Liu, Yan; Salvendy, Gavriel
2009-05-01
This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.
Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops
NASA Technical Reports Server (NTRS)
Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram
2017-01-01
The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.
Narayanan, Neethu; Gupta, Suman; Gajbhiye, V T; Manjaiah, K M
2017-04-01
A carboxy methyl cellulose-nano organoclay (nano montmorillonite modified with 35-45 wt % dimethyl dialkyl (C 14 -C 18 ) amine (DMDA)) composite was prepared by solution intercalation method. The prepared composite was characterized by infrared spectroscopy (FTIR), X-Ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM). The composite was utilized for its pesticide sorption efficiency for atrazine, imidacloprid and thiamethoxam. The sorption data was fitted into Langmuir and Freundlich isotherms using linear and non linear methods. The linear regression method suggested best fitting of sorption data into Type II Langmuir and Freundlich isotherms. In order to avoid the bias resulting from linearization, seven different error parameters were also analyzed by non linear regression method. The non linear error analysis suggested that the sorption data fitted well into Langmuir model rather than in Freundlich model. The maximum sorption capacity, Q 0 (μg/g) was given by imidacloprid (2000) followed by thiamethoxam (1667) and atrazine (1429). The study suggests that the degree of determination of linear regression alone cannot be used for comparing the best fitting of Langmuir and Freundlich models and non-linear error analysis needs to be done to avoid inaccurate results. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Genberg, Victor L.; Michels, Gregory J.
2017-08-01
The ultimate design goal of an optical system subjected to dynamic loads is to minimize system level wavefront error (WFE). In random response analysis, system WFE is difficult to predict from finite element results due to the loss of phase information. In the past, the use of ystem WFE was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for determining system level WFE using a linear optics model is presented. An error estimate is included in the analysis output based on fitting errors of mode shapes. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
On the equivalence of Gaussian elimination and Gauss-Jordan reduction in solving linear equations
NASA Technical Reports Server (NTRS)
Tsao, Nai-Kuan
1989-01-01
A novel general approach to round-off error analysis using the error complexity concepts is described. This is applied to the analysis of the Gaussian Elimination and Gauss-Jordan scheme for solving linear equations. The results show that the two algorithms are equivalent in terms of our error complexity measures. Thus the inherently parallel Gauss-Jordan scheme can be implemented with confidence if parallel computers are available.
Analysis technique for controlling system wavefront error with active/adaptive optics
NASA Astrophysics Data System (ADS)
Genberg, Victor L.; Michels, Gregory J.
2017-08-01
The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
ERIC Educational Resources Information Center
Rocconi, Louis M.
2011-01-01
Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…
Robust Linear Models for Cis-eQTL Analysis.
Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C
2015-01-01
Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.
Kumar, K Vasanth; Porkodi, K; Rocha, F
2008-01-15
A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of basic red 9 sorption by activated carbon. The r(2) was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions namely coefficient of determination (r(2)), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), the average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. Non-linear regression was found to be a better way to obtain the parameters involved in the isotherms and also the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r(2) was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K(2) was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.
Influence of Tooth Spacing Error on Gears With and Without Profile Modifications
NASA Technical Reports Server (NTRS)
Padmasolala, Giri; Lin, Hsiang H.; Oswald, Fred B.
2000-01-01
A computer simulation was conducted to investigate the effectiveness of profile modification for reducing dynamic loads in gears with different tooth spacing errors. The simulation examined varying amplitudes of spacing error and differences in the span of teeth over which the error occurs. The modification considered included both linear and parabolic tip relief. The analysis considered spacing error that varies around most of the gear circumference (similar to a typical sinusoidal error pattern) as well as a shorter span of spacing errors that occurs on only a few teeth. The dynamic analysis was performed using a revised version of a NASA gear dynamics code, modified to add tooth spacing errors to the analysis. Results obtained from the investigation show that linear tip relief is more effective in reducing dynamic loads on gears with small spacing errors but parabolic tip relief becomes more effective as the amplitude of spacing error increases. In addition, the parabolic modification is more effective for the more severe error case where the error is spread over a longer span of teeth. The findings of this study can be used to design robust tooth profile modification for improving dynamic performance of gear sets with different tooth spacing errors.
Tian, Zengshan; Xu, Kunjie; Yu, Xiang
2014-01-01
This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349
Zhou, Mu; Tian, Zengshan; Xu, Kunjie; Yu, Xiang; Wu, Haibo
2014-01-01
This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.
Analysis of separation test for automatic brake adjuster based on linear radon transformation
NASA Astrophysics Data System (ADS)
Luo, Zai; Jiang, Wensong; Guo, Bin; Fan, Weijun; Lu, Yi
2015-01-01
The linear Radon transformation is applied to extract inflection points for online test system under the noise conditions. The linear Radon transformation has a strong ability of anti-noise and anti-interference by fitting the online test curve in several parts, which makes it easy to handle consecutive inflection points. We applied the linear Radon transformation to the separation test system to solve the separating clearance of automatic brake adjuster. The experimental results show that the feature point extraction error of the gradient maximum optimal method is approximately equal to ±0.100, while the feature point extraction error of linear Radon transformation method can reach to ±0.010, which has a lower error than the former one. In addition, the linear Radon transformation is robust.
Modeling error analysis of stationary linear discrete-time filters
NASA Technical Reports Server (NTRS)
Patel, R.; Toda, M.
1977-01-01
The performance of Kalman-type, linear, discrete-time filters in the presence of modeling errors is considered. The discussion is limited to stationary performance, and bounds are obtained for the performance index, the mean-squared error of estimates for suboptimal and optimal (Kalman) filters. The computation of these bounds requires information on only the model matrices and the range of errors for these matrices. Consequently, a design can easily compare the performance of a suboptimal filter with that of the optimal filter, when only the range of errors in the elements of the model matrices is available.
ERIC Educational Resources Information Center
El-khateeb, Mahmoud M. A.
2016-01-01
The purpose of this study aims to investigate the errors classes occurred by the Preparatory year students at King Saud University, through analysis student responses to the items of the study test, and to identify the varieties of the common errors and ratios of common errors that occurred in solving inequalities. In the collection of the data,…
Linear discriminant analysis with misallocation in training samples
NASA Technical Reports Server (NTRS)
Chhikara, R. (Principal Investigator); Mckeon, J.
1982-01-01
Linear discriminant analysis for a two-class case is studied in the presence of misallocation in training samples. A general appraoch to modeling of mislocation is formulated, and the mean vectors and covariance matrices of the mixture distributions are derived. The asymptotic distribution of the discriminant boundary is obtained and the asymptotic first two moments of the two types of error rate given. Certain numerical results for the error rates are presented by considering the random and two non-random misallocation models. It is shown that when the allocation procedure for training samples is objectively formulated, the effect of misallocation on the error rates of the Bayes linear discriminant rule can almost be eliminated. If, however, this is not possible, the use of Fisher rule may be preferred over the Bayes rule.
Attitude Determination Error Analysis System (ADEAS) mathematical specifications document
NASA Technical Reports Server (NTRS)
Nicholson, Mark; Markley, F.; Seidewitz, E.
1988-01-01
The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.
Passive quantum error correction of linear optics networks through error averaging
NASA Astrophysics Data System (ADS)
Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.
2018-02-01
We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.
Soft-decision decoding techniques for linear block codes and their error performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu
1996-01-01
The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.
2014-01-01
In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm. PMID:25018878
Valeri, Linda; Lin, Xihong; VanderWeele, Tyler J.
2014-01-01
Mediation analysis is a popular approach to examine the extent to which the effect of an exposure on an outcome is through an intermediate variable (mediator) and the extent to which the effect is direct. When the mediator is mis-measured the validity of mediation analysis can be severely undermined. In this paper we first study the bias of classical, non-differential measurement error on a continuous mediator in the estimation of direct and indirect causal effects in generalized linear models when the outcome is either continuous or discrete and exposure-mediator interaction may be present. Our theoretical results as well as a numerical study demonstrate that in the presence of non-linearities the bias of naive estimators for direct and indirect effects that ignore measurement error can take unintuitive directions. We then develop methods to correct for measurement error. Three correction approaches using method of moments, regression calibration and SIMEX are compared. We apply the proposed method to the Massachusetts General Hospital lung cancer study to evaluate the effect of genetic variants mediated through smoking on lung cancer risk. PMID:25220625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audren, Benjamin; Lesgourgues, Julien; Bird, Simeon
2013-01-01
We present forecasts for the accuracy of determining the parameters of a minimal cosmological model and the total neutrino mass based on combined mock data for a future Euclid-like galaxy survey and Planck. We consider two different galaxy surveys: a spectroscopic redshift survey and a cosmic shear survey. We make use of the Monte Carlo Markov Chains (MCMC) technique and assume two sets of theoretical errors. The first error is meant to account for uncertainties in the modelling of the effect of neutrinos on the non-linear galaxy power spectrum and we assume this error to be fully correlated in Fouriermore » space. The second error is meant to parametrize the overall residual uncertainties in modelling the non-linear galaxy power spectrum at small scales, and is conservatively assumed to be uncorrelated and to increase with the ratio of a given scale to the scale of non-linearity. It hence increases with wavenumber and decreases with redshift. With these two assumptions for the errors and assuming further conservatively that the uncorrelated error rises above 2% at k = 0.4 h/Mpc and z = 0.5, we find that a future Euclid-like cosmic shear/galaxy survey achieves a 1-σ error on M{sub ν} close to 32 meV/25 meV, sufficient for detecting the total neutrino mass with good significance. If the residual uncorrelated errors indeed rises rapidly towards smaller scales in the non-linear regime as we have assumed here then the data on non-linear scales does not increase the sensitivity to the total neutrino mass. Assuming instead a ten times smaller theoretical error with the same scale dependence, the error on the total neutrino mass decreases moderately from σ(M{sub ν}) = 18 meV to 14 meV when mildly non-linear scales with 0.1 h/Mpc < k < 0.6 h/Mpc are included in the analysis of the galaxy survey data.« less
Non-linear matter power spectrum covariance matrix errors and cosmological parameter uncertainties
NASA Astrophysics Data System (ADS)
Blot, L.; Corasaniti, P. S.; Amendola, L.; Kitching, T. D.
2016-06-01
The covariance of the matter power spectrum is a key element of the analysis of galaxy clustering data. Independent realizations of observational measurements can be used to sample the covariance, nevertheless statistical sampling errors will propagate into the cosmological parameter inference potentially limiting the capabilities of the upcoming generation of galaxy surveys. The impact of these errors as function of the number of realizations has been previously evaluated for Gaussian distributed data. However, non-linearities in the late-time clustering of matter cause departures from Gaussian statistics. Here, we address the impact of non-Gaussian errors on the sample covariance and precision matrix errors using a large ensemble of N-body simulations. In the range of modes where finite volume effects are negligible (0.1 ≲ k [h Mpc-1] ≲ 1.2), we find deviations of the variance of the sample covariance with respect to Gaussian predictions above ˜10 per cent at k > 0.3 h Mpc-1. Over the entire range these reduce to about ˜5 per cent for the precision matrix. Finally, we perform a Fisher analysis to estimate the effect of covariance errors on the cosmological parameter constraints. In particular, assuming Euclid-like survey characteristics we find that a number of independent realizations larger than 5000 is necessary to reduce the contribution of sampling errors to the cosmological parameter uncertainties at subpercent level. We also show that restricting the analysis to large scales k ≲ 0.2 h Mpc-1 results in a considerable loss in constraining power, while using the linear covariance to include smaller scales leads to an underestimation of the errors on the cosmological parameters.
Linguistic Pattern Analysis of Misspellings of Typically Developing Writers in Grades 1 to 9
Bahr, Ruth Huntley; Silliman, Elaine R.; Berninger, Virginia W.; Dow, Michael
2012-01-01
Purpose A mixed methods approach, evaluating triple word form theory, was used to describe linguistic patterns of misspellings. Method Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in grades 1–9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Results Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between grades 4–5. Similar error types were noted across age groups but the nature of linguistic feature error changed with age. Conclusions Triple word-form theory was supported. By grade 1, orthographic errors predominated and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects non-linear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling. PMID:22473834
Error analysis in inverse scatterometry. I. Modeling.
Al-Assaad, Rayan M; Byrne, Dale M
2007-02-01
Scatterometry is an optical technique that has been studied and tested in recent years in semiconductor fabrication metrology for critical dimensions. Previous work presented an iterative linearized method to retrieve surface-relief profile parameters from reflectance measurements upon diffraction. With the iterative linear solution model in this work, rigorous models are developed to represent the random and deterministic or offset errors in scatterometric measurements. The propagation of different types of error from the measurement data to the profile parameter estimates is then presented. The improvement in solution accuracies is then demonstrated with theoretical and experimental data by adjusting for the offset errors. In a companion paper (in process) an improved optimization method is presented to account for unknown offset errors in the measurements based on the offset error model.
Improved Equivalent Linearization Implementations Using Nonlinear Stiffness Evaluation
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Muravyov, Alexander A.
2001-01-01
This report documents two new implementations of equivalent linearization for solving geometrically nonlinear random vibration problems of complicated structures. The implementations are given the acronym ELSTEP, for "Equivalent Linearization using a STiffness Evaluation Procedure." Both implementations of ELSTEP are fundamentally the same in that they use a novel nonlinear stiffness evaluation procedure to numerically compute otherwise inaccessible nonlinear stiffness terms from commercial finite element programs. The commercial finite element program MSC/NASTRAN (NASTRAN) was chosen as the core of ELSTEP. The FORTRAN implementation calculates the nonlinear stiffness terms and performs the equivalent linearization analysis outside of NASTRAN. The Direct Matrix Abstraction Program (DMAP) implementation performs these operations within NASTRAN. Both provide nearly identical results. Within each implementation, two error minimization approaches for the equivalent linearization procedure are available - force and strain energy error minimization. Sample results for a simply supported rectangular plate are included to illustrate the analysis procedure.
Evaluation of the 3dMDface system as a tool for soft tissue analysis.
Hong, C; Choi, K; Kachroo, Y; Kwon, T; Nguyen, A; McComb, R; Moon, W
2017-06-01
To evaluate the accuracy of three-dimensional stereophotogrammetry by comparing values obtained from direct anthropometry and the 3dMDface system. To achieve a more comprehensive evaluation of the reliability of 3dMD, both linear and surface measurements were examined. UCLA Section of Orthodontics. Mannequin head as model for anthropometric measurements. Image acquisition and analysis were carried out on a mannequin head using 16 anthropometric landmarks and 21 measured parameters for linear and surface distances. 3D images using 3dMDface system were made at 0, 1 and 24 hours; 1, 2, 3 and 4 weeks. Error magnitude statistics used include mean absolute difference, standard deviation of error, relative error magnitude and root mean square error. Intra-observer agreement for all measurements was attained. Overall mean errors were lower than 1.00 mm for both linear and surface parameter measurements, except in 5 of the 21 measurements. The three longest parameter distances showed increased variation compared to shorter distances. No systematic errors were observed for all performed paired t tests (P<.05). Agreement values between two observers ranged from 0.91 to 0.99. Measurements on a mannequin confirmed the accuracy of all landmarks and parameters analysed in this study using the 3dMDface system. Results indicated that 3dMDface system is an accurate tool for linear and surface measurements, with potentially broad-reaching applications in orthodontics, surgical treatment planning and treatment evaluation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Error Analysis Of Students Working About Word Problem Of Linear Program With NEA Procedure
NASA Astrophysics Data System (ADS)
Santoso, D. A.; Farid, A.; Ulum, B.
2017-06-01
Evaluation and assessment is an important part of learning. In evaluation process of learning, written test is still commonly used. However, the tests usually do not following-up by further evaluation. The process only up to grading stage not to evaluate the process and errors which done by students. Whereas if the student has a pattern error and process error, actions taken can be more focused on the fault and why is that happen. NEA procedure provides a way for educators to evaluate student progress more comprehensively. In this study, students’ mistakes in working on some word problem about linear programming have been analyzed. As a result, mistakes are often made students exist in the modeling phase (transformation) and process skills (process skill) with the overall percentage distribution respectively 20% and 15%. According to the observations, these errors occur most commonly due to lack of precision of students in modeling and in hastiness calculation. Error analysis with students on this matter, it is expected educators can determine or use the right way to solve it in the next lesson.
Lee, Paul H
2017-06-01
Some confounders are nonlinearly associated with dependent variables, but they are often adjusted using a linear term. The purpose of this study was to examine the error of mis-specifying the nonlinear confounding effect. We carried out a simulation study to investigate the effect of adjusting for a nonlinear confounder in the estimation of a causal relationship between the exposure and outcome in 3 ways: using a linear term, binning into 5 equal-size categories, or using a restricted cubic spline of the confounder. Continuous, binary, and survival outcomes were simulated. We examined the confounder across varying measurement error. In addition, we performed a real data analysis examining the 3 strategies to handle the nonlinear effects of accelerometer-measured physical activity in the National Health and Nutrition Examination Survey 2003-2006 data. The mis-specification of a nonlinear confounder had little impact on causal effect estimation for continuous outcomes. For binary and survival outcomes, this mis-specification introduced bias, which could be eliminated using spline adjustment only when there is small measurement error of the confounder. Real data analysis showed that the associations between high blood pressure, high cholesterol, and diabetes and mortality adjusted for physical activity with restricted cubic spline were about 3% to 11% larger than their counterparts adjusted with a linear term. For continuous outcomes, confounders with nonlinear effects can be adjusting with a linear term. Spline adjustment should be used for binary and survival outcomes on confounders with small measurement error.
Simulating the performance of a distance-3 surface code in a linear ion trap
NASA Astrophysics Data System (ADS)
Trout, Colin J.; Li, Muyuan; Gutiérrez, Mauricio; Wu, Yukai; Wang, Sheng-Tao; Duan, Luming; Brown, Kenneth R.
2018-04-01
We explore the feasibility of implementing a small surface code with 9 data qubits and 8 ancilla qubits, commonly referred to as surface-17, using a linear chain of 171Yb+ ions. Two-qubit gates can be performed between any two ions in the chain with gate time increasing linearly with ion distance. Measurement of the ion state by fluorescence requires that the ancilla qubits be physically separated from the data qubits to avoid errors on the data due to scattered photons. We minimize the time required to measure one round of stabilizers by optimizing the mapping of the two-dimensional surface code to the linear chain of ions. We develop a physically motivated Pauli error model that allows for fast simulation and captures the key sources of noise in an ion trap quantum computer including gate imperfections and ion heating. Our simulations showed a consistent requirement of a two-qubit gate fidelity of ≥99.9% for the logical memory to have a better fidelity than physical two-qubit operations. Finally, we perform an analysis of the error subsets from the importance sampling method used to bound the logical error rates to gain insight into which error sources are particularly detrimental to error correction.
Zhou, Mu; Xu, Yu Bin; Ma, Lin; Tian, Shuo
2012-01-01
The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs). However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS) at the test point (TP) with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs) and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis. PMID:22737027
Zhou, Mu; Xu, Yu Bin; Ma, Lin; Tian, Shuo
2012-01-01
The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs). However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS) at the test point (TP) with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs) and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis.
Local Linear Regression for Data with AR Errors.
Li, Runze; Li, Yan
2009-07-01
In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.
NASA Astrophysics Data System (ADS)
Zheng, Sifa; Liu, Haitao; Dan, Jiabi; Lian, Xiaomin
2015-05-01
Linear time-invariant assumption for the determination of acoustic source characteristics, the source strength and the source impedance in the frequency domain has been proved reasonable in the design of an exhaust system. Different methods have been proposed to its identification and the multi-load method is widely used for its convenience by varying the load number and impedance. Theoretical error analysis has rarely been referred to and previous results have shown an overdetermined set of open pipes can reduce the identification error. This paper contributes a theoretical error analysis for the load selection. The relationships between the error in the identification of source characteristics and the load selection were analysed. A general linear time-invariant model was built based on the four-load method. To analyse the error of the source impedance, an error estimation function was proposed. The dispersion of the source pressure was obtained by an inverse calculation as an indicator to detect the accuracy of the results. It was found that for a certain load length, the load resistance at the frequency points of one-quarter wavelength of odd multiples results in peaks and in the maximum error for source impedance identification. Therefore, the load impedance of frequency range within the one-quarter wavelength of odd multiples should not be used for source impedance identification. If the selected loads have more similar resistance values (i.e., the same order of magnitude), the identification error of the source impedance could be effectively reduced.
Integrated Modeling Activities for the James Webb Space Telescope: Optical Jitter Analysis
NASA Technical Reports Server (NTRS)
Hyde, T. Tupper; Ha, Kong Q.; Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.
2004-01-01
This is a continuation of a series of papers on the integrated modeling activities for the James Webb Space Telescope(JWST). Starting with the linear optical model discussed in part one, and using the optical sensitivities developed in part two, we now assess the optical image motion and wavefront errors from the structural dynamics. This is often referred to as "jitter: analysis. The optical model is combined with the structural model and the control models to create a linear structural/optical/control model. The largest jitter is due to spacecraft reaction wheel assembly disturbances which are harmonic in nature and will excite spacecraft and telescope structural. The structural/optic response causes image quality degradation due to image motion (centroid error) as well as dynamic wavefront error. Jitter analysis results are used to predict imaging performance, improve the structural design, and evaluate the operational impact of the disturbance sources.
NASA Astrophysics Data System (ADS)
Rose, Michael Benjamin
A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical formulations that are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.
Deffner, Veronika; Küchenhoff, Helmut; Breitner, Susanne; Schneider, Alexandra; Cyrys, Josef; Peters, Annette
2018-05-01
The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg, Germany, exhibit measurement error from various sources. Measurements of mobile devices show classical possibly individual-specific measurement error; Berkson-type error, which may also vary individually, occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individual exposure measurements results in a mixture of the two error types. We extended existing bias analysis approaches to linear mixed models with a complex error structure including individual-specific error components, autocorrelated errors, and a mixture of classical and Berkson error. Theoretical considerations and simulation results show, that autocorrelation may severely change the attenuation of the effect estimations. Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of attenuation. Bias correction with the method of moments using data with mixture measurement error partially yielded better results compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement error of ultrafine particle measurements has little impact on the results. The developed methodology is generally applicable to longitudinal data with measurement error. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Error minimization algorithm for comparative quantitative PCR analysis: Q-Anal.
OConnor, William; Runquist, Elizabeth A
2008-07-01
Current methods for comparative quantitative polymerase chain reaction (qPCR) analysis, the threshold and extrapolation methods, either make assumptions about PCR efficiency that require an arbitrary threshold selection process or extrapolate to estimate relative levels of messenger RNA (mRNA) transcripts. Here we describe an algorithm, Q-Anal, that blends elements from current methods to by-pass assumptions regarding PCR efficiency and improve the threshold selection process to minimize error in comparative qPCR analysis. This algorithm uses iterative linear regression to identify the exponential phase for both target and reference amplicons and then selects, by minimizing linear regression error, a fluorescence threshold where efficiencies for both amplicons have been defined. From this defined fluorescence threshold, cycle time (Ct) and the error for both amplicons are calculated and used to determine the expression ratio. Ratios in complementary DNA (cDNA) dilution assays from qPCR data were analyzed by the Q-Anal method and compared with the threshold method and an extrapolation method. Dilution ratios determined by the Q-Anal and threshold methods were 86 to 118% of the expected cDNA ratios, but relative errors for the Q-Anal method were 4 to 10% in comparison with 4 to 34% for the threshold method. In contrast, ratios determined by an extrapolation method were 32 to 242% of the expected cDNA ratios, with relative errors of 67 to 193%. Q-Anal will be a valuable and quick method for minimizing error in comparative qPCR analysis.
Croft, Stephen; Burr, Thomas Lee; Favalli, Andrea; ...
2015-12-10
We report that the declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar – Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to modelmore » the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. Lastly, we find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters« less
Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.
2014-01-01
This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390
Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A
2018-04-15
For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.
Linear and Order Statistics Combiners for Pattern Classification
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep; Lau, Sonie (Technical Monitor)
2001-01-01
Several researchers have experimentally shown that substantial improvements can be obtained in difficult pattern recognition problems by combining or integrating the outputs of multiple classifiers. This chapter provides an analytical framework to quantify the improvements in classification results due to combining. The results apply to both linear combiners and order statistics combiners. We first show that to a first order approximation, the error rate obtained over and above the Bayes error rate, is directly proportional to the variance of the actual decision boundaries around the Bayes optimum boundary. Combining classifiers in output space reduces this variance, and hence reduces the 'added' error. If N unbiased classifiers are combined by simple averaging. the added error rate can be reduced by a factor of N if the individual errors in approximating the decision boundaries are uncorrelated. Expressions are then derived for linear combiners which are biased or correlated, and the effect of output correlations on ensemble performance is quantified. For order statistics based non-linear combiners, we derive expressions that indicate how much the median, the maximum and in general the i-th order statistic can improve classifier performance. The analysis presented here facilitates the understanding of the relationships among error rates, classifier boundary distributions, and combining in output space. Experimental results on several public domain data sets are provided to illustrate the benefits of combining and to support the analytical results.
Statistical image quantification toward optimal scan fusion and change quantification
NASA Astrophysics Data System (ADS)
Potesil, Vaclav; Zhou, Xiang Sean
2007-03-01
Recent advance of imaging technology has brought new challenges and opportunities for automatic and quantitative analysis of medical images. With broader accessibility of more imaging modalities for more patients, fusion of modalities/scans from one time point and longitudinal analysis of changes across time points have become the two most critical differentiators to support more informed, more reliable and more reproducible diagnosis and therapy decisions. Unfortunately, scan fusion and longitudinal analysis are both inherently plagued with increased levels of statistical errors. A lack of comprehensive analysis by imaging scientists and a lack of full awareness by physicians pose potential risks in clinical practice. In this paper, we discuss several key error factors affecting imaging quantification, studying their interactions, and introducing a simulation strategy to establish general error bounds for change quantification across time. We quantitatively show that image resolution, voxel anisotropy, lesion size, eccentricity, and orientation are all contributing factors to quantification error; and there is an intricate relationship between voxel anisotropy and lesion shape in affecting quantification error. Specifically, when two or more scans are to be fused at feature level, optimal linear fusion analysis reveals that scans with voxel anisotropy aligned with lesion elongation should receive a higher weight than other scans. As a result of such optimal linear fusion, we will achieve a lower variance than naïve averaging. Simulated experiments are used to validate theoretical predictions. Future work based on the proposed simulation methods may lead to general guidelines and error lower bounds for quantitative image analysis and change detection.
Error analysis of finite element method for Poisson–Nernst–Planck equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuzhou; Sun, Pengtao; Zheng, Bin
A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.
Analysis of the PLL phase error in presence of simulated ionospheric scintillation events
NASA Astrophysics Data System (ADS)
Forte, B.
2012-01-01
The functioning of standard phase locked loops (PLL), including those used to track radio signals from Global Navigation Satellite Systems (GNSS), is based on a linear approximation which holds in presence of small phase errors. Such an approximation represents a reasonable assumption in most of the propagation channels. However, in presence of a fading channel the phase error may become large, making the linear approximation no longer valid. The PLL is then expected to operate in a non-linear regime. As PLLs are generally designed and expected to operate in their linear regime, whenever the non-linear regime comes into play, they will experience a serious limitation in their capability to track the corresponding signals. The phase error and the performance of a typical PLL embedded into a commercial multiconstellation GNSS receiver were analyzed in presence of simulated ionospheric scintillation. Large phase errors occurred during scintillation-induced signal fluctuations although cycle slips only occurred during the signal re-acquisition after a loss of lock. Losses of lock occurred whenever the signal faded below the minimumC/N0threshold allowed for tracking. The simulations were performed for different signals (GPS L1C/A, GPS L2C, GPS L5 and Galileo L1). L5 and L2C proved to be weaker than L1. It appeared evident that the conditions driving the PLL phase error in the specific case of GPS receivers in presence of scintillation-induced signal perturbations need to be evaluated in terms of the combination of the minimumC/N0 tracking threshold, lock detector thresholds, possible cycle slips in the tracking PLL and accuracy of the observables (i.e. the error propagation onto the observables stage).
A Finite Element Analysis of a Carbon Fiber Composite Micro Air Vehicle Wing
2012-03-22
3. Errors in the manufacturing of the laminate resulting in errors in ply orientation. Each of these was examined in order to determine a root ...material properties. 4.2.4. Vein Width The widths of the individual veins of the manufactured wing were varied linearly from root to tip of the...wing. In the sizing of the engineered wing, the width of the veins were varied linearly from the root of the vein to the tip. For manufacturing
Local projection stabilization for linearized Brinkman-Forchheimer-Darcy equation
NASA Astrophysics Data System (ADS)
Skrzypacz, Piotr
2017-09-01
The Local Projection Stabilization (LPS) is presented for the linearized Brinkman-Forchheimer-Darcy equation with high Reynolds numbers. The considered equation can be used to model porous medium flows in chemical reactors of packed bed type. The detailed finite element analysis is presented for the case of nonconstant porosity. The enriched variant of LPS is based on the equal order interpolation for the velocity and pressure. The optimal error bounds for the velocity and pressure errors are justified numerically.
Sarrigiannis, Ptolemaios G; Zhao, Yifan; Wei, Hua-Liang; Billings, Stephen A; Fotheringham, Jayne; Hadjivassiliou, Marios
2014-01-01
To introduce a new method of quantitative EEG analysis in the time domain, the error reduction ratio (ERR)-causality test. To compare performance against cross-correlation and coherence with phase measures. A simulation example was used as a gold standard to assess the performance of ERR-causality, against cross-correlation and coherence. The methods were then applied to real EEG data. Analysis of both simulated and real EEG data demonstrates that ERR-causality successfully detects dynamically evolving changes between two signals, with very high time resolution, dependent on the sampling rate of the data. Our method can properly detect both linear and non-linear effects, encountered during analysis of focal and generalised seizures. We introduce a new quantitative EEG method of analysis. It detects real time levels of synchronisation in the linear and non-linear domains. It computes directionality of information flow with corresponding time lags. This novel dynamic real time EEG signal analysis unveils hidden neural network interactions with a very high time resolution. These interactions cannot be adequately resolved by the traditional methods of coherence and cross-correlation, which provide limited results in the presence of non-linear effects and lack fidelity for changes appearing over small periods of time. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Performance Metrics, Error Modeling, and Uncertainty Quantification
NASA Technical Reports Server (NTRS)
Tian, Yudong; Nearing, Grey S.; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Tang, Ling
2016-01-01
A common set of statistical metrics has been used to summarize the performance of models or measurements- the most widely used ones being bias, mean square error, and linear correlation coefficient. They assume linear, additive, Gaussian errors, and they are interdependent, incomplete, and incapable of directly quantifying uncertainty. The authors demonstrate that these metrics can be directly derived from the parameters of the simple linear error model. Since a correct error model captures the full error information, it is argued that the specification of a parametric error model should be an alternative to the metrics-based approach. The error-modeling methodology is applicable to both linear and nonlinear errors, while the metrics are only meaningful for linear errors. In addition, the error model expresses the error structure more naturally, and directly quantifies uncertainty. This argument is further explained by highlighting the intrinsic connections between the performance metrics, the error model, and the joint distribution between the data and the reference.
Cognitive flexibility correlates with gambling severity in young adults.
Leppink, Eric W; Redden, Sarah A; Chamberlain, Samuel R; Grant, Jon E
2016-10-01
Although gambling disorder (GD) is often characterized as a problem of impulsivity, compulsivity has recently been proposed as a potentially important feature of addictive disorders. The present analysis assessed the neurocognitive and clinical relationship between compulsivity on gambling behavior. A sample of 552 non-treatment seeking gamblers age 18-29 was recruited from the community for a study on gambling in young adults. Gambling severity levels included both casual and disordered gamblers. All participants completed the Intra/Extra-Dimensional Set Shift (IED) task, from which the total adjusted errors were correlated with gambling severity measures, and linear regression modeling was used to assess three error measures from the task. The present analysis found significant positive correlations between problems with cognitive flexibility and gambling severity (reflected by the number of DSM-5 criteria, gambling frequency, amount of money lost in the past year, and gambling urge/behavior severity). IED errors also showed a positive correlation with self-reported compulsive behavior scores. A significant correlation was also found between IED errors and non-planning impulsivity from the BIS. Linear regression models based on total IED errors, extra-dimensional (ED) shift errors, or pre-ED shift errors indicated that these factors accounted for a significant portion of the variance noted in several variables. These findings suggest that cognitive flexibility may be an important consideration in the assessment of gamblers. Results from correlational and linear regression analyses support this possibility, but the exact contributions of both impulsivity and cognitive flexibility remain entangled. Future studies will ideally be able to assess the longitudinal relationships between gambling, compulsivity, and impulsivity, helping to clarify the relative contributions of both impulsive and compulsive features. Copyright © 2016 Elsevier Ltd. All rights reserved.
Performance analysis of a cascaded coding scheme with interleaved outer code
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.
Evaluation of algorithms for geological thermal-inertia mapping
NASA Technical Reports Server (NTRS)
Miller, S. H.; Watson, K.
1977-01-01
The errors incurred in producing a thermal inertia map are of three general types: measurement, analysis, and model simplification. To emphasize the geophysical relevance of these errors, they were expressed in terms of uncertainty in thermal inertia and compared with the thermal inertia values of geologic materials. Thus the applications and practical limitations of the technique were illustrated. All errors were calculated using the parameter values appropriate to a site at the Raft River, Id. Although these error values serve to illustrate the magnitudes that can be expected from the three general types of errors, extrapolation to other sites should be done using parameter values particular to the area. Three surface temperature algorithms were evaluated: linear Fourier series, finite difference, and Laplace transform. In terms of resulting errors in thermal inertia, the Laplace transform method is the most accurate (260 TIU), the forward finite difference method is intermediate (300 TIU), and the linear Fourier series method the least accurate (460 TIU).
Linear regression in astronomy. II
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Muravyov, Alexander A.
2002-01-01
Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.
Online beam energy measurement of Beijing electron positron collider II linear accelerator
NASA Astrophysics Data System (ADS)
Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Online beam energy measurement of Beijing electron positron collider II linear accelerator.
Wang, S; Iqbal, M; Liu, R; Chi, Y
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Performance analysis of an integrated GPS/inertial attitude determination system. M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Sullivan, Wendy I.
1994-01-01
The performance of an integrated GPS/inertial attitude determination system is investigated using a linear covariance analysis. The principles of GPS interferometry are reviewed, and the major error sources of both interferometers and gyroscopes are discussed and modeled. A new figure of merit, attitude dilution of precision (ADOP), is defined for two possible GPS attitude determination methods, namely single difference and double difference interferometry. Based on this figure of merit, a satellite selection scheme is proposed. The performance of the integrated GPS/inertial attitude determination system is determined using a linear covariance analysis. Based on this analysis, it is concluded that the baseline errors (i.e., knowledge of the GPS interferometer baseline relative to the vehicle coordinate system) are the limiting factor in system performance. By reducing baseline errors, it should be possible to use lower quality gyroscopes without significantly reducing performance. For the cases considered, single difference interferometry is only marginally better than double difference interferometry. Finally, the performance of the system is found to be relatively insensitive to the satellite selection technique.
Low-dimensional Representation of Error Covariance
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan
2000-01-01
Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.
Nonlinear grid error effects on numerical solution of partial differential equations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1980-01-01
Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.
Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B
2012-05-01
Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.
NASA Astrophysics Data System (ADS)
Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy
2011-08-01
Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.
The Effects of Measurement Error on Statistical Models for Analyzing Change. Final Report.
ERIC Educational Resources Information Center
Dunivant, Noel
The results of six major projects are discussed including a comprehensive mathematical and statistical analysis of the problems caused by errors of measurement in linear models for assessing change. In a general matrix representation of the problem, several new analytic results are proved concerning the parameters which affect bias in…
NASA Astrophysics Data System (ADS)
Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei
This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.
NASA Astrophysics Data System (ADS)
Bhargava, K.; Kalnay, E.; Carton, J.; Yang, F.
2017-12-01
Systematic forecast errors, arising from model deficiencies, form a significant portion of the total forecast error in weather prediction models like the Global Forecast System (GFS). While much effort has been expended to improve models, substantial model error remains. The aim here is to (i) estimate the model deficiencies in the GFS that lead to systematic forecast errors, (ii) implement an online correction (i.e., within the model) scheme to correct GFS following the methodology of Danforth et al. [2007] and Danforth and Kalnay [2008, GRL]. Analysis Increments represent the corrections that new observations make on, in this case, the 6-hr forecast in the analysis cycle. Model bias corrections are estimated from the time average of the analysis increments divided by 6-hr, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-2016, seasonal means of the 6-hr model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which is attributed to improvements in the specification of the SSTs. These results encourage application of online correction, as suggested by Danforth and Kalnay, for mean, seasonal and diurnal and semidiurnal model biases in GFS to reduce both systematic and random errors. As the error growth in the short-term is still linear, estimated model bias corrections can be added as a forcing term in the model tendency equation to correct online. Preliminary experiments with GFS, correcting temperature and specific humidity online show reduction in model bias in 6-hr forecast. This approach can then be used to guide and optimize the design of sub-grid scale physical parameterizations, more accurate discretization of the model dynamics, boundary conditions, radiative transfer codes, and other potential model improvements which can then replace the empirical correction scheme. The analysis increments also provide guidance in testing new physical parameterizations.
Autonomous satellite navigation by stellar refraction
NASA Technical Reports Server (NTRS)
Gounley, R.; White, R.; Gai, E.
1983-01-01
This paper describes an error analysis of an autonomous navigator using refraction measurements of starlight passing through the upper atmosphere. The analysis is based on a discrete linear Kalman filter. The filter generated steady-state values of navigator performance for a variety of test cases. Results of these simulations show that in low-earth orbit position-error standard deviations of less than 0.100 km may be obtained using only 40 star sightings per orbit.
NASA Astrophysics Data System (ADS)
Husain, Riyasat; Ghodke, A. D.
2017-08-01
Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Geometric analysis and restitution of digital multispectral scanner data arrays
NASA Technical Reports Server (NTRS)
Baker, J. R.; Mikhail, E. M.
1975-01-01
An investigation was conducted to define causes of geometric defects within digital multispectral scanner (MSS) data arrays, to analyze the resulting geometric errors, and to investigate restitution methods to correct or reduce these errors. Geometric transformation relationships for scanned data, from which collinearity equations may be derived, served as the basis of parametric methods of analysis and restitution of MSS digital data arrays. The linearization of these collinearity equations is presented. Algorithms considered for use in analysis and restitution included the MSS collinearity equations, piecewise polynomials based on linearized collinearity equations, and nonparametric algorithms. A proposed system for geometric analysis and restitution of MSS digital data arrays was used to evaluate these algorithms, utilizing actual MSS data arrays. It was shown that collinearity equations and nonparametric algorithms both yield acceptable results, but nonparametric algorithms possess definite advantages in computational efficiency. Piecewise polynomials were found to yield inferior results.
Small, J R
1993-01-01
This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434
NASA Astrophysics Data System (ADS)
Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna
2018-03-01
The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.
Linearizing feedforward/feedback attitude control
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
1991-01-01
An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.
A Method of Calculating Motion Error in a Linear Motion Bearing Stage
Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok
2015-01-01
We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715
Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.
Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard
2017-04-01
To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.
Optical analysis and thermal management of 2-cell strings linear concentrating photovoltaic system
NASA Astrophysics Data System (ADS)
Reddy, K. S.; Kamnapure, Nikhilesh R.
2015-09-01
This paper presents the optical and thermal analyses for a linear concentrating photovoltaic/thermal collector under different operating conditions. Linear concentrating photovoltaic system (CPV) consists of a highly reflective mirror, a receiver and semi-dual axis tracking mechanism. The CPV receiver embodies two strings of triple-junction cells (100 cells in each string) adhered to a mild steel circular tube mounted at the focal length of trough. This system provides 560 W of electricity and 1580 W of heat which needs to be dissipated by active cooling. The Al2O3/Water nanofluid is used as heat transfer fluid (HTF) flowing through circular receiver for CPV cells cooling. Optical analysis of linear CPV system with 3.35 m2 aperture and geometric concentration ratio (CR) of 35 is carried out using Advanced System Analysis Program (ASAP) an optical simulation tool. Non-uniform intensity distribution model of solar disk is used to model the sun in ASAP. The impact of random errors including slope error (σslope), tracking error (σtrack) and apparent change in sun's width (σsun) on optical performance of collector is shown. The result from the optical simulations shows the optical efficiency (ηo) of 88.32% for 2-cell string CPV concentrator. Thermal analysis of CPV receiver is carried out with conjugate heat transfer modeling in ANSYS FLUENT-14. Numerical simulations of Al2O3/Water nanofluid turbulent forced convection are performed for various parameters such as nanoparticle volume fraction (φ), Reynolds number (Re). The addition of the nanoparticle in water enhances the heat transfer in the ranges of 3.28% - 35.6% for φ = 1% - 6%. Numerical results are compared with literature data which shows the reasonable agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong W. Lee
During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less
Ruuska, Salla; Hämäläinen, Wilhelmiina; Kajava, Sari; Mughal, Mikaela; Matilainen, Pekka; Mononen, Jaakko
2018-03-01
The aim of the present study was to evaluate empirically confusion matrices in device validation. We compared the confusion matrix method to linear regression and error indices in the validation of a device measuring feeding behaviour of dairy cattle. In addition, we studied how to extract additional information on classification errors with confusion probabilities. The data consisted of 12 h behaviour measurements from five dairy cows; feeding and other behaviour were detected simultaneously with a device and from video recordings. The resulting 216 000 pairs of classifications were used to construct confusion matrices and calculate performance measures. In addition, hourly durations of each behaviour were calculated and the accuracy of measurements was evaluated with linear regression and error indices. All three validation methods agreed when the behaviour was detected very accurately or inaccurately. Otherwise, in the intermediate cases, the confusion matrix method and error indices produced relatively concordant results, but the linear regression method often disagreed with them. Our study supports the use of confusion matrix analysis in validation since it is robust to any data distribution and type of relationship, it makes a stringent evaluation of validity, and it offers extra information on the type and sources of errors. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hamer, H. A.; Johnson, K. G.
1986-01-01
An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors.
Chaves, Sandra; Gadanho, Mário; Tenreiro, Rogério; Cabrita, José
1999-01-01
Metronidazole susceptibility of 100 Helicobacter pylori strains was assessed by determining the inhibition zone diameters by disk diffusion test and the MICs by agar dilution and PDM Epsilometer test (E test). Linear regression analysis was performed, allowing the definition of significant linear relations, and revealed correlations of disk diffusion results with both E-test and agar dilution results (r2 = 0.88 and 0.81, respectively). No significant differences (P = 0.84) were found between MICs defined by E test and those defined by agar dilution, taken as a standard. Reproducibility comparison between E-test and disk diffusion tests showed that they are equivalent and with good precision. Two interpretative susceptibility schemes (with or without an intermediate class) were compared by an interpretative error rate analysis method. The susceptibility classification scheme that included the intermediate category was retained, and breakpoints were assessed for diffusion assay with 5-μg metronidazole disks. Strains with inhibition zone diameters less than 16 mm were defined as resistant (MIC > 8 μg/ml), those with zone diameters equal to or greater than 16 mm but less than 21 mm were considered intermediate (4 μg/ml < MIC ≤ 8 μg/ml), and those with zone diameters of 21 mm or greater were regarded as susceptible (MIC ≤ 4 μg/ml). Error rate analysis applied to this classification scheme showed occurrence frequencies of 1% for major errors and 7% for minor errors, when the results were compared to those obtained by agar dilution. No very major errors were detected, suggesting that disk diffusion might be a good alternative for determining the metronidazole sensitivity of H. pylori strains. PMID:10203543
Landsat D Thematic Mapper image dimensionality reduction and geometric correction accuracy
NASA Technical Reports Server (NTRS)
Ford, G. E.
1986-01-01
To characterize and quantify the performance of the Landsat thematic mapper (TM), techniques for dimensionality reduction by linear transformation have been studied and evaluated and the accuracy of the correction of geometric errors in TM images analyzed. Theoretical evaluations and comparisons for existing methods for the design of linear transformation for dimensionality reduction are presented. These methods include the discrete Karhunen Loeve (KL) expansion, Multiple Discriminant Analysis (MDA), Thematic Mapper (TM)-Tasseled Cap Linear Transformation and Singular Value Decomposition (SVD). A unified approach to these design problems is presented in which each method involves optimizing an objective function with respect to the linear transformation matrix. From these studies, four modified methods are proposed. They are referred to as the Space Variant Linear Transformation, the KL Transform-MDA hybrid method, and the First and Second Version of the Weighted MDA method. The modifications involve the assignment of weights to classes to achieve improvements in the class conditional probability of error for classes with high weights. Experimental evaluations of the existing and proposed methods have been performed using the six reflective bands of the TM data. It is shown that in terms of probability of classification error and the percentage of the cumulative eigenvalues, the six reflective bands of the TM data require only a three dimensional feature space. It is shown experimentally as well that for the proposed methods, the classes with high weights have improvements in class conditional probability of error estimates as expected.
Modified linear predictive coding approach for moving target tracking by Doppler radar
NASA Astrophysics Data System (ADS)
Ding, Yipeng; Lin, Xiaoyi; Sun, Ke-Hui; Xu, Xue-Mei; Liu, Xi-Yao
2016-07-01
Doppler radar is a cost-effective tool for moving target tracking, which can support a large range of civilian and military applications. A modified linear predictive coding (LPC) approach is proposed to increase the target localization accuracy of the Doppler radar. Based on the time-frequency analysis of the received echo, the proposed approach first real-time estimates the noise statistical parameters and constructs an adaptive filter to intelligently suppress the noise interference. Then, a linear predictive model is applied to extend the available data, which can help improve the resolution of the target localization result. Compared with the traditional LPC method, which empirically decides the extension data length, the proposed approach develops an error array to evaluate the prediction accuracy and thus, adjust the optimum extension data length intelligently. Finally, the prediction error array is superimposed with the predictor output to correct the prediction error. A series of experiments are conducted to illustrate the validity and performance of the proposed techniques.
NASA Technical Reports Server (NTRS)
Wilmington, R. P.; Klute, Glenn K. (Editor); Carroll, Amy E. (Editor); Stuart, Mark A. (Editor); Poliner, Jeff (Editor); Rajulu, Sudhakar (Editor); Stanush, Julie (Editor)
1992-01-01
Kinematics, the study of motion exclusive of the influences of mass and force, is one of the primary methods used for the analysis of human biomechanical systems as well as other types of mechanical systems. The Anthropometry and Biomechanics Laboratory (ABL) in the Crew Interface Analysis section of the Man-Systems Division performs both human body kinematics as well as mechanical system kinematics using the Ariel Performance Analysis System (APAS). The APAS supports both analysis of analog signals (e.g. force plate data collection) as well as digitization and analysis of video data. The current evaluations address several methodology issues concerning the accuracy of the kinematic data collection and analysis used in the ABL. This document describes a series of evaluations performed to gain quantitative data pertaining to position and constant angular velocity movements under several operating conditions. Two-dimensional as well as three-dimensional data collection and analyses were completed in a controlled laboratory environment using typical hardware setups. In addition, an evaluation was performed to evaluate the accuracy impact due to a single axis camera offset. Segment length and positional data exhibited errors within 3 percent when using three-dimensional analysis and yielded errors within 8 percent through two-dimensional analysis (Direct Linear Software). Peak angular velocities displayed errors within 6 percent through three-dimensional analyses and exhibited errors of 12 percent when using two-dimensional analysis (Direct Linear Software). The specific results from this series of evaluations and their impacts on the methodology issues of kinematic data collection and analyses are presented in detail. The accuracy levels observed in these evaluations are also presented.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Lee, Hong-Tao
1989-01-01
A new approach for determination of machine-tool settings for spiral bevel gears is proposed. The proposed settings provide a predesigned parabolic function of transmission errors and the desired location and orientation of the bearing contact. The predesigned parabolic function of transmission errors is able to absorb piece-wise linear functions of transmission errors that are caused by the gear misalignment and reduce gear noise. The gears are face-milled by head cutters with conical surfaces or surfaces of revolution. A computer program for simulation of meshing, bearing contact and determination of transmission errors for misaligned gear has been developed.
Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan
2009-01-01
The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.
Periodic trim solutions with hp-version finite elements in time
NASA Technical Reports Server (NTRS)
Peters, David A.; Hou, Lin-Jun
1990-01-01
Finite elements in time as an alternative strategy for rotorcraft trim problems are studied. The research treats linear flap and linearized flap-lag response both for quasi-trim and trim cases. The connection between Fourier series analysis and hp-finite elements for periodic a problem is also examined. It is proved that Fourier series is a special case of space-time finite elements in which one element is used with a strong displacement formulation. Comparisons are made with respect to accuracy among Fourier analysis, displacement methods, and mixed methods over a variety parameters. The hp trade-off is studied for the periodic trim problem to provide an optimum step size and order of polynomial for a given error criteria. It is found that finite elements in time can outperform Fourier analysis for periodic problems, and for some given error criteria. The mixed method provides better results than does the displacement method.
On Performance of Linear Multiuser Detectors for Wireless Multimedia Applications
NASA Astrophysics Data System (ADS)
Agarwal, Rekha; Reddy, B. V. R.; Bindu, E.; Nayak, Pinki
In this paper, performance of different multi-rate schemes in DS-CDMA system is evaluated. The analysis of multirate linear multiuser detectors with multiprocessing gain is analyzed for synchronous Code Division Multiple Access (CDMA) systems. Variable data rate is achieved by varying the processing gain. Our conclusion is that bit error rate for multirate and single rate systems can be made same with a tradeoff with number of users in linear multiuser detectors.
Goal-oriented explicit residual-type error estimates in XFEM
NASA Astrophysics Data System (ADS)
Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin
2013-08-01
A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.
An Application of Linear Covariance Analysis to the Design of Responsive Near-Rendezvous Missions
2007-06-01
accurately before making large ma- neuvers. A fifth type of error is maneuver knowledge error (MKER). This error accounts for how well a spacecraft is able...utilized due in a large part to the cost of designing and launching spacecraft , in a market where currently there are not many options for launching...is then ordered to fire its thrusters to increase its orbital altitude to 800 km. Before the maneuver the spacecraft is moving with some velocity, V
Research on the error model of airborne celestial/inertial integrated navigation system
NASA Astrophysics Data System (ADS)
Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang
2015-02-01
Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.
Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin
2012-06-01
Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.
Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data
Ying, Gui-shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard
2017-01-01
Purpose To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. Methods We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field data in the elderly. Results When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI −0.03 to 0.32D, P=0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, P=0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller P-values, while analysis of the worse eye provided larger P-values than mixed effects models and marginal models. Conclusion In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision. PMID:28102741
Anselmi, Nicola; Salucci, Marco; Rocca, Paolo; Massa, Andrea
2016-01-01
The sensitivity to both calibration errors and mutual coupling effects of the power pattern radiated by a linear array is addressed. Starting from the knowledge of the nominal excitations of the array elements and the maximum uncertainty on their amplitudes, the bounds of the pattern deviations from the ideal one are analytically derived by exploiting the Circular Interval Analysis (CIA). A set of representative numerical results is reported and discussed to assess the effectiveness and the reliability of the proposed approach also in comparison with state-of-the-art methods and full-wave simulations. PMID:27258274
Focal spot motion of linear accelerators and its effect on portal image analysis.
Sonke, Jan-Jakob; Brand, Bob; van Herk, Marcel
2003-06-01
The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned approximately 0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motionwas estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spotmotion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate.
NASA Technical Reports Server (NTRS)
Whitlock, C. H., III
1977-01-01
Constituents with linear radiance gradients with concentration may be quantified from signals which contain nonlinear atmospheric and surface reflection effects for both homogeneous and non-homogeneous water bodies provided accurate data can be obtained and nonlinearities are constant with wavelength. Statistical parameters must be used which give an indication of bias as well as total squared error to insure that an equation with an optimum combination of bands is selected. It is concluded that the effect of error in upwelled radiance measurements is to reduce the accuracy of the least square fitting process and to increase the number of points required to obtain a satisfactory fit. The problem of obtaining a multiple regression equation that is extremely sensitive to error is discussed.
Papadelis, Christos; Chen, Zhe; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Chouvarda, Ioanna; Bekiaris, Evangelos; Maglaveras, Nikos
2007-09-01
The objective of this study is the development and evaluation of efficient neurophysiological signal statistics, which may assess the driver's alertness level and serve as potential indicators of sleepiness in the design of an on-board countermeasure system. Multichannel EEG, EOG, EMG, and ECG were recorded from sleep-deprived subjects exposed to real field driving conditions. A number of severe driving errors occurred during the experiments. The analysis was performed in two main dimensions: the macroscopic analysis that estimates the on-going temporal evolution of physiological measurements during the driving task, and the microscopic event analysis that focuses on the physiological measurements' alterations just before, during, and after the driving errors. Two independent neurophysiologists visually interpreted the measurements. The EEG data were analyzed by using both linear and non-linear analysis tools. We observed the occurrence of brief paroxysmal bursts of alpha activity and an increased synchrony among EEG channels before the driving errors. The alpha relative band ratio (RBR) significantly increased, and the Cross Approximate Entropy that quantifies the synchrony among channels also significantly decreased before the driving errors. Quantitative EEG analysis revealed significant variations of RBR by driving time in the frequency bands of delta, alpha, beta, and gamma. Most of the estimated EEG statistics, such as the Shannon Entropy, Kullback-Leibler Entropy, Coherence, and Cross-Approximate Entropy, were significantly affected by driving time. We also observed an alteration of eyes blinking duration by increased driving time and a significant increase of eye blinks' number and duration before driving errors. EEG and EOG are promising neurophysiological indicators of driver sleepiness and have the potential of monitoring sleepiness in occupational settings incorporated in a sleepiness countermeasure device. The occurrence of brief paroxysmal bursts of alpha activity before severe driving errors is described in detail for the first time. Clear evidence is presented that eye-blinking statistics are sensitive to the driver's sleepiness and should be considered in the design of an efficient and driver-friendly sleepiness detection countermeasure device.
NASA Technical Reports Server (NTRS)
Snow, Frank; Harman, Richard; Garrick, Joseph
1988-01-01
The Gamma Ray Observatory (GRO) spacecraft needs a highly accurate attitude knowledge to achieve its mission objectives. Utilizing the fixed-head star trackers (FHSTs) for observations and gyroscopes for attitude propagation, the discrete Kalman Filter processes the attitude data to obtain an onboard accuracy of 86 arc seconds (3 sigma). A combination of linear analysis and simulations using the GRO Software Simulator (GROSS) are employed to investigate the Kalman filter for stability and the effects of corrupted observations (misalignment, noise), incomplete dynamic modeling, and nonlinear errors on Kalman filter. In the simulations, on-board attitude is compared with true attitude, the sensitivity of attitude error to model errors is graphed, and a statistical analysis is performed on the residuals of the Kalman Filter. In this paper, the modeling and sensor errors that degrade the Kalman filter solution beyond mission requirements are studied, and methods are offered to identify the source of these errors.
40 CFR Appendix B to Part 75 - Quality Assurance and Quality Control Procedures
Code of Federal Regulations, 2012 CFR
2012-07-01
... Systems 1.2.1Calibration Error Test and Linearity Check Procedures Keep a written record of the procedures used for daily calibration error tests and linearity checks (e.g., how gases are to be injected..., and when calibration adjustments should be made). Identify any calibration error test and linearity...
40 CFR Appendix B to Part 75 - Quality Assurance and Quality Control Procedures
Code of Federal Regulations, 2013 CFR
2013-07-01
... Systems 1.2.1Calibration Error Test and Linearity Check Procedures Keep a written record of the procedures used for daily calibration error tests and linearity checks (e.g., how gases are to be injected..., and when calibration adjustments should be made). Identify any calibration error test and linearity...
A Test Strategy for High Resolution Image Scanners.
1983-10-01
for multivariate analysis. Holt, Richart and Winston, Inc., New York. Graybill , F.A., 1961: An introduction to linear statistical models . SVolume I...i , j i -(7) 02 1 )2 y 4n .i ij 13 The linear estimation model for the polynomial coefficients can be set up as - =; =(8) with T = ( x’ . . X-nn "X...Resolution Image Scanner MTF Geometrical and radiometric performance Dynamic range, linearity , noise - Dynamic scanning errors Response uniformity Skewness of
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man
2011-10-01
A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible.
Linguistic pattern analysis of misspellings of typically developing writers in grades 1-9.
Bahr, Ruth Huntley; Sillian, Elaine R; Berninger, Virginia W; Dow, Michael
2012-12-01
A mixed-methods approach, evaluating triple word-form theory, was used to describe linguistic patterns of misspellings. Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in Grades 1-9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade-level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between Grades 4 and 5. Similar error types were noted across age groups, but the nature of linguistic feature error changed with age. Triple word-form theory was supported. By Grade 1, orthographic errors predominated, and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects nonlinear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling.
Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.
ERIC Educational Resources Information Center
Olson, Jeffery E.
Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…
On the impact of relatedness on SNP association analysis.
Gross, Arnd; Tönjes, Anke; Scholz, Markus
2017-12-06
When testing for SNP (single nucleotide polymorphism) associations in related individuals, observations are not independent. Simple linear regression assuming independent normally distributed residuals results in an increased type I error and the power of the test is also affected in a more complicate manner. Inflation of type I error is often successfully corrected by genomic control. However, this reduces the power of the test when relatedness is of concern. In the present paper, we derive explicit formulae to investigate how heritability and strength of relatedness contribute to variance inflation of the effect estimate of the linear model. Further, we study the consequences of variance inflation on hypothesis testing and compare the results with those of genomic control correction. We apply the developed theory to the publicly available HapMap trio data (N=129), the Sorbs (a self-contained population with N=977 characterised by a cryptic relatedness structure) and synthetic family studies with different sample sizes (ranging from N=129 to N=999) and different degrees of relatedness. We derive explicit and easily to apply approximation formulae to estimate the impact of relatedness on the variance of the effect estimate of the linear regression model. Variance inflation increases with increasing heritability. Relatedness structure also impacts the degree of variance inflation as shown for example family structures. Variance inflation is smallest for HapMap trios, followed by a synthetic family study corresponding to the trio data but with larger sample size than HapMap. Next strongest inflation is observed for the Sorbs, and finally, for a synthetic family study with a more extreme relatedness structure but with similar sample size as the Sorbs. Type I error increases rapidly with increasing inflation. However, for smaller significance levels, power increases with increasing inflation while the opposite holds for larger significance levels. When genomic control is applied, type I error is preserved while power decreases rapidly with increasing variance inflation. Stronger relatedness as well as higher heritability result in increased variance of the effect estimate of simple linear regression analysis. While type I error rates are generally inflated, the behaviour of power is more complex since power can be increased or reduced in dependence on relatedness and the heritability of the phenotype. Genomic control cannot be recommended to deal with inflation due to relatedness. Although it preserves type I error, the loss in power can be considerable. We provide a simple formula for estimating variance inflation given the relatedness structure and the heritability of a trait of interest. As a rule of thumb, variance inflation below 1.05 does not require correction and simple linear regression analysis is still appropriate.
NASA Astrophysics Data System (ADS)
Mosier, Gary E.; Femiano, Michael; Ha, Kong; Bely, Pierre Y.; Burg, Richard; Redding, David C.; Kissil, Andrew; Rakoczy, John; Craig, Larry
1998-08-01
All current concepts for the NGST are innovative designs which present unique systems-level challenges. The goals are to outperform existing observatories at a fraction of the current price/performance ratio. Standard practices for developing systems error budgets, such as the 'root-sum-of- squares' error tree, are insufficient for designs of this complexity. Simulation and optimization are the tools needed for this project; in particular tools that integrate controls, optics, thermal and structural analysis, and design optimization. This paper describes such an environment which allows sub-system performance specifications to be analyzed parametrically, and includes optimizing metrics that capture the science requirements. The resulting systems-level design trades are greatly facilitated, and significant cost savings can be realized. This modeling environment, built around a tightly integrated combination of commercial off-the-shelf and in-house- developed codes, provides the foundation for linear and non- linear analysis on both the time and frequency-domains, statistical analysis, and design optimization. It features an interactive user interface and integrated graphics that allow highly-effective, real-time work to be done by multidisciplinary design teams. For the NGST, it has been applied to issues such as pointing control, dynamic isolation of spacecraft disturbances, wavefront sensing and control, on-orbit thermal stability of the optics, and development of systems-level error budgets. In this paper, results are presented from parametric trade studies that assess requirements for pointing control, structural dynamics, reaction wheel dynamic disturbances, and vibration isolation. These studies attempt to define requirements bounds such that the resulting design is optimized at the systems level, without attempting to optimize each subsystem individually. The performance metrics are defined in terms of image quality, specifically centroiding error and RMS wavefront error, which directly links to science requirements.
Metering error quantification under voltage and current waveform distortion
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran
2017-09-01
With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.
Guo, Hongbin; Renaut, Rosemary A; Chen, Kewei; Reiman, Eric M
2010-01-01
Graphical analysis methods are widely used in positron emission tomography quantification because of their simplicity and model independence. But they may, particularly for reversible kinetics, lead to bias in the estimated parameters. The source of the bias is commonly attributed to noise in the data. Assuming a two-tissue compartmental model, we investigate the bias that originates from modeling error. This bias is an intrinsic property of the simplified linear models used for limited scan durations, and it is exaggerated by random noise and numerical quadrature error. Conditions are derived under which Logan's graphical method either over- or under-estimates the distribution volume in the noise-free case. The bias caused by modeling error is quantified analytically. The presented analysis shows that the bias of graphical methods is inversely proportional to the dissociation rate. Furthermore, visual examination of the linearity of the Logan plot is not sufficient for guaranteeing that equilibrium has been reached. A new model which retains the elegant properties of graphical analysis methods is presented, along with a numerical algorithm for its solution. We perform simulations with the fibrillar amyloid β radioligand [11C] benzothiazole-aniline using published data from the University of Pittsburgh and Rotterdam groups. The results show that the proposed method significantly reduces the bias due to modeling error. Moreover, the results for data acquired over a 70 minutes scan duration are at least as good as those obtained using existing methods for data acquired over a 90 minutes scan duration. PMID:20493196
NASA Technical Reports Server (NTRS)
Mohr, R. L.
1975-01-01
A set of four digital computer programs is presented which can be used to investigate the effects of instrumentation errors on the accuracy of aircraft and helicopter stability-and-control derivatives identified from flight test data. The programs assume that the differential equations of motion are linear and consist of small perturbations about a quasi-steady flight condition. It is also assumed that a Newton-Raphson optimization technique is used for identifying the estimates of the parameters. Flow charts and printouts are included.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.
Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L
2011-10-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.
Puleo, J.A.; Mouraenko, O.; Hanes, D.M.
2004-01-01
Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.
Schwantes-An, Tae-Hwi; Sung, Heejong; Sabourin, Jeremy A; Justice, Cristina M; Sorant, Alexa J M; Wilson, Alexander F
2016-01-01
In this study, the effects of (a) the minor allele frequency of the single nucleotide variant (SNV), (b) the degree of departure from normality of the trait, and (c) the position of the SNVs on type I error rates were investigated in the Genetic Analysis Workshop (GAW) 19 whole exome sequence data. To test the distribution of the type I error rate, 5 simulated traits were considered: standard normal and gamma distributed traits; 2 transformed versions of the gamma trait (log 10 and rank-based inverse normal transformations); and trait Q1 provided by GAW 19. Each trait was tested with 313,340 SNVs. Tests of association were performed with simple linear regression and average type I error rates were determined for minor allele frequency classes. Rare SNVs (minor allele frequency < 0.05) showed inflated type I error rates for non-normally distributed traits that increased as the minor allele frequency decreased. The inflation of average type I error rates increased as the significance threshold decreased. Normally distributed traits did not show inflated type I error rates with respect to the minor allele frequency for rare SNVs. There was no consistent effect of transformation on the uniformity of the distribution of the location of SNVs with a type I error.
A mathematical approach to beam matching
Manikandan, A; Nandy, M; Gossman, M S; Sureka, C S; Ray, A; Sujatha, N
2013-01-01
Objective: This report provides the mathematical commissioning instructions for the evaluation of beam matching between two different linear accelerators. Methods: Test packages were first obtained including an open beam profile, a wedge beam profile and a depth–dose curve, each from a 10×10 cm2 beam. From these plots, a spatial error (SE) and a percentage dose error were introduced to form new plots. These three test package curves and the associated error curves were then differentiated in space with respect to dose for a first and second derivative to determine the slope and curvature of each data set. The derivatives, also known as bandwidths, were analysed to determine the level of acceptability for the beam matching test described in this study. Results: The open and wedged beam profiles and depth–dose curve in the build-up region were determined to match within 1% dose error and 1-mm SE at 71.4% and 70.8% for of all points, respectively. For the depth–dose analysis specifically, beam matching was achieved for 96.8% of all points at 1%/1 mm beyond the depth of maximum dose. Conclusion: To quantify the beam matching procedure in any clinic, the user needs to merely generate test packages from their reference linear accelerator. It then follows that if the bandwidths are smooth and continuous across the profile and depth, there is greater likelihood of beam matching. Differentiated spatial and percentage variation analysis is appropriate, ideal and accurate for this commissioning process. Advances in knowledge: We report a mathematically rigorous formulation for the qualitative evaluation of beam matching between linear accelerators. PMID:23995874
Accuracy of Time Integration Approaches for Stiff Magnetohydrodynamics Problems
NASA Astrophysics Data System (ADS)
Knoll, D. A.; Chacon, L.
2003-10-01
The simulation of complex physical processes with multiple time scales presents a continuing challenge to the computational plasma physisist due to the co-existence of fast and slow time scales. Within computational plasma physics, practitioners have developed and used linearized methods, semi-implicit methods, and time splitting in an attempt to tackle such problems. All of these methods are understood to generate numerical error. We are currently developing algorithms which remove such error for MHD problems [1,2]. These methods do not rely on linearization or time splitting. We are also attempting to analyze the errors introduced by existing ``implicit'' methods using modified equation analysis (MEA) [3]. In this presentation we will briefly cover the major findings in [3]. We will then extend this work further into MHD. This analysis will be augmented with numerical experiments with the hope of gaining insight, particularly into how these errors accumulate over many time steps. [1] L. Chacon,. D.A. Knoll, J.M. Finn, J. Comput. Phys., vol. 178, pp. 15-36 (2002) [2] L. Chacon and D.A. Knoll, J. Comput. Phys., vol. 188, pp. 573-592 (2003) [3] D.A. Knoll , L. Chacon, L.G. Margolin, V.A. Mousseau, J. Comput. Phys., vol. 185, pp. 583-611 (2003)
An arbitrary-order staggered time integrator for the linear acoustic wave equation
NASA Astrophysics Data System (ADS)
Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo
2018-02-01
We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.
Artificial neural network implementation of a near-ideal error prediction controller
NASA Technical Reports Server (NTRS)
Mcvey, Eugene S.; Taylor, Lynore Denise
1992-01-01
A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error responses be known for a particular input and modeled plant. These responses are used in the error prediction controller. An analysis was done on the general dynamic behavior that results from including a digital error predictor in a control loop and these were compared to those including the near-ideal Neural Network error predictor. This analysis was done for a second and third order system.
Climbing fibers predict movement kinematics and performance errors.
Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J
2017-09-01
Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each parameter. In contrast with the view that CSs carry feedback signals, the CSs are predominantly predictive of upcoming position errors and kinematics. Therefore, climbing fibers carry multiple and predictive signals for online motor control. Copyright © 2017 the American Physiological Society.
Accuracy of CT-based attenuation correction in PET/CT bone imaging
NASA Astrophysics Data System (ADS)
Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.
2012-05-01
We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.
NASA Astrophysics Data System (ADS)
Nezhad, Mohsen Motahari; Shojaeefard, Mohammad Hassan; Shahraki, Saeid
2016-02-01
In this study, the experiments aimed at analyzing thermally the exhaust valve in an air-cooled internal combustion engine and estimating the thermal contact conductance in fixed and periodic contacts. Due to the nature of internal combustion engines, the duration of contact between the valve and its seat is too short, and much time is needed to reach the quasi-steady state in the periodic contact between the exhaust valve and its seat. Using the methods of linear extrapolation and the inverse solution, the surface contact temperatures and the fixed and periodic thermal contact conductance were calculated. The results of linear extrapolation and inverse methods have similar trends, and based on the error analysis, they are accurate enough to estimate the thermal contact conductance. Moreover, due to the error analysis, a linear extrapolation method using inverse ratio is preferred. The effects of pressure, contact frequency, heat flux, and cooling air speed on thermal contact conductance have been investigated. The results show that by increasing the contact pressure the thermal contact conductance increases substantially. In addition, by increasing the engine speed the thermal contact conductance decreases. On the other hand, by boosting the air speed the thermal contact conductance increases, and by raising the heat flux the thermal contact conductance reduces. The average calculated error equals to 12.9 %.
NASA Technical Reports Server (NTRS)
Natarajan, Suresh; Gardner, C. S.
1987-01-01
Receiver timing synchronization of an optical Pulse-Position Modulation (PPM) communication system can be achieved using a phased-locked loop (PLL), provided the photodetector output is suitably processed. The magnitude of the PLL phase error is a good indicator of the timing error at the receiver decoder. The statistics of the phase error are investigated while varying several key system parameters such as PPM order, signal and background strengths, and PPL bandwidth. A practical optical communication system utilizing a laser diode transmitter and an avalanche photodiode in the receiver is described, and the sampled phase error data are presented. A linear regression analysis is applied to the data to obtain estimates of the relational constants involving the phase error variance and incident signal power.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.
1994-01-01
Presented is a feasibility and error analysis for a hypersonic flush airdata system on a hypersonic flight experiment (HYFLITE). HYFLITE heating loads make intrusive airdata measurement impractical. Although this analysis is specifically for the HYFLITE vehicle and trajectory, the problems analyzed are generally applicable to hypersonic vehicles. A layout of the flush-port matrix is shown. Surface pressures are related airdata parameters using a simple aerodynamic model. The model is linearized using small perturbations and inverted using nonlinear least-squares. Effects of various error sources on the overall uncertainty are evaluated using an error simulation. Error sources modeled include boundarylayer/viscous interactions, pneumatic lag, thermal transpiration in the sensor pressure tubing, misalignment in the matrix layout, thermal warping of the vehicle nose, sampling resolution, and transducer error. Using simulated pressure data for input to the estimation algorithm, effects caused by various error sources are analyzed by comparing estimator outputs with the original trajectory. To obtain ensemble averages the simulation is run repeatedly and output statistics are compiled. Output errors resulting from the various error sources are presented as a function of Mach number. Final uncertainties with all modeled error sources included are presented as a function of Mach number.
Attitude control with realization of linear error dynamics
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
1993-01-01
An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.
NASA Astrophysics Data System (ADS)
Jung, Jae Hong; Jung, Joo-Young; Cho, Kwang Hwan; Ryu, Mi Ryeong; Bae, Sun Hyun; Moon, Seong Kwon; Kim, Yong Ho; Choe, Bo-Young; Suh, Tae Suk
2017-02-01
The purpose of this study was to analyze the glottis rotational error (GRE) by using a thermoplastic mask for patients with the glottic cancer undergoing intensity-modulated radiation therapy (IMRT). We selected 20 patients with glottic cancer who had received IMRT by using the tomotherapy. The image modalities with both kilovoltage computed tomography (planning kVCT) and megavoltage CT (daily MVCT) images were used for evaluating the error. Six anatomical landmarks in the image were defined to evaluate a correlation between the absolute GRE (°) and the length of contact with the underlying skin of the patient by the mask (mask, mm). We also statistically analyzed the results by using the Pearson's correlation coefficient and a linear regression analysis ( P <0.05). The mask and the absolute GRE were verified to have a statistical correlation ( P < 0.01). We found a statistical significance for each parameter in the linear regression analysis (mask versus absolute roll: P = 0.004 [ P < 0.05]; mask versus 3D-error: P = 0.000 [ P < 0.05]). The range of the 3D-errors with contact by the mask was from 1.2% - 39.7% between the maximumand no-contact case in this study. A thermoplastic mask with a tight, increased contact area may possibly contribute to the uncertainty of the reproducibility as a variation of the absolute GRE. Thus, we suggest that a modified mask, such as one that covers only the glottis area, can significantly reduce the patients' setup errors during the treatment.
Network Adjustment of Orbit Errors in SAR Interferometry
NASA Astrophysics Data System (ADS)
Bahr, Hermann; Hanssen, Ramon
2010-03-01
Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.
A Lyapunov and Sacker–Sell spectral stability theory for one-step methods
Steyer, Andrew J.; Van Vleck, Erik S.
2018-04-13
Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less
How is the weather? Forecasting inpatient glycemic control
Saulnier, George E; Castro, Janna C; Cook, Curtiss B; Thompson, Bithika M
2017-01-01
Aim: Apply methods of damped trend analysis to forecast inpatient glycemic control. Method: Observed and calculated point-of-care blood glucose data trends were determined over 62 weeks. Mean absolute percent error was used to calculate differences between observed and forecasted values. Comparisons were drawn between model results and linear regression forecasting. Results: The forecasted mean glucose trends observed during the first 24 and 48 weeks of projections compared favorably to the results provided by linear regression forecasting. However, in some scenarios, the damped trend method changed inferences compared with linear regression. In all scenarios, mean absolute percent error values remained below the 10% accepted by demand industries. Conclusion: Results indicate that forecasting methods historically applied within demand industries can project future inpatient glycemic control. Additional study is needed to determine if forecasting is useful in the analyses of other glucometric parameters and, if so, how to apply the techniques to quality improvement. PMID:29134125
Functional Mixed Effects Model for Small Area Estimation.
Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou
2016-09-01
Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.
A Lyapunov and Sacker–Sell spectral stability theory for one-step methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steyer, Andrew J.; Van Vleck, Erik S.
Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Junjie; Jia, Hongzhi, E-mail: hzjia@usst.edu.cn
2015-11-15
We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental resultsmore » are consistent and demonstrate the rationality and validity of this method.« less
Determination of suitable drying curve model for bread moisture loss during baking
NASA Astrophysics Data System (ADS)
Soleimani Pour-Damanab, A. R.; Jafary, A.; Rafiee, S.
2013-03-01
This study presents mathematical modelling of bread moisture loss or drying during baking in a conventional bread baking process. In order to estimate and select the appropriate moisture loss curve equation, 11 different models, semi-theoretical and empirical, were applied to the experimental data and compared according to their correlation coefficients, chi-squared test and root mean square error which were predicted by nonlinear regression analysis. Consequently, of all the drying models, a Page model was selected as the best one, according to the correlation coefficients, chi-squared test, and root mean square error values and its simplicity. Mean absolute estimation error of the proposed model by linear regression analysis for natural and forced convection modes was 2.43, 4.74%, respectively.
Yang, Yanqiang; Zhang, Chunxi; Lu, Jiazhen
2017-01-16
Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles.
Investigating Convergence Patterns for Numerical Methods Using Data Analysis
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2013-01-01
The article investigates the patterns that arise in the convergence of numerical methods, particularly those in the errors involved in successive iterations, using data analysis and curve fitting methods. In particular, the results obtained are used to convey a deeper level of understanding of the concepts of linear, quadratic, and cubic…
Analysis of Learning Curve Fitting Techniques.
1987-09-01
1986. 15. Neter, John and others. Applied Linear Regression Models. Homewood IL: Irwin, 19-33. 16. SAS User’s Guide: Basics, Version 5 Edition. SAS... Linear Regression Techniques (15:23-52). Random errors are assumed to be normally distributed when using -# ordinary least-squares, according to Johnston...lot estimated by the improvement curve formula. For a more detailed explanation of the ordinary least-squares technique, see Neter, et. al., Applied
Generalized Linear Covariance Analysis
NASA Technical Reports Server (NTRS)
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
NASA Technical Reports Server (NTRS)
Stoll, John C.
1995-01-01
The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.; Thurman, S. W.
1992-01-01
An error covariance analysis methodology is used to investigate different weighting schemes for two-way (coherent) Doppler data in the presence of transmission-media and observing-platform calibration errors. The analysis focuses on orbit-determination performance in the interplanetary cruise phase of deep-space missions. Analytical models for the Doppler observable and for transmission-media and observing-platform calibration errors are presented, drawn primarily from previous work. Previously published analytical models were improved upon by the following: (1) considering the effects of errors in the calibration of radio signal propagation through the troposphere and ionosphere as well as station-location errors; (2) modelling the spacecraft state transition matrix using a more accurate piecewise-linear approximation to represent the evolution of the spacecraft trajectory; and (3) incorporating Doppler data weighting functions that are functions of elevation angle, which reduce the sensitivity of the estimated spacecraft trajectory to troposphere and ionosphere calibration errors. The analysis is motivated by the need to develop suitable weighting functions for two-way Doppler data acquired at 8.4 GHz (X-band) and 32 GHz (Ka-band). This weighting is likely to be different from that in the weighting functions currently in use; the current functions were constructed originally for use with 2.3 GHz (S-band) Doppler data, which are affected much more strongly by the ionosphere than are the higher frequency data.
Casas, Francisco J; Ortiz, David; Villa, Enrique; Cano, Juan L; Cagigas, Jaime; Pérez, Ana R; Aja, Beatriz; Terán, J Vicente; de la Fuente, Luisa; Artal, Eduardo; Hoyland, Roger; Génova-Santos, Ricardo
2015-08-05
This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process.
Mapping GRACE Accelerometer Error
NASA Astrophysics Data System (ADS)
Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.
2017-12-01
After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.
Linear error analysis of slope-area discharge determinations
Kirby, W.H.
1987-01-01
The slope-area method can be used to calculate peak flood discharges when current-meter measurements are not possible. This calculation depends on several quantities, such as water-surface fall, that are subject to large measurement errors. Other critical quantities, such as Manning's n, are not even amenable to direct measurement but can only be estimated. Finally, scour and fill may cause gross discrepancies between the observed condition of the channel and the hydraulic conditions during the flood peak. The effects of these potential errors on the accuracy of the computed discharge have been estimated by statistical error analysis using a Taylor-series approximation of the discharge formula and the well-known formula for the variance of a sum of correlated random variates. The resultant error variance of the computed discharge is a weighted sum of covariances of the various observational errors. The weights depend on the hydraulic and geometric configuration of the channel. The mathematical analysis confirms the rule of thumb that relative errors in computed discharge increase rapidly when velocity heads exceed the water-surface fall, when the flow field is expanding and when lateral velocity variation (alpha) is large. It also confirms the extreme importance of accurately assessing the presence of scour or fill. ?? 1987.
A methodology based on reduced complexity algorithm for system applications using microprocessors
NASA Technical Reports Server (NTRS)
Yan, T. Y.; Yao, K.
1988-01-01
The paper considers a methodology on the analysis and design of a minimum mean-square error criterion linear system incorporating a tapped delay line (TDL) where all the full-precision multiplications in the TDL are constrained to be powers of two. A linear equalizer based on the dispersive and additive noise channel is presented. This microprocessor implementation with optimized power of two TDL coefficients achieves a system performance comparable to the optimum linear equalization with full-precision multiplications for an input data rate of 300 baud.
Simplified planar model of a car steering system with rack and pinion and McPherson suspension
NASA Astrophysics Data System (ADS)
Knapczyk, J.; Kucybała, P.
2016-09-01
The paper presents the analysis and optimization of steering system with rack and pinion and McPherson suspension using spatial model and equivalent simplified planar model. The dimension of the steering linkage that give minimum steering error can be estimated using planar model. The steering error is defined as the difference between the actual angle made by the outer front wheel during steering manoeuvers and the calculated angle for the same wheel based on the Ackerman principle. For a given linear rack displacement, a specified steering arms angular displacements are determined while simultaneously ensuring best transmission angle characteristics (i) without and (ii) with imposing linear correlation between input and output. Numerical examples are used to illustrate the proposed method.
Real-Time Parameter Estimation in the Frequency Domain
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2000-01-01
A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented
NASA Astrophysics Data System (ADS)
Podlipenko, Yu. K.; Shestopalov, Yu. V.
2017-09-01
We investigate the guaranteed estimation problem of linear functionals from solutions to transmission problems for the Helmholtz equation with inexact data. The right-hand sides of equations entering the statements of transmission problems and the statistical characteristics of observation errors are supposed to be unknown and belonging to certain sets. It is shown that the optimal linear mean square estimates of the above mentioned functionals and estimation errors are expressed via solutions to the systems of transmission problems of the special type. The results and techniques can be applied in the analysis and estimation of solution to forward and inverse electromagnetic and acoustic problems with uncertain data that arise in mathematical models of the wave diffraction on transparent bodies.
Analysis and discussion on the experimental data of electrolyte analyzer
NASA Astrophysics Data System (ADS)
Dong, XinYu; Jiang, JunJie; Liu, MengJun; Li, Weiwei
2018-06-01
In the subsequent verification of electrolyte analyzer, we found that the instrument can achieve good repeatability and stability in repeated measurements with a short period of time, in line with the requirements of verification regulation of linear error and cross contamination rate, but the phenomenon of large indication error is very common, the measurement results of different manufacturers have great difference, in order to find and solve this problem, help enterprises to improve quality of product, to obtain accurate and reliable measurement data, we conducted the experimental evaluation of electrolyte analyzer, and the data were analyzed by statistical analysis.
Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.
Fan, Ruzong; Wang, Yifan; Boehnke, Michael; Chen, Wei; Li, Yun; Ren, Haobo; Lobach, Iryna; Xiong, Momiao
2015-08-01
Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies. Copyright © 2015 by the Genetics Society of America.
Linear least-squares method for global luminescent oil film skin friction field analysis
NASA Astrophysics Data System (ADS)
Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu
2018-06-01
A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.
A methodology for design of a linear referencing system for surface transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vonderohe, A.; Hepworth, T.
1997-06-01
The transportation community has recently placed significant emphasis on development of data models, procedural standards, and policies for management of linearly-referenced data. There is an Intelligent Transportation Systems initiative underway to create a spatial datum for location referencing in one, two, and three dimensions. Most recently, a call was made for development of a unified linear reference system to support public, private, and military surface transportation needs. A methodology for design of the linear referencing system was developed from geodetic engineering principles and techniques used for designing geodetic control networks. The method is founded upon the law of propagation ofmore » random error and the statistical analysis of systems of redundant measurements, used to produce best estimates for unknown parameters. A complete mathematical development is provided. Example adjustments of linear distance measurement systems are included. The classical orders of design are discussed with regard to the linear referencing system. A simple design example is provided. A linear referencing system designed and analyzed with this method will not only be assured of meeting the accuracy requirements of users, it will have the potential for supporting delivery of error estimates along with the results of spatial analytical queries. Modeling considerations, alternative measurement methods, implementation strategies, maintenance issues, and further research needs are discussed. Recommendations are made for further advancement of the unified linear referencing system concept.« less
NASA Astrophysics Data System (ADS)
Allen, J. Icarus; Holt, Jason T.; Blackford, Jerry; Proctor, Roger
2007-12-01
Marine systems models are becoming increasingly complex and sophisticated, but far too little attention has been paid to model errors and the extent to which model outputs actually relate to ecosystem processes. Here we describe the application of summary error statistics to a complex 3D model (POLCOMS-ERSEM) run for the period 1988-1989 in the southern North Sea utilising information from the North Sea Project, which collected a wealth of observational data. We demonstrate that to understand model data misfit and the mechanisms creating errors, we need to use a hierarchy of techniques, including simple correlations, model bias, model efficiency, binary discriminator analysis and the distribution of model errors to assess model errors spatially and temporally. We also demonstrate that a linear cost function is an inappropriate measure of misfit. This analysis indicates that the model has some skill for all variables analysed. A summary plot of model performance indicates that model performance deteriorates as we move through the ecosystem from the physics, to the nutrients and plankton.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws
Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.
2011-01-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.
Glaser, I
1982-04-01
By combining a lenslet array with masks it is possible to obtain a noncoherent optical processor capable of computing in parallel generalized 2-D discrete linear transformations. We present here an analysis of such lenslet array processors (LAP). The effect of several errors, including optical aberrations, diffraction, vignetting, and geometrical and mask errors, are calculated, and guidelines to optical design of LAP are derived. Using these results, both ultimate and practical performances of LAP are compared with those of competing techniques.
The performance of projective standardization for digital subtraction radiography.
Mol, André; Dunn, Stanley M
2003-09-01
We sought to test the performance and robustness of projective standardization in preserving invariant properties of subtraction images in the presence of irreversible projection errors. Study design Twenty bone chips (1-10 mg each) were placed on dentate dry mandibles. Follow-up images were obtained without the bone chips, and irreversible projection errors of up to 6 degrees were introduced. Digitized image intensities were normalized, and follow-up images were geometrically reconstructed by 2 operators using anatomical and fiduciary landmarks. Subtraction images were analyzed by 3 observers. Regression analysis revealed a linear relationship between radiographic estimates of mineral loss and actual mineral loss (R(2) = 0.99; P <.05). The effect of projection error was not significant (general linear model [GLM]: P >.05). There was no difference between the radiographic estimates from images standardized with anatomical landmarks and those standardized with fiduciary landmarks (Wilcoxon signed rank test: P >.05). Operator variability was low for image analysis alone (R(2) = 0.99; P <.05), as well as for the entire procedure (R(2) = 0.98; P <.05). The predicted detection limit was smaller than 1 mg. Subtraction images registered by projective standardization yield estimates of osseous change that are invariant to irreversible projection errors of up to 6 degrees. Within these limits, operator precision is high and anatomical landmarks can be used to establish correspondence.
Technical note: A linear model for predicting δ13 Cprotein.
Pestle, William J; Hubbe, Mark; Smith, Erin K; Stevenson, Joseph M
2015-08-01
Development of a model for the prediction of δ(13) Cprotein from δ(13) Ccollagen and Δ(13) Cap-co . Model-generated values could, in turn, serve as "consumer" inputs for multisource mixture modeling of paleodiet. Linear regression analysis of previously published controlled diet data facilitated the development of a mathematical model for predicting δ(13) Cprotein (and an experimentally generated error term) from isotopic data routinely generated during the analysis of osseous remains (δ(13) Cco and Δ(13) Cap-co ). Regression analysis resulted in a two-term linear model (δ(13) Cprotein (%) = (0.78 × δ(13) Cco ) - (0.58× Δ(13) Cap-co ) - 4.7), possessing a high R-value of 0.93 (r(2) = 0.86, P < 0.01), and experimentally generated error terms of ±1.9% for any predicted individual value of δ(13) Cprotein . This model was tested using isotopic data from Formative Period individuals from northern Chile's Atacama Desert. The model presented here appears to hold significant potential for the prediction of the carbon isotope signature of dietary protein using only such data as is routinely generated in the course of stable isotope analysis of human osseous remains. These predicted values are ideal for use in multisource mixture modeling of dietary protein source contribution. © 2015 Wiley Periodicals, Inc.
Weighted functional linear regression models for gene-based association analysis.
Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I
2018-01-01
Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P < 0.1 in at least one analysis had lower P values with weighted models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.
Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A
2017-01-01
Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Optical linear algebra processors - Noise and error-source modeling
NASA Technical Reports Server (NTRS)
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Smooth empirical Bayes estimation of observation error variances in linear systems
NASA Technical Reports Server (NTRS)
Martz, H. F., Jr.; Lian, M. W.
1972-01-01
A smooth empirical Bayes estimator was developed for estimating the unknown random scale component of each of a set of observation error variances. It is shown that the estimator possesses a smaller average squared error loss than other estimators for a discrete time linear system.
NASA Astrophysics Data System (ADS)
Jiang, Weiping; Ma, Jun; Li, Zhao; Zhou, Xiaohui; Zhou, Boye
2018-05-01
The analysis of the correlations between the noise in different components of GPS stations has positive significance to those trying to obtain more accurate uncertainty of velocity with respect to station motion. Previous research into noise in GPS position time series focused mainly on single component evaluation, which affects the acquisition of precise station positions, the velocity field, and its uncertainty. In this study, before and after removing the common-mode error (CME), we performed one-dimensional linear regression analysis of the noise amplitude vectors in different components of 126 GPS stations with a combination of white noise, flicker noise, and random walking noise in Southern California. The results show that, on the one hand, there are above-moderate degrees of correlation between the white noise amplitude vectors in all components of the stations before and after removal of the CME, while the correlations between flicker noise amplitude vectors in horizontal and vertical components are enhanced from un-correlated to moderately correlated by removing the CME. On the other hand, the significance tests show that, all of the obtained linear regression equations, which represent a unique function of the noise amplitude in any two components, are of practical value after removing the CME. According to the noise amplitude estimates in two components and the linear regression equations, more accurate noise amplitudes can be acquired in the two components.
Wu, Jibo
2016-01-01
In this article, a generalized difference-based ridge estimator is proposed for the vector parameter in a partial linear model when the errors are dependent. It is supposed that some additional linear constraints may hold to the whole parameter space. Its mean-squared error matrix is compared with the generalized restricted difference-based estimator. Finally, the performance of the new estimator is explained by a simulation study and a numerical example.
The use and misuse of statistical analyses. [in geophysics and space physics
NASA Technical Reports Server (NTRS)
Reiff, P. H.
1983-01-01
The statistical techniques most often used in space physics include Fourier analysis, linear correlation, auto- and cross-correlation, power spectral density, and superposed epoch analysis. Tests are presented which can evaluate the significance of the results obtained through each of these. Data presented without some form of error analysis are frequently useless, since they offer no way of assessing whether a bump on a spectrum or on a superposed epoch analysis is real or merely a statistical fluctuation. Among many of the published linear correlations, for instance, the uncertainty in the intercept and slope is not given, so that the significance of the fitted parameters cannot be assessed.
NASA Astrophysics Data System (ADS)
Silberman, L.; Dekel, A.; Eldar, A.; Zehavi, I.
2001-08-01
We allow for nonlinear effects in the likelihood analysis of galaxy peculiar velocities and obtain ~35% lower values for the cosmological density parameter Ωm and for the amplitude of mass density fluctuations σ8Ω0.6m. This result is obtained under the assumption that the power spectrum in the linear regime is of the flat ΛCDM model (h=0.65, n=1, COBE normalized) with only Ωm as a free parameter. Since the likelihood is driven by the nonlinear regime, we ``break'' the power spectrum at kb~0.2 (h-1 Mpc)-1 and fit a power law at k>kb. This allows for independent matching of the nonlinear behavior and an unbiased fit in the linear regime. The analysis assumes Gaussian fluctuations and errors and a linear relation between velocity and density. Tests using mock catalogs that properly simulate nonlinear effects demonstrate that this procedure results in a reduced bias and a better fit. We find for the Mark III and SFI data Ωm=0.32+/-0.06 and 0.37+/-0.09, respectively, with σ8Ω0.6m=0.49+/-0.06 and 0.63+/-0.08, in agreement with constraints from other data. The quoted 90% errors include distance errors and cosmic variance, for fixed values of the other parameters. The improvement in the likelihood due to the nonlinear correction is very significant for Mark III and moderately significant for SFI. When allowing deviations from ΛCDM, we find an indication for a wiggle in the power spectrum: an excess near k~0.05 (h-1 Mpc)-1 and a deficiency at k~0.1 (h-1 Mpc)-1, or a ``cold flow.'' This may be related to the wiggle seen in the power spectrum from redshift surveys and the second peak in the cosmic microwave background (CMB) anisotropy. A χ2 test applied to modes of a principal component analysis (PCA) shows that the nonlinear procedure improves the goodness of fit and reduces a spatial gradient that was of concern in the purely linear analysis. The PCA allows us to address spatial features of the data and to evaluate and fine-tune the theoretical and error models. It demonstrates in particular that the models used are appropriate for the cosmological parameter estimation performed. We address the potential for optimal data compression using PCA.
NASA Astrophysics Data System (ADS)
Manjunath, D.; Gomez, F.; Loveless, J.
2005-12-01
Interferometric Synthetic Aperture Radar (InSAR) provides unprecedented spatial imaging of crustal deformation. However, for small deformations, such as those due to interseismic strain accumulation, potentially significant uncertainty may result from other sources of interferometric phase, such as atmospheric effects, errors in satellite baseline, and height errors in the reference digital elevation model (DEM). We aim to constrain spatial and temporal variations in crustal deformation of the northern Chilean forearc region of the Andean subduction zone (19° - 22°S) using multiple interferograms spanning 1995 - 2000. The study area includes the region of the 1995 Mw 8.1 Antofagasta earthquake and the region to the north. In contrast to previous InSAR-based studies of the Chilean forearc, we seek to distinguish interferometric phase contributions from linear and nonlinear deformation, height errors in the DEM, and atmospheric effects. Understanding these phase contributions reduces the uncertainties on the deformation rates and provides a view of the time-dependence of deformation. The inteferograms cover a 150 km-wide swath spanning two adjacent orbital tracks. Our study involves the analysis of more than 28 inteferograms along each track. Coherent interferograms in the hyper-arid Atacama Desert permit spatial phase unwrapping. Initial estimates of topographic phase were determined using 3'' DEM data from the SRTM mission. We perform a pixel-by-pixel analysis of the unwrapped phase to identify time- and baseline-dependent phase contributions, using the Gamma Remote Sensing radar software. Atmospheric phase, non-linear deformation, and phase noise were further distinguished using a combination of spatial and temporal filters. Non-linear deformation is evident for up to 2.5 years following the 1995 earthquake, followed by a return to time-linear, interseismic strain accumulation. The regional trend of linear deformation, characterized by coastal subsidence and relative uplift inland, is consistent with the displacement field expected for a locked subduction zone. Our improved determination of deformation rates is used to formulate a new elastic model of interseismic strain in the Chilean forearc.
NASA Astrophysics Data System (ADS)
Woldesellasse, H. T.; Marpu, P. R.; Ouarda, T.
2016-12-01
Wind is one of the crucial renewable energy sources which is expected to bring solutions to the challenges of clean energy and the global issue of climate change. A number of linear and nonlinear multivariate techniques has been used to predict the stochastic character of wind speed. A wind forecast with good accuracy has a positive impact on the reduction of electricity system cost and is essential for the effective grid management. Over the past years, few studies have been done on the assessment of teleconnections and its possible effects on the long-term wind speed variability in the UAE region. In this study Nonlinear Canonical Correlation Analysis (NLCCA) method is applied to study the relationship between global climate oscillation indices and meteorological variables, with a major emphasis on wind speed and wind direction, of Abu Dhabi, UAE. The wind dataset was obtained from six ground stations. The first mode of NLCCA is capable of capturing the nonlinear mode of the climate indices at different seasons, showing the symmetry between the warm states and the cool states. The strength of the nonlinear canonical correlation between the two sets of variables varies with the lead/lag time. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE) and Mean absolute error (MAE). The results indicated that NLCCA models provide more accurate information about the nonlinear intrinsic behaviour of the dataset of variables than linear CCA model in terms of the correlation and root mean square error. Key words: Nonlinear Canonical Correlation Analysis (NLCCA), Canonical Correlation Analysis, Neural Network, Climate Indices, wind speed, wind direction
Panel Flutter Emulation Using a Few Concentrated Forces
NASA Astrophysics Data System (ADS)
Dhital, Kailash; Han, Jae-Hung
2018-04-01
The objective of this paper is to study the feasibility of panel flutter emulation using a few concentrated forces. The concentrated forces are considered to be equivalent to aerodynamic forces. The equivalence is carried out using surface spline method and principle of virtual work. The structural modeling of the plate is based on the classical plate theory and the aerodynamic modeling is based on the piston theory. The present approach differs from the linear panel flutter analysis in scheming the modal aerodynamics forces with unchanged structural properties. The solutions for the flutter problem are obtained numerically using the standard eigenvalue procedure. A few concentrated forces were considered with an optimization effort to decide their optimal locations. The optimization process is based on minimizing the error between the flutter bounds from emulated and linear flutter analysis method. The emulated flutter results for the square plate of four different boundary conditions using six concentrated forces are obtained with minimal error to the reference value. The results demonstrated the workability and viability of using concentrated forces in emulating real panel flutter. In addition, the paper includes the parametric studies of linear panel flutter whose proper literatures are not available.
Durand, Casey P
2013-01-01
Statistical interactions are a common component of data analysis across a broad range of scientific disciplines. However, the statistical power to detect interactions is often undesirably low. One solution is to elevate the Type 1 error rate so that important interactions are not missed in a low power situation. To date, no study has quantified the effects of this practice on power in a linear regression model. A Monte Carlo simulation study was performed. A continuous dependent variable was specified, along with three types of interactions: continuous variable by continuous variable; continuous by dichotomous; and dichotomous by dichotomous. For each of the three scenarios, the interaction effect sizes, sample sizes, and Type 1 error rate were varied, resulting in a total of 240 unique simulations. In general, power to detect the interaction effect was either so low or so high at α = 0.05 that raising the Type 1 error rate only served to increase the probability of including a spurious interaction in the model. A small number of scenarios were identified in which an elevated Type 1 error rate may be justified. Routinely elevating Type 1 error rate when testing interaction effects is not an advisable practice. Researchers are best served by positing interaction effects a priori and accounting for them when conducting sample size calculations.
NASA Technical Reports Server (NTRS)
Zhang, Liwei Dennis; Milman, Mark; Korechoff, Robert
2004-01-01
The current design of the Space Interferometry Mission (SIM) employs a 19 laser-metrology-beam system (also called L19 external metrology truss) to monitor changes of distances between the fiducials of the flight system's multiple baselines. The function of the external metrology truss is to aid in the determination of the time-variations of the interferometer baseline. The largest contributor to truss error occurs in SIM wide-angle observations when the articulation of the siderostat mirrors (in order to gather starlight from different sky coordinates) brings to light systematic errors due to offsets at levels of instrument components (which include comer cube retro-reflectors, etc.). This error is labeled external metrology wide-angle field-dependent error. Physics-based model of field-dependent error at single metrology gauge level is developed and linearly propagated to errors in interferometer delay. In this manner delay error sensitivity to various error parameters or their combination can be studied using eigenvalue/eigenvector analysis. Also validation of physics-based field-dependent model on SIM testbed lends support to the present approach. As a first example, dihedral error model is developed for the comer cubes (CC) attached to the siderostat mirrors. Then the delay errors due to this effect can be characterized using the eigenvectors of composite CC dihedral error. The essence of the linear error model is contained in an error-mapping matrix. A corresponding Zernike component matrix approach is developed in parallel, first for convenience of describing the RMS of errors across the field-of-regard (FOR), and second for convenience of combining with additional models. Average and worst case residual errors are computed when various orders of field-dependent terms are removed from the delay error. Results of the residual errors are important in arriving at external metrology system component requirements. Double CCs with ideally co-incident vertices reside with the siderostat. The non-common vertex error (NCVE) is treated as a second example. Finally combination of models, and various other errors are discussed.
A stopping criterion for the iterative solution of partial differential equations
NASA Astrophysics Data System (ADS)
Rao, Kaustubh; Malan, Paul; Perot, J. Blair
2018-01-01
A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.
NASA Technical Reports Server (NTRS)
Taylor, B. K.; Casasent, D. P.
1989-01-01
The use of simplified error models to accurately simulate and evaluate the performance of an optical linear-algebra processor is described. The optical architecture used to perform banded matrix-vector products is reviewed, along with a linear dynamic finite-element case study. The laboratory hardware and ac-modulation technique used are presented. The individual processor error-source models and their simulator implementation are detailed. Several significant simplifications are introduced to ease the computational requirements and complexity of the simulations. The error models are verified with a laboratory implementation of the processor, and are used to evaluate its potential performance.
Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.
2002-01-01
Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.
A-posteriori error estimation for second order mechanical systems
NASA Astrophysics Data System (ADS)
Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter
2012-06-01
One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.
Casas, Francisco J.; Ortiz, David; Villa, Enrique; Cano, Juan L.; Cagigas, Jaime; Pérez, Ana R.; Aja, Beatriz; Terán, J. Vicente; de la Fuente, Luisa; Artal, Eduardo; Hoyland, Roger; Génova-Santos, Ricardo
2015-01-01
This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process. PMID:26251906
Efficient Reduction and Analysis of Model Predictive Error
NASA Astrophysics Data System (ADS)
Doherty, J.
2006-12-01
Most groundwater models are calibrated against historical measurements of head and other system states before being used to make predictions in a real-world context. Through the calibration process, parameter values are estimated or refined such that the model is able to reproduce historical behaviour of the system at pertinent observation points reasonably well. Predictions made by the model are deemed to have greater integrity because of this. Unfortunately, predictive integrity is not as easy to achieve as many groundwater practitioners would like to think. The level of parameterisation detail estimable through the calibration process (especially where estimation takes place on the basis of heads alone) is strictly limited, even where full use is made of modern mathematical regularisation techniques such as those encapsulated in the PEST calibration package. (Use of these mechanisms allows more information to be extracted from a calibration dataset than is possible using simpler regularisation devices such as zones of piecewise constancy.) Where a prediction depends on aspects of parameterisation detail that are simply not inferable through the calibration process (which is often the case for predictions related to contaminant movement, and/or many aspects of groundwater/surface water interaction), then that prediction may be just as much in error as it would have been if the model had not been calibrated at all. Model predictive error arises from two sources. These are (a) the presence of measurement noise within the calibration dataset through which linear combinations of parameters spanning the "calibration solution space" are inferred, and (b) the sensitivity of the prediction to members of the "calibration null space" spanned by linear combinations of parameters which are not inferable through the calibration process. The magnitude of the former contribution depends on the level of measurement noise. The magnitude of the latter contribution (which often dominates the former) depends on the "innate variability" of hydraulic properties within the model domain. Knowledge of both of these is a prerequisite for characterisation of the magnitude of possible model predictive error. Unfortunately, in most cases, such knowledge is incomplete and subjective. Nevertheless, useful analysis of model predictive error can still take place. The present paper briefly discusses the means by which mathematical regularisation can be employed in the model calibration process in order to extract as much information as possible on hydraulic property heterogeneity prevailing within the model domain, thereby reducing predictive error to the lowest that can be achieved on the basis of that dataset. It then demonstrates the means by which predictive error variance can be quantified based on information supplied by the regularised inversion process. Both linear and nonlinear predictive error variance analysis is demonstrated using a number of real-world and synthetic examples.
Space Trajectories Error Analysis (STEAP) Programs. Volume 1: Analytic manual, update
NASA Technical Reports Server (NTRS)
1971-01-01
Manual revisions are presented for the modified and expanded STEAP series. The STEAP 2 is composed of three independent but related programs: NOMAL for the generation of n-body nominal trajectories performing a number of deterministic guidance events; ERRAN for the linear error analysis and generalized covariance analysis along specific targeted trajectories; and SIMUL for testing the mathematical models used in the navigation and guidance process. The analytic manual provides general problem description, formulation, and solution and the detailed analysis of subroutines. The programmers' manual gives descriptions of the overall structure of the programs as well as the computational flow and analysis of the individual subroutines. The user's manual provides information on the input and output quantities of the programs. These are updates to N69-36472 and N69-36473.
Using nurses and office staff to report prescribing errors in primary care.
Kennedy, Amanda G; Littenberg, Benjamin; Senders, John W
2008-08-01
To implement a prescribing-error reporting system in primary care offices and analyze the reports. Descriptive analysis of a voluntary prescribing-error-reporting system Seven primary care offices in Vermont, USA. One hundred and three prescribers, managers, nurses and office staff. Nurses and office staff were asked to report all communications with community pharmacists regarding prescription problems. All reports were classified by severity category, setting, error mode, prescription domain and error-producing conditions. All practices submitted reports, although reporting decreased by 3.6 reports per month (95% CI, -2.7 to -4.4, P<0.001, by linear regression analysis). Two hundred and sixteen reports were submitted. Nearly 90% (142/165) of errors were severity Category B (errors that did not reach the patient) according to the National Coordinating Council for Medication Error Reporting and Prevention Index for Categorizing Medication Errors. Nineteen errors reached the patient without causing harm (Category C); and 4 errors caused temporary harm requiring intervention (Category E). Errors involving strength were found in 30% of reports, including 23 prescriptions written for strengths not commercially available. Antidepressants, narcotics and antihypertensives were the most frequent drug classes reported. Participants completed an exit survey with a response rate of 84.5% (87/103). Nearly 90% (77/87) of respondents were willing to continue reporting after the study ended, however none of the participants currently submit reports. Nurses and office staff are a valuable resource for reporting prescribing errors. However, without ongoing reminders, the reporting system is not sustainable.
Synthesis and analysis of discriminators under influence of broadband non-Gaussian noise
NASA Astrophysics Data System (ADS)
Artyushenko, V. M.; Volovach, V. I.
2018-01-01
We considered the problems of the synthesis and analysis of discriminators, when the useful signal is exposed to non-Gaussian additive broadband noise. It is shown that in this case, the discriminator of the tracking meter should contain the nonlinear transformation unit, the characteristics of which are determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian broadband noise and mismatch errors. The parameters of the discriminatory and phase characteristics of the discriminators working under the above conditions are obtained. It is shown that the efficiency of non-linear processing depends on the ratio of power of FM noise to the power of Gaussian noise. The analysis of the information loss of signal transformation caused by the linear section of discriminatory characteristics of the unit of nonlinear transformations of the discriminator is carried out. It is shown that the average slope of the nonlinear transformation characteristic is determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian noise and mismatch errors.
Three dimensional tracking with misalignment between display and control axes
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Tyler, Mitchell; Kim, Won S.; Stark, Lawrence
1992-01-01
Human operators confronted with misaligned display and control frames of reference performed three dimensional, pursuit tracking in virtual environment and virtual space simulations. Analysis of the components of the tracking errors in the perspective displays presenting virtual space showed that components of the error due to visual motor misalignment may be linearly separated from those associated with the mismatch between display and control coordinate systems. Tracking performance improved with several hours practice despite previous reports that such improvement did not take place.
Investigation of empirical damping laws for the space shuttle
NASA Technical Reports Server (NTRS)
Bernstein, E. L.
1973-01-01
An analysis of dynamic test data from vibration testing of a number of aerospace vehicles was made to develop an empirical structural damping law. A systematic attempt was made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion, and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficients and finding the response of nonlinearly damped structures.
Visuoconstructional Impairment in Subtypes of Mild Cognitive Impairment
Ahmed, Samrah; Brennan, Laura; Eppig, Joel; Price, Catherine C.; Lamar, Melissa; Delano-Wood, Lisa; Bangen, Katherine J.; Edmonds, Emily C.; Clark, Lindsey; Nation, Daniel A.; Jak, Amy; Au, Rhoda; Swenson, Rodney; Bondi, Mark W.; Libon, David J.
2018-01-01
Clock Drawing Test performance was examined alongside other neuropsychological tests in mild cognitive impairment (MCI). We tested the hypothesis that clock-drawing errors are related to executive impairment. The current research examined 86 patients with MCI for whom, in prior research, cluster analysis was used to sort patients into dysexecutive (dMCI, n=22), amnestic (aMCI, n=13), and multi-domain (mMCI, n=51) subtypes. First, principal components analysis (PCA) and linear regression examined relations between clock-drawing errors and neuropsychological test performance independent of MCI subtype. Second, between-group differences were assessed with analysis of variance (ANOVA) where MCI subgroups were compared to normal controls (NC). PCA yielded a 3-group solution. Contrary to expectations, clock-drawing errors loaded with lower performance on naming/lexical retrieval, rather than with executive tests. Regression analyses found increasing clock-drawing errors to command were associated with worse performance only on naming/lexical retrieval tests. ANOVAs revealed no differences in clock-drawing errors between dMCI versus mMCI or aMCI versus NCs. Both the dMCI and mMCI groups generated more clock-drawing errors than the aMCI and NC groups in the command condition. In MCI, language-related skills contribute to clock-drawing impairment. PMID:26397732
Yang, Yanqiang; Zhang, Chunxi; Lu, Jiazhen
2017-01-01
Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles. PMID:28275211
Laser Linewidth Requirements for Optical Bpsk and Qpsk Heterodyne Lightwave Systems.
NASA Astrophysics Data System (ADS)
Boukli-Hacene, Mokhtar
In this dissertation, optical Binary Phase-Shift Keying (BPSK) and Quadrature Phase-Shift Keying (QPSK) heterodyne communication receivers are investigated. The main objective of this research work is to analyze the performance of these receivers in the presence of laser phase noise and shot noise. The heterodyne optical BPSK is based on the square law carrier recovery (SLCR) scheme for phase detection. The BPSK heterodyne receiver is analyzed assuming a second order linear phase-locked loop (PLL) subsystem and a small phase error. The noise properties are analyzed and the problem of minimizing the effect of noise is addressed. The performance of the receiver is evaluated in terms of the bit error rate (BER), which leads to the analysis of the BER versus the laser linewidth and the number of photons/bit to achieve good performance. Since we cannot track the pure carrier component in the presence of noise, a non-linear model is used to solve the problem of recovery of the carrier. The non -linear system is analyzed in the presence of a low signal -to-noise ratio (SNR). The non-Gaussian noise model represented by its probability density function (PDF) is used to analyze the performance of the receiver, especially the phase error. In addition the effect of the PLL is analyzed by studying the cycle slippage (cs). Finally, the research effort is expanded from BPSK to QPSK systems. The heterodyne optical QPSK based on the fourth power multiplier scheme (FPMS) in conjunction with linear and non-linear PLL model is investigated. Optimum loop and higher power penalty in the presence of phase noise and shot noise are analyzed. It is shown that the QPSK system yields a high speed and high sensitivity coherent means for transmission of information accompanied by a small degradation in the laser linewidth. Comparative analysis of BPSK and QPSK systems leads us to conclude that in terms of laser linewidth, bit rate, phase error and power penalty, the QPSK system is more sensitive than the BPSK system and suffers less from higher power penalty. The BPSK and QPSK heterodyne receivers used in the uncoded scheme demand a realistic laser linewidth. Since the laser linewidth is the critical measure of the performance of a receiver, a convolutional code applied to QPSK of the system is used to improve the sensitivity of the system. The effect of coding is particularly important as means of relaxing the laser linewidth requirement. The validity and usefulness of the analysis presented in the dissertation is supported by computer simulations.
Chosen interval methods for solving linear interval systems with special type of matrix
NASA Astrophysics Data System (ADS)
Szyszka, Barbara
2013-10-01
The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.
Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.
Sensitivity analysis of periodic errors in heterodyne interferometry
NASA Astrophysics Data System (ADS)
Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony
2011-03-01
Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.
Transfer Alignment Error Compensator Design Based on Robust State Estimation
NASA Astrophysics Data System (ADS)
Lyou, Joon; Lim, You-Chol
This paper examines the transfer alignment problem of the StrapDown Inertial Navigation System (SDINS), which is subject to the ship’s roll and pitch. Major error sources for velocity and attitude matching are lever arm effect, measurement time delay and ship-body flexure. To reduce these alignment errors, an error compensation method based on state augmentation and robust state estimation is devised. A linearized error model for the velocity and attitude matching transfer alignment system is derived first by linearizing the nonlinear measurement equation with respect to its time delay and dominant Y-axis flexure, and by augmenting the delay state and flexure state into conventional linear state equations. Then an H∞ filter is introduced to account for modeling uncertainties of time delay and the ship-body flexure. The simulation results show that this method considerably decreases azimuth alignment errors considerably.
Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A
2017-11-01
Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
NASA Astrophysics Data System (ADS)
Zhao, Dan; Wang, Xiaoman; Cheng, Yuan; Liu, Shaogang; Wu, Yanhong; Chai, Liqin; Liu, Yang; Cheng, Qianju
2018-05-01
Piecewise-linear structure can effectively broaden the working frequency band of the piezoelectric energy harvester, and improvement of its research can promote the practical process of energy collection device to meet the requirements for powering microelectronic components. In this paper, the incremental harmonic balance (IHB) method is introduced for the complicated and difficult analysis process of the piezoelectric energy harvester to solve these problems. After obtaining the nonlinear dynamic equation of the single-degree-of-freedom piecewise-linear energy harvester by mathematical modeling and the equation is solved based on the IHB method, the theoretical amplitude-frequency curve of open-circuit voltage is achieved. Under 0.2 g harmonic excitation, a piecewise-linear energy harvester is experimentally tested by unidirectional frequency-increasing scanning. The results demonstrate that the theoretical and experimental amplitudes have the same trend, and the width of the working band with high voltage output are 4.9 Hz and 4.7 Hz, respectively, and the relative error is 4.08%. The open-output peak voltage are 21.53 V and 18.25 V, respectively, and the relative error is 15.23%. Since the theoretical value is consistent with the experimental results, the theoretical model and the incremental harmonic balance method used in this paper are suitable for solving single-degree-of-freedom piecewise-linear piezoelectric energy harvester and can be applied to further parameter optimized design.
NASA Astrophysics Data System (ADS)
Li, Li; Li, Zhengqiang; Li, Kaitao; Sun, Bin; Wu, Yanke; Xu, Hua; Xie, Yisong; Goloub, Philippe; Wendisch, Manfred
2018-04-01
In this study errors of the relative orientations of polarizers in the Cimel polarized sun-sky radiometers are measured and introduced into the Mueller matrix of the instrument. The linearly polarized light with different polarization directions from 0° to 180° (or 360°) is generated by using a rotating linear polarizer in front of an integrating sphere. Through measuring the referential linearly polarized light, the errors of relative orientations of polarizers are determined. The efficiencies of the polarizers are obtained simultaneously. By taking the error of relative orientation into consideration in the Mueller matrix, the accuracies of the calculated Stokes parameters, the degree of linear polarization, and the angle of polarization are remarkably improved. The method may also apply to other polarization instruments of similar types.
Non-linear dynamic compensation system
NASA Technical Reports Server (NTRS)
Lin, Yu-Hwan (Inventor); Lurie, Boris J. (Inventor)
1992-01-01
A non-linear dynamic compensation subsystem is added in the feedback loop of a high precision optical mirror positioning control system to smoothly alter the control system response bandwidth from a relatively wide response bandwidth optimized for speed of control system response to a bandwidth sufficiently narrow to reduce position errors resulting from the quantization noise inherent in the inductosyn used to measure mirror position. The non-linear dynamic compensation system includes a limiter for limiting the error signal within preselected limits, a compensator for modifying the limiter output to achieve the reduced bandwidth response, and an adder for combining the modified error signal with the difference between the limited and unlimited error signals. The adder output is applied to control system motor so that the system response is optimized for accuracy when the error signal is within the preselected limits, optimized for speed of response when the error signal is substantially beyond the preselected limits and smoothly varied therebetween as the error signal approaches the preselected limits.
Linear regression analysis: part 14 of a series on evaluation of scientific publications.
Schneider, Astrid; Hommel, Gerhard; Blettner, Maria
2010-11-01
Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.
ERIC Educational Resources Information Center
Wang, Tianyou
2009-01-01
Holland and colleagues derived a formula for analytical standard error of equating using the delta-method for the kernel equating method. Extending their derivation, this article derives an analytical standard error of equating procedure for the conventional percentile rank-based equipercentile equating with log-linear smoothing. This procedure is…
NASA Astrophysics Data System (ADS)
Wang, Guochao; Xie, Xuedong; Yan, Shuhua
2010-10-01
Principle of the dual-wavelength single grating nanometer displacement measuring system, with a long range, high precision, and good stability, is presented. As a result of the nano-level high-precision displacement measurement, the error caused by a variety of adverse factors must be taken into account. In this paper, errors, due to the non-ideal performance of the dual-frequency laser, including linear error caused by wavelength instability and non-linear error caused by elliptic polarization of the laser, are mainly discussed and analyzed. On the basis of theoretical modeling, the corresponding error formulas are derived as well. Through simulation, the limit value of linear error caused by wavelength instability is 2nm, and on the assumption that 0.85 x T = , 1 Ty = of the polarizing beam splitter(PBS), the limit values of nonlinear-error caused by elliptic polarization are 1.49nm, 2.99nm, 4.49nm while the non-orthogonal angle is selected correspondingly at 1°, 2°, 3° respectively. The law of the error change is analyzed based on different values of Tx and Ty .
Closed-loop stability of linear quadratic optimal systems in the presence of modeling errors
NASA Technical Reports Server (NTRS)
Toda, M.; Patel, R.; Sridhar, B.
1976-01-01
The well-known stabilizing property of linear quadratic state feedback design is utilized to evaluate the robustness of a linear quadratic feedback design in the presence of modeling errors. Two general conditions are obtained for allowable modeling errors such that the resulting closed-loop system remains stable. One of these conditions is applied to obtain two more particular conditions which are readily applicable to practical situations where a designer has information on the bounds of modeling errors. Relations are established between the allowable parameter uncertainty and the weighting matrices of the quadratic performance index, thereby enabling the designer to select appropriate weighting matrices to attain a robust feedback design.
NASA Astrophysics Data System (ADS)
Hladowski, Lukasz; Galkowski, Krzysztof; Cai, Zhonglun; Rogers, Eric; Freeman, Chris T.; Lewin, Paul L.
2011-07-01
In this article a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous consideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using linear matrix inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable.
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
NASA Astrophysics Data System (ADS)
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
MPI Runtime Error Detection with MUST: Advances in Deadlock Detection
Hilbrich, Tobias; Protze, Joachim; Schulz, Martin; ...
2013-01-01
The widely used Message Passing Interface (MPI) is complex and rich. As a result, application developers require automated tools to avoid and to detect MPI programming errors. We present the Marmot Umpire Scalable Tool (MUST) that detects such errors with significantly increased scalability. We present improvements to our graph-based deadlock detection approach for MPI, which cover future MPI extensions. Our enhancements also check complex MPI constructs that no previous graph-based detection approach handled correctly. Finally, we present optimizations for the processing of MPI operations that reduce runtime deadlock detection overheads. Existing approaches often require ( p ) analysis time permore » MPI operation, for p processes. We empirically observe that our improvements lead to sub-linear or better analysis time per operation for a wide range of real world applications.« less
Estimating errors in least-squares fitting
NASA Technical Reports Server (NTRS)
Richter, P. H.
1995-01-01
While least-squares fitting procedures are commonly used in data analysis and are extensively discussed in the literature devoted to this subject, the proper assessment of errors resulting from such fits has received relatively little attention. The present work considers statistical errors in the fitted parameters, as well as in the values of the fitted function itself, resulting from random errors in the data. Expressions are derived for the standard error of the fit, as a function of the independent variable, for the general nonlinear and linear fitting problems. Additionally, closed-form expressions are derived for some examples commonly encountered in the scientific and engineering fields, namely ordinary polynomial and Gaussian fitting functions. These results have direct application to the assessment of the antenna gain and system temperature characteristics, in addition to a broad range of problems in data analysis. The effects of the nature of the data and the choice of fitting function on the ability to accurately model the system under study are discussed, and some general rules are deduced to assist workers intent on maximizing the amount of information obtained form a given set of measurements.
Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds
Fan, Xiwei; Tang, Bo-Hui; Wu, Hua; Yan, Guangjian; Li, Zhao-Liang
2015-01-01
Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST) retrieval error of 11.0 K when using the generalized split-window (GSW) algorithm with a cirrus optical depth (COD) at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31–34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies. PMID:25928059
Covariance Analysis Tool (G-CAT) for Computing Ascent, Descent, and Landing Errors
NASA Technical Reports Server (NTRS)
Boussalis, Dhemetrios; Bayard, David S.
2013-01-01
G-CAT is a covariance analysis tool that enables fast and accurate computation of error ellipses for descent, landing, ascent, and rendezvous scenarios, and quantifies knowledge error contributions needed for error budgeting purposes. Because GCAT supports hardware/system trade studies in spacecraft and mission design, it is useful in both early and late mission/ proposal phases where Monte Carlo simulation capability is not mature, Monte Carlo simulation takes too long to run, and/or there is a need to perform multiple parametric system design trades that would require an unwieldy number of Monte Carlo runs. G-CAT is formulated as a variable-order square-root linearized Kalman filter (LKF), typically using over 120 filter states. An important property of G-CAT is that it is based on a 6-DOF (degrees of freedom) formulation that completely captures the combined effects of both attitude and translation errors on the propagated trajectories. This ensures its accuracy for guidance, navigation, and control (GN&C) analysis. G-CAT provides the desired fast turnaround analysis needed for error budgeting in support of mission concept formulations, design trade studies, and proposal development efforts. The main usefulness of a covariance analysis tool such as G-CAT is its ability to calculate the performance envelope directly from a single run. This is in sharp contrast to running thousands of simulations to obtain similar information using Monte Carlo methods. It does this by propagating the "statistics" of the overall design, rather than simulating individual trajectories. G-CAT supports applications to lunar, planetary, and small body missions. It characterizes onboard knowledge propagation errors associated with inertial measurement unit (IMU) errors (gyro and accelerometer), gravity errors/dispersions (spherical harmonics, masscons), and radar errors (multiple altimeter beams, multiple Doppler velocimeter beams). G-CAT is a standalone MATLAB- based tool intended to run on any engineer's desktop computer.
Optimal analytic method for the nonlinear Hasegawa-Mima equation
NASA Astrophysics Data System (ADS)
Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle
2014-05-01
The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.
Research on the novel FBG detection system for temperature and strain field distribution
NASA Astrophysics Data System (ADS)
Liu, Zhi-chao; Yang, Jin-hua
2017-10-01
In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.
Single-sample method for the estimation of glomerular filtration rate in children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tauxe, W.N.; Bagchi, A.; Tepe, P.G.
1987-03-01
A method for the determination of the glomerular filtration rate (GFR) in children which involves the use of a single-plasma sample (SPS) after the injection of a radioactive indicator such as radioiodine labeled diatrizoate (Hypaque) has been developed. This is analogous to previously published SPS techniques of effective renal plasma flow (ERPF) in adults and children and GFR SPS techniques in adults. As a reference standard, GFR has been calculated from compartment analysis of injected radiopharmaceuticals (Sapirstein Method). Theoretical volumes of distribution were calculated at various times after injection (Vt) by dividing the total injected counts (I) by the plasmamore » concentration (Ct) expressed in liters, determined by counting an aliquot of plasma in a well type scintillation counter. Errors of predicting GFR from the various Vt values were determined as the standard error of estimate (Sy.x) in ml/min. They were found to be relatively high early after injection and to fall to a nadir of 3.9 ml/min at 91 min. The Sy.x Vt relationship was examined in linear, quadratic, and exponential form, but the simpler linear relationship was found to yield the lowest error. Other data calculated from the compartment analysis of the reference plasma disappearance curves are presented, but at this time have apparently little clinical relevance.« less
Time domain convergence properties of Lyapunov stable penalty methods
NASA Technical Reports Server (NTRS)
Kurdila, A. J.; Sunkel, John
1991-01-01
Linear hyperbolic partial differential equations are analyzed using standard techniques to show that a sequence of solutions generated by the Liapunov stable penalty equations approaches the solution of the differential-algebraic equations governing the dynamics of multibody problems arising in linear vibrations. The analysis does not require that the system be conservative and does not impose any specific integration scheme. Variational statements are derived which bound the error in approximation by the norm of the constraint violation obtained in the approximate solutions.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1985-01-01
The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.
MO-FG-202-06: Improving the Performance of Gamma Analysis QA with Radiomics- Based Image Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, L; Nyflot, M; Ford, E
2016-06-15
Purpose: The use of gamma analysis for IMRT quality assurance has well-known limitations. Traditionally, a simple thresholding technique is used to evaluated passing criteria. However, like any image the gamma distribution is rich in information which thresholding mostly discards. We therefore propose a novel method of analyzing gamma images that uses quantitative image features borrowed from radiomics, with the goal of improving error detection. Methods: 368 gamma images were generated from 184 clinical IMRT beams. For each beam the dose to a phantom was measured with EPID dosimetry and compared to the TPS dose calculated with and without normally distributedmore » (2mm sigma) errors in MLC positions. The magnitude of 17 intensity histogram and size-zone radiomic features were derived from each image. The features that differed most significantly between image sets were determined with ROC analysis. A linear machine-learning model was trained on these features to classify images as with or without errors on 180 gamma images.The model was then applied to an independent validation set of 188 additional gamma distributions, half with and half without errors. Results: The most significant features for detecting errors were histogram kurtosis (p=0.007) and three size-zone metrics (p<1e-6 for each). The sizezone metrics detected clusters of high gamma-value pixels under mispositioned MLCs. The model applied to the validation set had an AUC of 0.8, compared to 0.56 for traditional gamma analysis with the decision threshold restricted to 98% or less. Conclusion: A radiomics-based image analysis method was developed that is more effective in detecting error than traditional gamma analysis. Though the pilot study here considers only MLC position errors, radiomics-based methods for other error types are being developed, which may provide better error detection and useful information on the source of detected errors. This work was partially supported by a grant from the Agency for Healthcare Research and Quality, grant number R18 HS022244-01.« less
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1996-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.
A unified perspective on robot control - The energy Lyapunov function approach
NASA Technical Reports Server (NTRS)
Wen, John T.
1990-01-01
A unified framework for the stability analysis of robot tracking control is presented. By using an energy-motivated Lyapunov function candidate, the closed-loop stability is shown for a large family of control laws sharing a common structure of proportional and derivative feedback and a model-based feedforward. The feedforward can be zero, partial or complete linearized dynamics, partial or complete nonlinear dynamics, or linearized or nonlinear dynamics with parameter adaptation. As result, the dichotomous approaches to the robot control problem based on the open-loop linearization and nonlinear Lyapunov analysis are both included in this treatment. Furthermore, quantitative estimates of the trade-offs between different schemes in terms of the tracking performance, steady state error, domain of convergence, realtime computation load and required a prior model information are derived.
Analysis of errors detected in external beam audit dosimetry program at Mexican radiotherapy centers
NASA Astrophysics Data System (ADS)
Álvarez-Romero, José T.; Tovar-Muñoz, Víctor M.
2012-10-01
Presented and analyzed are the causes of deviation observed in the pilot postal dosimetry audit program to verify the absorbed dose to water Dw in external beams of teletherapy 60Co and/or linear accelerators in Mexican radiotherapy centers, during the years 2007-2011.
Analysis of the Efficiency of an A-Posteriori Error Estimator for Linear Triangular Finite Elements
1991-06-01
Release 1.0, NOETIC Tech. Corp., St. Louis, Missouri, 1985. [28] R. VERFURTH, FEMFLOW-user guide. Version 1, Report, Universitiit Zirich, 1989. [29] R... study and research for foreign students in numerical mathematics who are supported by foreign governments or exchange agencies (Fulbright, etc
Estimating School Efficiency: A Comparison of Methods Using Simulated Data.
ERIC Educational Resources Information Center
Bifulco, Robert; Bretschneider, Stuart
2001-01-01
Uses simulated data to assess the adequacy of two econometric and linear-programming techniques (data-envelopment analysis and corrected ordinary least squares) for measuring performance-based school reform. In complex data sets (simulated to contain measurement error and endogeneity), these methods are inadequate efficiency measures. (Contains 40…
Gopal, S; Do, T; Pooni, J S; Martinelli, G
2014-03-01
The Mostcare monitor is a non-invasive cardiac output monitor. It has been well validated in cardiac surgical patients but there is limited evidence on its use in patients with severe sepsis and septic shock. The study included the first 22 consecutive patients with severe sepsis and septic shock in whom the floatation of a pulmonary artery catheter was deemed necessary to guide clinical management. Cardiac output measurements including cardiac output, cardiac index and stroke volume were simultaneously calculated and recorded from a thermodilution pulmonary artery catheter and from the Mostcare monitor respectively. The two methods of measuring cardiac output were compared by Bland-Altman statistics and linear regression analysis. A percentage error of less than 30% was defined as acceptable for this study. Bland-Altman analysis for cardiac output showed a Bias of 0.31 L.min-1, precision (=SD) of 1.97 L.min-1 and a percentage error of 62.54%. For Cardiac Index the bias was 0.21 L.min-1.m-2, precision of 1.10 L.min-1.m-2 and a percentage error of 64%. For stroke volume the bias was 5 mL, precision of 24.46 mL and percentage error of 70.21%. Linear regression produced a correlation coefficient r2 for cardiac output, cardiac index, and stroke volume, of 0.403, 0.306, and 0.3 respectively. Compared to thermodilution cardiac output, cardiac output studies obtained from the Mostcare monitor have an unacceptably high error rate. The Mostcare monitor demonstrated to be an unreliable monitoring device to measure cardiac output in patients with severe sepsis and septic shock on an intensive care unit.
Analysis of the “naming game” with learning errors in communications
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong
2015-07-01
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Analysis of the "naming game" with learning errors in communications.
Lou, Yang; Chen, Guanrong
2015-07-16
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Adjoints and Low-rank Covariance Representation
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.
2000-01-01
Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.
A Canonical Ensemble Correlation Prediction Model for Seasonal Precipitation Anomaly
NASA Technical Reports Server (NTRS)
Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Guilong
2001-01-01
This report describes an optimal ensemble forecasting model for seasonal precipitation and its error estimation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. This new CCA model includes the following features: (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States precipitation field. The predictor is the sea surface temperature.
Adaptive optics system performance approximations for atmospheric turbulence correction
NASA Astrophysics Data System (ADS)
Tyson, Robert K.
1990-10-01
Analysis of adaptive optics system behavior often can be reduced to a few approximations and scaling laws. For atmospheric turbulence correction, the deformable mirror (DM) fitting error is most often used to determine a priori the interactuator spacing and the total number of correction zones required. This paper examines the mirror fitting error in terms of its most commonly used exponential form. The explicit constant in the error term is dependent on deformable mirror influence function shape and actuator geometry. The method of least squares fitting of discrete influence functions to the turbulent wavefront is compared to the linear spatial filtering approximation of system performance. It is found that the spatial filtering method overstimates the correctability of the adaptive optics system by a small amount. By evaluating fitting error for a number of DM configurations, actuator geometries, and influence functions, fitting error constants verify some earlier investigations.
2013-06-24
Barrier methods for critical exponent problems in geometric analysis and mathematical physics, J. Erway and M. Hoist, Submitted for publication . • Finite...1996. [20] C. LANCZOS, Linear Differential Operators, Dover Publications , Mineola, NY, 1997. [21] G.I. MARCHUK, Adjoint Equations and Analysis of...NUMBER(S) 16. SECURITY CLASSIFICATION OF: 19b. TELEPHONE NUMBER (Include area code) The public reporting burden for this collection of information is
Effect of Contact Damage on the Strength of Ceramic Materials.
1982-10-01
variables that are important to erosion, and a multivariate , linear regression analysis is used to fit the data to the dimensional analysis. The...of Equations 7 and 8 by a multivariable regression analysis (room tem- perature data) Exponent Regression Standard error Computed coefficient of...1980) 593. WEAVER, Proc. Brit. Ceram. Soc. 22 (1973) 125. 39. P. W. BRIDGMAN, "Dimensional Analaysis ", (Yale 18. R. W. RICE, S. W. FREIMAN and P. F
NASA Astrophysics Data System (ADS)
Szuflitowska, B.; Orlowski, P.
2017-08-01
Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.
Geometric Integration of Weakly Dissipative Systems
NASA Astrophysics Data System (ADS)
Modin, K.; Führer, C.; Soöderlind, G.
2009-09-01
Some problems in mechanics, e.g. in bearing simulation, contain subsystems that are conservative as well as weakly dissipative subsystems. Our experience is that geometric integration methods are often superior for such systems, as long as the dissipation is weak. Here we develop adaptive methods for dissipative perturbations of Hamiltonian systems. The methods are "geometric" in the sense that the form of the dissipative perturbation is preserved. The methods are linearly explicit, i.e., they require the solution of a linear subsystem. We sketch an analysis in terms of backward error analysis and numerical comparisons with a conventional RK method of the same order is given.
Improved Speech Coding Based on Open-Loop Parameter Estimation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin; Longman, Richard W.
2000-01-01
A nonlinear optimization algorithm for linear predictive speech coding was developed early that not only optimizes the linear model coefficients for the open loop predictor, but does the optimization including the effects of quantization of the transmitted residual. It also simultaneously optimizes the quantization levels used for each speech segment. In this paper, we present an improved method for initialization of this nonlinear algorithm, and demonstrate substantial improvements in performance. In addition, the new procedure produces monotonically improving speech quality with increasing numbers of bits used in the transmitted error residual. Examples of speech encoding and decoding are given for 8 speech segments and signal to noise levels as high as 47 dB are produced. As in typical linear predictive coding, the optimization is done on the open loop speech analysis model. Here we demonstrate that minimizing the error of the closed loop speech reconstruction, instead of the simpler open loop optimization, is likely to produce negligible improvement in speech quality. The examples suggest that the algorithm here is close to giving the best performance obtainable from a linear model, for the chosen order with the chosen number of bits for the codebook.
The microcomputer scientific software series 3: general linear model--analysis of variance.
Harold M. Rauscher
1985-01-01
A BASIC language set of programs, designed for use on microcomputers, is presented. This set of programs will perform the analysis of variance for any statistical model describing either balanced or unbalanced designs. The program computes and displays the degrees of freedom, Type I sum of squares, and the mean square for the overall model, the error, and each factor...
Analysis of the faster-than-Nyquist optimal linear multicarrier system
NASA Astrophysics Data System (ADS)
Marquet, Alexandre; Siclet, Cyrille; Roque, Damien
2017-02-01
Faster-than-Nyquist signalization enables a better spectral efficiency at the expense of an increased computational complexity. Regarding multicarrier communications, previous work mainly relied on the study of non-linear systems exploiting coding and/or equalization techniques, with no particular optimization of the linear part of the system. In this article, we analyze the performance of the optimal linear multicarrier system when used together with non-linear receiving structures (iterative decoding and direct feedback equalization), or in a standalone fashion. We also investigate the limits of the normality assumption of the interference, used for implementing such non-linear systems. The use of this optimal linear system leads to a closed-form expression of the bit-error probability that can be used to predict the performance and help the design of coded systems. Our work also highlights the great performance/complexity trade-off offered by decision feedback equalization in a faster-than-Nyquist context. xml:lang="fr"
Sensitivity analysis of non-cohesive sediment transport formulae
NASA Astrophysics Data System (ADS)
Pinto, Lígia; Fortunato, André B.; Freire, Paula
2006-10-01
Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.
Computerized Design and Generation of Low-Noise Gears with Localized Bearing Contact
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Chen, Ningxin; Chen, Jui-Sheng; Lu, Jian; Handschuh, Robert F.
1995-01-01
The results of research projects directed at the reduction of noise caused by misalignment of the following gear drives: double-circular arc helical gears, modified involute helical gears, face-milled spiral bevel gears, and face-milled formate cut hypoid gears are presented. Misalignment in these types of gear drives causes periodic, almost linear discontinuous functions of transmission errors. The period of such functions is the cycle of meshing when one pair of teeth is changed for the next. Due to the discontinuity of such functions of transmission errors high vibration and noise are inevitable. A predesigned parabolic function of transmission errors that is able to absorb linear discontinuous functions of transmission errors and change the resulting function of transmission errors into a continuous one is proposed. The proposed idea was successfully tested using spiral bevel gears and the noise was reduced a substantial amount in comparison with the existing design. The idea of a predesigned parabolic function is applied for the reduction of noise of helical and hypoid gears. The effectiveness of the proposed approach has been investigated by developed TCA (tooth contact analysis) programs. The bearing contact for the mentioned gears is localized. Conditions that avoid edge contact for the gear drives have been determined. Manufacturing of helical gears with new topology by hobs and grinding worms has been investigated.
Total Dose Effects on Error Rates in Linear Bipolar Systems
NASA Technical Reports Server (NTRS)
Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent
2007-01-01
The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.
Threshold detection in an on-off binary communications channel with atmospheric scintillation
NASA Technical Reports Server (NTRS)
Webb, W. E.; Marino, J. T., Jr.
1974-01-01
The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-emperical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. Bit error probabilities for non-optimum threshold detection system were also investigated.
Threshold detection in an on-off binary communications channel with atmospheric scintillation
NASA Technical Reports Server (NTRS)
Webb, W. E.
1975-01-01
The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-empirical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. The bit error probabilities for nonoptimum threshold detection systems were also investigated.
A First Look at the Navigation Design and Analysis for the Orion Exploration Mission 2
NASA Technical Reports Server (NTRS)
D'Souza, Chris D.; Zenetti, Renato
2017-01-01
This paper will detail the navigation and dispersion design and analysis of the first Orion crewed mission. The optical navigation measurement model will be described. The vehicle noise includes the residual acceleration from attitude deadbanding, attitude maneuvers, CO2 venting, wastewater venting, ammonia sublimator venting and solar radiation pressure. The maneuver execution errors account for the contribution of accelerometer scale-factor on the accuracy of the maneuver execution. Linear covariance techniques are used to obtain the navigation errors and the trajectory dispersions as well as the DV performance. Particular attention will be paid to the accuracy of the delivery at Earth Entry Interface and at the Lunar Flyby.
Caffeine Increases the Linearity of the Visual BOLD Response
Liu, Thomas T.; Liau, Joy
2009-01-01
Although the blood oxygenation level dependent (BOLD) signal used in most functional magnetic resonance imaging (fMRI) studies has been shown to exhibit nonlinear characteristics, most analyses assume that the BOLD signal responds in a linear fashion to stimulus. This assumption of linearity can lead to errors in the estimation of the BOLD response, especially for rapid event-related fMRI studies. In this study, we used a rapid event-related design and Volterra kernel analysis to assess the effect of a 200 mg oral dose of caffeine on the linearity of the visual BOLD response. The caffeine dose significantly (p < 0.02) increased the linearity of the BOLD response in a sample of 11 healthy volunteers studied on a 3 Tesla MRI system. In addition, the agreement between nonlinear and linear estimates of the hemodynamic response function was significantly increased (p= 0.013) with the caffeine dose. These findings indicate that differences in caffeine usage should be considered as a potential source of bias in the analysis of rapid event-related fMRI studies. PMID:19854278
Zeb, Salman; Yousaf, Muhammad
2017-01-01
In this article, we present a QR updating procedure as a solution approach for linear least squares problem with equality constraints. We reduce the constrained problem to unconstrained linear least squares and partition it into a small subproblem. The QR factorization of the subproblem is calculated and then we apply updating techniques to its upper triangular factor R to obtain its solution. We carry out the error analysis of the proposed algorithm to show that it is backward stable. We also illustrate the implementation and accuracy of the proposed algorithm by providing some numerical experiments with particular emphasis on dense problems.
Vallejo, Guillermo; Ato, Manuel; Fernández García, Paula; Livacic Rojas, Pablo E; Tuero Herrero, Ellián
2016-08-01
S. Usami (2014) describes a method to realistically determine sample size in longitudinal research using a multilevel model. The present research extends the aforementioned work to situations where it is likely that the assumption of homogeneity of the errors across groups is not met and the error term does not follow a scaled identity covariance structure. For this purpose, we followed a procedure based on transforming the variance components of the linear growth model and the parameter related to the treatment effect into specific and easily understandable indices. At the same time, we provide the appropriate statistical machinery for researchers to use when data loss is unavoidable, and changes in the expected value of the observed responses are not linear. The empirical powers based on unknown variance components were virtually the same as the theoretical powers derived from the use of statistically processed indexes. The main conclusion of the study is the accuracy of the proposed method to calculate sample size in the described situations with the stipulated power criteria.
Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering
Wu, Pei-Hsun; Agarwal, Ashutosh; Hess, Henry; Khargonekar, Pramod P.; Tseng, Yiider
2010-01-01
Abstract The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes. PMID:20550894
Wang, Wansheng; Chen, Long; Zhou, Jie
2015-01-01
A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures. PMID:27110063
Estimating cosmic velocity fields from density fields and tidal tensors
NASA Astrophysics Data System (ADS)
Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan
2012-10-01
In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.
NASA Technical Reports Server (NTRS)
Lisano, Michael E.
2007-01-01
Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to nonlinear sequential consider covariance analysis, i.e. in the presence of nonlinear dynamics and nonlinear measurements. A simple SPCF for orbit determination, exemplifying an algorithm hosted in the guidance, navigation and control (GN&C) computer processor of a hypothetical robotic spacecraft, was implemented, and compared with an identically-parameterized (standard) extended, consider-parameterized Kalman filter. The onboard filtering scenario examined is a hypothetical spacecraft orbit about a small natural body with imperfectly-known mass. The formulations, relative complexities, and performances of the filters are compared and discussed.
Sensitivity analysis of Jacobian determinant used in treatment planning for lung cancer
NASA Astrophysics Data System (ADS)
Shao, Wei; Gerard, Sarah E.; Pan, Yue; Patton, Taylor J.; Reinhardt, Joseph M.; Durumeric, Oguz C.; Bayouth, John E.; Christensen, Gary E.
2018-03-01
Four-dimensional computed tomography (4DCT) is regularly used to visualize tumor motion in radiation therapy for lung cancer. These 4DCT images can be analyzed to estimate local ventilation by finding a dense correspondence map between the end inhalation and the end exhalation CT image volumes using deformable image registration. Lung regions with ventilation values above a threshold are labeled as regions of high pulmonary function and are avoided when possible in the radiation plan. This paper investigates a sensitivity analysis of the relative Jacobian error to small registration errors. We present a linear approximation of the relative Jacobian error. Next, we give a formula for the sensitivity of the relative Jacobian error with respect to the Jacobian of perturbation displacement field. Preliminary sensitivity analysis results are presented using 4DCT scans from 10 individuals. For each subject, we generated 6400 random smooth biologically plausible perturbation vector fields using a cubic B-spline model. We showed that the correlation between the Jacobian determinant and the Frobenius norm of the sensitivity matrix is close to -1, which implies that the relative Jacobian error in high-functional regions is less sensitive to noise. We also showed that small displacement errors on the average of 0.53 mm may lead to a 10% relative change in Jacobian determinant. We finally showed that the average relative Jacobian error and the sensitivity of the system for all subjects are positively correlated (close to +1), i.e. regions with high sensitivity has more error in Jacobian determinant on average.
NASA Astrophysics Data System (ADS)
Azzam, R. M. A.; Howlader, M. M. K.; Georgiou, T. Y.
1995-08-01
A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p -polarized, s -polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented.
An Expert System for the Evaluation of Cost Models
1990-09-01
contrast to the condition of equal error variance, called homoscedasticity. (Reference: Applied Linear Regression Models by John Neter - page 423...normal. (Reference: Applied Linear Regression Models by John Neter - page 125) Click Here to continue -> Autocorrelation Click Here for the index - Index...over time. Error terms correlated over time are said to be autocorrelated or serially correlated. (REFERENCE: Applied Linear Regression Models by John
Gowda, Dhananjaya; Airaksinen, Manu; Alku, Paavo
2017-09-01
Recently, a quasi-closed phase (QCP) analysis of speech signals for accurate glottal inverse filtering was proposed. However, the QCP analysis which belongs to the family of temporally weighted linear prediction (WLP) methods uses the conventional forward type of sample prediction. This may not be the best choice especially in computing WLP models with a hard-limiting weighting function. A sample selective minimization of the prediction error in WLP reduces the effective number of samples available within a given window frame. To counter this problem, a modified quasi-closed phase forward-backward (QCP-FB) analysis is proposed, wherein each sample is predicted based on its past as well as future samples thereby utilizing the available number of samples more effectively. Formant detection and estimation experiments on synthetic vowels generated using a physical modeling approach as well as natural speech utterances show that the proposed QCP-FB method yields statistically significant improvements over the conventional linear prediction and QCP methods.
A Reduced Dimension Static, Linearized Kalman Filter and Smoother
NASA Technical Reports Server (NTRS)
Fukumori, I.
1995-01-01
An approximate Kalman filter and smoother, based on approximations of the state estimation error covariance matrix, is described. Approximations include a reduction of the effective state dimension, use of a static asymptotic error limit, and a time-invariant linearization of the dynamic model for error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. Examples of use come from TOPEX/POSEIDON.
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Zhao, X.
1996-01-01
A new method for design and generation of spiral bevel gears of uniform tooth depth with localized bearing contact and low level of transmission errors is considered. The main features of the proposed approach are as follows: (1) The localization of the bearing contact is achieved by the mismatch of the generating surfaces. The bearing contact may be provided in the longitudinal direction, or in the direction across the surface; and (2) The low level of transmission errors is achieved due to application of nonlinear relations between the motions of the gear and the gear head-cutter. Such relations may be provided by application of a CNC machine. The generation of the pinion is based on application of linear relations between the motions of the tool and the pinion being generated. The relations described above permit a parabolic function of transmission errors to be obtained that is able to absorb almost linear functions caused by errors of gear alignment. A computer code has been written for the meshing and contact of the spiral bevel gears with the proposed geometry. The effect of misalignment on the proposed geometry has also been determined. Numerical examples for illustration of the proposed theory have been provided.
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Zhao, X.
1996-01-01
A new method for design and generation of spiral bevel gears of uniform tooth depth with localized bearing contact and low level of transmission errors is considered. The main features of the proposed approach are as follows: (1) the localization of the bearing contact is achieved by the mismatch of the generating surfaces. The bearing contact may be provided in the longitudinal direction, or in the direction across the surface; and (2) the low level of transmission errors is achieved due to application of nonlinear relations between the motions of the gear and the gear head-cutter. Such relations may be provided by application of a CNC machine. The generation of the pinion is based on application of linear relations between the motions of the tool and the pinion being generated. The relations described above permit a parabolic function of transmission errors to be obtained that is able to absorb almost linear functions caused by errors of gear alignment. A computer code has been written for the meshing and contact of the spiral bevel gears with the proposed geometry. The effect of misalignment on the proposed geometry has also been determined. Numerical examples for illustration of the proposed theory have been provided.
General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets
NASA Technical Reports Server (NTRS)
Marchen, Luis F.
2011-01-01
The Coronagraph Performance Error Budget (CPEB) tool automates many of the key steps required to evaluate the scattered starlight contrast in the dark hole of a space-based coronagraph. The tool uses a Code V prescription of the optical train, and uses MATLAB programs to call ray-trace code that generates linear beam-walk and aberration sensitivity matrices for motions of the optical elements and line-of-sight pointing, with and without controlled fine-steering mirrors (FSMs). The sensitivity matrices are imported by macros into Excel 2007, where the error budget is evaluated. The user specifies the particular optics of interest, and chooses the quality of each optic from a predefined set of PSDs. The spreadsheet creates a nominal set of thermal and jitter motions, and combines that with the sensitivity matrices to generate an error budget for the system. CPEB also contains a combination of form and ActiveX controls with Visual Basic for Applications code to allow for user interaction in which the user can perform trade studies such as changing engineering requirements, and identifying and isolating stringent requirements. It contains summary tables and graphics that can be instantly used for reporting results in view graphs. The entire process to obtain a coronagraphic telescope performance error budget has been automated into three stages: conversion of optical prescription from Zemax or Code V to MACOS (in-house optical modeling and analysis tool), a linear models process, and an error budget tool process. The first process was improved by developing a MATLAB package based on the Class Constructor Method with a number of user-defined functions that allow the user to modify the MACOS optical prescription. The second process was modified by creating a MATLAB package that contains user-defined functions that automate the process. The user interfaces with the process by utilizing an initialization file where the user defines the parameters of the linear model computations. Other than this, the process is fully automated. The third process was developed based on the Terrestrial Planet Finder coronagraph Error Budget Tool, but was fully automated by using VBA code, form, and ActiveX controls.
Simulating the effect of non-linear mode coupling in cosmological parameter estimation
NASA Astrophysics Data System (ADS)
Kiessling, A.; Taylor, A. N.; Heavens, A. F.
2011-09-01
Fisher Information Matrix methods are commonly used in cosmology to estimate the accuracy that cosmological parameters can be measured with a given experiment and to optimize the design of experiments. However, the standard approach usually assumes both data and parameter estimates are Gaussian-distributed. Further, for survey forecasts and optimization it is usually assumed that the power-spectrum covariance matrix is diagonal in Fourier space. However, in the low-redshift Universe, non-linear mode coupling will tend to correlate small-scale power, moving information from lower to higher order moments of the field. This movement of information will change the predictions of cosmological parameter accuracy. In this paper we quantify this loss of information by comparing naïve Gaussian Fisher matrix forecasts with a maximum likelihood parameter estimation analysis of a suite of mock weak lensing catalogues derived from N-body simulations, based on the SUNGLASS pipeline, for a 2D and tomographic shear analysis of a Euclid-like survey. In both cases, we find that the 68 per cent confidence area of the Ωm-σ8 plane increases by a factor of 5. However, the marginal errors increase by just 20-40 per cent. We propose a new method to model the effects of non-linear shear-power mode coupling in the Fisher matrix by approximating the shear-power distribution as a multivariate Gaussian with a covariance matrix derived from the mock weak lensing survey. We find that this approximation can reproduce the 68 per cent confidence regions of the full maximum likelihood analysis in the Ωm-σ8 plane to high accuracy for both 2D and tomographic weak lensing surveys. Finally, we perform a multiparameter analysis of Ωm, σ8, h, ns, w0 and wa to compare the Gaussian and non-linear mode-coupled Fisher matrix contours. The 6D volume of the 1σ error contours for the non-linear Fisher analysis is a factor of 3 larger than for the Gaussian case, and the shape of the 68 per cent confidence volume is modified. We propose that future Fisher matrix estimates of cosmological parameter accuracies should include mode-coupling effects.
2013-01-01
Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042
Caprihan, A; Pearlson, G D; Calhoun, V D
2008-08-15
Principal component analysis (PCA) is often used to reduce the dimension of data before applying more sophisticated data analysis methods such as non-linear classification algorithms or independent component analysis. This practice is based on selecting components corresponding to the largest eigenvalues. If the ultimate goal is separation of data in two groups, then these set of components need not have the most discriminatory power. We measured the distance between two such populations using Mahalanobis distance and chose the eigenvectors to maximize it, a modified PCA method, which we call the discriminant PCA (DPCA). DPCA was applied to diffusion tensor-based fractional anisotropy images to distinguish age-matched schizophrenia subjects from healthy controls. The performance of the proposed method was evaluated by the one-leave-out method. We show that for this fractional anisotropy data set, the classification error with 60 components was close to the minimum error and that the Mahalanobis distance was twice as large with DPCA, than with PCA. Finally, by masking the discriminant function with the white matter tracts of the Johns Hopkins University atlas, we identified left superior longitudinal fasciculus as the tract which gave the least classification error. In addition, with six optimally chosen tracts the classification error was zero.
Techniques for measurement of thoracoabdominal asynchrony
NASA Technical Reports Server (NTRS)
Prisk, G. Kim; Hammer, J.; Newth, Christopher J L.
2002-01-01
Respiratory motion measured by respiratory inductance plethysmography often deviates from the sinusoidal pattern assumed in the traditional Lissajous figure (loop) analysis used to determine thoraco-abdominal asynchrony, or phase angle phi. We investigated six different time-domain methods of measuring phi, using simulated data with sinusoidal and triangular waveforms, phase shifts of 0-135 degrees, and 10% noise. The techniques were then used on data from 11 lightly anesthetized rhesus monkeys (Macaca mulatta; 7.6 +/- 0.8 kg; 5.7 +/- 0.5 years old), instrumented with a respiratory inductive plethysmograph, and subjected to increasing levels of inspiratory resistive loading ranging from 5-1,000 cmH(2)O. L(-1). sec(-1).The best results were obtained from cross-correlation and maximum linear correlation, with errors less than approximately 5 degrees from the actual phase angle in the simulated data. The worst performance was produced by the loop analysis, which in some cases was in error by more than 30 degrees. Compared to correlation, other analysis techniques performed at an intermediate level. Maximum linear correlation and cross-correlation produced similar results on the data collected from monkeys (SD of the difference, 4.1 degrees ) but all other techniques had a high SD of the difference compared to the correlation techniques.We conclude that phase angles are best measured using cross-correlation or maximum linear correlation, techniques that are independent of waveform shape, and robust in the presence of noise. Copyright 2002 Wiley-Liss, Inc.
Regression Analysis of Top of Descent Location for Idle-thrust Descents
NASA Technical Reports Server (NTRS)
Stell, Laurel; Bronsvoort, Jesper; McDonald, Greg
2013-01-01
In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. The independent variables cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also recorded or computed post-operations. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajec- tory parameters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowl- edge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace. In particular, a model for TOD location that is linear in the independent variables would enable decision support tool human-machine interfaces for which a kinetic approach would be computationally too slow.
Shang, Yu; Yu, Guoqiang
2014-09-29
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order ( N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The N th-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.
The, Bertram; Flivik, Gunnar; Diercks, Ron L; Verdonschot, Nico
2008-03-01
Wear curves from individual patients often show unexplained irregular wear curves or impossible values (negative wear). We postulated errors of two-dimensional wear measurements are mainly the result of radiographic projection differences. We tested a new method that makes two-dimensional wear measurements less sensitive for radiograph projection differences of cemented THAs. The measurement errors that occur when radiographically projecting a three-dimensional THA were modeled. Based on the model, we developed a method to reduce the errors, thus approximating three-dimensional linear wear values, which are less sensitive for projection differences. An error analysis was performed by virtually simulating 144 wear measurements under varying conditions with and without application of the correction: the mean absolute error was reduced from 1.8 mm (range, 0-4.51 mm) to 0.11 mm (range, 0-0.27 mm). For clinical validation, radiostereometric analysis was performed on 47 patients to determine the true wear at 1, 2, and 5 years. Subsequently, wear was measured on conventional radiographs with and without the correction: the overall occurrence of errors greater than 0.2 mm was reduced from 35% to 15%. Wear measurements are less sensitive to differences in two-dimensional projection of the THA when using the correction method.
Guan, W; Meng, X F; Dong, X M
2014-12-01
Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.
Effect of Processing Conditions on the Anelastic Behavior of Plasma Sprayed Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Viswanathan, Vaishak
2011-12-01
Plasma sprayed ceramic materials contain an assortment of micro-structural defects, including pores, cracks, and interfaces arising from the droplet based assemblage of the spray deposition technique. The defective architecture of the deposits introduces a novel "anelastic" response in the coatings comprising of their non-linear and hysteretic stress-strain relationship under mechanical loading. It has been established that this anelasticity can be attributed to the relative movement of the embedded defects under varying stresses. While the non-linear response of the coatings arises from the opening/closure of defects, hysteresis is produced by the frictional sliding among defect surfaces. Recent studies have indicated that anelastic behavior of coatings can be a unique descriptor of their mechanical behavior and related to the defect configuration. In this dissertation, a multi-variable study employing systematic processing strategies was conducted to augment the understanding on various aspects of the reported anelastic behavior. A bi-layer curvature measurement technique was adapted to measure the anelastic properties of plasma sprayed ceramic. The quantification of anelastic parameters was done using a non-linear model proposed by Nakamura et.al. An error analysis was conducted on the technique to know the available margins for both experimental as well as computational errors. The error analysis was extended to evaluate its sensitivity towards different coating microstructure. For this purpose, three coatings with significantly different microstructures were fabricated via tuning of process parameters. Later the three coatings were also subjected to different strain ranges systematically, in order to understand the origin and evolution of anelasticity on different microstructures. The last segment of this thesis attempts to capture the intricacies on the processing front and tries to evaluate and establish a correlation between them and the anelastic parameters.
B-spline goal-oriented error estimators for geometrically nonlinear rods
2011-04-01
respectively, for the output functionals q2–q4 (linear and nonlinear with the trigonometric functions sine and cosine) in all the tests considered...of the errors resulting from the linear, quadratic and nonlinear (with trigonometric functions sine and cosine) outputs and for p = 1, 2. If the... Portugal . References [1] A.T. Adams. Sobolev Spaces. Academic Press, Boston, 1975. [2] M. Ainsworth and J.T. Oden. A posteriori error estimation in
Pandiselvi, S; Raja, R; Cao, Jinde; Rajchakit, G; Ahmad, Bashir
2018-01-01
This work predominantly labels the problem of approximation of state variables for discrete-time stochastic genetic regulatory networks with leakage, distributed, and probabilistic measurement delays. Here we design a linear estimator in such a way that the absorption of mRNA and protein can be approximated via known measurement outputs. By utilizing a Lyapunov-Krasovskii functional and some stochastic analysis execution, we obtain the stability formula of the estimation error systems in the structure of linear matrix inequalities under which the estimation error dynamics is robustly exponentially stable. Further, the obtained conditions (in the form of LMIs) can be effortlessly solved by some available software packages. Moreover, the specific expression of the desired estimator is also shown in the main section. Finally, two mathematical illustrative examples are accorded to show the advantage of the proposed conceptual results.
System Identification Applied to Dynamic CFD Simulation and Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.; Vicroy, Dan D.
2011-01-01
Demanding aerodynamic modeling requirements for military and civilian aircraft have provided impetus for researchers to improve computational and experimental techniques. Model validation is a key component for these research endeavors so this study is an initial effort to extend conventional time history comparisons by comparing model parameter estimates and their standard errors using system identification methods. An aerodynamic model of an aircraft performing one-degree-of-freedom roll oscillatory motion about its body axes is developed. The model includes linear aerodynamics and deficiency function parameters characterizing an unsteady effect. For estimation of unknown parameters two techniques, harmonic analysis and two-step linear regression, were applied to roll-oscillatory wind tunnel data and to computational fluid dynamics (CFD) simulated data. The model used for this study is a highly swept wing unmanned aerial combat vehicle. Differences in response prediction, parameters estimates, and standard errors are compared and discussed
Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J; Murray, David M; Muller, Keith E; Glueck, Deborah H
2015-11-30
We used theoretical and simulation-based approaches to study Type I error rates for one-stage and two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the observed data as outcomes and accounts for within-cluster correlation using a general linear mixed model. The two-stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one-stage and two-stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one-stage model with Kenward-Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one-stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage approach. Copyright © 2015 John Wiley & Sons, Ltd.
Zainudin, Suhaila; Arif, Shereena M.
2017-01-01
Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR) to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C) as a direct interaction (A → C). Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5. PMID:28250767
Error in geometric morphometric data collection: Combining data from multiple sources.
Robinson, Chris; Terhune, Claire E
2017-09-01
This study compares two- and three-dimensional morphometric data to determine the extent to which intra- and interobserver and intermethod error influence the outcomes of statistical analyses. Data were collected five times for each method and observer on 14 anthropoid crania using calipers, a MicroScribe, and 3D models created from NextEngine and microCT scans. ANOVA models were used to examine variance in the linear data at the level of genus, species, specimen, observer, method, and trial. Three-dimensional data were analyzed using geometric morphometric methods; principal components analysis was employed to examine how trials of all specimens were distributed in morphospace and Procrustes distances among trials were calculated and used to generate UPGMA trees to explore whether all trials of the same individual grouped together regardless of observer or method. Most variance in the linear data was at the genus level, with greater variance at the observer than method levels. In the 3D data, interobserver and intermethod error were similar to intraspecific distances among Callicebus cupreus individuals, with interobserver error being higher than intermethod error. Generally, taxa separate well in morphospace, with different trials of the same specimen typically grouping together. However, trials of individuals in the same species overlapped substantially with one another. Researchers should be cautious when compiling data from multiple methods and/or observers, especially if analyses are focused on intraspecific variation or closely related species, as in these cases, patterns among individuals may be obscured by interobserver and intermethod error. Conducting interobserver and intermethod reliability assessments prior to the collection of data is recommended. © 2017 Wiley Periodicals, Inc.
Application of linear regression analysis in accuracy assessment of rolling force calculations
NASA Astrophysics Data System (ADS)
Poliak, E. I.; Shim, M. K.; Kim, G. S.; Choo, W. Y.
1998-10-01
Efficient operation of the computational models employed in process control systems require periodical assessment of the accuracy of their predictions. Linear regression is proposed as a tool which allows separate systematic and random prediction errors from those related to measurements. A quantitative characteristic of the model predictive ability is introduced in addition to standard statistical tests for model adequacy. Rolling force calculations are considered as an example for the application. However, the outlined approach can be used to assess the performance of any computational model.
Markov Jump-Linear Performance Models for Recoverable Flight Control Computers
NASA Technical Reports Server (NTRS)
Zhang, Hong; Gray, W. Steven; Gonzalez, Oscar R.
2004-01-01
Single event upsets in digital flight control hardware induced by atmospheric neutrons can reduce system performance and possibly introduce a safety hazard. One method currently under investigation to help mitigate the effects of these upsets is NASA Langley s Recoverable Computer System. In this paper, a Markov jump-linear model is developed for a recoverable flight control system, which will be validated using data from future experiments with simulated and real neutron environments. The method of tracking error analysis and the plan for the experiments are also described.
A unified development of several techniques for the representation of random vectors and data sets
NASA Technical Reports Server (NTRS)
Bundick, W. T.
1973-01-01
Linear vector space theory is used to develop a general representation of a set of data vectors or random vectors by linear combinations of orthonormal vectors such that the mean squared error of the representation is minimized. The orthonormal vectors are shown to be the eigenvectors of an operator. The general representation is applied to several specific problems involving the use of the Karhunen-Loeve expansion, principal component analysis, and empirical orthogonal functions; and the common properties of these representations are developed.
Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi
2007-10-01
Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.
Ring Laser Gyro G-Sensitive Misalignment Calibration in Linear Vibration Environments.
Wang, Lin; Wu, Wenqi; Li, Geng; Pan, Xianfei; Yu, Ruihang
2018-02-16
The ring laser gyro (RLG) dither axis will bend and exhibit errors due to the specific forces acting on the instrument, which are known as g-sensitive misalignments of the gyros. The g-sensitive misalignments of the RLG triad will cause severe attitude error in vibration or maneuver environments where large-amplitude specific forces and angular rates coexist. However, g-sensitive misalignments are usually ignored when calibrating the strapdown inertial navigation system (SINS). This paper proposes a novel method to calibrate the g-sensitive misalignments of an RLG triad in linear vibration environments. With the SINS is attached to a linear vibration bench through outer rubber dampers, rocking of the SINS can occur when the linear vibration is performed on the SINS. Therefore, linear vibration environments can be created to simulate the harsh environment during aircraft flight. By analyzing the mathematical model of g-sensitive misalignments, the relationship between attitude errors and specific forces as well as angular rates is established, whereby a calibration scheme with approximately optimal observations is designed. Vibration experiments are conducted to calibrate g-sensitive misalignments of the RLG triad. Vibration tests also show that SINS velocity error decreases significantly after g-sensitive misalignments compensation.
String Stability of a Linear Formation Flight Control System
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Ryan, Jack; Hanson, Curtis E.; Parle, James F.
2002-01-01
String stability analysis of an autonomous formation flight system was performed using linear and nonlinear simulations. String stability is a measure of how position errors propagate from one vehicle to another in a cascaded system. In the formation flight system considered here, each i(sup th) aircraft uses information from itself and the preceding ((i-1)(sup th)) aircraft to track a commanded relative position. A possible solution for meeting performance requirements with such a system is to allow string instability. This paper explores two results of string instability and outlines analysis techniques for string unstable systems. The three analysis techniques presented here are: linear, nonlinear formation performance, and ride quality. The linear technique was developed from a worst-case scenario and could be applied to the design of a string unstable controller. The nonlinear formation performance and ride quality analysis techniques both use nonlinear formation simulation. Three of the four formation-controller gain-sets analyzed in this paper were limited more by ride quality than by performance. Formations of up to seven aircraft in a cascaded formation could be used in the presence of light gusts with this string unstable system.
NASA Astrophysics Data System (ADS)
Wu, Jiang; Liao, Fucheng; Tomizuka, Masayoshi
2017-01-01
This paper discusses the design of the optimal preview controller for a linear continuous-time stochastic control system in finite-time horizon, using the method of augmented error system. First, an assistant system is introduced for state shifting. Then, in order to overcome the difficulty of the state equation of the stochastic control system being unable to be differentiated because of Brownian motion, the integrator is introduced. Thus, the augmented error system which contains the integrator vector, control input, reference signal, error vector and state of the system is reconstructed. This leads to the tracking problem of the optimal preview control of the linear stochastic control system being transformed into the optimal output tracking problem of the augmented error system. With the method of dynamic programming in the theory of stochastic control, the optimal controller with previewable signals of the augmented error system being equal to the controller of the original system is obtained. Finally, numerical simulations show the effectiveness of the controller.
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
An improved error bound for linear complementarity problems for B-matrices.
Gao, Lei; Li, Chaoqian
2017-01-01
A new error bound for the linear complementarity problem when the matrix involved is a B -matrix is presented, which improves the corresponding result in (Li et al. in Electron. J. Linear Algebra 31(1):476-484, 2016). In addition some sufficient conditions such that the new bound is sharper than that in (García-Esnaola and Peña in Appl. Math. Lett. 22(7):1071-1075, 2009) are provided.
Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi
2018-02-14
This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Huang, Xiaobiao
2016-05-13
Here, we propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. Finally, the method has been successfully demonstrated on the NSLS-II storage ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Huang, Xiaobiao
2016-08-01
We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Huang, Xiaobiao
2016-08-01
We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.
Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel
2010-09-01
A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.
NASA Astrophysics Data System (ADS)
Zhou, Yanru; Zhao, Yuxiang; Tian, Hui; Zhang, Dengwei; Huang, Tengchao; Miao, Lijun; Shu, Xiaowu; Che, Shuangliang; Liu, Cheng
2016-12-01
In an axial magnetic field (AMF), which is vertical to the plane of the fiber coil, a polarization-maintaining fiber optic gyro (PM-FOG) appears as an axial magnetic error. This error is linearly related to the intensity of an AMF, the radius of the fiber coil, and the light wavelength, and also influenced by the distribution of fiber twist. When a PM-FOG is manufactured completely, this error only appears a linear correlation with the AMF. A real-time compensation model is established to eliminate the error, and the experimental results show that the axial magnetic error of the PM-FOG is decreased from 5.83 to 0.09 deg/h in 12G AMF with 18-dB suppression.
NASA Astrophysics Data System (ADS)
Bousserez, Nicolas; Henze, Daven; Bowman, Kevin; Liu, Junjie; Jones, Dylan; Keller, Martin; Deng, Feng
2013-04-01
This work presents improved analysis error estimates for 4D-Var systems. From operational NWP models to top-down constraints on trace gas emissions, many of today's data assimilation and inversion systems in atmospheric science rely on variational approaches. This success is due to both the mathematical clarity of these formulations and the availability of computationally efficient minimization algorithms. However, unlike Kalman Filter-based algorithms, these methods do not provide an estimate of the analysis or forecast error covariance matrices, these error statistics being propagated only implicitly by the system. From both a practical (cycling assimilation) and scientific perspective, assessing uncertainties in the solution of the variational problem is critical. For large-scale linear systems, deterministic or randomization approaches can be considered based on the equivalence between the inverse Hessian of the cost function and the covariance matrix of analysis error. For perfectly quadratic systems, like incremental 4D-Var, Lanczos/Conjugate-Gradient algorithms have proven to be most efficient in generating low-rank approximations of the Hessian matrix during the minimization. For weakly non-linear systems though, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), a quasi-Newton descent algorithm, is usually considered the best method for the minimization. Suitable for large-scale optimization, this method allows one to generate an approximation to the inverse Hessian using the latest m vector/gradient pairs generated during the minimization, m depending upon the available core memory. At each iteration, an initial low-rank approximation to the inverse Hessian has to be provided, which is called preconditioning. The ability of the preconditioner to retain useful information from previous iterations largely determines the efficiency of the algorithm. Here we assess the performance of different preconditioners to estimate the inverse Hessian of a large-scale 4D-Var system. The impact of using the diagonal preconditioners proposed by Gilbert and Le Maréchal (1989) instead of the usual Oren-Spedicato scalar will be first presented. We will also introduce new hybrid methods that combine randomization estimates of the analysis error variance with L-BFGS diagonal updates to improve the inverse Hessian approximation. Results from these new algorithms will be evaluated against standard large ensemble Monte-Carlo simulations. The methods explored here are applied to the problem of inferring global atmospheric CO2 fluxes using remote sensing observations, and are intended to be integrated with the future NASA Carbon Monitoring System.
Automatic-repeat-request error control schemes
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.; Miller, M. J.
1983-01-01
Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.
Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis
NASA Technical Reports Server (NTRS)
Ghrist, Richard W.; Plakalovic, Dragan
2012-01-01
An understanding of how an initially Gaussian error volume becomes non-Gaussian over time is an important consideration for space-vehicle conjunction assessment. Traditional assumptions applied to the error volume artificially suppress the true non-Gaussian nature of the space-vehicle position uncertainties. For typical conjunction assessment objects, representation of the error volume by a state error covariance matrix in a Cartesian reference frame is a more significant limitation than is the assumption of linearized dynamics for propagating the error volume. In this study, the impact of each assumption is examined and isolated for each point in the volume. Limitations arising from representing the error volume in a Cartesian reference frame is corrected by employing a Monte Carlo approach to probability of collision (Pc), using equinoctial samples from the Cartesian position covariance at the time of closest approach (TCA) between the pair of space objects. A set of actual, higher risk (Pc >= 10 (exp -4)+) conjunction events in various low-Earth orbits using Monte Carlo methods are analyzed. The impact of non-Gaussian error volumes on Pc for these cases is minimal, even when the deviation from a Gaussian distribution is significant.
Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis
NASA Astrophysics Data System (ADS)
Awais, M.; Saleem, S.; Hayat, T.; Irum, S.
2016-12-01
This communication presents the magnetohydrodynamics (MHD) flow of a couple-stress nanofluid over a convective moving wall. The flow dynamics are analyzed in the boundary layer region. Convective cooling phenomenon combined with thermophoresis and Brownian motion effects has been discussed. Similarity transforms are utilized to convert the system of partial differential equations into coupled non-linear ordinary differential equation. Optimal homotopy analysis method (OHAM) is utilized and the concept of minimization is employed by defining the average squared residual errors. Effects of couple-stress parameter, convective cooling process parameter and energy enhancement parameters are displayed via graphs and discussed in detail. Various tables are also constructed to present the error analysis and a comparison of obtained results with the already published data. Stream lines are plotted showing a difference of Newtonian fluid model and couplestress fluid model.
Authentication of the botanical origin of honey by near-infrared spectroscopy.
Ruoff, Kaspar; Luginbühl, Werner; Bogdanov, Stefan; Bosset, Jacques Olivier; Estermann, Barbara; Ziolko, Thomas; Amado, Renato
2006-09-06
Fourier transform near-infrared spectroscopy (FT-NIR) was evaluated for the authentication of eight unifloral and polyfloral honey types (n = 364 samples) previously classified using traditional methods such as chemical, pollen, and sensory analysis. Chemometric evaluation of the spectra was carried out by applying principal component analysis and linear discriminant analysis. The corresponding error rates were calculated according to Bayes' theorem. NIR spectroscopy enabled a reliable discrimination of acacia, chestnut, and fir honeydew honey from the other unifloral and polyfloral honey types studied. The error rates ranged from <0.1 to 6.3% depending on the honey type. NIR proved also to be useful for the classification of blossom and honeydew honeys. The results demonstrate that near-infrared spectrometry is a valuable, rapid, and nondestructive tool for the authentication of the above-mentioned honeys, but not for all varieties studied.
True covariance simulation of the EUVE update filter
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, R. R.
1989-01-01
A covariance analysis of the performance and sensitivity of the attitude determination Extended Kalman Filter (EKF) used by the On Board Computer (OBC) of the Extreme Ultra Violet Explorer (EUVE) spacecraft is presented. The linearized dynamics and measurement equations of the error states are derived which constitute the truth model describing the real behavior of the systems involved. The design model used by the OBC EKF is then obtained by reducing the order of the truth model. The covariance matrix of the EKF which uses the reduced order model is not the correct covariance of the EKF estimation error. A true covariance analysis has to be carried out in order to evaluate the correct accuracy of the OBC generated estimates. The results of such analysis are presented which indicate both the performance and the sensitivity of the OBC EKF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different typesmore » of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.« less
Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A
2017-06-01
Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oboh, I., E-mail: innocentoboh@uniuyo.edu.ng; Aluyor, E.; Audu, T.
The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used tomore » predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.« less
Asteroid orbital error analysis: Theory and application
NASA Technical Reports Server (NTRS)
Muinonen, K.; Bowell, Edward
1992-01-01
We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).
Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica
NASA Astrophysics Data System (ADS)
Oboh, I.; Aluyor, E.; Audu, T.
2015-03-01
The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R2), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.
NASA Technical Reports Server (NTRS)
Buglia, James J.
1989-01-01
An analysis was made of the error in the minimum altitude of a geometric ray from an orbiting spacecraft to the Sun. The sunrise and sunset errors are highly correlated and are opposite in sign. With the ephemeris generated for the SAGE 1 instrument data reduction, these errors can be as large as 200 to 350 meters (1 sigma) after 7 days of orbit propagation. The bulk of this error results from errors in the position of the orbiting spacecraft rather than errors in computing the position of the Sun. These errors, in turn, result from the discontinuities in the ephemeris tapes resulting from the orbital determination process. Data taken from the end of the definitive ephemeris tape are used to generate the predict data for the time interval covered by the next arc of the orbit determination process. The predicted data are then updated by using the tracking data. The growth of these errors is very nearly linear, with a slight nonlinearity caused by the beta angle. An approximate analytic method is given, which predicts the magnitude of the errors and their growth in time with reasonable fidelity.
Estimation of Fetal Weight during Labor: Still a Challenge.
Barros, Joana Goulão; Reis, Inês; Pereira, Isabel; Clode, Nuno; Graça, Luís M
2016-01-01
To evaluate the accuracy of fetal weight prediction by ultrasonography labor employing a formula including the linear measurements of femur length (FL) and mid-thigh soft-tissue thickness (STT). We conducted a prospective study involving singleton uncomplicated term pregnancies within 48 hours of delivery. Only pregnancies with a cephalic fetus admitted in the labor ward for elective cesarean section, induction of labor or spontaneous labor were included. We excluded all non-Caucasian women, the ones previously diagnosed with gestational diabetes and the ones with evidence of ruptured membranes. Fetal weight estimates were calculated using a previously proposed formula [estimated fetal weight = 1687.47 + (54.1 x FL) + (76.68 x STT). The relationship between actual birth weight and estimated fetal weight was analyzed using Pearson's correlation. The formula's performance was assessed by calculating the signed and absolute errors. Mean weight difference and signed percentage error were calculated for birth weight divided into three subgroups: < 3000 g; 3000-4000 g; and > 4000 g. We included for analysis 145 cases and found a significant, yet low, linear relationship between birth weight and estimated fetal weight (p < 0.001; R2 = 0.197) with an absolute mean error of 10.6%. The lowest mean percentage error (0.3%) corresponded to the subgroup with birth weight between 3000 g and 4000 g. This study demonstrates a poor correlation between actual birth weight and the estimated fetal weight using a formula based on femur length and mid-thigh soft-tissue thickness, both linear parameters. Although avoidance of circumferential ultrasound measurements might prove to be beneficial, it is still yet to be found a fetal estimation formula that can be both accurate and simple to perform.
Relationships of Measurement Error and Prediction Error in Observed-Score Regression
ERIC Educational Resources Information Center
Moses, Tim
2012-01-01
The focus of this paper is assessing the impact of measurement errors on the prediction error of an observed-score regression. Measures are presented and described for decomposing the linear regression's prediction error variance into parts attributable to the true score variance and the error variances of the dependent variable and the predictor…
Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations
NASA Astrophysics Data System (ADS)
Wyszkowska, Patrycja
2017-12-01
The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula) are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.
Small-Caliber Projectile Target Impact Angle Determined From Close Proximity Radiographs
2006-10-01
discrete motion data that can be numerically modeled using linear aerodynamic theory or 6-degrees-of- freedom equations of motion. The values of Fφ...Prediction Excel® Spreadsheet shown in figure 9. The Gamma at Impact Spreadsheet uses the linear aerodynamics model , equations 5 and 6, to calculate αT...trajectory angle error via consideration of the RMS fit errors of the actual firings. However, the linear aerodynamics model does not include this effect
Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Jeff D.; Wong, Raimond; Swaminath, Anand
Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of uncertainty in Cyberknife liver treatment and, unlike prediction errors, are not strongly correlated with target motion amplitude. Aggregate 3-dimensional radial position errors presented here suggest the target will be within 4 mm of the target volume for 95% of the beam delivery.« less
Bell, Sigall K; White, Andrew A; Yi, Jean C; Yi-Frazier, Joyce P; Gallagher, Thomas H
2017-12-01
Transparent communication after medical error includes disclosing the mistake to the patient, discussing the event with colleagues, and reporting to the institution. Little is known about whether attitudes about these transparency practices are related. Understanding these relationships could inform educational and organizational strategies to promote transparency. We analyzed responses of 3038 US and Canadian physicians to a medical error communication survey. We used bivariate correlations, principal components analysis, and linear regression to determine whether and how physician attitudes about transparent communication with patients, peers, and the institution after error were related. Physician attitudes about disclosing errors to patients, peers, and institutions were correlated (all P's < 0.001) and represented 2 principal components analysis factors, namely, communication with patients and communication with peers/institution. Predictors of attitudes supporting transparent communication with patients and peers/institution included female sex, US (vs Canadian) doctors, academic (vs private) practice, the belief that disclosure decreased likelihood of litigation, and the belief that system changes occur after error reporting. In addition, younger physicians, surgeons, and those with previous experience disclosing a serious error were more likely to agree with disclosure to patients. In comparison, doctors who believed that disclosure would decrease patient trust were less likely to agree with error disclosure to patients. Previous disclosure education was associated with attitudes supporting greater transparency with peers/institution. Physician attitudes about discussing errors with patients, colleagues, and institutions are related. Several predictors of transparency affect all 3 practices and are potentially modifiable by educational and institutional strategies.
Quantum error correction of continuous-variable states against Gaussian noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralph, T. C.
2011-08-15
We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.
Šiljić Tomić, Aleksandra; Antanasijević, Davor; Ristić, Mirjana; Perić-Grujić, Aleksandra; Pocajt, Viktor
2018-01-01
Accurate prediction of water quality parameters (WQPs) is an important task in the management of water resources. Artificial neural networks (ANNs) are frequently applied for dissolved oxygen (DO) prediction, but often only their interpolation performance is checked. The aims of this research, beside interpolation, were the determination of extrapolation performance of ANN model, which was developed for the prediction of DO content in the Danube River, and the assessment of relationship between the significance of inputs and prediction error in the presence of values which were of out of the range of training. The applied ANN is a polynomial neural network (PNN) which performs embedded selection of most important inputs during learning, and provides a model in the form of linear and non-linear polynomial functions, which can then be used for a detailed analysis of the significance of inputs. Available dataset that contained 1912 monitoring records for 17 water quality parameters was split into a "regular" subset that contains normally distributed and low variability data, and an "extreme" subset that contains monitoring records with outlier values. The results revealed that the non-linear PNN model has good interpolation performance (R 2 =0.82), but it was not robust in extrapolation (R 2 =0.63). The analysis of extrapolation results has shown that the prediction errors are correlated with the significance of inputs. Namely, the out-of-training range values of the inputs with low importance do not affect significantly the PNN model performance, but their influence can be biased by the presence of multi-outlier monitoring records. Subsequently, linear PNN models were successfully applied to study the effect of water quality parameters on DO content. It was observed that DO level is mostly affected by temperature, pH, biological oxygen demand (BOD) and phosphorus concentration, while in extreme conditions the importance of alkalinity and bicarbonates rises over pH and BOD. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guchhait, Shyamal; Banerjee, Biswanath
2018-04-01
In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.
2004-01-01
This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov
A GPS Phase-Locked Loop Performance Metric Based on the Phase Discriminator Output
Stevanovic, Stefan; Pervan, Boris
2018-01-01
We propose a novel GPS phase-lock loop (PLL) performance metric based on the standard deviation of tracking error (defined as the discriminator’s estimate of the true phase error), and explain its advantages over the popular phase jitter metric using theory, numerical simulation, and experimental results. We derive an augmented GPS phase-lock loop (PLL) linear model, which includes the effect of coherent averaging, to be used in conjunction with this proposed metric. The augmented linear model allows more accurate calculation of tracking error standard deviation in the presence of additive white Gaussian noise (AWGN) as compared to traditional linear models. The standard deviation of tracking error, with a threshold corresponding to half of the arctangent discriminator pull-in region, is shown to be a more reliable/robust measure of PLL performance under interference conditions than the phase jitter metric. In addition, the augmented linear model is shown to be valid up until this threshold, which facilitates efficient performance prediction, so that time-consuming direct simulations and costly experimental testing can be reserved for PLL designs that are much more likely to be successful. The effect of varying receiver reference oscillator quality on the tracking error metric is also considered. PMID:29351250
Stable Numerical Approach for Fractional Delay Differential Equations
NASA Astrophysics Data System (ADS)
Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.
2017-12-01
In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.
Optical digital to analog conversion performance analysis for indoor set-up conditions
NASA Astrophysics Data System (ADS)
Dobesch, Aleš; Alves, Luis Nero; Wilfert, Otakar; Ribeiro, Carlos Gaspar
2017-10-01
In visible light communication (VLC) the optical digital to analog conversion (ODAC) approach was proposed as a suitable driving technique able to overcome light-emitting diode's (LED) non-linear characteristic. This concept is analogous to an electrical digital-to-analog converter (EDAC). In other words, digital bits are binary weighted to represent an analog signal. The method supports elementary on-off based modulations able to exploit the essence of LED's non-linear characteristic allowing simultaneous lighting and communication. In the ODAC concept the reconstruction error does not simply rely upon the converter bit depth as in case of EDAC. It rather depends on communication system set-up and geometrical relation between emitter and receiver as well. The paper describes simulation results presenting the ODAC's error performance taking into account: the optical channel, the LED's half power angle (HPA) and the receiver field of view (FOV). The set-up under consideration examines indoor conditions for a square room with 4 m length and 3 m height, operating with one dominant wavelength (blue) and having walls with a reflection coefficient of 0.8. The achieved results reveal that reconstruction error increases for higher data rates as a result of interference due to multipath propagation.
An analytically linearized helicopter model with improved modeling accuracy
NASA Technical Reports Server (NTRS)
Jensen, Patrick T.; Curtiss, H. C., Jr.; Mckillip, Robert M., Jr.
1991-01-01
An analytically linearized model for helicopter flight response including rotor blade dynamics and dynamic inflow, that was recently developed, was studied with the objective of increasing the understanding, the ease of use, and the accuracy of the model. The mathematical model is described along with a description of the UH-60A Black Hawk helicopter and flight test used to validate the model. To aid in utilization of the model for sensitivity analysis, a new, faster, and more efficient implementation of the model was developed. It is shown that several errors in the mathematical modeling of the system caused a reduction in accuracy. These errors in rotor force resolution, trim force and moment calculation, and rotor inertia terms were corrected along with improvements to the programming style and documentation. Use of a trim input file to drive the model is examined. Trim file errors in blade twist, control input phase angle, coning and lag angles, main and tail rotor pitch, and uniform induced velocity, were corrected. Finally, through direct comparison of the original and corrected model responses to flight test data, the effect of the corrections on overall model output is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickles, W.L.; McClure, J.W.; Howell, R.H.
1978-01-01
A sophisticated non-linear multiparameter fitting program has been used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantitiesmore » with a known error. Error estimates for the calibration curve parameters can be obtined from the curvature of the Chi-Squared Matrix or from error relaxation techniques. It has been shown that non-dispersive x-ray fluorescence analysis of 0.1 to 1 mg freeze-dried UNO/sub 3/ can have an accuracy of 0.2% in 1000 sec.« less
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.
1994-01-01
It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.
Practical Session: Simple Linear Regression
NASA Astrophysics Data System (ADS)
Clausel, M.; Grégoire, G.
2014-12-01
Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).
SU-E-T-186: Cloud-Based Quality Assurance Application for Linear Accelerator Commissioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, J
2015-06-15
Purpose: To identify anomalies and safety issues during data collection and modeling for treatment planning systems Methods: A cloud-based quality assurance system (AQUIRE - Automated QUalIty REassurance) has been developed to allow the uploading and analysis of beam data aquired during the treatment planning system commissioning process. In addition to comparing and aggregating measured data, tools have also been developed to extract dose from the treatment planning system for end-to-end testing. A gamma index is perfomed on the data to give a dose difference and distance-to-agreement for validation that a beam model is generating plans consistent with the beam datamore » collection. Results: Over 20 linear accelerators have been commissioning using this platform, and a variety of errors and potential saftey issues have been caught through the validation process. For example, the gamma index of 2% dose, 2mm DTA is quite sufficient to see curves not corrected for effective point of measurement. Also, data imported into the database is analyzed against an aggregate of similar linear accelerators to show data points that are outliers. The resulting curves in the database exhibit a very small standard deviation and imply that a preconfigured beam model based on aggregated linear accelerators will be sufficient in most cases. Conclusion: With the use of this new platform for beam data commissioning, errors in beam data collection and treatment planning system modeling are greatly reduced. With the reduction in errors during acquisition, the resulting beam models are quite similar, suggesting that a common beam model may be possible in the future. Development is ongoing to create routine quality assurance tools to compare back to the beam data acquired during commissioning. I am a medical physicist for Alzyen Medical Physics, and perform commissioning services.« less
NASA Astrophysics Data System (ADS)
Greenough, J. A.; Rider, W. J.
2004-05-01
A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are equal for both numerical methods, then PLMDE uniformly produces lower errors than WENO for the fixed computation cost on the test problems considered here.
Le, Laetitia Minh Maï; Kégl, Balázs; Gramfort, Alexandre; Marini, Camille; Nguyen, David; Cherti, Mehdi; Tfaili, Sana; Tfayli, Ali; Baillet-Guffroy, Arlette; Prognon, Patrice; Chaminade, Pierre; Caudron, Eric
2018-07-01
The use of monoclonal antibodies (mAbs) constitutes one of the most important strategies to treat patients suffering from cancers such as hematological malignancies and solid tumors. These antibodies are prescribed by the physician and prepared by hospital pharmacists. An analytical control enables the quality of the preparations to be ensured. The aim of this study was to explore the development of a rapid analytical method for quality control. The method used four mAbs (Infliximab, Bevacizumab, Rituximab and Ramucirumab) at various concentrations and was based on recording Raman data and coupling them to a traditional chemometric and machine learning approach for data analysis. Compared to conventional linear approach, prediction errors are reduced with a data-driven approach using statistical machine learning methods. In the latter, preprocessing and predictive models are jointly optimized. An additional original aspect of the work involved on submitting the problem to a collaborative data challenge platform called Rapid Analytics and Model Prototyping (RAMP). This allowed using solutions from about 300 data scientists in collaborative work. Using machine learning, the prediction of the four mAbs samples was considerably improved. The best predictive model showed a combined error of 2.4% versus 14.6% using linear approach. The concentration and classification errors were 5.8% and 0.7%, only three spectra were misclassified over the 429 spectra of the test set. This large improvement obtained with machine learning techniques was uniform for all molecules but maximal for Bevacizumab with an 88.3% reduction on combined errors (2.1% versus 17.9%). Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Werner, C. L.; Wegmüller, U.; Strozzi, T.
2012-12-01
The Lost-Hills oil field located in Kern County,California ranks sixth in total remaining reserves in California. Hundreds of densely packed wells characterize the field with one well every 5000 to 20000 square meters. Subsidence due to oil extraction can be grater than 10 cm/year and is highly variable both in space and time. The RADARSAT-1 SAR satellite collected data over this area with a 24-day repeat during a 2 year period spanning 2002-2004. Relatively high interferometric correlation makes this an excellent region for development and test of deformation time-series inversion algorithms. Errors in deformation time series derived from a stack of differential interferograms are primarily due to errors in the digital terrain model, interferometric baselines, variability in tropospheric delay, thermal noise and phase unwrapping errors. Particularly challenging is separation of non-linear deformation from variations in troposphere delay and phase unwrapping errors. In our algorithm a subset of interferometric pairs is selected from a set of N radar acquisitions based on criteria of connectivity, time interval, and perpendicular baseline. When possible, the subset consists of temporally connected interferograms, otherwise the different groups of interferograms are selected to overlap in time. The maximum time interval is constrained to be less than a threshold value to minimize phase gradients due to deformation as well as minimize temporal decorrelation. Large baselines are also avoided to minimize the consequence of DEM errors on the interferometric phase. Based on an extension of the SVD based inversion described by Lee et al. ( USGS Professional Paper 1769), Schmidt and Burgmann (JGR, 2003), and the earlier work of Berardino (TGRS, 2002), our algorithm combines estimation of the DEM height error with a set of finite difference smoothing constraints. A set of linear equations are formulated for each spatial point that are functions of the deformation velocities during the time intervals spanned by the interferogram and a DEM height correction. The sensitivity of the phase to the height correction depends on the length of the perpendicular baseline of each interferogram. This design matrix is augmented with a set of additional weighted constraints on the acceleration that penalize rapid velocity variations. The weighting factor γ can be varied from 0 (no smoothing) to a large values (> 10) that yield an essentially linear time-series solution. The factor can be tuned to take into account a priori knowledge of the deformation non-linearity. The difference between the time-series solution and the unconstrained time-series can be interpreted as due to a combination of tropospheric path delay and baseline error. Spatial smoothing of the residual phase leads to an improved atmospheric model that can be fed back into the model and iterated. Our analysis shows non-linear deformation related to changes in the oil extraction as well as local height corrections improving on the low resolution 3 arc-sec SRTM DEM.
IBM system/360 assembly language interval arithmetic software
NASA Technical Reports Server (NTRS)
Phillips, E. J.
1972-01-01
Computer software designed to perform interval arithmetic is described. An interval is defined as the set of all real numbers between two given numbers including or excluding one or both endpoints. Interval arithmetic consists of the various elementary arithmetic operations defined on the set of all intervals, such as interval addition, subtraction, union, etc. One of the main applications of interval arithmetic is in the area of error analysis of computer calculations. For example, it has been used sucessfully to compute bounds on sounding errors in the solution of linear algebraic systems, error bounds in numerical solutions of ordinary differential equations, as well as integral equations and boundary value problems. The described software enables users to implement algorithms of the type described in references efficiently on the IBM 360 system.
Identification of dynamic systems, theory and formulation
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1985-01-01
The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.
Peleato, Nicolás M; Andrews, Robert C
2015-01-01
This work investigated the application of several fluorescence excitation-emission matrix analysis methods as natural organic matter (NOM) indicators for use in predicting the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). Waters from four different sources (two rivers and two lakes) were subjected to jar testing followed by 24hr disinfection by-product formation tests using chlorine. NOM was quantified using three common measures: dissolved organic carbon, ultraviolet absorbance at 254 nm, and specific ultraviolet absorbance as well as by principal component analysis, peak picking, and parallel factor analysis of fluorescence spectra. Based on multi-linear modeling of THMs and HAAs, principle component (PC) scores resulted in the lowest mean squared prediction error of cross-folded test sets (THMs: 43.7 (μg/L)(2), HAAs: 233.3 (μg/L)(2)). Inclusion of principle components representative of protein-like material significantly decreased prediction error for both THMs and HAAs. Parallel factor analysis did not identify a protein-like component and resulted in prediction errors similar to traditional NOM surrogates as well as fluorescence peak picking. These results support the value of fluorescence excitation-emission matrix-principal component analysis as a suitable NOM indicator in predicting the formation of THMs and HAAs for the water sources studied. Copyright © 2014. Published by Elsevier B.V.
Characterizing error distributions for MISR and MODIS optical depth data
NASA Astrophysics Data System (ADS)
Paradise, S.; Braverman, A.; Kahn, R.; Wilson, B.
2008-12-01
The Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's EOS satellites collect massive, long term data records on aerosol amounts and particle properties. MISR and MODIS have different but complementary sampling characteristics. In order to realize maximum scientific benefit from these data, the nature of their error distributions must be quantified and understood so that discrepancies between them can be rectified and their information combined in the most beneficial way. By 'error' we mean all sources of discrepancies between the true value of the quantity of interest and the measured value, including instrument measurement errors, artifacts of retrieval algorithms, and differential spatial and temporal sampling characteristics. Previously in [Paradise et al., Fall AGU 2007: A12A-05] we presented a unified, global analysis and comparison of MISR and MODIS measurement biases and variances over lives of the missions. We used AErosol RObotic NETwork (AERONET) data as ground truth and evaluated MISR and MODIS optical depth distributions relative to AERONET using simple linear regression. However, AERONET data are themselves instrumental measurements subject to sources of uncertainty. In this talk, we discuss results from an improved analysis of MISR and MODIS error distributions that uses errors-in-variables regression, accounting for uncertainties in both the dependent and independent variables. We demonstrate on optical depth data, but the method is generally applicable to other aerosol properties as well.
Estimating Uncertainty in Long Term Total Ozone Records from Multiple Sources
NASA Technical Reports Server (NTRS)
Frith, Stacey M.; Stolarski, Richard S.; Kramarova, Natalya; McPeters, Richard D.
2014-01-01
Total ozone measurements derived from the TOMS and SBUV backscattered solar UV instrument series cover the period from late 1978 to the present. As the SBUV series of instruments comes to an end, we look to the 10 years of data from the AURA Ozone Monitoring Instrument (OMI) and two years of data from the Ozone Mapping Profiler Suite (OMPS) on board the Suomi National Polar-orbiting Partnership satellite to continue the record. When combining these records to construct a single long-term data set for analysis we must estimate the uncertainty in the record resulting from potential biases and drifts in the individual measurement records. In this study we present a Monte Carlo analysis used to estimate uncertainties in the Merged Ozone Dataset (MOD), constructed from the Version 8.6 SBUV2 series of instruments. We extend this analysis to incorporate OMI and OMPS total ozone data into the record and investigate the impact of multiple overlapping measurements on the estimated error. We also present an updated column ozone trend analysis and compare the size of statistical error (error from variability not explained by our linear regression model) to that from instrument uncertainty.
Flyby Error Analysis Based on Contour Plots for the Cassini Tour
NASA Technical Reports Server (NTRS)
Stumpf, P. W.; Gist, E. M.; Goodson, T. D.; Hahn, Y.; Wagner, S. V.; Williams, P. N.
2008-01-01
The maneuver cancellation analysis consists of cost contour plots employed by the Cassini maneuver team. The plots are two-dimensional linear representations of a larger six-dimensional solution to a multi-maneuver, multi-encounter mission at Saturn. By using contours plotted with the dot product of vectors B and R and the dot product of vectors B and T components, it is possible to view the effects delta V on for various encounter positions in the B-plane. The plot is used in operations to help determine if the Approach Maneuver (ensuing encounter minus three days) and/or the Cleanup Maneuver (ensuing encounter plus three days) can be cancelled and also is a linear check of an integrated solution.
Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang
Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vsmore » treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.« less
Makeyev, Oleksandr; Joe, Cody; Lee, Colin; Besio, Walter G
2017-07-01
Concentric ring electrodes have shown promise in non-invasive electrophysiological measurement demonstrating their superiority to conventional disc electrodes, in particular, in accuracy of Laplacian estimation. Recently, we have proposed novel variable inter-ring distances concentric ring electrodes. Analytic and finite element method modeling results for linearly increasing distances electrode configurations suggested they may decrease the truncation error resulting in more accurate Laplacian estimates compared to currently used constant inter-ring distances configurations. This study assesses statistical significance of Laplacian estimation accuracy improvement due to novel variable inter-ring distances concentric ring electrodes. Full factorial design of analysis of variance was used with one categorical and two numerical factors: the inter-ring distances, the electrode diameter, and the number of concentric rings in the electrode. The response variables were the Relative Error and the Maximum Error of Laplacian estimation computed using a finite element method model for each of the combinations of levels of three factors. Effects of the main factors and their interactions on Relative Error and Maximum Error were assessed and the obtained results suggest that all three factors have statistically significant effects in the model confirming the potential of using inter-ring distances as a means of improving accuracy of Laplacian estimation.
ERIC Educational Resources Information Center
Zu, Jiyun; Yuan, Ke-Hai
2012-01-01
In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…
Statistical inference for template aging
NASA Astrophysics Data System (ADS)
Schuckers, Michael E.
2006-04-01
A change in classification error rates for a biometric device is often referred to as template aging. Here we offer two methods for determining whether the effect of time is statistically significant. The first of these is the use of a generalized linear model to determine if these error rates change linearly over time. This approach generalizes previous work assessing the impact of covariates using generalized linear models. The second approach uses of likelihood ratio tests methodology. The focus here is on statistical methods for estimation not the underlying cause of the change in error rates over time. These methodologies are applied to data from the National Institutes of Standards and Technology Biometric Score Set Release 1. The results of these applications are discussed.
NASA Astrophysics Data System (ADS)
Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin
2017-07-01
Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.
Systematic Errors in an Air Track Experiment.
ERIC Educational Resources Information Center
Ramirez, Santos A.; Ham, Joe S.
1990-01-01
Errors found in a common physics experiment to measure acceleration resulting from gravity using a linear air track are investigated. Glider position at release and initial velocity are shown to be sources of systematic error. (CW)
PID-based error signal modeling
NASA Astrophysics Data System (ADS)
Yohannes, Tesfay
1997-10-01
This paper introduces a PID based signal error modeling. The error modeling is based on the betterment process. The resulting iterative learning algorithm is introduced and a detailed proof is provided for both linear and nonlinear systems.
Guan, Yongtao; Li, Yehua; Sinha, Rajita
2011-01-01
In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material. PMID:21984854
A performance model for GPUs with caches
Dao, Thanh Tuan; Kim, Jungwon; Seo, Sangmin; ...
2014-06-24
To exploit the abundant computational power of the world's fastest supercomputers, an even workload distribution to the typically heterogeneous compute devices is necessary. While relatively accurate performance models exist for conventional CPUs, accurate performance estimation models for modern GPUs do not exist. This paper presents two accurate models for modern GPUs: a sampling-based linear model, and a model based on machine-learning (ML) techniques which improves the accuracy of the linear model and is applicable to modern GPUs with and without caches. We first construct the sampling-based linear model to predict the runtime of an arbitrary OpenCL kernel. Based on anmore » analysis of NVIDIA GPUs' scheduling policies we determine the earliest sampling points that allow an accurate estimation. The linear model cannot capture well the significant effects that memory coalescing or caching as implemented in modern GPUs have on performance. We therefore propose a model based on ML techniques that takes several compiler-generated statistics about the kernel as well as the GPU's hardware performance counters as additional inputs to obtain a more accurate runtime performance estimation for modern GPUs. We demonstrate the effectiveness and broad applicability of the model by applying it to three different NVIDIA GPU architectures and one AMD GPU architecture. On an extensive set of OpenCL benchmarks, on average, the proposed model estimates the runtime performance with less than 7 percent error for a second-generation GTX 280 with no on-chip caches and less than 5 percent for the Fermi-based GTX 580 with hardware caches. On the Kepler-based GTX 680, the linear model has an error of less than 10 percent. On an AMD GPU architecture, Radeon HD 6970, the model estimates with 8 percent of error rates. As a result, the proposed technique outperforms existing models by a factor of 5 to 6 in terms of accuracy.« less
Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing
Matochko, Wadim L.; Derda, Ratmir
2013-01-01
Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (S a). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of S a and use them to define the sequencing operator (S e q). Sequencing without any bias and errors is S e q = S a IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (C E N), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process. PMID:24416071
Multiple regression technique for Pth degree polynominals with and without linear cross products
NASA Technical Reports Server (NTRS)
Davis, J. W.
1973-01-01
A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.
Mechanisms for the elevation structure of a giant telescope
NASA Astrophysics Data System (ADS)
Hu, Shouwei; Song, Xiaoli; Zhang, Hui
2018-06-01
This paper describes an innovative mechanism based on hydrostatic pads and linear motors for the elevation structure of next-generation extremely large telescopes. Both hydrostatic pads and linear motors are integrated on the frame that includes a kinematical joint, such that the upper part is properly positioned with respect to the elevation runner tracks, while the lower part is connected to the azimuth structure. Potential deflections of the elevation runner bearings at the radial pad locations are absorbed by this flexible kinematic connection and not transmitted to the linear motors and hydrostatic pads. Extensive simulations using finite-element analysis are carried out to verify that the auxiliary whiffletree hydraulic design of the mechanism is sufficient to satisfy the assigned optical length variation errors.
Mechanisms for the elevation structure of a giant telescope
NASA Astrophysics Data System (ADS)
Hu, Shouwei; Song, Xiaoli; Zhang, Hui
2018-05-01
This paper describes an innovative mechanism based on hydrostatic pads and linear motors for the elevation structure of next-generation extremely large telescopes. Both hydrostatic pads and linear motors are integrated on the frame that includes a kinematical joint, such that the upper part is properly positioned with respect to the elevation runner tracks, while the lower part is connected to the azimuth structure. Potential deflections of the elevation runner bearings at the radial pad locations are absorbed by this flexible kinematic connection and not transmitted to the linear motors and hydrostatic pads. Extensive simulations using finite-element analysis are carried out to verify that the auxiliary whiffletree hydraulic design of the mechanism is sufficient to satisfy the assigned optical length variation errors.
Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats.
Dai, Yanjun; Li, Xian; Zhou, Lingyu; Ma, Xuan; Wang, Ruzhu
2016-05-16
Concentrating the concept of a beam-down solar tower with linear Fresnel heliostat (PLCF) is one of the feasible choices and has great potential in reducing spot size and improving optical efficiency. Optical characteristics of a PLCF system with the hyperboloid reflector are introduced and investigated theoretically. Taking into account solar position and optical surface errors, a Monte Carlo ray-tracing (MCRT) analysis model for a PLCF system is developed and applied in a comparison-based study on the optical performance between the PLCF system and the conventional beam-down solar tower system with flat and spherical heliostats. The optimal square facet of linear Fresnel heliostat is also proposed for matching with the 3D-CPC receiver.
Estimation of the linear mixed integrated Ornstein–Uhlenbeck model
Hughes, Rachael A.; Kenward, Michael G.; Sterne, Jonathan A. C.; Tilling, Kate
2017-01-01
ABSTRACT The linear mixed model with an added integrated Ornstein–Uhlenbeck (IOU) process (linear mixed IOU model) allows for serial correlation and estimation of the degree of derivative tracking. It is rarely used, partly due to the lack of available software. We implemented the linear mixed IOU model in Stata and using simulations we assessed the feasibility of fitting the model by restricted maximum likelihood when applied to balanced and unbalanced data. We compared different (1) optimization algorithms, (2) parameterizations of the IOU process, (3) data structures and (4) random-effects structures. Fitting the model was practical and feasible when applied to large and moderately sized balanced datasets (20,000 and 500 observations), and large unbalanced datasets with (non-informative) dropout and intermittent missingness. Analysis of a real dataset showed that the linear mixed IOU model was a better fit to the data than the standard linear mixed model (i.e. independent within-subject errors with constant variance). PMID:28515536
A Guided-Inquiry Lab for the Analysis of the Balmer Series of the Hydrogen Atomic Spectrum
ERIC Educational Resources Information Center
Bopegedera, A. M. R. P.
2011-01-01
A guided-inquiry lab was developed to analyze the Balmer series of the hydrogen atomic spectrum. The emission spectrum of hydrogen was recorded with a homemade benchtop spectrophotometer. By drawing graphs and a trial-and-error approach, students discover the linear relationship presented in the Rydberg formula and connect it with the Bohr model…
Exploring Measurement Error with Cookies: A Real and Virtual Approach via Interactive Excel
ERIC Educational Resources Information Center
Sinex, Scott A; Gage, Barbara A.; Beck, Peggy J.
2007-01-01
A simple, guided-inquiry investigation using stacked sandwich cookies is employed to develop a simple linear mathematical model and to explore measurement error by incorporating errors as part of the investigation. Both random and systematic errors are presented. The model and errors are then investigated further by engaging with an interactive…
Performance Analysis of Local Ensemble Kalman Filter
NASA Astrophysics Data System (ADS)
Tong, Xin T.
2018-03-01
Ensemble Kalman filter (EnKF) is an important data assimilation method for high-dimensional geophysical systems. Efficient implementation of EnKF in practice often involves the localization technique, which updates each component using only information within a local radius. This paper rigorously analyzes the local EnKF (LEnKF) for linear systems and shows that the filter error can be dominated by the ensemble covariance, as long as (1) the sample size exceeds the logarithmic of state dimension and a constant that depends only on the local radius; (2) the forecast covariance matrix admits a stable localized structure. In particular, this indicates that with small system and observation noises, the filter error will be accurate in long time even if the initialization is not. The analysis also reveals an intrinsic inconsistency caused by the localization technique, and a stable localized structure is necessary to control this inconsistency. While this structure is usually taken for granted for the operation of LEnKF, it can also be rigorously proved for linear systems with sparse local observations and weak local interactions. These theoretical results are also validated by numerical implementation of LEnKF on a simple stochastic turbulence in two dynamical regimes.
Forecasting Container Throughput at the Doraleh Port in Djibouti through Time Series Analysis
NASA Astrophysics Data System (ADS)
Mohamed Ismael, Hawa; Vandyck, George Kobina
The Doraleh Container Terminal (DCT) located in Djibouti has been noted as the most technologically advanced container terminal on the African continent. DCT's strategic location at the crossroads of the main shipping lanes connecting Asia, Africa and Europe put it in a unique position to provide important shipping services to vessels plying that route. This paper aims to forecast container throughput through the Doraleh Container Port in Djibouti by Time Series Analysis. A selection of univariate forecasting models has been used, namely Triple Exponential Smoothing Model, Grey Model and Linear Regression Model. By utilizing the above three models and their combination, the forecast of container throughput through the Doraleh port was realized. A comparison of the different forecasting results of the three models, in addition to the combination forecast is then undertaken, based on commonly used evaluation criteria Mean Absolute Deviation (MAD) and Mean Absolute Percentage Error (MAPE). The study found that the Linear Regression forecasting Model was the best prediction method for forecasting the container throughput, since its forecast error was the least. Based on the regression model, a ten (10) year forecast for container throughput at DCT has been made.
Combined slope ratio analysis and linear-subtraction: An extension of the Pearce ratio method
NASA Astrophysics Data System (ADS)
De Waal, Sybrand A.
1996-07-01
A new technique, called combined slope ratio analysis, has been developed by extending the Pearce element ratio or conserved-denominator method (Pearce, 1968) to its logical conclusions. If two stoichiometric substances are mixed and certain chemical components are uniquely contained in either one of the two mixing substances, then by treating these unique components as conserved, the composition of the substance not containing the relevant component can be accurately calculated within the limits allowed by analytical and geological error. The calculated composition can then be subjected to rigorous statistical testing using the linear-subtraction method recently advanced by Woronow (1994). Application of combined slope ratio analysis to the rocks of the Uwekahuna Laccolith, Hawaii, USA, and the lavas of the 1959-summit eruption of Kilauea Volcano, Hawaii, USA, yields results that are consistent with field observations.
Linear Combination Fitting (LCF)-XANES analysis of As speciation in selected mine-impacted materials
This table provides sample identification labels and classification of sample type (tailings, calcinated, grey slime). For each sample, total arsenic and iron concentrations determined by acid digestion and ICP analysis are provided along with arsenic in-vitro bioaccessibility (As IVBA) values to estimate arsenic risk. Lastly, the table provides linear combination fitting results from synchrotron XANES analysis showing the distribution of arsenic speciation phases present in each sample along with fitting error (R-factor).This dataset is associated with the following publication:Ollson, C., E. Smith, K. Scheckel, A. Betts, and A. Juhasz. Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. Diana Aga, Wonyong Choi, Andrew Daugulis, Gianluca Li Puma, Gerasimos Lyberatos, and Joo Hwa Tay JOURNAL OF HAZARDOUS MATERIALS. Elsevier Science Ltd, New York, NY, USA, 313: 130-137, (2016).
Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?
Kiernan, D; Hosking, J; O'Brien, T
2016-03-01
Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.
Impulsivity modulates performance under response uncertainty in a reaching task.
Tzagarakis, C; Pellizzer, G; Rogers, R D
2013-03-01
We sought to explore the interaction of the impulsivity trait with response uncertainty. To this end, we used a reaching task (Pellizzer and Hedges in Exp Brain Res 150:276-289, 2003) where a motor response direction was cued at different levels of uncertainty (1 cue, i.e., no uncertainty, 2 cues or 3 cues). Data from 95 healthy adults (54 F, 41 M) were analysed. Impulsivity was measured using the Barratt Impulsiveness Scale version 11 (BIS-11). Behavioral variables recorded were reaction time (RT), errors of commission (referred to as 'early errors') and errors of precision. Data analysis employed generalised linear mixed models and generalised additive mixed models. For the early errors, there was an interaction of impulsivity with uncertainty and gender, with increased errors for high impulsivity in the one-cue condition for women and the three-cue condition for men. There was no effect of impulsivity on precision errors or RT. However, the analysis of the effect of RT and impulsivity on precision errors showed a different pattern for high versus low impulsives in the high uncertainty (3 cue) condition. In addition, there was a significant early error speed-accuracy trade-off for women, primarily in low uncertainty and a 'reverse' speed-accuracy trade-off for men in high uncertainty. These results extend those of past studies of impulsivity which help define it as a behavioural trait that modulates speed versus accuracy response styles depending on environmental constraints and highlight once more the importance of gender in the interplay of personality and behaviour.
The Delicate Analysis of Short-Term Load Forecasting
NASA Astrophysics Data System (ADS)
Song, Changwei; Zheng, Yuan
2017-05-01
This paper proposes a new method for short-term load forecasting based on the similar day method, correlation coefficient and Fast Fourier Transform (FFT) to achieve the precision analysis of load variation from three aspects (typical day, correlation coefficient, spectral analysis) and three dimensions (time dimension, industry dimensions, the main factors influencing the load characteristic such as national policies, regional economic, holidays, electricity and so on). First, the branch algorithm one-class-SVM is adopted to selection the typical day. Second, correlation coefficient method is used to obtain the direction and strength of the linear relationship between two random variables, which can reflect the influence caused by the customer macro policy and the scale of production to the electricity price. Third, Fourier transform residual error correction model is proposed to reflect the nature of load extracting from the residual error. Finally, simulation result indicates the validity and engineering practicability of the proposed method.
NASA Astrophysics Data System (ADS)
Xia, Xintao; Wang, Zhongyu
2008-10-01
For some methods of stability analysis of a system using statistics, it is difficult to resolve the problems of unknown probability distribution and small sample. Therefore, a novel method is proposed in this paper to resolve these problems. This method is independent of probability distribution, and is useful for small sample systems. After rearrangement of the original data series, the order difference and two polynomial membership functions are introduced to estimate the true value, the lower bound and the supper bound of the system using fuzzy-set theory. Then empirical distribution function is investigated to ensure confidence level above 95%, and the degree of similarity is presented to evaluate stability of the system. Cases of computer simulation investigate stable systems with various probability distribution, unstable systems with linear systematic errors and periodic systematic errors and some mixed systems. The method of analysis for systematic stability is approved.
Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary
Yang, Deng; You, Zheng; Li, Bin; Duan, Wenrui; Yuan, Binwen
2017-01-01
Magnetometers combined with inertial sensors are widely used for orientation estimation, and calibrations are necessary to achieve high accuracy. This paper presents a complete tri-axis magnetometer calibration algorithm with a gyro auxiliary. The magnetic distortions and sensor errors, including the misalignment error between the magnetometer and assembled platform, are compensated after calibration. With the gyro auxiliary, the magnetometer linear interpolation outputs are calculated, and the error parameters are evaluated under linear operations of magnetometer interpolation outputs. The simulation and experiment are performed to illustrate the efficiency of the algorithm. After calibration, the heading errors calculated by magnetometers are reduced to 0.5° (1σ). This calibration algorithm can also be applied to tri-axis accelerometers whose error model is similar to tri-axis magnetometers. PMID:28587115
CFD analysis of linear compressors considering load conditions
NASA Astrophysics Data System (ADS)
Bae, Sanghyun; Oh, Wonsik
2017-08-01
This paper is a study on computational fluid dynamics (CFD) analysis of linear compressor considering load conditions. In the conventional CFD analysis of the linear compressor, the load condition was not considered in the behaviour of the piston. In some papers, behaviour of piston is assumed as sinusoidal motion provided by user defined function (UDF). In the reciprocating type compressor, the stroke of the piston is restrained by the rod, while the stroke of the linear compressor is not restrained, and the stroke changes depending on the load condition. The greater the pressure difference between the discharge refrigerant and the suction refrigerant, the more the centre point of the stroke is pushed backward. And the behaviour of the piston is not a complete sine wave. For this reason, when the load condition changes in the CFD analysis of the linear compressor, it may happen that the ANSYS code is changed or unfortunately the modelling is changed. In addition, a separate analysis or calculation is required to find a stroke that meets the load condition, which may contain errors. In this study, the coupled mechanical equations and electrical equations are solved using the UDF, and the behaviour of the piston is solved considering the pressure difference across the piston. Using the above method, the stroke of the piston with respect to the motor specification of the analytical model can be calculated according to the input voltage, and the piston behaviour can be realized considering the thrust amount due to the pressure difference.
An error bound for a discrete reduced order model of a linear multivariable system
NASA Technical Reports Server (NTRS)
Al-Saggaf, Ubaid M.; Franklin, Gene F.
1987-01-01
The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.
Zollanvari, Amin; Dougherty, Edward R
2014-06-01
The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.
Saito, Masahide; Sano, Naoki; Shibata, Yuki; Kuriyama, Kengo; Komiyama, Takafumi; Marino, Kan; Aoki, Shinichi; Ashizawa, Kazunari; Yoshizawa, Kazuya; Onishi, Hiroshi
2018-05-01
The purpose of this study was to compare the MLC error sensitivity of various measurement devices for VMAT pre-treatment quality assurance (QA). This study used four QA devices (Scandidos Delta4, PTW 2D-array, iRT systems IQM, and PTW Farmer chamber). Nine retrospective VMAT plans were used and nine MLC error plans were generated for all nine original VMAT plans. The IQM and Farmer chamber were evaluated using the cumulative signal difference between the baseline and error-induced measurements. In addition, to investigate the sensitivity of the Delta4 device and the 2D-array, global gamma analysis (1%/1, 2%/2, and 3%/3 mm), dose difference (1%, 2%, and 3%) were used between the baseline and error-induced measurements. Some deviations of the MLC error sensitivity for the evaluation metrics and MLC error ranges were observed. For the two ionization devices, the sensitivity of the IQM was significantly better than that of the Farmer chamber (P < 0.01) while both devices had good linearly correlation between the cumulative signal difference and the magnitude of MLC errors. The pass rates decreased as the magnitude of the MLC error increased for both Delta4 and 2D-array. However, the small MLC error for small aperture sizes, such as for lung SBRT, could not be detected using the loosest gamma criteria (3%/3 mm). Our results indicate that DD could be more useful than gamma analysis for daily MLC QA, and that a large-area ionization chamber has a greater advantage for detecting systematic MLC error because of the large sensitive volume, while the other devices could not detect this error for some cases with a small range of MLC error. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
The decline and fall of Type II error rates
Steve Verrill; Mark Durst
2005-01-01
For general linear models with normally distributed random errors, the probability of a Type II error decreases exponentially as a function of sample size. This potentially rapid decline reemphasizes the importance of performing power calculations.
NASA Astrophysics Data System (ADS)
Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel
2018-03-01
Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.
ARID relative calibration experimental data and analysis
NASA Technical Reports Server (NTRS)
Doty, Keith L
1992-01-01
Several experiments measure the orientation error of the ARID end-frame as well as linear displacements in the Orbiter's y- and z-axes. In each experiment the position of the ARID on the trolley is fixed and the manipulator extends and retracts along the Orbiter's y-axis. A sensor platform consisting of four sonars arranged in a '+' pattern measures the platform pitch about the Orbiter's y-axis (angle b) and yaw about the Orbiter's x-axis (angle alpha). Corroborating measurements of the yaw error were performed using a carpenter's level to keep the platform perpendicular to the gravity vector at each ARID pose being measured.
The NBS scale of radiance temperature
NASA Technical Reports Server (NTRS)
Waters, William R.; Walker, James H.; Hattenburg, Albert T.
1988-01-01
The measurement methods and instrumentation used in the realization and transfer of the International Practical Temperature Scale (IPTS-68) above the temperature of freezing gold are described. The determination of the ratios of spectral radiance of tungsten-strip lamps to a gold-point blackbody at a wavelength of 654.6 nm is detailed. The response linearity, spectral responsivity, scattering error, and polarization properties of the instrumentation are described. The analysis of the sources of error and estimates of uncertainty are presented. The assigned uncertainties (three standard deviations) in radiance temperature range from + or - 2 K at 2573 K to + or - 0.5 K at 1073 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dick, D; Zhao, W; Wu, X
2016-06-15
Purpose: To investigate the feasibility of tracking abdominal tumors without the use of gold fiducial markers Methods: In this simulation study, an abdominal 4DCT dataset, acquired previously and containing 8 phases of the breathing cycle, was used as the testing data. Two sets of DRR images (45 and 135 degrees) were generated for each phase. Three anatomical points along the lung-diaphragm interface on each of the Digital Reconstructed Radiograph(DRR) images were identified by cross-correlation. The gallbladder, which simulates the tumor, was contoured for each phase of the breathing cycle and the corresponding centroid values serve as the measured center ofmore » the tumor. A linear model was created to correlate the diaphragm’s disparity of the three identified anatomical points with the center of the tumor. To verify the established linear model, we sequentially removed one phase of the data (i.e., 3 anatomical points and the corresponding tumor center) and created new linear models with the remaining 7 phases. Then we substituted the eliminated phase data (disparities of the 3 anatomical points) into the corresponding model to compare model-generated tumor center and the measured tumor center. Results: The maximum difference between the modeled and the measured centroid values across the 8 phases were 0.72, 0.29 and 0.30 pixels in the x, y and z directions respectively, which yielded a maximum mean-squared-error value of 0.75 pixels. The outcomes of the verification process, by eliminating each phase, produced mean-squared-errors ranging from 0.41 to 1.28 pixels. Conclusion: Gold fiducial markers, requiring surgical procedures to be implanted, are conventionally used in radiation therapy. The present work shows the feasibility of a fiducial-less tracking method for localizing abdominal tumors. Through developed diaphragm disparity analysis, the established linear model was verified with clinically accepted errors. The tracking method in real time under different radiation therapy platforms will be further investigated.« less
Adaptive Error Estimation in Linearized Ocean General Circulation Models
NASA Technical Reports Server (NTRS)
Chechelnitsky, Michael Y.
1999-01-01
Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.
General linear codes for fault-tolerant matrix operations on processor arrays
NASA Technical Reports Server (NTRS)
Nair, V. S. S.; Abraham, J. A.
1988-01-01
Various checksum codes have been suggested for fault-tolerant matrix computations on processor arrays. Use of these codes is limited due to potential roundoff and overflow errors. Numerical errors may also be misconstrued as errors due to physical faults in the system. In this a set of linear codes is identified which can be used for fault-tolerant matrix operations such as matrix addition, multiplication, transposition, and LU-decomposition, with minimum numerical error. Encoding schemes are given for some of the example codes which fall under the general set of codes. With the help of experiments, a rule of thumb for the selection of a particular code for a given application is derived.
NASA Astrophysics Data System (ADS)
Liu, Yang; Song, Fazhi; Yang, Xiaofeng; Dong, Yue; Tan, Jiubin
2018-06-01
Due to their structural simplicity, linear motors are increasingly receiving attention for use in high velocity and high precision applications. The force ripple, as a space-periodic disturbance, however, would deteriorate the achievable dynamic performance. Conventional force ripple measurement approaches are time-consuming and have high requirements on the experimental conditions. In this paper, a novel learning identification algorithm is proposed for force ripple intelligent measurement and compensation. Existing identification schemes always use all the error signals to update the parameters in the force ripple. However, the error induced by noise is non-effective for force ripple identification, and even deteriorates the identification process. In this paper only the most pertinent information in the error signal is utilized for force ripple identification. Firstly, the effective error signals caused by the reference trajectory and the force ripple are extracted by projecting the overall error signals onto a subspace spanned by the physical model of the linear motor as well as the sinusoidal model of the force ripple. The time delay in the linear motor is compensated in the basis functions. Then, a data-driven approach is proposed to design the learning gain. It balances the trade-off between convergence speed and robustness against noise. Simulation and experimental results validate the proposed method and confirm its effectiveness and superiority.
ERIC Educational Resources Information Center
Li, Deping; Oranje, Andreas
2007-01-01
Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…
Development and validity of an instrumented handbike: initial results of propulsion kinetics.
van Drongelen, Stefan; van den Berg, Jos; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V
2011-11-01
To develop an instrumented handbike system to measure the forces applied to the handgrip during handbiking. A 6 degrees of freedom force sensor was built into the handgrip of an attach-unit handbike, together with two optical encoders to measure the orientation of the handgrip and crank in space. Linearity, precision, and percent error were determined for static and dynamic tests. High linearity was demonstrated for both the static and the dynamic condition (r=1.01). Precision was high under the static condition (standard deviation of 0.2N), however the precision decreased with higher loads during the dynamic condition. Percent error values were between 0.3 and 5.1%. This is the first instrumented handbike system that can register 3-dimensional forces. It can be concluded that the instrumented handbike system allows for an accurate force analysis based on forces registered at the handle bars. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Estimating False Positive Contamination in Crater Annotations from Citizen Science Data
NASA Astrophysics Data System (ADS)
Tar, P. D.; Bugiolacchi, R.; Thacker, N. A.; Gilmour, J. D.
2017-01-01
Web-based citizen science often involves the classification of image features by large numbers of minimally trained volunteers, such as the identification of lunar impact craters under the Moon Zoo project. Whilst such approaches facilitate the analysis of large image data sets, the inexperience of users and ambiguity in image content can lead to contamination from false positive identifications. We give an approach, using Linear Poisson Models and image template matching, that can quantify levels of false positive contamination in citizen science Moon Zoo crater annotations. Linear Poisson Models are a form of machine learning which supports predictive error modelling and goodness-of-fits, unlike most alternative machine learning methods. The proposed supervised learning system can reduce the variability in crater counts whilst providing predictive error assessments of estimated quantities of remaining true verses false annotations. In an area of research influenced by human subjectivity, the proposed method provides a level of objectivity through the utilisation of image evidence, guided by candidate crater identifications.
Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields
Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne
2015-01-01
Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789
Q-mode versus R-mode principal component analysis for linear discriminant analysis (LDA)
NASA Astrophysics Data System (ADS)
Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz
2017-05-01
Many literature apply Principal Component Analysis (PCA) as either preliminary visualization or variable con-struction methods or both. Focus of PCA can be on the samples (R-mode PCA) or variables (Q-mode PCA). Traditionally, R-mode PCA has been the usual approach to reduce high-dimensionality data before the application of Linear Discriminant Analysis (LDA), to solve classification problems. Output from PCA composed of two new matrices known as loadings and scores matrices. Each matrix can then be used to produce a plot, i.e. loadings plot aids identification of important variables whereas scores plot presents spatial distribution of samples on new axes that are also known as Principal Components (PCs). Fundamentally, the scores matrix always be the input variables for building classification model. A recent paper uses Q-mode PCA but the focus of analysis was not on the variables but instead on the samples. As a result, the authors have exchanged the use of both loadings and scores plots in which clustering of samples was studied using loadings plot whereas scores plot has been used to identify important manifest variables. Therefore, the aim of this study is to statistically validate the proposed practice. Evaluation is based on performance of external error obtained from LDA models according to number of PCs. On top of that, bootstrapping was also conducted to evaluate the external error of each of the LDA models. Results show that LDA models produced by PCs from R-mode PCA give logical performance and the matched external error are also unbiased whereas the ones produced with Q-mode PCA show the opposites. With that, we concluded that PCs produced from Q-mode is not statistically stable and thus should not be applied to problems of classifying samples, but variables. We hope this paper will provide some insights on the disputable issues.
Control by model error estimation
NASA Technical Reports Server (NTRS)
Likins, P. W.; Skelton, R. E.
1976-01-01
Modern control theory relies upon the fidelity of the mathematical model of the system. Truncated modes, external disturbances, and parameter errors in linear system models are corrected by augmenting to the original system of equations an 'error system' which is designed to approximate the effects of such model errors. A Chebyshev error system is developed for application to the Large Space Telescope (LST).
Moraes, Maria Lourdes Leite; da Silva, Heron Dominguez Torres; Blanes, Lucas; Doble, Philip; Tavares, Marina Franco Maggi
2016-06-05
The application of Design of Experiments (DoE) to the determination of optimum conditions for an extraction process relies on the correct selection of mathematical models. The linear model is the one typically used; however, in some cases it does not always have superior performance, ignoring the real nature of the data and its appropriate descriptive model. In order to evaluate the extraction efficiency of isorhamnetin-3-O-rutinoside from flowers of Calendula officinalis L. a multivariate factorial analysis was used. Simulations were conducted using linear, quadratic, full cubic and special cubic models. A Simplex-Centroid design was chosen as it delivered greater precision with only minor errors versus other models tested. Analyses were performed by capillary zone electrophoresis using sodium tetraborate buffer (40mmolL(-1), pH 9.4) containing 10% methanol. The detection was linear over a range of 8.0-50.0mgL(-1) (r(2)=0.996), and the limits of detection (LOD) and quantification (LOQ) for isorhamnetin-3-O-rutinoside were 3.44mgL(-1) and 11.47mgL(-1), respectively. The full cubic model showed the best extraction results, with an error of 3.40% compared to analysis of variance, and a determination coefficient of 0.974. The difference between the responses at the reference point, calculated by the model, and the experimental response, varies around 2.72% for full cubic model. Comparison of the four models showed the full cubic model was the most appropriate one, allowing greater efficiency in the extraction of isorhamnetin-3-O-rutinoside. Selection of the model made it possible to obtain a 60% increase in sensitivity compared to the linear model. Copyright © 2016. Published by Elsevier B.V.
Robust linear discriminant analysis with distance based estimators
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina
2017-11-01
Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.
Robustness in linear quadratic feedback design with application to an aircraft control problem
NASA Technical Reports Server (NTRS)
Patel, R. V.; Sridhar, B.; Toda, M.
1977-01-01
Some new results concerning robustness and asymptotic properties of error bounds of a linear quadratic feedback design are applied to an aircraft control problem. An autopilot for the flare control of the Augmentor Wing Jet STOL Research Aircraft (AWJSRA) is designed based on Linear Quadratic (LQ) theory and the results developed in this paper. The variation of the error bounds to changes in the weighting matrices in the LQ design is studied by computer simulations, and appropriate weighting matrices are chosen to obtain a reasonable error bound for variations in the system matrix and at the same time meet the practical constraints for the flare maneuver of the AWJSRA. Results from the computer simulation of a satisfactory autopilot design for the flare control of the AWJSRA are presented.
Can you trust the parametric standard errors in nonlinear least squares? Yes, with provisos.
Tellinghuisen, Joel
2018-04-01
Questions about the reliability of parametric standard errors (SEs) from nonlinear least squares (LS) algorithms have led to a general mistrust of these precision estimators that is often unwarranted. The importance of non-Gaussian parameter distributions is illustrated by converting linear models to nonlinear by substituting e A , ln A, and 1/A for a linear parameter a. Monte Carlo (MC) simulations characterize parameter distributions in more complex cases, including when data have varying uncertainty and should be weighted, but weights are neglected. This situation leads to loss of precision and erroneous parametric SEs, as is illustrated for the Lineweaver-Burk analysis of enzyme kinetics data and the analysis of isothermal titration calorimetry data. Non-Gaussian parameter distributions are generally asymmetric and biased. However, when the parametric SE is <10% of the magnitude of the parameter, both the bias and the asymmetry can usually be ignored. Sometimes nonlinear estimators can be redefined to give more normal distributions and better convergence properties. Variable data uncertainty, or heteroscedasticity, can sometimes be handled by data transforms but more generally requires weighted LS, which in turn require knowledge of the data variance. Parametric SEs are rigorously correct in linear LS under the usual assumptions, and are a trustworthy approximation in nonlinear LS provided they are sufficiently small - a condition favored by the abundant, precise data routinely collected in many modern instrumental methods. Copyright © 2018 Elsevier B.V. All rights reserved.
Linear motor drive system for continuous-path closed-loop position control of an object
Barkman, William E.
1980-01-01
A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.
Effects of energy chirp on bunch length measurement in linear accelerator beams
NASA Astrophysics Data System (ADS)
Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.
2017-08-01
The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.
Estimation of reflectance from camera responses by the regularized local linear model.
Zhang, Wei-Feng; Tang, Gongguo; Dai, Dao-Qing; Nehorai, Arye
2011-10-01
Because of the limited approximation capability of using fixed basis functions, the performance of reflectance estimation obtained by traditional linear models will not be optimal. We propose an approach based on the regularized local linear model. Our approach performs efficiently and knowledge of the spectral power distribution of the illuminant and the spectral sensitivities of the camera is not needed. Experimental results show that the proposed method performs better than some well-known methods in terms of both reflectance error and colorimetric error. © 2011 Optical Society of America
On the use of Lineal Energy Measurements to Estimate Linear Energy Transfer Spectra
NASA Technical Reports Server (NTRS)
Adams, David A.; Howell, Leonard W., Jr.; Adam, James H., Jr.
2007-01-01
This paper examines the error resulting from using a lineal energy spectrum to represent a linear energy transfer spectrum for applications in the space radiation environment. Lineal energy and linear energy transfer spectra are compared in three diverse but typical space radiation environments. Different detector geometries are also studied to determine how they affect the error. LET spectra are typically used to compute dose equivalent for radiation hazard estimation and single event effect rates to estimate radiation effects on electronics. The errors in the estimations of dose equivalent and single event rates that result from substituting lineal energy spectra for linear energy spectra are examined. It is found that this substitution has little effect on dose equivalent estimates in interplanetary quiet-time environment regardless of detector shape. The substitution has more of an effect when the environment is dominated by solar energetic particles or trapped radiation, but even then the errors are minor especially if a spherical detector is used. For single event estimation, the effect of the substitution can be large if the threshold for the single event effect is near where the linear energy spectrum drops suddenly. It is judged that single event rate estimates made from lineal energy spectra are unreliable and the use of lineal energy spectra for single event rate estimation should be avoided.
A multiloop generalization of the circle criterion for stability margin analysis
NASA Technical Reports Server (NTRS)
Safonov, M. G.; Athans, M.
1979-01-01
In order to provide a theoretical tool suited for characterizing the stability margins of multiloop feedback systems, multiloop input-output stability results generalizing the circle stability criterion are considered. Generalized conic sectors with 'centers' and 'radii' determined by linear dynamical operators are employed to specify the stability margins as a frequency dependent convex set of modeling errors (including nonlinearities, gain variations and phase variations) which the system must be able to tolerate in each feedback loop without instability. The resulting stability criterion gives sufficient conditions for closed loop stability in the presence of frequency dependent modeling errors, even when the modeling errors occur simultaneously in all loops. The stability conditions yield an easily interpreted scalar measure of the amount by which a multiloop system exceeds, or falls short of, its stability margin specifications.
A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations
NASA Astrophysics Data System (ADS)
Zhang, Guoyu; Huang, Chengming; Li, Meng
2018-04-01
We consider the numerical simulation of the coupled nonlinear space fractional Schrödinger equations. Based on the Galerkin finite element method in space and the Crank-Nicolson (CN) difference method in time, a fully discrete scheme is constructed. Firstly, we focus on a rigorous analysis of conservation laws for the discrete system. The definitions of discrete mass and energy here correspond with the original ones in physics. Then, we prove that the fully discrete system is uniquely solvable. Moreover, we consider the unconditionally convergent properties (that is to say, we complete the error estimates without any mesh ratio restriction). We derive L2-norm error estimates for the nonlinear equations and L^{∞}-norm error estimates for the linear equations. Finally, some numerical experiments are included showing results in agreement with the theoretical predictions.
Formation Flying Satellite Control Around the L2 Sun-Earth Libration Point
NASA Technical Reports Server (NTRS)
Hamilton, Nicholas H.; Folta, David; Carpenter, Russell; Bauer, Frank (Technical Monitor)
2002-01-01
This paper discusses the development of a linear control algorithm for formations in the vicinity of the L2 sun-Earth libration point. The development of a simplified extended Kalman filter is included as well. Simulations are created for the analysis of the stationkeeping and various formation maneuvers of the Stellar Imager mission. The simulations provide tracking error, estimation error, and control effort results. For formation maneuvering, the formation spacecraft track to within 4 meters of their desired position and within 1.5 millimeters per second of their desired zero velocity. The filter, with few exceptions, keeps the estimation errors within their three-sigma values. Without noise, the controller performs extremely well, with the formation spacecraft tracking to within several micrometers. Each spacecraft uses around 1 to 2 grams of propellant per maneuver, depending on the circumstances.
Qibo, Feng; Bin, Zhang; Cunxing, Cui; Cuifang, Kuang; Yusheng, Zhai; Fenglin, You
2013-11-04
A simple method for simultaneously measuring the 6DOF geometric motion errors of the linear guide was proposed. The mechanisms for measuring straightness and angular errors and for enhancing their resolution are described in detail. A common-path method for measuring the laser beam drift was proposed and it was used to compensate the errors produced by the laser beam drift in the 6DOF geometric error measurements. A compact 6DOF system was built. Calibration experiments with certain standard measurement meters showed that our system has a standard deviation of 0.5 µm in a range of ± 100 µm for the straightness measurements, and standard deviations of 0.5", 0.5", and 1.0" in the range of ± 100" for pitch, yaw, and roll measurements, respectively.
Optical analysis of the star-tracker telescope for Gravity Probe
NASA Technical Reports Server (NTRS)
Zissa, D. E.
1984-01-01
A ray tracing modeling of the star tracker telescope for Gravity Probe was used to predict the character of the output signal and its sensitivity to fabrication errors. In particular, the impact of the optical subsystem on the requirement of 1 milliarc second signal linearity over a + or - 50 milliarc second range was examined. Photomultiplier and solid state detector options were considered. Recommendations are made.
A simple finite element method for linear hyperbolic problems
Mu, Lin; Ye, Xiu
2017-09-14
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for linear hyperbolic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.
Gilra, Aditya; Gerstner, Wulfram
2017-11-27
The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network
Gerstner, Wulfram
2017-01-01
The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically. PMID:29173280
NASA Technical Reports Server (NTRS)
Dupuis, L. R.; Scoggins, J. R.
1979-01-01
Results of analyses revealed that nonlinear changes or differences formed centers or systems, that were mesosynoptic in nature. These systems correlated well in space with upper level short waves, frontal zones, and radar observed convection, and were very systematic in time and space. Many of the centers of differences were well established in the vertical, extending up to the tropopause. Statistical analysis showed that on the average nonlinear changes were larger in convective areas than nonconvective regions. Errors often exceeding 100 percent were made by assuming variables to change linearly through a 12-h period in areas of thunderstorms, indicating that these nonlinear changes are important in the development of severe weather. Linear changes, however, accounted for more and more of an observed change as the time interval (within the 12-h interpolation period) increased, implying that the accuracy of linear interpolation increased over larger time intervals.
Integration of Cold Atom Interferometry INS with Other Sensors
2012-03-22
Kalman filtering 2.6.1 Linear Kalman filtering . Kalman filtering is used to estimate the solution to a linear... Kalman Filter . This filter will estimate the errors in the navigation grade measurement. Whenever an outage occurs the mechanization must be done using ...navigation solution, with periodic GPS measurements being brought into a Kalman Filter to estimate the errors in the INS solution. The results of
Robot-Arm Dynamic Control by Computer
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.
1987-01-01
Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.
AGSuite: Software to conduct feature analysis of artificial grammar learning performance.
Cook, Matthew T; Chubala, Chrissy M; Jamieson, Randall K
2017-10-01
To simplify the problem of studying how people learn natural language, researchers use the artificial grammar learning (AGL) task. In this task, participants study letter strings constructed according to the rules of an artificial grammar and subsequently attempt to discriminate grammatical from ungrammatical test strings. Although the data from these experiments are usually analyzed by comparing the mean discrimination performance between experimental conditions, this practice discards information about the individual items and participants that could otherwise help uncover the particular features of strings associated with grammaticality judgments. However, feature analysis is tedious to compute, often complicated, and ill-defined in the literature. Moreover, the data violate the assumption of independence underlying standard linear regression models, leading to Type I error inflation. To solve these problems, we present AGSuite, a free Shiny application for researchers studying AGL. The suite's intuitive Web-based user interface allows researchers to generate strings from a database of published grammars, compute feature measures (e.g., Levenshtein distance) for each letter string, and conduct a feature analysis on the strings using linear mixed effects (LME) analyses. The LME analysis solves the inflation of Type I errors that afflicts more common methods of repeated measures regression analysis. Finally, the software can generate a number of graphical representations of the data to support an accurate interpretation of results. We hope the ease and availability of these tools will encourage researchers to take full advantage of item-level variance in their datasets in the study of AGL. We moreover discuss the broader applicability of the tools for researchers looking to conduct feature analysis in any field.
Round-off errors in cutting plane algorithms based on the revised simplex procedure
NASA Technical Reports Server (NTRS)
Moore, J. E.
1973-01-01
This report statistically analyzes computational round-off errors associated with the cutting plane approach to solving linear integer programming problems. Cutting plane methods require that the inverse of a sequence of matrices be computed. The problem basically reduces to one of minimizing round-off errors in the sequence of inverses. Two procedures for minimizing this problem are presented, and their influence on error accumulation is statistically analyzed. One procedure employs a very small tolerance factor to round computed values to zero. The other procedure is a numerical analysis technique for reinverting or improving the approximate inverse of a matrix. The results indicated that round-off accumulation can be effectively minimized by employing a tolerance factor which reflects the number of significant digits carried for each calculation and by applying the reinversion procedure once to each computed inverse. If 18 significant digits plus an exponent are carried for each variable during computations, then a tolerance value of 0.1 x 10 to the minus 12th power is reasonable.
Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise
NASA Astrophysics Data System (ADS)
Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.
2018-03-01
Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-09-03
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-01-01
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174
Comparison of structural and least-squares lines for estimating geologic relations
Williams, G.P.; Troutman, B.M.
1990-01-01
Two different goals in fitting straight lines to data are to estimate a "true" linear relation (physical law) and to predict values of the dependent variable with the smallest possible error. Regarding the first goal, a Monte Carlo study indicated that the structural-analysis (SA) method of fitting straight lines to data is superior to the ordinary least-squares (OLS) method for estimating "true" straight-line relations. Number of data points, slope and intercept of the true relation, and variances of the errors associated with the independent (X) and dependent (Y) variables influence the degree of agreement. For example, differences between the two line-fitting methods decrease as error in X becomes small relative to error in Y. Regarding the second goal-predicting the dependent variable-OLS is better than SA. Again, the difference diminishes as X takes on less error relative to Y. With respect to estimation of slope and intercept and prediction of Y, agreement between Monte Carlo results and large-sample theory was very good for sample sizes of 100, and fair to good for sample sizes of 20. The procedures and error measures are illustrated with two geologic examples. ?? 1990 International Association for Mathematical Geology.
Matsumoto, Yuji; Takaki, Yasuhiro
2014-06-15
Horizontally scanning holography can enlarge both screen size and viewing zone angle. A microelectromechanical-system spatial light modulator, which can generate only binary images, is used to generate hologram patterns. Thus, techniques to improve gray-scale representation in reconstructed images should be developed. In this study, the error diffusion technique was used for the binarization of holograms. When the Floyd-Steinberg error diffusion coefficients were used, gray-scale representation was improved. However, the linearity in the gray-scale representation was not satisfactory. We proposed the use of a correction table and showed that the linearity was greatly improved.
Interpolation for de-Dopplerisation
NASA Astrophysics Data System (ADS)
Graham, W. R.
2018-05-01
'De-Dopplerisation' is one aspect of a problem frequently encountered in experimental acoustics: deducing an emitted source signal from received data. It is necessary when source and receiver are in relative motion, and requires interpolation of the measured signal. This introduces error. In acoustics, typical current practice is to employ linear interpolation and reduce error by over-sampling. In other applications, more advanced approaches with better performance have been developed. Associated with this work is a large body of theoretical analysis, much of which is highly specialised. Nonetheless, a simple and compact performance metric is available: the Fourier transform of the 'kernel' function underlying the interpolation method. Furthermore, in the acoustics context, it is a more appropriate indicator than other, more abstract, candidates. On this basis, interpolators from three families previously identified as promising - - piecewise-polynomial, windowed-sinc, and B-spline-based - - are compared. The results show that significant improvements over linear interpolation can straightforwardly be obtained. The recommended approach is B-spline-based interpolation, which performs best irrespective of accuracy specification. Its only drawback is a pre-filtering requirement, which represents an additional implementation cost compared to other methods. If this cost is unacceptable, and aliasing errors (on re-sampling) up to approximately 1% can be tolerated, a family of piecewise-cubic interpolators provides the best alternative.
LPmerge: an R package for merging genetic maps by linear programming.
Endelman, Jeffrey B; Plomion, Christophe
2014-06-01
Consensus genetic maps constructed from multiple populations are an important resource for both basic and applied research, including genome-wide association analysis, genome sequence assembly and studies of evolution. The LPmerge software uses linear programming to efficiently minimize the mean absolute error between the consensus map and the linkage maps from each population. This minimization is performed subject to linear inequality constraints that ensure the ordering of the markers in the linkage maps is preserved. When marker order is inconsistent between linkage maps, a minimum set of ordinal constraints is deleted to resolve the conflicts. LPmerge is on CRAN at http://cran.r-project.org/web/packages/LPmerge. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Simplified large African carnivore density estimators from track indices.
Winterbach, Christiaan W; Ferreira, Sam M; Funston, Paul J; Somers, Michael J
2016-01-01
The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y = αx + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. The Lion on Clay and Low Density on Sand models with intercept were not significant ( P > 0.05). The other four models with intercept and the six models thorough origin were all significant ( P < 0.05). The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore density can be used to estimate densities of large African carnivores using track counts on sandy substrates in areas where carnivore densities are 0.27 carnivores/100 km 2 or higher. To improve the current models, we need independent data to validate the models and data to test for non-linear relationship between track indices and true density at low densities.
Suboptimal schemes for atmospheric data assimilation based on the Kalman filter
NASA Technical Reports Server (NTRS)
Todling, Ricardo; Cohn, Stephen E.
1994-01-01
This work is directed toward approximating the evolution of forecast error covariances for data assimilation. The performance of different algorithms based on simplification of the standard Kalman filter (KF) is studied. These are suboptimal schemes (SOSs) when compared to the KF, which is optimal for linear problems with known statistics. The SOSs considered here are several versions of optimal interpolation (OI), a scheme for height error variance advection, and a simplified KF in which the full height error covariance is advected. To employ a methodology for exact comparison among these schemes, a linear environment is maintained, in which a beta-plane shallow-water model linearized about a constant zonal flow is chosen for the test-bed dynamics. The results show that constructing dynamically balanced forecast error covariances rather than using conventional geostrophically balanced ones is essential for successful performance of any SOS. A posteriori initialization of SOSs to compensate for model - data imbalance sometimes results in poor performance. Instead, properly constructed dynamically balanced forecast error covariances eliminate the need for initialization. When the SOSs studied here make use of dynamically balanced forecast error covariances, the difference among their performances progresses naturally from conventional OI to the KF. In fact, the results suggest that even modest enhancements of OI, such as including an approximate dynamical equation for height error variances while leaving height error correlation structure homogeneous, go a long way toward achieving the performance of the KF, provided that dynamically balanced cross-covariances are constructed and that model errors are accounted for properly. The results indicate that such enhancements are necessary if unconventional data are to have a positive impact.
Catching errors with patient-specific pretreatment machine log file analysis.
Rangaraj, Dharanipathy; Zhu, Mingyao; Yang, Deshan; Palaniswaamy, Geethpriya; Yaddanapudi, Sridhar; Wooten, Omar H; Brame, Scott; Mutic, Sasa
2013-01-01
A robust, efficient, and reliable quality assurance (QA) process is highly desired for modern external beam radiation therapy treatments. Here, we report the results of a semiautomatic, pretreatment, patient-specific QA process based on dynamic machine log file analysis clinically implemented for intensity modulated radiation therapy (IMRT) treatments delivered by high energy linear accelerators (Varian 2100/2300 EX, Trilogy, iX-D, Varian Medical Systems Inc, Palo Alto, CA). The multileaf collimator machine (MLC) log files are called Dynalog by Varian. Using an in-house developed computer program called "Dynalog QA," we automatically compare the beam delivery parameters in the log files that are generated during pretreatment point dose verification measurements, with the treatment plan to determine any discrepancies in IMRT deliveries. Fluence maps are constructed and compared between the delivered and planned beams. Since clinical introduction in June 2009, 912 machine log file analyses QA were performed by the end of 2010. Among these, 14 errors causing dosimetric deviation were detected and required further investigation and intervention. These errors were the result of human operating mistakes, flawed treatment planning, and data modification during plan file transfer. Minor errors were also reported in 174 other log file analyses, some of which stemmed from false positives and unreliable results; the origins of these are discussed herein. It has been demonstrated that the machine log file analysis is a robust, efficient, and reliable QA process capable of detecting errors originating from human mistakes, flawed planning, and data transfer problems. The possibility of detecting these errors is low using point and planar dosimetric measurements. Copyright © 2013 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
A primer for biomedical scientists on how to execute model II linear regression analysis.
Ludbrook, John
2012-04-01
1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.
Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.
de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo
2018-03-01
Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.
Xu, Hang; Merryweather, Andrew; Bloswick, Donald; Mao, Qi; Wang, Tong
2015-01-01
Marker placement can be a significant source of error in biomechanical studies of human movement. The toe marker placement error is amplified by footwear since the toe marker placement on the shoe only relies on an approximation of underlying anatomical landmarks. Three total knee replacement subjects were recruited and three self-speed gait trials per subject were collected. The height variation between toe and heel markers of four types of footwear was evaluated from the results of joint kinematics and muscle forces using OpenSim. The reference condition was considered as the same vertical height of toe and heel markers. The results showed that the residual variances for joint kinematics had an approximately linear relationship with toe marker placement error for lower limb joints. Ankle dorsiflexion/plantarflexion is most sensitive to toe marker placement error. The influence of toe marker placement error is generally larger for hip flexion/extension and rotation than hip abduction/adduction and knee flexion/extension. The muscle forces responded to the residual variance of joint kinematics to various degrees based on the muscle function for specific joint kinematics. This study demonstrates the importance of evaluating marker error for joint kinematics and muscle forces when explaining relative clinical gait analysis and treatment intervention.
Wang, Ching-Yun; Cullings, Harry; Song, Xiao; Kopecky, Kenneth J.
2017-01-01
SUMMARY Observational epidemiological studies often confront the problem of estimating exposure-disease relationships when the exposure is not measured exactly. In the paper, we investigate exposure measurement error in excess relative risk regression, which is a widely used model in radiation exposure effect research. In the study cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies a generalized version of the classical additive measurement error model, but it may or may not have repeated measurements. In addition, an instrumental variable is available for individuals in a subset of the whole cohort. We develop a nonparametric correction (NPC) estimator using data from the subcohort, and further propose a joint nonparametric correction (JNPC) estimator using all observed data to adjust for exposure measurement error. An optimal linear combination estimator of JNPC and NPC is further developed. The proposed estimators are nonparametric, which are consistent without imposing a covariate or error distribution, and are robust to heteroscedastic errors. Finite sample performance is examined via a simulation study. We apply the developed methods to data from the Radiation Effects Research Foundation, in which chromosome aberration is used to adjust for the effects of radiation dose measurement error on the estimation of radiation dose responses. PMID:29354018
Fast retrievals of tropospheric carbonyl sulfide with IASI
NASA Astrophysics Data System (ADS)
Vincent, R. Anthony; Dudhia, Anu
2017-02-01
Iterative retrievals of trace gases, such as carbonyl sulfide (OCS), from satellites can be exceedingly slow. The algorithm may even fail to keep pace with data acquisition such that analysis is limited to local events of special interest and short time spans. With this in mind, a linear retrieval scheme was developed to estimate total column amounts of OCS at a rate roughly 104 times faster than a typical iterative retrieval. This scheme incorporates two concepts not utilized in previously published linear estimates. First, all physical parameters affecting the signal are included in the state vector and accounted for jointly, rather than treated as effective noise. Second, the initialization point is determined from an ensemble of atmospheres based on comparing the model spectra to the observations, thus improving the linearity of the problem. All of the 2014 data from the Infrared Atmospheric Sounding Interferometer (IASI), instruments A and B, were analysed and showed spatial features of OCS total columns, including depletions over tropical rainforests, seasonal enhancements over the oceans, and distinct OCS features over land. Error due to assuming linearity was found to be on the order of 11 % globally for OCS. However, systematic errors from effects such as varying surface emissivity and extinction due to aerosols have yet to be robustly characterized. Comparisons to surface volume mixing ratio in situ samples taken by NOAA show seasonal correlations greater than 0.7 for five out of seven sites across the globe. Furthermore, this linear scheme was applied to OCS, but may also be used as a rapid estimator of any detectable trace gas using IASI or similar nadir-viewing instruments.
Linear regression crash prediction models : issues and proposed solutions.
DOT National Transportation Integrated Search
2010-05-01
The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...
Linear models: permutation methods
Cade, B.S.; Everitt, B.S.; Howell, D.C.
2005-01-01
Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...
Nonlinear effects of stretch on the flame front propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halter, F.; Tahtouh, T.; Mounaim-Rousselle, C.
2010-10-15
In all experimental configurations, the flames are affected by stretch (curvature and/or strain rate). To obtain the unstretched flame speed, independent of the experimental configuration, the measured flame speed needs to be corrected. Usually, a linear relationship linking the flame speed to stretch is used. However, this linear relation is the result of several assumptions, which may be incorrected. The present study aims at evaluating the error in the laminar burning speed evaluation induced by using the traditional linear methodology. Experiments were performed in a closed vessel at atmospheric pressure for two different mixtures: methane/air and iso-octane/air. The initial temperaturesmore » were respectively 300 K and 400 K for methane and iso-octane. Both methodologies (linear and nonlinear) are applied and results in terms of laminar speed and burned gas Markstein length are compared. Methane and iso-octane were chosen because they present opposite evolutions in their Markstein length when the equivalence ratio is increased. The error induced by the linear methodology is evaluated, taking the nonlinear methodology as the reference. It is observed that the use of the linear methodology starts to induce substantial errors after an equivalence ratio of 1.1 for methane/air mixtures and before an equivalence ratio of 1 for iso-octane/air mixtures. One solution to increase the accuracy of the linear methodology for these critical cases consists in reducing the number of points used in the linear methodology by increasing the initial flame radius used. (author)« less
Bernard, A M; Burgot, J L
1981-12-01
The reversibility of the determination reaction is the most frequent cause of deviations from linearity of thermometric titration curves. Because of this, determination of the equivalence point by the tangent method is associated with a systematic error. The authors propose a relationship which connects this error quantitatively with the equilibrium constant. The relation, verified experimentally, is deduced from a mathematical study of the thermograms and could probably be generalized to apply to other linear methods of determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riyahi, S; Choi, W; Bhooshan, N
2016-06-15
Purpose: To compare linear and deformable registration methods for evaluation of tumor response to Chemoradiation therapy (CRT) in patients with esophageal cancer. Methods: Linear and multi-resolution BSpline deformable registration were performed on Pre-Post-CRT CT/PET images of 20 patients with esophageal cancer. For both registration methods, we registered CT using Mean Square Error (MSE) metric, however to register PET we used transformation obtained using Mutual Information (MI) from the same CT due to being multi-modality. Similarity of Warped-CT/PET was quantitatively evaluated using Normalized Mutual Information and plausibility of DF was assessed using inverse consistency Error. To evaluate tumor response four groupsmore » of tumor features were examined: (1) Conventional PET/CT e.g. SUV, diameter (2) Clinical parameters e.g. TNM stage, histology (3)spatial-temporal PET features that describe intensity, texture and geometry of tumor (4)all features combined. Dominant features were identified using 10-fold cross-validation and Support Vector Machine (SVM) was deployed for tumor response prediction while the accuracy was evaluated by ROC Area Under Curve (AUC). Results: Average and standard deviation of Normalized mutual information for deformable registration using MSE was 0.2±0.054 and for linear registration was 0.1±0.026, showing higher NMI for deformable registration. Likewise for MI metric, deformable registration had 0.13±0.035 comparing to linear counterpart with 0.12±0.037. Inverse consistency error for deformable registration for MSE metric was 4.65±2.49 and for linear was 1.32±2.3 showing smaller value for linear registration. The same conclusion was obtained for MI in terms of inverse consistency error. AUC for both linear and deformable registration was 1 showing no absolute difference in terms of response evaluation. Conclusion: Deformable registration showed better NMI comparing to linear registration, however inverse consistency of transformation was lower in linear registration. We do not expect to see significant difference when warping PET images using deformable or linear registration. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
Resolving Mixed Algal Species in Hyperspectral Images
Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.
2014-01-01
We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451
NASA Astrophysics Data System (ADS)
Wu, Cheng; Zhen Yu, Jian
2018-03-01
Linear regression techniques are widely used in atmospheric science, but they are often improperly applied due to lack of consideration or inappropriate handling of measurement uncertainty. In this work, numerical experiments are performed to evaluate the performance of five linear regression techniques, significantly extending previous works by Chu and Saylor. The five techniques are ordinary least squares (OLS), Deming regression (DR), orthogonal distance regression (ODR), weighted ODR (WODR), and York regression (YR). We first introduce a new data generation scheme that employs the Mersenne twister (MT) pseudorandom number generator. The numerical simulations are also improved by (a) refining the parameterization of nonlinear measurement uncertainties, (b) inclusion of a linear measurement uncertainty, and (c) inclusion of WODR for comparison. Results show that DR, WODR and YR produce an accurate slope, but the intercept by WODR and YR is overestimated and the degree of bias is more pronounced with a low R2 XY dataset. The importance of a properly weighting parameter λ in DR is investigated by sensitivity tests, and it is found that an improper λ in DR can lead to a bias in both the slope and intercept estimation. Because the λ calculation depends on the actual form of the measurement error, it is essential to determine the exact form of measurement error in the XY data during the measurement stage. If a priori error in one of the variables is unknown, or the measurement error described cannot be trusted, DR, WODR and YR can provide the least biases in slope and intercept among all tested regression techniques. For these reasons, DR, WODR and YR are recommended for atmospheric studies when both X and Y data have measurement errors. An Igor Pro-based program (Scatter Plot) was developed to facilitate the implementation of error-in-variables regressions.
Study on avalanche photodiode influence on heterodyne laser interferometer linearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzyn, Grzegorz, E-mail: grzegorz.budzyn@pwr.wroc.pl; Podzorny, Tomasz
2016-06-28
In the paper we analyze factors reducing the possible accuracy of the heterodyne laser interferometers. The analysis is performed for the avalanche-photodiode input stages but is in main points valid also for stages with other type of photodetectors. Instrumental error originating from optical, electronic and digital signal processing factors is taken into consideration. We stress factors which are critical and those which can be neglected at certain accuracy requirements. In the work we prove that it is possible to reduce errors of the laser instrument below 1 nm point for multiaxial APD based interferometers by precise control of incident optical powermore » and the temperature of the photodiode.« less
NASA Technical Reports Server (NTRS)
Leake, M. A.
1982-01-01
Various linear and areal measurements of Mercury's first quadrant which were used in geological map preparation, map analysis, and statistical surveys of crater densities are discussed. Accuracy of each method rests on the determination of the scale of the photograph, i.e., the conversion factor between distances on the planet (in km) and distances on the photograph (in cm). Measurement errors arise due to uncertainty in Mercury's radius, poor resolution, poor coverage, high Sun angle illumination in the limb regions, planetary curvature, limited precision in measuring instruments, and inaccuracies in the printed map scales. Estimates are given for these errors.
NASA Technical Reports Server (NTRS)
Ozguven, H. Nevzat
1991-01-01
A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the nonlinear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the 'static transmission error method' developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.
Statistical power for detecting trends with applications to seabird monitoring
Hatch, Shyla A.
2003-01-01
Power analysis is helpful in defining goals for ecological monitoring and evaluating the performance of ongoing efforts. I examined detection standards proposed for population monitoring of seabirds using two programs (MONITOR and TRENDS) specially designed for power analysis of trend data. Neither program models within- and among-years components of variance explicitly and independently, thus an error term that incorporates both components is an essential input. Residual variation in seabird counts consisted of day-to-day variation within years and unexplained variation among years in approximately equal parts. The appropriate measure of error for power analysis is the standard error of estimation (S.E.est) from a regression of annual means against year. Replicate counts within years are helpful in minimizing S.E.est but should not be treated as independent samples for estimating power to detect trends. Other issues include a choice of assumptions about variance structure and selection of an exponential or linear model of population change. Seabird count data are characterized by strong correlations between S.D. and mean, thus a constant CV model is appropriate for power calculations. Time series were fit about equally well with exponential or linear models, but log transformation ensures equal variances over time, a basic assumption of regression analysis. Using sample data from seabird monitoring in Alaska, I computed the number of years required (with annual censusing) to detect trends of -1.4% per year (50% decline in 50 years) and -2.7% per year (50% decline in 25 years). At ??=0.05 and a desired power of 0.9, estimated study intervals ranged from 11 to 69 years depending on species, trend, software, and study design. Power to detect a negative trend of 6.7% per year (50% decline in 10 years) is suggested as an alternative standard for seabird monitoring that achieves a reasonable match between statistical and biological significance.
Refractive Status at Birth: Its Relation to Newborn Physical Parameters at Birth and Gestational Age
Varghese, Raji Mathew; Sreenivas, Vishnubhatla; Puliyel, Jacob Mammen; Varughese, Sara
2009-01-01
Background Refractive status at birth is related to gestational age. Preterm babies have myopia which decreases as gestational age increases and term babies are known to be hypermetropic. This study looked at the correlation of refractive status with birth weight in term and preterm babies, and with physical indicators of intra-uterine growth such as the head circumference and length of the baby at birth. Methods All babies delivered at St. Stephens Hospital and admitted in the nursery were eligible for the study. Refraction was performed within the first week of life. 0.8% tropicamide with 0.5% phenylephrine was used to achieve cycloplegia and paralysis of accommodation. 599 newborn babies participated in the study. Data pertaining to the right eye is utilized for all the analyses except that for anisometropia where the two eyes were compared. Growth parameters were measured soon after birth. Simple linear regression analysis was performed to see the association of refractive status, (mean spherical equivalent (MSE), astigmatism and anisometropia) with each of the study variables, namely gestation, length, weight and head circumference. Subsequently, multiple linear regression was carried out to identify the independent predictors for each of the outcome parameters. Results Simple linear regression showed a significant relation between all 4 study variables and refractive error but in multiple regression only gestational age and weight were related to refractive error. The partial correlation of weight with MSE adjusted for gestation was 0.28 and that of gestation with MSE adjusted for weight was 0.10. Birth weight had a higher correlation to MSE than gestational age. Conclusion This is the first study to look at refractive error against all these growth parameters, in preterm and term babies at birth. It would appear from this study that birth weight rather than gestation should be used as criteria for screening for refractive error, especially in developing countries where the incidence of intrauterine malnutrition is higher. PMID:19214228
Optimal number of features as a function of sample size for various classification rules.
Hua, Jianping; Xiong, Zixiang; Lowey, James; Suh, Edward; Dougherty, Edward R
2005-04-15
Given the joint feature-label distribution, increasing the number of features always results in decreased classification error; however, this is not the case when a classifier is designed via a classification rule from sample data. Typically (but not always), for fixed sample size, the error of a designed classifier decreases and then increases as the number of features grows. The potential downside of using too many features is most critical for small samples, which are commonplace for gene-expression-based classifiers for phenotype discrimination. For fixed sample size and feature-label distribution, the issue is to find an optimal number of features. Since only in rare cases is there a known distribution of the error as a function of the number of features and sample size, this study employs simulation for various feature-label distributions and classification rules, and across a wide range of sample and feature-set sizes. To achieve the desired end, finding the optimal number of features as a function of sample size, it employs massively parallel computation. Seven classifiers are treated: 3-nearest-neighbor, Gaussian kernel, linear support vector machine, polynomial support vector machine, perceptron, regular histogram and linear discriminant analysis. Three Gaussian-based models are considered: linear, nonlinear and bimodal. In addition, real patient data from a large breast-cancer study is considered. To mitigate the combinatorial search for finding optimal feature sets, and to model the situation in which subsets of genes are co-regulated and correlation is internal to these subsets, we assume that the covariance matrix of the features is blocked, with each block corresponding to a group of correlated features. Altogether there are a large number of error surfaces for the many cases. These are provided in full on a companion website, which is meant to serve as resource for those working with small-sample classification. For the companion website, please visit http://public.tgen.org/tamu/ofs/ e-dougherty@ee.tamu.edu.
Extreme wind-wave modeling and analysis in the south Atlantic ocean
NASA Astrophysics Data System (ADS)
Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.
2018-04-01
A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.
NASA Astrophysics Data System (ADS)
Döpking, Sandra; Plaisance, Craig P.; Strobusch, Daniel; Reuter, Karsten; Scheurer, Christoph; Matera, Sebastian
2018-01-01
In the last decade, first-principles-based microkinetic modeling has been developed into an important tool for a mechanistic understanding of heterogeneous catalysis. A commonly known, but hitherto barely analyzed issue in this kind of modeling is the presence of sizable errors from the use of approximate Density Functional Theory (DFT). We here address the propagation of these errors to the catalytic turnover frequency (TOF) by global sensitivity and uncertainty analysis. Both analyses require the numerical quadrature of high-dimensional integrals. To achieve this efficiently, we utilize and extend an adaptive sparse grid approach and exploit the confinement of the strongly non-linear behavior of the TOF to local regions of the parameter space. We demonstrate the methodology on a model of the oxygen evolution reaction at the Co3O4 (110)-A surface, using a maximum entropy error model that imposes nothing but reasonable bounds on the errors. For this setting, the DFT errors lead to an absolute uncertainty of several orders of magnitude in the TOF. We nevertheless find that it is still possible to draw conclusions from such uncertain models about the atomistic aspects controlling the reactivity. A comparison with derivative-based local sensitivity analysis instead reveals that this more established approach provides incomplete information. Since the adaptive sparse grids allow for the evaluation of the integrals with only a modest number of function evaluations, this approach opens the way for a global sensitivity analysis of more complex models, for instance, models based on kinetic Monte Carlo simulations.
Reducing Formation-Keeping Maneuver Costs for Formation Flying Satellites in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Hamilton, Nicholas
2001-01-01
Several techniques are used to synthesize the formation-keeping control law for a three-satellite formation in low-earth orbit. The objective is to minimize maneuver cost and position tracking error. Initial reductions are found for a one-satellite case by tuning the state-weighting matrix within the linear-quadratic-Gaussian framework. Further savings come from adjusting the maneuver interval. Scenarios examined include cases with and without process noise. These results are then applied to a three-satellite formation. For both the one-satellite and three-satellite cases, increasing the maneuver interval yields a decrease in maneuver cost and an increase in position tracking error. A maneuver interval of 8-10 minutes provides a good trade-off between maneuver cost and position tracking error. An analysis of the closed-loop poles with respect to varying maneuver intervals explains the effectiveness of the chosen maneuver interval.
Stress Recovery and Error Estimation for Shell Structures
NASA Technical Reports Server (NTRS)
Yazdani, A. A.; Riggs, H. R.; Tessler, A.
2000-01-01
The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.
NASA Technical Reports Server (NTRS)
Aminpour, Mohammad
1995-01-01
The work reported here pertains only to the first year of research for a three year proposal period. As a prelude to this two dimensional interface element, the one dimensional element was tested and errors were discovered in the code for built-up structures and curved interfaces. These errors were corrected and the benchmark Boeing composite crown panel was analyzed successfully. A study of various splines led to the conclusion that cubic B-splines best suit this interface element application. A least squares approach combined with cubic B-splines was constructed to make a smooth function from the noisy data obtained with random error in the coordinate data points of the Boeing crown panel analysis. Preliminary investigations for the formulation of discontinuous 2-D shell and 3-D solid elements were conducted.
A theory for predicting composite laminate warpage resulting from fabrication
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1975-01-01
Linear laminate theory is used in conjunction with the moment-curvature relationship to derive equations for predicting end deflections due to warpage without solving the coupled fourth-order partial differential equations of the plate. Using these equations, it is found that a 1 deg error in the orientation angle of one ply is sufficient to produce warpage end deflection equal to two laminate thicknesses in a 10 inch by 10 inch laminate made from 8-ply Mod-I/epoxy. From a sensitivity analysis on the governing parameters, it is found that a 3 deg fiber migration or a void volume ratio of three percent in some plies is sufficient to produce laminate warpage corner deflection equal to several laminate thicknesses. Tabular and graphical data are presented which can be used to identify possible errors contributing to laminate warpage and/or to obtain an a priori assessment when unavoidable errors during fabrication are anticipated.
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines
del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano
2015-01-01
Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392
An experiment in software reliability
NASA Technical Reports Server (NTRS)
Dunham, J. R.; Pierce, J. L.
1986-01-01
The results of a software reliability experiment conducted in a controlled laboratory setting are reported. The experiment was undertaken to gather data on software failures and is one in a series of experiments being pursued by the Fault Tolerant Systems Branch of NASA Langley Research Center to find a means of credibly performing reliability evaluations of flight control software. The experiment tests a small sample of implementations of radar tracking software having ultra-reliability requirements and uses n-version programming for error detection, and repetitive run modeling for failure and fault rate estimation. The experiment results agree with those of Nagel and Skrivan in that the program error rates suggest an approximate log-linear pattern and the individual faults occurred with significantly different error rates. Additional analysis of the experimental data raises new questions concerning the phenomenon of interacting faults. This phenomenon may provide one explanation for software reliability decay.
Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.
del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano
2015-06-17
Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.
Catastrophic photometric redshift errors: Weak-lensing survey requirements
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N spec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N spec is ~10 6 we findmore » that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N spec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z s – z p distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less
Barnwell-Ménard, Jean-Louis; Li, Qing; Cohen, Alan A
2015-03-15
The loss of signal associated with categorizing a continuous variable is well known, and previous studies have demonstrated that this can lead to an inflation of Type-I error when the categorized variable is a confounder in a regression analysis estimating the effect of an exposure on an outcome. However, it is not known how the Type-I error may vary under different circumstances, including logistic versus linear regression, different distributions of the confounder, and different categorization methods. Here, we analytically quantified the effect of categorization and then performed a series of 9600 Monte Carlo simulations to estimate the Type-I error inflation associated with categorization of a confounder under different regression scenarios. We show that Type-I error is unacceptably high (>10% in most scenarios and often 100%). The only exception was when the variable categorized was a continuous mixture proxy for a genuinely dichotomous latent variable, where both the continuous proxy and the categorized variable are error-ridden proxies for the dichotomous latent variable. As expected, error inflation was also higher with larger sample size, fewer categories, and stronger associations between the confounder and the exposure or outcome. We provide online tools that can help researchers estimate the potential error inflation and understand how serious a problem this is. Copyright © 2014 John Wiley & Sons, Ltd.
Acoustic-articulatory mapping in vowels by locally weighted regression
McGowan, Richard S.; Berger, Michael A.
2009-01-01
A method for mapping between simultaneously measured articulatory and acoustic data is proposed. The method uses principal components analysis on the articulatory and acoustic variables, and mapping between the domains by locally weighted linear regression, or loess [Cleveland, W. S. (1979). J. Am. Stat. Assoc. 74, 829–836]. The latter method permits local variation in the slopes of the linear regression, assuming that the function being approximated is smooth. The methodology is applied to vowels of four speakers in the Wisconsin X-ray Microbeam Speech Production Database, with formant analysis. Results are examined in terms of (1) examples of forward (articulation-to-acoustics) mappings and inverse mappings, (2) distributions of local slopes and constants, (3) examples of correlations among slopes and constants, (4) root-mean-square error, and (5) sensitivity of formant frequencies to articulatory change. It is shown that the results are qualitatively correct and that loess performs better than global regression. The forward mappings show different root-mean-square error properties than the inverse mappings indicating that this method is better suited for the forward mappings than the inverse mappings, at least for the data chosen for the current study. Some preliminary results on sensitivity of the first two formant frequencies to the two most important articulatory principal components are presented. PMID:19813812
Development of a Precise Polarization Modulator for UV Spectropolarimetry
NASA Astrophysics Data System (ADS)
Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Tsuneta, S.; Nakayama, S.; Tajima, T.
2015-10-01
We developed a polarization modulation unit (PMU) to rotate a waveplate continuously in order to observe solar magnetic fields by spectropolarimetry. The non-uniformity of the PMU rotation may cause errors in the measurement of the degree of linear polarization (scale error) and its angle (crosstalk between Stokes-Q and -U), although it does not cause an artificial linear polarization signal (spurious polarization). We rotated a waveplate with the PMU to obtain a polarization modulation curve and estimated the scale error and crosstalk caused by the rotation non-uniformity. The estimated scale error and crosstalk were {<} 0.01 % for both. This PMU will be used as a waveplate motor for the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) rocket experiment. We confirm that the PMU performs and functions sufficiently well for CLASP.
Dichrometer errors resulting from large signals or improper modulator phasing.
Sutherland, John C
2012-09-01
A single-beam spectrometer equipped with a photoelastic modulator can be configured to measure a number of different parameters useful in characterizing chemical and biochemical materials including natural and magnetic circular dichroism, linear dichroism, natural and magnetic fluorescence-detected circular dichroism, and fluorescence polarization anisotropy as well as total absorption and fluorescence. The derivations of the mathematical expressions used to extract these parameters from ultraviolet, visible, and near-infrared light-induced electronic signals in a dichrometer assume that the dichroic signals are sufficiently small that certain mathematical approximations will not introduce significant errors. This article quantifies errors resulting from these assumptions as a function of the magnitude of the dichroic signals. In the case of linear dichroism, improper modulator programming can result in errors greater than those resulting from the assumption of small signal size, whereas for fluorescence polarization anisotropy, improper modulator phase alone gives incorrect results. Modulator phase can also impact the values of total absorbance recorded simultaneously with linear dichroism and total fluorescence. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.
A Medication Safety Model: A Case Study in Thai Hospital
Rattanarojsakul, Phichai; Thawesaengskulthai, Natcha
2013-01-01
Reaching zero defects is vital in medication service. Medication error can be reduced if the causes are recognized. The purpose of this study is to search for a conceptual framework of the causes of medication error in Thailand and to examine relationship between these factors and its importance. The study was carried out upon an in-depth case study and survey of hospital personals who were involved in the drug use process. The structured survey was based on Emergency Care Research Institute (ECRI) (2008) questionnaires focusing on the important factors that affect the medication safety. Additional questionnaires included content to the context of Thailand's private hospital, validated by five-hospital qualified experts. By correlation Pearson analysis, the result revealed 14 important factors showing a linear relationship with drug administration error except the medication reconciliation. By independent sample t-test, the administration error in the hospital was significantly related to external impact. The multiple regression analysis of the detail of medication administration also indicated the patient identification before administration of medication, detection of the risk of medication adverse effects and assurance of medication administration at the right time, dosage and route were statistically significant at 0.05 level. The major implication of the study is to propose a medication safety model in a Thai private hospital. PMID:23985110
A medication safety model: a case study in Thai hospital.
Rattanarojsakul, Phichai; Thawesaengskulthai, Natcha
2013-06-12
Reaching zero defects is vital in medication service. Medication error can be reduced if the causes are recognized. The purpose of this study is to search for a conceptual framework of the causes of medication error in Thailand and to examine relationship between these factors and its importance. The study was carried out upon an in-depth case study and survey of hospital personals who were involved in the drug use process. The structured survey was based on Emergency Care Research Institute (ECRI) (2008) questionnaires focusing on the important factors that affect the medication safety. Additional questionnaires included content to the context of Thailand's private hospital, validated by five-hospital qualified experts. By correlation Pearson analysis, the result revealed 14 important factors showing a linear relationship with drug administration error except the medication reconciliation. By independent sample t-test, the administration error in the hospital was significantly related to external impact. The multiple regression analysis of the detail of medication administration also indicated the patient identification before administration of medication, detection of the risk of medication adverse effects and assurance of medication administration at the right time, dosage and route were statistically significant at 0.05 level. The major implication of the study is to propose a medication safety model in a Thai private hospital.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchhoff, William H.
2012-09-15
The extended logistic function provides a physically reasonable description of interfaces such as depth profiles or line scans of surface topological or compositional features. It describes these interfaces with the minimum number of parameters, namely, position, width, and asymmetry. Logistic Function Profile Fit (LFPF) is a robust, least-squares fitting program in which the nonlinear extended logistic function is linearized by a Taylor series expansion (equivalent to a Newton-Raphson approach) with no apparent introduction of bias in the analysis. The program provides reliable confidence limits for the parameters when systematic errors are minimal and provides a display of the residuals frommore » the fit for the detection of systematic errors. The program will aid researchers in applying ASTM E1636-10, 'Standard practice for analytically describing sputter-depth-profile and linescan-profile data by an extended logistic function,' and may also prove useful in applying ISO 18516: 2006, 'Surface chemical analysis-Auger electron spectroscopy and x-ray photoelectron spectroscopy-determination of lateral resolution.' Examples are given of LFPF fits to a secondary ion mass spectrometry depth profile, an Auger surface line scan, and synthetic data generated to exhibit known systematic errors for examining the significance of such errors to the extrapolation of partial profiles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, Yu; Lin, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu
2014-05-12
Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo strokemore » model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.« less
Linear Space-Variant Image Restoration of Photon-Limited Images
1978-03-01
levels of performance of the wavefront seisor. The parameter ^ represents the residual rms wavefront error ^measurement noise plus ♦ttting error...known to be optimum only when the signal and noise are uncorrelated stationary random processes «nd when the noise statistics are gaussian. In the...regime of photon-Iimited imaging, the noise is non-gaussian and signaI-dependent, and it is therefore reasonable to assume that tome form of linear
Error Estimation for the Linearized Auto-Localization Algorithm
Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando
2012-01-01
The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965
Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates
Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...
Identifiability Of Systems With Modeling Errors
NASA Technical Reports Server (NTRS)
Hadaegh, Yadolah " fred"
1988-01-01
Advances in theory of modeling errors reported. Recent paper on errors in mathematical models of deterministic linear or weakly nonlinear systems. Extends theoretical work described in NPO-16661 and NPO-16785. Presents concrete way of accounting for difference in structure between mathematical model and physical process or system that it represents.
Quadrant photodetector sensitivity.
Manojlović, Lazo M
2011-07-10
A quantitative theoretical analysis of the quadrant photodetector (QPD) sensitivity in position measurement is presented. The Gaussian light spot irradiance distribution on the QPD surface was assumed to meet most of the real-life applications of this sensor. As the result of the mathematical treatment of the problem, we obtained, in a closed form, the sensitivity function versus the ratio of the light spot 1/e radius and the QPD radius. The obtained result is valid for the full range of the ratios. To check the influence of the finite light spot radius on the interaxis cross talk and linearity, we also performed a mathematical analysis to quantitatively measure these types of errors. An optimal range of the ratio of light spot radius and QPD radius has been found to simultaneously achieve low interaxis cross talk and high linearity of the sensor. © 2011 Optical Society of America
Linear quadratic Gaussian and feedforward controllers for the DSS-13 antenna
NASA Technical Reports Server (NTRS)
Gawronski, W. K.; Racho, C. S.; Mellstrom, J. A.
1994-01-01
The controller development and the tracking performance evaluation for the DSS-13 antenna are presented. A trajectory preprocessor, linear quadratic Gaussian (LQG) controller, feedforward controller, and their combination were designed, built, analyzed, and tested. The antenna exhibits nonlinear behavior when the input to the antenna and/or the derivative of this input exceeds the imposed limits; for slewing and acquisition commands, these limits are typically violated. A trajectory preprocessor was designed to ensure that the antenna behaves linearly, just to prevent nonlinear limit cycling. The estimator model for the LQG controller was identified from the data obtained from the field test. Based on an LQG balanced representation, a reduced-order LQG controller was obtained. The feedforward controller and the combination of the LQG and feedforward controller were also investigated. The performance of the controllers was evaluated with the tracking errors (due to following a trajectory) and the disturbance errors (due to the disturbances acting on the antenna). The LQG controller has good disturbance rejection properties and satisfactory tracking errors. The feedforward controller has small tracking errors but poor disturbance rejection properties. The combined LQG and feedforward controller exhibits small tracking errors as well as good disturbance rejection properties. However, the cost for this performance is the complexity of the controller.
NASA Astrophysics Data System (ADS)
Reyes, J.; Vizuete, W.; Serre, M. L.; Xu, Y.
2015-12-01
The EPA employs a vast monitoring network to measure ambient PM2.5 concentrations across the United States with one of its goals being to quantify exposure within the population. However, there are several areas of the country with sparse monitoring spatially and temporally. One means to fill in these monitoring gaps is to use PM2.5 modeled estimates from Chemical Transport Models (CTMs) specifically the Community Multi-scale Air Quality (CMAQ) model. CMAQ is able to provide complete spatial coverage but is subject to systematic and random error due to model uncertainty. Due to the deterministic nature of CMAQ, often these uncertainties are not quantified. Much effort is employed to quantify the efficacy of these models through different metrics of model performance. Currently evaluation is specific to only locations with observed data. Multiyear studies across the United States are challenging because the error and model performance of CMAQ are not uniform over such large space/time domains. Error changes regionally and temporally. Because of the complex mix of species that constitute PM2.5, CMAQ error is also a function of increasing PM2.5 concentration. To address this issue we introduce a model performance evaluation for PM2.5 CMAQ that is regionalized and non-linear. This model performance evaluation leads to error quantification for each CMAQ grid. Areas and time periods of error being better qualified. The regionalized error correction approach is non-linear and is therefore more flexible at characterizing model performance than approaches that rely on linearity assumptions and assume homoscedasticity of CMAQ predictions errors. Corrected CMAQ data are then incorporated into the modern geostatistical framework of Bayesian Maximum Entropy (BME). Through cross validation it is shown that incorporating error-corrected CMAQ data leads to more accurate estimates than just using observed data by themselves.
Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz
2010-11-01
Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.
Phase correction and error estimation in InSAR time series analysis
NASA Astrophysics Data System (ADS)
Zhang, Y.; Fattahi, H.; Amelung, F.
2017-12-01
During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same area, with a maximum of -3 +/- 0.9 cm (fig. 1c). Time-series displacement map (fig. 2) shows a highly non-linear deformation behavior, indicating the complicated magma propagation process during this eruption cycle.
NASA Astrophysics Data System (ADS)
Courchesne, Samuel
Knowledge of the dynamic characteristics of a fixed-wing UAV is necessary to design flight control laws and to conceive a high quality flight simulator. The basic features of a flight mechanic model include the properties of mass, inertia and major aerodynamic terms. They respond to a complex process involving various numerical analysis techniques and experimental procedures. This thesis focuses on the analysis of estimation techniques applied to estimate problems of stability and control derivatives from flight test data provided by an experimental UAV. To achieve this objective, a modern identification methodology (Quad-M) is used to coordinate the processing tasks from multidisciplinary fields, such as parameter estimation modeling, instrumentation, the definition of flight maneuvers and validation. The system under study is a non-linear model with six degrees of freedom with a linear aerodynamic model. The time domain techniques are used for identification of the drone. The first technique, the equation error method is used to determine the structure of the aerodynamic model. Thereafter, the output error method and filter error method are used to estimate the aerodynamic coefficients values. The Matlab scripts for estimating the parameters obtained from the American Institute of Aeronautics and Astronautics (AIAA) are used and modified as necessary to achieve the desired results. A commendable effort in this part of research is devoted to the design of experiments. This includes an awareness of the system data acquisition onboard and the definition of flight maneuvers. The flight tests were conducted under stable flight conditions and with low atmospheric disturbance. Nevertheless, the identification results showed that the filter error method is most effective for estimating the parameters of the drone due to the presence of process noise and measurement. The aerodynamic coefficients are validated using a numerical analysis of the vortex method. In addition, a simulation model incorporating the estimated parameters is used to compare the behavior of states measured. Finally, a good correspondence between the results is demonstrated despite a limited number of flight data. Keywords: drone, identification, estimation, nonlinear, flight test, system, aerodynamic coefficient.
Radial orbit error reduction and sea surface topography determination using satellite altimetry
NASA Technical Reports Server (NTRS)
Engelis, Theodossios
1987-01-01
A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja
2013-02-01
Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging systemmore » concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.« less
Authentication of the botanical and geographical origin of honey by mid-infrared spectroscopy.
Ruoff, Kaspar; Luginbühl, Werner; Künzli, Raphael; Iglesias, María Teresa; Bogdanov, Stefan; Bosset, Jacques Olivier; von der Ohe, Katharina; von der Ohe, Werner; Amado, Renato
2006-09-06
The potential of Fourier transform mid-infrared spectroscopy (FT-MIR) using an attenuated total reflectance (ATR) cell was evaluated for the authentication of 11 unifloral (acacia, alpine rose, chestnut, dandelion, heather, lime, rape, fir honeydew, metcalfa honeydew, oak honeydew) and polyfloral honey types (n = 411 samples) previously classified with traditional methods such as chemical, pollen, and sensory analysis. Chemometric evaluation of the spectra was carried out by applying principal component analysis and linear discriminant analysis, the error rates of the discriminant models being calculated by using Bayes' theorem. The error rates ranged from <0.1% (polyfloral and heather honeys as well as honeydew honeys from metcalfa, oak, and fir) to 8.3% (alpine rose honey) in both jackknife classification and validation, depending on the honey type considered. This study indicates that ATR-MIR spectroscopy is a valuable tool for the authentication of the botanical origin and quality control and may also be useful for the determination of the geographical origin of honey.
Archetypal Analysis for Sparse Representation-Based Hyperspectral Sub-Pixel Quantification
NASA Astrophysics Data System (ADS)
Drees, L.; Roscher, R.
2017-05-01
This paper focuses on the quantification of land cover fractions in an urban area of Berlin, Germany, using simulated hyperspectral EnMAP data with a spatial resolution of 30m×30m. For this, sparse representation is applied, where each pixel with unknown surface characteristics is expressed by a weighted linear combination of elementary spectra with known land cover class. The elementary spectra are determined from image reference data using simplex volume maximization, which is a fast heuristic technique for archetypal analysis. In the experiments, the estimation of class fractions based on the archetypal spectral library is compared to the estimation obtained by a manually designed spectral library by means of reconstruction error, mean absolute error of the fraction estimates, sum of fractions and the number of used elementary spectra. We will show, that a collection of archetypes can be an adequate and efficient alternative to the spectral library with respect to mentioned criteria.
Zaghloul, Mohamed A. S.; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P.
2018-01-01
Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores’ temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μϵ/MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%). PMID:29649148
NASA Astrophysics Data System (ADS)
Wei, Zhouchao; Rajagopal, Karthikeyan; Zhang, Wei; Kingni, Sifeu Takougang; Akgül, Akif
2018-04-01
Hidden hyperchaotic attractors can be generated with three positive Lyapunov exponents in the proposed 5D hyperchaotic Burke-Shaw system with only one stable equilibrium. To the best of our knowledge, this feature has rarely been previously reported in any other higher-dimensional systems. Unidirectional linear error feedback coupling scheme is used to achieve hyperchaos synchronisation, which will be estimated by using two indicators: the normalised average root-mean squared synchronisation error and the maximum cross-correlation coefficient. The 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integration. In addition, fractional-order hidden hyperchaotic system will be considered from the following three aspects: stability, bifurcation analysis and FPGA implementation. Such implementations in real time represent hidden hyperchaotic attractors with important consequences for engineering applications.
Zaghloul, Mohamed A S; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P
2018-04-12
Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores' temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μ ϵ /MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%).
Lee, Wonseok; Bae, Hyoung Won; Lee, Si Hyung; Kim, Chan Yun; Seong, Gong Je
2017-03-01
To assess the accuracy of intraocular lens (IOL) power prediction for cataract surgery with open angle glaucoma (OAG) and to identify preoperative angle parameters correlated with postoperative unpredicted refractive errors. This study comprised 45 eyes from 45 OAG subjects and 63 eyes from 63 non-glaucomatous cataract subjects (controls). We investigated differences in preoperative predicted refractive errors and postoperative refractive errors for each group. Preoperative predicted refractive errors were obtained by biometry (IOL-master) and compared to postoperative refractive errors measured by auto-refractometer 2 months postoperatively. Anterior angle parameters were determined using swept source optical coherence tomography. We investigated correlations between preoperative angle parameters [angle open distance (AOD); trabecular iris surface area (TISA); angle recess area (ARA); trabecular iris angle (TIA)] and postoperative unpredicted refractive errors. In patients with OAG, significant differences were noted between preoperative predicted and postoperative real refractive errors, with more myopia than predicted. No significant differences were recorded in controls. Angle parameters (AOD, ARA, TISA, and TIA) at the superior and inferior quadrant were significantly correlated with differences between predicted and postoperative refractive errors in OAG patients (-0.321 to -0.408, p<0.05). Superior quadrant AOD 500 was significantly correlated with postoperative refractive differences in multivariate linear regression analysis (β=-2.925, R²=0.404). Clinically unpredicted refractive errors after cataract surgery were more common in OAG than in controls. Certain preoperative angle parameters, especially AOD 500 at the superior quadrant, were significantly correlated with these unpredicted errors.
Lee, Wonseok; Bae, Hyoung Won; Lee, Si Hyung; Kim, Chan Yun
2017-01-01
Purpose To assess the accuracy of intraocular lens (IOL) power prediction for cataract surgery with open angle glaucoma (OAG) and to identify preoperative angle parameters correlated with postoperative unpredicted refractive errors. Materials and Methods This study comprised 45 eyes from 45 OAG subjects and 63 eyes from 63 non-glaucomatous cataract subjects (controls). We investigated differences in preoperative predicted refractive errors and postoperative refractive errors for each group. Preoperative predicted refractive errors were obtained by biometry (IOL-master) and compared to postoperative refractive errors measured by auto-refractometer 2 months postoperatively. Anterior angle parameters were determined using swept source optical coherence tomography. We investigated correlations between preoperative angle parameters [angle open distance (AOD); trabecular iris surface area (TISA); angle recess area (ARA); trabecular iris angle (TIA)] and postoperative unpredicted refractive errors. Results In patients with OAG, significant differences were noted between preoperative predicted and postoperative real refractive errors, with more myopia than predicted. No significant differences were recorded in controls. Angle parameters (AOD, ARA, TISA, and TIA) at the superior and inferior quadrant were significantly correlated with differences between predicted and postoperative refractive errors in OAG patients (-0.321 to -0.408, p<0.05). Superior quadrant AOD 500 was significantly correlated with postoperative refractive differences in multivariate linear regression analysis (β=-2.925, R2=0.404). Conclusion Clinically unpredicted refractive errors after cataract surgery were more common in OAG than in controls. Certain preoperative angle parameters, especially AOD 500 at the superior quadrant, were significantly correlated with these unpredicted errors. PMID:28120576
Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models
de Jesus, Karla; Ayala, Helon V. H.; de Jesus, Kelly; Coelho, Leandro dos S.; Medeiros, Alexandre I.A.; Abraldes, José A.; Vaz, Mário A.P.; Fernandes, Ricardo J.; Vilas-Boas, João Paulo
2018-01-01
Abstract Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances. PMID:29599857
Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data
NASA Astrophysics Data System (ADS)
Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher
2017-05-01
Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance
NASA Astrophysics Data System (ADS)
Soares Dos Santos, Marco P.; Ferreira, Jorge A. F.; Simões, José A. O.; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P.
2016-01-01
Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters.
Soares dos Santos, Marco P.; Ferreira, Jorge A. F.; Simões, José A. O.; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P.
2016-01-01
Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters. PMID:26725842
When linearity prevails over hierarchy in syntax
Willer Gold, Jana; Arsenijević, Boban; Batinić, Mia; Becker, Michael; Čordalija, Nermina; Kresić, Marijana; Leko, Nedžad; Marušič, Franc Lanko; Milićev, Tanja; Milićević, Nataša; Mitić, Ivana; Peti-Stantić, Anita; Stanković, Branimir; Šuligoj, Tina; Tušek, Jelena; Nevins, Andrew
2018-01-01
Hierarchical structure has been cherished as a grammatical universal. We use experimental methods to show where linear order is also a relevant syntactic relation. An identical methodology and design were used across six research sites on South Slavic languages. Experimental results show that in certain configurations, grammatical production can in fact favor linear order over hierarchical structure. However, these findings are limited to coordinate structures and distinct from the kind of production errors found with comparable configurations such as “attraction” errors. The results demonstrate that agreement morphology may be computed in a series of steps, one of which is partly independent from syntactic hierarchy. PMID:29288218
Kumar, K Vasanth
2006-10-11
Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.
Dysfunctional error-related processing in incarcerated youth with elevated psychopathic traits
Maurer, J. Michael; Steele, Vaughn R.; Cope, Lora M.; Vincent, Gina M.; Stephen, Julia M.; Calhoun, Vince D.; Kiehl, Kent A.
2016-01-01
Adult psychopathic offenders show an increased propensity towards violence, impulsivity, and recidivism. A subsample of youth with elevated psychopathic traits represent a particularly severe subgroup characterized by extreme behavioral problems and comparable neurocognitive deficits as their adult counterparts, including perseveration deficits. Here, we investigate response-locked event-related potential (ERP) components (the error-related negativity [ERN/Ne] related to early error-monitoring processing and the error-related positivity [Pe] involved in later error-related processing) in a sample of incarcerated juvenile male offenders (n = 100) who performed a response inhibition Go/NoGo task. Psychopathic traits were assessed using the Hare Psychopathy Checklist: Youth Version (PCL:YV). The ERN/Ne and Pe were analyzed with classic windowed ERP components and principal component analysis (PCA). Using linear regression analyses, PCL:YV scores were unrelated to the ERN/Ne, but were negatively related to Pe mean amplitude. Specifically, the PCL:YV Facet 4 subscale reflecting antisocial traits emerged as a significant predictor of reduced amplitude of a subcomponent underlying the Pe identified with PCA. This is the first evidence to suggest a negative relationship between adolescent psychopathy scores and Pe mean amplitude. PMID:26930170
Wong, Brian M; Coffey, Maitreya; Nousiainen, Markku T; Brydges, Ryan; McDonald-Blumer, Heather; Atkinson, Adelle; Levinson, Wendy; Stroud, Lynfa
2017-02-01
Residents' attitudes toward error disclosure have improved over time. It is unclear whether this has been accompanied by improvements in disclosure skills. To measure the disclosure skills of internal medicine (IM), paediatrics, and orthopaedic surgery residents, and to explore resident perceptions of formal versus informal training in preparing them for disclosure in real-world practice. We assessed residents' error disclosure skills using a structured role play with a standardized patient in 2012-2013. We compared disclosure skills across programs using analysis of variance. We conducted a multiple linear regression, including data from a historical cohort of IM residents from 2005, to investigate the influence of predictor variables on performance: training program, cohort year, and prior disclosure training and experience. We conducted a qualitative descriptive analysis of data from semistructured interviews with residents to explore resident perceptions of formal versus informal disclosure training. In a comparison of disclosure skills for 49 residents, there was no difference in overall performance across specialties (4.1 to 4.4 of 5, P = .19). In regression analysis, only the current cohort was significantly associated with skill: current residents performed better than a historical cohort of 42 IM residents ( P < .001). Qualitative analysis identified the importance of both formal (workshops, morbidity and mortality rounds) and informal (role modeling, debriefing) activities in preparation for disclosure in real-world practice. Residents across specialties have similar skills in disclosure of errors. Residents identified role modeling and a strong local patient safety culture as key facilitators for disclosure.
Haas, Dorothea; Gan-Schreier, Hongying; Langhans, Claus-Dieter; Anninos, Alexandros; Haege, Gisela; Burgard, Peter; Schulze, Andreas; Hoffmann, Georg F; Okun, Jürgen G
2014-03-15
Biochemical detection of inborn errors of creatine metabolism or transport relies on the analysis of three main metabolites in biological fluids: guanidinoacetate (GAA), creatine (CT) and creatinine (CTN). Unspecific clinical presentation of the diseases might be the cause that only few patients have been diagnosed so far. We describe a LC-MS/MS method allowing fast and reliable diagnosis by simultaneous quantification of GAA, CT and CTN in urine, plasma and cerebrospinal fluid (CSF) and established reference values for each material. For quantification deuterated stable isotopes of each analyte were used as internal standards. GAA, CT and CTN were separated by reversed-phase HPLC. The characterization was carried out by scanning the ions of each compound by negative ion tandem mass spectrometry. Butylation is needed to achieve sufficient signal intensity for GAA and CT but it is not useful for analyzing CTN. The assay is linear in a broad range of analyte concentrations usually found in urine, plasma and CSF. Comparison of the "traditional" cation-exchange chromatography and LC-MS/MS showed proportional differences but linear relationships between the two methods. The described method is characterized by high speed and linearity over large concentration ranges comparable to other published LC-MS methods but with higher sensitivity for GAA and CT. In addition, we present the largest reference group ever published for guanidino compounds in all relevant body fluids. Therefore this method is applicable for high-throughput approaches for diagnosis and follow-up of inborn errors of creatine metabolism and transport. Copyright © 2014 Elsevier B.V. All rights reserved.
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
NASA Astrophysics Data System (ADS)
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
Trimming and procrastination as inversion techniques
NASA Astrophysics Data System (ADS)
Backus, George E.
1996-12-01
By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
NASA Technical Reports Server (NTRS)
Downie, John D.; Goodman, Joseph W.
1989-01-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
Reproduction of a higher-order circular harmonic field using a linear array of loudspeakers.
Lee, Jung-Min; Choi, Jung-Woo; Kim, Yang-Hann
2015-03-01
This paper presents a direct formula for reproducing a sound field consisting of higher-order circular harmonics with polar phase variation. Sound fields with phase variation can be used for synthesizing various spatial attributes, such as the perceived width or the location of a virtual sound source. To reproduce such a sound field using a linear loudspeaker array, the driving function of the array is derived in the format of an integral formula. The proposed function shows fewer reproduction errors than a conventional formula focused on magnitude variations. In addition, analysis of the sweet spot reveals that its shape can be asymmetric, depending on the order of harmonics.
NASA Astrophysics Data System (ADS)
Toufik, Mekkaoui; Atangana, Abdon
2017-10-01
Recently a new concept of fractional differentiation with non-local and non-singular kernel was introduced in order to extend the limitations of the conventional Riemann-Liouville and Caputo fractional derivatives. A new numerical scheme has been developed, in this paper, for the newly established fractional differentiation. We present in general the error analysis. The new numerical scheme was applied to solve linear and non-linear fractional differential equations. We do not need a predictor-corrector to have an efficient algorithm, in this method. The comparison of approximate and exact solutions leaves no doubt believing that, the new numerical scheme is very efficient and converges toward exact solution very rapidly.
A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.
Ferrari, Alberto; Comelli, Mario
2016-12-01
In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.
Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law
NASA Astrophysics Data System (ADS)
Nurmaini, Siti; Dewi, Kemala; Tutuko, Bambang
2017-04-01
This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination, it always produce some errors. Therefore, a mobile robot requires a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement. The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved.
Fault tolerance in an inner-outer solver: A GVR-enabled case study
Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita
2015-04-18
Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-streammore » snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.« less
Image Reconstruction for Interferometric Imaging of Geosynchronous Satellites
NASA Astrophysics Data System (ADS)
DeSantis, Zachary J.
Imaging distant objects at a high resolution has always presented a challenge due to the diffraction limit. Larger apertures improve the resolution, but at some point the cost of engineering, building, and correcting phase aberrations of large apertures become prohibitive. Interferometric imaging uses the Van Cittert-Zernike theorem to form an image from measurements of spatial coherence. This effectively allows the synthesis of a large aperture from two or more smaller telescopes to improve the resolution. We apply this method to imaging geosynchronous satellites with a ground-based system. Imaging a dim object from the ground presents unique challenges. The atmosphere creates errors in the phase measurements. The measurements are taken simultaneously across a large bandwidth of light. The atmospheric piston error, therefore, manifests as a linear phase error across the spectral measurements. Because the objects are faint, many of the measurements are expected to have a poor signal-to-noise ratio (SNR). This eliminates possibility of use of commonly used techniques like closure phase, which is a standard technique in astronomical interferometric imaging for making partial phase measurements in the presence of atmospheric error. The bulk of our work has been focused on forming an image, using sub-Nyquist sampled data, in the presence of these linear phase errors without relying on closure phase techniques. We present an image reconstruction algorithm that successfully forms an image in the presence of these linear phase errors. We demonstrate our algorithm’s success in both simulation and in laboratory experiments.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
Some Integrated Squared Error Procedures for Multivariate Normal Data,
1986-01-01
a lnear regresmion or experimental design model). Our procedures have &lSO been usned wcelyOn non -linear models but we do not addres nan-lnear...of fit, outliers, influence functions, experimental design , cluster analysis, robustness 24L A =TO ACT (VCefme - pvre alli of magsy MW identif by...structured data such as multivariate experimental designs . Several illustrations are provided. * 0 %41 %-. 4.’. * " , -.--, ,. -,, ., -, ’v ’ , " ,,- ,, . -,-. . ., * . - tAma- t
The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation
2015-08-20
way correlations. For instance, if crime waves are associated with increases in unemployment or drops in police presence, that would be hard to...time lag, ai , bj are parameters in a linear combination, 1, 2 are error terms, and Prepared for Dr. Harold Hawkins US Government Contract...selecting a proper representation for the underlying data. A qualitative comparison of GC and DTW methods on World Bank data indicates that both methods
Synthetic Aperture Radar Signals: Formulations and Approaches for Data Analysis
1975-05-01
discussion of the nature of SAR signals, error sources, phase history correlation, and the status of SAR hardware;(2) to produce a document that is...preserving phase, thus forming a phase history of the received echoes. When all the returns from a given range interval have been accumulated, they...the functional form of their resolution, the storage of raw data (phase histories ) on film, the linear FM signal and two-dimensional holograms
Applications of charge-coupled device transversal filters to communication
NASA Technical Reports Server (NTRS)
Buss, D. D.; Bailey, W. H.; Brodersen, R. W.; Hewes, C. R.; Tasch, A. F., Jr.
1975-01-01
The paper discusses the computational power of state-of-the-art charged-coupled device (CCD) transversal filters in communications applications. Some of the performance limitations of CCD transversal filters are discussed, with attention given to time delay and bandwidth, imperfect charge transfer efficiency, weighting coefficient error, noise, and linearity. The application of CCD transversal filters to matched filtering, spectral filtering, and Fourier analysis is examined. Techniques for making programmable transversal filters are briefly outlined.
Spatial Assessment of Model Errors from Four Regression Techniques
Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove
2005-01-01
Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...
Research on Standard Errors of Equating Differences. Research Report. ETS RR-10-25
ERIC Educational Resources Information Center
Moses, Tim; Zhang, Wenmin
2010-01-01
In this paper, the "standard error of equating difference" (SEED) is described in terms of originally proposed kernel equating functions (von Davier, Holland, & Thayer, 2004) and extended to incorporate traditional linear and equipercentile functions. These derivations expand on prior developments of SEEDs and standard errors of equating and…
Poleti, Marcelo Lupion; Fernandes, Thais Maria Freire; Pagin, Otávio; Moretti, Marcela Rodrigues; Rubira-Bullen, Izabel Regina Fischer
2016-01-01
The aim of this in vitro study was to evaluate the reliability and accuracy of linear measurements on three-dimensional (3D) surface models obtained by standard pre-set thresholds in two segmentation software programs. Ten mandibles with 17 silica markers were scanned for 0.3-mm voxels in the i-CAT Classic (Imaging Sciences International, Hatfield, PA, USA). Twenty linear measurements were carried out by two observers two times on the 3D surface models: the Dolphin Imaging 11.5 (Dolphin Imaging & Management Solutions, Chatsworth, CA, USA), using two filters(Translucent and Solid-1), and in the InVesalius 3.0.0 (Centre for Information Technology Renato Archer, Campinas, SP, Brazil). The physical measurements were made by another observer two times using a digital caliper on the dry mandibles. Excellent intra- and inter-observer reliability for the markers, physical measurements, and 3D surface models were found (intra-class correlation coefficient (ICC) and Pearson's r ≥ 0.91). The linear measurements on 3D surface models by Dolphin and InVesalius software programs were accurate (Dolphin Solid-1 > InVesalius > Dolphin Translucent). The highest absolute and percentage errors were obtained for the variable R1-R1 (1.37 mm) and MF-AC (2.53 %) in the Dolphin Translucent and InVesalius software, respectively. Linear measurements on 3D surface models obtained by standard pre-set thresholds in the Dolphin and InVesalius software programs are reliable and accurate compared with physical measurements. Studies that evaluate the reliability and accuracy of the 3D models are necessary to ensure error predictability and to establish diagnosis, treatment plan, and prognosis in a more realistic way.
Restoring method for missing data of spatial structural stress monitoring based on correlation
NASA Astrophysics Data System (ADS)
Zhang, Zeyu; Luo, Yaozhi
2017-07-01
Long-term monitoring of spatial structures is of great importance for the full understanding of their performance and safety. The missing part of the monitoring data link will affect the data analysis and safety assessment of the structure. Based on the long-term monitoring data of the steel structure of the Hangzhou Olympic Center Stadium, the correlation between the stress change of the measuring points is studied, and an interpolation method of the missing stress data is proposed. Stress data of correlated measuring points are selected in the 3 months of the season when missing data is required for fitting correlation. Data of daytime and nighttime are fitted separately for interpolation. For a simple linear regression when single point's correlation coefficient is 0.9 or more, the average error of interpolation is about 5%. For multiple linear regression, the interpolation accuracy is not significantly increased after the number of correlated points is more than 6. Stress baseline value of construction step should be calculated before interpolating missing data in the construction stage, and the average error is within 10%. The interpolation error of continuous missing data is slightly larger than that of the discrete missing data. The data missing rate of this method should better not exceed 30%. Finally, a measuring point's missing monitoring data is restored to verify the validity of the method.
Novel parametric reduced order model for aeroengine blade dynamics
NASA Astrophysics Data System (ADS)
Yuan, Jie; Allegri, Giuliano; Scarpa, Fabrizio; Rajasekaran, Ramesh; Patsias, Sophoclis
2015-10-01
The work introduces a novel reduced order model (ROM) technique to describe the dynamic behavior of turbofan aeroengine blades. We introduce an equivalent 3D frame model to describe the coupled flexural/torsional mode shapes, with their relevant natural frequencies and associated modal masses. The frame configurations are identified through a structural identification approach based on a simulated annealing algorithm with stochastic tunneling. The cost functions are constituted by linear combinations of relative errors associated to the resonance frequencies, the individual modal assurance criteria (MAC), and on either overall static or modal masses. When static masses are considered the optimized 3D frame can represent the blade dynamic behavior with an 8% error on the MAC, a 1% error on the associated modal frequencies and a 1% error on the overall static mass. When using modal masses in the cost function the performance of the ROM is similar, but the overall error increases to 7%. The approach proposed in this paper is considerably more accurate than state-of-the-art blade ROMs based on traditional Timoshenko beams, and provides excellent accuracy at reduced computational time when compared against high fidelity FE models. A sensitivity analysis shows that the proposed model can adequately predict the global trends of the variations of the natural frequencies when lumped masses are used for mistuning analysis. The proposed ROM also follows extremely closely the sensitivity of the high fidelity finite element models when the material parameters are used in the sensitivity.
Magnetospheric Multiscale (MMS) Mission Commissioning Phase Orbit Determination Error Analysis
NASA Technical Reports Server (NTRS)
Chung, Lauren R.; Novak, Stefan; Long, Anne; Gramling, Cheryl
2009-01-01
The Magnetospheric MultiScale (MMS) mission commissioning phase starts in a 185 km altitude x 12 Earth radii (RE) injection orbit and lasts until the Phase 1 mission orbits and orientation to the Earth-Sun li ne are achieved. During a limited time period in the early part of co mmissioning, five maneuvers are performed to raise the perigee radius to 1.2 R E, with a maneuver every other apogee. The current baseline is for the Goddard Space Flight Center Flight Dynamics Facility to p rovide MMS orbit determination support during the early commissioning phase using all available two-way range and Doppler tracking from bo th the Deep Space Network and Space Network. This paper summarizes th e results from a linear covariance analysis to determine the type and amount of tracking data required to accurately estimate the spacecraf t state, plan each perigee raising maneuver, and support thruster cal ibration during this phase. The primary focus of this study is the na vigation accuracy required to plan the first and the final perigee ra ising maneuvers. Absolute and relative position and velocity error hi stories are generated for all cases and summarized in terms of the ma ximum root-sum-square consider and measurement noise error contributi ons over the definitive and predictive arcs and at discrete times inc luding the maneuver planning and execution times. Details of the meth odology, orbital characteristics, maneuver timeline, error models, and error sensitivities are provided.
Critical analysis of commonly used fluorescence metrics to characterize dissolved organic matter.
Korak, Julie A; Dotson, Aaron D; Summers, R Scott; Rosario-Ortiz, Fernando L
2014-02-01
The use of fluorescence spectroscopy for the analysis and characterization of dissolved organic matter (DOM) has gained widespread interest over the past decade, in part because of its ease of use and ability to provide bulk DOM chemical characteristics. However, the lack of standard approaches for analysis and data evaluation has complicated its use. This study utilized comparative statistics to systematically evaluate commonly used fluorescence metrics for DOM characterization to provide insight into the implications for data analysis and interpretation such as peak picking methods, carbon-normalized metrics and the fluorescence index (FI). The uncertainty associated with peak picking methods was evaluated, including the reporting of peak intensity and peak position. The linear relationship between fluorescence intensity and dissolved organic carbon (DOC) concentration was found to deviate from linearity at environmentally relevant concentrations and simultaneously across all peak regions. Comparative analysis suggests that the loss of linearity is composition specific and likely due to non-ideal intermolecular interactions of the DOM rather than the inner filter effects. For some DOM sources, Peak A deviated from linearity at optical densities a factor of 2 higher than that of Peak C. For carbon-normalized fluorescence intensities, the error associated with DOC measurements significantly decreases the ability to distinguish compositional differences. An in-depth analysis of FI determined that the metric is mostly driven by peak emission wavelength and less by emission spectra slope. This study also demonstrates that fluorescence intensity follows property balance principles, but the fluorescence index does not. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of 2D and 3D Error Fields on the SAS Divertor Magnetic Topology
NASA Astrophysics Data System (ADS)
Trevisan, G. L.; Lao, L. L.; Strait, E. J.; Guo, H. Y.; Wu, W.; Evans, T. E.
2016-10-01
The successful design of plasma-facing components in fusion experiments is of paramount importance in both the operation of future reactors and in the modification of operating machines. Indeed, the Small Angle Slot (SAS) divertor concept, proposed for application on the DIII-D experiment, combines a small incident angle at the plasma strike point with a progressively opening slot, so as to better control heat flux and erosion in high-performance tokamak plasmas. Uncertainty quantification of the error fields expected around the striking point provides additional useful information in both the design and the modeling phases of the new divertor, in part due to the particular geometric requirement of the striking flux surfaces. The presented work involves both 2D and 3D magnetic error field analysis on the SAS strike point carried out using the EFIT code for 2D equilibrium reconstruction, V3POST for vacuum 3D computations and the OMFIT integrated modeling framework for data analysis. An uncertainty in the magnetic probes' signals is found to propagate non-linearly as an uncertainty in the striking point and angle, which can be quantified through statistical analysis to yield robust estimates. Work supported by contracts DE-FG02-95ER54309 and DE-FC02-04ER54698.
Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen
2016-02-01
Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.
Indoor-to-outdoor particle concentration ratio model for human exposure analysis
NASA Astrophysics Data System (ADS)
Lee, Jae Young; Ryu, Sung Hee; Lee, Gwangjae; Bae, Gwi-Nam
2016-02-01
This study presents an indoor-to-outdoor particle concentration ratio (IOR) model for improved estimates of indoor exposure levels. This model is useful in epidemiological studies with large population, because sampling indoor pollutants in all participants' house is often necessary but impractical. As a part of a study examining the association between air pollutants and atopic dermatitis in children, 16 parents agreed to measure the indoor and outdoor PM10 and PM2.5 concentrations at their homes for 48 h. Correlation analysis and multi-step multivariate linear regression analysis was performed to develop the IOR model. Temperature and floor level were found to be powerful predictors of the IOR. Despite the simplicity of the model, it demonstrated high accuracy in terms of the root mean square error (RMSE). Especially for long-term IOR estimations, the RMSE was as low as 0.064 and 0.063 for PM10 and PM2.5, respectively. When using a prediction model in an epidemiological study, understanding the consequence of the modeling error and justifying the use of the model is very important. In the last section, this paper discussed the impact of the modeling error and developed a novel methodology to justify the use of the model.
Pan, Xiaohong; Julian, Thomas; Augsburger, Larry
2006-02-10
Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) methods were developed for the quantitative analysis of the crystallinity of indomethacin (IMC) in IMC and silica gel (SG) binary system. The DSC calibration curve exhibited better linearity than that of XRPD. No phase transformation occurred in the IMC-SG mixtures during DSC measurement. The major sources of error in DSC measurements were inhomogeneous mixing and sampling. Analyzing the amount of IMC in the mixtures using high-performance liquid chromatography (HPLC) could reduce the sampling error. DSC demonstrated greater sensitivity and had less variation in measurement than XRPD in quantifying crystalline IMC in the IMC-SG binary system.
Error analysis for fast scintillator-based inertial confinement fusion burn history measurements
NASA Astrophysics Data System (ADS)
Lerche, R. A.; Ognibene, T. J.
1999-01-01
Plastic scintillator material acts as a neutron-to-light converter in instruments that make inertial confinement fusion burn history measurements. Light output for a detected neutron in current instruments has a fast rise time (<20 ps) and a relatively long decay constant (1.2 ns). For a burst of neutrons whose duration is much shorter than the decay constant, instantaneous light output is approximately proportional to the integral of the neutron interaction rate with the scintillator material. Burn history is obtained by deconvolving the exponential decay from the recorded signal. The error in estimating signal amplitude for these integral measurements is calculated and compared with a direct measurement in which light output is linearly proportional to the interaction rate.
Nonlinear Peculiar-Velocity Analysis and PCA
NASA Astrophysics Data System (ADS)
Dekel, Avishai; Eldar, Amiram; Silberman, Lior; Zehavi, Idit
We allow for nonlinear effects in the likelihood analysis of peculiar velocities, and obtain ˜35%-lower values for the cosmological density parameter and for the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be of the flat ΛCDM model (h = 0.65, n = 1) with only Ω_m free. Since the likelihood is driven by the nonlinear regime, we "break" the power spectrum at k_b˜ 0.2 (h^{-1}Mpc)^{-1} and fit a two-parameter power-law at k > k b . This allows for an unbiased fit in the linear regime. Tests using improved mock catalogs demonstrate a reduced bias and a better fit. We find for the Mark III and SFI data Ω_m = 0.35± 0.09 with σ_8Ω_m^{0.6} = 0.55± 0.10 (90% errors). When allowing deviations from ΛCDM, we find an indication for a wiggle in the power spectrum in the form of an excess near k ˜ 0.05 and a deficiency at k ˜ 0.1 (h^{-1}Mpc)^{-1} - a "cold flow" which may be related to a feature indicated from redshift surveys and the second peak in the CMB anisotropy. A χ^2 test applied to principal modes demonstrates that the nonlinear procedure improves the goodness of fit. The Principal Component Analysis (PCA) helps identifying spatial features of the data and fine-tuning the theoretical and error models. We address the potential for optimal data compression using PCA.
"Ten-point" 3D cephalometric analysis using low-dosage cone beam computed tomography.
Farronato, Giampietro; Garagiola, Umberto; Dominici, Aldo; Periti, Giulia; de Nardi, Sandro; Carletti, Vera; Farronato, Davide
2010-01-01
The aim of this study was to combine the huge amount of information of low dose Cone Beam CT with a cephalometric simplified protocol thanks to the latest informatics aids. Lateral cephalograms are two-dimensional (2-D) radiographs that are used to represent three-dimensional (3-D) structures. Cephalograms have inherent limitations as a result of distortion, super imposition and differential magnification of the craniofacial complex. This may lead to errors of identification and reduced measurement accuracy. The advantages of CBCT over conventional CT include low radiation exposure, imaging quality improvement, potentially better access, high spatial resolution and lower cost. This study assessed cephalometric 2D and 3D measurements and the analysis of CBCT cephalograms of the volume and centroid of the maxilla and mandible, in 10 clinical cases. With a few exceptions the linear and angular cephalometric measurements obtained from CBCT and from conventional cephalograms did not differ statistically (p>0.01). There was a correlation between the variation in the skeletal malocclusion and growth direction of the jaws, and the variation in the spatial position (x, y, z) of the centroids and their volumes (p<0.01). The 3D cephalometric analysis is easier to interpret than 2D cephalometric analysis. In contrast to those made on projective radiographies, the angular and linear measurements detected on 3D become real, moreover the fewest points to select and the automatic measurements made by the computer drastically reduced human error, for a much more reliable reproducible and repeatable diagnosis. Copyright © 2010 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.
Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J
2017-05-01
Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.
NASA Technical Reports Server (NTRS)
Burgin, G. H.; Eggleston, D. M.
1976-01-01
A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.
Local error estimates for discontinuous solutions of nonlinear hyperbolic equations
NASA Technical Reports Server (NTRS)
Tadmor, Eitan
1989-01-01
Let u(x,t) be the possibly discontinuous entropy solution of a nonlinear scalar conservation law with smooth initial data. Suppose u sub epsilon(x,t) is the solution of an approximate viscosity regularization, where epsilon greater than 0 is the small viscosity amplitude. It is shown that by post-processing the small viscosity approximation u sub epsilon, pointwise values of u and its derivatives can be recovered with an error as close to epsilon as desired. The analysis relies on the adjoint problem of the forward error equation, which in this case amounts to a backward linear transport with discontinuous coefficients. The novelty of this approach is to use a (generalized) E-condition of the forward problem in order to deduce a W(exp 1,infinity) energy estimate for the discontinuous backward transport equation; this, in turn, leads one to an epsilon-uniform estimate on moments of the error u(sub epsilon) - u. This approach does not follow the characteristics and, therefore, applies mutatis mutandis to other approximate solutions such as E-difference schemes.
Influence of surface error on electromagnetic performance of reflectors based on Zernike polynomials
NASA Astrophysics Data System (ADS)
Li, Tuanjie; Shi, Jiachen; Tang, Yaqiong
2018-04-01
This paper investigates the influence of surface error distribution on the electromagnetic performance of antennas. The normalized Zernike polynomials are used to describe a smooth and continuous deformation surface. Based on the geometrical optics and piecewise linear fitting method, the electrical performance of reflector described by the Zernike polynomials is derived to reveal the relationship between surface error distribution and electromagnetic performance. Then the relation database between surface figure and electric performance is built for ideal and deformed surfaces to realize rapidly calculation of far-field electric performances. The simulation analysis of the influence of Zernike polynomials on the electrical properties for the axis-symmetrical reflector with the axial mode helical antenna as feed is further conducted to verify the correctness of the proposed method. Finally, the influence rules of surface error distribution on electromagnetic performance are summarized. The simulation results show that some terms of Zernike polynomials may decrease the amplitude of main lobe of antenna pattern, and some may reduce the pointing accuracy. This work extracts a new concept for reflector's shape adjustment in manufacturing process.
Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun
1996-01-01
In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.
Characterization of the International Linear Collider damping ring optics
NASA Astrophysics Data System (ADS)
Shanks, J.; Rubin, D. L.; Sagan, D.
2014-10-01
A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.
NASA Astrophysics Data System (ADS)
Bacha, Tulu
The Goddard Lidar Observatory for Wind (GLOW), a mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the troposphere and lower stratosphere region of atmosphere is operated and its errors characterized. It was operated at Howard University Beltsville Center for Climate Observation System (BCCOS) side by side with other operating instruments: the NASA/Langely Research Center Validation Lidar (VALIDAR), Leosphere WLS70, and other standard wind sensing instruments. The performance of Goddard Lidar Observatory for Wind (GLOW) is presented for various optical thicknesses of cloud conditions. It was also compared to VALIDAR under various conditions. These conditions include clear and cloudy sky regions. The performance degradation due to the presence of cirrus clouds is quantified by comparing the wind speed error to cloud thickness. The cloud thickness is quantified in terms of aerosol backscatter ratio (ASR) and cloud optical depth (COD). ASR and COD are determined from Howard University Raman Lidar (HURL) operating at the same station as GLOW. The wind speed error of GLOW was correlated with COD and aerosol backscatter ratio (ASR) which are determined from HURL data. The correlation related in a weak linear relationship. Finally, the wind speed measurements of GLOW were corrected using the quantitative relation from the correlation relations. Using ASR reduced the GLOW wind error from 19% to 8% in a thin cirrus cloud and from 58% to 28% in a relatively thick cloud. After correcting for cloud induced error, the remaining error is due to shot noise and atmospheric variability. Shot-noise error is the statistical random error of backscattered photons detected by photon multiplier tube (PMT) can only be minimized by averaging large number of data recorded. The atmospheric backscatter measured by GLOW along its line-of-sight direction is also used to analyze error due to atmospheric variability within the volume of measurement. GLOW scans in five different directions (vertical and at elevation angles of 45° in north, south, east, and west) to generate wind profiles. The non-uniformity of the atmosphere in all scanning directions is a factor contributing to the measurement error of GLOW. The atmospheric variability in the scanning region leads to difference in the intensity of backscattered signals for scanning directions. Taking the ratio of the north (east) to south (west) and comparing the statistical differences lead to a weak linear relation between atmospheric variability and line-of-sights wind speed differences. This relation was used to make correction which reduced by about 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Lilie L., E-mail: lin@uphs.upenn.edu; Hertan, Lauren; Rengan, Ramesh
2012-06-01
Purpose: To determine the impact of body mass index (BMI) on daily setup variations and frequency of imaging necessary for patients with endometrial cancer treated with adjuvant intensity-modulated radiotherapy (IMRT) with daily image guidance. Methods and Materials: The daily shifts from a total of 782 orthogonal kilovoltage images from 30 patients who received pelvic IMRT between July 2008 and August 2010 were analyzed. The BMI, mean daily shifts, and random and systematic errors in each translational and rotational direction were calculated for each patient. Margin recipes were generated based on BMI. Linear regression and spearman rank correlation analysis were performed.more » To simulate a less-than-daily IGRT protocol, the average shift of the first five fractions was applied to subsequent setups without IGRT for assessing the impact on setup error and margin requirements. Results: Median BMI was 32.9 (range, 23-62). Of the 30 patients, 16.7% (n = 5) were normal weight (BMI <25); 23.3% (n = 7) were overweight (BMI {>=}25 to <30); 26.7% (n = 8) were mildly obese (BMI {>=}30 to <35); and 33.3% (n = 10) were moderately to severely obese (BMI {>=} 35). On linear regression, mean absolute vertical, longitudinal, and lateral shifts positively correlated with BMI (p = 0.0127, p = 0.0037, and p < 0.0001, respectively). Systematic errors in the longitudinal and vertical direction were found to be positively correlated with BMI category (p < 0.0001 for both). IGRT for the first five fractions, followed by correction of the mean error for all subsequent fractions, led to a substantial reduction in setup error and resultant margin requirement overall compared with no IGRT. Conclusions: Daily shifts, systematic errors, and margin requirements were greatest in obese patients. For women who are normal or overweight, a planning target margin margin of 7 to 10 mm may be sufficient without IGRT, but for patients who are moderately or severely obese, this is insufficient.« less
MO-FG-202-05: Identifying Treatment Planning System Errors in IROC-H Phantom Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, J; Followill, D; Howell, R
Purpose: Treatment Planning System (TPS) errors can affect large numbers of cancer patients receiving radiation therapy. Using an independent recalculation system, the Imaging and Radiation Oncology Core-Houston (IROC-H) can identify institutions that have not sufficiently modelled their linear accelerators in their TPS model. Methods: Linear accelerator point measurement data from IROC-H’s site visits was aggregated and analyzed from over 30 linear accelerator models. Dosimetrically similar models were combined to create “classes”. The class data was used to construct customized beam models in an independent treatment dose verification system (TVS). Approximately 200 head and neck phantom plans from 2012 to 2015more » were recalculated using this TVS. Comparison of plan accuracy was evaluated by comparing the measured dose to the institution’s TPS dose as well as the TVS dose. In cases where the TVS was more accurate than the institution by an average of >2%, the institution was identified as having a non-negligible TPS error. Results: Of the ∼200 recalculated plans, the average improvement using the TVS was ∼0.1%; i.e. the recalculation, on average, slightly outperformed the institution’s TPS. Of all the recalculated phantoms, 20% were identified as having a non-negligible TPS error. Fourteen plans failed current IROC-H criteria; the average TVS improvement of the failing plans was ∼3% and 57% were found to have non-negligible TPS errors. Conclusion: IROC-H has developed an independent recalculation system to identify institutions that have considerable TPS errors. A large number of institutions were found to have non-negligible TPS errors. Even institutions that passed IROC-H criteria could be identified as having a TPS error. Resolution of such errors would improve dose delivery for a large number of IROC-H phantoms and ultimately, patients.« less
Pavlovich, Matthew J; Dunn, Emily E; Hall, Adam B
2016-05-15
Commercial spices represent an emerging class of fuels for improvised explosives. Being able to classify such spices not only by type but also by brand would represent an important step in developing methods to analytically investigate these explosive compositions. Therefore, a combined ambient mass spectrometric/chemometric approach was developed to quickly and accurately classify commercial spices by brand. Direct analysis in real time mass spectrometry (DART-MS) was used to generate mass spectra for samples of black pepper, cayenne pepper, and turmeric, along with four different brands of cinnamon, all dissolved in methanol. Unsupervised learning techniques showed that the cinnamon samples clustered according to brand. Then, we used supervised machine learning algorithms to build chemometric models with a known training set and classified the brands of an unknown testing set of cinnamon samples. Ten independent runs of five-fold cross-validation showed that the training set error for the best-performing models (i.e., the linear discriminant and neural network models) was lower than 2%. The false-positive percentages for these models were 3% or lower, and the false-negative percentages were lower than 10%. In particular, the linear discriminant model perfectly classified the testing set with 0% error. Repeated iterations of training and testing gave similar results, demonstrating the reproducibility of these models. Chemometric models were able to classify the DART mass spectra of commercial cinnamon samples according to brand, with high specificity and low classification error. This method could easily be generalized to other classes of spices, and it could be applied to authenticating questioned commercial samples of spices or to examining evidence from improvised explosives. Copyright © 2016 John Wiley & Sons, Ltd.
Constraints on a scale-dependent bias from galaxy clustering
NASA Astrophysics Data System (ADS)
Amendola, L.; Menegoni, E.; Di Porto, C.; Corsi, M.; Branchini, E.
2017-01-01
We forecast the future constraints on scale-dependent parametrizations of galaxy bias and their impact on the estimate of cosmological parameters from the power spectrum of galaxies measured in a spectroscopic redshift survey. For the latter we assume a wide survey at relatively large redshifts, similar to the planned Euclid survey, as the baseline for future experiments. To assess the impact of the bias we perform a Fisher matrix analysis, and we adopt two different parametrizations of scale-dependent bias. The fiducial models for galaxy bias are calibrated using mock catalogs of H α emitting galaxies mimicking the expected properties of the objects that will be targeted by the Euclid survey. In our analysis we have obtained two main results. First of all, allowing for a scale-dependent bias does not significantly increase the errors on the other cosmological parameters apart from the rms amplitude of density fluctuations, σ8 , and the growth index γ , whose uncertainties increase by a factor up to 2, depending on the bias model adopted. Second, we find that the accuracy in the linear bias parameter b0 can be estimated to within 1%-2% at various redshifts regardless of the fiducial model. The nonlinear bias parameters have significantly large errors that depend on the model adopted. Despite this, in the more realistic scenarios departures from the simple linear bias prescription can be detected with a ˜2 σ significance at each redshift explored. Finally, we use the Fisher matrix formalism to assess the impact od assuming an incorrect bias model and find that the systematic errors induced on the cosmological parameters are similar or even larger than the statistical ones.
Blair, Stephanie; Duthie, Grant; Robertson, Sam; Hopkins, William; Ball, Kevin
2018-05-17
Wearable inertial measurement systems (IMS) allow for three-dimensional analysis of human movements in a sport-specific setting. This study examined the concurrent validity of a IMS (Xsens MVN system) for measuring lower extremity and pelvis kinematics in comparison to a Vicon motion analysis system (MAS) during kicking. Thirty footballers from Australian football (n = 10), soccer (n = 10), rugby league and rugby union (n = 10) clubs completed 20 kicks across four conditions. Concurrent validity was assessed using a linear mixed-modelling approach, which allowed the partition of between and within-subject variance from the device measurement error. Results were expressed in raw and standardised units for assessments of differences in means and measurement error, and interpreted via non-clinical magnitude-based inferences. Trivial to small differences were found in linear velocities (foot and pelvis), angular velocities (knee, shank and thigh), sagittal joint (knee and hip) and segment angle (shank and pelvis) means (mean difference: 0.2-5.8%) between the IMS and MAS in Australian football, soccer and the rugby codes. Trivial to small measurement errors (from 0.1 to 5.8%) were found between the IMS and MAS in all kinematic parameters. The IMS demonstrated acceptable levels of concurrent validity compared to a MAS when measuring kicking biomechanics across the four football codes. Wearable IMS offers various benefits over MAS, such as, out-of-laboratory testing, larger measurement range and quick data output, to help improve the ecological validity of biomechanical testing and the timing of feedback. The results advocate the use of IMS to quantify biomechanics of high-velocity movements in sport-specific settings. Copyright © 2018 Elsevier Ltd. All rights reserved.
Potential for wind extraction from 4D-Var assimilation of aerosols and moisture
NASA Astrophysics Data System (ADS)
Zaplotnik, Žiga; Žagar, Nedjeljka
2017-04-01
We discuss the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from observations of atmospheric tracers and the mass field through internal model dynamics and the multivariate relationships in the background-error term for 4D-Var. The presence of non-linear moist dynamics makes the wind retrieval from tracers very difficult. On the other hand, it has been shown that moisture observations strongly influence both tropical and mid-latitude wind field in 4D-Var. We present an intermediate complexity model that describes nonlinear interactions between the wind, temperature, aerosols and moisture including their sinks and sources in the framework of the so-called first baroclinic mode atmosphere envisaged by A. Gill. Aerosol physical processes, which are included in the model, are the non-linear advection, diffusion and sources and sinks that exist as dry and wet deposition and diffusion. Precipitation is parametrized according to the Betts-Miller scheme. The control vector for 4D-Var includes aerosols, moisture and the three dynamical variables. The former is analysed univariately whereas wind field and mass field are analysed in a multivariate fashion taking into account quasi-geostrophic and unbalanced dynamics. The OSSE type of studies are performed for the tropical region to assess the ability of 4D-Var to extract wind-field information from the time series of observations of tracers as a function of the flow nonlinearity, the observations density and the length of the assimilation window (12 hours and 24 hours), in dry and moist environment. Results show that the 4D-Var assimilation of aerosols and temperature data is beneficial for the wind analysis with analysis errors strongly dependent on the moist processes and reliable background-error covariances.
Dotan, Dror; Friedmann, Naama
2018-04-01
We propose a detailed cognitive model of multi-digit number reading. The model postulates separate processes for visual analysis of the digit string and for oral production of the verbal number. Within visual analysis, separate sub-processes encode the digit identities and the digit order, and additional sub-processes encode the number's decimal structure: its length, the positions of 0, and the way it is parsed into triplets (e.g., 314987 → 314,987). Verbal production consists of a process that generates the verbal structure of the number, and another process that retrieves the phonological forms of each number word. The verbal number structure is first encoded in a tree-like structure, similarly to syntactic trees of sentences, and then linearized to a sequence of number-word specifiers. This model is based on an investigation of the number processing abilities of seven individuals with different selective deficits in number reading. We report participants with impairment in specific sub-processes of the visual analysis of digit strings - in encoding the digit order, in encoding the number length, or in parsing the digit string to triplets. Other participants were impaired in verbal production, making errors in the number structure (shifts of digits to another decimal position, e.g., 3,040 → 30,004). Their selective deficits yielded several dissociations: first, we found a double dissociation between visual analysis deficits and verbal production deficits. Second, several dissociations were found within visual analysis: a double dissociation between errors in digit order and errors in the number length; a dissociation between order/length errors and errors in parsing the digit string into triplets; and a dissociation between the processing of different digits - impaired order encoding of the digits 2-9, without errors in the 0 position. Third, within verbal production, a dissociation was found between digit shifts and substitutions of number words. A selective deficit in any of the processes described by the model would cause difficulties in number reading, which we propose to term "dysnumeria". Copyright © 2017 Elsevier Ltd. All rights reserved.
On the Limitations of Variational Bias Correction
NASA Technical Reports Server (NTRS)
Moradi, Isaac; Mccarty, Will; Gelaro, Ronald
2018-01-01
Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.
NASA Astrophysics Data System (ADS)
Hardy, Ryan A.; Nerem, R. Steven; Wiese, David N.
2017-12-01
Systematic errors in Gravity Recovery and Climate Experiment (GRACE) monthly mass estimates over the Greenland and Antarctic ice sheets can originate from low-frequency biases in the European Centre for Medium-Range Weather Forecasts (ECMWF) Operational Analysis model, the atmospheric component of the Atmospheric and Ocean Dealising Level-1B (AOD1B) product used to forward model atmospheric and ocean gravity signals in GRACE processing. These biases are revealed in differences in surface pressure between the ECMWF Operational Analysis model, state-of-the-art reanalyses, and in situ surface pressure measurements. While some of these errors are attributable to well-understood discrete model changes and have published corrections, we examine errors these corrections do not address. We compare multiple models and in situ data in Antarctica and Greenland to determine which models have the most skill relative to monthly averages of the dealiasing model. We also evaluate linear combinations of these models and synthetic pressure fields generated from direct interpolation of pressure observations. These models consistently reveal drifts in the dealiasing model that cause the acceleration of Antarctica's mass loss between April 2002 and August 2016 to be underestimated by approximately 4 Gt yr-2. We find similar results after attempting to solve the inverse problem, recovering pressure biases directly from the GRACE Jet Propulsion Laboratory RL05.1 M mascon solutions. Over Greenland, we find a 2 Gt yr-1 bias in mass trend. While our analysis focuses on errors in Release 05 of AOD1B, we also evaluate the new AOD1B RL06 product. We find that this new product mitigates some of the aforementioned biases.
Validation of YCAR algorithm over East Asia TCCON sites
NASA Astrophysics Data System (ADS)
Kim, W.; Kim, J.; Jung, Y.; Lee, H.; Goo, T. Y.; Cho, C. H.; Lee, S.
2016-12-01
In order to reduce the retrieval error of TANSO-FTS column averaged CO2 concentration (XCO2) induced by aerosol, we develop the Yonsei university CArbon Retrieval (YCAR) algorithm using aerosol information from TANSO-Cloud and Aerosol Imager (TANSO-CAI), providing simultaneous aerosol optical depth properties for the same geometry and optical path along with the FTS. Also we validate the retrieved results using ground-based TCCON measurement. Particularly this study first utilized the measurements at Anmyeondo, the only TCCON site located in South Korea, which can improve the quality of validation in East Asia. After the post screening process, YCAR algorithms have higher data availability by 33 - 85 % than other operational algorithms (NIES, ACOS, UoL). Although the YCAR algorithm has higher data availability, regression analysis with TCCON measurements are better or similar to other algorithms; Regression line of YCAR algorithm is close to linear identity function with RMSE of 2.05, bias of - 0.86 ppm. According to error analysis, retrieval error of YCAR algorithm is 1.394 - 1.478 ppm at East Asia. In addition, spatio-temporal sampling error of 0.324 - 0.358 ppm for each single sounding retrieval is also analyzed with Carbon Tracker - Asia data. These results of error analysis reveal the reliability and accuracy of latest version of our YCAR algorithm. Both XCO2 values retrieved using YCAR algorithm on TANSO-FTS and TCCON measurements show the consistent increasing trend about 2.3 - 2.6 ppm per year. Comparing to the increasing rate of global background CO2 amount measured in Mauna Loa, Hawaii (2 ppm per year), the increasing trend in East Asia shows about 30% higher trend due to the rapid increase of CO2 emission from the source region.
Teamwork and error in the operating room: analysis of skills and roles.
Catchpole, K; Mishra, A; Handa, A; McCulloch, P
2008-04-01
To analyze the effects of surgical, anesthetic, and nursing teamwork skills on technical outcomes. The value of team skills in reducing adverse events in the operating room is presently receiving considerable attention. Current work has not yet identified in detail how the teamwork and communication skills of surgeons, anesthetists, and nurses affect the course of an operation. Twenty-six laparoscopic cholecystectomies and 22 carotid endarterectomies were studied using direct observation methods. For each operation, teams' skills were scored for the whole team, and for nursing, surgical, and anesthetic subteams on 4 dimensions (leadership and management [LM]; teamwork and cooperation; problem solving and decision making; and situation awareness). Operating time, errors in surgical technique, and other procedural problems and errors were measured as outcome parameters for each operation. The relationships between teamwork scores and these outcome parameters within each operation were examined using analysis of variance and linear regression. Surgical (F(2,42) = 3.32, P = 0.046) and anesthetic (F(2,42) = 3.26, P = 0.048) LM had significant but opposite relationships with operating time in each operation: operating time increased significantly with higher anesthetic but decreased with higher surgical LM scores. Errors in surgical technique had a strong association with surgical situation awareness (F(2,42) = 7.93, P < 0.001) in each operation. Other procedural problems and errors were related to the intraoperative LM skills of the nurses (F(5,1) = 3.96, P = 0.027). Detailed analysis of team interactions and dimensions is feasible and valuable, yielding important insights into relationships between nontechnical skills, technical performance, and operative duration. These results support the concept that interventions designed to improve teamwork and communication may have beneficial effects on technical performance and patient outcome.
Surface characterization protocol for precision aspheric optics
NASA Astrophysics Data System (ADS)
Sarepaka, RamaGopal V.; Sakthibalan, Siva; Doodala, Somaiah; Panwar, Rakesh S.; Kotaria, Rajendra
2017-10-01
In Advanced Optical Instrumentation, Aspherics provide an effective performance alternative. The aspheric fabrication and surface metrology, followed by aspheric design are complementary iterative processes for Precision Aspheric development. As in fabrication, a holistic approach of aspheric surface characterization is adopted to evaluate actual surface error and to aim at the deliverance of aspheric optics with desired surface quality. Precision optical surfaces are characterized by profilometry or by interferometry. Aspheric profiles are characterized by contact profilometers, through linear surface scans to analyze their Form, Figure and Finish errors. One must ensure that, the surface characterization procedure does not add to the resident profile errors (generated during the aspheric surface fabrication). This presentation examines the errors introduced post-surface generation and during profilometry of aspheric profiles. This effort is to identify sources of errors and is to optimize the metrology process. The sources of error during profilometry may be due to: profilometer settings, work-piece placement on the profilometer stage, selection of zenith/nadir points of aspheric profiles, metrology protocols, clear aperture - diameter analysis, computational limitations of the profiler and the software issues etc. At OPTICA, a PGI 1200 FTS contact profilometer (Taylor-Hobson make) is used for this study. Precision Optics of various profiles are studied, with due attention to possible sources of errors during characterization, with multi-directional scan approach for uniformity and repeatability of error estimation. This study provides an insight of aspheric surface characterization and helps in optimal aspheric surface production methodology.