled, simulated and controlled. By definition an incursion, an inclusive or implicit recursion, can be written as: x(t+1)=F[…,x(t-1),x(t),x(t+1),…] where the value of a variable x(t+1) at time t+1 is a function of this variable at past, present and future times. This is an extension of recursion. Hyperincursion is an incursion with multiple solutions. For example, chaos in the Pearl-Verhulst map model: x(t+1)=a.x(t).[1-x(t)] is controlled by the following anticipatory incursive model: x(t+1)=a.x(t).[1-x(t+1)] which corresponds to the differential anticipatory equation: dx(t)/dt=a.x(t).[1-x(t+1)]-x(t). The main part of this paper deals with the discretisation of differential equation systems of linear and non-linear oscillators. The non-linear oscillator is based on the Lotka-Volterra equations model. The discretisation is made by incursion. The incursive discrete equation system gives the same stability condition than the original differential equations without numerical instabilities. The linearisation of the incursive discrete non-linear Lotka-Volterra equation system gives rise to the classical harmonic oscillator. The incursive discretisation of the linear oscillator is similar to define backward and forward discrete derivatives. A generalized complex derivative is then considered and applied to the harmonic oscillator. Non-locality seems to be a property of anticipatory systems. With some mathematical assumption, the Schrödinger quantum equation is derived for a particle in a uniform potential. Finally an hyperincursive system is given in the case of a neural stack memory.
Evaluation of Piecewise Polynomial Equations for Two Types of Thermocouples
Chen, Andrew; Chen, Chiachung
2013-01-01
Thermocouples are the most frequently used sensors for temperature measurement because of their wide applicability, long-term stability and high reliability. However, one of the major utilization problems is the linearization of the transfer relation between temperature and output voltage of thermocouples. The linear calibration equation and its modules could be improved by using regression analysis to help solve this problem. In this study, two types of thermocouple and five temperature ranges were selected to evaluate the fitting agreement of different-order polynomial equations. Two quantitative criteria, the average of the absolute error values |e|ave and the standard deviation of calibration equation estd, were used to evaluate the accuracy and precision of these calibrations equations. The optimal order of polynomial equations differed with the temperature range. The accuracy and precision of the calibration equation could be improved significantly with an adequate higher degree polynomial equation. The technique could be applied with hardware modules to serve as an intelligent sensor for temperature measurement. PMID:24351627
Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.
Holm, Darryl D.
2002-06-01
We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.
The Integration of Teacher's Pedagogical Content Knowledge Components in Teaching Linear Equation
ERIC Educational Resources Information Center
Yusof, Yusminah Mohd.; Effandi, Zakaria
2015-01-01
This qualitative research aimed to explore the integration of the components of pedagogical content knowledge (PCK) in teaching Linear Equation with one unknown. For the purpose of the study, a single local case study with multiple participants was used. The selection of the participants was made based on various criteria: having more than 5 years…
Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M
2013-01-01
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.
Boyko, Vyacheslav M.; Popovych, Roman O.; Shapoval, Nataliya M.
2013-01-01
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach. PMID:23564972
ERIC Educational Resources Information Center
Tisdell, Christopher C.
2017-01-01
For over 50 years, the learning of teaching of "a priori" bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to "a priori" bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving…
Insights into the School Mathematics Tradition from Solving Linear Equations
ERIC Educational Resources Information Center
Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth
2015-01-01
In this article, we explore how the solving of linear equations is represented in English-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…
ERIC Educational Resources Information Center
Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou
2018-01-01
This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…
ERIC Educational Resources Information Center
Zu, Jiyun; Yuan, Ke-Hai
2012-01-01
In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…
40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of full-scale concentration. It is permitted to use additional concentrations. (v) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx where x is the actual chart deflection and y is the concentration. (vi) Use the equation z=y/m to find the linear chart...
Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations
ERIC Educational Resources Information Center
Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie
2015-01-01
The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…
Investigating High-School Students' Reasoning Strategies when They Solve Linear Equations
ERIC Educational Resources Information Center
Huntley, Mary Ann; Marcus, Robin; Kahan, Jeremy; Miller, Jane Lincoln
2007-01-01
A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third-year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from one problem that involved solving a set of three linear equations of…
ERIC Educational Resources Information Center
Gasyna, Zbigniew L.
2008-01-01
Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.
2003-01-01
An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.
Regularity gradient estimates for weak solutions of singular quasi-linear parabolic equations
NASA Astrophysics Data System (ADS)
Phan, Tuoc
2017-12-01
This paper studies the Sobolev regularity for weak solutions of a class of singular quasi-linear parabolic problems of the form ut -div [ A (x , t , u , ∇u) ] =div [ F ] with homogeneous Dirichlet boundary conditions over bounded spatial domains. Our main focus is on the case that the vector coefficients A are discontinuous and singular in (x , t)-variables, and dependent on the solution u. Global and interior weighted W 1 , p (ΩT , ω)-regularity estimates are established for weak solutions of these equations, where ω is a weight function in some Muckenhoupt class of weights. The results obtained are even new for linear equations, and for ω = 1, because of the singularity of the coefficients in (x , t)-variables.
Reduced-order model based feedback control of the modified Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Ma, Z.
2013-04-15
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in flow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then, a model-based feedback controller is designed for the reduced order model using linear quadratic regulators. Finally, a linear quadratic Gaussian controller which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHW equations to stabilizemore » the equilibrium and suppress the transition to drift-wave induced turbulence.« less
Reduced-Order Model Based Feedback Control For Modified Hasegawa-Wakatani Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Ma, Z.
2013-01-28
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modi ed Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in ow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then a modelbased feedback controller is designed for the reduced order model using linear quadratic regulators (LQR). Finally, a linear quadratic gaussian (LQG) controller, which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHWmore » equations to stabilize the equilibrium and suppress the transition to drift-wave induced turbulence.« less
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Lomax, Harvard
1950-01-01
Following the introduction of the linearized partial differential equation for nonsteady three-dimensional compressible flow, general methods of solution are given for the two and three-dimensional steady-state and two-dimensional unsteady-state equations. It is also pointed out that, in the absence of thickness effects, linear theory yields solutions consistent with the assumptions made when applied to lifting-surface problems for swept-back plan forms at sonic speeds. The solutions of the particular equations are determined in all cases by means of Green's theorem, and thus depend on the use of Green's equivalent layer of sources, sinks, and doublets. Improper integrals in the supersonic theory are treated by means of Hadamard's "finite part" technique.
Till, Andrew T.; Warsa, James S.; Morel, Jim E.
2018-06-15
The thermal radiative transfer (TRT) equations comprise a radiation equation coupled to the material internal energy equation. Linearization of these equations produces effective, thermally-redistributed scattering through absorption-reemission. In this paper, we investigate the effectiveness and efficiency of Linear-Multi-Frequency-Grey (LMFG) acceleration that has been reformulated for use as a preconditioner to Krylov iterative solution methods. We introduce two general frameworks, the scalar flux formulation (SFF) and the absorption rate formulation (ARF), and investigate their iterative properties in the absence and presence of true scattering. SFF has a group-dependent state size but may be formulated without inner iterations in the presence ofmore » scattering, while ARF has a group-independent state size but requires inner iterations when scattering is present. We compare and evaluate the computational cost and efficiency of LMFG applied to these two formulations using a direct solver for the preconditioners. Finally, this work is novel because the use of LMFG for the radiation transport equation, in conjunction with Krylov methods, involves special considerations not required for radiation diffusion.« less
NASA Astrophysics Data System (ADS)
Parand, K.; Latifi, S.; Moayeri, M. M.; Delkhosh, M.
2018-05-01
In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms.
Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations
NASA Astrophysics Data System (ADS)
Gerdt, Vladimir P.; Blinkov, Yuri A.; Mozzhilkin, Vladimir V.
2006-05-01
In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gröbner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gröbner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.
2013-01-01
Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042
Minimizing Secular J2 Perturbation Effects on Satellite Formations
2008-03-01
linear set of differential equations describing the relative motion was established by Hill as well as Clohessy and Wiltshire , with a slightly... Wiltshire (CW) equations, and Hill- Clohessy - Wiltshire (HCW) equations. In the simplest form these differential equations can be expressed as: 2 2 2 3 2...different orientation. Because these equations are much alike, the differential equations established are referred to as Hill’s equations, Clohessy
Sahin, Rubina; Tapadia, Kavita
2015-01-01
The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG < 0) and endothermic (ΔH > 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.
Linear stability analysis of collective neutrino oscillations without spurious modes
NASA Astrophysics Data System (ADS)
Morinaga, Taiki; Yamada, Shoichi
2018-01-01
Collective neutrino oscillations are induced by the presence of neutrinos themselves. As such, they are intrinsically nonlinear phenomena and are much more complex than linear counterparts such as the vacuum or Mikheyev-Smirnov-Wolfenstein oscillations. They obey integro-differential equations, for which it is also very challenging to obtain numerical solutions. If one focuses on the onset of collective oscillations, on the other hand, the equations can be linearized and the technique of linear analysis can be employed. Unfortunately, however, it is well known that such an analysis, when applied with discretizations of continuous angular distributions, suffers from the appearance of so-called spurious modes: unphysical eigenmodes of the discretized linear equations. In this paper, we analyze in detail the origin of these unphysical modes and present a simple solution to this annoying problem. We find that the spurious modes originate from the artificial production of pole singularities instead of a branch cut on the Riemann surface by the discretizations. The branching point singularities on the Riemann surface for the original nondiscretized equations can be recovered by approximating the angular distributions with polynomials and then performing the integrals analytically. We demonstrate for some examples that this simple prescription does remove the spurious modes. We also propose an even simpler method: a piecewise linear approximation to the angular distribution. It is shown that the same methodology is applicable to the multienergy case as well as to the dispersion relation approach that was proposed very recently.
1988-02-01
in Multi- dimensions II, P.M. Santini and A.S. Fokas, preprint INS#67, 1986. The Recursion Operator of the Kadomtsev - Petviashvili Equation and the...solitons, multidimensional inverse problems, Painleve equations , direct linearizations of certain nonlinear wave equations , DBAR problems, Riemann...the Navy is (a) the recent discovery that many of the equations describing ship hydrodynamics in channels of finite depth obey nonlinear equations
Nonlinear equations of dynamics for spinning paraboloidal antennas
NASA Technical Reports Server (NTRS)
Utku, S.; Shoemaker, W. L.; Salama, M.
1983-01-01
The nonlinear strain-displacement and velocity-displacement relations of spinning imperfect rotational paraboloidal thin shell antennas are derived for nonaxisymmetrical deformations. Using these relations with the admissible trial functions in the principle functional of dynamics, the nonlinear equations of stress inducing motion are expressed in the form of a set of quasi-linear ordinary differential equations of the undetermined functions by means of the Rayleigh-Ritz procedure. These equations include all nonlinear terms up to and including the third degree. Explicit expressions are given for the coefficient matrices appearing in these equations. Both translational and rotational off-sets of the axis of revolution (and also the apex point of the paraboloid) with respect to the spin axis are considered. Although the material of the antenna is assumed linearly elastic, it can be anisotropic.
NASA Technical Reports Server (NTRS)
Rybicki, G. B.; Hummer, D. G.
1991-01-01
A method is presented for solving multilevel transfer problems when nonoverlapping lines and background continuum are present and active continuum transfer is absent. An approximate lambda operator is employed to derive linear, 'preconditioned', statistical-equilibrium equations. A method is described for finding the diagonal elements of the 'true' numerical lambda operator, and therefore for obtaining the coefficients of the equations. Iterations of the preconditioned equations, in conjunction with the transfer equation's formal solution, are used to solve linear equations. Some multilevel problems are considered, including an eleven-level neutral helium atom. Diagonal and tridiagonal approximate lambda operators are utilized in the problems to examine the convergence properties of the method, and it is found to be effective for the line transfer problems.
NASA Astrophysics Data System (ADS)
Vigier, Jean-Pierre
1991-02-01
Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, J.; Kosson, D.S., E-mail: david.s.kosson@vanderbilt.edu; Garrabrants, A.
2013-02-15
A robust numerical solution of the nonlinear Poisson-Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson-Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.
Scalora, Michael; Syrchin, Maxim S; Akozbek, Neset; Poliakov, Evgeni Y; D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Zheltikov, Aleksei M
2005-07-01
A new generalized nonlinear Schrödinger equation describing the propagation of ultrashort pulses in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability is derived and used to characterize wave propagation in a negative index material. The equation has new features that are distinct from ordinary materials (mu=1): the linear and nonlinear coefficients can be tailored through the linear properties of the medium to attain any combination of signs unachievable in ordinary matter, with significant potential to realize a wide class of solitary waves.
Lorenzo, C F; Hartley, T T; Malti, R
2013-05-13
A new and simplified method for the solution of linear constant coefficient fractional differential equations of any commensurate order is presented. The solutions are based on the R-function and on specialized Laplace transform pairs derived from the principal fractional meta-trigonometric functions. The new method simplifies the solution of such fractional differential equations and presents the solutions in the form of real functions as opposed to fractional complex exponential functions, and thus is directly applicable to real-world physics.
On exponential stability of linear Levin-Nohel integro-differential equations
NASA Astrophysics Data System (ADS)
Tien Dung, Nguyen
2015-02-01
The aim of this paper is to investigate the exponential stability for linear Levin-Nohel integro-differential equations with time-varying delays. To the best of our knowledge, the exponential stability for such equations has not yet been discussed. In addition, since we do not require that the kernel and delay are continuous, our results improve those obtained in Becker and Burton [Proc. R. Soc. Edinburgh, Sect. A: Math. 136, 245-275 (2006)]; Dung [J. Math. Phys. 54, 082705 (2013)]; and Jin and Luo [Comput. Math. Appl. 57(7), 1080-1088 (2009)].
FINITE ELEMENT MODEL FOR TIDAL AND RESIDUAL CIRCULATION.
Walters, Roy A.
1986-01-01
Harmonic decomposition is applied to the shallow water equations, thereby creating a system of equations for the amplitude of the various tidal constituents and for the residual motions. The resulting equations are elliptic in nature, are well posed and in practice are shown to be numerically well-behaved. There are a number of strategies for choosing elements: the two extremes are to use a few high-order elements with continuous derivatives, or to use a large number of simpler linear elements. In this paper simple linear elements are used and prove effective.
Coarse-grained description of cosmic structure from Szekeres models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Roberto A.; Gaspar, I. Delgado; Hidalgo, Juan Carlos, E-mail: sussman@nucleares.unam.mx, E-mail: ismael.delgadog@uaem.edu.mx, E-mail: hidalgo@fis.unam.mx
2016-03-01
We show that the full dynamical freedom of the well known Szekeres models allows for the description of elaborated 3-dimensional networks of cold dark matter structures (over-densities and/or density voids) undergoing ''pancake'' collapse. By reducing Einstein's field equations to a set of evolution equations, which themselves reduce in the linear limit to evolution equations for linear perturbations, we determine the dynamics of such structures, with the spatial comoving location of each structure uniquely specified by standard early Universe initial conditions. By means of a representative example we examine in detail the density contrast, the Hubble flow and peculiar velocities ofmore » structures that evolved, from linear initial data at the last scattering surface, to fully non-linear 10–20 Mpc scale configurations today. To motivate further research, we provide a qualitative discussion on the connection of Szekeres models with linear perturbations and the pancake collapse of the Zeldovich approximation. This type of structure modelling provides a coarse grained—but fully relativistic non-linear and non-perturbative —description of evolving large scale cosmic structures before their virialisation, and as such it has an enormous potential for applications in cosmological research.« less
ERIC Educational Resources Information Center
Grant, Mary C.; Zhang, Lilly; Damiano, Michele
2009-01-01
This study investigated kernel equating methods by comparing these methods to operational equatings for two tests in the SAT Subject Tests[TM] program. GENASYS (ETS, 2007) was used for all equating methods and scaled score kernel equating results were compared to Tucker, Levine observed score, chained linear, and chained equipercentile equating…
Predicting Diameter at Breast Height from Stump Diameters for Northeastern Tree Species
Eric H. Wharton; Eric H. Wharton
1984-01-01
Presents equations to predict diameter at breast height from stump diameter measurements for 17 northeastern tree species. Simple linear regression was used to develop the equations. Application of the equations is discussed.
First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity
NASA Technical Reports Server (NTRS)
Cai, Z.; Manteuffel, T. A.; McCormick, S. F.
1996-01-01
Following our earlier work on general second-order scalar equations, here we develop a least-squares functional for the two- and three-dimensional Stokes equations, generalized slightly by allowing a pressure term in the continuity equation. By introducing a velocity flux variable and associated curl and trace equations, we are able to establish ellipticity in an H(exp 1) product norm appropriately weighted by the Reynolds number. This immediately yields optimal discretization error estimates for finite element spaces in this norm and optimal algebraic convergence estimates for multiplicative and additive multigrid methods applied to the resulting discrete systems. Both estimates are uniform in the Reynolds number. Moreover, our pressure-perturbed form of the generalized Stokes equations allows us to develop an analogous result for the Dirichlet problem for linear elasticity with estimates that are uniform in the Lame constants.
NASA Astrophysics Data System (ADS)
Tisdell, C. C.
2017-08-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem through a substitution. The purpose of this note is to present an alternative approach using 'exact methods', illustrating that a substitution and linearization of the problem is unnecessary. The ideas may be seen as forming a complimentary and arguably simpler approach to Azevedo and Valentino that have the potential to be assimilated and adapted to pedagogical needs of those learning and teaching exact differential equations in schools, colleges, universities and polytechnics. We illustrate how to apply the ideas through an analysis of the Gompertz equation, which is of interest in biomathematical models of tumour growth.
Metric versus observable operator representation, higher spin models
NASA Astrophysics Data System (ADS)
Fring, Andreas; Frith, Thomas
2018-02-01
We elaborate further on the metric representation that is obtained by transferring the time-dependence from a Hermitian Hamiltonian to the metric operator in a related non-Hermitian system. We provide further insight into the procedure on how to employ the time-dependent Dyson relation and the quasi-Hermiticity relation to solve time-dependent Hermitian Hamiltonian systems. By solving both equations separately we argue here that it is in general easier to solve the former. We solve the mutually related time-dependent Schrödinger equation for a Hermitian and non-Hermitian spin 1/2, 1 and 3/2 model with time-independent and time-dependent metric, respectively. In all models the overdetermined coupled system of equations for the Dyson map can be decoupled algebraic manipulations and reduces to simple linear differential equations and an equation that can be converted into the non-linear Ermakov-Pinney equation.
New analysis of magnetic tornadoes
NASA Astrophysics Data System (ADS)
Arter, Wayne
2017-04-01
The recent work[1] showed how the equations of ideal, compressible magnetohydrodynamics (MHD) may be elegantly formulated in terms of Lie derivatives, building on the work of Helmholtz, Walen and Arnold. The ``linear" fields approach reduces ideal MHD to a low order set of non-linear ordinary differential equations capable of further simplification, so has the potential to enrich understanding of this difficult subject, which has application both to laboratory and geophysical/astrophysical plasmas. The just published work [2] extends the linear fields' solution of compressible nonlinear MHD to the case where the magnetic field depends on superlinear powers of position vector, usually but not always, expressed in Cartesian components. Implications of the resulting Lie-Taylor series expansion for physical applicability of the Dolzhansky-Kirchhoff (D-K) ``linear field" equations are found to be positive. It is demonstrated how resistivity may be included in the D-K model. Arguments are put forward that the D-K equations may be regarded as illustrating properties of nonlinear MHD in the same sense that the Lorenz equations inform about the onset of convective turbulence. It is thereby suggested that the Lie-Taylor series approach may lead to valuable insights into MHD turbulence, especially fast timescale transients and the role of plasmoids. This work has been part-funded by the RCUK Energy Programme. 1. Arter, W. 2013 ``Potential vorticity formulation of compressible magnetohydrodynamics. Phys. Rev. Lett. 110, 015004." (doi:10.1103/PhysRevLett.110.015004) 2. Arter, W. 2017 ``Beyond linear fields: the Lie-Taylor expansion", Proc. R. Soc. A473, 20160525; http://dx.doi.org/10.1098/rspa.2016.0525
The existence of solutions of q-difference-differential equations.
Wang, Xin-Li; Wang, Hua; Xu, Hong-Yan
2016-01-01
By using the Nevanlinna theory of value distribution, we investigate the existence of solutions of some types of non-linear q-difference differential equations. In particular, we generalize the Rellich-Wittich-type theorem and Malmquist-type theorem about differential equations to the case of q-difference differential equations (system).
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
Chosen interval methods for solving linear interval systems with special type of matrix
NASA Astrophysics Data System (ADS)
Szyszka, Barbara
2013-10-01
The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.
A linear quadratic regulator approach to the stabilization of uncertain linear systems
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.
1990-01-01
This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.
An Empirical Comparison of Five Linear Equating Methods for the NEAT Design
ERIC Educational Resources Information Center
Suh, Youngsuk; Mroch, Andrew A.; Kane, Michael T.; Ripkey, Douglas R.
2009-01-01
In this study, a data base containing the responses of 40,000 candidates to 90 multiple-choice questions was used to mimic data sets for 50-item tests under the "nonequivalent groups with anchor test" (NEAT) design. Using these smaller data sets, we evaluated the performance of five linear equating methods for the NEAT design with five levels of…
NASA Technical Reports Server (NTRS)
Kibler, K. S.; Mcdaniel, G. A.
1981-01-01
A digital local linearization technique was used to solve a system of stiff differential equations which simulate a magnetic bearing assembly. The results prove the technique to be accurate, stable, and efficient when compared to a general purpose variable order Adams method with a stiff option.
Localized states in a triangular set of linearly coupled complex Ginzburg-Landau equations.
Sigler, Ariel; Malomed, Boris A; Skryabin, Dmitry V
2006-12-01
We introduce a pattern-formation model based on a symmetric system of three linearly coupled cubic-quintic complex Ginzburg-Landau equations, which form a triangular configuration. This is the simplest model of a multicore fiber laser. We identify stability regions for various types of localized patterns possible in this setting, which include stationary and breathing triangular vortices.
ERIC Educational Resources Information Center
Belue, Paul T.; Cavey, Laurie Overman; Kinzel, Margaret T.
2017-01-01
In this exploratory study, we examined the effects of a quantitative reasoning instructional approach to linear equations in two variables on community college students' conceptual understanding, procedural fluency, and reasoning ability. This was done in comparison to the use of a traditional procedural approach for instruction on the same topic.…
Examining the Differences of Linear Systems between Finnish and Taiwanese Textbooks
ERIC Educational Resources Information Center
Yang, Der-Ching; Lin, Yung-Chi
2015-01-01
The purpose of this study was to examine the differences between Finnish and Taiwanese textbooks for grades 7 to 9 on the topic of solving systems of linear equations (simultaneous equations). The specific textbooks examined were TK in Taiwan and FL in Finland. The content analysis method was used to examine (a) the teaching sequence, (b)…
The Routine Fitting of Kinetic Data to Models
Berman, Mones; Shahn, Ezra; Weiss, Marjory F.
1962-01-01
A mathematical formalism is presented for use with digital computers to permit the routine fitting of data to physical and mathematical models. Given a set of data, the mathematical equations describing a model, initial conditions for an experiment, and initial estimates for the values of model parameters, the computer program automatically proceeds to obtain a least squares fit of the data by an iterative adjustment of the values of the parameters. When the experimental measures are linear combinations of functions, the linear coefficients for a least squares fit may also be calculated. The values of both the parameters of the model and the coefficients for the sum of functions may be unknown independent variables, unknown dependent variables, or known constants. In the case of dependence, only linear dependencies are provided for in routine use. The computer program includes a number of subroutines, each one of which performs a special task. This permits flexibility in choosing various types of solutions and procedures. One subroutine, for example, handles linear differential equations, another, special non-linear functions, etc. The use of analytic or numerical solutions of equations is possible. PMID:13867975
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2015-04-05
The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zander, C.; Plastino, A. R.; Díaz-Alonso, J.
2015-11-01
We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.
Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices
NASA Technical Reports Server (NTRS)
Freund, Roland
1989-01-01
We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
Couple stress theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models
NASA Astrophysics Data System (ADS)
Zozulya, V. V.
2017-01-01
New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.
Planck constant as spectral parameter in integrable systems and KZB equations
NASA Astrophysics Data System (ADS)
Levin, A.; Olshanetsky, M.; Zotov, A.
2014-10-01
We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.
Nonlinear Gyro-Landau-Fluid Equations
NASA Astrophysics Data System (ADS)
Raskolnikov, I.; Mattor, Nathan; Parker, Scott E.
1996-11-01
We present fluid equations which describe the effects of both linear and nonlinear Landau damping (wave-particle-wave effects). These are derived using a recently developed analytical method similar to renormalization group theory. (Scott E. Parker and Daniele Carati, Phys. Rev. Lett. 75), 441 (1995). In this technique, the phase space structure inherent in Landau damping is treated analytically by building a ``renormalized collisionality'' onto a bare collisionality (which may be taken as vanishingly small). Here we apply this technique to the nonlinear ion gyrokinetic equation in slab geometry, obtaining nonlinear fluid equations for density, parallel momentum and heat. Wave-particle resonances are described by two functions appearing in the heat equation: a renormalized ``collisionality'' and a renormalized nonlinear coupling coeffient. It will be shown that these new equations may correct a deficiency in existing gyrofluid equations, (G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990). which can severely underestimate the strength of nonlinear interaction in regimes where linear resonance is strong. (N. Mattor, Phys. Fluids B 4,) 3952 (1992).
NASA Technical Reports Server (NTRS)
Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.
1982-01-01
The derivation of the equations is presented, the rate control algorithm described, and simulation methodologies summarized. A set of dynamics equations that can be used recursively to calculate forces and torques acting at the joints of an n link manipulator given the manipulator joint rates are derived. The equations are valid for any n link manipulator system with any kind of joints connected in any sequence. The equations of motion for the class of manipulators consisting of n rigid links interconnected by rotary joints are derived. A technique is outlined for reducing the system of equations to eliminate contraint torques. The linearized dynamics equations for an n link manipulator system are derived. The general n link linearized equations are then applied to a two link configuration. The coordinated rate control algorithm used to compute individual joint rates when given end effector rates is described. A short discussion of simulation methodologies is presented.
NASA Astrophysics Data System (ADS)
Kwon, Young-Sam; Li, Fucai
2018-03-01
In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.
Neoclassical transport including collisional nonlinearity.
Candy, J; Belli, E A
2011-06-10
In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.
NASA Astrophysics Data System (ADS)
Shibata, Hisaichi; Takaki, Ryoji
2017-11-01
A novel method to compute current-voltage characteristics (CVCs) of direct current positive corona discharges is formulated based on a perturbation technique. We use linearized fluid equations coupled with the linearized Poisson's equation. Townsend relation is assumed to predict CVCs apart from the linearization point. We choose coaxial cylinders as a test problem, and we have successfully predicted parameters which can determine CVCs with arbitrary inner and outer radii. It is also confirmed that the proposed method essentially does not induce numerical instabilities.
Stochastic Swift-Hohenberg Equation with Degenerate Linear Multiplicative Noise
NASA Astrophysics Data System (ADS)
Hernández, Marco; Ong, Kiah Wah
2018-03-01
We study the dynamic transition of the Swift-Hohenberg equation (SHE) when linear multiplicative noise acting on a finite set of modes of the dominant linear flow is introduced. Existence of a stochastic flow and a local stochastic invariant manifold for this stochastic form of SHE are both addressed in this work. We show that the approximate reduced system corresponding to the invariant manifold undergoes a stochastic pitchfork bifurcation, and obtain numerical evidence suggesting that this picture is a good approximation for the full system as well.
Accuracy Assessment for the Auxillary Tracking System
1991-09-01
Auxiliary Tracking System (ATS), paper prepared for evaluation of ATS design review, 28 June, 1990. Anton , H., and Rorres, C., Elementary Linear Algebra with...are linearized around the trial value (XT6, YT,, Zro), shown in Equation 3.16, where 10 means evaluated at point "o". The OR1aI * YaT- I T.) ZR (ZT...3.16) partial derivatives are listed in Equations 3.17 through 3.19. 8XR.[ o 7.-OR1 [ .XT-XL (3.17) aOR., ZTo-Z 1 (3.19) aZTIo R. The linearized
Non-linear continuous time random walk models★
NASA Astrophysics Data System (ADS)
Stage, Helena; Fedotov, Sergei
2017-11-01
A standard assumption of continuous time random walk (CTRW) processes is that there are no interactions between the random walkers, such that we obtain the celebrated linear fractional equation either for the probability density function of the walker at a certain position and time, or the mean number of walkers. The question arises how one can extend this equation to the non-linear case, where the random walkers interact. The aim of this work is to take into account this interaction under a mean-field approximation where the statistical properties of the random walker depend on the mean number of walkers. The implementation of these non-linear effects within the CTRW integral equations or fractional equations poses difficulties, leading to the alternative methodology we present in this work. We are concerned with non-linear effects which may either inhibit anomalous effects or induce them where they otherwise would not arise. Inhibition of these effects corresponds to a decrease in the waiting times of the random walkers, be this due to overcrowding, competition between walkers or an inherent carrying capacity of the system. Conversely, induced anomalous effects present longer waiting times and are consistent with symbiotic, collaborative or social walkers, or indirect pinpointing of favourable regions by their attractiveness. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Nonclassical point of view of the Brownian motion generation via fractional deterministic model
NASA Astrophysics Data System (ADS)
Gilardi-Velázquez, H. E.; Campos-Cantón, E.
In this paper, we present a dynamical system based on the Langevin equation without stochastic term and using fractional derivatives that exhibit properties of Brownian motion, i.e. a deterministic model to generate Brownian motion is proposed. The stochastic process is replaced by considering an additional degree of freedom in the second-order Langevin equation. Thus, it is transformed into a system of three first-order linear differential equations, additionally α-fractional derivative are considered which allow us to obtain better statistical properties. Switching surfaces are established as a part of fluctuating acceleration. The final system of three α-order linear differential equations does not contain a stochastic term, so the system generates motion in a deterministic way. Nevertheless, from the time series analysis, we found that the behavior of the system exhibits statistics properties of Brownian motion, such as, a linear growth in time of mean square displacement, a Gaussian distribution. Furthermore, we use the detrended fluctuation analysis to prove the Brownian character of this motion.
Solution of two-body relativistic bound state equations with confining plus Coulomb interactions
NASA Technical Reports Server (NTRS)
Maung, Khin Maung; Kahana, David E.; Norbury, John W.
1992-01-01
Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.
Dynamic analysis of geometrically non-linear three-dimensional beams under moving mass
NASA Astrophysics Data System (ADS)
Zupan, E.; Zupan, D.
2018-01-01
In this paper, we present a coupled dynamic analysis of a moving particle on a deformable three-dimensional frame. The presented numerical model is capable of considering arbitrary curved and twisted initial geometry of the beam and takes into account geometric non-linearity of the structure. Coupled with dynamic equations of the structure, the equations of moving particle are solved. The moving particle represents the dynamic load and varies the mass distribution of the structure and at the same time its path is adapting due to deformability of the structure. A coupled geometrically non-linear behaviour of beam and particle is studied. The equation of motion of the particle is added to the system of the beam dynamic equations and an additional unknown representing the coordinate of the curvilinear path of the particle is introduced. The specially designed finite-element formulation of the three-dimensional beam based on the weak form of consistency conditions is employed where only the boundary conditions are affected by the contact forces.
A macroscopic plasma Lagrangian and its application to wave interactions and resonances
NASA Technical Reports Server (NTRS)
Peng, Y. K. M.
1974-01-01
The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.
An incremental strategy for calculating consistent discrete CFD sensitivity derivatives
NASA Technical Reports Server (NTRS)
Korivi, Vamshi Mohan; Taylor, Arthur C., III; Newman, Perry A.; Hou, Gene W.; Jones, Henry E.
1992-01-01
In this preliminary study involving advanced computational fluid dynamic (CFD) codes, an incremental formulation, also known as the 'delta' or 'correction' form, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For typical problems in 2D, a direct solution method can be applied to these linear equations which are associated with aerodynamic sensitivity analysis. For typical problems in 2D, a direct solution method can be applied to these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods appear to be needed for future 3D applications; however, because direct solver methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form result in certain difficulties, such as ill-conditioning of the coefficient matrix, which can be overcome when these equations are cast in the incremental form; these and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two laminar sample problems: (1) transonic flow through a double-throat nozzle; and (2) flow over an isolated airfoil.
Multiscale functions, scale dynamics, and applications to partial differential equations
NASA Astrophysics Data System (ADS)
Cresson, Jacky; Pierret, Frédéric
2016-05-01
Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.
ERIC Educational Resources Information Center
Tisdell, C. C.
2017-01-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…
Successfully Transitioning to Linear Equations
ERIC Educational Resources Information Center
Colton, Connie; Smith, Wendy M.
2014-01-01
The Common Core State Standards for Mathematics (CCSSI 2010) asks students in as early as fourth grade to solve word problems using equations with variables. Equations studied at this level generate a single solution, such as the equation x + 10 = 25. For students in fifth grade, the Common Core standard for algebraic thinking expects them to…
Catmull-Rom Curve Fitting and Interpolation Equations
ERIC Educational Resources Information Center
Jerome, Lawrence
2010-01-01
Computer graphics and animation experts have been using the Catmull-Rom smooth curve interpolation equations since 1974, but the vector and matrix equations can be derived and simplified using basic algebra, resulting in a simple set of linear equations with constant coefficients. A variety of uses of Catmull-Rom interpolation are demonstrated,…
Research on Standard Errors of Equating Differences. Research Report. ETS RR-10-25
ERIC Educational Resources Information Center
Moses, Tim; Zhang, Wenmin
2010-01-01
In this paper, the "standard error of equating difference" (SEED) is described in terms of originally proposed kernel equating functions (von Davier, Holland, & Thayer, 2004) and extended to incorporate traditional linear and equipercentile functions. These derivations expand on prior developments of SEEDs and standard errors of equating and…
Informed Conjecturing of Solutions for Differential Equations in a Modeling Context
ERIC Educational Resources Information Center
Winkel, Brian
2015-01-01
We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…
Matrix algorithms for solving (in)homogeneous bound state equations
Blank, M.; Krassnigg, A.
2011-01-01
In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640
NASA Technical Reports Server (NTRS)
Jezewski, D.
1980-01-01
Prime vector theory is used in analyzing a set of linear relative-motion equations - the Clohessy-Wiltshire (C/W) equations - to determine the criteria and necessary conditions for an optimal N-impulse trajectory. The analysis develops the analytical criteria for improving a solution by: (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of: (1) fixed-end conditions, two impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized renezvous problem.
Variability simulations with a steady, linearized primitive equations model
NASA Technical Reports Server (NTRS)
Kinter, J. L., III; Nigam, S.
1985-01-01
Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
ERIC Educational Resources Information Center
Marschall, Gosia; Andrews, Paul
2015-01-01
In this article we present an exploratory case study of six Polish teachers' perspectives on the teaching of linear equations to grade six students. Data, which derived from semi-structured interviews, were analysed against an extant framework and yielded a number of commonly held beliefs about what teachers aimed to achieve and how they would…
Topics in strong Langmuir turbulence
NASA Technical Reports Server (NTRS)
Nicholson, D. R.
1983-01-01
Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.
Topics in strong Langmuir turbulence
NASA Technical Reports Server (NTRS)
Nicholson, D. R.
1982-01-01
Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.
A Family of Ellipse Methods for Solving Non-Linear Equations
ERIC Educational Resources Information Center
Gupta, K. C.; Kanwar, V.; Kumar, Sanjeev
2009-01-01
This note presents a method for the numerical approximation of simple zeros of a non-linear equation in one variable. In order to do so, the method uses an ellipse rather than a tangent approach. The main advantage of our method is that it does not fail even if the derivative of the function is either zero or very small in the vicinity of the…
Bifurcation of rupture path by linear and cubic damping force
NASA Astrophysics Data System (ADS)
Dennis L. C., C.; Chew X., Y.; Lee Y., C.
2014-06-01
Bifurcation of rupture path is studied for the effect of linear and cubic damping. Momentum equation with Rayleigh factor was transformed into ordinary differential form. Bernoulli differential equation was obtained and solved by the separation of variables. Analytical or exact solutions yielded the bifurcation was visible at imaginary part when the wave was non dispersive. For the dispersive wave, bifurcation of rupture path was invisible.
Control problem for a system of linear loaded differential equations
NASA Astrophysics Data System (ADS)
Barseghyan, V. R.; Barseghyan, T. V.
2018-04-01
The problem of control and optimal control for a system of linear loaded differential equations is considered. Necessary and sufficient conditions for complete controllability and conditions for the existence of a program control and the corresponding motion are formulated. The explicit form of control action for the control problem is constructed and a method for solving the problem of optimal control is proposed.
ERIC Educational Resources Information Center
Samuel, Koji; Mulenga, H. M.; Angel, Mukuka
2016-01-01
This paper investigates the challenges faced by secondary school teachers and pupils in the teaching and learning of algebraic linear equations. The study involved 80 grade 11 pupils and 15 teachers of mathematics, drawn from 4 selected secondary schools in Mufulira district, Zambia in Central Africa. A descriptive survey method was employed to…
Effects of radial envelope modulations on the collisionless trapped-electron mode in tokamak plasmas
NASA Astrophysics Data System (ADS)
Chen, Hao-Tian; Chen, Liu
2018-05-01
Adopting the ballooning-mode representation and including the effects of radial envelope modulations, we have derived the corresponding linear eigenmode equation for the collisionless trapped-electron mode in tokamak plasmas. Numerical solutions of the eigenmode equation indicate that finite radial envelope modulations can affect the linear stability properties both quantitatively and qualitatively via the significant modifications in the corresponding eigenmode structures.
Unsteady transonic flows - Introduction, current trends, applications
NASA Technical Reports Server (NTRS)
Yates, E. C., Jr.
1985-01-01
The computational treatment of unsteady transonic flows is discussed, reviewing the historical development and current techniques. The fundamental physical principles are outlined; the governing equations are introduced; three-dimensional linearized and two-dimensional linear-perturbation theories in frequency domain are described in detail; and consideration is given to frequency-domain FEMs and time-domain finite-difference and integral-equation methods. Extensive graphs and diagrams are included.
The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations
ERIC Educational Resources Information Center
Buendía, Gabriela; Cordero, Francisco
2013-01-01
In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…
Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis
NASA Technical Reports Server (NTRS)
Freund, Roland W.
1991-01-01
We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
A high-fidelity method to analyze perturbation evolution in turbulent flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unnikrishnan, S., E-mail: sasidharannair.1@osu.edu; Gaitonde, Datta V., E-mail: gaitonde.3@osu.edu
2016-04-01
Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier–Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state,more » its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted “baseline” and “twin”) of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier–Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, “native” forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.« less
2013-01-01
Background Indirect herd effect from vaccination of children offers potential for improving the effectiveness of influenza prevention in the remaining unvaccinated population. Static models used in cost-effectiveness analyses cannot dynamically capture herd effects. The objective of this study was to develop a methodology to allow herd effect associated with vaccinating children against seasonal influenza to be incorporated into static models evaluating the cost-effectiveness of influenza vaccination. Methods Two previously published linear equations for approximation of herd effects in general were compared with the results of a structured literature review undertaken using PubMed searches to identify data on herd effects specific to influenza vaccination. A linear function was fitted to point estimates from the literature using the sum of squared residuals. Results The literature review identified 21 publications on 20 studies for inclusion. Six studies provided data on a mathematical relationship between effective vaccine coverage in subgroups and reduction of influenza infection in a larger unvaccinated population. These supported a linear relationship when effective vaccine coverage in a subgroup population was between 20% and 80%. Three studies evaluating herd effect at a community level, specifically induced by vaccinating children, provided point estimates for fitting linear equations. The fitted linear equation for herd protection in the target population for vaccination (children) was slightly less conservative than a previously published equation for herd effects in general. The fitted linear equation for herd protection in the non-target population was considerably less conservative than the previously published equation. Conclusions This method of approximating herd effect requires simple adjustments to the annual baseline risk of influenza in static models: (1) for the age group targeted by the childhood vaccination strategy (i.e. children); and (2) for other age groups not targeted (e.g. adults and/or elderly). Two approximations provide a linear relationship between effective coverage and reduction in the risk of infection. The first is a conservative approximation, recommended as a base-case for cost-effectiveness evaluations. The second, fitted to data extracted from a structured literature review, provides a less conservative estimate of herd effect, recommended for sensitivity analyses. PMID:23339290
A high-fidelity method to analyze perturbation evolution in turbulent flows
NASA Astrophysics Data System (ADS)
Unnikrishnan, S.; Gaitonde, Datta V.
2016-04-01
Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier-Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state, its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted "baseline" and "twin") of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier-Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, "native" forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.
A fast iterative scheme for the linearized Boltzmann equation
NASA Astrophysics Data System (ADS)
Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.
2017-06-01
Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference between these results and those using the hard-sphere potential is discussed.
Congruence Approximations for Entrophy Endowed Hyperbolic Systems
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Saini, Subhash (Technical Monitor)
1998-01-01
Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.
Renormalization-group theory of plasma microturbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carati, D.; Chriaa, K.; Balescu, R.
1994-08-01
The dynamical renormalization-group methods are applied to the gyrokinetic equation describing drift-wave turbulence in plasmas. As in both magnetohydrodynamic and neutral turbulence, small-scale fluctuations appear to act as effective dissipative processes on large-scale phenomena. A linear renormalized gyrokinetic equation is derived. No artificial forcing is introduced into the equations and all the renormalized corrections are expressed in terms of the fluctuating electric potential. The link with the quasilinear limit and the direct interaction approximation is investigated. Simple analytical expressions for the anomalous transport coefficients are derived by using the linear renormalized gyrokinetic equation. Examples show that both quasilinear and Bohmmore » scalings can be recovered depending on the spectral amplitude of the electric potential fluctuations.« less
Numerical solution of system of boundary value problems using B-spline with free parameter
NASA Astrophysics Data System (ADS)
Gupta, Yogesh
2017-01-01
This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.
A diffuse-interface method for two-phase flows with soluble surfactants
Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel
2010-01-01
A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125
NASA Astrophysics Data System (ADS)
Parand, Kourosh; Mahdi Moayeri, Mohammad; Latifi, Sobhan; Delkhosh, Mehdi
2017-07-01
In this paper, a spectral method based on the four kinds of rational Chebyshev functions is proposed to approximate the solution of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet. First, by using the quasilinearization method (QLM), the model which is a nonlinear ordinary differential equation is converted to a sequence of linear ordinary differential equations (ODEs). By applying the proposed method on the ODEs in each iteration, the equations are converted to a system of linear algebraic equations. The results indicate the high accuracy and convergence of our method. Moreover, the effects of the Eyring-Powell fluid material parameters are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Tao, E-mail: fengtao2@mail.ustc.edu.cn; Graduate School of China Academy Engineering Physics, Beijing 100083; An, Hengbin, E-mail: an_hengbin@iapcm.ac.cn
2013-03-01
Jacobian-free Newton–Krylov (JFNK) method is an effective algorithm for solving large scale nonlinear equations. One of the most important advantages of JFNK method is that there is no necessity to form and store the Jacobian matrix of the nonlinear system when JFNK method is employed. However, an approximation of the Jacobian is needed for the purpose of preconditioning. In this paper, JFNK method is employed to solve a class of non-equilibrium radiation diffusion coupled to material thermal conduction equations, and two preconditioners are designed by linearizing the equations in two methods. Numerical results show that the two preconditioning methods canmore » improve the convergence behavior and efficiency of JFNK method.« less
A new method of imposing boundary conditions for hyperbolic equations
NASA Technical Reports Server (NTRS)
Funaro, D.; ative.
1987-01-01
A new method to impose boundary conditions for pseudospectral approximations to hyperbolic equations is suggested. This method involves the collocation of the equation at the boundary nodes as well as satisfying boundary conditions. Stability and convergence results are proven for the Chebyshev approximation of linear scalar hyperbolic equations. The eigenvalues of this method applied to parabolic equations are shown to be real and negative.
ERIC Educational Resources Information Center
von Davier, Alina A.; Holland, Paul W.; Livingston, Samuel A.; Casabianca, Jodi; Grant, Mary C.; Martin, Kathleen
2006-01-01
This study examines how closely the kernel equating (KE) method (von Davier, Holland, & Thayer, 2004a) approximates the results of other observed-score equating methods--equipercentile and linear equatings. The study used pseudotests constructed of item responses from a real test to simulate three equating designs: an equivalent groups (EG)…
f(R) gravity on non-linear scales: the post-Friedmann expansion and the vector potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.B.; Bruni, M.; Koyama, K.
2015-07-01
Many modified gravity theories are under consideration in cosmology as the source of the accelerated expansion of the universe and linear perturbation theory, valid on the largest scales, has been examined in many of these models. However, smaller non-linear scales offer a richer phenomenology with which to constrain modified gravity theories. Here, we consider the Hu-Sawicki form of f(R) gravity and apply the post-Friedmann approach to derive the leading order equations for non-linear scales, i.e. the equations valid in the Newtonian-like regime. We reproduce the standard equations for the scalar field, gravitational slip and the modified Poisson equation in amore » coherent framework. In addition, we derive the equation for the leading order correction to the Newtonian regime, the vector potential. We measure this vector potential from f(R) N-body simulations at redshift zero and one, for two values of the f{sub R{sub 0}} parameter. We find that the vector potential at redshift zero in f(R) gravity can be close to 50% larger than in GR on small scales for |f{sub R{sub 0}}|=1.289 × 10{sup −5}, although this is less for larger scales, earlier times and smaller values of the f{sub R{sub 0}} parameter. Similarly to in GR, the small amplitude of this vector potential suggests that the Newtonian approximation is highly accurate for f(R) gravity, and also that the non-linear cosmological behaviour of f(R) gravity can be completely described by just the scalar potentials and the f(R) field.« less
On the solution of the generalized wave and generalized sine-Gordon equations
NASA Technical Reports Server (NTRS)
Ablowitz, M. J.; Beals, R.; Tenenblat, K.
1986-01-01
The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.
Scilab software as an alternative low-cost computing in solving the linear equations problem
NASA Astrophysics Data System (ADS)
Agus, Fahrul; Haviluddin
2017-02-01
Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.
Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2015-01-01
Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.
Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating
ERIC Educational Resources Information Center
He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei
2013-01-01
Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…
1989-05-22
multidimensional systems of physi- cal significance. Prototypes are the Kadomtsev - Petviashvili and Davey-Stewartson equations . The nature of the boundary value...Ono equation bears many similarities to multidimensional problems, specifically the Kadomtsev - Petviashvili equation . In some sense the nonlocality...Inverse scattering and Direct Linearizing Transforms for the Kadomtsev - Petviashvili Equations , A.S. Fokas, and M.J. Ablowitz, Phys. Lett. Vol., 94A, No. 2
Stability for a class of difference equations
NASA Astrophysics Data System (ADS)
Muroya, Yoshiaki; Ishiwata, Emiko
2009-06-01
We consider the following non-autonomous and nonlinear difference equations with unbounded delays: where 0
Nonlocal theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models
NASA Astrophysics Data System (ADS)
Zozulya, V. V.
2017-09-01
New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.
NASA Astrophysics Data System (ADS)
Nieto, P. J. García; del Coz Díaz, J. J.; Vilán, J. A. Vilán; Placer, C. Casqueiro
2009-08-01
In this paper, an evaluation of distribution of the air pressure is determined throughout the laterally closed industrial buildings with curved metallic roofs due to the wind effect by the finite element method (FEM). The non-linearity is due to Reynolds-averaged Navier-Stokes (RANS) equations that govern the turbulent flow. The Navier-Stokes equations are non-linear partial differential equations and this non-linearity makes most problems difficult to solve and is part of the cause of turbulence. The RANS equations are time-averaged equations of motion for fluid flow. They are primarily used while dealing with turbulent flows. Turbulence is a highly complex physical phenomenon that is pervasive in flow problems of scientific and engineering concern like this one. In order to solve the RANS equations a two-equation model is used: the standard k-ɛ model. The calculation has been carried out keeping in mind the following assumptions: turbulent flow, an exponential-like wind speed profile with a maximum velocity of 40 m/s at 10 m reference height, and different heights of the building ranging from 6 to 10 meters. Finally, the forces and moments are determined on the cover, as well as the distribution of pressures on the same one, comparing the numerical results obtained with the Spanish CTE DB SE-AE, Spanish NBE AE-88 and European standard rules, giving place to the conclusions that are exposed in the study.
NASA Astrophysics Data System (ADS)
Stroe, Gabriela; Andrei, Irina-Carmen; Frunzulica, Florin
2017-01-01
The objectives of this paper are the study and the implementation of both aerodynamic and propulsion models, as linear interpolations using look-up tables in a database. The aerodynamic and propulsion dependencies on state and control variable have been described by analytic polynomial models. Some simplifying hypotheses were made in the development of the nonlinear aircraft simulations. The choice of a certain technique to use depends on the desired accuracy of the solution and the computational effort to be expended. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. The engine power dynamic response was modeled with an additional state equation as first order lag in the actual power level response to commanded power level was computed as a function of throttle position. The number of control inputs and engine power states varied depending on the number of control surfaces and aircraft engines. The set of coupled, nonlinear, first-order ordinary differential equations that comprise the simulation model can be represented by the vector differential equation. A linear time-invariant (LTI) system representing aircraft dynamics for small perturbations about a reference trim condition is given by the state and output equations present. The gradients are obtained numerically by perturbing each state and control input independently and recording the changes in the trimmed state and output equations. This is done using the numerical technique of central finite differences, including the perturbations of the state and control variables. For a reference trim condition of straight and level flight, linearization results in two decoupled sets of linear, constant-coefficient differential equations for longitudinal and lateral / directional motion. The linearization is valid for small perturbations about the reference trim condition. Experimental aerodynamic and thrust data are used to model the applied aerodynamic and propulsion forces and moments for arbitrary states and controls. There is no closed form solution to such problems, so the equations must be solved using numerical integration. Techniques for solving this initial value problem for ordinary differential equations are employed to obtain approximate solutions at discrete points along the aircraft state trajectory.
Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.
ERIC Educational Resources Information Center
Topczewski, Anna; Cui, Zhongmin; Woodruff, David; Chen, Hanwei; Fang, Yu
2013-01-01
This paper investigates four methods of linear equating under the common item nonequivalent groups design. Three of the methods are well known: Tucker, Angoff-Levine, and Congeneric-Levine. A fourth method is presented as a variant of the Congeneric-Levine method. Using simulation data generated from the three-parameter logistic IRT model we…
Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.
Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun
2013-01-01
An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids.
ERIC Educational Resources Information Center
Puhan, Gautam
2010-01-01
This study used real data to construct testing conditions for comparing results of chained linear, Tucker, and Levine-observed score equatings. The comparisons were made under conditions where the new- and old-form samples were similar in ability and when they differed in ability. The length of the anchor test was also varied to enable examination…
Computing Gröbner and Involutive Bases for Linear Systems of Difference Equations
NASA Astrophysics Data System (ADS)
Yanovich, Denis
2018-02-01
The computation of involutive bases and Gröbner bases for linear systems of difference equations is solved and its importance for physical and mathematical problems is discussed. The algorithm and issues concerning its implementation in C are presented and calculation times are compared with the competing programs. The paper ends with consideration on the parallel version of this implementation and its scalability.
Disformal invariance of continuous media with linear equation of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celoria, Marco; Matarrese, Sabino; Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: sabino.matarrese@pd.infn.it, E-mail: luigi.pilo@aquila.infn.it
We show that the effective theory describing single component continuous media with a linear and constant equation of state of the form p = w ρ is invariant under a 1-parameter family of continuous disformal transformations. In the special case of w =1/3 (ultrarelativistic gas), such a family reduces to conformal transformations. As examples, perfect fluids, irrotational dust (mimetic matter) and homogeneous and isotropic solids are discussed.
On the Use of Linearized Euler Equations in the Prediction of Jet Noise
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.; Hixon, R.; Shih, S.-H.; Povinelli, L. A.
1995-01-01
Linearized Euler equations are used to simulate supersonic jet noise generation and propagation. Special attention is given to boundary treatment. The resulting solution is stable and nearly free from boundary reflections without the need for artificial dissipation, filtering, or a sponge layer. The computed solution is in good agreement with theory and observation and is much less CPU-intensive as compared to large-eddy simulations.
Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source
NASA Astrophysics Data System (ADS)
Nho Hào, Dinh; Van Duc, Nguyen; Van Thang, Nguyen
2018-05-01
Let H be a Hilbert space with the inner product and the norm , a positive self-adjoint unbounded time-dependent operator on H and . We establish stability estimates of Hölder type and propose a regularization method with error estimates of Hölder type for the ill-posed backward semi-linear parabolic equation with the source function f satisfying a local Lipschitz condition.
NASA Technical Reports Server (NTRS)
Hodges, D. H., Roberta.
1976-01-01
The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.
Integrability and Linear Stability of Nonlinear Waves
NASA Astrophysics Data System (ADS)
Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo
2018-03-01
It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.
Parametrically excited non-linear multidegree-of-freedom systems with repeated natural frequencies
NASA Astrophysics Data System (ADS)
Tezak, E. G.; Nayfeh, A. H.; Mook, D. T.
1982-12-01
A method for analyzing multidegree-of-freedom systems having a repeated natural frequency subjected to a parametric excitation is presented. Attention is given to the ordering of the various terms (linear and non-linear) in the governing equations. The analysis is based on the method of multiple scales. As a numerical example involving a parametric resonance, panel flutter is discussed in detail in order to illustrate the type of results one can expect to obtain with this analysis. Some of the analytical results are verified by a numerical integration of the governing equations.
Investigation of ODE integrators using interactive graphics. [Ordinary Differential Equations
NASA Technical Reports Server (NTRS)
Brown, R. L.
1978-01-01
Two FORTRAN programs using an interactive graphic terminal to generate accuracy and stability plots for given multistep ordinary differential equation (ODE) integrators are described. The first treats the fixed stepsize linear case with complex variable solutions, and generates plots to show accuracy and error response to step driving function of a numerical solution, as well as the linear stability region. The second generates an analog to the stability region for classes of non-linear ODE's as well as accuracy plots. Both systems can compute method coefficients from a simple specification of the method. Example plots are given.
Fogedby, Hans C
2003-08-01
Using the previously developed canonical phase space approach applied to the noisy Burgers equation in one dimension, we discuss in detail the growth morphology in terms of nonlinear soliton modes and superimposed linear modes. We moreover analyze the non-Hermitian character of the linear mode spectrum and the associated dynamical pinning, and mode transmutation from diffusive to propagating behavior induced by the solitons. We discuss the anomalous diffusion of growth modes, switching and pathways, correlations in the multisoliton sector, and in detail the correlations and scaling properties in the two-soliton sector.
A linear quadratic tracker for Control Moment Gyro based attitude control of the Space Station
NASA Technical Reports Server (NTRS)
Kaidy, J. T.
1986-01-01
The paper discusses a design for an attitude control system for the Space Station which produces fast response, with minimal overshoot and cross-coupling with the use of Control Moment Gyros (CMG). The rigid body equations of motion are linearized and discretized and a Linear Quadratic Regulator (LQR) design and analysis study is performed. The resulting design is then modified such that integral and differential terms are added to the state equations to enhance response characteristics. Methods for reduction of computation time through channelization are discussed as well as the reduction of initial torque requirements.
NASA Technical Reports Server (NTRS)
Dieudonne, J. E.
1978-01-01
A numerical technique was developed which generates linear perturbation models from nonlinear aircraft vehicle simulations. The technique is very general and can be applied to simulations of any system that is described by nonlinear differential equations. The computer program used to generate these models is discussed, with emphasis placed on generation of the Jacobian matrices, calculation of the coefficients needed for solving the perturbation model, and generation of the solution of the linear differential equations. An example application of the technique to a nonlinear model of the NASA terminal configured vehicle is included.
A Brief Historical Introduction to Determinants with Applications
ERIC Educational Resources Information Center
Debnath, L.
2013-01-01
This article deals with a short historical introduction to determinants with applications to the theory of equations, geometry, multiple integrals, differential equations and linear algebra. Included are some properties of determinants with proofs, eigenvalues, eigenvectors and characteristic equations with examples of applications to simple…
A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation
Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei
2013-01-01
We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L 2(Ω))2 space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term w = −Δu and a priori error estimates in (L 2)2-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes. PMID:23864831
NASA Technical Reports Server (NTRS)
Haviland, J. K.
1974-01-01
The results are reported of two unrelated studies. The first was an investigation of the formulation of the equations for non-uniform unsteady flows, by perturbation of an irrotational flow to obtain the linear Green's equation. The resulting integral equation was found to contain a kernel which could be expressed as the solution of the adjoint flow equation, a linear equation for small perturbations, but with non-constant coefficients determined by the steady flow conditions. It is believed that the non-uniform flow effects may prove important in transonic flutter, and that in such cases, the use of doublet type solutions of the wave equation would then prove to be erroneous. The second task covered an initial investigation into the use of the Monte Carlo method for solution of acoustical field problems. Computed results are given for a rectangular room problem, and for a problem involving a circular duct with a source located at the closed end.
A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.
Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei; Liu, Yang
2013-01-01
We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L²(Ω))² space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L² and H¹-norm for both the scalar unknown u and the diffusion term w = -Δu and a priori error estimates in (L²)²-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes.
Oxidation Behavior of Carbon Fiber-Reinforced Composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2008-01-01
OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.
Gravitational Wave in Linear General Relativity
NASA Astrophysics Data System (ADS)
Cubillos, D. J.
2017-07-01
General relativity is the best theory currently available to describe the interaction due to gravity. Within Albert Einstein's field equations this interaction is described by means of the spatiotemporal curvature generated by the matter-energy content in the universe. Weyl worked on the existence of perturbations of the curvature of space-time that propagate at the speed of light, which are known as Gravitational Waves, obtained to a first approximation through the linearization of the field equations of Einstein. Weyl's solution consists of taking the field equations in a vacuum and disturbing the metric, using the Minkowski metric slightly perturbed by a factor ɛ greater than zero but much smaller than one. If the feedback effect of the field is neglected, it can be considered as a weak field solution. After introducing the disturbed metric and ignoring ɛ terms of order greater than one, we can find the linearized field equations in terms of the perturbation, which can then be expressed in terms of the Dalambertian operator of the perturbation equalized to zero. This is analogous to the linear wave equation in classical mechanics, which can be interpreted by saying that gravitational effects propagate as waves at the speed of light. In addition to this, by studying the motion of a particle affected by this perturbation through the geodesic equation can show the transversal character of the gravitational wave and its two possible states of polarization. It can be shown that the energy carried by the wave is of the order of 1/c5 where c is the speed of light, which explains that its effects on matter are very small and very difficult to detect.
Solution Methods for Certain Evolution Equations
NASA Astrophysics Data System (ADS)
Vega-Guzman, Jose Manuel
Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is possible due to the relation between the diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg's equation of motion.
A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, C. Kristopher; Hauck, Cory D.
In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less
A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework
Garrett, C. Kristopher; Hauck, Cory D.
2018-04-05
In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less
Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Noderer, Keith D.
1994-01-01
A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.
Long Wave Runup in Asymmetric Bays and in Fjords With Two Separate Heads
NASA Astrophysics Data System (ADS)
Raz, Amir; Nicolsky, Dmitry; Rybkin, Alexei; Pelinovsky, Efim
2018-03-01
Modeling of tsunamis in glacial fjords prompts us to evaluate applicability of the cross-sectionally averaged nonlinear shallow water equations to model propagation and runup of long waves in asymmetrical bays and also in fjords with two heads. We utilize the Tuck-Hwang transformation, initially introduced for the plane beaches and currently generalized for bays with arbitrary cross section, to transform the nonlinear governing equations into a linear equation. The solution of the linearized equation describing the runup at the shore line is computed by taking into account the incident wave at the toe of the last sloping segment. We verify our predictions against direct numerical simulation of the 2-D shallow water equations and show that our solution is valid both for bays with an asymmetric L-shaped cross section, and for fjords with two heads—bays with a W-shaped cross section.
f(R)-gravity from Killing tensors
NASA Astrophysics Data System (ADS)
Paliathanasis, Andronikos
2016-04-01
We consider f(R)-gravity in a Friedmann-Lemaître-Robertson-Walker spacetime with zero spatial curvature. We apply the Killing tensors of the minisuperspace in order to specify the functional form of f(R) and for the field equations to be invariant under Lie-Bäcklund transformations, which are linear in momentum (contact symmetries). Consequently, the field equations to admit quadratic conservation laws given by Noether’s theorem. We find three new integrable f(R)-models, for which, with the application of the conservation laws, we reduce the field equations to a system of two first-order ordinary differential equations. For each model we study the evolution of the cosmological fluid. We find that for each integrable model the cosmological fluid has an equation of state parameter, in which there is linear behavior in terms of the scale factor which describes the Chevallier, Polarski and Linder parametric dark energy model.
Geometric analysis and restitution of digital multispectral scanner data arrays
NASA Technical Reports Server (NTRS)
Baker, J. R.; Mikhail, E. M.
1975-01-01
An investigation was conducted to define causes of geometric defects within digital multispectral scanner (MSS) data arrays, to analyze the resulting geometric errors, and to investigate restitution methods to correct or reduce these errors. Geometric transformation relationships for scanned data, from which collinearity equations may be derived, served as the basis of parametric methods of analysis and restitution of MSS digital data arrays. The linearization of these collinearity equations is presented. Algorithms considered for use in analysis and restitution included the MSS collinearity equations, piecewise polynomials based on linearized collinearity equations, and nonparametric algorithms. A proposed system for geometric analysis and restitution of MSS digital data arrays was used to evaluate these algorithms, utilizing actual MSS data arrays. It was shown that collinearity equations and nonparametric algorithms both yield acceptable results, but nonparametric algorithms possess definite advantages in computational efficiency. Piecewise polynomials were found to yield inferior results.
Boundary states at reflective moving boundaries
NASA Astrophysics Data System (ADS)
Acosta Minoli, Cesar A.; Kopriva, David A.
2012-06-01
We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.
Dissipative tunnelling by means of scaled trajectories
NASA Astrophysics Data System (ADS)
Mousavi, S. V.; Miret-Artés, S.
2018-06-01
Dissipative quantum tunnelling through an inverted parabolic barrier is considered in the presence of an electric field. A Schrödinger-Langevin or Kostin quantum-classical transition wave equation is used and applied resulting in a scaled differential equation of motion. A Gaussian wave packet solution to the resulting scaled Kostin nonlinear equation is assumed and compared to the same solution for the scaled linear Caldirola-Kanai equation. The resulting scaled trajectories are obtained at different dynamical regimes and friction cases, showing the gradual decoherence process in this open dynamics. Theoretical results show that the transmission probabilities are always higher in the Kostin approach than in the Caldirola-Kanai approach in the presence or not of an external electric field. This discrepancy should be understood due to the presence of an environment since the corresponding open dynamics should be governed by nonlinear quantum equations, whereas the second approach is issued from an effective Hamiltonian within a linear theory.
Method of mechanical quadratures for solving singular integral equations of various types
NASA Astrophysics Data System (ADS)
Sahakyan, A. V.; Amirjanyan, H. A.
2018-04-01
The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.
Equivalent equations of motion for gravity and entropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel
We demonstrate an equivalence between the wave equation obeyed by the entanglement entropy of CFT subregions and the linearized bulk Einstein equation in Anti-de Sitter space. In doing so, we make use of the formalism of kinematic space and fields on this space. We show that the gravitational dynamics are equivalent to a gauge invariant wave-equation on kinematic space and that this equation arises in natural correspondence to the conformal Casimir equation in the CFT.
Equivalent equations of motion for gravity and entropy
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...
2017-02-01
We demonstrate an equivalence between the wave equation obeyed by the entanglement entropy of CFT subregions and the linearized bulk Einstein equation in Anti-de Sitter space. In doing so, we make use of the formalism of kinematic space and fields on this space. We show that the gravitational dynamics are equivalent to a gauge invariant wave-equation on kinematic space and that this equation arises in natural correspondence to the conformal Casimir equation in the CFT.
Relations between nonlinear Riccati equations and other equations in fundamental physics
NASA Astrophysics Data System (ADS)
Schuch, Dieter
2014-10-01
Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.
The Ffowcs Williams-Hawkings equation - Fifteen years of research
NASA Technical Reports Server (NTRS)
Farassat, F.
1986-01-01
The Ffowcs Williams-Hawkings equation governs the generation of sound in fluids in the presence of solid boundaries in motion. This equation is reviewed for situations where the linearization of the governing equations is allowed. In addition, research on the application of this equation to problems of aeroacoustic is briefly surveyed. Particular attention is given to the formulation of supersonic sources moving in uniform propeller-like motion.
A linear stability analysis for nonlinear, grey, thermal radiative transfer problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaber, Allan B., E-mail: wollaber@lanl.go; Larsen, Edward W., E-mail: edlarsen@umich.ed
2011-02-20
We present a new linear stability analysis of three time discretizations and Monte Carlo interpretations of the nonlinear, grey thermal radiative transfer (TRT) equations: the widely used 'Implicit Monte Carlo' (IMC) equations, the Carter Forest (CF) equations, and the Ahrens-Larsen or 'Semi-Analog Monte Carlo' (SMC) equations. Using a spatial Fourier analysis of the 1-D Implicit Monte Carlo (IMC) equations that are linearized about an equilibrium solution, we show that the IMC equations are unconditionally stable (undamped perturbations do not exist) if {alpha}, the IMC time-discretization parameter, satisfies 0.5 < {alpha} {<=} 1. This is consistent with conventional wisdom. However, wemore » also show that for sufficiently large time steps, unphysical damped oscillations can exist that correspond to the lowest-frequency Fourier modes. After numerically confirming this result, we develop a method to assess the stability of any time discretization of the 0-D, nonlinear, grey, thermal radiative transfer problem. Subsequent analyses of the CF and SMC methods then demonstrate that the CF method is unconditionally stable and monotonic, but the SMC method is conditionally stable and permits unphysical oscillatory solutions that can prevent it from reaching equilibrium. This stability theory provides new conditions on the time step to guarantee monotonicity of the IMC solution, although they are likely too conservative to be used in practice. Theoretical predictions are tested and confirmed with numerical experiments.« less
A linear stability analysis for nonlinear, grey, thermal radiative transfer problems
NASA Astrophysics Data System (ADS)
Wollaber, Allan B.; Larsen, Edward W.
2011-02-01
We present a new linear stability analysis of three time discretizations and Monte Carlo interpretations of the nonlinear, grey thermal radiative transfer (TRT) equations: the widely used “Implicit Monte Carlo” (IMC) equations, the Carter Forest (CF) equations, and the Ahrens-Larsen or “Semi-Analog Monte Carlo” (SMC) equations. Using a spatial Fourier analysis of the 1-D Implicit Monte Carlo (IMC) equations that are linearized about an equilibrium solution, we show that the IMC equations are unconditionally stable (undamped perturbations do not exist) if α, the IMC time-discretization parameter, satisfies 0.5 < α ⩽ 1. This is consistent with conventional wisdom. However, we also show that for sufficiently large time steps, unphysical damped oscillations can exist that correspond to the lowest-frequency Fourier modes. After numerically confirming this result, we develop a method to assess the stability of any time discretization of the 0-D, nonlinear, grey, thermal radiative transfer problem. Subsequent analyses of the CF and SMC methods then demonstrate that the CF method is unconditionally stable and monotonic, but the SMC method is conditionally stable and permits unphysical oscillatory solutions that can prevent it from reaching equilibrium. This stability theory provides new conditions on the time step to guarantee monotonicity of the IMC solution, although they are likely too conservative to be used in practice. Theoretical predictions are tested and confirmed with numerical experiments.
Solution of underdetermined systems of equations with gridded a priori constraints.
Stiros, Stathis C; Saltogianni, Vasso
2014-01-01
The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.
NASA Astrophysics Data System (ADS)
Frank, T. D.
2008-02-01
We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.
The Jeffcott equations in nonlinear rotordynamics
NASA Technical Reports Server (NTRS)
Zalik, R. A.
1987-01-01
The Jeffcott equations are a system of coupled differential equations representing the behavior of a rotating shaft. This is a simple model which allows investigation of the basic dynamic behavior of rotating machinery. Nolinearities can be introduced by taking into consideration deadband, side force, and rubbing, among others. The properties of the solutions of the Jeffcott equations with deadband are studied. In particular, it is shown how bounds for the solution of these equations can be obtained from bounds for the solutions of the linearized equations. By studying the behavior of the Fourier transforms of the solutions, we are also able to predict the onset of destructive vibrations. These conclusions are verified by means of numerical solutions of the equations, and of power spectrum density (PSD) plots. This study offers insight into a possible detection method to determine pump stability margins during flight and hot fire tests, and was motivated by the need to explain a phenomenon observed in the development phase of the cryogenic pumps of the Space Shuttle, during hot fire ground testing; namely, the appearance of vibrations at frequencies that could not be accounted for by means of linear models.
Parallel iterative solution for h and p approximations of the shallow water equations
Barragy, E.J.; Walters, R.A.
1998-01-01
A p finite element scheme and parallel iterative solver are introduced for a modified form of the shallow water equations. The governing equations are the three-dimensional shallow water equations. After a harmonic decomposition in time and rearrangement, the resulting equations are a complex Helmholz problem for surface elevation, and a complex momentum equation for the horizontal velocity. Both equations are nonlinear and the resulting system is solved using the Picard iteration combined with a preconditioned biconjugate gradient (PBCG) method for the linearized subproblems. A subdomain-based parallel preconditioner is developed which uses incomplete LU factorization with thresholding (ILUT) methods within subdomains, overlapping ILUT factorizations for subdomain boundaries and under-relaxed iteration for the resulting block system. The method builds on techniques successfully applied to linear elements by introducing ordering and condensation techniques to handle uniform p refinement. The combined methods show good performance for a range of p (element order), h (element size), and N (number of processors). Performance and scalability results are presented for a field scale problem where up to 512 processors are used. ?? 1998 Elsevier Science Ltd. All rights reserved.
Some Theoretical Aspects of Nonzero Sum Differential Games and Applications to Combat Problems
1971-06-01
the Equilibrium Solution . 7 Hamilton-Jacobi-Bellman Partial Differential Equations ............. .............. 9 Influence Function Differential...Linearly .......... ............ 18 Problem Statement .......... ............ 18 Formulation of LJB Equations, Influence Function Equations and the TPBVP...19 Control Lawe . . .. ...... ........... 21 Conditions for Influence Function Continuity along Singular Surfaces
Ying, Wenjun; Henriquez, Craig S
2007-04-01
A novel hybrid finite element method (FEM) for modeling the response of passive and active biological membranes to external stimuli is presented. The method is based on the differential equations that describe the conservation of electric flux and membrane currents. By introducing the electric flux through the cell membrane as an additional variable, the algorithm decouples the linear partial differential equation part from the nonlinear ordinary differential equation part that defines the membrane dynamics of interest. This conveniently results in two subproblems: a linear interface problem and a nonlinear initial value problem. The linear interface problem is solved with a hybrid FEM. The initial value problem is integrated by a standard ordinary differential equation solver such as the Euler and Runge-Kutta methods. During time integration, these two subproblems are solved alternatively. The algorithm can be used to model the interaction of stimuli with multiple cells of almost arbitrary geometries and complex ion-channel gating at the plasma membrane. Numerical experiments are presented demonstrating the uses of the method for modeling field stimulation and action potential propagation.
NASA Technical Reports Server (NTRS)
Freedman, M. I.; Sipcic, S.; Tseng, K.
1985-01-01
A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
Mode instability in one-dimensional anharmonic lattices: Variational equation approach
NASA Astrophysics Data System (ADS)
Yoshimura, K.
1999-03-01
The stability of normal mode oscillations has been studied in detail under the single-mode excitation condition for the Fermi-Pasta-Ulam-β lattice. Numerical experiments indicate that the mode stability depends strongly on k/N, where k is the wave number of the initially excited mode and N is the number of degrees of freedom in the system. It has been found that this feature does not change when N increases. We propose an average variational equation - approximate version of the variational equation - as a theoretical tool to facilitate a linear stability analysis. It is shown that this strong k/N dependence of the mode stability can be explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional approximation of the average variational equation, which approximately describes the time evolution of variations in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation demonstrates that the parametric instability mechanism plays a crucial role in the strong k/N dependence of the mode stability.
Direct localization of poles of a meromorphic function from measurements on an incomplete boundary
NASA Astrophysics Data System (ADS)
Nara, Takaaki; Ando, Shigeru
2010-01-01
This paper proposes an algebraic method to reconstruct the positions of multiple poles in a meromorphic function field from measurements on an arbitrary simple arc in it. A novel issue is the exactness of the algorithm depending on whether the arc is open or closed, and whether it encloses or does not enclose the poles. We first obtain a differential equation that can equivalently determine the meromorphic function field. From it, we derive linear equations that relate the elementary symmetric polynomials of the pole positions to weighted integrals of the field along the simple arc and end-point terms of the arc when it is an open one. Eliminating the end-point terms based on an appropriate choice of weighting functions and a combination of the linear equations, we obtain a simple system of linear equations for solving the elementary symmetric polynomials. We also show that our algorithm can be applied to a 2D electric impedance tomography problem. The effects of the proximity of the poles, the number of measurements and noise on the localization accuracy are numerically examined.
NASA Technical Reports Server (NTRS)
Cai, Zhiqiang; Manteuffel, Thomas A.; McCormick, Stephen F.
1996-01-01
In this paper, we study the least-squares method for the generalized Stokes equations (including linear elasticity) based on the velocity-vorticity-pressure formulation in d = 2 or 3 dimensions. The least squares functional is defined in terms of the sum of the L(exp 2)- and H(exp -1)-norms of the residual equations, which is weighted appropriately by by the Reynolds number. Our approach for establishing ellipticity of the functional does not use ADN theory, but is founded more on basic principles. We also analyze the case where the H(exp -1)-norm in the functional is replaced by a discrete functional to make the computation feasible. We show that the resulting algebraic equations can be uniformly preconditioned by well-known techniques.
NASA Astrophysics Data System (ADS)
Le, Nam Q.
2018-05-01
We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge-Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.
Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
NASA Astrophysics Data System (ADS)
Moawad, S. M.; Moawad
2013-10-01
The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.
Concatenons as the solutions for non-linear partial differential equations
NASA Astrophysics Data System (ADS)
Kudryashov, N. A.; Volkov, A. K.
2017-07-01
New class of solutions for nonlinear partial differential equations is introduced. We call them the concaten solutions. As an example we consider equations for the description of wave processes in the Fermi-Pasta-Ulam mass chain and construct the concatenon solutions for these equation. Stability of the concatenon-type solutions is investigated numerically. Interaction between the concatenon and solitons is discussed.
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; von Davier, Alina A.
2008-01-01
The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score distributions. While the classical equipercentile, or percentile-rank, equating method carries out the continuization step by linear interpolation,…
Linearized simulation of flow over wind farms and complex terrains.
Segalini, Antonio
2017-04-13
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Linearized simulation of flow over wind farms and complex terrains
NASA Astrophysics Data System (ADS)
Segalini, Antonio
2017-03-01
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results. This article is part of the themed issue 'Wind energy in complex terrains'.
Drift-Alfven eigenmodes in inhomogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vranjes, J.; Poedts, S.
2006-03-15
A set of three nonlinear equations describing drift-Alfven waves in a nonuniform magnetized plasma is derived and discussed both in linear and nonlinear limits. In the case of a cylindric radially bounded plasma with a Gaussian density distribution in the radial direction the linearized equations are solved exactly yielding general solutions for modes with quantized frequencies and with radially dependent amplitudes. The full set of nonlinear equations is also solved yielding particular solutions in the form of rotating radially limited structures. The results should be applicable to the description of electromagnetic perturbations in solar magnetic structures and in astrophysical column-likemore » objects including cosmic tornados.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009
This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.
On the numerical treatment of nonlinear source terms in reaction-convection equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1992-01-01
The objectives of this paper are to investigate how various numerical treatments of the nonlinear source term in a model reaction-convection equation can affect the stability of steady-state numerical solutions and to show under what conditions the conventional linearized analysis breaks down. The underlying goal is to provide part of the basic building blocks toward the ultimate goal of constructing suitable numerical schemes for hypersonic reacting flows, combustions and certain turbulence models in compressible Navier-Stokes computations. It can be shown that nonlinear analysis uncovers much of the nonlinear phenomena which linearized analysis is not capable of predicting in a model reaction-convection equation.
Stochastic Galerkin methods for the steady-state Navier–Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousedík, Bedřich, E-mail: sousedik@umbc.edu; Elman, Howard C., E-mail: elman@cs.umd.edu
2016-07-01
We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmarkmore » problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moryakov, A. V., E-mail: sailor@orc.ru
2016-12-15
An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.
A nonperturbative approximation for the moderate Reynolds number Navier–Stokes equations
Roper, Marcus; Brenner, Michael P.
2009-01-01
The nonlinearity of the Navier–Stokes equations makes predicting the flow of fluid around rapidly moving small bodies highly resistant to all approaches save careful experiments or brute force computation. Here, we show how a linearization of the Navier–Stokes equations captures the drag-determining features of the flow and allows simplified or analytical computation of the drag on bodies up to Reynolds number of order 100. We illustrate the utility of this linearization in 2 practical problems that normally can only be tackled with sophisticated numerical methods: understanding flow separation in the flow around a bluff body and finding drag-minimizing shapes. PMID:19211800
A nonperturbative approximation for the moderate Reynolds number Navier-Stokes equations.
Roper, Marcus; Brenner, Michael P
2009-03-03
The nonlinearity of the Navier-Stokes equations makes predicting the flow of fluid around rapidly moving small bodies highly resistant to all approaches save careful experiments or brute force computation. Here, we show how a linearization of the Navier-Stokes equations captures the drag-determining features of the flow and allows simplified or analytical computation of the drag on bodies up to Reynolds number of order 100. We illustrate the utility of this linearization in 2 practical problems that normally can only be tackled with sophisticated numerical methods: understanding flow separation in the flow around a bluff body and finding drag-minimizing shapes.
NASA Technical Reports Server (NTRS)
Allen, G.
1972-01-01
The use of the theta-operator method and generalized hypergeometric functions in obtaining solutions to nth-order linear ordinary differential equations is explained. For completeness, the analysis of the differential equation to determine whether the point of expansion is an ordinary point or a regular singular point is included. The superiority of the two methods shown over the standard method is demonstrated by using all three of the methods to work out several examples. Also included is a compendium of formulae and properties of the theta operator and generalized hypergeometric functions which is complete enough to make the report self-contained.
NASA Astrophysics Data System (ADS)
Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan
2018-05-01
This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.
Stochastic Galerkin methods for the steady-state Navier–Stokes equations
Sousedík, Bedřich; Elman, Howard C.
2016-04-12
We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmarkmore » problems.« less
Linear-stability theory of thermocapillary convection in a model of float-zone crystal growth
NASA Technical Reports Server (NTRS)
Neitzel, G. P.; Chang, K.-T.; Jankowski, D. F.; Mittelmann, H. D.
1992-01-01
Linear-stability theory has been applied to a basic state of thermocapillary convection in a model half-zone to determine values of the Marangoni number above which instability is guaranteed. The basic state must be determined numerically since the half-zone is of finite, O(1) aspect ratio with two-dimensional flow and temperature fields. This, in turn, means that the governing equations for disturbance quantities will remain partial differential equations. The disturbance equations are treated by a staggered-grid discretization scheme. Results are presented for a variety of parameters of interest in the problem, including both terrestrial and microgravity cases.
Nightingale, Claire M; Rudnicka, Alicja R; Owen, Christopher G; Donin, Angela S; Newton, Sian L; Furness, Cheryl A; Howard, Emma L; Gillings, Rachel D; Wells, Jonathan C K; Cook, Derek G; Whincup, Peter H
2013-01-01
Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. Cross-sectional study of children aged 8-10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height(2)/Z); C: FFM = linear combination(height(2)/Z+weight)}. Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set. Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences.
Nightingale, Claire M.; Rudnicka, Alicja R.; Owen, Christopher G.; Donin, Angela S.; Newton, Sian L.; Furness, Cheryl A.; Howard, Emma L.; Gillings, Rachel D.; Wells, Jonathan C. K.; Cook, Derek G.; Whincup, Peter H.
2013-01-01
Background Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. Methods Cross-sectional study of children aged 8–10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height2/Z); C: FFM = linear combination(height2/Z+weight)}. Results Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set. Conclusions Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences. PMID:24204625
Beam-plasma instability in the presence of low-frequency turbulence. [during type 3 solar emission
NASA Technical Reports Server (NTRS)
Goldman, M. V.; Dubois, D. F.
1982-01-01
General equations are derived for a linear beam-plasma instability in the presence of low-frequency turbulence. Within a 'quasi-linear' statistical approximation, these equations contain Langmuir wave scattering, diffusion, resonant and nonresonant anomalous absorption, and a 'plasma laser' effect. It is proposed that naturally occurring density irregularities in the solar wind may stabilize the beam-unstable Langmuir waves which occur during type III solar emissions.
On a family of nonoscillatory equations y double prime = phi(x)y
NASA Technical Reports Server (NTRS)
Gingold, H.
1988-01-01
The oscillation or nonoscillation of a class of second-order linear differential equations is investigated analytically, with a focus on cases in which the functions phi(x) and y are complex-valued. Two linear transformations are introduced, and an asymptotic-decomposition procedure involving Shur triangularization is applied. The relationship of the present analysis to the nonoscillation criterion of Kneser (1896) and other more recent results is explored in two examples.
Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations
Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun
2013-01-01
An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids. PMID:24235888
Dynamical theory of stability for elastic rods with nonlinear curvature and twist
NASA Technical Reports Server (NTRS)
Wauer, J.
1977-01-01
Considering non-linear terms in the curvature as well as in the twist, the governing boundary value problem for lateral bending of elastic, transverse loaded rods is formulated by means of Hamilton's principle. Using the method of small vibrations, the associated linearized equations of stability are derived, which complete the currently accepted relations. The example of the simplest lateral bending problem illustrates the improved effect of the proposed equations.
Qualitative properties of large buckled states of spherical shells
NASA Technical Reports Server (NTRS)
Shih, K. G.; Antman, S. S.
1985-01-01
A system of 6th-order quasi-linear Ordinary Differential Equations is analyzed to show the global existence of axisymmetrically buckled states. A surprising nodal property is obtained which shows that everywhere along a branch of solutions that bifurcates from a simple eigenvalue of the linearized equation, the number of simultaneously vanishing points of both shear resultant and circumferential bending moment resultant remains invariant, provided that a certain auxiliary condition is satisfied.
On the equivalence of Gaussian elimination and Gauss-Jordan reduction in solving linear equations
NASA Technical Reports Server (NTRS)
Tsao, Nai-Kuan
1989-01-01
A novel general approach to round-off error analysis using the error complexity concepts is described. This is applied to the analysis of the Gaussian Elimination and Gauss-Jordan scheme for solving linear equations. The results show that the two algorithms are equivalent in terms of our error complexity measures. Thus the inherently parallel Gauss-Jordan scheme can be implemented with confidence if parallel computers are available.
Bimolecular Recombination Kinetics of an Exciton-Trion Gas
2015-07-01
3-D systems. Whereas a linear time-dependent system of first-order differential equations has only trivial steady- state solutions (all carrier...derivatives to zero, which reduces the system (Eq. 9) to the following set of 3 algebraic equations: ( ) ( ) ( ) ( ) 1 2 210 2 110...crossover around 20 ns. The exciton curve is nearly linear over a wide range from 10 ns to 50 ns. Fig. 2 Time dependence of carrier species for Λ = 4
NASA Technical Reports Server (NTRS)
Mitchell, C. E.; Eckert, K.
1979-01-01
A program for predicting the linear stability of liquid propellant rocket engines is presented. The underlying model assumptions and analytical steps necessary for understanding the program and its input and output are also given. The rocket engine is modeled as a right circular cylinder with an injector with a concentrated combustion zone, a nozzle, finite mean flow, and an acoustic admittance, or the sensitive time lag theory. The resulting partial differential equations are combined into two governing integral equations by the use of the Green's function method. These equations are solved using a successive approximation technique for the small amplitude (linear) case. The computational method used as well as the various user options available are discussed. Finally, a flow diagram, sample input and output for a typical application and a complete program listing for program MODULE are presented.
Linear and nonlinear stability of the Blasius boundary layer
NASA Technical Reports Server (NTRS)
Bertolotti, F. P.; Herbert, TH.; Spalart, P. R.
1992-01-01
Two new techniques for the study of the linear and nonlinear instability in growing boundary layers are presented. The first technique employs partial differential equations of parabolic type exploiting the slow change of the mean flow, disturbance velocity profiles, wavelengths, and growth rates in the streamwise direction. The second technique solves the Navier-Stokes equation for spatially evolving disturbances using buffer zones adjacent to the inflow and outflow boundaries. Results of both techniques are in excellent agreement. The linear and nonlinear development of Tollmien-Schlichting (TS) waves in the Blasius boundary layer is investigated with both techniques and with a local procedure based on a system of ordinary differential equations. The results are compared with previous work and the effects of non-parallelism and nonlinearity are clarified. The effect of nonparallelism is confirmed to be weak and, consequently, not responsible for the discrepancies between measurements and theoretical results for parallel flow.
Burgers approximation for two-dimensional flow past an ellipse
NASA Technical Reports Server (NTRS)
Dorrepaal, J. M.
1982-01-01
A linearization of the Navier-Stokes equation due to Burgers in which vorticity is transported by the velocity field corresponding to continuous potential flow is examined. The governing equations are solved exactly for the two dimensional steady flow past an ellipse of arbitrary aspect ratio. The requirement of no slip along the surface of the ellipse results in an infinite algebraic system of linear equations for coefficients appearing in the solution. The system is truncated at a point which gives reliable results for Reynolds numbers R in the range 0 R 5. Predictions of the Burgers approximation regarding separation, drag and boundary layer behavior are investigated. In particular, Burgers linearization gives drag coefficients which are closer to observed experimental values than those obtained from Oseen's approximation. In the special case of flow past a circular cylinder, Burgers approximation predicts a boundary layer whose thickness is roughly proportional to R-1/2.
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2006-01-01
The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.
The entrainment matrix of a superfluid nucleon mixture at finite temperatures
NASA Astrophysics Data System (ADS)
Leinson, Lev B.
2018-06-01
It is considered a closed system of non-linear equations for the entrainment matrix of a non-relativistic mixture of superfluid nucleons at arbitrary temperatures below the onset of neutron superfluidity, which takes into account the essential dependence of the superfluid energy gap in the nucleon spectra on the velocities of superfluid flows. It is assumed that the protons condense into the isotropic 1S0 state, and the neutrons are paired into the spin-triplet 3P2 state. It is derived an analytic solution to the non-linear equations for the entrainment matrix under temperatures just below the critical value for the neutron superfluidity onset. In general case of an arbitrary temperature of the superfluid mixture the non-linear equations are solved numerically and fitted by simple formulas convenient for a practical use with an arbitrary set of the Landau parameters.
The use of Galerkin finite-element methods to solve mass-transport equations
Grove, David B.
1977-01-01
The partial differential equation that describes the transport and reaction of chemical solutes in porous media was solved using the Galerkin finite-element technique. These finite elements were superimposed over finite-difference cells used to solve the flow equation. Both convection and flow due to hydraulic dispersion were considered. Linear and Hermite cubic approximations (basis functions) provided satisfactory results: however, the linear functions were computationally more efficient for two-dimensional problems. Successive over relaxation (SOR) and iteration techniques using Tchebyschef polynomials were used to solve the sparce matrices generated using the linear and Hermite cubic functions, respectively. Comparisons of the finite-element methods to the finite-difference methods, and to analytical results, indicated that a high degree of accuracy may be obtained using the method outlined. The technique was applied to a field problem involving an aquifer contaminated with chloride, tritium, and strontium-90. (Woodard-USGS)
Asymptotic of the Solutions of Hyperbolic Equations with a Skew-Symmetric Perturbation
NASA Astrophysics Data System (ADS)
Gallagher, Isabelle
1998-12-01
Using methods introduced by S. Schochet inJ. Differential Equations114(1994), 476-512, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear operator. That result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system of the quasigeostrophic equations. Finally in the last part, we study the slightly compressible Euler equations by application of that same result.
Solving ay'' + by' + cy = 0 with a Simple Product Rule Approach
ERIC Educational Resources Information Center
Tolle, John
2011-01-01
When elementary ordinary differential equations (ODEs) of first and second order are included in the calculus curriculum, second-order linear constant coefficient ODEs are typically solved by a method more appropriate to differential equations courses. This method involves the characteristic equation and its roots, complex-valued solutions, and…
Transport of Multivalent Electrolyte Mixtures in Micro- and Nanochannels
2013-11-08
equations for this process are the unsteady Navier-Stokes equations along with continuity and the Poisson- Nernst -Planck system for the electro- static part...about five times the Debye screening length D (the 1/e lengthscale for the potential from the solution of the linearized Poisson- Boltzmann equation
ERIC Educational Resources Information Center
Lin, Cheng-Yao; Kuo, Yu-Chun; Ko, Yi-Yin
2015-01-01
The purpose of this study was to investigate elementary pre-service teachers' content knowledge in algebra (Linear Equation, Quadratic Equation, Functions, System Equations and Polynomials) as well as their technological pedagogical content knowledge (TPACK) in teaching algebra. Participants were 79 undergraduate pre-service teachers who were…
Biology As a Source for Algebra Equations: Insects
ERIC Educational Resources Information Center
Horak, Virginia M.
2005-01-01
The activity developed in an integrated high school course that was team-taught by both mathematics and science teachers examines linear equations developed from relationships in biology. These equations provide students with opportunities to see the way mathematics could be used to describe biological relationships, and then apply to solve…
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
NASA Technical Reports Server (NTRS)
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.; Gray, Hugh R. (Technical Monitor)
2002-01-01
We discuss an Adams-type predictor-corrector method for the numerical solution of fractional differential equations. The method may be used both for linear and for nonlinear problems, and it may be extended to multi-term equations (involving more than one differential operator) too.
Stability of Linear Equations--Algebraic Approach
ERIC Educational Resources Information Center
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.
2012-01-01
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors
NASA Astrophysics Data System (ADS)
Kraczek, Brent; Kanp, Jaroslaw
Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.
An efficient method for model refinement in diffuse optical tomography
NASA Astrophysics Data System (ADS)
Zirak, A. R.; Khademi, M.
2007-11-01
Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.