Sample records for linear feature selection

  1. Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation

    PubMed Central

    Patterson, Brent R.; Anderson, Morgan L.; Rodgers, Arthur R.; Vander Vennen, Lucas M.; Fryxell, John M.

    2017-01-01

    Woodland caribou (Rangifer tarandus caribou) in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water) linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon) over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression) at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism–a compensatory functional response to anthropogenic linear feature density resulting in decreased use of natural travel corridors–has negative consequences for the viability of woodland caribou. PMID:29117234

  2. Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation.

    PubMed

    Newton, Erica J; Patterson, Brent R; Anderson, Morgan L; Rodgers, Arthur R; Vander Vennen, Lucas M; Fryxell, John M

    2017-01-01

    Woodland caribou (Rangifer tarandus caribou) in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water) linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon) over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression) at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism-a compensatory functional response to anthropogenic linear feature density resulting in decreased use of natural travel corridors-has negative consequences for the viability of woodland caribou.

  3. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng

    An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less

  5. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification

    PubMed Central

    Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC2), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible. PMID:29666661

  6. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    PubMed

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  7. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    NASA Astrophysics Data System (ADS)

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.

  8. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    PubMed Central

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods. PMID:28120883

  9. Collective feature selection to identify crucial epistatic variants.

    PubMed

    Verma, Shefali S; Lucas, Anastasia; Zhang, Xinyuan; Veturi, Yogasudha; Dudek, Scott; Li, Binglan; Li, Ruowang; Urbanowicz, Ryan; Moore, Jason H; Kim, Dokyoon; Ritchie, Marylyn D

    2018-01-01

    Machine learning methods have gained popularity and practicality in identifying linear and non-linear effects of variants associated with complex disease/traits. Detection of epistatic interactions still remains a challenge due to the large number of features and relatively small sample size as input, thus leading to the so-called "short fat data" problem. The efficiency of machine learning methods can be increased by limiting the number of input features. Thus, it is very important to perform variable selection before searching for epistasis. Many methods have been evaluated and proposed to perform feature selection, but no single method works best in all scenarios. We demonstrate this by conducting two separate simulation analyses to evaluate the proposed collective feature selection approach. Through our simulation study we propose a collective feature selection approach to select features that are in the "union" of the best performing methods. We explored various parametric, non-parametric, and data mining approaches to perform feature selection. We choose our top performing methods to select the union of the resulting variables based on a user-defined percentage of variants selected from each method to take to downstream analysis. Our simulation analysis shows that non-parametric data mining approaches, such as MDR, may work best under one simulation criteria for the high effect size (penetrance) datasets, while non-parametric methods designed for feature selection, such as Ranger and Gradient boosting, work best under other simulation criteria. Thus, using a collective approach proves to be more beneficial for selecting variables with epistatic effects also in low effect size datasets and different genetic architectures. Following this, we applied our proposed collective feature selection approach to select the top 1% of variables to identify potential interacting variables associated with Body Mass Index (BMI) in ~ 44,000 samples obtained from Geisinger's MyCode Community Health Initiative (on behalf of DiscovEHR collaboration). In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.

  10. EEG-based mild depressive detection using feature selection methods and classifiers.

    PubMed

    Li, Xiaowei; Hu, Bin; Sun, Shuting; Cai, Hanshu

    2016-11-01

    Depression has become a major health burden worldwide, and effectively detection of such disorder is a great challenge which requires latest technological tool, such as Electroencephalography (EEG). This EEG-based research seeks to find prominent frequency band and brain regions that are most related to mild depression, as well as an optimal combination of classification algorithms and feature selection methods which can be used in future mild depression detection. An experiment based on facial expression viewing task (Emo_block and Neu_block) was conducted, and EEG data of 37 university students were collected using a 128 channel HydroCel Geodesic Sensor Net (HCGSN). For discriminating mild depressive patients and normal controls, BayesNet (BN), Support Vector Machine (SVM), Logistic Regression (LR), k-nearest neighbor (KNN) and RandomForest (RF) classifiers were used. And BestFirst (BF), GreedyStepwise (GSW), GeneticSearch (GS), LinearForwordSelection (LFS) and RankSearch (RS) based on Correlation Features Selection (CFS) were applied for linear and non-linear EEG features selection. Independent Samples T-test with Bonferroni correction was used to find the significantly discriminant electrodes and features. Data mining results indicate that optimal performance is achieved using a combination of feature selection method GSW based on CFS and classifier KNN for beta frequency band. Accuracies achieved 92.00% and 98.00%, and AUC achieved 0.957 and 0.997, for Emo_block and Neu_block beta band data respectively. T-test results validate the effectiveness of selected features by search method GSW. Simplified EEG system with only FP1, FP2, F3, O2, T3 electrodes was also explored with linear features, which yielded accuracies of 91.70% and 96.00%, AUC of 0.952 and 0.972, for Emo_block and Neu_block respectively. Classification results obtained by GSW + KNN are encouraging and better than previously published results. In the spatial distribution of features, we find that left parietotemporal lobe in beta EEG frequency band has greater effect on mild depression detection. And fewer EEG channels (FP1, FP2, F3, O2 and T3) combined with linear features may be good candidates for usage in portable systems for mild depression detection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. A face and palmprint recognition approach based on discriminant DCT feature extraction.

    PubMed

    Jing, Xiao-Yuan; Zhang, David

    2004-12-01

    In the field of image processing and recognition, discrete cosine transform (DCT) and linear discrimination are two widely used techniques. Based on them, we present a new face and palmprint recognition approach in this paper. It first uses a two-dimensional separability judgment to select the DCT frequency bands with favorable linear separability. Then from the selected bands, it extracts the linear discriminative features by an improved Fisherface method and performs the classification by the nearest neighbor classifier. We detailedly analyze theoretical advantages of our approach in feature extraction. The experiments on face databases and palmprint database demonstrate that compared to the state-of-the-art linear discrimination methods, our approach obtains better classification performance. It can significantly improve the recognition rates for face and palmprint data and effectively reduce the dimension of feature space.

  12. Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data

    PubMed Central

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-01-01

    Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice. PMID:21359184

  13. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.

    PubMed

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-02-16

    Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.

  14. Ordinal feature selection for iris and palmprint recognition.

    PubMed

    Sun, Zhenan; Wang, Libin; Tan, Tieniu

    2014-09-01

    Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases.

  15. LFSPMC: Linear feature selection program using the probability of misclassification

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Marion, B. P.

    1975-01-01

    The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.

  16. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions.

    PubMed

    Goodarzi, Mohammad; Jensen, Richard; Vander Heyden, Yvan

    2012-12-01

    A Quantitative Structure-Retention Relationship (QSRR) is proposed to estimate the chromatographic retention of 83 diverse drugs on a Unisphere poly butadiene (PBD) column, using isocratic elutions at pH 11.7. Previous work has generated QSRR models for them using Classification And Regression Trees (CART). In this work, Ant Colony Optimization is used as a feature selection method to find the best molecular descriptors from a large pool. In addition, several other selection methods have been applied, such as Genetic Algorithms, Stepwise Regression and the Relief method, not only to evaluate Ant Colony Optimization as a feature selection method but also to investigate its ability to find the important descriptors in QSRR. Multiple Linear Regression (MLR) and Support Vector Machines (SVMs) were applied as linear and nonlinear regression methods, respectively, giving excellent correlation between the experimental, i.e. extrapolated to a mobile phase consisting of pure water, and predicted logarithms of the retention factors of the drugs (logk(w)). The overall best model was the SVM one built using descriptors selected by ACO. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Embedded Incremental Feature Selection for Reinforcement Learning

    DTIC Science & Technology

    2012-05-01

    Prior to this work, feature selection for reinforce- ment learning has focused on linear value function ap- proximation ( Kolter and Ng, 2009; Parr et al...InProceed- ings of the the 23rd International Conference on Ma- chine Learning, pages 449–456. Kolter , J. Z. and Ng, A. Y. (2009). Regularization and feature

  19. Featural and temporal attention selectively enhance task-appropriate representations in human V1

    PubMed Central

    Warren, Scott; Yacoub, Essa; Ghose, Geoffrey

    2015-01-01

    Our perceptions are often shaped by focusing our attention toward specific features or periods of time irrespective of location. We explore the physiological bases of these non-spatial forms of attention by imaging brain activity while subjects perform a challenging change detection task. The task employs a continuously varying visual stimulus that, for any moment in time, selectively activates functionally distinct subpopulations of primary visual cortex (V1) neurons. When subjects are cued to the timing and nature of the change, the mapping of orientation preference across V1 was systematically shifts toward the cued stimulus just prior to its appearance. A simple linear model can explain this shift: attentional changes are selectively targeted toward neural subpopulations representing the attended feature at the times the feature was anticipated. Our results suggest that featural attention is mediated by a linear change in the responses of task-appropriate neurons across cortex during appropriate periods of time. PMID:25501983

  20. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    PubMed

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  1. Features selection and classification to estimate elbow movements

    NASA Astrophysics Data System (ADS)

    Rubiano, A.; Ramírez, J. L.; El Korso, M. N.; Jouandeau, N.; Gallimard, L.; Polit, O.

    2015-11-01

    In this paper, we propose a novel method to estimate the elbow motion, through the features extracted from electromyography (EMG) signals. The features values are normalized and then compared to identify potential relationships between the EMG signal and the kinematic information as angle and angular velocity. We propose and implement a method to select the best set of features, maximizing the distance between the features that correspond to flexion and extension movements. Finally, we test the selected features as inputs to a non-linear support vector machine in the presence of non-idealistic conditions, obtaining an accuracy of 99.79% in the motion estimation results.

  2. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    NASA Astrophysics Data System (ADS)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  3. Particle Swarm Optimization Based Feature Enhancement and Feature Selection for Improved Emotion Recognition in Speech and Glottal Signals

    PubMed Central

    Muthusamy, Hariharan; Polat, Kemal; Yaacob, Sazali

    2015-01-01

    In the recent years, many research works have been published using speech related features for speech emotion recognition, however, recent studies show that there is a strong correlation between emotional states and glottal features. In this work, Mel-frequency cepstralcoefficients (MFCCs), linear predictive cepstral coefficients (LPCCs), perceptual linear predictive (PLP) features, gammatone filter outputs, timbral texture features, stationary wavelet transform based timbral texture features and relative wavelet packet energy and entropy features were extracted from the emotional speech (ES) signals and its glottal waveforms(GW). Particle swarm optimization based clustering (PSOC) and wrapper based particle swarm optimization (WPSO) were proposed to enhance the discerning ability of the features and to select the discriminating features respectively. Three different emotional speech databases were utilized to gauge the proposed method. Extreme learning machine (ELM) was employed to classify the different types of emotions. Different experiments were conducted and the results show that the proposed method significantly improves the speech emotion recognition performance compared to previous works published in the literature. PMID:25799141

  4. Bayesian feature selection for high-dimensional linear regression via the Ising approximation with applications to genomics.

    PubMed

    Fisher, Charles K; Mehta, Pankaj

    2015-06-01

    Feature selection, identifying a subset of variables that are relevant for predicting a response, is an important and challenging component of many methods in statistics and machine learning. Feature selection is especially difficult and computationally intensive when the number of variables approaches or exceeds the number of samples, as is often the case for many genomic datasets. Here, we introduce a new approach--the Bayesian Ising Approximation (BIA)-to rapidly calculate posterior probabilities for feature relevance in L2 penalized linear regression. In the regime where the regression problem is strongly regularized by the prior, we show that computing the marginal posterior probabilities for features is equivalent to computing the magnetizations of an Ising model with weak couplings. Using a mean field approximation, we show it is possible to rapidly compute the feature selection path described by the posterior probabilities as a function of the L2 penalty. We present simulations and analytical results illustrating the accuracy of the BIA on some simple regression problems. Finally, we demonstrate the applicability of the BIA to high-dimensional regression by analyzing a gene expression dataset with nearly 30 000 features. These results also highlight the impact of correlations between features on Bayesian feature selection. An implementation of the BIA in C++, along with data for reproducing our gene expression analyses, are freely available at http://physics.bu.edu/∼pankajm/BIACode. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification.

    PubMed

    Hsu, Wei-Yen

    2013-12-01

    In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.

  6. A general procedure to generate models for urban environmental-noise pollution using feature selection and machine learning methods.

    PubMed

    Torija, Antonio J; Ruiz, Diego P

    2015-02-01

    The prediction of environmental noise in urban environments requires the solution of a complex and non-linear problem, since there are complex relationships among the multitude of variables involved in the characterization and modelling of environmental noise and environmental-noise magnitudes. Moreover, the inclusion of the great spatial heterogeneity characteristic of urban environments seems to be essential in order to achieve an accurate environmental-noise prediction in cities. This problem is addressed in this paper, where a procedure based on feature-selection techniques and machine-learning regression methods is proposed and applied to this environmental problem. Three machine-learning regression methods, which are considered very robust in solving non-linear problems, are used to estimate the energy-equivalent sound-pressure level descriptor (LAeq). These three methods are: (i) multilayer perceptron (MLP), (ii) sequential minimal optimisation (SMO), and (iii) Gaussian processes for regression (GPR). In addition, because of the high number of input variables involved in environmental-noise modelling and estimation in urban environments, which make LAeq prediction models quite complex and costly in terms of time and resources for application to real situations, three different techniques are used to approach feature selection or data reduction. The feature-selection techniques used are: (i) correlation-based feature-subset selection (CFS), (ii) wrapper for feature-subset selection (WFS), and the data reduction technique is principal-component analysis (PCA). The subsequent analysis leads to a proposal of different schemes, depending on the needs regarding data collection and accuracy. The use of WFS as the feature-selection technique with the implementation of SMO or GPR as regression algorithm provides the best LAeq estimation (R(2)=0.94 and mean absolute error (MAE)=1.14-1.16 dB(A)). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. An application of locally linear model tree algorithm with combination of feature selection in credit scoring

    NASA Astrophysics Data System (ADS)

    Siami, Mohammad; Gholamian, Mohammad Reza; Basiri, Javad

    2014-10-01

    Nowadays, credit scoring is one of the most important topics in the banking sector. Credit scoring models have been widely used to facilitate the process of credit assessing. In this paper, an application of the locally linear model tree algorithm (LOLIMOT) was experimented to evaluate the superiority of its performance to predict the customer's credit status. The algorithm is improved with an aim of adjustment by credit scoring domain by means of data fusion and feature selection techniques. Two real world credit data sets - Australian and German - from UCI machine learning database were selected to demonstrate the performance of our new classifier. The analytical results indicate that the improved LOLIMOT significantly increase the prediction accuracy.

  8. Predictive models reduce talent development costs in female gymnastics.

    PubMed

    Pion, Johan; Hohmann, Andreas; Liu, Tianbiao; Lenoir, Matthieu; Segers, Veerle

    2017-04-01

    This retrospective study focuses on the comparison of different predictive models based on the results of a talent identification test battery for female gymnasts. We studied to what extent these models have the potential to optimise selection procedures, and at the same time reduce talent development costs in female artistic gymnastics. The dropout rate of 243 female elite gymnasts was investigated, 5 years past talent selection, using linear (discriminant analysis) and non-linear predictive models (Kohonen feature maps and multilayer perceptron). The coaches classified 51.9% of the participants correct. Discriminant analysis improved the correct classification to 71.6% while the non-linear technique of Kohonen feature maps reached 73.7% correctness. Application of the multilayer perceptron even classified 79.8% of the gymnasts correctly. The combination of different predictive models for talent selection can avoid deselection of high-potential female gymnasts. The selection procedure based upon the different statistical analyses results in decrease of 33.3% of cost because the pool of selected athletes can be reduced to 92 instead of 138 gymnasts (as selected by the coaches). Reduction of the costs allows the limited resources to be fully invested in the high-potential athletes.

  9. Sparse generalized linear model with L0 approximation for feature selection and prediction with big omics data.

    PubMed

    Liu, Zhenqiu; Sun, Fengzhu; McGovern, Dermot P

    2017-01-01

    Feature selection and prediction are the most important tasks for big data mining. The common strategies for feature selection in big data mining are L 1 , SCAD and MC+. However, none of the existing algorithms optimizes L 0 , which penalizes the number of nonzero features directly. In this paper, we develop a novel sparse generalized linear model (GLM) with L 0 approximation for feature selection and prediction with big omics data. The proposed approach approximate the L 0 optimization directly. Even though the original L 0 problem is non-convex, the problem is approximated by sequential convex optimizations with the proposed algorithm. The proposed method is easy to implement with only several lines of code. Novel adaptive ridge algorithms ( L 0 ADRIDGE) for L 0 penalized GLM with ultra high dimensional big data are developed. The proposed approach outperforms the other cutting edge regularization methods including SCAD and MC+ in simulations. When it is applied to integrated analysis of mRNA, microRNA, and methylation data from TCGA ovarian cancer, multilevel gene signatures associated with suboptimal debulking are identified simultaneously. The biological significance and potential clinical importance of those genes are further explored. The developed Software L 0 ADRIDGE in MATLAB is available at https://github.com/liuzqx/L0adridge.

  10. Base-Controlled Completely Selective Linear or Branched Rhodium(I)-Catalyzed C-H ortho-Alkylation of Azines without Preactivation.

    PubMed

    Tran, Gaël; Hesp, Kevin D; Mascitti, Vincent; Ellman, Jonathan A

    2017-05-15

    A [Rh I ]/bisphosphine/base catalytic system for the ortho-selective C-H alkylation of azines by acrylates and acrylamides is reported. This catalytic system features an unprecedented complete linear or branched selectivity that is solely dependent on the catalytic base that is used. Complete branched selectivity is even achieved for ethyl methacrylate, which enables the introduction of a quaternary carbon center. Excellent functional group compatibility is demonstrated for both linear and branched alkylations. The operational simplicity and broad scope of this transformation allow for rapid access to functionalized azines of direct pharmaceutical and agrochemical relevance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparison of Different EHG Feature Selection Methods for the Detection of Preterm Labor

    PubMed Central

    Alamedine, D.; Khalil, M.; Marque, C.

    2013-01-01

    Numerous types of linear and nonlinear features have been extracted from the electrohysterogram (EHG) in order to classify labor and pregnancy contractions. As a result, the number of available features is now very large. The goal of this study is to reduce the number of features by selecting only the relevant ones which are useful for solving the classification problem. This paper presents three methods for feature subset selection that can be applied to choose the best subsets for classifying labor and pregnancy contractions: an algorithm using the Jeffrey divergence (JD) distance, a sequential forward selection (SFS) algorithm, and a binary particle swarm optimization (BPSO) algorithm. The two last methods are based on a classifier and were tested with three types of classifiers. These methods have allowed us to identify common features which are relevant for contraction classification. PMID:24454536

  12. Exploring nonlinear feature space dimension reduction and data representation in breast Cadx with Laplacian eigenmaps and t-SNE.

    PubMed

    Jamieson, Andrew R; Giger, Maryellen L; Drukker, Karen; Li, Hui; Yuan, Yading; Bhooshan, Neha

    2010-01-01

    In this preliminary study, recently developed unsupervised nonlinear dimension reduction (DR) and data representation techniques were applied to computer-extracted breast lesion feature spaces across three separate imaging modalities: Ultrasound (U.S.) with 1126 cases, dynamic contrast enhanced magnetic resonance imaging with 356 cases, and full-field digital mammography with 245 cases. Two methods for nonlinear DR were explored: Laplacian eigenmaps [M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput. 15, 1373-1396 (2003)] and t-distributed stochastic neighbor embedding (t-SNE) [L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res. 9, 2579-2605 (2008)]. These methods attempt to map originally high dimensional feature spaces to more human interpretable lower dimensional spaces while preserving both local and global information. The properties of these methods as applied to breast computer-aided diagnosis (CADx) were evaluated in the context of malignancy classification performance as well as in the visual inspection of the sparseness within the two-dimensional and three-dimensional mappings. Classification performance was estimated by using the reduced dimension mapped feature output as input into both linear and nonlinear classifiers: Markov chain Monte Carlo based Bayesian artificial neural network (MCMC-BANN) and linear discriminant analysis. The new techniques were compared to previously developed breast CADx methodologies, including automatic relevance determination and linear stepwise (LSW) feature selection, as well as a linear DR method based on principal component analysis. Using ROC analysis and 0.632+bootstrap validation, 95% empirical confidence intervals were computed for the each classifier's AUC performance. In the large U.S. data set, sample high performance results include, AUC0.632+ = 0.88 with 95% empirical bootstrap interval [0.787;0.895] for 13 ARD selected features and AUC0.632+ = 0.87 with interval [0.817;0.906] for four LSW selected features compared to 4D t-SNE mapping (from the original 81D feature space) giving AUC0.632+ = 0.90 with interval [0.847;0.919], all using the MCMC-BANN. Preliminary results appear to indicate capability for the new methods to match or exceed classification performance of current advanced breast lesion CADx algorithms. While not appropriate as a complete replacement of feature selection in CADx problems, DR techniques offer a complementary approach, which can aid elucidation of additional properties associated with the data. Specifically, the new techniques were shown to possess the added benefit of delivering sparse lower dimensional representations for visual interpretation, revealing intricate data structure of the feature space.

  13. Local Feature Selection for Data Classification.

    PubMed

    Armanfard, Narges; Reilly, James P; Komeili, Majid

    2016-06-01

    Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.

  14. Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Bergmann, E.; Weiler, P.

    1983-01-01

    An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.

  15. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Evidence of directional and stabilizing selection in contemporary humans.

    PubMed

    Sanjak, Jaleal S; Sidorenko, Julia; Robinson, Matthew R; Thornton, Kevin R; Visscher, Peter M

    2018-01-02

    Modern molecular genetic datasets, primarily collected to study the biology of human health and disease, can be used to directly measure the action of natural selection and reveal important features of contemporary human evolution. Here we leverage the UK Biobank data to test for the presence of linear and nonlinear natural selection in a contemporary population of the United Kingdom. We obtain phenotypic and genetic evidence consistent with the action of linear/directional selection. Phenotypic evidence suggests that stabilizing selection, which acts to reduce variance in the population without necessarily modifying the population mean, is widespread and relatively weak in comparison with estimates from other species.

  17. Linearly Additive Shape and Color Signals in Monkey Inferotemporal Cortex

    PubMed Central

    McMahon, David B. T.; Olson, Carl R.

    2009-01-01

    How does the brain represent a red circle? One possibility is that there is a specialized and possibly time-consuming process whereby the attributes of shape and color, carried by separate populations of neurons in low-order visual cortex, are bound together into a unitary neural representation. Another possibility is that neurons in high-order visual cortex are selective, by virtue of their bottom-up input from low-order visual areas, for particular conjunctions of shape and color. A third possibility is that they simply sum shape and color signals linearly. We tested these ideas by measuring the responses of inferotemporal cortex neurons to sets of stimuli in which two attributes—shape and color—varied independently. We find that a few neurons exhibit conjunction selectivity but that in most neurons the influences of shape and color sum linearly. Contrary to the idea of conjunction coding, few neurons respond selectively to a particular combination of shape and color. Contrary to the idea that binding requires time, conjunction signals, when present, occur as early as feature signals. We argue that neither conjunction selectivity nor a specialized feature binding process is necessary for the effective representation of shape–color combinations. PMID:19144745

  18. Linearly additive shape and color signals in monkey inferotemporal cortex.

    PubMed

    McMahon, David B T; Olson, Carl R

    2009-04-01

    How does the brain represent a red circle? One possibility is that there is a specialized and possibly time-consuming process whereby the attributes of shape and color, carried by separate populations of neurons in low-order visual cortex, are bound together into a unitary neural representation. Another possibility is that neurons in high-order visual cortex are selective, by virtue of their bottom-up input from low-order visual areas, for particular conjunctions of shape and color. A third possibility is that they simply sum shape and color signals linearly. We tested these ideas by measuring the responses of inferotemporal cortex neurons to sets of stimuli in which two attributes-shape and color-varied independently. We find that a few neurons exhibit conjunction selectivity but that in most neurons the influences of shape and color sum linearly. Contrary to the idea of conjunction coding, few neurons respond selectively to a particular combination of shape and color. Contrary to the idea that binding requires time, conjunction signals, when present, occur as early as feature signals. We argue that neither conjunction selectivity nor a specialized feature binding process is necessary for the effective representation of shape-color combinations.

  19. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time. This prototype facilitated the study of various issues of pattern recognition and identified an efficient classifier, along with a feature ensemble, in the implementation of EMG controlled prosthetic hands in a laboratory setting at low-cost. This platform may help to motivate and facilitate prosthetic hand research in developing countries.

  20. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    PubMed

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  1. Dry etching of chrome for photomasks for 100-nm technology using chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Komarov, Serguie; Baik, Ki-Ho

    2002-07-01

    Photo mask etching for the 100nm technology node places new requirements on dry etching processes. As the minimum-size features on the mask, such as assist bars and optical proximity correction (OPC) patterns, shrink down to 100nm, it is necessary to produce etch CD biases of below 20nm in order to reproduce minimum resist features into chrome with good pattern fidelity. In addition, vertical profiles are necessary. In previous generations of photomask technology, footing and sidewall profile slope were tolerated, since this dry etch profile was an improvement from wet etching. However, as feature sizes shrink, it is extremely important to select etch processes which do not generate a foot, because this will affect etch linearity and also limit the smallest etched feature size. Chemically amplified resist (CAR) from TOK is patterned with a 50keV MEBES eXara e-beam writer, allowing for patterning of small features with vertical resist profiles. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. Chrome etch process development has been performed using Design of Experiments to optimize parameters such as sidewall profile, etch CD bias, etch CD linearity for varying sizes of line/space patterns, etch CD linearity for varying sizes of isolated lines and spaces, loading effects, and application to contact etching.

  2. Economic indicators selection for crime rates forecasting using cooperative feature selection

    NASA Astrophysics Data System (ADS)

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Salleh Sallehuddin, Roselina

    2013-04-01

    Features selection in multivariate forecasting model is very important to ensure that the model is accurate. The purpose of this study is to apply the Cooperative Feature Selection method for features selection. The features are economic indicators that will be used in crime rate forecasting model. The Cooperative Feature Selection combines grey relational analysis and artificial neural network to establish a cooperative model that can rank and select the significant economic indicators. Grey relational analysis is used to select the best data series to represent each economic indicator and is also used to rank the economic indicators according to its importance to the crime rate. After that, the artificial neural network is used to select the significant economic indicators for forecasting the crime rates. In this study, we used economic indicators of unemployment rate, consumer price index, gross domestic product and consumer sentiment index, as well as data rates of property crime and violent crime for the United States. Levenberg-Marquardt neural network is used in this study. From our experiments, we found that consumer price index is an important economic indicator that has a significant influence on the violent crime rate. While for property crime rate, the gross domestic product, unemployment rate and consumer price index are the influential economic indicators. The Cooperative Feature Selection is also found to produce smaller errors as compared to Multiple Linear Regression in forecasting property and violent crime rates.

  3. Exploring nonlinear feature space dimension reduction and data representation in breast CADx with Laplacian eigenmaps and t-SNE

    PubMed Central

    Jamieson, Andrew R.; Giger, Maryellen L.; Drukker, Karen; Li, Hui; Yuan, Yading; Bhooshan, Neha

    2010-01-01

    Purpose: In this preliminary study, recently developed unsupervised nonlinear dimension reduction (DR) and data representation techniques were applied to computer-extracted breast lesion feature spaces across three separate imaging modalities: Ultrasound (U.S.) with 1126 cases, dynamic contrast enhanced magnetic resonance imaging with 356 cases, and full-field digital mammography with 245 cases. Two methods for nonlinear DR were explored: Laplacian eigenmaps [M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput. 15, 1373–1396 (2003)] and t-distributed stochastic neighbor embedding (t-SNE) [L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res. 9, 2579–2605 (2008)]. Methods: These methods attempt to map originally high dimensional feature spaces to more human interpretable lower dimensional spaces while preserving both local and global information. The properties of these methods as applied to breast computer-aided diagnosis (CADx) were evaluated in the context of malignancy classification performance as well as in the visual inspection of the sparseness within the two-dimensional and three-dimensional mappings. Classification performance was estimated by using the reduced dimension mapped feature output as input into both linear and nonlinear classifiers: Markov chain Monte Carlo based Bayesian artificial neural network (MCMC-BANN) and linear discriminant analysis. The new techniques were compared to previously developed breast CADx methodologies, including automatic relevance determination and linear stepwise (LSW) feature selection, as well as a linear DR method based on principal component analysis. Using ROC analysis and 0.632+bootstrap validation, 95% empirical confidence intervals were computed for the each classifier’s AUC performance. Results: In the large U.S. data set, sample high performance results include, AUC0.632+=0.88 with 95% empirical bootstrap interval [0.787;0.895] for 13 ARD selected features and AUC0.632+=0.87 with interval [0.817;0.906] for four LSW selected features compared to 4D t-SNE mapping (from the original 81D feature space) giving AUC0.632+=0.90 with interval [0.847;0.919], all using the MCMC-BANN. Conclusions: Preliminary results appear to indicate capability for the new methods to match or exceed classification performance of current advanced breast lesion CADx algorithms. While not appropriate as a complete replacement of feature selection in CADx problems, DR techniques offer a complementary approach, which can aid elucidation of additional properties associated with the data. Specifically, the new techniques were shown to possess the added benefit of delivering sparse lower dimensional representations for visual interpretation, revealing intricate data structure of the feature space. PMID:20175497

  4. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm.

    PubMed

    De Beer, Maarten; Lynen, Fréderic; Chen, Kai; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-03-01

    Stationary-phase optimized selectivity liquid chromatography (SOS-LC) is a tool in reversed-phase LC (RP-LC) to optimize the selectivity for a given separation by combining stationary phases in a multisegment column. The presently (commercially) available SOS-LC optimization procedure and algorithm are only applicable to isocratic analyses. Step gradient SOS-LC has been developed, but this is still not very elegant for the analysis of complex mixtures composed of components covering a broad hydrophobicity range. A linear gradient prediction algorithm has been developed allowing one to apply SOS-LC as a generic RP-LC optimization method. The algorithm allows operation in isocratic, stepwise, and linear gradient run modes. The features of SOS-LC in the linear gradient mode are demonstrated by means of a mixture of 13 steroids, whereby baseline separation is predicted and experimentally demonstrated.

  5. Margin-maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions.

    PubMed

    Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X

    2010-05-01

    Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.

  6. Analysis of the quality of image data acquired by the LANDSAT-4 thematic mapper and multispectral scanners

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1983-01-01

    The geometric quality of the TM and MSS film products were evaluated by making selective photo measurements such as scale, linear and area determinations; and by measuring the coordinates of known features on both the film products and map products and then relating these paired observations using a standard linear least squares regression approach. Quantitative interpretation tests are described which evaluate the quality and utility of the TM film products and various band combinations for detecting and identifying important forest and agricultural features.

  7. Chiral-selective nonlinear optical generation and emission control with plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cai, Wenshan

    2016-09-01

    Metamaterials can be designed to exhibit extraordinarily strong chiral responses. Here we present a chiral metamaterial that produces both distinguishable linear and nonlinear features in the visible to near-infrared range. In additional to the gigantic chiral effects in the linear regime, the metamaterial demonstrates a pronounced contrast between second harmonic responses from the two circular polarizations. Linear and nonlinear images probed with circularly polarized lights show strongly defined contrast. Moreover, the chiral centers of the nanometallic structures with enhanced hotspots can be purposely opened for direct access, where emitters occupying the light-confining regions produce chiral-selective enhancement of two-photon luminescence.

  8. The Role of Evaluative Metadata in an Online Teacher Resource Exchange

    ERIC Educational Resources Information Center

    Abramovich, Samuel; Schunn, Christian D.; Correnti, Richard J.

    2013-01-01

    A large-scale online teacher resource exchange is studied to examine the ways in which metadata influence teachers' selection of resources. A hierarchical linear modeling approach was used to tease apart the simultaneous effects of resource features and author features. From a decision heuristics theoretical perspective, teachers appear to…

  9. Aesthetic perception of visual textures: a holistic exploration using texture analysis, psychological experiment, and perception modeling.

    PubMed

    Liu, Jianli; Lughofer, Edwin; Zeng, Xianyi

    2015-01-01

    Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design, and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective, and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and non-linear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.

  10. A new approach to modeling the influence of image features on fixation selection in scenes

    PubMed Central

    Nuthmann, Antje; Einhäuser, Wolfgang

    2015-01-01

    Which image characteristics predict where people fixate when memorizing natural images? To answer this question, we introduce a new analysis approach that combines a novel scene-patch analysis with generalized linear mixed models (GLMMs). Our method allows for (1) directly describing the relationship between continuous feature value and fixation probability, and (2) assessing each feature's unique contribution to fixation selection. To demonstrate this method, we estimated the relative contribution of various image features to fixation selection: luminance and luminance contrast (low-level features); edge density (a mid-level feature); visual clutter and image segmentation to approximate local object density in the scene (higher-level features). An additional predictor captured the central bias of fixation. The GLMM results revealed that edge density, clutter, and the number of homogenous segments in a patch can independently predict whether image patches are fixated or not. Importantly, neither luminance nor contrast had an independent effect above and beyond what could be accounted for by the other predictors. Since the parcellation of the scene and the selection of features can be tailored to the specific research question, our approach allows for assessing the interplay of various factors relevant for fixation selection in scenes in a powerful and flexible manner. PMID:25752239

  11. Optimizing data collection for public health decisions: a data mining approach

    PubMed Central

    2014-01-01

    Background Collecting data can be cumbersome and expensive. Lack of relevant, accurate and timely data for research to inform policy may negatively impact public health. The aim of this study was to test if the careful removal of items from two community nutrition surveys guided by a data mining technique called feature selection, can (a) identify a reduced dataset, while (b) not damaging the signal inside that data. Methods The Nutrition Environment Measures Surveys for stores (NEMS-S) and restaurants (NEMS-R) were completed on 885 retail food outlets in two counties in West Virginia between May and November of 2011. A reduced dataset was identified for each outlet type using feature selection. Coefficients from linear regression modeling were used to weight items in the reduced datasets. Weighted item values were summed with the error term to compute reduced item survey scores. Scores produced by the full survey were compared to the reduced item scores using a Wilcoxon rank-sum test. Results Feature selection identified 9 store and 16 restaurant survey items as significant predictors of the score produced from the full survey. The linear regression models built from the reduced feature sets had R2 values of 92% and 94% for restaurant and grocery store data, respectively. Conclusions While there are many potentially important variables in any domain, the most useful set may only be a small subset. The use of feature selection in the initial phase of data collection to identify the most influential variables may be a useful tool to greatly reduce the amount of data needed thereby reducing cost. PMID:24919484

  12. Optimizing data collection for public health decisions: a data mining approach.

    PubMed

    Partington, Susan N; Papakroni, Vasil; Menzies, Tim

    2014-06-12

    Collecting data can be cumbersome and expensive. Lack of relevant, accurate and timely data for research to inform policy may negatively impact public health. The aim of this study was to test if the careful removal of items from two community nutrition surveys guided by a data mining technique called feature selection, can (a) identify a reduced dataset, while (b) not damaging the signal inside that data. The Nutrition Environment Measures Surveys for stores (NEMS-S) and restaurants (NEMS-R) were completed on 885 retail food outlets in two counties in West Virginia between May and November of 2011. A reduced dataset was identified for each outlet type using feature selection. Coefficients from linear regression modeling were used to weight items in the reduced datasets. Weighted item values were summed with the error term to compute reduced item survey scores. Scores produced by the full survey were compared to the reduced item scores using a Wilcoxon rank-sum test. Feature selection identified 9 store and 16 restaurant survey items as significant predictors of the score produced from the full survey. The linear regression models built from the reduced feature sets had R2 values of 92% and 94% for restaurant and grocery store data, respectively. While there are many potentially important variables in any domain, the most useful set may only be a small subset. The use of feature selection in the initial phase of data collection to identify the most influential variables may be a useful tool to greatly reduce the amount of data needed thereby reducing cost.

  13. Max-AUC Feature Selection in Computer-Aided Detection of Polyps in CT Colonography

    PubMed Central

    Xu, Jian-Wu; Suzuki, Kenji

    2014-01-01

    We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level. PMID:24608058

  14. Max-AUC feature selection in computer-aided detection of polyps in CT colonography.

    PubMed

    Xu, Jian-Wu; Suzuki, Kenji

    2014-03-01

    We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level.

  15. On the Selection of Non-Invasive Methods Based on Speech Analysis Oriented to Automatic Alzheimer Disease Diagnosis

    PubMed Central

    López-de-Ipiña, Karmele; Alonso, Jesus-Bernardino; Travieso, Carlos Manuel; Solé-Casals, Jordi; Egiraun, Harkaitz; Faundez-Zanuy, Marcos; Ezeiza, Aitzol; Barroso, Nora; Ecay-Torres, Miriam; Martinez-Lage, Pablo; de Lizardui, Unai Martinez

    2013-01-01

    The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients. PMID:23698268

  16. A Generalization Strategy for Discrete Area Feature by Using Stroke Grouping and Polarization Transportation Selection

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Burghardt, Dirk

    2018-05-01

    This paper presents a new strategy for the generalization of discrete area features by using stroke grouping method and polarization transportation selection. The mentioned stroke is constructed on derive of the refined proximity graph of area features, and the refinement is under the control of four constraints to meet different grouping requirements. The area features which belong to the same stroke are detected into the same group. The stroke-based strategy decomposes the generalization process into two sub-processes by judging whether the area features related to strokes or not. For the area features which belong to the same one stroke, they normally present a linear like pat-tern, and in order to preserve this kind of pattern, typification is chosen as the operator to implement the generalization work. For the remaining area features which are not related by strokes, they are still distributed randomly and discretely, and the selection is chosen to conduct the generalization operation. For the purpose of retaining their original distribution characteristic, a Polarization Transportation (PT) method is introduced to implement the selection operation. Buildings and lakes are selected as the representatives of artificial area feature and natural area feature respectively to take the experiments. The generalized results indicate that by adopting this proposed strategy, the original distribution characteristics of building and lake data can be preserved, and the visual perception is pre-served as before.

  17. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification

    PubMed Central

    Wen, Tingxi; Zhang, Zhongnan

    2017-01-01

    Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789

  18. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan

    2017-05-01

    In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.

  19. A ROC-based feature selection method for computer-aided detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Songyuan; Zhang, Guopeng; Liao, Qimei; Zhang, Junying; Jiao, Chun; Lu, Hongbing

    2014-03-01

    Image-based computer-aided detection and diagnosis (CAD) has been a very active research topic aiming to assist physicians to detect lesions and distinguish them from benign to malignant. However, the datasets fed into a classifier usually suffer from small number of samples, as well as significantly less samples available in one class (have a disease) than the other, resulting in the classifier's suboptimal performance. How to identifying the most characterizing features of the observed data for lesion detection is critical to improve the sensitivity and minimize false positives of a CAD system. In this study, we propose a novel feature selection method mR-FAST that combines the minimal-redundancymaximal relevance (mRMR) framework with a selection metric FAST (feature assessment by sliding thresholds) based on the area under a ROC curve (AUC) generated on optimal simple linear discriminants. With three feature datasets extracted from CAD systems for colon polyps and bladder cancer, we show that the space of candidate features selected by mR-FAST is more characterizing for lesion detection with higher AUC, enabling to find a compact subset of superior features at low cost.

  20. Integrating dimension reduction and out-of-sample extension in automated classification of ex vivo human patellar cartilage on phase contrast X-ray computed tomography.

    PubMed

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Wismüller, Axel

    2015-01-01

    Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power. For this purpose, geometrical feature sets derived from the scaling index method (SIM) were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. The extracted feature sets were subject to linear and non-linear dimension reduction techniques as well as feature selection based on evaluation of mutual information criteria. The reduced feature set was subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our results show that the classification performance achieved by 9-D SIM-derived geometric feature sets (AUC: 0.96 ± 0.02) can be maintained with 2-D representations computed from both dimension reduction and feature selection (AUC values as high as 0.97 ± 0.02). Thus, such feature reduction techniques can offer a high degree of compaction to large feature sets extracted from PCI-CT images while maintaining their ability to characterize the underlying chondrocyte patterns.

  1. Retinal Origin of Direction Selectivity in the Superior Colliculus

    PubMed Central

    Shi, Xuefeng; Barchini, Jad; Ledesma, Hector Acaron; Koren, David; Jin, Yanjiao; Liu, Xiaorong; Wei, Wei; Cang, Jianhua

    2017-01-01

    Detecting visual features in the environment such as motion direction is crucial for survival. The circuit mechanisms that give rise to direction selectivity in a major visual center, the superior colliculus (SC), are entirely unknown. Here, we optogenetically isolate the retinal inputs that individual direction-selective SC neurons receive and find that they are already selective as a result of precisely converging inputs from similarly-tuned retinal ganglion cells. The direction selective retinal input is linearly amplified by the intracollicular circuits without changing its preferred direction or level of selectivity. Finally, using 2-photon calcium imaging, we show that SC direction selectivity is dramatically reduced in transgenic mice that have decreased retinal selectivity. Together, our studies demonstrate a retinal origin of direction selectivity in the SC, and reveal a central visual deficit as a consequence of altered feature selectivity in the retina. PMID:28192394

  2. Ensemble of sparse classifiers for high-dimensional biological data.

    PubMed

    Kim, Sunghan; Scalzo, Fabien; Telesca, Donatello; Hu, Xiao

    2015-01-01

    Biological data are often high in dimension while the number of samples is small. In such cases, the performance of classification can be improved by reducing the dimension of data, which is referred to as feature selection. Recently, a novel feature selection method has been proposed utilising the sparsity of high-dimensional biological data where a small subset of features accounts for most variance of the dataset. In this study we propose a new classification method for high-dimensional biological data, which performs both feature selection and classification within a single framework. Our proposed method utilises a sparse linear solution technique and the bootstrap aggregating algorithm. We tested its performance on four public mass spectrometry cancer datasets along with two other conventional classification techniques such as Support Vector Machines and Adaptive Boosting. The results demonstrate that our proposed method performs more accurate classification across various cancer datasets than those conventional classification techniques.

  3. Application of machine learning techniques to analyse the effects of physical exercise in ventricular fibrillation.

    PubMed

    Caravaca, Juan; Soria-Olivas, Emilio; Bataller, Manuel; Serrano, Antonio J; Such-Miquel, Luis; Vila-Francés, Joan; Guerrero, Juan F

    2014-02-01

    This work presents the application of machine learning techniques to analyse the influence of physical exercise in the physiological properties of the heart, during ventricular fibrillation. To this end, different kinds of classifiers (linear and neural models) are used to classify between trained and sedentary rabbit hearts. The use of those classifiers in combination with a wrapper feature selection algorithm allows to extract knowledge about the most relevant features in the problem. The obtained results show that neural models outperform linear classifiers (better performance indices and a better dimensionality reduction). The most relevant features to describe the benefits of physical exercise are those related to myocardial heterogeneity, mean activation rate and activation complexity. © 2013 Published by Elsevier Ltd.

  4. Linearly Supporting Feature Extraction for Automated Estimation of Stellar Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Li, Xiangru; Lu, Yu; Comte, Georges; Luo, Ali; Zhao, Yongheng; Wang, Yongjun

    2015-05-01

    We describe a scheme to extract linearly supporting (LSU) features from stellar spectra to automatically estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H]. “Linearly supporting” means that the atmospheric parameters can be accurately estimated from the extracted features through a linear model. The successive steps of the process are as follow: first, decompose the spectrum using a wavelet packet (WP) and represent it by the derived decomposition coefficients; second, detect representative spectral features from the decomposition coefficients using the proposed method Least Absolute Shrinkage and Selection Operator (LARS)bs; third, estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H] from the detected features using a linear regression method. One prominent characteristic of this scheme is its ability to evaluate quantitatively the contribution of each detected feature to the atmospheric parameter estimate and also to trace back the physical significance of that feature. This work also shows that the usefulness of a component depends on both the wavelength and frequency. The proposed scheme has been evaluated on both real spectra from the Sloan Digital Sky Survey (SDSS)/SEGUE and synthetic spectra calculated from Kurucz's NEWODF models. On real spectra, we extracted 23 features to estimate {{T}{\\tt{eff} }}, 62 features for log g, and 68 features for [Fe/H]. Test consistencies between our estimates and those provided by the Spectroscopic Parameter Pipeline of SDSS show that the mean absolute errors (MAEs) are 0.0062 dex for log {{T}{\\tt{eff} }} (83 K for {{T}{\\tt{eff} }}), 0.2345 dex for log g, and 0.1564 dex for [Fe/H]. For the synthetic spectra, the MAE test accuracies are 0.0022 dex for log {{T}{\\tt{eff} }} (32 K for {{T}{\\tt{eff} }}), 0.0337 dex for log g, and 0.0268 dex for [Fe/H].

  5. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    NASA Astrophysics Data System (ADS)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  6. An effective biometric discretization approach to extract highly discriminative, informative, and privacy-protective binary representation

    NASA Astrophysics Data System (ADS)

    Lim, Meng-Hui; Teoh, Andrew Beng Jin

    2011-12-01

    Biometric discretization derives a binary string for each user based on an ordered set of biometric features. This representative string ought to be discriminative, informative, and privacy protective when it is employed as a cryptographic key in various security applications upon error correction. However, it is commonly believed that satisfying the first and the second criteria simultaneously is not feasible, and a tradeoff between them is always definite. In this article, we propose an effective fixed bit allocation-based discretization approach which involves discriminative feature extraction, discriminative feature selection, unsupervised quantization (quantization that does not utilize class information), and linearly separable subcode (LSSC)-based encoding to fulfill all the ideal properties of a binary representation extracted for cryptographic applications. In addition, we examine a number of discriminative feature-selection measures for discretization and identify the proper way of setting an important feature-selection parameter. Encouraging experimental results vindicate the feasibility of our approach.

  7. Adaptive fusion of infrared and visible images in dynamic scene

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi

    2011-11-01

    Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.

  8. Higher criticism thresholding: Optimal feature selection when useful features are rare and weak.

    PubMed

    Donoho, David; Jin, Jiashun

    2008-09-30

    In important application fields today-genomics and proteomics are examples-selecting a small subset of useful features is crucial for success of Linear Classification Analysis. We study feature selection by thresholding of feature Z-scores and introduce a principle of threshold selection, based on the notion of higher criticism (HC). For i = 1, 2, ..., p, let pi(i) denote the two-sided P-value associated with the ith feature Z-score and pi((i)) denote the ith order statistic of the collection of P-values. The HC threshold is the absolute Z-score corresponding to the P-value maximizing the HC objective (i/p - pi((i)))/sqrt{i/p(1-i/p)}. We consider a rare/weak (RW) feature model, where the fraction of useful features is small and the useful features are each too weak to be of much use on their own. HC thresholding (HCT) has interesting behavior in this setting, with an intimate link between maximizing the HC objective and minimizing the error rate of the designed classifier, and very different behavior from popular threshold selection procedures such as false discovery rate thresholding (FDRT). In the most challenging RW settings, HCT uses an unconventionally low threshold; this keeps the missed-feature detection rate under better control than FDRT and yields a classifier with improved misclassification performance. Replacing cross-validated threshold selection in the popular Shrunken Centroid classifier with the computationally less expensive and simpler HCT reduces the variance of the selected threshold and the error rate of the constructed classifier. Results on standard real datasets and in asymptotic theory confirm the advantages of HCT.

  9. Higher criticism thresholding: Optimal feature selection when useful features are rare and weak

    PubMed Central

    Donoho, David; Jin, Jiashun

    2008-01-01

    In important application fields today—genomics and proteomics are examples—selecting a small subset of useful features is crucial for success of Linear Classification Analysis. We study feature selection by thresholding of feature Z-scores and introduce a principle of threshold selection, based on the notion of higher criticism (HC). For i = 1, 2, …, p, let πi denote the two-sided P-value associated with the ith feature Z-score and π(i) denote the ith order statistic of the collection of P-values. The HC threshold is the absolute Z-score corresponding to the P-value maximizing the HC objective (i/p − π(i))/i/p(1−i/p). We consider a rare/weak (RW) feature model, where the fraction of useful features is small and the useful features are each too weak to be of much use on their own. HC thresholding (HCT) has interesting behavior in this setting, with an intimate link between maximizing the HC objective and minimizing the error rate of the designed classifier, and very different behavior from popular threshold selection procedures such as false discovery rate thresholding (FDRT). In the most challenging RW settings, HCT uses an unconventionally low threshold; this keeps the missed-feature detection rate under better control than FDRT and yields a classifier with improved misclassification performance. Replacing cross-validated threshold selection in the popular Shrunken Centroid classifier with the computationally less expensive and simpler HCT reduces the variance of the selected threshold and the error rate of the constructed classifier. Results on standard real datasets and in asymptotic theory confirm the advantages of HCT. PMID:18815365

  10. A Study of the Effect of the Front-End Styling of Sport Utility Vehicles on Pedestrian Head Injuries

    PubMed Central

    Qin, Qin; Chen, Zheng; Bai, Zhonghao; Cao, Libo

    2018-01-01

    Background The number of sport utility vehicles (SUVs) on China market is continuously increasing. It is necessary to investigate the relationships between the front-end styling features of SUVs and head injuries at the styling design stage for improving the pedestrian protection performance and product development efficiency. Methods Styling feature parameters were extracted from the SUV side contour line. And simplified finite element models were established based on the 78 SUV side contour lines. Pedestrian headform impact simulations were performed and validated. The head injury criterion of 15 ms (HIC15) at four wrap-around distances was obtained. A multiple linear regression analysis method was employed to describe the relationships between the styling feature parameters and the HIC15 at each impact point. Results The relationship between the selected styling features and the HIC15 showed reasonable correlations, and the regression models and the selected independent variables showed statistical significance. Conclusions The regression equations obtained by multiple linear regression can be used to assess the performance of SUV styling in protecting pedestrians' heads and provide styling designers with technical guidance regarding their artistic creations.

  11. Linear data mining the Wichita clinical matrix suggests sleep and allostatic load involvement in chronic fatigue syndrome.

    PubMed

    Gurbaxani, Brian M; Jones, James F; Goertzel, Benjamin N; Maloney, Elizabeth M

    2006-04-01

    To provide a mathematical introduction to the Wichita (KS, USA) clinical dataset, which is all of the nongenetic data (no microarray or single nucleotide polymorphism data) from the 2-day clinical evaluation, and show the preliminary findings and limitations, of popular, matrix algebra-based data mining techniques. An initial matrix of 440 variables by 227 human subjects was reduced to 183 variables by 164 subjects. Variables were excluded that strongly correlated with chronic fatigue syndrome (CFS) case classification by design (for example, the multidimensional fatigue inventory [MFI] data), that were otherwise self reporting in nature and also tended to correlate strongly with CFS classification, or were sparse or nonvarying between case and control. Subjects were excluded if they did not clearly fall into well-defined CFS classifications, had comorbid depression with melancholic features, or other medical or psychiatric exclusions. The popular data mining techniques, principle components analysis (PCA) and linear discriminant analysis (LDA), were used to determine how well the data separated into groups. Two different feature selection methods helped identify the most discriminating parameters. Although purely biological features (variables) were found to separate CFS cases from controls, including many allostatic load and sleep-related variables, most parameters were not statistically significant individually. However, biological correlates of CFS, such as heart rate and heart rate variability, require further investigation. Feature selection of a limited number of variables from the purely biological dataset produced better separation between groups than a PCA of the entire dataset. Feature selection highlighted the importance of many of the allostatic load variables studied in more detail by Maloney and colleagues in this issue [1] , as well as some sleep-related variables. Nonetheless, matrix linear algebra-based data mining approaches appeared to be of limited utility when compared with more sophisticated nonlinear analyses on richer data types, such as those found in Maloney and colleagues [1] and Goertzel and colleagues [2] in this issue.

  12. Feature selection from hyperspectral imaging for guava fruit defects detection

    NASA Astrophysics Data System (ADS)

    Mat Jafri, Mohd. Zubir; Tan, Sou Ching

    2017-06-01

    Development of technology makes hyperspectral imaging commonly used for defect detection. In this research, a hyperspectral imaging system was setup in lab to target for guava fruits defect detection. Guava fruit was selected as the object as to our knowledge, there is fewer attempts were made for guava defect detection based on hyperspectral imaging. The common fluorescent light source was used to represent the uncontrolled lighting condition in lab and analysis was carried out in a specific wavelength range due to inefficiency of this particular light source. Based on the data, the reflectance intensity of this specific setup could be categorized in two groups. Sequential feature selection with linear discriminant (LD) and quadratic discriminant (QD) function were used to select features that could potentially be used in defects detection. Besides the ordinary training method, training dataset in discriminant was separated in two to cater for the uncontrolled lighting condition. These two parts were separated based on the brighter and dimmer area. Four evaluation matrixes were evaluated which are LD with common training method, QD with common training method, LD with two part training method and QD with two part training method. These evaluation matrixes were evaluated using F1-score with total 48 defected areas. Experiment shown that F1-score of linear discriminant with the compensated method hitting 0.8 score, which is the highest score among all.

  13. The role of eigenvalues in linear feature selection theory

    NASA Technical Reports Server (NTRS)

    Brown, D. R.; Omalley, M. J.

    1976-01-01

    A particular measure of pattern class distinction called the average interclass divergence, or more simply, divergence, is considered. Here divergence will be the pairwise average of the expected interclass divergence derived from Hajek's two-class divergence.

  14. Lex-SVM: exploring the potential of exon expression profiling for disease classification.

    PubMed

    Yuan, Xiongying; Zhao, Yi; Liu, Changning; Bu, Dongbo

    2011-04-01

    Exon expression profiling technologies, including exon arrays and RNA-Seq, measure the abundance of every exon in a gene. Compared with gene expression profiling technologies like 3' array, exon expression profiling technologies could detect alterations in both transcription and alternative splicing, therefore they are expected to be more sensitive in diagnosis. However, exon expression profiling also brings higher dimension, more redundancy, and significant correlation among features. Ignoring the correlation structure among exons of a gene, a popular classification method like L1-SVM selects exons individually from each gene and thus is vulnerable to noise. To overcome this limitation, we present in this paper a new variant of SVM named Lex-SVM to incorporate correlation structure among exons and known splicing patterns to promote classification performance. Specifically, we construct a new norm, ex-norm, including our prior knowledge on exon correlation structure to regularize the coefficients of a linear SVM. Lex-SVM can be solved efficiently using standard linear programming techniques. The advantage of Lex-SVM is that it can select features group-wisely, force features in a subgroup to take equal weihts and exclude the features that contradict the majority in the subgroup. Experimental results suggest that on exon expression profile, Lex-SVM is more accurate than existing methods. Lex-SVM also generates a more compact model and selects genes more consistently in cross-validation. Unlike L1-SVM selecting only one exon in a gene, Lex-SVM assigns equal weights to as many exons in a gene as possible, lending itself easier for further interpretation.

  15. Automated discrimination of dementia spectrum disorders using extreme learning machine and structural T1 MRI features.

    PubMed

    Jongin Kim; Boreom Lee

    2017-07-01

    The classification of neuroimaging data for the diagnosis of Alzheimer's Disease (AD) is one of the main research goals of the neuroscience and clinical fields. In this study, we performed extreme learning machine (ELM) classifier to discriminate the AD, mild cognitive impairment (MCI) from normal control (NC). We compared the performance of ELM with that of a linear kernel support vector machine (SVM) for 718 structural MRI images from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The data consisted of normal control, MCI converter (MCI-C), MCI non-converter (MCI-NC), and AD. We employed SVM-based recursive feature elimination (RFE-SVM) algorithm to find the optimal subset of features. In this study, we found that the RFE-SVM feature selection approach in combination with ELM shows the superior classification accuracy to that of linear kernel SVM for structural T1 MRI data.

  16. Integrating Dimension Reduction and Out-of-Sample Extension in Automated Classification of Ex Vivo Human Patellar Cartilage on Phase Contrast X-Ray Computed Tomography

    PubMed Central

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Diemoz, Paul C.; Wismüller, Axel

    2015-01-01

    Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power. For this purpose, geometrical feature sets derived from the scaling index method (SIM) were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. The extracted feature sets were subject to linear and non-linear dimension reduction techniques as well as feature selection based on evaluation of mutual information criteria. The reduced feature set was subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our results show that the classification performance achieved by 9-D SIM-derived geometric feature sets (AUC: 0.96 ± 0.02) can be maintained with 2-D representations computed from both dimension reduction and feature selection (AUC values as high as 0.97 ± 0.02). Thus, such feature reduction techniques can offer a high degree of compaction to large feature sets extracted from PCI-CT images while maintaining their ability to characterize the underlying chondrocyte patterns. PMID:25710875

  17. Bio-Inspired Sensing and Display of Polarization Imagery

    DTIC Science & Technology

    2005-07-17

    and weighting coefficients in this example. Panel 4D clearly shows a better visibility, feature extraction , and lesser effect from the background...of linear polarization. Panel E represents the segmentation of the degree of linear polarization, and then Panel F shows the extracted segment with...polarization, and Panel F shows the segment extraction with the finger print selected. Panel G illustrates the application of Canny edge detection to

  18. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.

    PubMed

    Prinyakupt, Jaroonrut; Pluempitiwiriyawej, Charnchai

    2015-06-30

    Blood smear microscopic images are routinely investigated by haematologists to diagnose most blood diseases. However, the task is quite tedious and time consuming. An automatic detection and classification of white blood cells within such images can accelerate the process tremendously. In this paper we propose a system to locate white blood cells within microscopic blood smear images, segment them into nucleus and cytoplasm regions, extract suitable features and finally, classify them into five types: basophil, eosinophil, neutrophil, lymphocyte and monocyte. Two sets of blood smear images were used in this study's experiments. Dataset 1, collected from Rangsit University, were normal peripheral blood slides under light microscope with 100× magnification; 555 images with 601 white blood cells were captured by a Nikon DS-Fi2 high-definition color camera and saved in JPG format of size 960 × 1,280 pixels at 15 pixels per 1 μm resolution. In dataset 2, 477 cropped white blood cell images were downloaded from CellaVision.com. They are in JPG format of size 360 × 363 pixels. The resolution is estimated to be 10 pixels per 1 μm. The proposed system comprises a pre-processing step, nucleus segmentation, cell segmentation, feature extraction, feature selection and classification. The main concept of the segmentation algorithm employed uses white blood cell's morphological properties and the calibrated size of a real cell relative to image resolution. The segmentation process combined thresholding, morphological operation and ellipse curve fitting. Consequently, several features were extracted from the segmented nucleus and cytoplasm regions. Prominent features were then chosen by a greedy search algorithm called sequential forward selection. Finally, with a set of selected prominent features, both linear and naïve Bayes classifiers were applied for performance comparison. This system was tested on normal peripheral blood smear slide images from two datasets. Two sets of comparison were performed: segmentation and classification. The automatically segmented results were compared to the ones obtained manually by a haematologist. It was found that the proposed method is consistent and coherent in both datasets, with dice similarity of 98.9 and 91.6% for average segmented nucleus and cell regions, respectively. Furthermore, the overall correction rate in the classification phase is about 98 and 94% for linear and naïve Bayes models, respectively. The proposed system, based on normal white blood cell morphology and its characteristics, was applied to two different datasets. The results of the calibrated segmentation process on both datasets are fast, robust, efficient and coherent. Meanwhile, the classification of normal white blood cells into five types shows high sensitivity in both linear and naïve Bayes models, with slightly better results in the linear classifier.

  19. Low-Complexity Discriminative Feature Selection From EEG Before and After Short-Term Memory Task.

    PubMed

    Behzadfar, Neda; Firoozabadi, S Mohammad P; Badie, Kambiz

    2016-10-01

    A reliable and unobtrusive quantification of changes in cortical activity during short-term memory task can be used to evaluate the efficacy of interfaces and to provide real-time user-state information. In this article, we investigate changes in electroencephalogram signals in short-term memory with respect to the baseline activity. The electroencephalogram signals have been analyzed using 9 linear and nonlinear/dynamic measures. We applied statistical Wilcoxon examination and Davis-Bouldian criterion to select optimal discriminative features. The results show that among the features, the permutation entropy significantly increased in frontal lobe and the occipital second lower alpha band activity decreased during memory task. These 2 features reflect the same mental task; however, their correlation with memory task varies in different intervals. In conclusion, it is suggested that the combination of the 2 features would improve the performance of memory based neurofeedback systems. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  20. Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson's correlation.

    PubMed

    Graña, M; Termenon, M; Savio, A; Gonzalez-Pinto, A; Echeveste, J; Pérez, J M; Besga, A

    2011-09-20

    The aim of this paper is to obtain discriminant features from two scalar measures of Diffusion Tensor Imaging (DTI) data, Fractional Anisotropy (FA) and Mean Diffusivity (MD), and to train and test classifiers able to discriminate Alzheimer's Disease (AD) patients from controls on the basis of features extracted from the FA or MD volumes. In this study, support vector machine (SVM) classifier was trained and tested on FA and MD data. Feature selection is done computing the Pearson's correlation between FA or MD values at voxel site across subjects and the indicative variable specifying the subject class. Voxel sites with high absolute correlation are selected for feature extraction. Results are obtained over an on-going study in Hospital de Santiago Apostol collecting anatomical T1-weighted MRI volumes and DTI data from healthy control subjects and AD patients. FA features and a linear SVM classifier achieve perfect accuracy, sensitivity and specificity in several cross-validation studies, supporting the usefulness of DTI-derived features as an image-marker for AD and to the feasibility of building Computer Aided Diagnosis systems for AD based on them. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. An Evaluation of Feature Learning Methods for High Resolution Image Classification

    NASA Astrophysics Data System (ADS)

    Tokarczyk, P.; Montoya, J.; Schindler, K.

    2012-07-01

    Automatic image classification is one of the fundamental problems of remote sensing research. The classification problem is even more challenging in high-resolution images of urban areas, where the objects are small and heterogeneous. Two questions arise, namely which features to extract from the raw sensor data to capture the local radiometry and image structure at each pixel or segment, and which classification method to apply to the feature vectors. While classifiers are nowadays well understood, selecting the right features remains a largely empirical process. Here we concentrate on the features. Several methods are evaluated which allow one to learn suitable features from unlabelled image data by analysing the image statistics. In a comparative study, we evaluate unsupervised feature learning with different linear and non-linear learning methods, including principal component analysis (PCA) and deep belief networks (DBN). We also compare these automatically learned features with popular choices of ad-hoc features including raw intensity values, standard combinations like the NDVI, a few PCA channels, and texture filters. The comparison is done in a unified framework using the same images, the target classes, reference data and a Random Forest classifier.

  2. [Discriminant analysis to predict the clinical diagnosis of primary immunodeficiencies: a preliminary report].

    PubMed

    Murata, Chiharu; Ramírez, Ana Belén; Ramírez, Guadalupe; Cruz, Alonso; Morales, José Luis; Lugo-Reyes, Saul Oswaldo

    2015-01-01

    The features in a clinical history from a patient with suspected primary immunodeficiency (PID) direct the differential diagnosis through pattern recognition. PIDs are a heterogeneous group of more than 250 congenital diseases with increased susceptibility to infection, inflammation, autoimmunity, allergy and malignancy. Linear discriminant analysis (LDA) is a multivariate supervised classification method to sort objects of study into groups by finding linear combinations of a number of variables. To identify the features that best explain membership of pediatric PID patients to a group of defect or disease. An analytic cross-sectional study was done with a pre-existing database with clinical and laboratory records from 168 patients with PID, followed at the National Institute of Pediatrics during 1991-2012, it was used to build linear discriminant models that would explain membership of each patient to the different group defects and to the most prevalent PIDs in our registry. After a preliminary run only 30 features were included (4 demographic, 10 clinical, 10 laboratory, 6 germs), with which the training models were developed through a stepwise regression algorithm. We compared the automatic feature selection with a selection made by a human expert, and then assessed the diagnostic usefulness of the resulting models (sensitivity, specificity, prediction accuracy and kappa coefficient), with 95% confidence intervals. The models incorporated 6 to 14 features to explain membership of PID patients to the five most abundant defect groups (combined, antibody, well-defined, dysregulation and phagocytosis), and to the four most prevalent PID diseases (X-linked agammaglobulinemia, chronic granulomatous disease, common variable immunodeficiency and ataxiatelangiectasia). In practically all cases of feature selection the machine outperformed the human expert. Diagnosis prediction using the equations created had a global accuracy of 83 to 94%, with sensitivity of 60 to 100%, specificity of 83 to 95% and kappa coefficient of 0.37 to 0.76. In general, the selection of features has clinical plausibility, and the practical advantage of utilizing only clinical attributes, infecting germs and routine lab results (blood cell counts and serum immunoglobulins). The performance of the model as a diagnostic tool was acceptable. The study's main limitations are a limited sample size and a lack of cross validation. This is only the first step in the construction of a machine learning system, with a wider approach that includes a larger database and different methodologies, to assist the clinical diagnosis of primary immunodeficiencies.

  3. Classification of small lesions on dynamic breast MRI: Integrating dimension reduction and out-of-sample extension into CADx methodology

    PubMed Central

    Nagarajan, Mahesh B.; Huber, Markus B.; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel

    2014-01-01

    Objective While dimension reduction has been previously explored in computer aided diagnosis (CADx) as an alternative to feature selection, previous implementations of its integration into CADx do not ensure strict separation between training and test data required for the machine learning task. This compromises the integrity of the independent test set, which serves as the basis for evaluating classifier performance. Methods and Materials We propose, implement and evaluate an improved CADx methodology where strict separation is maintained. This is achieved by subjecting the training data alone to dimension reduction; the test data is subsequently processed with out-of-sample extension methods. Our approach is demonstrated in the research context of classifying small diagnostically challenging lesions annotated on dynamic breast magnetic resonance imaging (MRI) studies. The lesions were dynamically characterized through topological feature vectors derived from Minkowski functionals. These feature vectors were then subject to dimension reduction with different linear and non-linear algorithms applied in conjunction with out-of-sample extension techniques. This was followed by classification through supervised learning with support vector regression. Area under the receiver-operating characteristic curve (AUC) was evaluated as the metric of classifier performance. Results Of the feature vectors investigated, the best performance was observed with Minkowski functional ’perimeter’ while comparable performance was observed with ’area’. Of the dimension reduction algorithms tested with ’perimeter’, the best performance was observed with Sammon’s mapping (0.84 ± 0.10) while comparable performance was achieved with exploratory observation machine (0.82 ± 0.09) and principal component analysis (0.80 ± 0.10). Conclusions The results reported in this study with the proposed CADx methodology present a significant improvement over previous results reported with such small lesions on dynamic breast MRI. In particular, non-linear algorithms for dimension reduction exhibited better classification performance than linear approaches, when integrated into our CADx methodology. We also note that while dimension reduction techniques may not necessarily provide an improvement in classification performance over feature selection, they do allow for a higher degree of feature compaction. PMID:24355697

  4. Development of orientation tuning in simple cells of primary visual cortex

    PubMed Central

    Moore, Bartlett D.

    2012-01-01

    Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631

  5. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.

    PubMed

    Harper, Nicol S; Schoppe, Oliver; Willmore, Ben D B; Cui, Zhanfeng; Schnupp, Jan W H; King, Andrew J

    2016-11-01

    Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1-7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context.

  6. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons

    PubMed Central

    Willmore, Ben D. B.; Cui, Zhanfeng; Schnupp, Jan W. H.; King, Andrew J.

    2016-01-01

    Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1–7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context. PMID:27835647

  7. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.

    PubMed

    Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko

    2017-12-28

    Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.

  8. Vowel Imagery Decoding toward Silent Speech BCI Using Extreme Learning Machine with Electroencephalogram

    PubMed Central

    Kim, Jongin; Park, Hyeong-jun

    2016-01-01

    The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128

  9. An automatic optimum number of well-distributed ground control lines selection procedure based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yavari, Somayeh; Valadan Zoej, Mohammad Javad; Salehi, Bahram

    2018-05-01

    The procedure of selecting an optimum number and best distribution of ground control information is important in order to reach accurate and robust registration results. This paper proposes a new general procedure based on Genetic Algorithm (GA) which is applicable for all kinds of features (point, line, and areal features). However, linear features due to their unique characteristics are of interest in this investigation. This method is called Optimum number of Well-Distributed ground control Information Selection (OWDIS) procedure. Using this method, a population of binary chromosomes is randomly initialized. The ones indicate the presence of a pair of conjugate lines as a GCL and zeros specify the absence. The chromosome length is considered equal to the number of all conjugate lines. For each chromosome, the unknown parameters of a proper mathematical model can be calculated using the selected GCLs (ones in each chromosome). Then, a limited number of Check Points (CPs) are used to evaluate the Root Mean Square Error (RMSE) of each chromosome as its fitness value. The procedure continues until reaching a stopping criterion. The number and position of ones in the best chromosome indicate the selected GCLs among all conjugate lines. To evaluate the proposed method, a GeoEye and an Ikonos Images are used over different areas of Iran. Comparing the obtained results by the proposed method in a traditional RFM with conventional methods that use all conjugate lines as GCLs shows five times the accuracy improvement (pixel level accuracy) as well as the strength of the proposed method. To prevent an over-parametrization error in a traditional RFM due to the selection of a high number of improper correlated terms, an optimized line-based RFM is also proposed. The results show the superiority of the combination of the proposed OWDIS method with an optimized line-based RFM in terms of increasing the accuracy to better than 0.7 pixel, reliability, and reducing systematic errors. These results also demonstrate the high potential of linear features as reliable control features to reach sub-pixel accuracy in registration applications.

  10. Discrimination of inflammatory bowel disease using Raman spectroscopy and linear discriminant analysis methods

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Cao, Ming; DuPont, Andrew W.; Scott, Larry D.; Guha, Sushovan; Singhal, Shashideep; Younes, Mamoun; Pence, Isaac; Herline, Alan; Schwartz, David; Xu, Hua; Mahadevan-Jansen, Anita; Bi, Xiaohong

    2016-03-01

    Inflammatory bowel disease (IBD) is an idiopathic disease that is typically characterized by chronic inflammation of the gastrointestinal tract. Recently much effort has been devoted to the development of novel diagnostic tools that can assist physicians for fast, accurate, and automated diagnosis of the disease. Previous research based on Raman spectroscopy has shown promising results in differentiating IBD patients from normal screening cases. In the current study, we examined IBD patients in vivo through a colonoscope-coupled Raman system. Optical diagnosis for IBD discrimination was conducted based on full-range spectra using multivariate statistical methods. Further, we incorporated several feature selection methods in machine learning into the classification model. The diagnostic performance for disease differentiation was significantly improved after feature selection. Our results showed that improved IBD diagnosis can be achieved using Raman spectroscopy in combination with multivariate analysis and feature selection.

  11. Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm.

    PubMed

    Mao, Yong; Zhou, Xiao-Bo; Pi, Dao-Ying; Sun, You-Xian; Wong, Stephen T C

    2005-10-01

    In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear statistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two representative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method performs well in selecting genes and achieves high classification accuracies with these genes.

  12. Auditory evoked potentials in patients with major depressive disorder measured by Emotiv system.

    PubMed

    Wang, Dongcui; Mo, Fongming; Zhang, Yangde; Yang, Chao; Liu, Jun; Chen, Zhencheng; Zhao, Jinfeng

    2015-01-01

    In a previous study (unpublished), Emotiv headset was validated for capturing event-related potentials (ERPs) from normal subjects. In the present follow-up study, the signal quality of Emotiv headset was tested by the accuracy rate of discriminating Major Depressive Disorder (MDD) patients from the normal subjects. ERPs of 22 MDD patients and 15 normal subjects were induced by an auditory oddball task and the amplitude of N1, N2 and P3 of ERP components were specifically analyzed. The features of ERPs were statistically investigated. It is found that Emotiv headset is capable of discriminating the abnormal N1, N2 and P3 components in MDD patients. Relief-F algorithm was applied to all features for feature selection. The selected features were then input to a linear discriminant analysis (LDA) classifier with leave-one-out cross-validation to characterize the ERP features of MDD. 127 possible combinations out of the selected 7 ERP features were classified using LDA. The best classification accuracy was achieved to be 89.66%. These results suggest that MDD patients are identifiable from normal subjects by ERPs measured by Emotiv headset.

  13. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data

    PubMed Central

    Zhao, Xin; Cheung, Leo Wang-Kit

    2007-01-01

    Background Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. Results A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP) is developed under a unified Bayesian framework for binary disease classification problems using microarray gene expression data. In particular, based on a probit regression setting, an adaptive algorithm with a cascading structure is designed to find the appropriate kernel, to discover the potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler is built as the core of the algorithm to make Bayesian inferences. Simulation studies showed that, even without any knowledge of the underlying generative model, the KIGP performed very close to the theoretical Bayesian bound not only in the case with a linear Bayesian classifier but also in the case with a very non-linear Bayesian classifier. This sheds light on its broader usability to microarray data analysis problems, especially to those that linear methods work awkwardly. The KIGP was also applied to four published microarray datasets, and the results showed that the KIGP performed better than or at least as well as any of the referred state-of-the-art methods did in all of these cases. Conclusion Mathematically built on the kernel-induced feature space concept under a Bayesian framework, the KIGP method presented in this paper provides a unified machine learning approach to explore both the linear and the possibly non-linear underlying relationship between the target features of a given binary disease classification problem and the related explanatory gene expression data. More importantly, it incorporates the model parameter tuning into the framework. The model selection problem is addressed in the form of selecting a proper kernel type. The KIGP method also gives Bayesian probabilistic predictions for disease classification. These properties and features are beneficial to most real-world applications. The algorithm is naturally robust in numerical computation. The simulation studies and the published data studies demonstrated that the proposed KIGP performs satisfactorily and consistently. PMID:17328811

  14. Geometric mean for subspace selection.

    PubMed

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2009-02-01

    Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher's linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.

  15. Uncovering multiple pathways to substance use: a comparison of methods for identifying population subgroups.

    PubMed

    Dierker, Lisa; Rose, Jennifer; Tan, Xianming; Li, Runze

    2010-12-01

    This paper describes and compares a selection of available modeling techniques for identifying homogeneous population subgroups in the interest of informing targeted substance use intervention. We present a nontechnical review of the common and unique features of three methods: (a) trajectory analysis, (b) functional hierarchical linear modeling (FHLM), and (c) decision tree methods. Differences among the techniques are described, including required data features, strengths and limitations in terms of the flexibility with which outcomes and predictors can be modeled, and the potential of each technique for helping to inform the selection of targets and timing of substance intervention programs.

  16. Excitation-emission fluorimeter based on linear interference filters.

    PubMed

    Gouzman, Michael; Lifshitz, Nadia; Luryi, Serge; Semyonov, Oleg; Gavrilov, Dmitry; Kuzminskiy, Vyacheslav

    2004-05-20

    We describe the design, properties, and performance of an excitation-emission (EE) fluorimeter that enables spectral characterization of an object simultaneously with respect to both its excitation and its emission properties. Such devices require two wavelength-selecting elements, one in the optical path of the excitation broadband light to obtain tunable excitation and the other to analyze the resulting fluorescence. Existing EE instruments are usually implemented with two monochromators. The key feature of our EE fluorimeter is that it employs lightweight and compact linear interference filters (LIFs) as the wavelength-selection elements. The spectral tuning of both the excitation and the detection LIFs is achieved by their mechanical shift relative to each other by use of two computer-controlled linear step motors. The performance of the LIF-based EE fluorimeter is demonstrated with the fluorescent spectra of various dyes and their mixtures.

  17. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells

    NASA Astrophysics Data System (ADS)

    Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés

    2018-03-01

    In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.

  18. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells.

    PubMed

    Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés

    2018-03-01

    In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.

  19. Filter Selection for Optimizing the Spectral Sensitivity of Broadband Multispectral Cameras Based on Maximum Linear Independence.

    PubMed

    Li, Sui-Xian

    2018-05-07

    Previous research has shown that the effectiveness of selecting filter sets from among a large set of commercial broadband filters by a vector analysis method based on maximum linear independence (MLI). However, the traditional MLI approach is suboptimal due to the need to predefine the first filter of the selected filter set to be the maximum ℓ₂ norm among all available filters. An exhaustive imaging simulation with every single filter serving as the first filter is conducted to investigate the features of the most competent filter set. From the simulation, the characteristics of the most competent filter set are discovered. Besides minimization of the condition number, the geometric features of the best-performed filter set comprise a distinct transmittance peak along the wavelength axis of the first filter, a generally uniform distribution for the peaks of the filters and substantial overlaps of the transmittance curves of the adjacent filters. Therefore, the best-performed filter sets can be recognized intuitively by simple vector analysis and just a few experimental verifications. A practical two-step framework for selecting optimal filter set is recommended, which guarantees a significant enhancement of the performance of the systems. This work should be useful for optimizing the spectral sensitivity of broadband multispectral imaging sensors.

  20. Visuomotor Transformations Underlying Hunting Behavior in Zebrafish

    PubMed Central

    Bianco, Isaac H.; Engert, Florian

    2015-01-01

    Summary Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. PMID:25754638

  1. Visuomotor transformations underlying hunting behavior in zebrafish.

    PubMed

    Bianco, Isaac H; Engert, Florian

    2015-03-30

    Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Support Vector Feature Selection for Early Detection of Anastomosis Leakage From Bag-of-Words in Electronic Health Records.

    PubMed

    Soguero-Ruiz, Cristina; Hindberg, Kristian; Rojo-Alvarez, Jose Luis; Skrovseth, Stein Olav; Godtliebsen, Fred; Mortensen, Kim; Revhaug, Arthur; Lindsetmo, Rolv-Ole; Augestad, Knut Magne; Jenssen, Robert

    2016-09-01

    The free text in electronic health records (EHRs) conveys a huge amount of clinical information about health state and patient history. Despite a rapidly growing literature on the use of machine learning techniques for extracting this information, little effort has been invested toward feature selection and the features' corresponding medical interpretation. In this study, we focus on the task of early detection of anastomosis leakage (AL), a severe complication after elective surgery for colorectal cancer (CRC) surgery, using free text extracted from EHRs. We use a bag-of-words model to investigate the potential for feature selection strategies. The purpose is earlier detection of AL and prediction of AL with data generated in the EHR before the actual complication occur. Due to the high dimensionality of the data, we derive feature selection strategies using the robust support vector machine linear maximum margin classifier, by investigating: 1) a simple statistical criterion (leave-one-out-based test); 2) an intensive-computation statistical criterion (Bootstrap resampling); and 3) an advanced statistical criterion (kernel entropy). Results reveal a discriminatory power for early detection of complications after CRC (sensitivity 100%; specificity 72%). These results can be used to develop prediction models, based on EHR data, that can support surgeons and patients in the preoperative decision making phase.

  3. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality

    NASA Technical Reports Server (NTRS)

    Hazen, R. M.; Filley, T. R.; Goodfriend, G. A.

    2001-01-01

    The emergence of biochemical homochirality was a key step in the origin of life, yet prebiotic mechanisms for chiral separation are not well constrained. Here we demonstrate a geochemically plausible scenario for chiral separation of amino acids by adsorption on mineral surfaces. Crystals of the common rock-forming mineral calcite (CaCO(3)), when immersed in a racemic aspartic acid solution, display significant adsorption and chiral selectivity of d- and l-enantiomers on pairs of mirror-related crystal-growth surfaces. This selective adsorption is greater on crystals with terraced surface textures, which indicates that d- and l-aspartic acid concentrate along step-like linear growth features. Thus, selective adsorption of linear arrays of d- and l-amino acids on calcite, with subsequent condensation polymerization, represents a plausible geochemical mechanism for the production of homochiral polypeptides on the prebiotic Earth.

  4. Quantifying and visualizing variations in sets of images using continuous linear optimal transport

    NASA Astrophysics Data System (ADS)

    Kolouri, Soheil; Rohde, Gustavo K.

    2014-03-01

    Modern advancements in imaging devices have enabled us to explore the subcellular structure of living organisms and extract vast amounts of information. However, interpreting the biological information mined in the captured images is not a trivial task. Utilizing predetermined numerical features is usually the only hope for quantifying this information. Nonetheless, direct visual or biological interpretation of results obtained from these selected features is non-intuitive and difficult. In this paper, we describe an automatic method for modeling visual variations in a set of images, which allows for direct visual interpretation of the most significant differences, without the need for predefined features. The method is based on a linearized version of the continuous optimal transport (OT) metric, which provides a natural linear embedding for the image data set, in which linear combination of images leads to a visually meaningful image. This enables us to apply linear geometric data analysis techniques such as principal component analysis and linear discriminant analysis in the linearly embedded space and visualize the most prominent modes, as well as the most discriminant modes of variations, in the dataset. Using the continuous OT framework, we are able to analyze variations in shape and texture in a set of images utilizing each image at full resolution, that otherwise cannot be done by existing methods. The proposed method is applied to a set of nuclei images segmented from Feulgen stained liver tissues in order to investigate the major visual differences in chromatin distribution of Fetal-Type Hepatoblastoma (FHB) cells compared to the normal cells.

  5. Analysis and application of ERTS-1 data for regional geological mapping

    NASA Technical Reports Server (NTRS)

    Gold, D. P.; Parizek, R. R.; Alexander, S. A.

    1973-01-01

    Combined visual and digital techniques of analysing ERTS-1 data for geologic information have been tried on selected areas in Pennsylvania. The major physiolographic and structural provinces show up well. Supervised mapping, following the imaged expression of known geologic features on ERTS band 5 enlargements (1:250,000) of parts of eastern Pennsylvania, delimited the Diabase Sills and the Precambrian rocks of the Reading Prong with remarkable accuracy. From unsupervised mapping, transgressive linear features are apparent in unexpected density, and exhibit strong control over river valley and stream channel directions. They are unaffected by bedrock type, age, or primary structural boundaries, which suggests they are either rejuvenated basement joint directions on different scales, or they are a recently impressed structure possibly associated with a drifting North American plate. With ground mapping and underflight data, 6 scales of linear features have been recognized.

  6. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    PubMed Central

    Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong

    2018-01-01

    Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262

  7. Feature weight estimation for gene selection: a local hyperlinear learning approach

    PubMed Central

    2014-01-01

    Background Modeling high-dimensional data involving thousands of variables is particularly important for gene expression profiling experiments, nevertheless,it remains a challenging task. One of the challenges is to implement an effective method for selecting a small set of relevant genes, buried in high-dimensional irrelevant noises. RELIEF is a popular and widely used approach for feature selection owing to its low computational cost and high accuracy. However, RELIEF based methods suffer from instability, especially in the presence of noisy and/or high-dimensional outliers. Results We propose an innovative feature weighting algorithm, called LHR, to select informative genes from highly noisy data. LHR is based on RELIEF for feature weighting using classical margin maximization. The key idea of LHR is to estimate the feature weights through local approximation rather than global measurement, which is typically used in existing methods. The weights obtained by our method are very robust in terms of degradation of noisy features, even those with vast dimensions. To demonstrate the performance of our method, extensive experiments involving classification tests have been carried out on both synthetic and real microarray benchmark datasets by combining the proposed technique with standard classifiers, including the support vector machine (SVM), k-nearest neighbor (KNN), hyperplane k-nearest neighbor (HKNN), linear discriminant analysis (LDA) and naive Bayes (NB). Conclusion Experiments on both synthetic and real-world datasets demonstrate the superior performance of the proposed feature selection method combined with supervised learning in three aspects: 1) high classification accuracy, 2) excellent robustness to noise and 3) good stability using to various classification algorithms. PMID:24625071

  8. On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.

    PubMed

    Yamazaki, Keisuke

    2012-07-01

    Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Sparse Substring Pattern Set Discovery Using Linear Programming Boosting

    NASA Astrophysics Data System (ADS)

    Kashihara, Kazuaki; Hatano, Kohei; Bannai, Hideo; Takeda, Masayuki

    In this paper, we consider finding a small set of substring patterns which classifies the given documents well. We formulate the problem as 1 norm soft margin optimization problem where each dimension corresponds to a substring pattern. Then we solve this problem by using LPBoost and an optimal substring discovery algorithm. Since the problem is a linear program, the resulting solution is likely to be sparse, which is useful for feature selection. We evaluate the proposed method for real data such as movie reviews.

  10. The Fisher-Markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data.

    PubMed

    Cheng, Qiang; Zhou, Hongbo; Cheng, Jie

    2011-06-01

    Selecting features for multiclass classification is a critically important task for pattern recognition and machine learning applications. Especially challenging is selecting an optimal subset of features from high-dimensional data, which typically have many more variables than observations and contain significant noise, missing components, or outliers. Existing methods either cannot handle high-dimensional data efficiently or scalably, or can only obtain local optimum instead of global optimum. Toward the selection of the globally optimal subset of features efficiently, we introduce a new selector--which we call the Fisher-Markov selector--to identify those features that are the most useful in describing essential differences among the possible groups. In particular, in this paper we present a way to represent essential discriminating characteristics together with the sparsity as an optimization objective. With properly identified measures for the sparseness and discriminativeness in possibly high-dimensional settings, we take a systematic approach for optimizing the measures to choose the best feature subset. We use Markov random field optimization techniques to solve the formulated objective functions for simultaneous feature selection. Our results are noncombinatorial, and they can achieve the exact global optimum of the objective function for some special kernels. The method is fast; in particular, it can be linear in the number of features and quadratic in the number of observations. We apply our procedure to a variety of real-world data, including mid--dimensional optical handwritten digit data set and high-dimensional microarray gene expression data sets. The effectiveness of our method is confirmed by experimental results. In pattern recognition and from a model selection viewpoint, our procedure says that it is possible to select the most discriminating subset of variables by solving a very simple unconstrained objective function which in fact can be obtained with an explicit expression.

  11. Prediction of siRNA potency using sparse logistic regression.

    PubMed

    Hu, Wei; Hu, John

    2014-06-01

    RNA interference (RNAi) can modulate gene expression at post-transcriptional as well as transcriptional levels. Short interfering RNA (siRNA) serves as a trigger for the RNAi gene inhibition mechanism, and therefore is a crucial intermediate step in RNAi. There have been extensive studies to identify the sequence characteristics of potent siRNAs. One such study built a linear model using LASSO (Least Absolute Shrinkage and Selection Operator) to measure the contribution of each siRNA sequence feature. This model is simple and interpretable, but it requires a large number of nonzero weights. We have introduced a novel technique, sparse logistic regression, to build a linear model using single-position specific nucleotide compositions which has the same prediction accuracy of the linear model based on LASSO. The weights in our new model share the same general trend as those in the previous model, but have only 25 nonzero weights out of a total 84 weights, a 54% reduction compared to the previous model. Contrary to the linear model based on LASSO, our model suggests that only a few positions are influential on the efficacy of the siRNA, which are the 5' and 3' ends and the seed region of siRNA sequences. We also employed sparse logistic regression to build a linear model using dual-position specific nucleotide compositions, a task LASSO is not able to accomplish well due to its high dimensional nature. Our results demonstrate the superiority of sparse logistic regression as a technique for both feature selection and regression over LASSO in the context of siRNA design.

  12. A Robust Linear Feature-Based Procedure for Automated Registration of Point Clouds

    PubMed Central

    Poreba, Martyna; Goulette, François

    2015-01-01

    With the variety of measurement techniques available on the market today, fusing multi-source complementary information into one dataset is a matter of great interest. Target-based, point-based and feature-based methods are some of the approaches used to place data in a common reference frame by estimating its corresponding transformation parameters. This paper proposes a new linear feature-based method to perform accurate registration of point clouds, either in 2D or 3D. A two-step fast algorithm called Robust Line Matching and Registration (RLMR), which combines coarse and fine registration, was developed. The initial estimate is found from a triplet of conjugate line pairs, selected by a RANSAC algorithm. Then, this transformation is refined using an iterative optimization algorithm. Conjugates of linear features are identified with respect to a similarity metric representing a line-to-line distance. The efficiency and robustness to noise of the proposed method are evaluated and discussed. The algorithm is valid and ensures valuable results when pre-aligned point clouds with the same scale are used. The studies show that the matching accuracy is at least 99.5%. The transformation parameters are also estimated correctly. The error in rotation is better than 2.8% full scale, while the translation error is less than 12.7%. PMID:25594589

  13. A polynomial based model for cell fate prediction in human diseases.

    PubMed

    Ma, Lichun; Zheng, Jie

    2017-12-21

    Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.

  14. Machinery Bearing Fault Diagnosis Using Variational Mode Decomposition and Support Vector Machine as a Classifier

    NASA Astrophysics Data System (ADS)

    Rama Krishna, K.; Ramachandran, K. I.

    2018-02-01

    Crack propagation is a major cause of failure in rotating machines. It adversely affects the productivity, safety, and the machining quality. Hence, detecting the crack’s severity accurately is imperative for the predictive maintenance of such machines. Fault diagnosis is an established concept in identifying the faults, for observing the non-linear behaviour of the vibration signals at various operating conditions. In this work, we find the classification efficiencies for both original and the reconstructed vibrational signals. The reconstructed signals are obtained using Variational Mode Decomposition (VMD), by splitting the original signal into three intrinsic mode functional components and framing them accordingly. Feature extraction, feature selection and feature classification are the three phases in obtaining the classification efficiencies. All the statistical features from the original signals and reconstructed signals are found out in feature extraction process individually. A few statistical parameters are selected in feature selection process and are classified using the SVM classifier. The obtained results show the best parameters and appropriate kernel in SVM classifier for detecting the faults in bearings. Hence, we conclude that better results were obtained by VMD and SVM process over normal process using SVM. This is owing to denoising and filtering the raw vibrational signals.

  15. Temporal BYY encoding, Markovian state spaces, and space dimension determination.

    PubMed

    Xu, Lei

    2004-09-01

    As a complementary to those temporal coding approaches of the current major stream, this paper aims at the Markovian state space temporal models from the perspective of the temporal Bayesian Ying-Yang (BYY) learning with both new insights and new results on not only the discrete state featured Hidden Markov model and extensions but also the continuous state featured linear state spaces and extensions, especially with a new learning mechanism that makes selection of the state number or the dimension of state space either automatically during adaptive learning or subsequently after learning via model selection criteria obtained from this mechanism. Experiments are demonstrated to show how the proposed approach works.

  16. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.

    PubMed

    Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo

    2015-08-01

    Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.

  17. Alzheimer's Disease Detection by Pseudo Zernike Moment and Linear Regression Classification.

    PubMed

    Wang, Shui-Hua; Du, Sidan; Zhang, Yin; Phillips, Preetha; Wu, Le-Nan; Chen, Xian-Qing; Zhang, Yu-Dong

    2017-01-01

    This study presents an improved method based on "Gorji et al. Neuroscience. 2015" by introducing a relatively new classifier-linear regression classification. Our method selects one axial slice from 3D brain image, and employed pseudo Zernike moment with maximum order of 15 to extract 256 features from each image. Finally, linear regression classification was harnessed as the classifier. The proposed approach obtains an accuracy of 97.51%, a sensitivity of 96.71%, and a specificity of 97.73%. Our method performs better than Gorji's approach and five other state-of-the-art approaches. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Identification of important image features for pork and turkey ham classification using colour and wavelet texture features and genetic selection.

    PubMed

    Jackman, Patrick; Sun, Da-Wen; Allen, Paul; Valous, Nektarios A; Mendoza, Fernando; Ward, Paddy

    2010-04-01

    A method to discriminate between various grades of pork and turkey ham was developed using colour and wavelet texture features. Image analysis methods originally developed for predicting the palatability of beef were applied to rapidly identify the ham grade. With high quality digital images of 50-94 slices per ham it was possible to identify the greyscale that best expressed the differences between the various ham grades. The best 10 discriminating image features were then found with a genetic algorithm. Using the best 10 image features, simple linear discriminant analysis models produced 100% correct classifications for both pork and turkey on both calibration and validation sets. 2009 Elsevier Ltd. All rights reserved.

  19. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology

    PubMed Central

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767

  20. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.

    PubMed

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.

  1. Feature and Region Selection for Visual Learning.

    PubMed

    Zhao, Ji; Wang, Liantao; Cabral, Ricardo; De la Torre, Fernando

    2016-03-01

    Visual learning problems, such as object classification and action recognition, are typically approached using extensions of the popular bag-of-words (BoWs) model. Despite its great success, it is unclear what visual features the BoW model is learning. Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: 1) our approach accommodates non-linear additive kernels, such as the popular χ(2) and intersection kernel; 2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; 3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; and 4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach.

  2. Hyperspectral image classification based on local binary patterns and PCANet

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang

    2018-04-01

    Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.

  3. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.

  4. Harmony Search as a Powerful Tool for Feature Selection in QSPR Study of the Drugs Lipophilicity.

    PubMed

    Bahadori, Behnoosh; Atabati, Morteza

    2017-01-01

    Aims & Scope: Lipophilicity represents one of the most studied and most frequently used fundamental physicochemical properties. In the present work, harmony search (HS) algorithm is suggested to feature selection in quantitative structure-property relationship (QSPR) modeling to predict lipophilicity of neutral, acidic, basic and amphotheric drugs that were determined by UHPLC. Harmony search is a music-based metaheuristic optimization algorithm. It was affected by the observation that the aim of music is to search for a perfect state of harmony. Semi-empirical quantum-chemical calculations at AM1 level were used to find the optimum 3D geometry of the studied molecules and variant descriptors (1497 descriptors) were calculated by the Dragon software. The selected descriptors by harmony search algorithm (9 descriptors) were applied for model development using multiple linear regression (MLR). In comparison with other feature selection methods such as genetic algorithm and simulated annealing, harmony search algorithm has better results. The root mean square error (RMSE) with and without leave-one out cross validation (LOOCV) were obtained 0.417 and 0.302, respectively. The results were compared with those obtained from the genetic algorithm and simulated annealing methods and it showed that the HS is a helpful tool for feature selection with fine performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A Feature-Free 30-Disease Pathological Brain Detection System by Linear Regression Classifier.

    PubMed

    Chen, Yi; Shao, Ying; Yan, Jie; Yuan, Ti-Fei; Qu, Yanwen; Lee, Elizabeth; Wang, Shuihua

    2017-01-01

    Alzheimer's disease patients are increasing rapidly every year. Scholars tend to use computer vision methods to develop automatic diagnosis system. (Background) In 2015, Gorji et al. proposed a novel method using pseudo Zernike moment. They tested four classifiers: learning vector quantization neural network, pattern recognition neural network trained by Levenberg-Marquardt, by resilient backpropagation, and by scaled conjugate gradient. This study presents an improved method by introducing a relatively new classifier-linear regression classification. Our method selects one axial slice from 3D brain image, and employed pseudo Zernike moment with maximum order of 15 to extract 256 features from each image. Finally, linear regression classification was harnessed as the classifier. The proposed approach obtains an accuracy of 97.51%, a sensitivity of 96.71%, and a specificity of 97.73%. Our method performs better than Gorji's approach and five other state-of-the-art approaches. Therefore, it can be used to detect Alzheimer's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Exponential Sensitivity and its Cost in Quantum Physics

    PubMed Central

    Gilyén, András; Kiss, Tamás; Jex, Igor

    2016-01-01

    State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed. PMID:26861076

  7. Exponential Sensitivity and its Cost in Quantum Physics.

    PubMed

    Gilyén, András; Kiss, Tamás; Jex, Igor

    2016-02-10

    State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed.

  8. Integrative approach for inference of gene regulatory networks using lasso-based random featuring and application to psychiatric disorders.

    PubMed

    Kim, Dongchul; Kang, Mingon; Biswas, Ashis; Liu, Chunyu; Gao, Jean

    2016-08-10

    Inferring gene regulatory networks is one of the most interesting research areas in the systems biology. Many inference methods have been developed by using a variety of computational models and approaches. However, there are two issues to solve. First, depending on the structural or computational model of inference method, the results tend to be inconsistent due to innately different advantages and limitations of the methods. Therefore the combination of dissimilar approaches is demanded as an alternative way in order to overcome the limitations of standalone methods through complementary integration. Second, sparse linear regression that is penalized by the regularization parameter (lasso) and bootstrapping-based sparse linear regression methods were suggested in state of the art methods for network inference but they are not effective for a small sample size data and also a true regulator could be missed if the target gene is strongly affected by an indirect regulator with high correlation or another true regulator. We present two novel network inference methods based on the integration of three different criteria, (i) z-score to measure the variation of gene expression from knockout data, (ii) mutual information for the dependency between two genes, and (iii) linear regression-based feature selection. Based on these criterion, we propose a lasso-based random feature selection algorithm (LARF) to achieve better performance overcoming the limitations of bootstrapping as mentioned above. In this work, there are three main contributions. First, our z score-based method to measure gene expression variations from knockout data is more effective than similar criteria of related works. Second, we confirmed that the true regulator selection can be effectively improved by LARF. Lastly, we verified that an integrative approach can clearly outperform a single method when two different methods are effectively jointed. In the experiments, our methods were validated by outperforming the state of the art methods on DREAM challenge data, and then LARF was applied to inferences of gene regulatory network associated with psychiatric disorders.

  9. A cross-sectional electromyography assessment in linear scleroderma patients

    PubMed Central

    2014-01-01

    Background Muscle atrophy and asymmetric extremity growth is a common feature of linear scleroderma (LS). Extra-cutaneous features are also common and primary neurologic involvement, with sympathetic dysfunction, may have a pathogenic role in subcutaneous and muscle atrophy. The aim was investigate nerve conduction and muscle involvement by electromyography in pediatric patients with LS. Methods We conducted a retrospective review of LS pediatric patients who had regular follow up at a single pediatric center from 1997–2013. We selected participants if they had consistently good follow up and enrolled consecutive patients in the study. We examined LS photos as well as clinical, serological and imaging findings. Electromyograms (EMG) were performed with bilateral symmetric technique, using surface and needle electrodes, comparing the affected side with the contralateral side. Abnormal muscle activity was categorized as a myopathic or neurogenic pattern. Results Nine LS subjects were selected for EMG, 2 with Parry-Romberg/Hemifacial Atrophy Syndrome, 7 linear scleroderma of an extremity and 2 with mixed forms (linear and morphea). Electromyogram analysis indicated that all but one had asymmetric myopathic pattern in muscles underlying the linear streaks. Motor and sensory nerve conduction was also evaluated in upper and lower limbs and one presented a neurogenic pattern. Masticatory muscle testing showed a myopathic pattern in the atrophic face of 2 cases with head and face involvement. Conclusion In our small series of LS patients, we found a surprising amount of muscle dysfunction by EMG. The muscle involvement may be possibly related to a secondary peripheral nerve involvement due to LS inflammation and fibrosis. Further collaborative studies to confirm these findings are needed. PMID:25053924

  10. Optimal subset selection of primary sequence features using the genetic algorithm for thermophilic proteins identification.

    PubMed

    Wang, LiQiang; Li, CuiFeng

    2014-10-01

    A genetic algorithm (GA) coupled with multiple linear regression (MLR) was used to extract useful features from amino acids and g-gap dipeptides for distinguishing between thermophilic and non-thermophilic proteins. The method was trained by a benchmark dataset of 915 thermophilic and 793 non-thermophilic proteins. The method reached an overall accuracy of 95.4 % in a Jackknife test using nine amino acids, 38 0-gap dipeptides and 29 1-gap dipeptides. The accuracy as a function of protein size ranged between 85.8 and 96.9 %. The overall accuracies of three independent tests were 93, 93.4 and 91.8 %. The observed results of detecting thermophilic proteins suggest that the GA-MLR approach described herein should be a powerful method for selecting features that describe thermostabile machines and be an aid in the design of more stable proteins.

  11. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification.

    PubMed

    Fan, Jianqing; Feng, Yang; Jiang, Jiancheng; Tong, Xin

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.

  12. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification

    PubMed Central

    Feng, Yang; Jiang, Jiancheng; Tong, Xin

    2015-01-01

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing. PMID:27185970

  13. Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification.

    PubMed

    Wang, Yubo; Veluvolu, Kalyana C

    2017-01-01

    The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of these techniques in two channel settings, its application in multiple-channel EEG is not straightforward and challenging. As more channels are available, a spatial filter will be required to eliminate the noise and preserve the required useful information. Moreover, multiple-channel EEG also adds the high dimensionality to the frequency feature space. Feature selection will be required to stabilize the performance of the classifier. In this paper, we develop a new method based on Evolutionary Algorithm (EA) to solve these two problems simultaneously. The real-valued EA encodes both the spatial filter estimates and the feature selection into its solution and optimizes it with respect to the classification error. Three Fourier based designs are tested in this paper. Our results show that the combination of Fourier based method with covariance matrix adaptation evolution strategy (CMA-ES) has the best overall performance.

  14. Detection of stress/anxiety state from EEG features during video watching.

    PubMed

    Giannakakis, Giorgos; Grigoriadis, Dimitris; Tsiknakis, Manolis

    2015-01-01

    This paper studies the effect of stress/anxiety states on EEG signals during video sessions. The levels of arousal and valence that are induced to each subject while watching each video are self rated. These levels are mapped in stress and relaxed states and subjects that fufill criteria of adequate anxiety/stress scale were chosen leading to a subset of 18 subjects. Then, temporal, spectral and non linear EEG features are evaluated for being able to represent accurately states under investigation. Feature selection schemes choose the most significant of them in order to provide increased discrimination ability between relaxed and anxiety/stress states.

  15. Revealing metabolite biomarkers for acupuncture treatment by linear programming based feature selection.

    PubMed

    Wang, Yong; Wu, Qiao-Feng; Chen, Chen; Wu, Ling-Yun; Yan, Xian-Zhong; Yu, Shu-Guang; Zhang, Xiang-Sun; Liang, Fan-Rong

    2012-01-01

    Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Our result demonstrates that metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. Comparing with other existing methods, LPFS shows better performance to select a small set of key molecules. In addition, LPFS is a general methodology and can be applied to other high-dimensional data analysis, for example cancer genomics.

  16. Revealing metabolite biomarkers for acupuncture treatment by linear programming based feature selection

    PubMed Central

    2012-01-01

    Background Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. Results In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Conclusions Our result demonstrates that metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. Comparing with other existing methods, LPFS shows better performance to select a small set of key molecules. In addition, LPFS is a general methodology and can be applied to other high-dimensional data analysis, for example cancer genomics. PMID:23046877

  17. Map showing the association of linear features with metallic mines and prospects in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Rowan, L.C.; Trautwein, C.M.; Purdy, T.L.

    1990-01-01

    This study was undertaken as part of the Conterminous U.S. Mineral Assessment Program (CUSMAP). The purpose of the study was to map linear features on Landsat Multispectral Scanner (MSS) images and a proprietary side-looking airborne radar (SLAR) image mosaic and to determine the spatial relationship between these linear features and the locations of metallic mineral occurrE-nces. The results show a close spatial association of linear features with metallic mineral occurrences in parts of the quadrangle, but in other areas the association is less well defined. Linear features are defined as distinct linear and slightly curvilinear elements mappable on MSS and SLAR images. The features generally represent linear segments of streams, ridges, and terminations of topographic features; however, they may also represent tonal patterns that are related to variations in lithology and vegetation. Most linear features in the Butte quadrangle probably represent underlying structural elements, such as fractures (with and without displacement), dikes, and alignment of fold axes. However, in areas underlain by sedimentary rocks, some of the linear features may reflect bedding traces. This report describes the geologic setting of the Butte quadrangle, the procedures used in mapping and analyzing the linear features, and the results of the study. Relationship of these features to placer and non-metal deposits were not analyzed in this study and are not discussed in this report.

  18. High Dimensional Classification Using Features Annealed Independence Rules.

    PubMed

    Fan, Jianqing; Fan, Yingying

    2008-01-01

    Classification using high-dimensional features arises frequently in many contemporary statistical studies such as tumor classification using microarray or other high-throughput data. The impact of dimensionality on classifications is largely poorly understood. In a seminal paper, Bickel and Levina (2004) show that the Fisher discriminant performs poorly due to diverging spectra and they propose to use the independence rule to overcome the problem. We first demonstrate that even for the independence classification rule, classification using all the features can be as bad as the random guessing due to noise accumulation in estimating population centroids in high-dimensional feature space. In fact, we demonstrate further that almost all linear discriminants can perform as bad as the random guessing. Thus, it is paramountly important to select a subset of important features for high-dimensional classification, resulting in Features Annealed Independence Rules (FAIR). The conditions under which all the important features can be selected by the two-sample t-statistic are established. The choice of the optimal number of features, or equivalently, the threshold value of the test statistics are proposed based on an upper bound of the classification error. Simulation studies and real data analysis support our theoretical results and demonstrate convincingly the advantage of our new classification procedure.

  19. Analysis of blood pressure signal in patients with different ventricular ejection fraction using linear and non-linear methods.

    PubMed

    Arcentales, Andres; Rivera, Patricio; Caminal, Pere; Voss, Andreas; Bayes-Genis, Antonio; Giraldo, Beatriz F

    2016-08-01

    Changes in the left ventricle function produce alternans in the hemodynamic and electric behavior of the cardiovascular system. A total of 49 cardiomyopathy patients have been studied based on the blood pressure signal (BP), and were classified according to the left ventricular ejection fraction (LVEF) in low risk (LR: LVEF>35%, 17 patients) and high risk (HR: LVEF≤35, 32 patients) groups. We propose to characterize these patients using a linear and a nonlinear methods, based on the spectral estimation and the recurrence plot, respectively. From BP signal, we extracted each systolic time interval (STI), upward systolic slope (BPsl), and the difference between systolic and diastolic BP, defined as pulse pressure (PP). After, the best subset of parameters were obtained through the sequential feature selection (SFS) method. According to the results, the best classification was obtained using a combination of linear and nonlinear features from STI and PP parameters. For STI, the best combination was obtained considering the frequency peak and the diagonal structures of RP, with an area under the curve (AUC) of 79%. The same results were obtained when comparing PP values. Consequently, the use of combined linear and nonlinear parameters could improve the risk stratification of cardiomyopathy patients.

  20. Initial development of a computer-aided diagnosis tool for solitary pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Catarious, David M., Jr.; Baydush, Alan H.; Floyd, Carey E., Jr.

    2001-07-01

    This paper describes the development of a computer-aided diagnosis (CAD) tool for solitary pulmonary nodules. This CAD tool is built upon physically meaningful features that were selected because of their relevance to shape and texture. These features included a modified version of the Hotelling statistic (HS), a channelized HS, three measures of fractal properties, two measures of spicularity, and three manually measured shape features. These features were measured from a difficult database consisting of 237 regions of interest (ROIs) extracted from digitized chest radiographs. The center of each 256x256 pixel ROI contained a suspicious lesion which was sent to follow-up by a radiologist and whose nature was later clinically determined. Linear discriminant analysis (LDA) was used to search the feature space via sequential forward search using percentage correct as the performance metric. An optimized feature subset, selected for the highest accuracy, was then fed into a three layer artificial neural network (ANN). The ANN's performance was assessed by receiver operating characteristic (ROC) analysis. A leave-one-out testing/training methodology was employed for the ROC analysis. The performance of this system is competitive with that of three radiologists on the same database.

  1. Automated method for measuring the extent of selective logging damage with airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Melendy, L.; Hagen, S. C.; Sullivan, F. B.; Pearson, T. R. H.; Walker, S. M.; Ellis, P.; Kustiyo; Sambodo, Ari Katmoko; Roswintiarti, O.; Hanson, M. A.; Klassen, A. W.; Palace, M. W.; Braswell, B. H.; Delgado, G. M.

    2018-05-01

    Selective logging has an impact on the global carbon cycle, as well as on the forest micro-climate, and longer-term changes in erosion, soil and nutrient cycling, and fire susceptibility. Our ability to quantify these impacts is dependent on methods and tools that accurately identify the extent and features of logging activity. LiDAR-based measurements of these features offers significant promise. Here, we present a set of algorithms for automated detection and mapping of critical features associated with logging - roads/decks, skid trails, and gaps - using commercial airborne LiDAR data as input. The automated algorithm was applied to commercial LiDAR data collected over two logging concessions in Kalimantan, Indonesia in 2014. The algorithm results were compared to measurements of the logging features collected in the field soon after logging was complete. The automated algorithm-mapped road/deck and skid trail features match closely with features measured in the field, with agreement levels ranging from 69% to 99% when adjusting for GPS location error. The algorithm performed most poorly with gaps, which, by their nature, are variable due to the unpredictable impact of tree fall versus the linear and regular features directly created by mechanical means. Overall, the automated algorithm performs well and offers significant promise as a generalizable tool useful to efficiently and accurately capture the effects of selective logging, including the potential to distinguish reduced impact logging from conventional logging.

  2. Computing symmetrical strength of N-grams: a two pass filtering approach in automatic classification of text documents.

    PubMed

    Agnihotri, Deepak; Verma, Kesari; Tripathi, Priyanka

    2016-01-01

    The contiguous sequences of the terms (N-grams) in the documents are symmetrically distributed among different classes. The symmetrical distribution of the N-Grams raises uncertainty in the belongings of the N-Grams towards the class. In this paper, we focused on the selection of most discriminating N-Grams by reducing the effects of symmetrical distribution. In this context, a new text feature selection method named as the symmetrical strength of the N-Grams (SSNG) is proposed using a two pass filtering based feature selection (TPF) approach. Initially, in the first pass of the TPF, the SSNG method chooses various informative N-Grams from the entire extracted N-Grams of the corpus. Subsequently, in the second pass the well-known Chi Square (χ(2)) method is being used to select few most informative N-Grams. Further, to classify the documents the two standard classifiers Multinomial Naive Bayes and Linear Support Vector Machine have been applied on the ten standard text data sets. In most of the datasets, the experimental results state the performance and success rate of SSNG method using TPF approach is superior to the state-of-the-art methods viz. Mutual Information, Information Gain, Odds Ratio, Discriminating Feature Selection and χ(2).

  3. Combining the genetic algorithm and successive projection algorithm for the selection of feature wavelengths to evaluate exudative characteristics in frozen-thawed fish muscle.

    PubMed

    Cheng, Jun-Hu; Sun, Da-Wen; Pu, Hongbin

    2016-04-15

    The potential use of feature wavelengths for predicting drip loss in grass carp fish, as affected by being frozen at -20°C for 24 h and thawed at 4°C for 1, 2, 4, and 6 days, was investigated. Hyperspectral images of frozen-thawed fish were obtained and their corresponding spectra were extracted. Least-squares support vector machine and multiple linear regression (MLR) models were established using five key wavelengths, selected by combining a genetic algorithm and successive projections algorithm, and this showed satisfactory performance in drip loss prediction. The MLR model with a determination coefficient of prediction (R(2)P) of 0.9258, and lower root mean square error estimated by a prediction (RMSEP) of 1.12%, was applied to transfer each pixel of the image and generate the distribution maps of exudation changes. The results confirmed that it is feasible to identify the feature wavelengths using variable selection methods and chemometric analysis for developing on-line multispectral imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. QSRR modeling for the chromatographic retention behavior of some β-lactam antibiotics using forward and firefly variable selection algorithms coupled with multiple linear regression.

    PubMed

    Fouad, Marwa A; Tolba, Enas H; El-Shal, Manal A; El Kerdawy, Ahmed M

    2018-05-11

    The justified continuous emerging of new β-lactam antibiotics provokes the need for developing suitable analytical methods that accelerate and facilitate their analysis. A face central composite experimental design was adopted using different levels of phosphate buffer pH, acetonitrile percentage at zero time and after 15 min in a gradient program to obtain the optimum chromatographic conditions for the elution of 31 β-lactam antibiotics. Retention factors were used as the target property to build two QSRR models utilizing the conventional forward selection and the advanced nature-inspired firefly algorithm for descriptor selection, coupled with multiple linear regression. The obtained models showed high performance in both internal and external validation indicating their robustness and predictive ability. Williams-Hotelling test and student's t-test showed that there is no statistical significant difference between the models' results. Y-randomization validation showed that the obtained models are due to significant correlation between the selected molecular descriptors and the analytes' chromatographic retention. These results indicate that the generated FS-MLR and FFA-MLR models are showing comparable quality on both the training and validation levels. They also gave comparable information about the molecular features that influence the retention behavior of β-lactams under the current chromatographic conditions. We can conclude that in some cases simple conventional feature selection algorithm can be used to generate robust and predictive models comparable to that are generated using advanced ones. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Noise Reduction in Brainwaves by Using Both EEG Signals and Frontal Viewing Camera Images

    PubMed Central

    Bang, Jae Won; Choi, Jong-Suk; Park, Kang Ryoung

    2013-01-01

    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have been used in various applications, including human–computer interfaces, diagnosis of brain diseases, and measurement of cognitive status. However, EEG signals can be contaminated with noise caused by user's head movements. Therefore, we propose a new method that combines an EEG acquisition device and a frontal viewing camera to isolate and exclude the sections of EEG data containing these noises. This method is novel in the following three ways. First, we compare the accuracies of detecting head movements based on the features of EEG signals in the frequency and time domains and on the motion features of images captured by the frontal viewing camera. Second, the features of EEG signals in the frequency domain and the motion features captured by the frontal viewing camera are selected as optimal ones. The dimension reduction of the features and feature selection are performed using linear discriminant analysis. Third, the combined features are used as inputs to support vector machine (SVM), which improves the accuracy in detecting head movements. The experimental results show that the proposed method can detect head movements with an average error rate of approximately 3.22%, which is smaller than that of other methods. PMID:23669713

  6. PREDICTION OF MALIGNANT BREAST LESIONS FROM MRI FEATURES: A COMPARISON OF ARTIFICIAL NEURAL NETWORK AND LOGISTIC REGRESSION TECHNIQUES

    PubMed Central

    McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-01-01

    Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817

  7. Effect of finite sample size on feature selection and classification: a simulation study.

    PubMed

    Way, Ted W; Sahiner, Berkman; Hadjiiski, Lubomir M; Chan, Heang-Ping

    2010-02-01

    The small number of samples available for training and testing is often the limiting factor in finding the most effective features and designing an optimal computer-aided diagnosis (CAD) system. Training on a limited set of samples introduces bias and variance in the performance of a CAD system relative to that trained with an infinite sample size. In this work, the authors conducted a simulation study to evaluate the performances of various combinations of classifiers and feature selection techniques and their dependence on the class distribution, dimensionality, and the training sample size. The understanding of these relationships will facilitate development of effective CAD systems under the constraint of limited available samples. Three feature selection techniques, the stepwise feature selection (SFS), sequential floating forward search (SFFS), and principal component analysis (PCA), and two commonly used classifiers, Fisher's linear discriminant analysis (LDA) and support vector machine (SVM), were investigated. Samples were drawn from multidimensional feature spaces of multivariate Gaussian distributions with equal or unequal covariance matrices and unequal means, and with equal covariance matrices and unequal means estimated from a clinical data set. Classifier performance was quantified by the area under the receiver operating characteristic curve Az. The mean Az values obtained by resubstitution and hold-out methods were evaluated for training sample sizes ranging from 15 to 100 per class. The number of simulated features available for selection was chosen to be 50, 100, and 200. It was found that the relative performance of the different combinations of classifier and feature selection method depends on the feature space distributions, the dimensionality, and the available training sample sizes. The LDA and SVM with radial kernel performed similarly for most of the conditions evaluated in this study, although the SVM classifier showed a slightly higher hold-out performance than LDA for some conditions and vice versa for other conditions. PCA was comparable to or better than SFS and SFFS for LDA at small samples sizes, but inferior for SVM with polynomial kernel. For the class distributions simulated from clinical data, PCA did not show advantages over the other two feature selection methods. Under this condition, the SVM with radial kernel performed better than the LDA when few training samples were available, while LDA performed better when a large number of training samples were available. None of the investigated feature selection-classifier combinations provided consistently superior performance under the studied conditions for different sample sizes and feature space distributions. In general, the SFFS method was comparable to the SFS method while PCA may have an advantage for Gaussian feature spaces with unequal covariance matrices. The performance of the SVM with radial kernel was better than, or comparable to, that of the SVM with polynomial kernel under most conditions studied.

  8. Recovery of sparse translation-invariant signals with continuous basis pursuit

    PubMed Central

    Ekanadham, Chaitanya; Tranchina, Daniel; Simoncelli, Eero

    2013-01-01

    We consider the problem of decomposing a signal into a linear combination of features, each a continuously translated version of one of a small set of elementary features. Although these constituents are drawn from a continuous family, most current signal decomposition methods rely on a finite dictionary of discrete examples selected from this family (e.g., shifted copies of a set of basic waveforms), and apply sparse optimization methods to select and solve for the relevant coefficients. Here, we generate a dictionary that includes auxiliary interpolation functions that approximate translates of features via adjustment of their coefficients. We formulate a constrained convex optimization problem, in which the full set of dictionary coefficients represents a linear approximation of the signal, the auxiliary coefficients are constrained so as to only represent translated features, and sparsity is imposed on the primary coefficients using an L1 penalty. The basis pursuit denoising (BP) method may be seen as a special case, in which the auxiliary interpolation functions are omitted, and we thus refer to our methodology as continuous basis pursuit (CBP). We develop two implementations of CBP for a one-dimensional translation-invariant source, one using a first-order Taylor approximation, and another using a form of trigonometric spline. We examine the tradeoff between sparsity and signal reconstruction accuracy in these methods, demonstrating empirically that trigonometric CBP substantially outperforms Taylor CBP, which in turn offers substantial gains over ordinary BP. In addition, the CBP bases can generally achieve equally good or better approximations with much coarser sampling than BP, leading to a reduction in dictionary dimensionality. PMID:24352562

  9. Exploration for fractured petroleum reservoirs using radar/Landsat merge combinations

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W.; Borengasser, M.; Tolman, D.; Elachi, C.

    1981-01-01

    Since fractures are commonly propagated upward and reflected at the earth's surface as subtle linears, detection of these surface features is extremely important in many phases of petroleum exploration and development. To document the usefulness of microwave analysis for petroleum exploration, the Arkansas part of the Arkoma basin is selected as a prime test site. The research plan involves comparing the aircraft microwave imagery and Landsat imagery in an area where significant subsurface borehole geophysical data are available. In the northern Arkoma basin, a positive correlation between the number of linears in a given area and production from cherty carbonate strata is found. In the southern part of the basin, little relationship is discernible between surface structure and gas production, and no correlation is found between gas productivity and linear proximity or linear density as determined from remote sensor data.

  10. Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Jelinek, Herbert F.; Cree, Michael J.; Leandro, Jorge J. G.; Soares, João V. B.; Cesar, Roberto M.; Luckie, A.

    2007-05-01

    Proliferative diabetic retinopathy can lead to blindness. However, early recognition allows appropriate, timely intervention. Fluorescein-labeled retinal blood vessels of 27 digital images were automatically segmented using the Gabor wavelet transform and classified using traditional features such as area, perimeter, and an additional five morphological features based on the derivatives-of-Gaussian wavelet-derived data. Discriminant analysis indicated that traditional features do not detect early proliferative retinopathy. The best single feature for discrimination was the wavelet curvature with an area under the curve (AUC) of 0.76. Linear discriminant analysis with a selection of six features achieved an AUC of 0.90 (0.73-0.97, 95% confidence interval). The wavelet method was able to segment retinal blood vessels and classify the images according to the presence or absence of proliferative retinopathy.

  11. Systematic feature selection improves accuracy of methylation-based forensic age estimation in Han Chinese males.

    PubMed

    Feng, Lei; Peng, Fuduan; Li, Shanfei; Jiang, Li; Sun, Hui; Ji, Anquan; Zeng, Changqing; Li, Caixia; Liu, Fan

    2018-03-23

    Estimating individual age from biomarkers may provide key information facilitating forensic investigations. Recent progress has shown DNA methylation at age-associated CpG sites as the most informative biomarkers for estimating the individual age of an unknown donor. Optimal feature selection plays a critical role in determining the performance of the final prediction model. In this study we investigate methylation levels at 153 age-associated CpG sites from 21 previously reported genomic regions using the EpiTYPER system for their predictive power on individual age in 390 Han Chinese males ranging from 15 to 75 years of age. We conducted a systematic feature selection using a stepwise backward multiple linear regression analysis as well as an exhaustive searching algorithm. Both approaches identified the same subset of 9 CpG sites, which in linear combination provided the optimal model fitting with mean absolute deviation (MAD) of 2.89 years of age and explainable variance (R 2 ) of 0.92. The final model was validated in two independent Han Chinese male samples (validation set 1, N = 65, MAD = 2.49, R 2  = 0.95, and validation set 2, N = 62, MAD = 3.36, R 2  = 0.89). Other competing models such as support vector machine and artificial neural network did not outperform the linear model to any noticeable degree. The validation set 1 was additionally analyzed using Pyrosequencing technology for cross-platform validation and was termed as validation set 3. Directly applying our model, in which the methylation levels were detected by the EpiTYPER system, to the data from pyrosequencing technology showed, however, less accurate results in terms of MAD (validation set 3, N = 65 Han Chinese males, MAD = 4.20, R 2  = 0.93), suggesting the presence of a batch effect between different data generation platforms. This batch effect could be partially overcome by a z-score transformation (MAD = 2.76, R 2  = 0.93). Overall, our systematic feature selection identified 9 CpG sites as the optimal subset for forensic age estimation and the prediction model consisting of these 9 markers demonstrated high potential in forensic practice. An age estimator implementing our prediction model allowing missing markers is freely available at http://liufan.big.ac.cn/AgePrediction. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. What automated age estimation of hand and wrist MRI data tells us about skeletal maturation in male adolescents.

    PubMed

    Urschler, Martin; Grassegger, Sabine; Štern, Darko

    2015-01-01

    Age estimation of individuals is important in human biology and has various medical and forensic applications. Recent interest in MR-based methods aims to investigate alternatives for established methods involving ionising radiation. Automatic, software-based methods additionally promise improved estimation objectivity. To investigate how informative automatically selected image features are regarding their ability to discriminate age, by exploring a recently proposed software-based age estimation method for MR images of the left hand and wrist. One hundred and two MR datasets of left hand images are used to evaluate age estimation performance, consisting of bone and epiphyseal gap volume localisation, computation of one age regression model per bone mapping image features to age and fusion of individual bone age predictions to a final age estimate. Quantitative results of the software-based method show an age estimation performance with a mean absolute difference of 0.85 years (SD = 0.58 years) to chronological age, as determined by a cross-validation experiment. Qualitatively, it is demonstrated how feature selection works and which image features of skeletal maturation are automatically chosen to model the non-linear regression function. Feasibility of automatic age estimation based on MRI data is shown and selected image features are found to be informative for describing anatomical changes during physical maturation in male adolescents.

  13. The Emotion Recognition System Based on Autoregressive Model and Sequential Forward Feature Selection of Electroencephalogram Signals

    PubMed Central

    Hatamikia, Sepideh; Maghooli, Keivan; Nasrabadi, Ali Motie

    2014-01-01

    Electroencephalogram (EEG) is one of the useful biological signals to distinguish different brain diseases and mental states. In recent years, detecting different emotional states from biological signals has been merged more attention by researchers and several feature extraction methods and classifiers are suggested to recognize emotions from EEG signals. In this research, we introduce an emotion recognition system using autoregressive (AR) model, sequential forward feature selection (SFS) and K-nearest neighbor (KNN) classifier using EEG signals during emotional audio-visual inductions. The main purpose of this paper is to investigate the performance of AR features in the classification of emotional states. To achieve this goal, a distinguished AR method (Burg's method) based on Levinson-Durbin's recursive algorithm is used and AR coefficients are extracted as feature vectors. In the next step, two different feature selection methods based on SFS algorithm and Davies–Bouldin index are used in order to decrease the complexity of computing and redundancy of features; then, three different classifiers include KNN, quadratic discriminant analysis and linear discriminant analysis are used to discriminate two and three different classes of valence and arousal levels. The proposed method is evaluated with EEG signals of available database for emotion analysis using physiological signals, which are recorded from 32 participants during 40 1 min audio visual inductions. According to the results, AR features are efficient to recognize emotional states from EEG signals, and KNN performs better than two other classifiers in discriminating of both two and three valence/arousal classes. The results also show that SFS method improves accuracies by almost 10-15% as compared to Davies–Bouldin based feature selection. The best accuracies are %72.33 and %74.20 for two classes of valence and arousal and %61.10 and %65.16 for three classes, respectively. PMID:25298928

  14. Development of multiple source data processing for structural analysis at a regional scale. [digital remote sensing in geology

    NASA Technical Reports Server (NTRS)

    Carrere, Veronique

    1990-01-01

    Various image processing techniques developed for enhancement and extraction of linear features, of interest to the structural geologist, from digital remote sensing, geologic, and gravity data, are presented. These techniques include: (1) automatic detection of linear features and construction of rose diagrams from Landsat MSS data; (2) enhancement of principal structural directions using selective filters on Landsat MSS, Spacelab panchromatic, and HCMM NIR data; (3) directional filtering of Spacelab panchromatic data using Fast Fourier Transform; (4) detection of linear/elongated zones of high thermal gradient from thermal infrared data; and (5) extraction of strong gravimetric gradients from digitized Bouguer anomaly maps. Processing results can be compared to each other through the use of a geocoded database to evaluate the structural importance of each lineament according to its depth: superficial structures in the sedimentary cover, or deeper ones affecting the basement. These image processing techniques were successfully applied to achieve a better understanding of the transition between Provence and the Pyrenees structural blocks, in southeastern France, for an improved structural interpretation of the Mediterranean region.

  15. Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils

    PubMed Central

    Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Fei, Teng; Wang, Junjie; Wu, Guofeng

    2017-01-01

    This study investigated the abilities of pre-processing, feature selection and machine-learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative scatter correction, standard normal variate, and mean centering. Principle component analysis (PCA) and the RELIEF algorithm were used to extract spectral features. Machine-learning methods, including random forests (RF), artificial neural network (ANN), radial basis function- and linear function- based support vector machine (RBF- and LF-SVM) were employed for establishing diagnosis models. The model accuracies were evaluated and compared by using overall accuracies (OAs). The statistical significance of the difference between models was evaluated by using McNemar’s test (Z value). The results showed that the OAs varied with the different combinations of pre-processing, feature selection, and classification methods. Feature selection methods could improve the modeling efficiencies and diagnosis accuracies, and RELIEF often outperformed PCA. The optimal models established by RF (OA = 86%), ANN (OA = 89%), RBF- (OA = 89%) and LF-SVM (OA = 87%) had no statistical difference in diagnosis accuracies (Z < 1.96, p < 0.05). These results indicated that it was feasible to diagnose soil arsenic contamination using reflectance spectroscopy. The appropriate combination of multivariate methods was important to improve diagnosis accuracies. PMID:28471412

  16. Temperature and excitation power influence on the velocity-selective optical pumping resonances of 133Cs atoms confined in an extremely thin cell

    NASA Astrophysics Data System (ADS)

    Vartanyan, T.; Polishchuk, V.; Sargsyan, A.; Krasteva, A.; Cartaleva, St.; Todorov, G.

    2018-03-01

    Linear and nonlinear absorption spectra of 133Cs vapor confined in an extremely thin cell were computed via iterations with respect to the resonance radiation intensity. When the incident radiation intensity is low, the transient polarization of the atoms that undergo frequent collisions with the cell walls leads to sub-Doppler features in the absorption spectra. Higher incident radiation intensities result in the appearance of velocity-selective optical pumping resonances. The theory developed agrees quantitatively with the experimental findings.

  17. Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Iwanaga, Masanobu

    2010-02-01

    It has been experimentally and numerically shown that transmission at near infrared wavelengths is selectively controlled by polarizations in two-dimensional complementary plasmonic crystal slabs (2D c-PlCSs) of stacked unit cell. This feature is naturally derived by taking account of Babinet's principle. Moreover, the slight structural modification of the unit cell has been found to result in a drastic change in linear optical responses of stacked 2D c-PlCSs. These results substantiate the feasibility of 2D c-PlCSs for producing efficient polarizers with subwavelength thickness.

  18. WE-E-17A-02: Predictive Modeling of Outcome Following SABR for NSCLC Based On Radiomics of FDG-PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R; Aguilera, T; Shultz, D

    2014-06-15

    Purpose: This study aims to develop predictive models of patient outcome by extracting advanced imaging features (i.e., Radiomics) from FDG-PET images. Methods: We acquired pre-treatment PET scans for 51 stage I NSCLC patients treated with SABR. We calculated 139 quantitative features from each patient PET image, including 5 morphological features, 8 statistical features, 27 texture features, and 100 features from the intensity-volume histogram. Based on the imaging features, we aim to distinguish between 2 risk groups of patients: those with regional failure or distant metastasis versus those without. We investigated 3 pattern classification algorithms: linear discriminant analysis (LDA), naive Bayesmore » (NB), and logistic regression (LR). To avoid the curse of dimensionality, we performed feature selection by first removing redundant features and then applying sequential forward selection using the wrapper approach. To evaluate the predictive performance, we performed 10-fold cross validation with 1000 random splits of the data and calculated the area under the ROC curve (AUC). Results: Feature selection identified 2 texture features (homogeneity and/or wavelet decompositions) for NB and LR, while for LDA SUVmax and one texture feature (correlation) were identified. All 3 classifiers achieved statistically significant improvements over conventional PET imaging metrics such as tumor volume (AUC = 0.668) and SUVmax (AUC = 0.737). Overall, NB achieved the best predictive performance (AUC = 0.806). This also compares favorably with MTV using the best threshold at an SUV of 11.6 (AUC = 0.746). At a sensitivity of 80%, NB achieved 69% specificity, while SUVmax and tumor volume only had 36% and 47% specificity. Conclusion: Through a systematic analysis of advanced PET imaging features, we are able to build models with improved predictive value over conventional imaging metrics. If validated in a large independent cohort, the proposed techniques could potentially aid in identifying patients who might benefit from adjuvant therapy.« less

  19. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  20. Fast linear feature detection using multiple directional non-maximum suppression.

    PubMed

    Sun, C; Vallotton, P

    2009-05-01

    The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.

  1. Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images.

    PubMed

    Abbasian Ardakani, Ali; Gharbali, Akbar; Mohammadi, Afshin

    2015-01-01

    The aim of this study was to evaluate computer aided diagnosis (CAD) system with texture analysis (TA) to improve radiologists' accuracy in identification of thyroid nodules as malignant or benign. A total of 70 cases (26 benign and 44 malignant) were analyzed in this study. We extracted up to 270 statistical texture features as a descriptor for each selected region of interests (ROIs) in three normalization schemes (default, 3s and 1%-99%). Then features by the lowest probability of classification error and average correlation coefficients (POE+ACC), and Fisher coefficient (Fisher) eliminated to 10 best and most effective features. These features were analyzed under standard and nonstandard states. For TA of the thyroid nodules, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA) were applied. First Nearest-Neighbour (1-NN) classifier was performed for the features resulting from PCA and LDA. NDA features were classified by artificial neural network (A-NN). Receiver operating characteristic (ROC) curve analysis was used for examining the performance of TA methods. The best results were driven in 1-99% normalization with features extracted by POE+ACC algorithm and analyzed by NDA with the area under the ROC curve ( Az) of 0.9722 which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Our results indicate that TA is a reliable method, can provide useful information help radiologist in detection and classification of benign and malignant thyroid nodules.

  2. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination.

    PubMed

    Sørensen, Lauge; Nielsen, Mads

    2018-05-15

    The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Testing, Selection, and Implementation of Random Number Generators

    DTIC Science & Technology

    2008-07-01

    Complexity and Lempel - Ziv Compression tests. This causes concern for cryptographic use but is not relevant for our applications. In fact, the features of...Linear Complexity, Lempel - Ziv Compression , and Matrix Rank test failures excluded. The Mersenne Twister is widely accepted by the community; in fact...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments

  4. Application of tripolar concentric electrodes and prefeature selection algorithm for brain-computer interface.

    PubMed

    Besio, Walter G; Cao, Hongbao; Zhou, Peng

    2008-04-01

    For persons with severe disabilities, a brain-computer interface (BCI) may be a viable means of communication. Lapalacian electroencephalogram (EEG) has been shown to improve classification in EEG recognition. In this work, the effectiveness of signals from tripolar concentric electrodes and disc electrodes were compared for use as a BCI. Two sets of left/right hand motor imagery EEG signals were acquired. An autoregressive (AR) model was developed for feature extraction with a Mahalanobis distance based linear classifier for classification. An exhaust selection algorithm was employed to analyze three factors before feature extraction. The factors analyzed were 1) length of data in each trial to be used, 2) start position of data, and 3) the order of the AR model. The results showed that tripolar concentric electrodes generated significantly higher classification accuracy than disc electrodes.

  5. Classification of burn wounds using support vector machines

    NASA Astrophysics Data System (ADS)

    Acha, Begona; Serrano, Carmen; Palencia, Sergio; Murillo, Juan Jose

    2004-05-01

    The purpose of this work is to improve a previous method developed by the authors for the classification of burn wounds into their depths. The inputs of the system are color and texture information, as these are the characteristics observed by physicians in order to give a diagnosis. Our previous work consisted in segmenting the burn wound from the rest of the image and classifying the burn into its depth. In this paper we focus on the classification problem only. We already proposed to use a Fuzzy-ARTMAP neural network (NN). However, we may take advantage of new powerful classification tools such as Support Vector Machines (SVM). We apply the five-folded cross validation scheme to divide the database into training and validating sets. Then, we apply a feature selection method for each classifier, which will give us the set of features that yields the smallest classification error for each classifier. Features used to classify are first-order statistical parameters extracted from the L*, u* and v* color components of the image. The feature selection algorithms used are the Sequential Forward Selection (SFS) and the Sequential Backward Selection (SBS) methods. As data of the problem faced here are not linearly separable, the SVM was trained using some different kernels. The validating process shows that the SVM method, when using a Gaussian kernel of variance 1, outperforms classification results obtained with the rest of the classifiers, yielding an error classification rate of 0.7% whereas the Fuzzy-ARTMAP NN attained 1.6 %.

  6. Sparse Bayesian Learning for Identifying Imaging Biomarkers in AD Prediction

    PubMed Central

    Shen, Li; Qi, Yuan; Kim, Sungeun; Nho, Kwangsik; Wan, Jing; Risacher, Shannon L.; Saykin, Andrew J.

    2010-01-01

    We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer’s disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures. PMID:20879451

  7. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less

  8. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    DOE PAGES

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu; ...

    2016-11-01

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less

  9. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    PubMed Central

    Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German

    2017-01-01

    We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897

  10. Applications of step-selection functions in ecology and conservation.

    PubMed

    Thurfjell, Henrik; Ciuti, Simone; Boyce, Mark S

    2014-01-01

    Recent progress in positioning technology facilitates the collection of massive amounts of sequential spatial data on animals. This has led to new opportunities and challenges when investigating animal movement behaviour and habitat selection. Tools like Step Selection Functions (SSFs) are relatively new powerful models for studying resource selection by animals moving through the landscape. SSFs compare environmental attributes of observed steps (the linear segment between two consecutive observations of position) with alternative random steps taken from the same starting point. SSFs have been used to study habitat selection, human-wildlife interactions, movement corridors, and dispersal behaviours in animals. SSFs also have the potential to depict resource selection at multiple spatial and temporal scales. There are several aspects of SSFs where consensus has not yet been reached such as how to analyse the data, when to consider habitat covariates along linear paths between observations rather than at their endpoints, how many random steps should be considered to measure availability, and how to account for individual variation. In this review we aim to address all these issues, as well as to highlight weak features of this modelling approach that should be developed by further research. Finally, we suggest that SSFs could be integrated with state-space models to classify behavioural states when estimating SSFs.

  11. Exponential convergence through linear finite element discretization of stratified subdomains

    NASA Astrophysics Data System (ADS)

    Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali

    2016-10-01

    Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.

  12. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.

    PubMed

    Radüntz, T; Scouten, J; Hochmuth, O; Meffert, B

    2015-03-30

    Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease.

    PubMed

    Ozcift, Akin

    2012-08-01

    Parkinson disease (PD) is an age-related deterioration of certain nerve systems, which affects movement, balance, and muscle control of clients. PD is one of the common diseases which affect 1% of people older than 60 years. A new classification scheme based on support vector machine (SVM) selected features to train rotation forest (RF) ensemble classifiers is presented for improving diagnosis of PD. The dataset contains records of voice measurements from 31 people, 23 with PD and each record in the dataset is defined with 22 features. The diagnosis model first makes use of a linear SVM to select ten most relevant features from 22. As a second step of the classification model, six different classifiers are trained with the subset of features. Subsequently, at the third step, the accuracies of classifiers are improved by the utilization of RF ensemble classification strategy. The results of the experiments are evaluated using three metrics; classification accuracy (ACC), Kappa Error (KE) and Area under the Receiver Operating Characteristic (ROC) Curve (AUC). Performance measures of two base classifiers, i.e. KStar and IBk, demonstrated an apparent increase in PD diagnosis accuracy compared to similar studies in literature. After all, application of RF ensemble classification scheme improved PD diagnosis in 5 of 6 classifiers significantly. We, numerically, obtained about 97% accuracy in RF ensemble of IBk (a K-Nearest Neighbor variant) algorithm, which is a quite high performance for Parkinson disease diagnosis.

  14. Behavioural cues surpass habitat factors in explaining prebreeding resource selection by a migratory diving duck

    USGS Publications Warehouse

    O'Neil, Shawn T.; Warren, Jeffrey M.; Takekawa, John Y.; De La Cruz, Susan E. W.; Cutting, Kyle A.; Parker, Michael W.; Yee, Julie L.

    2014-01-01

    Prebreeding habitat selection in birds can often be explained in part by habitat characteristics. However, females may also select habitats on the basis of fidelity to areas of previous reproductive success or use by conspecifics. The relative influences of sociobehavioural attributes versus habitat characteristics in habitat selection has been primarily investigated in songbirds, while less is known about how these factors affect habitat selection processes in migratory waterfowl. Animal resource selection models often exhibit much unexplained variation; spatial patterns driven by social and behavioural characteristics may account for some of this. We radiomarked female lesser scaup, Aythya affinis, in the southwestern extent of their breeding range to explore hypotheses regarding relative roles of habitat quality, site fidelity and conspecific density in prebreeding habitat selection. We used linear mixed-effects models to relate intensity of use within female home ranges to habitat features, distance to areas of reproductive success during the previous breeding season and conspecific density. Home range habitats included shallow water (≤118 cm), moderate to high densities of flooded emergent vegetation/open water edge and open water areas with submerged aquatic vegetation. Compared with habitat features, conspecific female density and proximity to successful nesting habitats from the previous breeding season had greater influences on habitat use within home ranges. Fidelity and conspecific attraction are behavioural characteristics in some waterfowl species that may exert a greater influence than habitat features in influencing prebreeding space use and habitat selection within home ranges, particularly where quality habitat is abundant. These processes may be of critical importance to a better understanding of habitat selection in breeding birds.

  15. A soft computing based approach using modified selection strategy for feature reduction of medical systems.

    PubMed

    Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat

    2013-01-01

    The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data.

  16. A Soft Computing Based Approach Using Modified Selection Strategy for Feature Reduction of Medical Systems

    PubMed Central

    Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat

    2013-01-01

    The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data. PMID:23573172

  17. A model of the extent and distribution of woody linear features in rural Great Britain.

    PubMed

    Scholefield, Paul; Morton, Dan; Rowland, Clare; Henrys, Peter; Howard, David; Norton, Lisa

    2016-12-01

    Hedges and lines of trees (woody linear features) are important boundaries that connect and enclose habitats, buffer the effects of land management, and enhance biodiversity in increasingly impoverished landscapes. Despite their acknowledged importance in the wider countryside, they are usually not considered in models of landscape function due to their linear nature and the difficulties of acquiring relevant data about their character, extent, and location. We present a model which uses national datasets to describe the distribution of woody linear features along boundaries in Great Britain. The method can be applied for other boundary types and in other locations around the world across a range of spatial scales where different types of linear feature can be separated using characteristics such as height or width. Satellite-derived Land Cover Map 2007 (LCM2007) provided the spatial framework for locating linear features and was used to screen out areas unsuitable for their occurrence, that is, offshore, urban, and forest areas. Similarly, Ordnance Survey Land-Form PANORAMA®, a digital terrain model, was used to screen out where they do not occur. The presence of woody linear features on boundaries was modelled using attributes from a canopy height dataset obtained by subtracting a digital terrain map (DTM) from a digital surface model (DSM). The performance of the model was evaluated against existing woody linear feature data in Countryside Survey across a range of scales. The results indicate that, despite some underestimation, this simple approach may provide valuable information on the extents and locations of woody linear features in the countryside at both local and national scales.

  18. Variable selection for marginal longitudinal generalized linear models.

    PubMed

    Cantoni, Eva; Flemming, Joanna Mills; Ronchetti, Elvezio

    2005-06-01

    Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with popular marginal longitudinal models (fitted using GEE) and contrast results with what is typically done in practice: variable selection based on Wald-type or score-type tests. An application to real data further demonstrates the merits of our approach while at the same time emphasizing some important robust features inherent to GC(p).

  19. Predicting discovery rates of genomic features.

    PubMed

    Gravel, Simon

    2014-06-01

    Successful sequencing experiments require judicious sample selection. However, this selection must often be performed on the basis of limited preliminary data. Predicting the statistical properties of the final sample based on preliminary data can be challenging, because numerous uncertain model assumptions may be involved. Here, we ask whether we can predict "omics" variation across many samples by sequencing only a fraction of them. In the infinite-genome limit, we find that a pilot study sequencing 5% of a population is sufficient to predict the number of genetic variants in the entire population within 6% of the correct value, using an estimator agnostic to demography, selection, or population structure. To reach similar accuracy in a finite genome with millions of polymorphisms, the pilot study would require ∼15% of the population. We present computationally efficient jackknife and linear programming methods that exhibit substantially less bias than the state of the art when applied to simulated data and subsampled 1000 Genomes Project data. Extrapolating based on the National Heart, Lung, and Blood Institute Exome Sequencing Project data, we predict that 7.2% of sites in the capture region would be variable in a sample of 50,000 African Americans and 8.8% in a European sample of equal size. Finally, we show how the linear programming method can also predict discovery rates of various genomic features, such as the number of transcription factor binding sites across different cell types. Copyright © 2014 by the Genetics Society of America.

  20. Morphological characterization of selected balloon films and its effects on balloon performances

    NASA Technical Reports Server (NTRS)

    Said, Magdi A.

    1994-01-01

    Morphological characterization of several polyethylene balloon films have been studied using various techniques. The objective is to determine, if any, differentiating structural or morphological features that can be related to the performance of these balloon film materials. The results of the study indicate that the films are composed of either linear low denstiy polyethylene (LLDPE) or low density polyethylene (LDPE). A selective examination of these data imply that films limited degree of branching and larger crystallites size (same % crystallinity) showed good mechanical properties that appear to correlate with their high level of success in balloon flights.

  1. A universal deep learning approach for modeling the flow of patients under different severities.

    PubMed

    Jiang, Shancheng; Chin, Kwai-Sang; Tsui, Kwok L

    2018-02-01

    The Accident and Emergency Department (A&ED) is the frontline for providing emergency care in hospitals. Unfortunately, relative A&ED resources have failed to keep up with continuously increasing demand in recent years, which leads to overcrowding in A&ED. Knowing the fluctuation of patient arrival volume in advance is a significant premise to relieve this pressure. Based on this motivation, the objective of this study is to explore an integrated framework with high accuracy for predicting A&ED patient flow under different triage levels, by combining a novel feature selection process with deep neural networks. Administrative data is collected from an actual A&ED and categorized into five groups based on different triage levels. A genetic algorithm (GA)-based feature selection algorithm is improved and implemented as a pre-processing step for this time-series prediction problem, in order to explore key features affecting patient flow. In our improved GA, a fitness-based crossover is proposed to maintain the joint information of multiple features during iterative process, instead of traditional point-based crossover. Deep neural networks (DNN) is employed as the prediction model to utilize their universal adaptability and high flexibility. In the model-training process, the learning algorithm is well-configured based on a parallel stochastic gradient descent algorithm. Two effective regularization strategies are integrated in one DNN framework to avoid overfitting. All introduced hyper-parameters are optimized efficiently by grid-search in one pass. As for feature selection, our improved GA-based feature selection algorithm has outperformed a typical GA and four state-of-the-art feature selection algorithms (mRMR, SAFS, VIFR, and CFR). As for the prediction accuracy of proposed integrated framework, compared with other frequently used statistical models (GLM, seasonal-ARIMA, ARIMAX, and ANN) and modern machine models (SVM-RBF, SVM-linear, RF, and R-LASSO), the proposed integrated "DNN-I-GA" framework achieves higher prediction accuracy on both MAPE and RMSE metrics in pairwise comparisons. The contribution of our study is two-fold. Theoretically, the traditional GA-based feature selection process is improved to have less hyper-parameters and higher efficiency, and the joint information of multiple features is maintained by fitness-based crossover operator. The universal property of DNN is further enhanced by merging different regularization strategies. Practically, features selected by our improved GA can be used to acquire an underlying relationship between patient flows and input features. Predictive values are significant indicators of patients' demand and can be used by A&ED managers to make resource planning and allocation. High accuracy achieved by the present framework in different cases enhances the reliability of downstream decision makings. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Multi Agent System for Flow-Based Intrusion Detection

    DTIC Science & Technology

    2013-03-01

    Student t-test, as it is less likely to spuriously indicate significance because of the presence of outliers [128]. We use the MATLAB ranksum function [77...effectiveness of self-organization and “ entangled hierarchies” for accomplishing scenario objectives. One of the interesting features of SOMAS is the ability...cross-validation and automatic model selection. It has interfaces for Java, Python, R, Splus, MATLAB , Perl, Ruby, and LabVIEW. Kernels: linear

  3. Variable importance in nonlinear kernels (VINK): classification of digitized histopathology.

    PubMed

    Ginsburg, Shoshana; Ali, Sahirzeeshan; Lee, George; Basavanhally, Ajay; Madabhushi, Anant

    2013-01-01

    Quantitative histomorphometry is the process of modeling appearance of disease morphology on digitized histopathology images via image-based features (e.g., texture, graphs). Due to the curse of dimensionality, building classifiers with large numbers of features requires feature selection (which may require a large training set) or dimensionality reduction (DR). DR methods map the original high-dimensional features in terms of eigenvectors and eigenvalues, which limits the potential for feature transparency or interpretability. Although methods exist for variable selection and ranking on embeddings obtained via linear DR schemes (e.g., principal components analysis (PCA)), similar methods do not yet exist for nonlinear DR (NLDR) methods. In this work we present a simple yet elegant method for approximating the mapping between the data in the original feature space and the transformed data in the kernel PCA (KPCA) embedding space; this mapping provides the basis for quantification of variable importance in nonlinear kernels (VINK). We show how VINK can be implemented in conjunction with the popular Isomap and Laplacian eigenmap algorithms. VINK is evaluated in the contexts of three different problems in digital pathology: (1) predicting five year PSA failure following radical prostatectomy, (2) predicting Oncotype DX recurrence risk scores for ER+ breast cancers, and (3) distinguishing good and poor outcome p16+ oropharyngeal tumors. We demonstrate that subsets of features identified by VINK provide similar or better classification or regression performance compared to the original high dimensional feature sets.

  4. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.

    PubMed

    Faradji, Farhad; Ward, Rabab K; Birch, Gary E

    2009-06-15

    The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. For each subject and each task, the feature coefficient and the classifier that yield the best performance are selected, using the autoregressive coefficients as the features. The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.

  5. Interaction Between Spatial and Feature Attention in Posterior Parietal Cortex

    PubMed Central

    Ibos, Guilhem; Freedman, David J.

    2016-01-01

    Summary Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task which required monkeys to detect specific conjunctions of color, motion-direction, and stimulus position. Here we show that FBA and SBA potentiate each other’s effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. PMID:27499082

  6. Interaction between Spatial and Feature Attention in Posterior Parietal Cortex.

    PubMed

    Ibos, Guilhem; Freedman, David J

    2016-08-17

    Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task that required monkeys to detect specific conjunctions of color, motion direction, and stimulus position. Here we show that FBA and SBA potentiate each other's effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Application of texture analysis method for mammogram density classification

    NASA Astrophysics Data System (ADS)

    Nithya, R.; Santhi, B.

    2017-07-01

    Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.

  8. Automatic detection of obstructive sleep apnea using speech signals.

    PubMed

    Goldshtein, Evgenia; Tarasiuk, Ariel; Zigel, Yaniv

    2011-05-01

    Obstructive sleep apnea (OSA) is a common disorder associated with anatomical abnormalities of the upper airways that affects 5% of the population. Acoustic parameters may be influenced by the vocal tract structure and soft tissue properties. We hypothesize that speech signal properties of OSA patients will be different than those of control subjects not having OSA. Using speech signal processing techniques, we explored acoustic speech features of 93 subjects who were recorded using a text-dependent speech protocol and a digital audio recorder immediately prior to polysomnography study. Following analysis of the study, subjects were divided into OSA (n=67) and non-OSA (n=26) groups. A Gaussian mixture model-based system was developed to model and classify between the groups; discriminative features such as vocal tract length and linear prediction coefficients were selected using feature selection technique. Specificity and sensitivity of 83% and 79% were achieved for the male OSA and 86% and 84% for the female OSA patients, respectively. We conclude that acoustic features from speech signals during wakefulness can detect OSA patients with good specificity and sensitivity. Such a system can be used as a basis for future development of a tool for OSA screening. © 2011 IEEE

  9. Stratiform/convective rain delineation for TRMM microwave imager

    NASA Astrophysics Data System (ADS)

    Islam, Tanvir; Srivastava, Prashant K.; Dai, Qiang; Gupta, Manika; Wan Jaafar, Wan Zurina

    2015-10-01

    This article investigates the potential for using machine learning algorithms to delineate stratiform/convective (S/C) rain regimes for passive microwave imager taking calibrated brightness temperatures as only spectral parameters. The algorithms have been implemented for the Tropical Rainfall Measuring Mission (TRMM) microwave imager (TMI), and calibrated as well as validated taking the Precipitation Radar (PR) S/C information as the target class variables. Two different algorithms are particularly explored for the delineation. The first one is metaheuristic adaptive boosting algorithm that includes the real, gentle, and modest versions of the AdaBoost. The second one is the classical linear discriminant analysis that includes the Fisher's and penalized versions of the linear discriminant analysis. Furthermore, prior to the development of the delineation algorithms, a feature selection analysis has been conducted for a total of 85 features, which contains the combinations of brightness temperatures from 10 GHz to 85 GHz and some derived indexes, such as scattering index, polarization corrected temperature, and polarization difference with the help of mutual information aided minimal redundancy maximal relevance criterion (mRMR). It has been found that the polarization corrected temperature at 85 GHz and the features derived from the "addition" operator associated with the 85 GHz channels have good statistical dependency to the S/C target class variables. Further, it has been shown how the mRMR feature selection technique helps to reduce the number of features without deteriorating the results when applying through the machine learning algorithms. The proposed scheme is able to delineate the S/C rain regimes with reasonable accuracy. Based on the statistical validation experience from the validation period, the Matthews correlation coefficients are in the range of 0.60-0.70. Since, the proposed method does not rely on any a priori information, this makes it very suitable for other microwave sensors having similar channels to the TMI. The method could possibly benefit the constellation sensors in the Global Precipitation Measurement (GPM) mission era.

  10. Variations in the Intragene Methylation Profiles Hallmark Induced Pluripotency

    PubMed Central

    Druzhkov, Pavel; Zolotykh, Nikolay; Meyerov, Iosif; Alsaedi, Ahmed; Shutova, Maria; Ivanchenko, Mikhail; Zaikin, Alexey

    2015-01-01

    We demonstrate the potential of differentiating embryonic and induced pluripotent stem cells by the regularized linear and decision tree machine learning classification algorithms, based on a number of intragene methylation measures. The resulting average accuracy of classification has been proven to be above 95%, which overcomes the earlier achievements. We propose a constructive and transparent method of feature selection based on classifier accuracy. Enrichment analysis reveals statistically meaningful presence of stemness group and cancer discriminating genes among the selected best classifying features. These findings stimulate the further research on the functional consequences of these differences in methylation patterns. The presented approach can be broadly used to discriminate the cells of different phenotype or in different state by their methylation profiles, identify groups of genes constituting multifeature classifiers, and assess enrichment of these groups by the sets of genes with a functionality of interest. PMID:26618180

  11. Decoding grating orientation from microelectrode array recordings in monkey cortical area V4.

    PubMed

    Manyakov, Nikolay V; Van Hulle, Marc M

    2010-04-01

    We propose an invasive brain-machine interface (BMI) that decodes the orientation of a visual grating from spike train recordings made with a 96 microelectrodes array chronically implanted into the prelunate gyrus (area V4) of a rhesus monkey. The orientation is decoded irrespective of the grating's spatial frequency. Since pyramidal cells are less prominent in visual areas, compared to (pre)motor areas, the recordings contain spikes with smaller amplitudes, compared to the noise level. Hence, rather than performing spike decoding, feature selection algorithms are applied to extract the required information for the decoder. Two types of feature selection procedures are compared, filter and wrapper. The wrapper is combined with a linear discriminant analysis classifier, and the filter is followed by a radial-basis function support vector machine classifier. In addition, since we have a multiclass classification problen, different methods for combining pairwise classifiers are compared.

  12. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.

    PubMed

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-04-15

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.

  13. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    PubMed Central

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-01-01

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505

  14. Statistical analysis of textural features for improved classification of oral histopathological images.

    PubMed

    Muthu Rama Krishnan, M; Shah, Pratik; Chakraborty, Chandan; Ray, Ajoy K

    2012-04-01

    The objective of this paper is to provide an improved technique, which can assist oncopathologists in correct screening of oral precancerous conditions specially oral submucous fibrosis (OSF) with significant accuracy on the basis of collagen fibres in the sub-epithelial connective tissue. The proposed scheme is composed of collagen fibres segmentation, its textural feature extraction and selection, screening perfomance enhancement under Gaussian transformation and finally classification. In this study, collagen fibres are segmented on R,G,B color channels using back-probagation neural network from 60 normal and 59 OSF histological images followed by histogram specification for reducing the stain intensity variation. Henceforth, textural features of collgen area are extracted using fractal approaches viz., differential box counting and brownian motion curve . Feature selection is done using Kullback-Leibler (KL) divergence criterion and the screening performance is evaluated based on various statistical tests to conform Gaussian nature. Here, the screening performance is enhanced under Gaussian transformation of the non-Gaussian features using hybrid distribution. Moreover, the routine screening is designed based on two statistical classifiers viz., Bayesian classification and support vector machines (SVM) to classify normal and OSF. It is observed that SVM with linear kernel function provides better classification accuracy (91.64%) as compared to Bayesian classifier. The addition of fractal features of collagen under Gaussian transformation improves Bayesian classifier's performance from 80.69% to 90.75%. Results are here studied and discussed.

  15. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.

    PubMed

    Chen, Zhenyu; Li, Jianping; Wei, Liwei

    2007-10-01

    Recently, gene expression profiling using microarray techniques has been shown as a promising tool to improve the diagnosis and treatment of cancer. Gene expression data contain high level of noise and the overwhelming number of genes relative to the number of available samples. It brings out a great challenge for machine learning and statistic techniques. Support vector machine (SVM) has been successfully used to classify gene expression data of cancer tissue. In the medical field, it is crucial to deliver the user a transparent decision process. How to explain the computed solutions and present the extracted knowledge becomes a main obstacle for SVM. A multiple kernel support vector machine (MK-SVM) scheme, consisting of feature selection, rule extraction and prediction modeling is proposed to improve the explanation capacity of SVM. In this scheme, we show that the feature selection problem can be translated into an ordinary multiple parameters learning problem. And a shrinkage approach: 1-norm based linear programming is proposed to obtain the sparse parameters and the corresponding selected features. We propose a novel rule extraction approach using the information provided by the separating hyperplane and support vectors to improve the generalization capacity and comprehensibility of rules and reduce the computational complexity. Two public gene expression datasets: leukemia dataset and colon tumor dataset are used to demonstrate the performance of this approach. Using the small number of selected genes, MK-SVM achieves encouraging classification accuracy: more than 90% for both two datasets. Moreover, very simple rules with linguist labels are extracted. The rule sets have high diagnostic power because of their good classification performance.

  16. Audio-visual synchrony and feature-selective attention co-amplify early visual processing.

    PubMed

    Keitel, Christian; Müller, Matthias M

    2016-05-01

    Our brain relies on neural mechanisms of selective attention and converging sensory processing to efficiently cope with rich and unceasing multisensory inputs. One prominent assumption holds that audio-visual synchrony can act as a strong attractor for spatial attention. Here, we tested for a similar effect of audio-visual synchrony on feature-selective attention. We presented two superimposed Gabor patches that differed in colour and orientation. On each trial, participants were cued to selectively attend to one of the two patches. Over time, spatial frequencies of both patches varied sinusoidally at distinct rates (3.14 and 3.63 Hz), giving rise to pulse-like percepts. A simultaneously presented pure tone carried a frequency modulation at the pulse rate of one of the two visual stimuli to introduce audio-visual synchrony. Pulsed stimulation elicited distinct time-locked oscillatory electrophysiological brain responses. These steady-state responses were quantified in the spectral domain to examine individual stimulus processing under conditions of synchronous versus asynchronous tone presentation and when respective stimuli were attended versus unattended. We found that both, attending to the colour of a stimulus and its synchrony with the tone, enhanced its processing. Moreover, both gain effects combined linearly for attended in-sync stimuli. Our results suggest that audio-visual synchrony can attract attention to specific stimulus features when stimuli overlap in space.

  17. Linear and Non-Linear Visual Feature Learning in Rat and Humans

    PubMed Central

    Bossens, Christophe; Op de Beeck, Hans P.

    2016-01-01

    The visual system processes visual input in a hierarchical manner in order to extract relevant features that can be used in tasks such as invariant object recognition. Although typically investigated in primates, recent work has shown that rats can be trained in a variety of visual object and shape recognition tasks. These studies did not pinpoint the complexity of the features used by these animals. Many tasks might be solved by using a combination of relatively simple features which tend to be correlated. Alternatively, rats might extract complex features or feature combinations which are nonlinear with respect to those simple features. In the present study, we address this question by starting from a small stimulus set for which one stimulus-response mapping involves a simple linear feature to solve the task while another mapping needs a well-defined nonlinear combination of simpler features related to shape symmetry. We verified computationally that the nonlinear task cannot be trivially solved by a simple V1-model. We show how rats are able to solve the linear feature task but are unable to acquire the nonlinear feature. In contrast, humans are able to use the nonlinear feature and are even faster in uncovering this solution as compared to the linear feature. The implications for the computational capabilities of the rat visual system are discussed. PMID:28066201

  18. Metacatalog of Planetary Surface Features for Multicriteria Evaluation of Surface Evolution: the Integrated Planetary Feature Database

    NASA Astrophysics Data System (ADS)

    Hargitai, Henrik

    2016-10-01

    We have created a metacatalog, or catalog or catalogs, of surface features of Mars that also includes the actual data in the catalogs listed. The goal is to make mesoscale surface feature databases available in one place, in a GIS-ready format. The databases can be directly imported to ArcGIS or other GIS platforms, like Google Mars. Some of the catalogs in our database are also ingested into the JMARS platform.All catalogs have been previously published in a peer-reviewed journal, but they may contain updates of the published catalogs. Many of the catalogs are "integrated", i.e. they merge databases or information from various papers on the same topic, including references to each individual features listed.Where available, we have included shapefiles with polygon or linear features, however, most of the catalogs only contain point data of their center points and morphological data.One of the unexpected results of the planetary feature metacatalog is that some features have been described by several papers, using different, i.e., conflicting designations. This shows the need for the development of an identification system suitable for mesoscale (100s m to km sized) features that tracks papers and thus prevents multiple naming of the same feature.The feature database can be used for multicriteria analysis of a terrain, thus enables easy distribution pattern analysis and the correlation of the distribution of different landforms and features on Mars. Such catalog makes a scientific evaluation of potential landing sites easier and more effective during the selection process and also supports automated landing site selections.The catalog is accessible at https://planetarydatabase.wordpress.com/.

  19. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.

    PubMed

    Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie

    2016-12-07

    A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.

  20. Hierarchical Feature Extraction With Local Neural Response for Image Recognition.

    PubMed

    Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P

    2013-04-01

    In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.

  1. National hydrography dataset--linear referencing

    USGS Publications Warehouse

    Simley, Jeffrey; Doumbouya, Ariel

    2012-01-01

    Geospatial data normally have a certain set of standard attributes, such as an identification number, the type of feature, and name of the feature. These standard attributes are typically embedded into the default attribute table, which is directly linked to the geospatial features. However, it is impractical to embed too much information because it can create a complex, inflexible, and hard to maintain geospatial dataset. Many scientists prefer to create a modular, or relational, data design where the information about the features is stored and maintained separately, then linked to the geospatial data. For example, information about the water chemistry of a lake can be maintained in a separate file and linked to the lake. A Geographic Information System (GIS) can then relate the water chemistry to the lake and analyze it as one piece of information. For example, the GIS can select all lakes more than 50 acres, with turbidity greater than 1.5 milligrams per liter.

  2. An improved method of early diagnosis of smoking-induced respiratory changes using machine learning algorithms.

    PubMed

    Amaral, Jorge L M; Lopes, Agnaldo J; Jansen, José M; Faria, Alvaro C D; Melo, Pedro L

    2013-12-01

    The purpose of this study was to develop an automatic classifier to increase the accuracy of the forced oscillation technique (FOT) for diagnosing early respiratory abnormalities in smoking patients. The data consisted of FOT parameters obtained from 56 volunteers, 28 healthy and 28 smokers with low tobacco consumption. Many supervised learning techniques were investigated, including logistic linear classifiers, k nearest neighbor (KNN), neural networks and support vector machines (SVM). To evaluate performance, the ROC curve of the most accurate parameter was established as baseline. To determine the best input features and classifier parameters, we used genetic algorithms and a 10-fold cross-validation using the average area under the ROC curve (AUC). In the first experiment, the original FOT parameters were used as input. We observed a significant improvement in accuracy (KNN=0.89 and SVM=0.87) compared with the baseline (0.77). The second experiment performed a feature selection on the original FOT parameters. This selection did not cause any significant improvement in accuracy, but it was useful in identifying more adequate FOT parameters. In the third experiment, we performed a feature selection on the cross products of the FOT parameters. This selection resulted in a further increase in AUC (KNN=SVM=0.91), which allows for high diagnostic accuracy. In conclusion, machine learning classifiers can help identify early smoking-induced respiratory alterations. The use of FOT cross products and the search for the best features and classifier parameters can markedly improve the performance of machine learning classifiers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Automatic detection and classification of artifacts in single-channel EEG.

    PubMed

    Olund, Thomas; Duun-Henriksen, Jonas; Kjaer, Troels W; Sorensen, Helge B D

    2014-01-01

    Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for single-channel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated. The detection algorithm yield an average sensitivity and specificity above 95% for both the subject-specific and generic models. The classification algorithm show a mean accuracy of 78 and 64% for the subject-specific and generic model, respectively. The classification model was additionally validated on a reference dataset with similar results.

  4. Feeling form: the neural basis of haptic shape perception.

    PubMed

    Yau, Jeffrey M; Kim, Sung Soo; Thakur, Pramodsingh H; Bensmaia, Sliman J

    2016-02-01

    The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex. Copyright © 2016 the American Physiological Society.

  5. Improving the CD linearity and proximity performance of photomasks written on the Sigma7500-II DUV laser writer through embedded OPC

    NASA Astrophysics Data System (ADS)

    Österberg, Anders; Ivansen, Lars; Beyerl, Angela; Newman, Tom; Bowhill, Amanda; Sahouria, Emile; Schulze, Steffen

    2007-10-01

    Optical proximity correction (OPC) is widely used in wafer lithography to produce a printed image that best matches the design intent while optimizing CD control. OPC software applies corrections to the mask pattern data, but in general it does not compensate for the mask writer and mask process characteristics. The Sigma7500-II deep-UV laser mask writer projects the image of a programmable spatial light modulator (SLM) using partially coherent optics similar to wafer steppers, and the optical proximity effects of the mask writer are in principle correctable with established OPC methods. To enhance mask patterning, an embedded OPC function, LinearityEqualize TM, has been developed for the Sigma7500- II that is transparent to the user and which does not degrade mask throughput. It employs a Calibre TM rule-based OPC engine from Mentor Graphics, selected for the computational speed necessary for mask run-time execution. A multinode cluster computer applies optimized table-based CD corrections to polygonized pattern data that is then fractured into an internal writer format for subsequent data processing. This embedded proximity correction flattens the linearity behavior for all linewidths and pitches, which targets to improve the CD uniformity on production photomasks. Printing results show that the CD linearity is reduced to below 5 nm for linewidths down to 200 nm, both for clear and dark and for isolated and dense features, and that sub-resolution assist features (SRAF) are reliably printed down to 120 nm. This reduction of proximity effects for main mask features and the extension of the practical resolution for SRAFs expands the application space of DUV laser mask writing.

  6. Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    NASA Astrophysics Data System (ADS)

    Fan, Lei

    Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems.

  7. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    PubMed

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.

  8. Feature-based attentional modulation increases with stimulus separation in divided-attention tasks.

    PubMed

    Sally, Sharon L; Vidnyánsky, Zoltán; Papathomas, Thomas V

    2009-01-01

    Attention modifies our visual experience by selecting certain aspects of a scene for further processing. It is therefore important to understand factors that govern the deployment of selective attention over the visual field. Both location and feature-specific mechanisms of attention have been identified and their modulatory effects can interact at a neural level (Treue and Martinez-Trujillo, 1999). The effects of spatial parameters on feature-based attentional modulation were examined for the feature dimensions of orientation, motion and color using three divided-attention tasks. Subjects performed concurrent discriminations of two briefly presented targets (Gabor patches) to the left and right of a central fixation point at eccentricities of +/-2.5 degrees , 5 degrees , 10 degrees and 15 degrees in the horizontal plane. Gabors were size-scaled to maintain consistent single-task performance across eccentricities. For all feature dimensions, the data show a linear increase in the attentional effects with target separation. In a control experiment, Gabors were presented on an isoeccentric viewing arc at 10 degrees and 15 degrees at the closest spatial separation (+/-2.5 degrees ) of the main experiment. Under these conditions, the effects of feature-based attentional effects were largely eliminated. Our results are consistent with the hypothesis that feature-based attention prioritizes the processing of attended features. Feature-based attentional mechanisms may have helped direct the attentional focus to the appropriate target locations at greater separations, whereas similar assistance may not have been necessary at closer target spacings. The results of the present study specify conditions under which dual-task performance benefits from sharing similar target features and may therefore help elucidate the processes by which feature-based attention operates.

  9. Evaluation of a web based informatics system with data mining tools for predicting outcomes with quantitative imaging features in stroke rehabilitation clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent

    2017-03-01

    Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.

  10. Decision-theoretic saliency: computational principles, biological plausibility, and implications for neurophysiology and psychophysics.

    PubMed

    Gao, Dashan; Vasconcelos, Nuno

    2009-01-01

    A decision-theoretic formulation of visual saliency, first proposed for top-down processing (object recognition) (Gao & Vasconcelos, 2005a), is extended to the problem of bottom-up saliency. Under this formulation, optimality is defined in the minimum probability of error sense, under a constraint of computational parsimony. The saliency of the visual features at a given location of the visual field is defined as the power of those features to discriminate between the stimulus at the location and a null hypothesis. For bottom-up saliency, this is the set of visual features that surround the location under consideration. Discrimination is defined in an information-theoretic sense and the optimal saliency detector derived for a class of stimuli that complies with known statistical properties of natural images. It is shown that under the assumption that saliency is driven by linear filtering, the optimal detector consists of what is usually referred to as the standard architecture of V1: a cascade of linear filtering, divisive normalization, rectification, and spatial pooling. The optimal detector is also shown to replicate the fundamental properties of the psychophysics of saliency: stimulus pop-out, saliency asymmetries for stimulus presence versus absence, disregard of feature conjunctions, and Weber's law. Finally, it is shown that the optimal saliency architecture can be applied to the solution of generic inference problems. In particular, for the class of stimuli studied, it performs the three fundamental operations of statistical inference: assessment of probabilities, implementation of Bayes decision rule, and feature selection.

  11. SU-F-R-20: Image Texture Features Correlate with Time to Local Failure in Lung SBRT Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M; Abazeed, M; Woody, N

    Purpose: To explore possible correlation between CT image-based texture and histogram features and time-to-local-failure in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT).Methods and Materials: From an IRB-approved lung SBRT registry for patients treated between 2009–2013 we selected 48 (20 male, 28 female) patients with local failure. Median patient age was 72.3±10.3 years. Mean time to local failure was 15 ± 7.1 months. Physician-contoured gross tumor volumes (GTV) on the planning CT images were processed and 3D gray-level co-occurrence matrix (GLCM) based texture and histogram features were calculated in Matlab. Data were exported tomore » R and a multiple linear regression model was used to examine the relationship between texture features and time-to-local-failure. Results: Multiple linear regression revealed that entropy (p=0.0233, multiple R2=0.60) from GLCM-based texture analysis and the standard deviation (p=0.0194, multiple R2=0.60) from the histogram-based features were statistically significantly correlated with the time-to-local-failure. Conclusion: Image-based texture analysis can be used to predict certain aspects of treatment outcomes of NSCLC patients treated with SBRT. We found entropy and standard deviation calculated for the GTV on the CT images displayed a statistically significant correlation with and time-to-local-failure in lung SBRT patients.« less

  12. On the use of information theory for the analysis of synchronous nociceptive withdrawal reflexes and somatosensory evoked potentials elicited by graded electrical stimulation.

    PubMed

    Arguissain, Federico G; Biurrun Manresa, José A; Mørch, Carsten D; Andersen, Ole K

    2015-01-30

    To date, few studies have combined the simultaneous acquisition of nociceptive withdrawal reflexes (NWR) and somatosensory evoked potentials (SEPs). In fact, it is unknown whether the combination of these two signals acquired simultaneously could provide additional information on somatosensory processing at spinal and supraspinal level compared to individual NWR and SEP signals. By using the concept of mutual information (MI), it is possible to quantify the relation between electrical stimuli and simultaneous elicited electrophysiological responses in humans based on the estimated stimulus-response signal probability distributions. All selected features from NWR and SEPs were informative in regard to the stimulus when considered individually. Specifically, the information carried by NWR features was significantly higher than the information contained in the SEP features (p<0.05). Moreover, the joint information carried by the combination of features showed an overall redundancy compared to the sum of the individual contributions. Comparison with existing methods MI can be used to quantify the information that single-trial NWR and SEP features convey, as well as the information carried jointly by NWR and SEPs. This is a model-free approach that considers linear and non-linear correlations at any order and is not constrained by parametric assumptions. The current study introduces a novel approach that allows the quantification of the individual and joint information content of single-trial NWR and SEP features. This methodology could be used to decode and interpret spinal and supraspinal interaction in studies modulating the responsiveness of the nociceptive system. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Lattice Independent Component Analysis for Mobile Robot Localization

    NASA Astrophysics Data System (ADS)

    Villaverde, Ivan; Fernandez-Gauna, Borja; Zulueta, Ekaitz

    This paper introduces an approach to appearance based mobile robot localization using Lattice Independent Component Analysis (LICA). The Endmember Induction Heuristic Algorithm (EIHA) is used to select a set of Strong Lattice Independent (SLI) vectors, which can be assumed to be Affine Independent, and therefore candidates to be the endmembers of the data. Selected endmembers are used to compute the linear unmixing of the robot's acquired images. The resulting mixing coefficients are used as feature vectors for view recognition through classification. We show on a sample path experiment that our approach can recognise the localization of the robot and we compare the results with the Independent Component Analysis (ICA).

  14. [Psychophysiological professional selection of drilling technicians who provide the sinking of oil wells].

    PubMed

    Amirov, Z R

    2005-01-01

    To protect health and to warn future workers against the choice of a petroleum job that was not in accord with their psychological and physiological features of their organism, studies (such as sanitary and psychophysiological ones) were conducted to create criteria for the professional selection of drilling technicians who provided the sinking of oil wells. The studies have been systematized and mathematically analyzed. This made it possible to reveal the significant psychophysiological properties (8 parameters) in a drilling technician. By taking into account these properties, the author derived a linear equation that estimates the fitness of a candidate for a job as a drilling technician.

  15. A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification

    PubMed Central

    Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.

    2015-01-01

    In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898

  16. Features in visual search combine linearly

    PubMed Central

    Pramod, R. T.; Arun, S. P.

    2014-01-01

    Single features such as line orientation and length are known to guide visual search, but relatively little is known about how multiple features combine in search. To address this question, we investigated how search for targets differing in multiple features (intensity, length, orientation) from the distracters is related to searches for targets differing in each of the individual features. We tested race models (based on reaction times) and co-activation models (based on reciprocal of reaction times) for their ability to predict multiple feature searches. Multiple feature searches were best accounted for by a co-activation model in which feature information combined linearly (r = 0.95). This result agrees with the classic finding that these features are separable i.e., subjective dissimilarity ratings sum linearly. We then replicated the classical finding that the length and width of a rectangle are integral features—in other words, they combine nonlinearly in visual search. However, to our surprise, upon including aspect ratio as an additional feature, length and width combined linearly and this model outperformed all other models. Thus, length and width of a rectangle became separable when considered together with aspect ratio. This finding predicts that searches involving shapes with identical aspect ratio should be more difficult than searches where shapes differ in aspect ratio. We confirmed this prediction on a variety of shapes. We conclude that features in visual search co-activate linearly and demonstrate for the first time that aspect ratio is a novel feature that guides visual search. PMID:24715328

  17. Strong selection on mandible and nest features in a carpenter bee that nests in two sympatric host plants

    PubMed Central

    Flores-Prado, Luis; Pinto, Carlos F; Rojas, Alejandra; Fontúrbel, Francisco E

    2014-01-01

    Host plants are used by herbivorous insects as feeding or nesting resources. In wood-boring insects, host plants features may impose selective forces leading to phenotypic differentiation on traits related to nest construction. Carpenter bees build their nests in dead stems or dry twigs of shrubs and trees; thus, mandibles are essential for the nesting process, and the nest is required for egg laying and offspring survival. We explored the shape and intensity of natural selection on phenotypic variation on three size measures of the bees (intertegular width, wing length, and mandible area) and two nest architecture measures (tunnel length and diameter) on bees using the native species Chusquea quila (Poaceae), and the alloctonous species Rubus ulmifolius (Rosaceae), in central Chile. Our results showed significant and positive linear selection gradients for tunnel length on both hosts, indicating that bees building long nests have more offspring. Bees with broader mandibles show greater fitness on C. quila but not on R. ulmifolius. Considering that C. quila represents a selective force on mandible area, we hypothesized a high adaptive value of this trait, resulting in higher fitness values when nesting on this host, despite its wood is denser and hence more difficult to be bored. PMID:24963379

  18. Strong selection on mandible and nest features in a carpenter bee that nests in two sympatric host plants.

    PubMed

    Flores-Prado, Luis; Pinto, Carlos F; Rojas, Alejandra; Fontúrbel, Francisco E

    2014-05-01

    Host plants are used by herbivorous insects as feeding or nesting resources. In wood-boring insects, host plants features may impose selective forces leading to phenotypic differentiation on traits related to nest construction. Carpenter bees build their nests in dead stems or dry twigs of shrubs and trees; thus, mandibles are essential for the nesting process, and the nest is required for egg laying and offspring survival. We explored the shape and intensity of natural selection on phenotypic variation on three size measures of the bees (intertegular width, wing length, and mandible area) and two nest architecture measures (tunnel length and diameter) on bees using the native species Chusquea quila (Poaceae), and the alloctonous species Rubus ulmifolius (Rosaceae), in central Chile. Our results showed significant and positive linear selection gradients for tunnel length on both hosts, indicating that bees building long nests have more offspring. Bees with broader mandibles show greater fitness on C. quila but not on R. ulmifolius. Considering that C. quila represents a selective force on mandible area, we hypothesized a high adaptive value of this trait, resulting in higher fitness values when nesting on this host, despite its wood is denser and hence more difficult to be bored.

  19. Single-Chain Folding of Synthetic Polymers: A Critical Update.

    PubMed

    Altintas, Ozcan; Barner-Kowollik, Christopher

    2015-11-23

    The current contribution serves as a critical update to a previous feature article from us (Macromol. Rapid Commun. 2012, 33, 958-971), and highlights the latest advances in the preparation of single chain polymeric nanoparticles and initial-yet promising-attempts towards mimicking the structure of natural biomacromolecules via single-chain folding of well-defined linear polymers via so-called single chain selective point folding and repeat unit folding. The contribution covers selected examples from the literature published up to ca. September 2015. Our aim is not to provide an exhaustive review but rather highlight a selection of new and exciting examples for single-chain folding based on advanced macromolecular precision chemistry. Initially, the discussion focuses on the synthesis and characterization of single-chain folded structures via selective point folding. The second part of the feature article addresses the folding of well-defined single-chain polymers by means of repeat unit folding. The current state of the art in the field of single-chain folding indicates that repeat unit folding-driven nanoparticle preparation is well-advanced, while initial encouraging steps towards building selective point folding systems have been taken. In addition, a summary of the-in our view-open key questions is provided that may guide future biomimetic design efforts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reducing the number of reconstructions needed for estimating channelized observer performance

    NASA Astrophysics Data System (ADS)

    Pineda, Angel R.; Miedema, Hope; Brenner, Melissa; Altaf, Sana

    2018-03-01

    A challenge for task-based optimization is the time required for each reconstructed image in applications where reconstructions are time consuming. Our goal is to reduce the number of reconstructions needed to estimate the area under the receiver operating characteristic curve (AUC) of the infinitely-trained optimal channelized linear observer. We explore the use of classifiers which either do not invert the channel covariance matrix or do feature selection. We also study the assumption that multiple low contrast signals in the same image of a non-linear reconstruction do not significantly change the estimate of the AUC. We compared the AUC of several classifiers (Hotelling, logistic regression, logistic regression using Firth bias reduction and the least absolute shrinkage and selection operator (LASSO)) with a small number of observations both for normal simulated data and images from a total variation reconstruction in magnetic resonance imaging (MRI). We used 10 Laguerre-Gauss channels and the Mann-Whitney estimator for AUC. For this data, our results show that at small sample sizes feature selection using the LASSO technique can decrease bias of the AUC estimation with increased variance and that for large sample sizes the difference between these classifiers is small. We also compared the use of multiple signals in a single reconstructed image to reduce the number of reconstructions in a total variation reconstruction for accelerated imaging in MRI. We found that AUC estimation using multiple low contrast signals in the same image resulted in similar AUC estimates as doing a single reconstruction per signal leading to a 13x reduction in the number of reconstructions needed.

  1. Subpixel Mapping of Hyperspectral Image Based on Linear Subpixel Feature Detection and Object Optimization

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoxin; Zhao, Liaoying; Li, Xiaorun; Chen, Shuhan

    2018-04-01

    Owing to the limitation of spatial resolution of the imaging sensor and the variability of ground surfaces, mixed pixels are widesperead in hyperspectral imagery. The traditional subpixel mapping algorithms treat all mixed pixels as boundary-mixed pixels while ignoring the existence of linear subpixels. To solve this question, this paper proposed a new subpixel mapping method based on linear subpixel feature detection and object optimization. Firstly, the fraction value of each class is obtained by spectral unmixing. Secondly, the linear subpixel features are pre-determined based on the hyperspectral characteristics and the linear subpixel feature; the remaining mixed pixels are detected based on maximum linearization index analysis. The classes of linear subpixels are determined by using template matching method. Finally, the whole subpixel mapping results are iteratively optimized by binary particle swarm optimization algorithm. The performance of the proposed subpixel mapping method is evaluated via experiments based on simulated and real hyperspectral data sets. The experimental results demonstrate that the proposed method can improve the accuracy of subpixel mapping.

  2. A modular approach for item response theory modeling with the R package flirt.

    PubMed

    Jeon, Minjeong; Rijmen, Frank

    2016-06-01

    The new R package flirt is introduced for flexible item response theory (IRT) modeling of psychological, educational, and behavior assessment data. flirt integrates a generalized linear and nonlinear mixed modeling framework with graphical model theory. The graphical model framework allows for efficient maximum likelihood estimation. The key feature of flirt is its modular approach to facilitate convenient and flexible model specifications. Researchers can construct customized IRT models by simply selecting various modeling modules, such as parametric forms, number of dimensions, item and person covariates, person groups, link functions, etc. In this paper, we describe major features of flirt and provide examples to illustrate how flirt works in practice.

  3. H2 as a Possible Carrier of the DIBs?

    NASA Astrophysics Data System (ADS)

    Ubachs, W.

    2014-02-01

    In the 1990s the hydrogen molecule, by far the most abundant molecular species in the interstellar medium, has been proposed as a possible carrier of the diffuse interstellar bands. While some remarkable coincidences were found in the rich spectrum of inter-Rydberg transitions of this molecule with DIB-features, both in frequency position as in linewidth, some open issues remained on a required non-linear optical pumping scheme that should explain the population of certain intermediate levels and act as a selection mechanism. Recently a similar scheme has been proposed relating the occurrence of the UV-bump (the ubiquitous 2170 Å extinction feature) to the spectrum of H2, therewith reviving the H2 hypothesis.

  4. Wrapper-based selection of genetic features in genome-wide association studies through fast matrix operations

    PubMed Central

    2012-01-01

    Background Through the wealth of information contained within them, genome-wide association studies (GWAS) have the potential to provide researchers with a systematic means of associating genetic variants with a wide variety of disease phenotypes. Due to the limitations of approaches that have analyzed single variants one at a time, it has been proposed that the genetic basis of these disorders could be determined through detailed analysis of the genetic variants themselves and in conjunction with one another. The construction of models that account for these subsets of variants requires methodologies that generate predictions based on the total risk of a particular group of polymorphisms. However, due to the excessive number of variants, constructing these types of models has so far been computationally infeasible. Results We have implemented an algorithm, known as greedy RLS, that we use to perform the first known wrapper-based feature selection on the genome-wide level. The running time of greedy RLS grows linearly in the number of training examples, the number of features in the original data set, and the number of selected features. This speed is achieved through computational short-cuts based on matrix calculus. Since the memory consumption in present-day computers can form an even tighter bottleneck than running time, we also developed a space efficient variation of greedy RLS which trades running time for memory. These approaches are then compared to traditional wrapper-based feature selection implementations based on support vector machines (SVM) to reveal the relative speed-up and to assess the feasibility of the new algorithm. As a proof of concept, we apply greedy RLS to the Hypertension – UK National Blood Service WTCCC dataset and select the most predictive variants using 3-fold external cross-validation in less than 26 minutes on a high-end desktop. On this dataset, we also show that greedy RLS has a better classification performance on independent test data than a classifier trained using features selected by a statistical p-value-based filter, which is currently the most popular approach for constructing predictive models in GWAS. Conclusions Greedy RLS is the first known implementation of a machine learning based method with the capability to conduct a wrapper-based feature selection on an entire GWAS containing several thousand examples and over 400,000 variants. In our experiments, greedy RLS selected a highly predictive subset of genetic variants in a fraction of the time spent by wrapper-based selection methods used together with SVM classifiers. The proposed algorithms are freely available as part of the RLScore software library at http://users.utu.fi/aatapa/RLScore/. PMID:22551170

  5. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan

    2010-12-01

    This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  6. Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math.

    PubMed

    Raizada, Rajeev D S; Tsao, Feng-Ming; Liu, Huei-Mei; Holloway, Ian D; Ansari, Daniel; Kuhl, Patricia K

    2010-05-15

    A key goal of cognitive neuroscience is to find simple and direct connections between brain and behaviour. However, fMRI analysis typically involves choices between many possible options, with each choice potentially biasing any brain-behaviour correlations that emerge. Standard methods of fMRI analysis assess each voxel individually, but then face the problem of selection bias when combining those voxels into a region-of-interest, or ROI. Multivariate pattern-based fMRI analysis methods use classifiers to analyse multiple voxels together, but can also introduce selection bias via data-reduction steps as feature selection of voxels, pre-selecting activated regions, or principal components analysis. We show here that strong brain-behaviour links can be revealed without any voxel selection or data reduction, using just plain linear regression as a classifier applied to the whole brain at once, i.e. treating each entire brain volume as a single multi-voxel pattern. The brain-behaviour correlations emerged despite the fact that the classifier was not provided with any information at all about subjects' behaviour, but instead was given only the neural data and its condition-labels. Surprisingly, more powerful classifiers such as a linear SVM and regularised logistic regression produce very similar results. We discuss some possible reasons why the very simple brain-wide linear regression model is able to find correlations with behaviour that are as strong as those obtained on the one hand from a specific ROI and on the other hand from more complex classifiers. In a manner which is unencumbered by arbitrary choices, our approach offers a method for investigating connections between brain and behaviour which is simple, rigorous and direct. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math

    PubMed Central

    Raizada, Rajeev D.S.; Tsao, Feng-Ming; Liu, Huei-Mei; Holloway, Ian D.; Ansari, Daniel; Kuhl, Patricia K.

    2010-01-01

    A key goal of cognitive neuroscience is to find simple and direct connections between brain and behaviour. However, fMRI analysis typically involves choices between many possible options, with each choice potentially biasing any brain–behaviour correlations that emerge. Standard methods of fMRI analysis assess each voxel individually, but then face the problem of selection bias when combining those voxels into a region-of-interest, or ROI. Multivariate pattern-based fMRI analysis methods use classifiers to analyse multiple voxels together, but can also introduce selection bias via data-reduction steps as feature selection of voxels, pre-selecting activated regions, or principal components analysis. We show here that strong brain–behaviour links can be revealed without any voxel selection or data reduction, using just plain linear regression as a classifier applied to the whole brain at once, i.e. treating each entire brain volume as a single multi-voxel pattern. The brain–behaviour correlations emerged despite the fact that the classifier was not provided with any information at all about subjects' behaviour, but instead was given only the neural data and its condition-labels. Surprisingly, more powerful classifiers such as a linear SVM and regularised logistic regression produce very similar results. We discuss some possible reasons why the very simple brain-wide linear regression model is able to find correlations with behaviour that are as strong as those obtained on the one hand from a specific ROI and on the other hand from more complex classifiers. In a manner which is unencumbered by arbitrary choices, our approach offers a method for investigating connections between brain and behaviour which is simple, rigorous and direct. PMID:20132896

  8. Low-Dimensional Feature Representation for Instrument Identification

    NASA Astrophysics Data System (ADS)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  9. Classification of speech dysfluencies using LPC based parameterization techniques.

    PubMed

    Hariharan, M; Chee, Lim Sin; Ai, Ooi Chia; Yaacob, Sazali

    2012-06-01

    The goal of this paper is to discuss and compare three feature extraction methods: Linear Predictive Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC) and Weighted Linear Prediction Cepstral Coefficients (WLPCC) for recognizing the stuttered events. Speech samples from the University College London Archive of Stuttered Speech (UCLASS) were used for our analysis. The stuttered events were identified through manual segmentation and were used for feature extraction. Two simple classifiers namely, k-nearest neighbour (kNN) and Linear Discriminant Analysis (LDA) were employed for speech dysfluencies classification. Conventional validation method was used for testing the reliability of the classifier results. The study on the effect of different frame length, percentage of overlapping, value of ã in a first order pre-emphasizer and different order p were discussed. The speech dysfluencies classification accuracy was found to be improved by applying statistical normalization before feature extraction. The experimental investigation elucidated LPC, LPCC and WLPCC features can be used for identifying the stuttered events and WLPCC features slightly outperforms LPCC features and LPC features.

  10. Automated Feature Identification and Classification Using Automated Feature Weighted Self Organizing Map (FWSOM)

    NASA Astrophysics Data System (ADS)

    Starkey, Andrew; Usman Ahmad, Aliyu; Hamdoun, Hassan

    2017-10-01

    This paper investigates the application of a novel method for classification called Feature Weighted Self Organizing Map (FWSOM) that analyses the topology information of a converged standard Self Organizing Map (SOM) to automatically guide the selection of important inputs during training for improved classification of data with redundant inputs, examined against two traditional approaches namely neural networks and Support Vector Machines (SVM) for the classification of EEG data as presented in previous work. In particular, the novel method looks to identify the features that are important for classification automatically, and in this way the important features can be used to improve the diagnostic ability of any of the above methods. The paper presents the results and shows how the automated identification of the important features successfully identified the important features in the dataset and how this results in an improvement of the classification results for all methods apart from linear discriminatory methods which cannot separate the underlying nonlinear relationship in the data. The FWSOM in addition to achieving higher classification accuracy has given insights into what features are important in the classification of each class (left and right-hand movements), and these are corroborated by already published work in this area.

  11. Improved classification accuracy by feature extraction using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.

    2003-05-01

    A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.

  12. Contextual Multi-armed Bandits under Feature Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Seyoung; Nam, Jun Hyun; Mo, Sangwoo

    We study contextual multi-armed bandit problems under linear realizability on rewards and uncertainty (or noise) on features. For the case of identical noise on features across actions, we propose an algorithm, coined NLinRel, having O(T⁷/₈(log(dT)+K√d)) regret bound for T rounds, K actions, and d-dimensional feature vectors. Next, for the case of non-identical noise, we observe that popular linear hypotheses including NLinRel are impossible to achieve such sub-linear regret. Instead, under assumption of Gaussian feature vectors, we prove that a greedy algorithm has O(T²/₃√log d)regret bound with respect to the optimal linear hypothesis. Utilizing our theoretical understanding on the Gaussian case,more » we also design a practical variant of NLinRel, coined Universal-NLinRel, for arbitrary feature distributions. It first runs NLinRel for finding the ‘true’ coefficient vector using feature uncertainties and then adjust it to minimize its regret using the statistical feature information. We justify the performance of Universal-NLinRel on both synthetic and real-world datasets.« less

  13. Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases.

    PubMed

    Creasy, John M; Midya, Abhishek; Chakraborty, Jayasree; Adams, Lauryn B; Gomes, Camilla; Gonen, Mithat; Seastedt, Kenneth P; Sutton, Elizabeth J; Cercek, Andrea; Kemeny, Nancy E; Shia, Jinru; Balachandran, Vinod P; Kingham, T Peter; Allen, Peter J; DeMatteo, Ronald P; Jarnagin, William R; D'Angelica, Michael I; Do, Richard K G; Simpson, Amber L

    2018-06-19

    This study investigates whether quantitative image analysis of pretreatment CT scans can predict volumetric response to chemotherapy for patients with colorectal liver metastases (CRLM). Patients treated with chemotherapy for CRLM (hepatic artery infusion (HAI) combined with systemic or systemic alone) were included in the study. Patients were imaged at baseline and approximately 8 weeks after treatment. Response was measured as the percentage change in tumour volume from baseline. Quantitative imaging features were derived from the index hepatic tumour on pretreatment CT, and features statistically significant on univariate analysis were included in a linear regression model to predict volumetric response. The regression model was constructed from 70% of data, while 30% were reserved for testing. Test data were input into the trained model. Model performance was evaluated with mean absolute prediction error (MAPE) and R 2 . Clinicopatholologic factors were assessed for correlation with response. 157 patients were included, split into training (n = 110) and validation (n = 47) sets. MAPE from the multivariate linear regression model was 16.5% (R 2 = 0.774) and 21.5% in the training and validation sets, respectively. Stratified by HAI utilisation, MAPE in the validation set was 19.6% for HAI and 25.1% for systemic chemotherapy alone. Clinical factors associated with differences in median tumour response were treatment strategy, systemic chemotherapy regimen, age and KRAS mutation status (p < 0.05). Quantitative imaging features extracted from pretreatment CT are promising predictors of volumetric response to chemotherapy in patients with CRLM. Pretreatment predictors of response have the potential to better select patients for specific therapies. • Colorectal liver metastases (CRLM) are downsized with chemotherapy but predicting the patients that will respond to chemotherapy is currently not possible. • Heterogeneity and enhancement patterns of CRLM can be measured with quantitative imaging. • Prediction model constructed that predicts volumetric response with 20% error suggesting that quantitative imaging holds promise to better select patients for specific treatments.

  14. Follow the line: Mysterious bright streaks on Dione and Rhea

    NASA Astrophysics Data System (ADS)

    Martin, E. S.; Patthoff, D. A.

    2017-12-01

    Our recent mapping of the wispy terrains of Saturn's moons Dione and Rhea has revealed unique linear features that are generally long (10s-100s km), narrow (1-10 km), brighter than the surrounding terrains, and their detection may be sensitive to lighting geometries. We refer to these features as `linear virgae.' Wherever linear virgae are observed, they appear to crosscut all other structures, suggesting that they are the youngest features on these satellites. Despite their young age and wide distribution, linear virgae on Rhea and Dione have largely been overlooked in the literature. Linear virgae on Dione have previously been identified in Voyager and Cassini Data, but their formation remains an open question. If linear virgae are found to be endogenic, it would suggest that the surfaces of Dione and Rhea have been active recently. Alternatively, if linear virgae are exogenic it would suggest that the surfaces have been modified by a possibly common mechanism. Further work would be necessary to determine both a source of material and the dynamical environment that could produce these features. Here we present detailed morphometric measurements to further constrain whether linear virgae on Rhea and Dione share common origins. We complete an in-depth assessment of the lighting geometries where these features are visible. If linear virgae in the Saturnian system show common morphologies and distributions, a new, recently active, possibly system-wide mechanism may be revealed, thereby improving our understanding of the recent dynamical environment around Saturn.

  15. Computer-aided detection of bladder mass within non-contrast-enhanced region of CT Urography (CTU)

    NASA Astrophysics Data System (ADS)

    Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon; Zhou, Chuan

    2016-03-01

    We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). We have previously developed methods for detection of bladder masses within the contrast-enhanced region of the bladder. In this study, we investigated methods for detection of bladder masses within the non-contrast enhanced region. The bladder was first segmented using a newly developed deep-learning convolutional neural network in combination with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensityprojection- based method. The non-contrast region was smoothed and a gray level threshold was employed to segment the bladder wall and potential masses. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify lesion candidates as a prescreening step. The lesion candidates were segmented using our autoinitialized cascaded level set (AI-CALS) segmentation method, and 27 morphological features were extracted for each candidate. Stepwise feature selection with simplex optimization and leave-one-case-out resampling were used for training and validation of a false positive (FP) classifier. In each leave-one-case-out cycle, features were selected from the training cases and a linear discriminant analysis (LDA) classifier was designed to merge the selected features into a single score for classification of the left-out test case. A data set of 33 cases with 42 biopsy-proven lesions in the noncontrast enhanced region was collected. During prescreening, the system obtained 83.3% sensitivity at an average of 2.4 FPs/case. After feature extraction and FP reduction by LDA, the system achieved 81.0% sensitivity at 2.0 FPs/case, and 73.8% sensitivity at 1.5 FPs/case.

  16. Fully automatic time-window selection using machine learning for global adjoint tomography

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hill, J.; Lei, W.; Lefebvre, M. P.; Bozdag, E.; Komatitsch, D.; Tromp, J.

    2017-12-01

    Selecting time windows from seismograms such that the synthetic measurements (from simulations) and measured observations are sufficiently close is indispensable in a global adjoint tomography framework. The increasing amount of seismic data collected everyday around the world demands "intelligent" algorithms for seismic window selection. While the traditional FLEXWIN algorithm can be "automatic" to some extent, it still requires both human input and human knowledge or experience, and thus is not deemed to be fully automatic. The goal of intelligent window selection is to automatically select windows based on a learnt engine that is built upon a huge number of existing windows generated through the adjoint tomography project. We have formulated the automatic window selection problem as a classification problem. All possible misfit calculation windows are classified as either usable or unusable. Given a large number of windows with a known selection mode (select or not select), we train a neural network to predict the selection mode of an arbitrary input window. Currently, the five features we extract from the windows are its cross-correlation value, cross-correlation time lag, amplitude ratio between observed and synthetic data, window length, and minimum STA/LTA value. More features can be included in the future. We use these features to characterize each window for training a multilayer perceptron neural network (MPNN). Training the MPNN is equivalent to solve a non-linear optimization problem. We use backward propagation to derive the gradient of the loss function with respect to the weighting matrices and bias vectors and use the mini-batch stochastic gradient method to iteratively optimize the MPNN. Numerical tests show that with a careful selection of the training data and a sufficient amount of training data, we are able to train a robust neural network that is capable of detecting the waveforms in an arbitrary earthquake data with negligible detection error compared to existing selection methods (e.g. FLEXWIN). We will introduce in detail the mathematical formulation of the window-selection-oriented MPNN and show very encouraging results when applying the new algorithm to real earthquake data.

  17. Directional filtering for block recovery using wavelet features

    NASA Astrophysics Data System (ADS)

    Hyun, Seung H.; Eom, Il K.; Kim, Yoo S.

    2005-07-01

    When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. Conventional methods that do not consider edge directions can cause blocked blurring artifacts. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. The adaptive selection of neighboring blocks is performed based on the energy of wavelet subbands (EWS) and difference between DC values (DDC). The lost blocks are recovered by linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well for diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combine EWS and DDC for better results. The proposed directional recovery method is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. The proposed method outperforms the previous methods that used only fixed blocks.

  18. Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung

    Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.

  19. Consciousness Indexing and Outcome Prediction with Resting-State EEG in Severe Disorders of Consciousness.

    PubMed

    Stefan, Sabina; Schorr, Barbara; Lopez-Rolon, Alex; Kolassa, Iris-Tatjana; Shock, Jonathan P; Rosenfelder, Martin; Heck, Suzette; Bender, Andreas

    2018-04-17

    We applied the following methods to resting-state EEG data from patients with disorders of consciousness (DOC) for consciousness indexing and outcome prediction: microstates, entropy (i.e. approximate, permutation), power in alpha and delta frequency bands, and connectivity (i.e. weighted symbolic mutual information, symbolic transfer entropy, complex network analysis). Patients with unresponsive wakefulness syndrome (UWS) and patients in a minimally conscious state (MCS) were classified into these two categories by fitting and testing a generalised linear model. We aimed subsequently to develop an automated system for outcome prediction in severe DOC by selecting an optimal subset of features using sequential floating forward selection (SFFS). The two outcome categories were defined as UWS or dead, and MCS or emerged from MCS. Percentage of time spent in microstate D in the alpha frequency band performed best at distinguishing MCS from UWS patients. The average clustering coefficient obtained from thresholding beta coherence performed best at predicting outcome. The optimal subset of features selected with SFFS consisted of the frequency of microstate A in the 2-20 Hz frequency band, path length obtained from thresholding alpha coherence, and average path length obtained from thresholding alpha coherence. Combining these features seemed to afford high prediction power. Python and MATLAB toolboxes for the above calculations are freely available under the GNU public license for non-commercial use ( https://qeeg.wordpress.com ).

  20. SVM Based Descriptor Selection and Classification of Neurodegenerative Disease Drugs for Pharmacological Modeling.

    PubMed

    Shahid, Mohammad; Shahzad Cheema, Muhammad; Klenner, Alexander; Younesi, Erfan; Hofmann-Apitius, Martin

    2013-03-01

    Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. OligoIS: Scalable Instance Selection for Class-Imbalanced Data Sets.

    PubMed

    García-Pedrajas, Nicolás; Perez-Rodríguez, Javier; de Haro-García, Aida

    2013-02-01

    In current research, an enormous amount of information is constantly being produced, which poses a challenge for data mining algorithms. Many of the problems in extremely active research areas, such as bioinformatics, security and intrusion detection, or text mining, share the following two features: large data sets and class-imbalanced distribution of samples. Although many methods have been proposed for dealing with class-imbalanced data sets, most of these methods are not scalable to the very large data sets common to those research fields. In this paper, we propose a new approach to dealing with the class-imbalance problem that is scalable to data sets with many millions of instances and hundreds of features. This proposal is based on the divide-and-conquer principle combined with application of the selection process to balanced subsets of the whole data set. This divide-and-conquer principle allows the execution of the algorithm in linear time. Furthermore, the proposed method is easy to implement using a parallel environment and can work without loading the whole data set into memory. Using 40 class-imbalanced medium-sized data sets, we will demonstrate our method's ability to improve the results of state-of-the-art instance selection methods for class-imbalanced data sets. Using three very large data sets, we will show the scalability of our proposal to millions of instances and hundreds of features.

  2. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    PubMed

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  3. A spectral reflectance estimation technique using multispectral data from the Viking lander camera

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Huck, F. O.

    1976-01-01

    A technique is formulated for constructing spectral reflectance curve estimates from multispectral data obtained with the Viking lander camera. The multispectral data are limited to six spectral channels in the wavelength range from 0.4 to 1.1 micrometers and most of these channels exhibit appreciable out-of-band response. The output of each channel is expressed as a linear (integral) function of the (known) solar irradiance, atmospheric transmittance, and camera spectral responsivity and the (unknown) spectral responsivity and the (unknown) spectral reflectance. This produces six equations which are used to determine the coefficients in a representation of the spectral reflectance as a linear combination of known basis functions. Natural cubic spline reflectance estimates are produced for a variety of materials that can be reasonably expected to occur on Mars. In each case the dominant reflectance features are accurately reproduced, but small period features are lost due to the limited number of channels. This technique may be a valuable aid in selecting the number of spectral channels and their responsivity shapes when designing a multispectral imaging system.

  4. Deployable System for Crash-Load Attenuation

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.

    2007-01-01

    An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages, afforded by the flexible hinge feature, include a variety of deployment options such as linear, radial, and/or hybrid deployment methods. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented.

  5. Classification of cardiovascular tissues using LBP based descriptors and a cascade SVM.

    PubMed

    Mazo, Claudia; Alegre, Enrique; Trujillo, Maria

    2017-08-01

    Histological images have characteristics, such as texture, shape, colour and spatial structure, that permit the differentiation of each fundamental tissue and organ. Texture is one of the most discriminative features. The automatic classification of tissues and organs based on histology images is an open problem, due to the lack of automatic solutions when treating tissues without pathologies. In this paper, we demonstrate that it is possible to automatically classify cardiovascular tissues using texture information and Support Vector Machines (SVM). Additionally, we realised that it is feasible to recognise several cardiovascular organs following the same process. The texture of histological images was described using Local Binary Patterns (LBP), LBP Rotation Invariant (LBPri), Haralick features and different concatenations between them, representing in this way its content. Using a SVM with linear kernel, we selected the more appropriate descriptor that, for this problem, was a concatenation of LBP and LBPri. Due to the small number of the images available, we could not follow an approach based on deep learning, but we selected the classifier who yielded the higher performance by comparing SVM with Random Forest and Linear Discriminant Analysis. Once SVM was selected as the classifier with a higher area under the curve that represents both higher recall and precision, we tuned it evaluating different kernels, finding that a linear SVM allowed us to accurately separate four classes of tissues: (i) cardiac muscle of the heart, (ii) smooth muscle of the muscular artery, (iii) loose connective tissue, and (iv) smooth muscle of the large vein and the elastic artery. The experimental validation was conducted using 3000 blocks of 100 × 100 sized pixels, with 600 blocks per class and the classification was assessed using a 10-fold cross-validation. using LBP as the descriptor, concatenated with LBPri and a SVM with linear kernel, the main four classes of tissues were recognised with an AUC higher than 0.98. A polynomial kernel was then used to separate the elastic artery and vein, yielding an AUC in both cases superior to 0.98. Following the proposed approach, it is possible to separate with very high precision (AUC greater than 0.98) the fundamental tissues of the cardiovascular system along with some organs, such as the heart, arteries and veins. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Remote Sensing in Archaeology: Visible Temporal Change of Archaeological Features of the Peten, Guatemala

    NASA Technical Reports Server (NTRS)

    Lowry, James D., Jr.

    1999-01-01

    The purpose of this archaeological research was two-fold; the location of Mayan sites and features in order to learn more of this cultural group, and the (cultural) preservation of these sites and features for the future using Landsat Thematic Mapper (TM) images. Because the rainy season, traditionally at least, lasts about six months (about June to December), the time of year the image is acquired plays an important role in spectral reflectance. Images from 1986, 1995, and 1997 were selected because it was felt they would provide the best opportunity for success in layering different bands from different years together to attempt to see features not completely visible in any one year. False-color composites were created including bands 3, 4, and 5 using a mixture of years and bands. One particular combination that yielded tremendously interesting results included band 5 from 1997, band 4 from 1995, and band 3 from 1986. A number of straight linear features (probably Mayan causeways) run through the bajos that Dr. Sever believes are features previously undiscovered. At this point, early indications are that this will be a successful method for locating "new" Mayan archaeological features in the Peten.

  7. Understanding Deep Representations Learned in Modeling Users Likes.

    PubMed

    Guntuku, Sharath Chandra; Zhou, Joey Tianyi; Roy, Sujoy; Lin, Weisi; Tsang, Ivor W

    2016-08-01

    Automatically understanding and discriminating different users' liking for an image is a challenging problem. This is because the relationship between image features (even semantic ones extracted by existing tools, viz., faces, objects, and so on) and users' likes is non-linear, influenced by several subtle factors. This paper presents a deep bi-modal knowledge representation of images based on their visual content and associated tags (text). A mapping step between the different levels of visual and textual representations allows for the transfer of semantic knowledge between the two modalities. Feature selection is applied before learning deep representation to identify the important features for a user to like an image. The proposed representation is shown to be effective in discriminating users based on images they like and also in recommending images that a given user likes, outperforming the state-of-the-art feature representations by  ∼ 15 %-20%. Beyond this test-set performance, an attempt is made to qualitatively understand the representations learned by the deep architecture used to model user likes.

  8. Multiscale wavelet representations for mammographic feature analysis

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  9. Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.

    1995-04-01

    This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.

  10. Pattern classification approach to characterizing solitary pulmonary nodules imaged on high-resolution computed tomography

    NASA Astrophysics Data System (ADS)

    McNitt-Gray, Michael F.; Hart, Eric M.; Goldin, Jonathan G.; Yao, Chih-Wei; Aberle, Denise R.

    1996-04-01

    The purpose of our study was to characterize solitary pulmonary nodules (SPN) as benign or malignant based on pattern classification techniques using size, shape, density and texture features extracted from HRCT images. HRCT images of patients with a SPN are acquired, routed through a PACS and displayed on a thoracic radiology workstation. Using the original data, the SPN is semiautomatically contoured using a nodule/background threshold. The contour is used to calculate size and several shape parameters, including compactness and bending energy. Pixels within the interior of the contour are used to calculate several features including: (1) nodule density-related features, such as representative Hounsfield number and moment of inertia, and (2) texture measures based on the spatial gray level dependence matrix and fractal dimension. The true diagnosis of the SPN is established by histology from biopsy or, in the case of some benign nodules, extended follow-up. Multi-dimensional analyses of the features are then performed to determine which features can discriminate between benign and malignant nodules. When a sufficient number of cases are obtained two pattern classifiers, a linear discriminator and a neural network, are trained and tested using a select subset of features. Preliminary data from nine (9) nodule cases have been obtained and several features extracted. While the representative CT number is a reasonably good indicator, it is an inconclusive predictor of SPN diagnosis when considered by itself. Separation between benign and malignant nodules improves when other features, such as the distribution of density as measured by moment of inertia, are included in the analysis. Software has been developed and preliminary results have been obtained which show that individual features may not be sufficient to discriminate between benign and malignant nodules. However, combinations of these features may be able to discriminate between these two classes. With additional cases and more features, we will be able to perform a feature selection procedure and ultimately to train and test pattern classifiers in this discrimination task.

  11. Valley-selective Landau-Zener oscillations in semi-Dirac p -n junctions

    NASA Astrophysics Data System (ADS)

    Saha, K.; Nandkishore, R.; Parameswaran, S. A.

    2017-07-01

    We study transport across p -n junctions of gapped two-dimensional semi-Dirac materials: nodal semimetals whose energy bands disperse quadratically and linearly along distinct crystal axes. The resulting electronic properties—relevant to materials such as TiO2/VO2 multilayers and α -(BEDT-TTF)2I3 salts—continuously interpolate between those of mono- and bilayer graphene as a function of propagation angle. We demonstrate that tunneling across the junction depends on the orientation of the tunnel barrier relative to the crystalline axes, leading to strongly nonmonotonic current-voltage characteristics, including negative differential conductance in some regimes. In multivalley systems, these features provide a natural route to engineering valley-selective transport.

  12. Bayesian Group Bridge for Bi-level Variable Selection.

    PubMed

    Mallick, Himel; Yi, Nengjun

    2017-06-01

    A Bayesian bi-level variable selection method (BAGB: Bayesian Analysis of Group Bridge) is developed for regularized regression and classification. This new development is motivated by grouped data, where generic variables can be divided into multiple groups, with variables in the same group being mechanistically related or statistically correlated. As an alternative to frequentist group variable selection methods, BAGB incorporates structural information among predictors through a group-wise shrinkage prior. Posterior computation proceeds via an efficient MCMC algorithm. In addition to the usual ease-of-interpretation of hierarchical linear models, the Bayesian formulation produces valid standard errors, a feature that is notably absent in the frequentist framework. Empirical evidence of the attractiveness of the method is illustrated by extensive Monte Carlo simulations and real data analysis. Finally, several extensions of this new approach are presented, providing a unified framework for bi-level variable selection in general models with flexible penalties.

  13. Feature extraction with deep neural networks by a generalized discriminant analysis.

    PubMed

    Stuhlsatz, André; Lippel, Jens; Zielke, Thomas

    2012-04-01

    We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.

  14. Comparison of discriminant analysis methods: Application to occupational exposure to particulate matter

    NASA Astrophysics Data System (ADS)

    Ramos, M. Rosário; Carolino, E.; Viegas, Carla; Viegas, Sandra

    2016-06-01

    Health effects associated with occupational exposure to particulate matter have been studied by several authors. In this study were selected six industries of five different areas: Cork company 1, Cork company 2, poultry, slaughterhouse for cattle, riding arena and production of animal feed. The measurements tool was a portable device for direct reading. This tool provides information on the particle number concentration for six different diameters, namely 0.3 µm, 0.5 µm, 1 µm, 2.5 µm, 5 µm and 10 µm. The focus on these features is because they might be more closely related with adverse health effects. The aim is to identify the particles that better discriminate the industries, with the ultimate goal of classifying industries regarding potential negative effects on workers' health. Several methods of discriminant analysis were applied to data of occupational exposure to particulate matter and compared with respect to classification accuracy. The selected methods were linear discriminant analyses (LDA); linear quadratic discriminant analysis (QDA), robust linear discriminant analysis with selected estimators (MLE (Maximum Likelihood Estimators), MVE (Minimum Volume Elipsoid), "t", MCD (Minimum Covariance Determinant), MCD-A, MCD-B), multinomial logistic regression and artificial neural networks (ANN). The predictive accuracy of the methods was accessed through a simulation study. ANN yielded the highest rate of classification accuracy in the data set under study. Results indicate that the particle number concentration of diameter size 0.5 µm is the parameter that better discriminates industries.

  15. CNN based approach for activity recognition using a wrist-worn accelerometer.

    PubMed

    Panwar, Madhuri; Dyuthi, S Ram; Chandra Prakash, K; Biswas, Dwaipayan; Acharyya, Amit; Maharatna, Koushik; Gautam, Arvind; Naik, Ganesh R

    2017-07-01

    In recent years, significant advancements have taken place in human activity recognition using various machine learning approaches. However, feature engineering have dominated conventional methods involving the difficult process of optimal feature selection. This problem has been mitigated by using a novel methodology based on deep learning framework which automatically extracts the useful features and reduces the computational cost. As a proof of concept, we have attempted to design a generalized model for recognition of three fundamental movements of the human forearm performed in daily life where data is collected from four different subjects using a single wrist worn accelerometer sensor. The validation of the proposed model is done with different pre-processing and noisy data condition which is evaluated using three possible methods. The results show that our proposed methodology achieves an average recognition rate of 99.8% as opposed to conventional methods based on K-means clustering, linear discriminant analysis and support vector machine.

  16. Morphometrical study on senile larynx.

    PubMed

    Zieliński, R

    2001-01-01

    The aim of the study was a morphometrical macroscopic evaluation of senile larynges, according to its usefulness in ORL diagnostic and operational methods. Larynx preparations were taken from cadavers of both sexes, of age 65 and over, about 24 hours after death. Clinically important laryngeal diameters were collected using common morphometrical methods. A few body features were also being gathered. Computer statistical methods were used in data assessment, including basic statistics and linear correlations between diameters and between diameters and body features. The data presented in the study may be very helpful in evaluation of diagnostic methods. It may also help in selection of right operational tool' sizes, the most appropriate operational technique choice, preoperative preparations and designing and building virtual and plastic models for physicians' training.

  17. Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images

    PubMed Central

    Wang, Yu; Zhang, Yaonan; Yao, Zhaomin; Zhao, Ruixue; Zhou, Fengfeng

    2016-01-01

    Non-lethal macular diseases greatly impact patients’ life quality, and will cause vision loss at the late stages. Visual inspection of the optical coherence tomography (OCT) images by the experienced clinicians is the main diagnosis technique. We proposed a computer-aided diagnosis (CAD) model to discriminate age-related macular degeneration (AMD), diabetic macular edema (DME) and healthy macula. The linear configuration pattern (LCP) based features of the OCT images were screened by the Correlation-based Feature Subset (CFS) selection algorithm. And the best model based on the sequential minimal optimization (SMO) algorithm achieved 99.3% in the overall accuracy for the three classes of samples. PMID:28018716

  18. Control of the NASA Langley 16-Foot Transonic Tunnel with the Self-Organizing Feature Map

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    1998-01-01

    A predictive, multiple model control strategy is developed based on an ensemble of local linear models of the nonlinear system dynamics for a transonic wind tunnel. The local linear models are estimated directly from the weights of a Self Organizing Feature Map (SOFM). Local linear modeling of nonlinear autonomous systems with the SOFM is extended to a control framework where the modeled system is nonautonomous, driven by an exogenous input. This extension to a control framework is based on the consideration of a finite number of subregions in the control space. Multiple self organizing feature maps collectively model the global response of the wind tunnel to a finite set of representative prototype controls. These prototype controls partition the control space and incorporate experimental knowledge gained from decades of operation. Each SOFM models the combination of the tunnel with one of the representative controls, over the entire range of operation. The SOFM based linear models are used to predict the tunnel response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal. Each SOFM provides a codebook representation of the tunnel dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the minimization of a similarity metric which is the essence of the self organizing feature of the map. Thus, the SOFM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme than selects the best available model for the applied control. Experimental results of controlling the wind tunnel, with the proposed method, during operational runs where strict research requirements on the control of the Mach number were met, are presented. Comparison to similar runs under the same conditions with the tunnel controlled by either the existing controller or an expert operator indicate the superiority of the method.

  19. Feature Visibility Limits in the Non-Linear Enhancement of Turbid Images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.

    2003-01-01

    The advancement of non-linear processing methods for generic automatic clarification of turbid imagery has led us from extensions of entirely passive multiscale Retinex processing to a new framework of active measurement and control of the enhancement process called the Visual Servo. In the process of testing this new non-linear computational scheme, we have identified that feature visibility limits in the post-enhancement image now simplify to a single signal-to-noise figure of merit: a feature is visible if the feature-background signal difference is greater than the RMS noise level. In other words, a signal-to-noise limit of approximately unity constitutes a lower limit on feature visibility.

  20. Exploiting Acoustic and Syntactic Features for Automatic Prosody Labeling in a Maximum Entropy Framework

    PubMed Central

    Sridhar, Vivek Kumar Rangarajan; Bangalore, Srinivas; Narayanan, Shrikanth S.

    2009-01-01

    In this paper, we describe a maximum entropy-based automatic prosody labeling framework that exploits both language and speech information. We apply the proposed framework to both prominence and phrase structure detection within the Tones and Break Indices (ToBI) annotation scheme. Our framework utilizes novel syntactic features in the form of supertags and a quantized acoustic–prosodic feature representation that is similar to linear parameterizations of the prosodic contour. The proposed model is trained discriminatively and is robust in the selection of appropriate features for the task of prosody detection. The proposed maximum entropy acoustic–syntactic model achieves pitch accent and boundary tone detection accuracies of 86.0% and 93.1% on the Boston University Radio News corpus, and, 79.8% and 90.3% on the Boston Directions corpus. The phrase structure detection through prosodic break index labeling provides accuracies of 84% and 87% on the two corpora, respectively. The reported results are significantly better than previously reported results and demonstrate the strength of maximum entropy model in jointly modeling simple lexical, syntactic, and acoustic features for automatic prosody labeling. PMID:19603083

  1. A new scoring system in Cystic Fibrosis: statistical tools for database analysis - a preliminary report.

    PubMed

    Hafen, G M; Hurst, C; Yearwood, J; Smith, J; Dzalilov, Z; Robinson, P J

    2008-10-05

    Cystic fibrosis is the most common fatal genetic disorder in the Caucasian population. Scoring systems for assessment of Cystic fibrosis disease severity have been used for almost 50 years, without being adapted to the milder phenotype of the disease in the 21st century. The aim of this current project is to develop a new scoring system using a database and employing various statistical tools. This study protocol reports the development of the statistical tools in order to create such a scoring system. The evaluation is based on the Cystic Fibrosis database from the cohort at the Royal Children's Hospital in Melbourne. Initially, unsupervised clustering of the all data records was performed using a range of clustering algorithms. In particular incremental clustering algorithms were used. The clusters obtained were characterised using rules from decision trees and the results examined by clinicians. In order to obtain a clearer definition of classes expert opinion of each individual's clinical severity was sought. After data preparation including expert-opinion of an individual's clinical severity on a 3 point-scale (mild, moderate and severe disease), two multivariate techniques were used throughout the analysis to establish a method that would have a better success in feature selection and model derivation: 'Canonical Analysis of Principal Coordinates' and 'Linear Discriminant Analysis'. A 3-step procedure was performed with (1) selection of features, (2) extracting 5 severity classes out of a 3 severity class as defined per expert-opinion and (3) establishment of calibration datasets. (1) Feature selection: CAP has a more effective "modelling" focus than DA.(2) Extraction of 5 severity classes: after variables were identified as important in discriminating contiguous CF severity groups on the 3-point scale as mild/moderate and moderate/severe, Discriminant Function (DF) was used to determine the new groups mild, intermediate moderate, moderate, intermediate severe and severe disease. (3) Generated confusion tables showed a misclassification rate of 19.1% for males and 16.5% for females, with a majority of misallocations into adjacent severity classes particularly for males. Our preliminary data show that using CAP for detection of selection features and Linear DA to derive the actual model in a CF database might be helpful in developing a scoring system. However, there are several limitations, particularly more data entry points are needed to finalize a score and the statistical tools have further to be refined and validated, with re-running the statistical methods in the larger dataset.

  2. Machine learning-based methods for prediction of linear B-cell epitopes.

    PubMed

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  3. Implications of the Corotation Theorem on the MRI in Axial Symmetry

    NASA Astrophysics Data System (ADS)

    Montani, G.; Cianfrani, F.; Pugliese, D.

    2016-08-01

    We analyze the linear stability of an axially symmetric ideal plasma disk, embedded in a magnetic field and endowed with a differential rotation. This study is performed by adopting the magnetic flux function as the fundamental dynamical variable, in order to outline the role played by the corotation theorem on the linear mode structure. Using some specific assumptions (e.g., plasma incompressibility and propagation of the perturbations along the background magnetic field), we select the Alfvénic nature of the magnetorotational instability, and, in the geometric optics limit, we determine the dispersion relation describing the linear spectrum. We show how the implementation of the corotation theorem (valid for the background configuration) on the linear dynamics produces the cancellation of the vertical derivative of the disk angular velocity (we check such a feature also in the standard vector formalism to facilitate comparison with previous literature, in both the axisymmetric and three-dimensional cases). As a result, we clarify that the unstable modes have, for a stratified disk, the same morphology, proper of a thin-disk profile, and the z-dependence has a simple parametric role.

  4. An explorative childhood pneumonia analysis based on ultrasonic imaging texture features

    NASA Astrophysics Data System (ADS)

    Zenteno, Omar; Diaz, Kristians; Lavarello, Roberto; Zimic, Mirko; Correa, Malena; Mayta, Holger; Anticona, Cynthia; Pajuelo, Monica; Oberhelman, Richard; Checkley, William; Gilman, Robert H.; Figueroa, Dante; Castañeda, Benjamín.

    2015-12-01

    According to World Health Organization, pneumonia is the respiratory disease with the highest pediatric mortality rate accounting for 15% of all deaths of children under 5 years old worldwide. The diagnosis of pneumonia is commonly made by clinical criteria with support from ancillary studies and also laboratory findings. Chest imaging is commonly done with chest X-rays and occasionally with a chest CT scan. Lung ultrasound is a promising alternative for chest imaging; however, interpretation is subjective and requires adequate training. In the present work, a two-class classification algorithm based on four Gray-level co-occurrence matrix texture features (i.e., Contrast, Correlation, Energy and Homogeneity) extracted from lung ultrasound images from children aged between six months and five years is presented. Ultrasound data was collected using a L14-5/38 linear transducer. The data consisted of 22 positive- and 68 negative-diagnosed B-mode cine-loops selected by a medical expert and captured in the facilities of the Instituto Nacional de Salud del Niño (Lima, Peru), for a total number of 90 videos obtained from twelve children diagnosed with pneumonia. The classification capacity of each feature was explored independently and the optimal threshold was selected by a receiver operator characteristic (ROC) curve analysis. In addition, a principal component analysis was performed to evaluate the combined performance of all the features. Contrast and correlation resulted the two more significant features. The classification performance of these two features by principal components was evaluated. The results revealed 82% sensitivity, 76% specificity, 78% accuracy and 0.85 area under the ROC.

  5. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.

    PubMed

    Yoo, Kwangsun; Rosenberg, Monica D; Hsu, Wei-Ting; Zhang, Sheng; Li, Chiang-Shan R; Scheinost, Dustin; Constable, R Todd; Chun, Marvin M

    2018-02-15

    Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Synthesis of 3-aminopropyl glycosides of linear β-(1 → 3)-D-glucooligosaccharides.

    PubMed

    Yashunsky, Dmitry V; Tsvetkov, Yury E; Grachev, Alexey A; Chizhov, Alexander O; Nifantiev, Nikolay E

    2016-01-01

    3-Aminopropyl glycosides of a series of linear β-(1 → 3)-linked D-glucooligosaccharides containing from 3 to 13 monosaccharide units were efficiently prepared. The synthetic scheme featured highly regioselective glycosylation of 4,6-O-benzylidene-protected 2,3-diol glycosyl acceptors with a disaccharide thioglycoside donor bearing chloroacetyl groups at O-2' and -3' as a temporary protection of the diol system. Iteration of the deprotection and glycosylation steps afforded the series of the title oligoglucosides differing in length by two monosaccharide units. A novel procedure for selective removal of acetyl groups in the presence of benzoyl ones consisting in a brief treatment with a large excess of hydrazine hydrate has been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fukunaga-Koontz feature transformation for statistical structural damage detection and hierarchical neuro-fuzzy damage localisation

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2017-07-01

    Considering jointly damage sensitive features (DSFs) of signals recorded by multiple sensors, applying advanced transformations to these DSFs and assessing systematically their contribution to damage detectability and localisation can significantly enhance the performance of structural health monitoring systems. This philosophy is explored here for partial autocorrelation coefficients (PACCs) of acceleration responses. They are interrogated with the help of the linear discriminant analysis based on the Fukunaga-Koontz transformation using datasets of the healthy and selected reference damage states. Then, a simple but efficient fast forward selection procedure is applied to rank the DSF components with respect to statistical distance measures specialised for either damage detection or localisation. For the damage detection task, the optimal feature subsets are identified based on the statistical hypothesis testing. For damage localisation, a hierarchical neuro-fuzzy tool is developed that uses the DSF ranking to establish its own optimal architecture. The proposed approaches are evaluated experimentally on data from non-destructively simulated damage in a laboratory scale wind turbine blade. The results support our claim of being able to enhance damage detectability and localisation performance by transforming and optimally selecting DSFs. It is demonstrated that the optimally selected PACCs from multiple sensors or their Fukunaga-Koontz transformed versions can not only improve the detectability of damage via statistical hypothesis testing but also increase the accuracy of damage localisation when used as inputs into a hierarchical neuro-fuzzy network. Furthermore, the computational effort of employing these advanced soft computing models for damage localisation can be significantly reduced by using transformed DSFs.

  8. Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer.

    PubMed

    Banerjee, Satarupa; Pal, Mousumi; Chakrabarty, Jitamanyu; Petibois, Cyril; Paul, Ranjan Rashmi; Giri, Amita; Chatterjee, Jyotirmoy

    2015-10-01

    In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann-Whitney's U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features. It was observed that six features obtained through FFS enabled differentiation of NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and 1161 cm(-1)) and were most significant, able to classify OLK and OSCC with 81.3 % sensitivity, 95.7 % specificity, and 89.7 % overall accuracy. The 43 spectral markers extracted through Mann-Whitney's U Test were the least significant when quadratic SVM was used. Considering the high sensitivity and specificity of the FFS technique, extracting only six spectral biomarkers was thus most useful for diagnosis of OLK and OSCC, and to overcome inter and intra-observer variability experienced in diagnostic best-practice histopathological procedure. By considering the biochemical assignment of these six spectral signatures, this work also revealed altered glycogen and keratin content in histological sections which could able to discriminate OLK and OSCC. The method was validated through spectral selection by the DBMS technique. Thus this method has potential for diagnostic cost minimisation for oral lesions by label-free biomarker identification.

  9. Stabilometric parameters are affected by anthropometry and foot placement.

    PubMed

    Chiari, Lorenzo; Rocchi, Laura; Cappello, Angelo

    2002-01-01

    To recognize and quantify the influence of biomechanical factors, namely anthropometry and foot placement, on the more common measures of stabilometric performance, including new-generation stochastic parameters. Fifty normal-bodied young adults were selected in order to cover a sufficiently wide range of anthropometric properties. They were allowed to choose their preferred side-by-side foot position and their quiet stance was recorded with eyes open and closed by a force platform. biomechanical factors are known to influence postural stability but their impact on stabilometric parameters has not been extensively explored yet. Principal component analysis was used for feature selection among several biomechanical factors. A collection of 55 stabilometric parameters from the literature was estimated from the center-of-pressure time series. Linear relations between stabilometric parameters and selected biomechanical factors were investigated by robust regression techniques. The feature selection process returned height, weight, maximum foot width, base-of-support area, and foot opening angle as the relevant biomechanical variables. Only eleven out of the 55 stabilometric parameters were completely immune from a linear dependence on these variables. The remaining parameters showed a moderate to high dependence that was strengthened upon eye closure. For these parameters, a normalization procedure was proposed, to remove what can well be considered, in clinical investigations, a spurious source of between-subject variability. Care should be taken when quantifying postural sway through stabilometric parameters. It is suggested as a good practice to include some anthropometric measurements in the experimental protocol, and to standardize or trace foot position. Although the role of anthropometry and foot placement has been investigated in specific studies, there are no studies in the literature that systematically explore the relationship between such BF and stabilometric parameters. This knowledge may contribute to better defining the experimental protocol and improving the functional evaluation of postural sway for clinical purposes, e.g. by removing through normalization the spurious effects of body properties and foot position on postural performance.

  10. An intelligent classifier for prognosis of cardiac resynchronization therapy based on speckle-tracking echocardiograms.

    PubMed

    Chao, Pei-Kuang; Wang, Chun-Li; Chan, Hsiao-Lung

    2012-03-01

    Predicting response after cardiac resynchronization therapy (CRT) has been a challenge of cardiologists. About 30% of selected patients based on the standard selection criteria for CRT do not show response after receiving the treatment. This study is aimed to build an intelligent classifier to assist in identifying potential CRT responders by speckle-tracking radial strain based on echocardiograms. The echocardiograms analyzed were acquired before CRT from 26 patients who have received CRT. Sequential forward selection was performed on the parameters obtained by peak-strain timing and phase space reconstruction on speckle-tracking radial strain to find an optimal set of features for creating intelligent classifiers. Support vector machine (SVM) with a linear, quadratic, and polynominal kernel were tested to build classifiers to identify potential responders and non-responders for CRT by selected features. Based on random sub-sampling validation, the best classification performance is correct rate about 95% with 96-97% sensitivity and 93-94% specificity achieved by applying SVM with a quadratic kernel on a set of 3 parameters. The selected 3 parameters contain both indexes extracted by peak-strain timing and phase space reconstruction. An intelligent classifier with an averaged correct rate, sensitivity and specificity above 90% for assisting in identifying CRT responders is built by speckle-tracking radial strain. The classifier can be applied to provide objective suggestion for patient selection of CRT. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Single trial detection of hand poses in human ECoG using CSP based feature extraction.

    PubMed

    Kapeller, C; Schneider, C; Kamada, K; Ogawa, H; Kunii, N; Ortner, R; Pruckl, R; Guger, C

    2014-01-01

    Decoding brain activity of corresponding highlevel tasks may lead to an independent and intuitively controlled Brain-Computer Interface (BCI). Most of today's BCI research focuses on analyzing the electroencephalogram (EEG) which provides only limited spatial and temporal resolution. Derived electrocorticographic (ECoG) signals allow the investigation of spatially highly focused task-related activation within the high-gamma frequency band, making the discrimination of individual finger movements or complex grasping tasks possible. Common spatial patterns (CSP) are commonly used for BCI systems and provide a powerful tool for feature optimization and dimensionality reduction. This work focused on the discrimination of (i) three complex hand movements, as well as (ii) hand movement and idle state. Two subjects S1 and S2 performed single `open', `peace' and `fist' hand poses in multiple trials. Signals in the high-gamma frequency range between 100 and 500 Hz were spatially filtered based on a CSP algorithm for (i) and (ii). Additionally, a manual feature selection approach was tested for (i). A multi-class linear discriminant analysis (LDA) showed for (i) an error rate of 13.89 % / 7.22 % and 18.42 % / 1.17 % for S1 and S2 using manually / CSP selected features, where for (ii) a two class LDA lead to a classification error of 13.39 % and 2.33 % for S1 and S2, respectively.

  12. Application of recurrence quantification analysis to automatically estimate infant sleep states using a single channel of respiratory data.

    PubMed

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2012-08-01

    Previous work has identified that non-linear variables calculated from respiratory data vary between sleep states, and that variables derived from the non-linear analytical tool recurrence quantification analysis (RQA) are accurate infant sleep state discriminators. This study aims to apply these discriminators to automatically classify 30 s epochs of infant sleep as REM, non-REM and wake. Polysomnograms were obtained from 25 healthy infants at 2 weeks, 3, 6 and 12 months of age, and manually sleep staged as wake, REM and non-REM. Inter-breath interval data were extracted from the respiratory inductive plethysmograph, and RQA applied to calculate radius, determinism and laminarity. Time-series statistic and spectral analysis variables were also calculated. A nested cross-validation method was used to identify the optimal feature subset, and to train and evaluate a linear discriminant analysis-based classifier. The RQA features radius and laminarity and were reliably selected. Mean agreement was 79.7, 84.9, 84.0 and 79.2 % at 2 weeks, 3, 6 and 12 months, and the classifier performed better than a comparison classifier not including RQA variables. The performance of this sleep-staging tool compares favourably with inter-human agreement rates, and improves upon previous systems using only respiratory data. Applications include diagnostic screening and population-based sleep research.

  13. Neighborhood Structural Similarity Mapping for the Classification of Masses in Mammograms.

    PubMed

    Rabidas, Rinku; Midya, Abhishek; Chakraborty, Jayasree

    2018-05-01

    In this paper, two novel feature extraction methods, using neighborhood structural similarity (NSS), are proposed for the characterization of mammographic masses as benign or malignant. Since gray-level distribution of pixels is different in benign and malignant masses, more regular and homogeneous patterns are visible in benign masses compared to malignant masses; the proposed method exploits the similarity between neighboring regions of masses by designing two new features, namely, NSS-I and NSS-II, which capture global similarity at different scales. Complementary to these global features, uniform local binary patterns are computed to enhance the classification efficiency by combining with the proposed features. The performance of the features are evaluated using the images from the mini-mammographic image analysis society (mini-MIAS) and digital database for screening mammography (DDSM) databases, where a tenfold cross-validation technique is incorporated with Fisher linear discriminant analysis, after selecting the optimal set of features using stepwise logistic regression method. The best area under the receiver operating characteristic curve of 0.98 with an accuracy of is achieved with the mini-MIAS database, while the same for the DDSM database is 0.93 with accuracy .

  14. Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel

    PubMed Central

    2017-01-01

    Driver fatigue has become an important factor to traffic accidents worldwide, and effective detection of driver fatigue has major significance for public health. The purpose method employs entropy measures for feature extraction from a single electroencephalogram (EEG) channel. Four types of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE), and spectral entropy (PE), were deployed for the analysis of original EEG signal and compared by ten state-of-the-art classifiers. Results indicate that optimal performance of single channel is achieved using a combination of channel CP4, feature FE, and classifier Random Forest (RF). The highest accuracy can be up to 96.6%, which has been able to meet the needs of real applications. The best combination of channel + features + classifier is subject-specific. In this work, the accuracy of FE as the feature is far greater than the Acc of other features. The accuracy using classifier RF is the best, while that of classifier SVM with linear kernel is the worst. The impact of channel selection on the Acc is larger. The performance of various channels is very different. PMID:28255330

  15. Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel.

    PubMed

    Hu, Jianfeng

    2017-01-01

    Driver fatigue has become an important factor to traffic accidents worldwide, and effective detection of driver fatigue has major significance for public health. The purpose method employs entropy measures for feature extraction from a single electroencephalogram (EEG) channel. Four types of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE), and spectral entropy (PE), were deployed for the analysis of original EEG signal and compared by ten state-of-the-art classifiers. Results indicate that optimal performance of single channel is achieved using a combination of channel CP4, feature FE, and classifier Random Forest (RF). The highest accuracy can be up to 96.6%, which has been able to meet the needs of real applications. The best combination of channel + features + classifier is subject-specific. In this work, the accuracy of FE as the feature is far greater than the Acc of other features. The accuracy using classifier RF is the best, while that of classifier SVM with linear kernel is the worst. The impact of channel selection on the Acc is larger. The performance of various channels is very different.

  16. Structural and lithologic study of northern coast ranges and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The pattern of linear systems within the project area has been extended into the western foothill belt of the Sierra Nevada. The chief pattern of linear features in the western Sierran foothill belt trends about N. 10 - 15 deg W., but in the vicinity of the Feather River the trend of the features abruptly changes to about N. 50-60 deg W and appears to be contiguous across the Sacramento Valley with a similar system of linear features in the Coast Ranges. The linear features in the Modoc Plateau and Klamath Mt. areas appear unrelated to the systems detected in the Coast Ranges of Sierran foothill belt. Although the change in trend of the Sierran structural features has been previously suggested and the interrelationship of the Klamath Mt. region with the northern Sierra Nevadas has been postulated, the data obtained from the ERTS-1 imagery strengthens these notions and provides for the first time evidence of a direct connection of the structural trends within the alluviated part of the Sacramento Valley. In addition rocks of Pleistocene and Holocene age are offset by some of the linear features seen on ERTS-1 imagery and hence may record the latest episode of geologic deformation in north-central California.

  17. DemQSAR: predicting human volume of distribution and clearance of drugs

    NASA Astrophysics Data System (ADS)

    Demir-Kavuk, Ozgur; Bentzien, Jörg; Muegge, Ingo; Knapp, Ernst-Walter

    2011-12-01

    In silico methods characterizing molecular compounds with respect to pharmacologically relevant properties can accelerate the identification of new drugs and reduce their development costs. Quantitative structure-activity/-property relationship (QSAR/QSPR) correlate structure and physico-chemical properties of molecular compounds with a specific functional activity/property under study. Typically a large number of molecular features are generated for the compounds. In many cases the number of generated features exceeds the number of molecular compounds with known property values that are available for learning. Machine learning methods tend to overfit the training data in such situations, i.e. the method adjusts to very specific features of the training data, which are not characteristic for the considered property. This problem can be alleviated by diminishing the influence of unimportant, redundant or even misleading features. A better strategy is to eliminate such features completely. Ideally, a molecular property can be described by a small number of features that are chemically interpretable. The purpose of the present contribution is to provide a predictive modeling approach, which combines feature generation, feature selection, model building and control of overtraining into a single application called DemQSAR. DemQSAR is used to predict human volume of distribution (VDss) and human clearance (CL). To control overtraining, quadratic and linear regularization terms were employed. A recursive feature selection approach is used to reduce the number of descriptors. The prediction performance is as good as the best predictions reported in the recent literature. The example presented here demonstrates that DemQSAR can generate a model that uses very few features while maintaining high predictive power. A standalone DemQSAR Java application for model building of any user defined property as well as a web interface for the prediction of human VDss and CL is available on the webpage of DemPRED: http://agknapp.chemie.fu-berlin.de/dempred/.

  18. DemQSAR: predicting human volume of distribution and clearance of drugs.

    PubMed

    Demir-Kavuk, Ozgur; Bentzien, Jörg; Muegge, Ingo; Knapp, Ernst-Walter

    2011-12-01

    In silico methods characterizing molecular compounds with respect to pharmacologically relevant properties can accelerate the identification of new drugs and reduce their development costs. Quantitative structure-activity/-property relationship (QSAR/QSPR) correlate structure and physico-chemical properties of molecular compounds with a specific functional activity/property under study. Typically a large number of molecular features are generated for the compounds. In many cases the number of generated features exceeds the number of molecular compounds with known property values that are available for learning. Machine learning methods tend to overfit the training data in such situations, i.e. the method adjusts to very specific features of the training data, which are not characteristic for the considered property. This problem can be alleviated by diminishing the influence of unimportant, redundant or even misleading features. A better strategy is to eliminate such features completely. Ideally, a molecular property can be described by a small number of features that are chemically interpretable. The purpose of the present contribution is to provide a predictive modeling approach, which combines feature generation, feature selection, model building and control of overtraining into a single application called DemQSAR. DemQSAR is used to predict human volume of distribution (VD(ss)) and human clearance (CL). To control overtraining, quadratic and linear regularization terms were employed. A recursive feature selection approach is used to reduce the number of descriptors. The prediction performance is as good as the best predictions reported in the recent literature. The example presented here demonstrates that DemQSAR can generate a model that uses very few features while maintaining high predictive power. A standalone DemQSAR Java application for model building of any user defined property as well as a web interface for the prediction of human VD(ss) and CL is available on the webpage of DemPRED: http://agknapp.chemie.fu-berlin.de/dempred/ .

  19. A harmonic linear dynamical system for prominent ECG feature extraction.

    PubMed

    Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc

    2014-01-01

    Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.

  20. Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train - A contemporary survey

    NASA Astrophysics Data System (ADS)

    Uma Maheswari, R.; Umamaheswari, R.

    2017-02-01

    Condition Monitoring System (CMS) substantiates potential economic benefits and enables prognostic maintenance in wind turbine-generator failure prevention. Vibration Monitoring and Analysis is a powerful tool in drive train CMS, which enables the early detection of impending failure/damage. In variable speed drives such as wind turbine-generator drive trains, the vibration signal acquired is of non-stationary and non-linear. The traditional stationary signal processing techniques are inefficient to diagnose the machine faults in time varying conditions. The current research trend in CMS for drive-train focuses on developing/improving non-linear, non-stationary feature extraction and fault classification algorithms to improve fault detection/prediction sensitivity and selectivity and thereby reducing the misdetection and false alarm rates. In literature, review of stationary signal processing algorithms employed in vibration analysis is done at great extent. In this paper, an attempt is made to review the recent research advances in non-linear non-stationary signal processing algorithms particularly suited for variable speed wind turbines.

  1. Estimating linear-nonlinear models using Rényi divergences

    PubMed Central

    Kouh, Minjoon; Sharpee, Tatyana O.

    2009-01-01

    This paper compares a family of methods for characterizing neural feature selectivity using natural stimuli in the framework of the linear-nonlinear model. In this model, the spike probability depends in a nonlinear way on a small number of stimulus dimensions. The relevant stimulus dimensions can be found by optimizing a Rényi divergence that quantifies a change in the stimulus distribution associated with the arrival of single spikes. Generally, good reconstructions can be obtained based on optimization of Rényi divergence of any order, even in the limit of small numbers of spikes. However, the smallest error is obtained when the Rényi divergence of order 1 is optimized. This type of optimization is equivalent to information maximization, and is shown to saturate the Cramér-Rao bound describing the smallest error allowed for any unbiased method. We also discuss conditions under which information maximization provides a convenient way to perform maximum likelihood estimation of linear-nonlinear models from neural data. PMID:19568981

  2. Estimating linear-nonlinear models using Renyi divergences.

    PubMed

    Kouh, Minjoon; Sharpee, Tatyana O

    2009-01-01

    This article compares a family of methods for characterizing neural feature selectivity using natural stimuli in the framework of the linear-nonlinear model. In this model, the spike probability depends in a nonlinear way on a small number of stimulus dimensions. The relevant stimulus dimensions can be found by optimizing a Rényi divergence that quantifies a change in the stimulus distribution associated with the arrival of single spikes. Generally, good reconstructions can be obtained based on optimization of Rényi divergence of any order, even in the limit of small numbers of spikes. However, the smallest error is obtained when the Rényi divergence of order 1 is optimized. This type of optimization is equivalent to information maximization, and is shown to saturate the Cramer-Rao bound describing the smallest error allowed for any unbiased method. We also discuss conditions under which information maximization provides a convenient way to perform maximum likelihood estimation of linear-nonlinear models from neural data.

  3. A simple approach to quantitative analysis using three-dimensional spectra based on selected Zernike moments.

    PubMed

    Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li

    2013-01-21

    A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.

  4. Application of a linear spectral model to the study of Amazonian squall lines during GTE/ABLE 2B

    NASA Technical Reports Server (NTRS)

    Silva Dias, Maria A. F.; Ferreira, Rosana N.

    1992-01-01

    A linear nonhydrostatic spectral model is run with the basic state, or large scale, vertical profiles of temperature and wind observed prior to convective development along the northern coast of South America during the GTE/ABLE 2B. The model produces unstable modes with mesoscale wavelength and propagation speed comparable to observed Amazonian squall lines. Several tests with different vertical profiles of low-level winds lead to the conclusion that a shallow and/or weak low-level jet either does not produce a scale selection or, if it does, the selected mode is stationary, indicating the absence of a propagating disturbance. A 700-mbar jet of 13 m/s, with a 600-mbar wind speed greater or equal to 10 m/s, is enough to produce unstable modes with propagating features resembling those of observed Amazonian squall lines. However, a deep layer of moderate winds (about 10 m/s) may produce similar results even in the absence of a low-level wind maximum. The implications in terms of short-term weather forecasting are discussed.

  5. MO-AB-BRA-10: Cancer Therapy Outcome Prediction Based On Dempster-Shafer Theory and PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, C; University of Rouen, QuantIF - EA 4108 LITIS, 76000 Rouen; Li, H

    2015-06-15

    Purpose: In cancer therapy, utilizing FDG-18 PET image-based features for accurate outcome prediction is challenging because of 1) limited discriminative information within a small number of PET image sets, and 2) fluctuant feature characteristics caused by the inferior spatial resolution and system noise of PET imaging. In this study, we proposed a new Dempster-Shafer theory (DST) based approach, evidential low-dimensional transformation with feature selection (ELT-FS), to accurately predict cancer therapy outcome with both PET imaging features and clinical characteristics. Methods: First, a specific loss function with sparse penalty was developed to learn an adaptive low-rank distance metric for representing themore » dissimilarity between different patients’ feature vectors. By minimizing this loss function, a linear low-dimensional transformation of input features was achieved. Also, imprecise features were excluded simultaneously by applying a l2,1-norm regularization of the learnt dissimilarity metric in the loss function. Finally, the learnt dissimilarity metric was applied in an evidential K-nearest-neighbor (EK- NN) classifier to predict treatment outcome. Results: Twenty-five patients with stage II–III non-small-cell lung cancer and thirty-six patients with esophageal squamous cell carcinomas treated with chemo-radiotherapy were collected. For the two groups of patients, 52 and 29 features, respectively, were utilized. The leave-one-out cross-validation (LOOCV) protocol was used for evaluation. Compared to three existing linear transformation methods (PCA, LDA, NCA), the proposed ELT-FS leads to higher prediction accuracy for the training and testing sets both for lung-cancer patients (100+/−0.0, 88.0+/−33.17) and for esophageal-cancer patients (97.46+/−1.64, 83.33+/−37.8). The ELT-FS also provides superior class separation in both test data sets. Conclusion: A novel DST- based approach has been proposed to predict cancer treatment outcome using PET image features and clinical characteristics. A specific loss function has been designed for robust accommodation of feature set incertitude and imprecision, facilitating adaptive learning of the dissimilarity metric for the EK-NN classifier.« less

  6. Extraction of linear features on SAR imagery

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Li, Deren; Mei, Xin

    2006-10-01

    Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.

  7. Intracranial EEG fluctuates over months after implanting electrodes in human brain

    NASA Astrophysics Data System (ADS)

    Ung, Hoameng; Baldassano, Steven N.; Bink, Hank; Krieger, Abba M.; Williams, Shawniqua; Vitale, Flavia; Wu, Chengyuan; Freestone, Dean; Nurse, Ewan; Leyde, Kent; Davis, Kathryn A.; Cook, Mark; Litt, Brian

    2017-10-01

    Objective. Implanting subdural and penetrating electrodes in the brain causes acute trauma and inflammation that affect intracranial electroencephalographic (iEEG) recordings. This behavior and its potential impact on clinical decision-making and algorithms for implanted devices have not been assessed in detail. In this study we aim to characterize the temporal and spatial variability of continuous, prolonged human iEEG recordings. Approach. Intracranial electroencephalography from 15 patients with drug-refractory epilepsy, each implanted with 16 subdural electrodes and continuously monitored for an average of 18 months, was included in this study. Time and spectral domain features were computed each day for each channel for the duration of each patient’s recording. Metrics to capture post-implantation feature changes and inflexion points were computed on group and individual levels. A linear mixed model was used to characterize transient group-level changes in feature values post-implantation and independent linear models were used to describe individual variability. Main results. A significant decline in features important to seizure detection and prediction algorithms (mean line length, energy, and half-wave), as well as mean power in the Berger and high gamma bands, was observed in many patients over 100 d following implantation. In addition, spatial variability across electrodes declines post-implantation following a similar timeframe. All selected features decreased by 14-50% in the initial 75 d of recording on the group level, and at least one feature demonstrated this pattern in 13 of the 15 patients. Our findings indicate that iEEG signal features demonstrate increased variability following implantation, most notably in the weeks immediately post-implant. Significance. These findings suggest that conclusions drawn from iEEG, both clinically and for research, should account for spatiotemporal signal variability and that properly assessing the iEEG in patients, depending upon the application, may require extended monitoring.

  8. QSPR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors.

    PubMed

    Hemmateenejad, Bahram; Yazdani, Mahdieh

    2009-02-16

    Steroids are widely distributed in nature and are found in plants, animals, and fungi in abundance. A data set consists of a diverse set of steroids have been used to develop quantitative structure-electrochemistry relationship (QSER) models for their half-wave reduction potential. Modeling was established by means of multiple linear regression (MLR) and principle component regression (PCR) analyses. In MLR analysis, the QSPR models were constructed by first grouping descriptors and then stepwise selection of variables from each group (MLR1) and stepwise selection of predictor variables from the pool of all calculated descriptors (MLR2). Similar procedure was used in PCR analysis so that the principal components (or features) were extracted from different group of descriptors (PCR1) and from entire set of descriptors (PCR2). The resulted models were evaluated using cross-validation, chance correlation, application to prediction reduction potential of some test samples and accessing applicability domain. Both MLR approaches represented accurate results however the QSPR model found by MLR1 was statistically more significant. PCR1 approach produced a model as accurate as MLR approaches whereas less accurate results were obtained by PCR2 approach. In overall, the correlation coefficients of cross-validation and prediction of the QSPR models resulted from MLR1, MLR2 and PCR1 approaches were higher than 90%, which show the high ability of the models to predict reduction potential of the studied steroids.

  9. Prediction of cognitive and motor development in preterm children using exhaustive feature selection and cross-validation of near-term white matter microstructure.

    PubMed

    Schadl, Kornél; Vassar, Rachel; Cahill-Rowley, Katelyn; Yeom, Kristin W; Stevenson, David K; Rose, Jessica

    2018-01-01

    Advanced neuroimaging and computational methods offer opportunities for more accurate prognosis. We hypothesized that near-term regional white matter (WM) microstructure, assessed on diffusion tensor imaging (DTI), using exhaustive feature selection with cross-validation would predict neurodevelopment in preterm children. Near-term MRI and DTI obtained at 36.6 ± 1.8 weeks postmenstrual age in 66 very-low-birth-weight preterm neonates were assessed. 60/66 had follow-up neurodevelopmental evaluation with Bayley Scales of Infant-Toddler Development, 3rd-edition (BSID-III) at 18-22 months. Linear models with exhaustive feature selection and leave-one-out cross-validation computed based on DTI identified sets of three brain regions most predictive of cognitive and motor function; logistic regression models were computed to classify high-risk infants scoring one standard deviation below mean. Cognitive impairment was predicted (100% sensitivity, 100% specificity; AUC = 1) by near-term right middle-temporal gyrus MD, right cingulate-cingulum MD, left caudate MD. Motor impairment was predicted (90% sensitivity, 86% specificity; AUC = 0.912) by left precuneus FA, right superior occipital gyrus MD, right hippocampus FA. Cognitive score variance was explained (29.6%, cross-validated Rˆ2 = 0.296) by left posterior-limb-of-internal-capsule MD, Genu RD, right fusiform gyrus AD. Motor score variance was explained (31.7%, cross-validated Rˆ2 = 0.317) by left posterior-limb-of-internal-capsule MD, right parahippocampal gyrus AD, right middle-temporal gyrus AD. Search in large DTI feature space more accurately identified neonatal neuroimaging correlates of neurodevelopment.

  10. A new time-frequency method for identification and classification of ball bearing faults

    NASA Astrophysics Data System (ADS)

    Attoui, Issam; Fergani, Nadir; Boutasseta, Nadir; Oudjani, Brahim; Deliou, Adel

    2017-06-01

    In order to fault diagnosis of ball bearing that is one of the most critical components of rotating machinery, this paper presents a time-frequency procedure incorporating a new feature extraction step that combines the classical wavelet packet decomposition energy distribution technique and a new feature extraction technique based on the selection of the most impulsive frequency bands. In the proposed procedure, firstly, as a pre-processing step, the most impulsive frequency bands are selected at different bearing conditions using a combination between Fast-Fourier-Transform FFT and Short-Frequency Energy SFE algorithms. Secondly, once the most impulsive frequency bands are selected, the measured machinery vibration signals are decomposed into different frequency sub-bands by using discrete Wavelet Packet Decomposition WPD technique to maximize the detection of their frequency contents and subsequently the most useful sub-bands are represented in the time-frequency domain by using Short Time Fourier transform STFT algorithm for knowing exactly what the frequency components presented in those frequency sub-bands are. Once the proposed feature vector is obtained, three feature dimensionality reduction techniques are employed using Linear Discriminant Analysis LDA, a feedback wrapper method and Locality Sensitive Discriminant Analysis LSDA. Lastly, the Adaptive Neuro-Fuzzy Inference System ANFIS algorithm is used for instantaneous identification and classification of bearing faults. In order to evaluate the performances of the proposed method, different testing data set to the trained ANFIS model by using different conditions of healthy and faulty bearings under various load levels, fault severities and rotating speed. The conclusion resulting from this paper is highlighted by experimental results which prove that the proposed method can serve as an intelligent bearing fault diagnosis system.

  11. Quantum-enhanced feature selection with forward selection and backward elimination

    NASA Astrophysics Data System (ADS)

    He, Zhimin; Li, Lvzhou; Huang, Zhiming; Situ, Haozhen

    2018-07-01

    Feature selection is a well-known preprocessing technique in machine learning, which can remove irrelevant features to improve the generalization capability of a classifier and reduce training and inference time. However, feature selection is time-consuming, particularly for the applications those have thousands of features, such as image retrieval, text mining and microarray data analysis. It is crucial to accelerate the feature selection process. We propose a quantum version of wrapper-based feature selection, which converts a classical feature selection to its quantum counterpart. It is valuable for machine learning on quantum computer. In this paper, we focus on two popular kinds of feature selection methods, i.e., wrapper-based forward selection and backward elimination. The proposed feature selection algorithm can quadratically accelerate the classical one.

  12. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data

    PubMed Central

    Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem

    2016-01-01

    The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088

  13. Voltammetric Electronic Tongue and Support Vector Machines for Identification of Selected Features in Mexican Coffee

    PubMed Central

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-01-01

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure. PMID:25254303

  14. Voltammetric electronic tongue and support vector machines for identification of selected features in Mexican coffee.

    PubMed

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-09-24

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.

  15. SU-G-BRC-13: Model Based Classification for Optimal Position Selection for Left-Sided Breast Radiotherapy: Free Breathing, DIBH, Or Prone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H; Liu, T; Xu, X

    Purpose: There are clinical decision challenges to select optimal treatment positions for left-sided breast cancer patients—supine free breathing (FB), supine Deep Inspiration Breath Hold (DIBH) and prone free breathing (prone). Physicians often make the decision based on experiences and trials, which might not always result optimal OAR doses. We herein propose a mathematical model to predict the lowest OAR doses among these three positions, providing a quantitative tool for corresponding clinical decision. Methods: Patients were scanned in FB, DIBH, and prone positions under an IRB approved protocol. Tangential beam plans were generated for each position, and OAR doses were calculated.more » The position with least OAR doses is defined as the optimal position. The following features were extracted from each scan to build the model: heart, ipsilateral lung, breast volume, in-field heart, ipsilateral lung volume, distance between heart and target, laterality of heart, and dose to heart and ipsilateral lung. Principal Components Analysis (PCA) was applied to remove the co-linearity of the input data and also to lower the data dimensionality. Feature selection, another method to reduce dimensionality, was applied as a comparison. Support Vector Machine (SVM) was then used for classification. Thirtyseven patient data were acquired; up to now, five patient plans were available. K-fold cross validation was used to validate the accuracy of the classifier model with small training size. Results: The classification results and K-fold cross validation demonstrated the model is capable of predicting the optimal position for patients. The accuracy of K-fold cross validations has reached 80%. Compared to PCA, feature selection allows causal features of dose to be determined. This provides more clinical insights. Conclusion: The proposed classification system appeared to be feasible. We are generating plans for the rest of the 37 patient images, and more statistically significant results are to be presented.« less

  16. The prisoner's dilemma as a cancer model.

    PubMed

    West, Jeffrey; Hasnain, Zaki; Mason, Jeremy; Newton, Paul K

    2016-09-01

    Tumor development is an evolutionary process in which a heterogeneous population of cells with different growth capabilities compete for resources in order to gain a proliferative advantage. What are the minimal ingredients needed to recreate some of the emergent features of such a developing complex ecosystem? What is a tumor doing before we can detect it? We outline a mathematical model, driven by a stochastic Moran process, in which cancer cells and healthy cells compete for dominance in the population. Each are assigned payoffs according to a Prisoner's Dilemma evolutionary game where the healthy cells are the cooperators and the cancer cells are the defectors. With point mutational dynamics, heredity, and a fitness landscape controlling birth and death rates, natural selection acts on the cell population and simulated 'cancer-like' features emerge, such as Gompertzian tumor growth driven by heterogeneity, the log-kill law which (linearly) relates therapeutic dose density to the (log) probability of cancer cell survival, and the Norton-Simon hypothesis which (linearly) relates tumor regression rates to tumor growth rates. We highlight the utility, clarity, and power that such models provide, despite (and because of) their simplicity and built-in assumptions.

  17. ERTS-1 imagery of eastern Africa: A first look at the geological structure of selected areas

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Imagery of the African rift system resolves the major Cainozoic faults, zones of warping, and associated volcanism. It also clearly depicts the crystal grain of the Precambrian rocks where these are exposed. New structural features, or new properties of known features such as greater extent, continuity, and linearity are revealed by ERTS-1 imagery. This applies, for example, to the NE-SW fracture zones in Yemen, the Aswa mylonite zone at the northern end of the Western Rift, the Nandi fault of western Kenya, the linear faults of the Elgeyo escarpment in the Gregory Rift, and the hemibasins of warped Tertiary lavas on the Red Sea margin of Yemen, matching those of Ethiopian plateau-Afar margin. A tentative scheme is proposed, relating the effect on the pattern of Cainozoic faulting of the degree of obliquity to Precambrian structural trend. It is particularly noteworthy that, even where the Precambrian grain determines the rift faulting to be markedly oblique to the overall trend of the rift trough, for example, in central Lake Tanganyika, the width of the trough is not significantly increased. Some ground mapped lithological boundaries are obscure on ERTS-1 imagery.

  18. The effects of pre-processing strategies in sentiment analysis of online movie reviews

    NASA Astrophysics Data System (ADS)

    Zin, Harnani Mat; Mustapha, Norwati; Murad, Masrah Azrifah Azmi; Sharef, Nurfadhlina Mohd

    2017-10-01

    With the ever increasing of internet applications and social networking sites, people nowadays can easily express their feelings towards any products and services. These online reviews act as an important source for further analysis and improved decision making. These reviews are mostly unstructured by nature and thus, need processing like sentiment analysis and classification to provide a meaningful information for future uses. In text analysis tasks, the appropriate selection of words/features will have a huge impact on the effectiveness of the classifier. Thus, this paper explores the effect of the pre-processing strategies in the sentiment analysis of online movie reviews. In this paper, supervised machine learning method was used to classify the reviews. The support vector machine (SVM) with linear and non-linear kernel has been considered as classifier for the classification of the reviews. The performance of the classifier is critically examined based on the results of precision, recall, f-measure, and accuracy. Two different features representations were used which are term frequency and term frequency-inverse document frequency. Results show that the pre-processing strategies give a significant impact on the classification process.

  19. Large-Scale functional network overlap is a general property of brain functional organization: Reconciling inconsistent fMRI findings from general-linear-model-based analyses

    PubMed Central

    Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153

  20. Structured sparse linear graph embedding.

    PubMed

    Wang, Haixian

    2012-03-01

    Subspace learning is a core issue in pattern recognition and machine learning. Linear graph embedding (LGE) is a general framework for subspace learning. In this paper, we propose a structured sparse extension to LGE (SSLGE) by introducing a structured sparsity-inducing norm into LGE. Specifically, SSLGE casts the projection bases learning into a regression-type optimization problem, and then the structured sparsity regularization is applied to the regression coefficients. The regularization selects a subset of features and meanwhile encodes high-order information reflecting a priori structure information of the data. The SSLGE technique provides a unified framework for discovering structured sparse subspace. Computationally, by using a variational equality and the Procrustes transformation, SSLGE is efficiently solved with closed-form updates. Experimental results on face image show the effectiveness of the proposed method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A Circular Polarizer with Beamforming Feature Based on Frequency Selective Surfaces

    NASA Astrophysics Data System (ADS)

    Yin, Jia Yuan; Wan, Xiang; Ren, Jian; Cui, Tie Jun

    2017-01-01

    We propose a circular polarizer with beamforming features based on frequency selective surface (FSS), in which a modified anchor-shaped unit cell is used to reach the circular polarizer function. The beamforming characteristic is realized by a particular design of the unit-phase distribution, which is obtained by varying the scale of the unit cell. Instead of using plane waves, a horn antenna is designed to feed the phase-variant FSS. The proposed two-layer FSS is fabricated and measured to verify the design. The measured results show that the proposed structure can convert the linearly polarized waves to circularly polarized waves. Compared with the feeding horn antenna, the transmitted beam of the FSS-added horn is 14.43° broader in one direction, while 3.77° narrower in the orthogonal direction. To our best knowledge, this is the first time to realize circular polarizer with beamforming as the extra function based on FSS, which is promising in satellite and communication systems for potential applications due to its simple design and good performance.

  2. Application of the laguerre deconvolution method for time-resolved fluorescence spectroscopy to the characterization of atherosclerotic plaques.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Marcu, L

    2005-01-01

    This study investigates the ability of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) to detect inflammation in atherosclerotic lesion, a key feature of plaque vulnerability. A total of 348 TR-LIFS measurements were taken from carotid plaques of 30 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as Early, Fibrotic/Calcified or Inflamed lesions. A stepwise linear discriminant analysis algorithm was developed using spectral and TR features (normalized intensity values and Laguerre expansion coefficients at discrete emission wavelengths, respectively). Features from only three emission wavelengths (390, 450 and 500 nm) were used in the classifier. The Inflamed lesions were discriminated with sensitivity > 80% and specificity > 90 %, when the Laguerre expansion coefficients were included in the feature space. These results indicate that TR-LIFS information derived from the Laguerre expansion coefficients at few selected emission wavelengths can discriminate inflammation in atherosclerotic plaques. We believe that TR-LIFS derived Laguerre expansion coefficients can provide a valuable additional dimension for the detection of vulnerable plaques.

  3. Benign-malignant mass classification in mammogram using edge weighted local texture features

    NASA Astrophysics Data System (ADS)

    Rabidas, Rinku; Midya, Abhishek; Sadhu, Anup; Chakraborty, Jayasree

    2016-03-01

    This paper introduces novel Discriminative Robust Local Binary Pattern (DRLBP) and Discriminative Robust Local Ternary Pattern (DRLTP) for the classification of mammographic masses as benign or malignant. Mass is one of the common, however, challenging evidence of breast cancer in mammography and diagnosis of masses is a difficult task. Since DRLBP and DRLTP overcome the drawbacks of Local Binary Pattern (LBP) and Local Ternary Pattern (LTP) by discriminating a brighter object against the dark background and vice-versa, in addition to the preservation of the edge information along with the texture information, several edge-preserving texture features are extracted, in this study, from DRLBP and DRLTP. Finally, a Fisher Linear Discriminant Analysis method is incorporated with discriminating features, selected by stepwise logistic regression method, for the classification of benign and malignant masses. The performance characteristics of DRLBP and DRLTP features are evaluated using a ten-fold cross-validation technique with 58 masses from the mini-MIAS database, and the best result is observed with DRLBP having an area under the receiver operating characteristic curve of 0.982.

  4. Optimizing methods for linking cinematic features to fMRI data.

    PubMed

    Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia

    2015-04-15

    One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.

  5. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    PubMed Central

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  6. Automatic sleep scoring: a search for an optimal combination of measures.

    PubMed

    Krakovská, Anna; Mezeiová, Kristína

    2011-09-01

    The objective of this study is to find the best set of characteristics of polysomnographic signals for the automatic classification of sleep stages. A selection was made from 74 measures, including linear spectral measures, interdependency measures, and nonlinear measures of complexity that were computed for the all-night polysomnographic recordings of 20 healthy subjects. The adopted multidimensional analysis involved quadratic discriminant analysis, forward selection procedure, and selection by the best subset procedure. Two situations were considered: the use of four polysomnographic signals (EEG, EMG, EOG, and ECG) and the use of the EEG alone. For the given database, the best automatic sleep classifier achieved approximately an 81% agreement with the hypnograms of experts. The classifier was based on the next 14 features of polysomnographic signals: the ratio of powers in the beta and delta frequency range (EEG, channel C3), the fractal exponent (EMG), the variance (EOG), the absolute power in the sigma 1 band (EEG, C3), the relative power in the delta 2 band (EEG, O2), theta/gamma (EEG, C3), theta/alpha (EEG, O1), sigma/gamma (EEG, C4), the coherence in the delta 1 band (EEG, O1-O2), the entropy (EMG), the absolute theta 2 (EEG, Fp1), theta/alpha (EEG, Fp1), the sigma 2 coherence (EEG, O1-C3), and the zero-crossing rate (ECG); however, even with only four features, we could perform sleep scoring with a 74% accuracy, which is comparable to the inter-rater agreement between two independent specialists. We have shown that 4-14 carefully selected polysomnographic features were sufficient for successful sleep scoring. The efficiency of the corresponding automatic classifiers was verified and conclusively demonstrated on all-night recordings from healthy adults. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI

    NASA Astrophysics Data System (ADS)

    Niaf, Emilie; Rouvière, Olivier; Mège-Lechevallier, Florence; Bratan, Flavie; Lartizien, Carole

    2012-06-01

    This study evaluated a computer-assisted diagnosis (CADx) system for determining a likelihood measure of prostate cancer presence in the peripheral zone (PZ) based on multiparametric magnetic resonance (MR) imaging, including T2-weighted, diffusion-weighted and dynamic contrast-enhanced MRI at 1.5 T. Based on a feature set derived from grey-level images, including first-order statistics, Haralick features, gradient features, semi-quantitative and quantitative (pharmacokinetic modelling) dynamic parameters, four kinds of classifiers were trained and compared : nonlinear support vector machine (SVM), linear discriminant analysis, k-nearest neighbours and naïve Bayes classifiers. A set of feature selection methods based on t-test, mutual information and minimum-redundancy-maximum-relevancy criteria were also compared. The aim was to discriminate between the relevant features as well as to create an efficient classifier using these features. The diagnostic performances of these different CADx schemes were evaluated based on a receiver operating characteristic (ROC) curve analysis. The evaluation database consisted of 30 sets of multiparametric MR images acquired from radical prostatectomy patients. Using histologic sections as the gold standard, both cancer and nonmalignant (but suspicious) tissues were annotated in consensus on all MR images by two radiologists, a histopathologist and a researcher. Benign tissue regions of interest (ROIs) were also delineated in the remaining prostate PZ. This resulted in a series of 42 cancer ROIs, 49 benign but suspicious ROIs and 124 nonsuspicious benign ROIs. From the outputs of all evaluated feature selection methods on the test bench, a restrictive set of about 15 highly informative features coming from all MR sequences was discriminated, thus confirming the validity of the multiparametric approach. Quantitative evaluation of the diagnostic performance yielded a maximal area under the ROC curve (AUC) of 0.89 (0.81-0.94) for the discrimination of the malignant versus nonmalignant tissues and 0.82 (0.73-0.90) for the discrimination of the malignant versus suspicious tissues when combining the t-test feature selection approach with a SVM classifier. A preliminary comparison showed that the optimal CADx scheme mimicked, in terms of AUC, the human experts in differentiating malignant from suspicious tissues, thus demonstrating its potential for assisting cancer identification in the PZ.

  8. Behavioural and neurobiological implications of linear and non-linear features in larynx phonations of horseshoe bats

    PubMed Central

    Kobayasi, Kohta I.; Hage, Steffen R.; Berquist, Sean; Feng, Jiang; Zhang, Shuyi; Metzner, Walter

    2012-01-01

    Mammalian vocalizations exhibit large variations in their spectrotemporal features, although it is still largely unknown which result from intrinsic biomechanical properties of the larynx and which are under direct neuromuscular control. Here we show that mere changes in laryngeal air flow yield several non-linear effects on sound production, in an isolated larynx preparation from horseshoe bats. Most notably, there are sudden jumps between two frequency bands used for either echolocation or communication in natural vocalizations. These jumps resemble changes in “registers” as in yodelling. In contrast, simulated contractions of the main larynx muscle produce linear frequency changes, but are limited to echolocation or communication frequencies. Only by combining non-linear and linear properties can this larynx therefore produce sounds covering the entire frequency range of natural calls. This may give behavioural meaning to yodelling-like vocal behaviour and reshape our thinking about how the brain controls the multitude of spectral vocal features in mammals. PMID:23149729

  9. Intersubject variability and intrasubject reproducibility of 12-lead ECG metrics: Implications for human verification.

    PubMed

    Jekova, Irena; Krasteva, Vessela; Leber, Remo; Schmid, Ramun; Twerenbold, Raphael; Müller, Christian; Reichlin, Tobias; Abächerli, Roger

    Electrocardiogram (ECG) biometrics is an advanced technology, not yet covered by guidelines on criteria, features and leads for maximal authentication accuracy. This study aims to define the minimal set of morphological metrics in 12-lead ECG by optimization towards high reliability and security, and validation in a person verification model across a large population. A standard 12-lead resting ECG database from 574 non-cardiac patients with two remote recordings (>1year apart) was used. A commercial ECG analysis module (Schiller AG) measured 202 morphological features, including lead-specific amplitudes, durations, ST-metrics, and axes. Coefficient of variation (CV, intersubject variability) and percent-mean-absolute-difference (PMAD, intrasubject reproducibility) defined the optimization (PMAD/CV→min) and restriction (CV<30%) criteria for selection of the most stable and distinctive features. Linear discriminant analysis (LDA) validated the non-redundant feature set for person verification. Maximal LDA verification sensitivity (85.3%) and specificity (86.4%) were validated for 11 optimal features: R-amplitude (I,II,V1,V2,V3,V5), S-amplitude (V1,V2), Tnegative-amplitude (aVR), and R-duration (aVF,V1). Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Fast Solution in Sparse LDA for Binary Classification

    NASA Technical Reports Server (NTRS)

    Moghaddam, Baback

    2010-01-01

    An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic form along with the inherent sequential nature of greedy search itself. Together this enables the use of highly-efficient partitioned-matrix-inverse techniques that result in large speedups of computation in both the forward-selection and backward-elimination stages of greedy algorithms in general.

  11. Rough sets and Laplacian score based cost-sensitive feature selection

    PubMed Central

    Yu, Shenglong

    2018-01-01

    Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. Obviously, these algorithms do not consider the relationship among features. In this paper, we propose a new algorithm for minimal cost feature selection called the rough sets and Laplacian score based cost-sensitive feature selection. The importance of each feature is evaluated by both rough sets and Laplacian score. Compared with heuristic algorithms, the proposed algorithm takes into consideration the relationship among features with locality preservation of Laplacian score. We select a feature subset with maximal feature importance and minimal cost when cost is undertaken in parallel, where the cost is given by three different distributions to simulate different applications. Different from existing cost-sensitive feature selection algorithms, our algorithm simultaneously selects out a predetermined number of “good” features. Extensive experimental results show that the approach is efficient and able to effectively obtain the minimum cost subset. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms. PMID:29912884

  12. Rough sets and Laplacian score based cost-sensitive feature selection.

    PubMed

    Yu, Shenglong; Zhao, Hong

    2018-01-01

    Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. Obviously, these algorithms do not consider the relationship among features. In this paper, we propose a new algorithm for minimal cost feature selection called the rough sets and Laplacian score based cost-sensitive feature selection. The importance of each feature is evaluated by both rough sets and Laplacian score. Compared with heuristic algorithms, the proposed algorithm takes into consideration the relationship among features with locality preservation of Laplacian score. We select a feature subset with maximal feature importance and minimal cost when cost is undertaken in parallel, where the cost is given by three different distributions to simulate different applications. Different from existing cost-sensitive feature selection algorithms, our algorithm simultaneously selects out a predetermined number of "good" features. Extensive experimental results show that the approach is efficient and able to effectively obtain the minimum cost subset. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms.

  13. Discrimination of serum Raman spectroscopy between normal and colorectal cancer

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Yang, Tianyue; Yu, Ting; Li, Siqi

    2011-07-01

    Raman spectroscopy of tissues has been widely studied for the diagnosis of various cancers, but biofluids were seldom used as the analyte because of the low concentration. Herein, serum of 30 normal people, 46 colon cancer, and 44 rectum cancer patients were measured Raman spectra and analyzed. The information of Raman peaks (intensity and width) and that of the fluorescence background (baseline function coefficients) were selected as parameters for statistical analysis. Principal component regression (PCR) and partial least square regression (PLSR) were used on the selected parameters separately to see the performance of the parameters. PCR performed better than PLSR in our spectral data. Then linear discriminant analysis (LDA) was used on the principal components (PCs) of the two regression method on the selected parameters, and a diagnostic accuracy of 88% and 83% were obtained. The conclusion is that the selected features can maintain the information of original spectra well and Raman spectroscopy of serum has the potential for the diagnosis of colorectal cancer.

  14. New techniques for the quantification and modeling of remotely sensed alteration and linear features in mineral resource assessment studies

    USGS Publications Warehouse

    Trautwein, C.M.; Rowan, L.C.

    1987-01-01

    Linear structural features and hydrothermally altered rocks that were interpreted from Landsat data have been used by the U.S. Geological Survey (USGS) in regional mineral resource appraisals for more than a decade. In the past, linear features and alterations have been incorporated into models for assessing mineral resources potential by manually overlaying these and other data sets. Recently, USGS research into computer-based geographic information systems (GIS) for mineral resources assessment programs has produced several new techniques for data analysis, quantification, and integration to meet assessment objectives.

  15. Geomorphic domains and linear features on Landsat images, Circle Quadrangle, Alaska

    USGS Publications Warehouse

    Simpson, S.L.

    1984-01-01

    A remote sensing study using Landsat images was undertaken as part of the Alaska Mineral Resource Assessment Program (AMRAP). Geomorphic domains A and B, identified on enhanced Landsat images, divide Circle quadrangle south of Tintina fault zone into two regional areas having major differences in surface characteristics. Domain A is a roughly rectangular, northeast-trending area of relatively low relief and simple, widely spaced drainages, except where igneous rocks are exposed. In contrast, domain B, which bounds two sides of domain A, is more intricately dissected showing abrupt changes in slope and relatively high relief. The northwestern part of geomorphic domain A includes a previously mapped tectonostratigraphic terrane. The southeastern boundary of domain A occurs entirely within the adjoining tectonostratigraphic terrane. The sharp geomorphic contrast along the southeastern boundary of domain A and the existence of known faults along this boundary suggest that the southeastern part of domain A may be a subdivision of the adjoining terrane. Detailed field studies would be necessary to determine the characteristics of the subdivision. Domain B appears to be divisible into large areas of different geomorphic terrains by east-northeast-trending curvilinear lines drawn on Landsat images. Segments of two of these lines correlate with parts of boundaries of mapped tectonostratigraphic terranes. On Landsat images prominent north-trending lineaments together with the curvilinear lines form a large-scale regional pattern that is transected by mapped north-northeast-trending high-angle faults. The lineaments indicate possible lithlogic variations and/or structural boundaries. A statistical strike-frequency analysis of the linear features data for Circle quadrangle shows that northeast-trending linear features predominate throughout, and that most northwest-trending linear features are found south of Tintina fault zone. A major trend interval of N.64-72E. in the linear feature data, corresponds to the strike of foliations in metamorphic rocks and magnetic anomalies reflecting compositional variations suggesting that most linear features in the southern part of the quadrangle probably are related to lithologic variations brought about by folding and foliation of metamorphic rocks. A second important trend interval, N.14-35E., may be related to thrusting south of the Tintina fault zone, as high concentrations of linear features within this interval are found in areas of mapped thrusts. Low concentrations of linear features are found in areas of most igneous intrusives. High concentrations of linear features do not correspond to areas of mineralization in any consistent or significant way that would allow concentration patterns to be easily used as an aid in locating areas of mineralization. The results of this remote sensing study indicate that there are several possibly important areas where further detailed studies are warranted.

  16. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas

    PubMed Central

    Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.

    2015-01-01

    Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164

  17. Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.

    PubMed

    Hamar, Dušan

    2015-08-24

    Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.

  18. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.

    PubMed

    Murphy-Baum, Benjamin L; Taylor, W Rowland

    2015-09-30

    Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene. Copyright © 2015 the authors 0270-6474/15/3513336-15$15.00/0.

  19. Automatic seed selection for segmentation of liver cirrhosis in laparoscopic sequences

    NASA Astrophysics Data System (ADS)

    Sinha, Rahul; Marcinczak, Jan Marek; Grigat, Rolf-Rainer

    2014-03-01

    For computer aided diagnosis based on laparoscopic sequences, image segmentation is one of the basic steps which define the success of all further processing. However, many image segmentation algorithms require prior knowledge which is given by interaction with the clinician. We propose an automatic seed selection algorithm for segmentation of liver cirrhosis in laparoscopic sequences which assigns each pixel a probability of being cirrhotic liver tissue or background tissue. Our approach is based on a trained classifier using SIFT and RGB features with PCA. Due to the unique illumination conditions in laparoscopic sequences of the liver, a very low dimensional feature space can be used for classification via logistic regression. The methodology is evaluated on 718 cirrhotic liver and background patches that are taken from laparoscopic sequences of 7 patients. Using a linear classifier we achieve a precision of 91% in a leave-one-patient-out cross-validation. Furthermore, we demonstrate that with logistic probability estimates, seeds with high certainty of being cirrhotic liver tissue can be obtained. For example, our precision of liver seeds increases to 98.5% if only seeds with more than 95% probability of being liver are used. Finally, these automatically selected seeds can be used as priors in Graph Cuts which is demonstrated in this paper.

  20. Relationship between grasping force and features of single-channel intramuscular EMG signals.

    PubMed

    Kamavuako, Ernest Nlandu; Farina, Dario; Yoshida, Ken; Jensen, Winnie

    2009-12-15

    The surface electromyographic (sEMG) signal can be used for force prediction and control in prosthetic devices. Because of technological advances on implantable sensors, the use of intramuscular EMG (iEMG) is becoming a potential alternative to sEMG for the control of multiple degrees-of-freedom (DOF). An invasive system is not affected by crosstalk, typical of sEMG, and provides more stable and independent control sites. However, intramuscular recordings provide more local information because of their high selectivity, and may thus be less representative of the global muscle activity with respect to sEMG. This study investigates the capacity of selective single-channel iEMG recordings to represent the grasping force with respect to the use of sEMG with the aim of assessing if iEMG can be an effective method for proportional myoelectric control. sEMG and iEMG were recorded concurrently from 10 subjects who exerted six grasping force profiles from 0 to 25/50N. The linear correlation coefficient between features extracted from iEMG and force was approximately 0.9 and was not significantly different from the degree of correlation between sEMG and force. This result indicates that a selective iEMG recording is representative of the applied grasping force and can be used for proportional control.

  1. An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis

    PubMed Central

    Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor

    2014-01-01

    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels. PMID:25372618

  2. An SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis.

    PubMed

    Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor

    2014-11-03

    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.

  3. Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor

    PubMed Central

    Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Nguyen, Dat Tien; Vokhidov, Husan; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2015-01-01

    In general, dirty banknotes that have creases or soiled surfaces should be replaced by new banknotes, whereas clean banknotes should be recirculated. Therefore, the accurate classification of banknote fitness when sorting paper currency is an important and challenging task. Most previous research has focused on sensors that used visible, infrared, and ultraviolet light. Furthermore, there was little previous research on the fitness classification for Indian paper currency. Therefore, we propose a new method for classifying the fitness of Indian banknotes, with a one-dimensional line image sensor that uses only visible light. The fitness of banknotes is usually determined by various factors such as soiling, creases, and tears, etc. although we just consider banknote soiling in our research. This research is novel in the following four ways: first, there has been little research conducted on fitness classification for the Indian Rupee using visible-light images. Second, the classification is conducted based on the features extracted from the regions of interest (ROIs), which contain little texture. Third, 1-level discrete wavelet transformation (DWT) is used to extract the features for discriminating between fit and unfit banknotes. Fourth, the optimal DWT features that represent the fitness and unfitness of banknotes are selected based on linear regression analysis with ground-truth data measured by densitometer. In addition, the selected features are used as the inputs to a support vector machine (SVM) for the final classification of banknote fitness. Experimental results showed that our method outperforms other methods. PMID:26343654

  4. Age and gender classification in the wild with unsupervised feature learning

    NASA Astrophysics Data System (ADS)

    Wan, Lihong; Huo, Hong; Fang, Tao

    2017-03-01

    Inspired by unsupervised feature learning (UFL) within the self-taught learning framework, we propose a method based on UFL, convolution representation, and part-based dimensionality reduction to handle facial age and gender classification, which are two challenging problems under unconstrained circumstances. First, UFL is introduced to learn selective receptive fields (filters) automatically by applying whitening transformation and spherical k-means on random patches collected from unlabeled data. The learning process is fast and has no hyperparameters to tune. Then, the input image is convolved with these filters to obtain filtering responses on which local contrast normalization is applied. Average pooling and feature concatenation are then used to form global face representation. Finally, linear discriminant analysis with part-based strategy is presented to reduce the dimensions of the global representation and to improve classification performances further. Experiments on three challenging databases, namely, Labeled faces in the wild, Gallagher group photos, and Adience, demonstrate the effectiveness of the proposed method relative to that of state-of-the-art approaches.

  5. Object recognition with hierarchical discriminant saliency networks.

    PubMed

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and computer vision literatures. This demonstrates benefits for all the functional enhancements of the HDSN, the class tuning inherent to discriminant saliency, and saliency layers based on templates of increasing target selectivity and invariance. Altogether, these experiments suggest that there are non-trivial benefits in integrating attention and recognition.

  6. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    PubMed Central

    Yock, Adam D.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Kudchadker, Rajat J.; Court, Laurence E.

    2014-01-01

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models includes the characterization of patient-specific response with implications for treatment management and research study design. PMID:25086518

  7. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind

    2014-08-15

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear,more » and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models includes the characterization of patient-specific response with implications for treatment management and research study design.« less

  8. Wavelet processing techniques for digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  9. Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array

    NASA Astrophysics Data System (ADS)

    Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.

    1995-06-01

    The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.

  10. Linear feature detection algorithm for astronomical surveys - I. Algorithm description

    NASA Astrophysics Data System (ADS)

    Bektešević, Dino; Vinković, Dejan

    2017-11-01

    Computer vision algorithms are powerful tools in astronomical image analyses, especially when automation of object detection and extraction is required. Modern object detection algorithms in astronomy are oriented towards detection of stars and galaxies, ignoring completely the detection of existing linear features. With the emergence of wide-field sky surveys, linear features attract scientific interest as possible trails of fast flybys of near-Earth asteroids and meteors. In this work, we describe a new linear feature detection algorithm designed specifically for implementation in big data astronomy. The algorithm combines a series of algorithmic steps that first remove other objects (stars and galaxies) from the image and then enhance the line to enable more efficient line detection with the Hough algorithm. The rate of false positives is greatly reduced thanks to a step that replaces possible line segments with rectangles and then compares lines fitted to the rectangles with the lines obtained directly from the image. The speed of the algorithm and its applicability in astronomical surveys are also discussed.

  11. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-01-01

    Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed. PMID:27879786

  12. Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics

    PubMed Central

    2016-01-01

    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications. PMID:27806075

  13. Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics.

    PubMed

    Miguel-Hurtado, Oscar; Guest, Richard; Stevenage, Sarah V; Neil, Greg J; Black, Sue

    2016-01-01

    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications.

  14. CAFÉ-Map: Context Aware Feature Mapping for mining high dimensional biomedical data.

    PubMed

    Minhas, Fayyaz Ul Amir Afsar; Asif, Amina; Arif, Muhammad

    2016-12-01

    Feature selection and ranking is of great importance in the analysis of biomedical data. In addition to reducing the number of features used in classification or other machine learning tasks, it allows us to extract meaningful biological and medical information from a machine learning model. Most existing approaches in this domain do not directly model the fact that the relative importance of features can be different in different regions of the feature space. In this work, we present a context aware feature ranking algorithm called CAFÉ-Map. CAFÉ-Map is a locally linear feature ranking framework that allows recognition of important features in any given region of the feature space or for any individual example. This allows for simultaneous classification and feature ranking in an interpretable manner. We have benchmarked CAFÉ-Map on a number of toy and real world biomedical data sets. Our comparative study with a number of published methods shows that CAFÉ-Map achieves better accuracies on these data sets. The top ranking features obtained through CAFÉ-Map in a gene profiling study correlate very well with the importance of different genes reported in the literature. Furthermore, CAFÉ-Map provides a more in-depth analysis of feature ranking at the level of individual examples. CAFÉ-Map Python code is available at: http://faculty.pieas.edu.pk/fayyaz/software.html#cafemap . The CAFÉ-Map package supports parallelization and sparse data and provides example scripts for classification. This code can be used to reconstruct the results given in this paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Online feature selection with streaming features.

    PubMed

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  16. Harnessing Computational Biology for Exact Linear B-Cell Epitope Prediction: A Novel Amino Acid Composition-Based Feature Descriptor.

    PubMed

    Saravanan, Vijayakumar; Gautham, Namasivayam

    2015-10-01

    Proteins embody epitopes that serve as their antigenic determinants. Epitopes occupy a central place in integrative biology, not to mention as targets for novel vaccine, pharmaceutical, and systems diagnostics development. The presence of T-cell and B-cell epitopes has been extensively studied due to their potential in synthetic vaccine design. However, reliable prediction of linear B-cell epitope remains a formidable challenge. Earlier studies have reported discrepancy in amino acid composition between the epitopes and non-epitopes. Hence, this study proposed and developed a novel amino acid composition-based feature descriptor, Dipeptide Deviation from Expected Mean (DDE), to distinguish the linear B-cell epitopes from non-epitopes effectively. In this study, for the first time, only exact linear B-cell epitopes and non-epitopes have been utilized for developing the prediction method, unlike the use of epitope-containing regions in earlier reports. To evaluate the performance of the DDE feature vector, models have been developed with two widely used machine-learning techniques Support Vector Machine and AdaBoost-Random Forest. Five-fold cross-validation performance of the proposed method with error-free dataset and dataset from other studies achieved an overall accuracy between nearly 61% and 73%, with balance between sensitivity and specificity metrics. Performance of the DDE feature vector was better (with accuracy difference of about 2% to 12%), in comparison to other amino acid-derived features on different datasets. This study reflects the efficiency of the DDE feature vector in enhancing the linear B-cell epitope prediction performance, compared to other feature representations. The proposed method is made as a stand-alone tool available freely for researchers, particularly for those interested in vaccine design and novel molecular target development for systems therapeutics and diagnostics: https://github.com/brsaran/LBEEP.

  17. Artificial nose, NIR and UV-visible spectroscopy for the characterisation of the PDO Chianti Classico olive oil.

    PubMed

    Forina, M; Oliveri, P; Bagnasco, L; Simonetti, R; Casolino, M C; Nizzi Grifi, F; Casale, M

    2015-11-01

    An authentication study of the Italian PDO (Protected Designation of Origin) olive oil Chianti Classico, based on artificial nose, near-infrared and UV-visible spectroscopy, with a set of samples representative of the whole Chianti Classico production area and a considerable number of samples from other Italian PDO regions was performed. The signals provided by the three analytical techniques were used both individually and jointly, after fusion of the respective variables, in order to build a model for the Chianti Classico PDO olive oil. Different signal pre-treatments were performed in order to investigate their importance and their effects in enhancing and extracting information from experimental data, correcting backgrounds or removing baseline variations. Stepwise-Linear Discriminant Analysis (STEP-LDA) was used as a feature selection technique and, afterward, Linear Discriminant Analysis (LDA) and the class-modelling technique Quadratic Discriminant Analysis-UNEQual dispersed classes (QDA-UNEQ) were applied to sub-sets of selected variables, in order to obtain efficient models capable of characterising the extra virgin olive oils produced in the Chianti Classico PDO area. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential Tasks

    PubMed Central

    Rombouts, Jaldert O.; Bohte, Sander M.; Roelfsema, Pieter R.

    2015-01-01

    Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neurons in association cortex are thought to be essential for this ability. During learning these neurons become tuned to relevant features and start to represent them with persistent activity during memory delays. This learning process is not well understood. Here we develop a biologically plausible learning scheme that explains how trial-and-error learning induces neuronal selectivity and working memory representations for task-relevant information. We propose that the response selection stage sends attentional feedback signals to earlier processing levels, forming synaptic tags at those connections responsible for the stimulus-response mapping. Globally released neuromodulators then interact with tagged synapses to determine their plasticity. The resulting learning rule endows neural networks with the capacity to create new working memory representations of task relevant information as persistent activity. It is remarkably generic: it explains how association neurons learn to store task-relevant information for linear as well as non-linear stimulus-response mappings, how they become tuned to category boundaries or analog variables, depending on the task demands, and how they learn to integrate probabilistic evidence for perceptual decisions. PMID:25742003

  19. Pediatric morphea (localized scleroderma): review of 136 patients.

    PubMed

    Christen-Zaech, Stéphanie; Hakim, Miriam D; Afsar, F Sule; Paller, Amy S

    2008-09-01

    Morphea is an autoimmune inflammatory sclerosing disorder that may cause permanent functional disability and disfigurement. We sought to determine the clinical features of morphea in a large pediatric cohort. We conducted a retrospective chart review of 136 pediatric patients with morphea from one center, 1989 to 2006. Most children showed linear morphea, with a disproportionately high number of Caucasian and female patients. Two patients with rapidly progressing generalized or extensive linear morphea and arthralgias developed restrictive pulmonary disease. Initial oral corticosteroid treatment and long-term methotrexate administration stabilized and/or led to disease improvement in most patients with aggressive disease. Retrospective analysis, relatively small sample size, and risk of a selected referral population to the single site are limitations. These data suggest an increased prevalence of morphea in Caucasian girls, and support methotrexate as treatment for problematic forms. Visceral manifestations rarely occur; the presence of progressive problematic cutaneous disease and arthralgias should trigger closer patient monitoring.

  20. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal.

    PubMed

    Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza

    2013-03-01

    Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Enhancing the Discrimination Ability of a Gas Sensor Array Based on a Novel Feature Selection and Fusion Framework.

    PubMed

    Deng, Changjian; Lv, Kun; Shi, Debo; Yang, Bo; Yu, Song; He, Zhiyi; Yan, Jia

    2018-06-12

    In this paper, a novel feature selection and fusion framework is proposed to enhance the discrimination ability of gas sensor arrays for odor identification. Firstly, we put forward an efficient feature selection method based on the separability and the dissimilarity to determine the feature selection order for each type of feature when increasing the dimension of selected feature subsets. Secondly, the K-nearest neighbor (KNN) classifier is applied to determine the dimensions of the optimal feature subsets for different types of features. Finally, in the process of establishing features fusion, we come up with a classification dominance feature fusion strategy which conducts an effective basic feature. Experimental results on two datasets show that the recognition rates of Database I and Database II achieve 97.5% and 80.11%, respectively, when k = 1 for KNN classifier and the distance metric is correlation distance (COR), which demonstrates the superiority of the proposed feature selection and fusion framework in representing signal features. The novel feature selection method proposed in this paper can effectively select feature subsets that are conducive to the classification, while the feature fusion framework can fuse various features which describe the different characteristics of sensor signals, for enhancing the discrimination ability of gas sensors and, to a certain extent, suppressing drift effect.

  2. Calculation of selective filters of a device for primary analysis of speech signals

    NASA Astrophysics Data System (ADS)

    Chudnovskii, L. S.; Ageev, V. M.

    2014-07-01

    The amplitude-frequency responses of filters for primary analysis of speech signals, which have a low quality factor and a high rolloff factor in the high-frequency range, are calculated using the linear theory of speech production and psychoacoustic measurement data. The frequency resolution of the filter system for a sinusoidal signal is 40-200 Hz. The modulation-frequency resolution of amplitude- and frequency-modulated signals is 3-6 Hz. The aforementioned features of the calculated filters are close to the amplitudefrequency responses of biological auditory systems at the level of the eighth nerve.

  3. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  4. Weighted cubic and biharmonic splines

    NASA Astrophysics Data System (ADS)

    Kvasov, Boris; Kim, Tae-Wan

    2017-01-01

    In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.

  5. Automatic classification of artifactual ICA-components for artifact removal in EEG signals.

    PubMed

    Winkler, Irene; Haufe, Stefan; Tangermann, Michael

    2011-08-02

    Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.

  6. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations

    NASA Astrophysics Data System (ADS)

    Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza

    2017-06-01

    Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.

  7. A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels

    PubMed Central

    2011-01-01

    Background Bioinformatics data analysis is often using linear mixture model representing samples as additive mixture of components. Properly constrained blind matrix factorization methods extract those components using mixture samples only. However, automatic selection of extracted components to be retained for classification analysis remains an open issue. Results The method proposed here is applied to well-studied protein and genomic datasets of ovarian, prostate and colon cancers to extract components for disease prediction. It achieves average sensitivities of: 96.2 (sd = 2.7%), 97.6% (sd = 2.8%) and 90.8% (sd = 5.5%) and average specificities of: 93.6% (sd = 4.1%), 99% (sd = 2.2%) and 79.4% (sd = 9.8%) in 100 independent two-fold cross-validations. Conclusions We propose an additive mixture model of a sample for feature extraction using, in principle, sparseness constrained factorization on a sample-by-sample basis. As opposed to that, existing methods factorize complete dataset simultaneously. The sample model is composed of a reference sample representing control and/or case (disease) groups and a test sample. Each sample is decomposed into two or more components that are selected automatically (without using label information) as control specific, case specific and not differentially expressed (neutral). The number of components is determined by cross-validation. Automatic assignment of features (m/z ratios or genes) to particular component is based on thresholds estimated from each sample directly. Due to the locality of decomposition, the strength of the expression of each feature across the samples can vary. Yet, they will still be allocated to the related disease and/or control specific component. Since label information is not used in the selection process, case and control specific components can be used for classification. That is not the case with standard factorization methods. Moreover, the component selected by proposed method as disease specific can be interpreted as a sub-mode and retained for further analysis to identify potential biomarkers. As opposed to standard matrix factorization methods this can be achieved on a sample (experiment)-by-sample basis. Postulating one or more components with indifferent features enables their removal from disease and control specific components on a sample-by-sample basis. This yields selected components with reduced complexity and generally, it increases prediction accuracy. PMID:22208882

  8. Mining protein database using machine learning techniques.

    PubMed

    Camargo, Renata da Silva; Niranjan, Mahesan

    2008-08-25

    With a large amount of information relating to proteins accumulating in databases widely available online, it is of interest to apply machine learning techniques that, by extracting underlying statistical regularities in the data, make predictions about the functional and evolutionary characteristics of unseen proteins. Such predictions can help in achieving a reduction in the space over which experiment designers need to search in order to improve our understanding of the biochemical properties. Previously it has been suggested that an integration of features computable by comparing a pair of proteins can be achieved by an artificial neural network, hence predicting the degree to which they may be evolutionary related and homologous.
    We compiled two datasets of pairs of proteins, each pair being characterised by seven distinct features. We performed an exhaustive search through all possible combinations of features, for the problem of separating remote homologous from analogous pairs, we note that significant performance gain was obtained by the inclusion of sequence and structure information. We find that the use of a linear classifier was enough to discriminate a protein pair at the family level. However, at the superfamily level, to detect remote homologous pairs was a relatively harder problem. We find that the use of nonlinear classifiers achieve significantly higher accuracies.
    In this paper, we compare three different pattern classification methods on two problems formulated as detecting evolutionary and functional relationships between pairs of proteins, and from extensive cross validation and feature selection based studies quantify the average limits and uncertainties with which such predictions may be made. Feature selection points to a \\"knowledge gap\\" in currently available functional annotations. We demonstrate how the scheme may be employed in a framework to associate an individual protein with an existing family of evolutionarily related proteins.

  9. Effects of non-neuronal components for functional connectivity analysis from resting-state functional MRI toward automated diagnosis of schizophrenia

    NASA Astrophysics Data System (ADS)

    Kim, Junghoe; Lee, Jong-Hwan

    2014-03-01

    A functional connectivity (FC) analysis from resting-state functional MRI (rsfMRI) is gaining its popularity toward the clinical application such as diagnosis of neuropsychiatric disease. To delineate the brain networks from rsfMRI data, non-neuronal components including head motions and physiological artifacts mainly observed in cerebrospinal fluid (CSF), white matter (WM) along with a global brain signal have been regarded as nuisance variables in calculating the FC level. However, it is still unclear how the non-neuronal components can affect the performance toward diagnosis of neuropsychiatric disease. In this study, a systematic comparison of classification performance of schizophrenia patients was provided employing the partial correlation coefficients (CCs) as feature elements. Pair-wise partial CCs were calculated between brain regions, in which six combinatorial sets of nuisance variables were considered. The partial CCs were used as candidate feature elements followed by feature selection based on the statistical significance test between two groups in the training set. Once a linear support vector machine was trained using the selected features from the training set, the classification performance was evaluated using the features from the test set (i.e. leaveone- out cross validation scheme). From the results, the error rate using all non-neuronal components as nuisance variables (12.4%) was significantly lower than those using remaining combination of non-neuronal components as nuisance variables (13.8 ~ 20.0%). In conclusion, the non-neuronal components substantially degraded the automated diagnosis performance, which supports our hypothesis that the non-neuronal components are crucial in controlling the automated diagnosis performance of the neuropsychiatric disease using an fMRI modality.

  10. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.

    PubMed

    Kumar, Shiu; Mamun, Kabir; Sharma, Alok

    2017-12-01

    Classification of electroencephalography (EEG) signals for motor imagery based brain computer interface (MI-BCI) is an exigent task and common spatial pattern (CSP) has been extensively explored for this purpose. In this work, we focused on developing a new framework for classification of EEG signals for MI-BCI. We propose a single band CSP framework for MI-BCI that utilizes the concept of tangent space mapping (TSM) in the manifold of covariance matrices. The proposed method is named CSP-TSM. Spatial filtering is performed on the bandpass filtered MI EEG signal. Riemannian tangent space is utilized for extracting features from the spatial filtered signal. The TSM features are then fused with the CSP variance based features and feature selection is performed using Lasso. Linear discriminant analysis (LDA) is then applied to the selected features and finally classification is done using support vector machine (SVM) classifier. The proposed framework gives improved performance for MI EEG signal classification in comparison with several competing methods. Experiments conducted shows that the proposed framework reduces the overall classification error rate for MI-BCI by 3.16%, 5.10% and 1.70% (for BCI Competition III dataset IVa, BCI Competition IV Dataset I and BCI Competition IV Dataset IIb, respectively) compared to the conventional CSP method under the same experimental settings. The proposed CSP-TSM method produces promising results when compared with several competing methods in this paper. In addition, the computational complexity is less compared to that of TSM method. Our proposed CSP-TSM framework can be potentially used for developing improved MI-BCI systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  12. Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra

    DOE PAGES

    Hatch, D. R.; Jenko, F.; Navarro, A. Banon; ...

    2016-07-26

    A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest inmore » the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.« less

  13. Multimodal Image Alignment via Linear Mapping between Feature Modalities.

    PubMed

    Jiang, Yanyun; Zheng, Yuanjie; Hou, Sujuan; Chang, Yuchou; Gee, James

    2017-01-01

    We propose a novel landmark matching based method for aligning multimodal images, which is accomplished uniquely by resolving a linear mapping between different feature modalities. This linear mapping results in a new measurement on similarity of images captured from different modalities. In addition, our method simultaneously solves this linear mapping and the landmark correspondences by minimizing a convex quadratic function. Our method can estimate complex image relationship between different modalities and nonlinear nonrigid spatial transformations even in the presence of heavy noise, as shown in our experiments carried out by using a variety of image modalities.

  14. Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments

    NASA Astrophysics Data System (ADS)

    Masoud, Alaa; Koike, Katsuaki

    2017-09-01

    Detection and analysis of linear features related to surface and subsurface structures have been deemed necessary in natural resource exploration and earth surface instability assessment. Subjectivity in choosing control parameters required in conventional methods of lineament detection may cause unreliable results. To reduce this ambiguity, we developed LINDA (LINeament Detection and Analysis), an integrated tool with graphical user interface in Visual Basic. This tool automates processes of detection and analysis of linear features from grid data of topography (digital elevation model; DEM), gravity and magnetic surfaces, as well as data from remote sensing imagery. A simple interface with five display windows forms a user-friendly interactive environment. The interface facilitates grid data shading, detection and grouping of segments, lineament analyses for calculating strike and dip and estimating fault type, and interactive viewing of lineament geometry. Density maps of the center and intersection points of linear features (segments and lineaments) are also included. A systematic analysis of test DEMs and Landsat 7 ETM+ imagery datasets in the North and South Eastern Deserts of Egypt is implemented to demonstrate the capability of LINDA and correct use of its functions. Linear features from the DEM are superior to those from the imagery in terms of frequency, but both linear features agree with location and direction of V-shaped valleys and dykes and reference fault data. Through the case studies, LINDA applicability is demonstrated to highlight dominant structural trends, which can aid understanding of geodynamic frameworks in any region.

  15. A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs).

    PubMed

    Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong

    2014-01-01

    Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.

  16. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.

    PubMed

    Zhang, Bin; He, Xin; Ouyang, Fusheng; Gu, Dongsheng; Dong, Yuhao; Zhang, Lu; Mo, Xiaokai; Huang, Wenhui; Tian, Jie; Zhang, Shuixing

    2017-09-10

    We aimed to identify optimal machine-learning methods for radiomics-based prediction of local failure and distant failure in advanced nasopharyngeal carcinoma (NPC). We enrolled 110 patients with advanced NPC. A total of 970 radiomic features were extracted from MRI images for each patient. Six feature selection methods and nine classification methods were evaluated in terms of their performance. We applied the 10-fold cross-validation as the criterion for feature selection and classification. We repeated each combination for 50 times to obtain the mean area under the curve (AUC) and test error. We observed that the combination methods Random Forest (RF) + RF (AUC, 0.8464 ± 0.0069; test error, 0.3135 ± 0.0088) had the highest prognostic performance, followed by RF + Adaptive Boosting (AdaBoost) (AUC, 0.8204 ± 0.0095; test error, 0.3384 ± 0.0097), and Sure Independence Screening (SIS) + Linear Support Vector Machines (LSVM) (AUC, 0.7883 ± 0.0096; test error, 0.3985 ± 0.0100). Our radiomics study identified optimal machine-learning methods for the radiomics-based prediction of local failure and distant failure in advanced NPC, which could enhance the applications of radiomics in precision oncology and clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. McTwo: a two-step feature selection algorithm based on maximal information coefficient.

    PubMed

    Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng

    2016-03-23

    High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.

  18. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.

    PubMed

    Balcarras, Matthew; Ardid, Salva; Kaping, Daniel; Everling, Stefan; Womelsdorf, Thilo

    2016-02-01

    Attention includes processes that evaluate stimuli relevance, select the most relevant stimulus against less relevant stimuli, and bias choice behavior toward the selected information. It is not clear how these processes interact. Here, we captured these processes in a reinforcement learning framework applied to a feature-based attention task that required macaques to learn and update the value of stimulus features while ignoring nonrelevant sensory features, locations, and action plans. We found that value-based reinforcement learning mechanisms could account for feature-based attentional selection and choice behavior but required a value-independent stickiness selection process to explain selection errors while at asymptotic behavior. By comparing different reinforcement learning schemes, we found that trial-by-trial selections were best predicted by a model that only represents expected values for the task-relevant feature dimension, with nonrelevant stimulus features and action plans having only a marginal influence on covert selections. These findings show that attentional control subprocesses can be described by (1) the reinforcement learning of feature values within a restricted feature space that excludes irrelevant feature dimensions, (2) a stochastic selection process on feature-specific value representations, and (3) value-independent stickiness toward previous feature selections akin to perseveration in the motor domain. We speculate that these three mechanisms are implemented by distinct but interacting brain circuits and that the proposed formal account of feature-based stimulus selection will be important to understand how attentional subprocesses are implemented in primate brain networks.

  19. Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics.

    PubMed

    Sadeh, Sadra; Rotter, Stefan

    2015-01-01

    The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity.

  20. Orientation Selectivity in Inhibition-Dominated Networks of Spiking Neurons: Effect of Single Neuron Properties and Network Dynamics

    PubMed Central

    Sadeh, Sadra; Rotter, Stefan

    2015-01-01

    The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity. PMID:25569445

  1. Analysis of separation test for automatic brake adjuster based on linear radon transformation

    NASA Astrophysics Data System (ADS)

    Luo, Zai; Jiang, Wensong; Guo, Bin; Fan, Weijun; Lu, Yi

    2015-01-01

    The linear Radon transformation is applied to extract inflection points for online test system under the noise conditions. The linear Radon transformation has a strong ability of anti-noise and anti-interference by fitting the online test curve in several parts, which makes it easy to handle consecutive inflection points. We applied the linear Radon transformation to the separation test system to solve the separating clearance of automatic brake adjuster. The experimental results show that the feature point extraction error of the gradient maximum optimal method is approximately equal to ±0.100, while the feature point extraction error of linear Radon transformation method can reach to ±0.010, which has a lower error than the former one. In addition, the linear Radon transformation is robust.

  2. A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2.

    PubMed

    Nicholson, Judith; Scherl, Alex; Way, Luke; Blackburn, Elizabeth A; Walkinshaw, Malcolm D; Ball, Kathryn L; Hupp, Ted R

    2014-06-01

    Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The effect of feature selection methods on computer-aided detection of masses in mammograms

    NASA Astrophysics Data System (ADS)

    Hupse, Rianne; Karssemeijer, Nico

    2010-05-01

    In computer-aided diagnosis (CAD) research, feature selection methods are often used to improve generalization performance of classifiers and shorten computation times. In an application that detects malignant masses in mammograms, we investigated the effect of using a selection criterion that is similar to the final performance measure we are optimizing, namely the mean sensitivity of the system in a predefined range of the free-response receiver operating characteristics (FROC). To obtain the generalization performance of the selected feature subsets, a cross validation procedure was performed on a dataset containing 351 abnormal and 7879 normal regions, each region providing a set of 71 mass features. The same number of noise features, not containing any information, were added to investigate the ability of the feature selection algorithms to distinguish between useful and non-useful features. It was found that significantly higher performances were obtained using feature sets selected by the general test statistic Wilks' lambda than using feature sets selected by the more specific FROC measure. Feature selection leads to better performance when compared to a system in which all features were used.

  4. Boosting multi-state models.

    PubMed

    Reulen, Holger; Kneib, Thomas

    2016-04-01

    One important goal in multi-state modelling is to explore information about conditional transition-type-specific hazard rate functions by estimating influencing effects of explanatory variables. This may be performed using single transition-type-specific models if these covariate effects are assumed to be different across transition-types. To investigate whether this assumption holds or whether one of the effects is equal across several transition-types (cross-transition-type effect), a combined model has to be applied, for instance with the use of a stratified partial likelihood formulation. Here, prior knowledge about the underlying covariate effect mechanisms is often sparse, especially about ineffectivenesses of transition-type-specific or cross-transition-type effects. As a consequence, data-driven variable selection is an important task: a large number of estimable effects has to be taken into account if joint modelling of all transition-types is performed. A related but subsequent task is model choice: is an effect satisfactory estimated assuming linearity, or is the true underlying nature strongly deviating from linearity? This article introduces component-wise Functional Gradient Descent Boosting (short boosting) for multi-state models, an approach performing unsupervised variable selection and model choice simultaneously within a single estimation run. We demonstrate that features and advantages in the application of boosting introduced and illustrated in classical regression scenarios remain present in the transfer to multi-state models. As a consequence, boosting provides an effective means to answer questions about ineffectiveness and non-linearity of single transition-type-specific or cross-transition-type effects.

  5. Factorization-based texture segmentation

    DOE PAGES

    Yuan, Jiangye; Wang, Deliang; Cheriyadat, Anil M.

    2015-06-17

    This study introduces a factorization-based approach that efficiently segments textured images. We use local spectral histograms as features, and construct an M × N feature matrix using M-dimensional feature vectors in an N-pixel image. Based on the observation that each feature can be approximated by a linear combination of several representative features, we factor the feature matrix into two matrices-one consisting of the representative features and the other containing the weights of representative features at each pixel used for linear combination. The factorization method is based on singular value decomposition and nonnegative matrix factorization. The method uses local spectral histogramsmore » to discriminate region appearances in a computationally efficient way and at the same time accurately localizes region boundaries. Finally, the experiments conducted on public segmentation data sets show the promise of this simple yet powerful approach.« less

  6. The National Map - geographic names

    USGS Publications Warehouse

    Yost, Lou; Carswell, William J.

    2009-01-01

    The Geographic Names Information System (GNIS), developed by the U.S. Geological Survey (USGS) in cooperation with the U.S. Board on Geographic Names (BGN), contains information about the official names for places, features, and areas in the 50 States, the District of Columbia, the territories and outlying areas of the United States, including Antarctica. It is the geographic names component of The National Map. The BGN maintains working relationships with State names authorities to cooperate in achieving the standardization of geographic names. The GNIS contains records on more than 2 million geographic names in the United States - from populated places, schools, reservoirs, and parks to streams, valleys, springs, ridges, and every feature type except roads and highways. Entries include information such as the federally-recognized name and variant names and spellings for the feature; former names; the status of the name as determined by the BGN; county or counties in which each named feature is located; geographic coordinates that locate the approximate center of an aerial feature or the mouth and source of a linear feature, such as a stream; name of the cell of the USGS topographic map or maps on which the feature may appear; elevation figures derived from the National Elevation Dataset; bibliographic code for the source of the name; BGN decision dates and historical information are available for some features. Data from the GNIS are used for emergency preparedness, mapmaking, local and regional planning, service delivery routing, marketing, site selection, environmental analysis, genealogical research, and other applications.

  7. 3D Pathology Volumetric Technique: A Method for Calculating Breast Tumour Volume from Whole-Mount Serial Section Images

    PubMed Central

    Clarke, G. M.; Murray, M.; Holloway, C. M. B.; Liu, K.; Zubovits, J. T.; Yaffe, M. J.

    2012-01-01

    Tumour size, most commonly measured by maximum linear extent, remains a strong predictor of survival in breast cancer. Tumour volume, proportional to the number of tumour cells, may be a more accurate surrogate for size. We describe a novel “3D pathology volumetric technique” for lumpectomies and compare it with 2D measurements. Volume renderings and total tumour volume are computed from digitized whole-mount serial sections using custom software tools. Results are presented for two lumpectomy specimens selected for tumour features which may challenge accurate measurement of tumour burden with conventional, sampling-based pathology: (1) an infiltrative pattern admixed with normal breast elements; (2) a localized invasive mass separated from the in situ component by benign tissue. Spatial relationships between key features (tumour foci, close or involved margins) are clearly visualized in volume renderings. Invasive tumour burden can be underestimated using conventional pathology, compared to the volumetric technique (infiltrative pattern: 30% underestimation; localized mass: 3% underestimation for invasive tumour, 44% for in situ component). Tumour volume approximated from 2D measurements (i.e., maximum linear extent), assuming elliptical geometry, was seen to overestimate volume compared to the 3D volumetric calculation (by a factor of 7x for the infiltrative pattern; 1.5x for the localized invasive mass). PMID:23320179

  8. Evaluation of a speaker identification system with and without fusion using three databases in the presence of noise and handset effects

    NASA Astrophysics Data System (ADS)

    S. Al-Kaltakchi, Musab T.; Woo, Wai L.; Dlay, Satnam; Chambers, Jonathon A.

    2017-12-01

    In this study, a speaker identification system is considered consisting of a feature extraction stage which utilizes both power normalized cepstral coefficients (PNCCs) and Mel frequency cepstral coefficients (MFCC). Normalization is applied by employing cepstral mean and variance normalization (CMVN) and feature warping (FW), together with acoustic modeling using a Gaussian mixture model-universal background model (GMM-UBM). The main contributions are comprehensive evaluations of the effect of both additive white Gaussian noise (AWGN) and non-stationary noise (NSN) (with and without a G.712 type handset) upon identification performance. In particular, three NSN types with varying signal to noise ratios (SNRs) were tested corresponding to street traffic, a bus interior, and a crowded talking environment. The performance evaluation also considered the effect of late fusion techniques based on score fusion, namely, mean, maximum, and linear weighted sum fusion. The databases employed were TIMIT, SITW, and NIST 2008; and 120 speakers were selected from each database to yield 3600 speech utterances. As recommendations from the study, mean fusion is found to yield overall best performance in terms of speaker identification accuracy (SIA) with noisy speech, whereas linear weighted sum fusion is overall best for original database recordings.

  9. Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures

    NASA Astrophysics Data System (ADS)

    Li, Quanbao; Wei, Fajie; Zhou, Shenghan

    2017-05-01

    The linear discriminant analysis (LDA) is one of popular means for linear feature extraction. It usually performs well when the global data structure is consistent with the local data structure. Other frequently-used approaches of feature extraction usually require linear, independence, or large sample condition. However, in real world applications, these assumptions are not always satisfied or cannot be tested. In this paper, we introduce an adaptive method, local kernel nonparametric discriminant analysis (LKNDA), which integrates conventional discriminant analysis with nonparametric statistics. LKNDA is adept in identifying both complex nonlinear structures and the ad hoc rule. Six simulation cases demonstrate that LKNDA have both parametric and nonparametric algorithm advantages and higher classification accuracy. Quartic unilateral kernel function may provide better robustness of prediction than other functions. LKNDA gives an alternative solution for discriminant cases of complex nonlinear feature extraction or unknown feature extraction. At last, the application of LKNDA in the complex feature extraction of financial market activities is proposed.

  10. Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaojia; Mao Qirong; Zhan Yongzhao

    There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions.more » The experiments show that this method can improve the recognition rate and the time of feature extraction.« less

  11. Feature Selection Method Based on Neighborhood Relationships: Applications in EEG Signal Identification and Chinese Character Recognition

    PubMed Central

    Zhao, Yu-Xiang; Chou, Chien-Hsing

    2016-01-01

    In this study, a new feature selection algorithm, the neighborhood-relationship feature selection (NRFS) algorithm, is proposed for identifying rat electroencephalogram signals and recognizing Chinese characters. In these two applications, dependent relationships exist among the feature vectors and their neighboring feature vectors. Therefore, the proposed NRFS algorithm was designed for solving this problem. By applying the NRFS algorithm, unselected feature vectors have a high priority of being added into the feature subset if the neighboring feature vectors have been selected. In addition, selected feature vectors have a high priority of being eliminated if the neighboring feature vectors are not selected. In the experiments conducted in this study, the NRFS algorithm was compared with two feature algorithms. The experimental results indicated that the NRFS algorithm can extract the crucial frequency bands for identifying rat vigilance states and identifying crucial character regions for recognizing Chinese characters. PMID:27314346

  12. Standoff Human Identification Using Body Shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Heredia-Langner, Alejandro; Amidan, Brett G.

    2015-09-01

    The ability to identify individuals is a key component of maintaining safety and security in public spaces and around critical infrastructure. Monitoring an open space is challenging because individuals must be identified and re-identified from a standoff distance nonintrusively, making methods like fingerprinting and even facial recognition impractical. We propose using body shape features as a means for identification from standoff sensing, either complementing other identifiers or as an alternative. An important challenge in monitoring open spaces is reconstructing identifying features when only a partial observation is available, because of the view-angle limitations and occlusion or subject pose changes. Tomore » address this challenge, we investigated the minimum number of features required for a high probability of correct identification, and we developed models for predicting a key body feature—height—from a limited set of observed features. We found that any set of nine randomly selected body measurements was sufficient to correctly identify an individual in a dataset of 4426 subjects. For predicting height, anthropometric measures were investigated for correlation with height. Their correlation coefficients and associated linear models were reported. These results—a sufficient number of features for identification and height prediction from a single feature—contribute to developing systems for standoff identification when views of a subject are limited.« less

  13. A new unified framework for the early detection of the progression to diabetic retinopathy from fundus images.

    PubMed

    Leontidis, Georgios

    2017-11-01

    Human retina is a diverse and important tissue, vastly studied for various retinal and other diseases. Diabetic retinopathy (DR), a leading cause of blindness, is one of them. This work proposes a novel and complete framework for the accurate and robust extraction and analysis of a series of retinal vascular geometric features. It focuses on studying the registered bifurcations in successive years of progression from diabetes (no DR) to DR, in order to identify the vascular alterations. Retinal fundus images are utilised, and multiple experimental designs are employed. The framework includes various steps, such as image registration and segmentation, extraction of features, statistical analysis and classification models. Linear mixed models are utilised for making the statistical inferences, alongside the elastic-net logistic regression, boruta algorithm, and regularised random forests for the feature selection and classification phases, in order to evaluate the discriminative potential of the investigated features and also build classification models. A number of geometric features, such as the central retinal artery and vein equivalents, are found to differ significantly across the experiments and also have good discriminative potential. The classification systems yield promising results with the area under the curve values ranging from 0.821 to 0.968, across the four different investigated combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Combining features from ERP components in single-trial EEG for discriminating four-category visual objects.

    PubMed

    Wang, Changming; Xiong, Shi; Hu, Xiaoping; Yao, Li; Zhang, Jiacai

    2012-10-01

    Categorization of images containing visual objects can be successfully recognized using single-trial electroencephalograph (EEG) measured when subjects view images. Previous studies have shown that task-related information contained in event-related potential (ERP) components could discriminate two or three categories of object images. In this study, we investigated whether four categories of objects (human faces, buildings, cats and cars) could be mutually discriminated using single-trial EEG data. Here, the EEG waveforms acquired while subjects were viewing four categories of object images were segmented into several ERP components (P1, N1, P2a and P2b), and then Fisher linear discriminant analysis (Fisher-LDA) was used to classify EEG features extracted from ERP components. Firstly, we compared the classification results using features from single ERP components, and identified that the N1 component achieved the highest classification accuracies. Secondly, we discriminated four categories of objects using combining features from multiple ERP components, and showed that combination of ERP components improved four-category classification accuracies by utilizing the complementarity of discriminative information in ERP components. These findings confirmed that four categories of object images could be discriminated with single-trial EEG and could direct us to select effective EEG features for classifying visual objects.

  15. Bearing diagnostics: A method based on differential geometry

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Zili; Lu, Chen; Wang, Zhipeng

    2016-12-01

    The structures around bearings are complex, and the working environment is variable. These conditions cause the collected vibration signals to become nonlinear, non-stationary, and chaotic characteristics that make noise reduction, feature extraction, fault diagnosis, and health assessment significantly challenging. Thus, a set of differential geometry-based methods with superiorities in nonlinear analysis is presented in this study. For noise reduction, the Local Projection method is modified by both selecting the neighborhood radius based on empirical mode decomposition and determining noise subspace constrained by neighborhood distribution information. For feature extraction, Hessian locally linear embedding is introduced to acquire manifold features from the manifold topological structures, and singular values of eigenmatrices as well as several specific frequency amplitudes in spectrograms are extracted subsequently to reduce the complexity of the manifold features. For fault diagnosis, information geometry-based support vector machine is applied to classify the fault states. For health assessment, the manifold distance is employed to represent the health information; the Gaussian mixture model is utilized to calculate the confidence values, which directly reflect the health status. Case studies on Lorenz signals and vibration datasets of bearings demonstrate the effectiveness of the proposed methods.

  16. Automatic detection of atrial fibrillation in cardiac vibration signals.

    PubMed

    Brueser, C; Diesel, J; Zink, M D H; Winter, S; Schauerte, P; Leonhardt, S

    2013-01-01

    We present a study on the feasibility of the automatic detection of atrial fibrillation (AF) from cardiac vibration signals (ballistocardiograms/BCGs) recorded by unobtrusive bedmounted sensors. The proposed system is intended as a screening and monitoring tool in home-healthcare applications and not as a replacement for ECG-based methods used in clinical environments. Based on BCG data recorded in a study with 10 AF patients, we evaluate and rank seven popular machine learning algorithms (naive Bayes, linear and quadratic discriminant analysis, support vector machines, random forests as well as bagged and boosted trees) for their performance in separating 30 s long BCG epochs into one of three classes: sinus rhythm, atrial fibrillation, and artifact. For each algorithm, feature subsets of a set of statistical time-frequency-domain and time-domain features were selected based on the mutual information between features and class labels as well as first- and second-order interactions among features. The classifiers were evaluated on a set of 856 epochs by means of 10-fold cross-validation. The best algorithm (random forests) achieved a Matthews correlation coefficient, mean sensitivity, and mean specificity of 0.921, 0.938, and 0.982, respectively.

  17. A study of T2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Jiang, Yulei; Antic, Tatjana; Giger, Maryellen L.; Eggener, Scott; Oto, Aytekin

    2013-02-01

    The purpose of this study was to study T2-weighted magnetic resonance (MR) image texture features and diffusionweighted (DW) MR image features in distinguishing prostate cancer (PCa) from normal tissue. We collected two image datasets: 23 PCa patients (25 PCa and 23 normal tissue regions of interest [ROIs]) imaged with Philips MR scanners, and 30 PCa patients (41 PCa and 26 normal tissue ROIs) imaged with GE MR scanners. A radiologist drew ROIs manually via consensus histology-MR correlation conference with a pathologist. A number of T2-weighted texture features and apparent diffusion coefficient (ADC) features were investigated, and linear discriminant analysis (LDA) was used to combine select strong image features. Area under the receiver operating characteristic (ROC) curve (AUC) was used to characterize feature effectiveness in distinguishing PCa from normal tissue ROIs. Of the features studied, ADC 10th percentile, ADC average, and T2-weighted sum average yielded AUC values (+/-standard error) of 0.95+/-0.03, 0.94+/-0.03, and 0.85+/-0.05 on the Phillips images, and 0.91+/-0.04, 0.89+/-0.04, and 0.70+/-0.06 on the GE images, respectively. The three-feature combination yielded AUC values of 0.94+/-0.03 and 0.89+/-0.04 on the Phillips and GE images, respectively. ADC 10th percentile, ADC average, and T2-weighted sum average, are effective in distinguishing PCa from normal tissue, and appear robust in images acquired from Phillips and GE MR scanners.

  18. Prediction of occult invasive disease in ductal carcinoma in situ using computer-extracted mammographic features

    NASA Astrophysics Data System (ADS)

    Shi, Bibo; Grimm, Lars J.; Mazurowski, Maciej A.; Marks, Jeffrey R.; King, Lorraine M.; Maley, Carlo C.; Hwang, E. Shelley; Lo, Joseph Y.

    2017-03-01

    Predicting the risk of occult invasive disease in ductal carcinoma in situ (DCIS) is an important task to help address the overdiagnosis and overtreatment problems associated with breast cancer. In this work, we investigated the feasibility of using computer-extracted mammographic features to predict occult invasive disease in patients with biopsy proven DCIS. We proposed a computer-vision algorithm based approach to extract mammographic features from magnification views of full field digital mammography (FFDM) for patients with DCIS. After an expert breast radiologist provided a region of interest (ROI) mask for the DCIS lesion, the proposed approach is able to segment individual microcalcifications (MCs), detect the boundary of the MC cluster (MCC), and extract 113 mammographic features from MCs and MCC within the ROI. In this study, we extracted mammographic features from 99 patients with DCIS (74 pure DCIS; 25 DCIS plus invasive disease). The predictive power of the mammographic features was demonstrated through binary classifications between pure DCIS and DCIS with invasive disease using linear discriminant analysis (LDA). Before classification, the minimum redundancy Maximum Relevance (mRMR) feature selection method was first applied to choose subsets of useful features. The generalization performance was assessed using Leave-One-Out Cross-Validation and Receiver Operating Characteristic (ROC) curve analysis. Using the computer-extracted mammographic features, the proposed model was able to distinguish DCIS with invasive disease from pure DCIS, with an average classification performance of AUC = 0.61 +/- 0.05. Overall, the proposed computer-extracted mammographic features are promising for predicting occult invasive disease in DCIS.

  19. Optimal linear and nonlinear feature extraction based on the minimization of the increased risk of misclassification. [Bayes theorem - statistical analysis/data processing

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.

    1974-01-01

    General classes of nonlinear and linear transformations were investigated for the reduction of the dimensionality of the classification (feature) space so that, for a prescribed dimension m of this space, the increase of the misclassification risk is minimized.

  20. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention

    PubMed Central

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-01

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193

  1. Analyzing linear spatial features in ecology.

    PubMed

    Buettel, Jessie C; Cole, Andrew; Dickey, John M; Brook, Barry W

    2018-06-01

    The spatial analysis of dimensionless points (e.g., tree locations on a plot map) is common in ecology, for instance using point-process statistics to detect and compare patterns. However, the treatment of one-dimensional linear features (fiber processes) is rarely attempted. Here we appropriate the methods of vector sums and dot products, used regularly in fields like astrophysics, to analyze a data set of mapped linear features (logs) measured in 12 × 1-ha forest plots. For this demonstrative case study, we ask two deceptively simple questions: do trees tend to fall downhill, and if so, does slope gradient matter? Despite noisy data and many potential confounders, we show clearly that topography (slope direction and steepness) of forest plots does matter to treefall. More generally, these results underscore the value of mathematical methods of physics to problems in the spatial analysis of linear features, and the opportunities that interdisciplinary collaboration provides. This work provides scope for a variety of future ecological analyzes of fiber processes in space. © 2018 by the Ecological Society of America.

  2. Subsurface failure in spherical bodies. A formation scenario for linear troughs on Vesta’s surface

    DOE PAGES

    Stickle, Angela M.; Schultz, P. H.; Crawford, D. A.

    2014-10-13

    Many asteroids in the Solar System exhibit unusual, linear features on their surface. The Dawn mission recently observed two sets of linear features on the surface of the asteroid 4 Vesta. Geologic observations indicate that these features are related to the two large impact basins at the south pole of Vesta, though no specific mechanism of origin has been determined. Furthermore, the orientation of the features is offset from the center of the basins. Experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target. We demonstrate that a set ofmore » shear planes develops in the subsurface of the body opposite to the point of first contact. Moreover, these subsurface failure zones then propagate to the surface under combined tensile-shear stress fields after the impact to create sets of approximately linear faults on the surface. Comparison between the orientation of damage structures in the laboratory and failure regions within Vesta can be used to constrain impact parameters (e.g., the approximate impact point and likely impact trajectory).« less

  3. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Gao, Junfeng; Liao, Wenzhi; Nuyttens, David; Lootens, Peter; Vangeyte, Jürgen; Pižurica, Aleksandra; He, Yong; Pieters, Jan G.

    2018-05-01

    The developments in the use of unmanned aerial vehicles (UAVs) and advanced imaging sensors provide new opportunities for ultra-high resolution (e.g., less than a 10 cm ground sampling distance (GSD)) crop field monitoring and mapping in precision agriculture applications. In this study, we developed a strategy for inter- and intra-row weed detection in early season maize fields from aerial visual imagery. More specifically, the Hough transform algorithm (HT) was applied to the orthomosaicked images for inter-row weed detection. A semi-automatic Object-Based Image Analysis (OBIA) procedure was developed with Random Forests (RF) combined with feature selection techniques to classify soil, weeds and maize. Furthermore, the two binary weed masks generated from HT and OBIA were fused for accurate binary weed image. The developed RF classifier was evaluated by 5-fold cross validation, and it obtained an overall accuracy of 0.945, and Kappa value of 0.912. Finally, the relationship of detected weeds and their ground truth densities was quantified by a fitted linear model with a coefficient of determination of 0.895 and a root mean square error of 0.026. Besides, the importance of input features was evaluated, and it was found that the ratio of vegetation length and width was the most significant feature for the classification model. Overall, our approach can yield a satisfactory weed map, and we expect that the obtained accurate and timely weed map from UAV imagery will be applicable to realize site-specific weed management (SSWM) in early season crop fields for reducing spraying non-selective herbicides and costs.

  4. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  5. EFS: an ensemble feature selection tool implemented as R-package and web-application.

    PubMed

    Neumann, Ursula; Genze, Nikita; Heider, Dominik

    2017-01-01

    Feature selection methods aim at identifying a subset of features that improve the prediction performance of subsequent classification models and thereby also simplify their interpretability. Preceding studies demonstrated that single feature selection methods can have specific biases, whereas an ensemble feature selection has the advantage to alleviate and compensate for these biases. The software EFS (Ensemble Feature Selection) makes use of multiple feature selection methods and combines their normalized outputs to a quantitative ensemble importance. Currently, eight different feature selection methods have been integrated in EFS, which can be used separately or combined in an ensemble. EFS identifies relevant features while compensating specific biases of single methods due to an ensemble approach. Thereby, EFS can improve the prediction accuracy and interpretability in subsequent binary classification models. EFS can be downloaded as an R-package from CRAN or used via a web application at http://EFS.heiderlab.de.

  6. Cyst-based measurements for assessing lymphangioleiomyomatosis in computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, P., E-mail: pechinlo@mednet.edu.ucla; Brown, M. S.; Kim, H.

    Purpose: To investigate the efficacy of a new family of measurements made on individual pulmonary cysts extracted from computed tomography (CT) for assessing the severity of lymphangioleiomyomatosis (LAM). Methods: CT images were analyzed using thresholding to identify a cystic region of interest from chest CT of LAM patients. Individual cysts were then extracted from the cystic region by the watershed algorithm, which separates individual cysts based on subtle edges within the cystic regions. A family of measurements were then computed, which quantify the amount, distribution, and boundary appearance of the cysts. Sequential floating feature selection was used to select amore » small subset of features for quantification of the severity of LAM. Adjusted R{sup 2} from multiple linear regression and R{sup 2} from linear regression against measurements from spirometry were used to compare the performance of our proposed measurements with currently used density based CT measurements in the literature, namely, the relative area measure and the D measure. Results: Volumetric CT data, performed at total lung capacity and residual volume, from a total of 49 subjects enrolled in the MILES trial were used in our study. Our proposed measures had adjusted R{sup 2} ranging from 0.42 to 0.59 when regressing against the spirometry measures, with p < 0.05. For previously used density based CT measurements in the literature, the best R{sup 2} was 0.46 (for only one instance), with the majority being lower than 0.3 or p > 0.05. Conclusions: The proposed family of CT-based cyst measurements have better correlation with spirometric measures than previously used density based CT measurements. They show potential as a sensitive tool for quantitatively assessing the severity of LAM.« less

  7. Nowhere to hide: Effects of linear features on predator-prey dynamics in a large mammal system.

    PubMed

    DeMars, Craig A; Boutin, Stan

    2018-01-01

    Rapid landscape alteration associated with human activity is currently challenging the evolved dynamical stability of many predator-prey systems by forcing species to behaviourally respond to novel environmental stimuli. In many forested systems, linear features (LFs) such as roads, pipelines and resource exploration lines (i.e. seismic lines) are a ubiquitous form of landscape alteration that have been implicated in altering predator-prey dynamics. One hypothesized effect is that LFs facilitate predator movement into and within prey refugia, thereby increasing predator-prey spatial overlap. We evaluated this hypothesis in a large mammal system, focusing on the interactions between boreal woodland caribou (Rangifer tarandus caribou) and their two main predators, wolves (Canis lupus) and black bears (Ursus americanus), during the calving season of caribou. In this system, LFs extend into and occur within peatlands (i.e. bogs and nutrient-poor fens), a habitat type highly used by caribou due to its refugia effects. Using resource selection analyses, we found that LFs increased predator selection of peatlands. Female caribou appeared to respond by avoiding LFs and areas with high LF density. However, in our study area, most caribou cannot completely avoid exposure to LFs and variation in female response had demographic effects. In particular, increasing proportional use of LFs by females negatively impacted survival of their neonate calves. Collectively, these results demonstrate how LFs can reduce the efficacy of prey refugia. Mitigating such effects will require limiting or restoring LFs within prey refugia, although the effectiveness of mitigation efforts will depend upon spatial scale, which in turn will be influenced by the life-history traits of predator and prey. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  8. Toward a holographic theory for general spacetimes

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio; Weinberg, Sean J.

    2017-04-01

    We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct-sum and "spacetime-equals-entanglement" structure. The former preserves a naive relationship between linear operators and observable quantities, while the latter respects a more direct connection between holographic entanglement and spacetime. We also discuss the issue of selecting a state in quantum gravity, in particular how the state of the multiverse may be selected in the landscape.

  9. Structure-based predictions of 13C-NMR chemical shifts for a series of 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indoles derivatives using GA-based MLR method

    NASA Astrophysics Data System (ADS)

    Ghavami, Raouf; Sadeghi, Faridoon; Rasouli, Zolikha; Djannati, Farhad

    2012-12-01

    Experimental values for the 13C NMR chemical shifts (ppm, TMS = 0) at 300 K ranging from 96.28 ppm (C4' of indole derivative 17) to 159.93 ppm (C4' of indole derivative 23) relative to deuteride chloroform (CDCl3, 77.0 ppm) or dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in CDCl3 or DMSO-d6 solutions have been collected from literature for thirty 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indole derivatives containing different substituted groups. An effective quantitative structure-property relationship (QSPR) models were built using hybrid method combining genetic algorithm (GA) based on stepwise selection multiple linear regression (SWS-MLR) as feature-selection tools and correlation models between each carbon atom of indole derivative and calculated descriptors. Each compound was depicted by molecular structural descriptors that encode constitutional, topological, geometrical, electrostatic, and quantum chemical features. The accuracy of all developed models were confirmed using different types of internal and external procedures and various statistical tests. Furthermore, the domain of applicability for each model which indicates the area of reliable predictions was defined.

  10. Precedence of the eye region in neural processing of faces

    PubMed Central

    Issa, Elias; DiCarlo, James

    2012-01-01

    SUMMARY Functional magnetic resonance imaging (fMRI) has revealed multiple subregions in monkey inferior temporal cortex (IT) that are selective for images of faces over other objects. The earliest of these subregions, the posterior lateral face patch (PL), has not been studied previously at the neurophysiological level. Perhaps not surprisingly, we found that PL contains a high concentration of ‘face selective’ cells when tested with standard image sets comparable to those used previously to define the region at the level of fMRI. However, we here report that several different image sets and analytical approaches converge to show that nearly all face selective PL cells are driven by the presence of a single eye in the context of a face outline. Most strikingly, images containing only an eye, even when incorrectly positioned in an outline, drove neurons nearly as well as full face images, and face images lacking only this feature led to longer latency responses. Thus, bottom-up face processing is relatively local and linearly integrates features -- consistent with parts-based models -- grounding investigation of how the presence of a face is first inferred in the IT face processing hierarchy. PMID:23175821

  11. Hyperspectral image visualization based on a human visual model

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqin; Peng, Honghong; Fairchild, Mark D.; Montag, Ethan D.

    2008-02-01

    Hyperspectral image data can provide very fine spectral resolution with more than 200 bands, yet presents challenges for visualization techniques for displaying such rich information on a tristimulus monitor. This study developed a visualization technique by taking advantage of both the consistent natural appearance of a true color image and the feature separation of a PCA image based on a biologically inspired visual attention model. The key part is to extract the informative regions in the scene. The model takes into account human contrast sensitivity functions and generates a topographic saliency map for both images. This is accomplished using a set of linear "center-surround" operations simulating visual receptive fields as the difference between fine and coarse scales. A difference map between the saliency map of the true color image and that of the PCA image is derived and used as a mask on the true color image to select a small number of interesting locations where the PCA image has more salient features than available in the visible bands. The resulting representations preserve hue for vegetation, water, road etc., while the selected attentional locations may be analyzed by more advanced algorithms.

  12. Biodynamic digital holography of chemoresistance in a pre-clinical trial of canine B-cell lymphoma.

    PubMed

    Choi, Honggu; Li, Zhe; Sun, Hao; Merrill, Dan; Turek, John; Childress, Michael; Nolte, David

    2018-05-01

    Biodynamic digital holography was used to obtain phenotypic profiles of canine non-Hodgkin B-cell lymphoma biopsies treated with standard-of-care chemotherapy. Biodynamic signatures from the living 3D tissues were extracted using fluctuation spectroscopy from intracellular Doppler light scattering in response to the molecular mechanisms of action of therapeutic drugs that modify a range of internal cellular motions. The standard-of-care to treat B-cell lymphoma in both humans and dogs is a combination CHOP therapy that consists of doxorubicin, prednisolone, cyclophosphamide and vincristine. The proportion of dogs experiencing durable cancer remission following CHOP chemotherapy was 68%, with 13 out of 19 dogs responding favorably to therapy and 6 dogs failing to have progression-free survival times greater than 100 days. Biodynamic signatures were found that correlate with inferior survival times, and biomarker selection was optimized to identify specific Doppler signatures related to chemoresistance. A machine learning classifier was constructed based on feature vector correlations and linear separability in high-dimensional feature space. Hold-out validation predicted patient response to therapy with 84% accuracy. These results point to the potential for biodynamic profiling to contribute to personalized medicine by aiding the selection of chemotherapy for cancer patients.

  13. BCI Competition IV – Data Set I: Learning Discriminative Patterns for Self-Paced EEG-Based Motor Imagery Detection

    PubMed Central

    Zhang, Haihong; Guan, Cuntai; Ang, Kai Keng; Wang, Chuanchu

    2012-01-01

    Detecting motor imagery activities versus non-control in brain signals is the basis of self-paced brain-computer interfaces (BCIs), but also poses a considerable challenge to signal processing due to the complex and non-stationary characteristics of motor imagery as well as non-control. This paper presents a self-paced BCI based on a robust learning mechanism that extracts and selects spatio-spectral features for differentiating multiple EEG classes. It also employs a non-linear regression and post-processing technique for predicting the time-series of class labels from the spatio-spectral features. The method was validated in the BCI Competition IV on Dataset I where it produced the lowest prediction error of class labels continuously. This report also presents and discusses analysis of the method using the competition data set. PMID:22347153

  14. Underwater target classification using wavelet packets and neural networks.

    PubMed

    Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J

    2000-01-01

    In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.

  15. Structures composing protein domains.

    PubMed

    Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel; Hudeček, Jiří

    2013-08-01

    This review summarizes available data concerning intradomain structures (IS) such as functionally important amino acid residues, short linear motifs, conserved or disordered regions, peptide repeats, broadly occurring secondary structures or folds, etc. IS form structural features (units or elements) necessary for interactions with proteins or non-peptidic ligands, enzyme reactions and some structural properties of proteins. These features have often been related to a single structural level (e.g. primary structure) mostly requiring certain structural context of other levels (e.g. secondary structures or supersecondary folds) as follows also from some examples reported or demonstrated here. In addition, we deal with some functionally important dynamic properties of IS (e.g. flexibility and different forms of accessibility), and more special dynamic changes of IS during enzyme reactions and allosteric regulation. Selected notes concern also some experimental methods, still more necessary tools of bioinformatic processing and clinically interesting relationships. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Comparison between a Direct-Flow SPR Immunosensor for Ampicillin and a Competitive Conventional Amperometric Device: Analytical Features and Possible Applications to Real Samples

    PubMed Central

    Tomassetti, Mauro; Merola, Giovanni; Martini, Elisabetta; Campanella, Luigi; Sanzò, Gabriella; Favero, Gabriele; Mazzei, Franco

    2017-01-01

    In this research, we developed a direct-flow surface plasmon resonance (SPR) immunosensor for ampicillin to perform direct, simple, and fast measurements of this important antibiotic. In order to better evaluate the performance, it was compared with a conventional amperometric immunosensor, working with a competitive format with the aim of finding out experimental real advantages and disadvantages of two respective methods. Results showed that certain analytical features of the new SPR immunodevice, such as the lower limit of detection (LOD) value and the width of the linear range, are poorer than those of a conventional amperometric immunosensor, which adversely affects the application to samples such as natural waters. On the other hand, the SPR immunosensor was more selective to ampicillin, and measurements were more easily and quickly attained compared to those performed with the conventional competitive immunosensor. PMID:28394296

  17. Predicting perceptual quality of images in realistic scenario using deep filter banks

    NASA Astrophysics Data System (ADS)

    Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang

    2018-03-01

    Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.

  18. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.

  19. Feature selection methods for big data bioinformatics: A survey from the search perspective.

    PubMed

    Wang, Lipo; Wang, Yaoli; Chang, Qing

    2016-12-01

    This paper surveys main principles of feature selection and their recent applications in big data bioinformatics. Instead of the commonly used categorization into filter, wrapper, and embedded approaches to feature selection, we formulate feature selection as a combinatorial optimization or search problem and categorize feature selection methods into exhaustive search, heuristic search, and hybrid methods, where heuristic search methods may further be categorized into those with or without data-distilled feature ranking measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Decoding and Reconstructing the Focus of Spatial Attention from the Topography of Alpha-band Oscillations.

    PubMed

    Samaha, Jason; Sprague, Thomas C; Postle, Bradley R

    2016-08-01

    Many aspects of perception and cognition are supported by activity in neural populations that are tuned to different stimulus features (e.g., orientation, spatial location, color). Goal-directed behavior, such as sustained attention, requires a mechanism for the selective prioritization of contextually appropriate representations. A candidate mechanism of sustained spatial attention is neural activity in the alpha band (8-13 Hz), whose power in the human EEG covaries with the focus of covert attention. Here, we applied an inverted encoding model to assess whether spatially selective neural responses could be recovered from the topography of alpha-band oscillations during spatial attention. Participants were cued to covertly attend to one of six spatial locations arranged concentrically around fixation while EEG was recorded. A linear classifier applied to EEG data during sustained attention demonstrated successful classification of the attended location from the topography of alpha power, although not from other frequency bands. We next sought to reconstruct the focus of spatial attention over time by applying inverted encoding models to the topography of alpha power and phase. Alpha power, but not phase, allowed for robust reconstructions of the specific attended location beginning around 450 msec postcue, an onset earlier than previous reports. These results demonstrate that posterior alpha-band oscillations can be used to track activity in feature-selective neural populations with high temporal precision during the deployment of covert spatial attention.

  1. Energy-selective Neutron Imaging for Three-dimensional Non-destructive Probing of Crystalline Structures

    NASA Astrophysics Data System (ADS)

    Peetermans, S.; Bopp, M.; Vontobel, P.; Lehmann, E. H.

    Common neutron imaging uses the full polychromatic neutron beam spectrum to reveal the material distribution in a non-destructive way. Performing it with a reduced energy band, i.e. energy-selective neutron imaging, allows access to local variation in sample crystallographic properties. Two sample categories can be discerned with different energy responses. Polycrystalline materials have an energy-dependent cross-section featuring Bragg edges. Energy-selective neutron imaging can be used to distinguish be- tween crystallographic phases, increase material sensitivity or penetration, improve quantification etc. An example of the latter is shown by the examination of copper discs prior to machining them into linear accelerator cavity structures. The cross-section of single crystals features distinct Bragg peaks. Based on their pattern, one can determine the orientation of the crystal, as in a Laue pattern, but with the tremendous advantage that the operation can be performed for each pixel, yielding crystal orientation maps at high spatial resolution. A wholly different method to investigate such samples is also introduced: neutron diffraction imaging. It is based on projections formed by neutrons diffracted from the crystal lattice out of the direct beam. The position of these projections on the detector gives information on the crystal orientation. The projection itself can be used to reconstruct the crystal shape. A three-dimensional mapping of local Bragg reflectivity or a grain orientation mapping can thus be obtained.

  2. Feature selection method based on multi-fractal dimension and harmony search algorithm and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Ni, Zhiwei; Ni, Liping; Tang, Na

    2016-10-01

    Feature selection is an important method of data preprocessing in data mining. In this paper, a novel feature selection method based on multi-fractal dimension and harmony search algorithm is proposed. Multi-fractal dimension is adopted as the evaluation criterion of feature subset, which can determine the number of selected features. An improved harmony search algorithm is used as the search strategy to improve the efficiency of feature selection. The performance of the proposed method is compared with that of other feature selection algorithms on UCI data-sets. Besides, the proposed method is also used to predict the daily average concentration of PM2.5 in China. Experimental results show that the proposed method can obtain competitive results in terms of both prediction accuracy and the number of selected features.

  3. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.301 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.

  4. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.

  5. Spatial variation analyses of Thematic Mapper data for the identification of linear features in agricultural landscapes

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.

    1984-01-01

    A need exists for digitized information pertaining to linear features such as roads, streams, water bodies and agricultural field boundaries as component parts of a data base. For many areas where this data may not yet exist or is in need of updating, these features may be extracted from remotely sensed digital data. This paper examines two approaches for identifying linear features, one utilizing raw data and the other classified data. Each approach uses a series of data enhancement procedures including derivation of standard deviation values, principal component analysis and filtering procedures using a high-pass window matrix. Just as certain bands better classify different land covers, so too do these bands exhibit high spectral contrast by which boundaries between land covers can be delineated. A few applications for this kind of data are briefly discussed, including its potential in a Universal Soil Loss Equation Model.

  6. Fronto-Temporal Connectivity Predicts ECT Outcome in Major Depression.

    PubMed

    Leaver, Amber M; Wade, Benjamin; Vasavada, Megha; Hellemann, Gerhard; Joshi, Shantanu H; Espinoza, Randall; Narr, Katherine L

    2018-01-01

    Electroconvulsive therapy (ECT) is arguably the most effective available treatment for severe depression. Recent studies have used MRI data to predict clinical outcome to ECT and other antidepressant therapies. One challenge facing such studies is selecting from among the many available metrics, which characterize complementary and sometimes non-overlapping aspects of brain function and connectomics. Here, we assessed the ability of aggregated, functional MRI metrics of basal brain activity and connectivity to predict antidepressant response to ECT using machine learning. A radial support vector machine was trained using arterial spin labeling (ASL) and blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) metrics from n = 46 (26 female, mean age 42) depressed patients prior to ECT (majority right-unilateral stimulation). Image preprocessing was applied using standard procedures, and metrics included cerebral blood flow in ASL, and regional homogeneity, fractional amplitude of low-frequency modulations, and graph theory metrics (strength, local efficiency, and clustering) in BOLD data. A 5-repeated 5-fold cross-validation procedure with nested feature-selection validated model performance. Linear regressions were applied post hoc to aid interpretation of discriminative features. The range of balanced accuracy in models performing statistically above chance was 58-68%. Here, prediction of non-responders was slightly higher than for responders (maximum performance 74 and 64%, respectively). Several features were consistently selected across cross-validation folds, mostly within frontal and temporal regions. Among these were connectivity strength among: a fronto-parietal network [including left dorsolateral prefrontal cortex (DLPFC)], motor and temporal networks (near ECT electrodes), and/or subgenual anterior cingulate cortex (sgACC). Our data indicate that pattern classification of multimodal fMRI metrics can successfully predict ECT outcome, particularly for individuals who will not respond to treatment. Notably, connectivity with networks highly relevant to ECT and depression were consistently selected as important predictive features. These included the left DLPFC and the sgACC, which are both targets of other neurostimulation therapies for depression, as well as connectivity between motor and right temporal cortices near electrode sites. Future studies that probe additional functional and structural MRI metrics and other patient characteristics may further improve the predictive power of these and similar models.

  7. Integrated feature extraction and selection for neuroimage classification

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shen, Dinggang

    2009-02-01

    Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.

  8. Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm.

    PubMed

    Martinez, Emmanuel; Alvarez, Mario Moises; Trevino, Victor

    2010-08-01

    Biomarker discovery is a typical application from functional genomics. Due to the large number of genes studied simultaneously in microarray data, feature selection is a key step. Swarm intelligence has emerged as a solution for the feature selection problem. However, swarm intelligence settings for feature selection fail to select small features subsets. We have proposed a swarm intelligence feature selection algorithm based on the initialization and update of only a subset of particles in the swarm. In this study, we tested our algorithm in 11 microarray datasets for brain, leukemia, lung, prostate, and others. We show that the proposed swarm intelligence algorithm successfully increase the classification accuracy and decrease the number of selected features compared to other swarm intelligence methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  10. LiDAR Point Cloud and Stereo Image Point Cloud Fusion

    DTIC Science & Technology

    2013-09-01

    LiDAR point cloud (right) highlighting linear edge features ideal for automatic registration...point cloud (right) highlighting linear edge features ideal for automatic registration. Areas where topography is being derived, unfortunately, do...with the least amount of automatic correlation errors was used. The following graphic (Figure 12) shows the coverage of the WV1 stereo triplet as

  11. Sensory processing and world modeling for an active ranging device

    NASA Technical Reports Server (NTRS)

    Hong, Tsai-Hong; Wu, Angela Y.

    1991-01-01

    In this project, we studied world modeling and sensory processing for laser range data. World Model data representation and operation were defined. Sensory processing algorithms for point processing and linear feature detection were designed and implemented. The interface between world modeling and sensory processing in the Servo and Primitive levels was investigated and implemented. In the primitive level, linear features detectors for edges were also implemented, analyzed and compared. The existing world model representations is surveyed. Also presented is the design and implementation of the Y-frame model, a hierarchical world model. The interfaces between the world model module and the sensory processing module are discussed as well as the linear feature detectors that were designed and implemented.

  12. The linear trend of headache prevalence and some headache features in school children.

    PubMed

    Ozge, Aynur; Buğdayci, Resul; Saşmaz, Tayyar; Kaleağasi, Hakan; Kurt, Oner; Karakelle, Ali; Siva, Aksel

    2007-04-01

    The objectives of this study were to determine the age and sex dependent linear trend of recurrent headache prevalence in schoolchildren in Mersin. A stratified sample composed of 5562 children; detailed characteristics were previously published. In this study the prevalence distribution of headache by age and sex showed a peak in the female population at the age of 11 (27.2%) with a plateau in the following years. The great stratified random sample results suggested that, in addition to socio-demographic features, detailed linear trend analysis showed headache features of children with headache have some specific characteristics dependent on age, gender and headache type. This study results can constitute a basis for the future epidemiological based studies.

  13. Application of ERTS-1 imagery to detecting and mapping modern erosion features and to monitoring erosional changes, in southern Arizona

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Cooley, M. E.

    1973-01-01

    The author has identified the following significant results. The chief results during the reporting period were three 1:1,000,000 scale maps made from one ERTS-1 frame (1085-17330, 16 October 1972) showing: (1) the three most important types of materials in terms of the modern erosion problem: the readily erodible soils, gravel piedmonts and basin-fill areas, and consolidated rocks; (2) alluvial fans (dissected and relatively undissected); and (3) (as an additional bonus) linear structural features. Eight key areas (small parts of the whole study area) were selected for detailed study, and mapping was started in two of them, by interpretation of ultrahigh (U-2 and RB-57) airphotos, supplemented by field studies. In these areas detailed mapping was done not only on the modern erosion phenomena (arroyos, gullies, modern flood plains and terraces, and areas of sheet erosion and deposition), but also other features pertinent to the erosion problem, such as slope-local relief, landforms rock units, soil particle size and erodibility, and classes of vegetative cover.

  14. Automatic detection and recognition of signs from natural scenes.

    PubMed

    Chen, Xilin; Yang, Jie; Zhang, Jing; Waibel, Alex

    2004-01-01

    In this paper, we present an approach to automatic detection and recognition of signs from natural scenes, and its application to a sign translation task. The proposed approach embeds multiresolution and multiscale edge detection, adaptive searching, color analysis, and affine rectification in a hierarchical framework for sign detection, with different emphases at each phase to handle the text in different sizes, orientations, color distributions and backgrounds. We use affine rectification to recover deformation of the text regions caused by an inappropriate camera view angle. The procedure can significantly improve text detection rate and optical character recognition (OCR) accuracy. Instead of using binary information for OCR, we extract features from an intensity image directly. We propose a local intensity normalization method to effectively handle lighting variations, followed by a Gabor transform to obtain local features, and finally a linear discriminant analysis (LDA) method for feature selection. We have applied the approach in developing a Chinese sign translation system, which can automatically detect and recognize Chinese signs as input from a camera, and translate the recognized text into English.

  15. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  16. In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.

    PubMed

    Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan

    2009-05-01

    Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.

  17. Local Environment Sensitivity of the Cu K-Edge XANES Features in Cu-SSZ-13: Analysis from First-Principles.

    PubMed

    Zhang, Renqin; McEwen, Jean-Sabin

    2018-05-22

    Cu K-edge X-ray absorption near-edge spectra (XANES) have been widely used to study the properties of Cu-SSZ-13. In this Letter, the sensitivity of the XANES features to the local environment for a Cu + cation with a linear configuration and a Cu 2+ cation with a square-linear configuration in Cu-SSZ-13 is reported. When a Cu + cation is bonded to H 2 O or NH 3 in a linear configuration, the XANES has a strong peak at around 8983 eV. The intensity of this peak decreases as the linear configuration is broken. As for the Cu 2+ cations in a square-planar configuration with a coordination number of 4, two peaks at around 8986 and 8993 eV are found. An intensity decrease for both peaks at around 8986 and 8993 eV is found in an NH 3 _4_Z 2 Cu model as the N-Cu-N angle changes from 180 to 100°. We correlate these features to the variation of the 4p state by PDOS analysis. In addition, the feature peaks for both the Cu + cation and Cu 2+ cation do not show a dependence on the Cu-N bond length. We further show that the feature peaks also change when the coordination number of the Cu cation is varied, while these feature peaks are independent of the zeolite topology. These findings help elucidate the experimental XANES features at an atomic and an electronic level.

  18. Linear and nonlinear variable selection in competing risks data.

    PubMed

    Ren, Xiaowei; Li, Shanshan; Shen, Changyu; Yu, Zhangsheng

    2018-06-15

    Subdistribution hazard model for competing risks data has been applied extensively in clinical researches. Variable selection methods of linear effects for competing risks data have been studied in the past decade. There is no existing work on selection of potential nonlinear effects for subdistribution hazard model. We propose a two-stage procedure to select the linear and nonlinear covariate(s) simultaneously and estimate the selected covariate effect(s). We use spectral decomposition approach to distinguish the linear and nonlinear parts of each covariate and adaptive LASSO to select each of the 2 components. Extensive numerical studies are conducted to demonstrate that the proposed procedure can achieve good selection accuracy in the first stage and small estimation biases in the second stage. The proposed method is applied to analyze a cardiovascular disease data set with competing death causes. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Multi-task feature selection in microarray data by binary integer programming.

    PubMed

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  20. Classification of brain tumours using short echo time 1H MR spectra

    NASA Astrophysics Data System (ADS)

    Devos, A.; Lukas, L.; Suykens, J. A. K.; Vanhamme, L.; Tate, A. R.; Howe, F. A.; Majós, C.; Moreno-Torres, A.; van der Graaf, M.; Arús, C.; Van Huffel, S.

    2004-09-01

    The purpose was to objectively compare the application of several techniques and the use of several input features for brain tumour classification using Magnetic Resonance Spectroscopy (MRS). Short echo time 1H MRS signals from patients with glioblastomas ( n = 87), meningiomas ( n = 57), metastases ( n = 39), and astrocytomas grade II ( n = 22) were provided by six centres in the European Union funded INTERPRET project. Linear discriminant analysis, least squares support vector machines (LS-SVM) with a linear kernel and LS-SVM with radial basis function kernel were applied and evaluated over 100 stratified random splittings of the dataset into training and test sets. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of binary classifiers, while the percentage of correct classifications was used to evaluate the multiclass classifiers. The influence of several factors on the classification performance has been tested: L2- vs. water normalization, magnitude vs. real spectra and baseline correction. The effect of input feature reduction was also investigated by using only the selected frequency regions containing the most discriminatory information, and peak integrated values. Using L2-normalized complete spectra the automated binary classifiers reached a mean test AUC of more than 0.95, except for glioblastomas vs. metastases. Similar results were obtained for all classification techniques and input features except for water normalized spectra, where classification performance was lower. This indicates that data acquisition and processing can be simplified for classification purposes, excluding the need for separate water signal acquisition, baseline correction or phasing.

  1. A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores

    PubMed Central

    Wan, Tao; Bloch, B. Nicolas; Plecha, Donna; Thompson, CheryI L.; Gilmore, Hannah; Jaffe, Carl; Harris, Lyndsay; Madabhushi, Anant

    2016-01-01

    To identify computer extracted imaging features for estrogen receptor (ER)-positive breast cancers on dynamic contrast en-hanced (DCE)-MRI that are correlated with the low and high OncotypeDX risk categories. We collected 96 ER-positivebreast lesions with low (<18, N = 55) and high (>30, N = 41) OncotypeDX recurrence scores. Each lesion was quantitatively charac-terize via 6 shape features, 3 pharmacokinetics, 4 enhancement kinetics, 4 intensity kinetics, 148 textural kinetics, 5 dynamic histogram of oriented gradient (DHoG), and 6 dynamic local binary pattern (DLBP) features. The extracted features were evaluated by a linear discriminant analysis (LDA) classifier in terms of their ability to distinguish low and high OncotypeDX risk categories. Classification performance was evaluated by area under the receiver operator characteristic curve (Az). The DHoG and DLBP achieved Az values of 0.84 and 0.80, respectively. The 6 top features identified via feature selection were subsequently combined with the LDA classifier to yield an Az of 0.87. The correlation analysis showed that DHoG (ρ = 0.85, P < 0.001) and DLBP (ρ = 0.83, P < 0.01) were significantly associated with the low and high risk classifications from the OncotypeDX assay. Our results indicated that computer extracted texture features of DCE-MRI were highly correlated with the high and low OncotypeDX risk categories for ER-positive cancers. PMID:26887643

  2. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2015-07-08

    Experiments that study feature-based attention have often examined situations in which selection is based on a single feature (e.g., the color red). However, in more complex situations relevant stimuli may not be set apart from other stimuli by a single defining property but by a specific combination of features. Here, we examined sustained attentional selection of stimuli defined by conjunctions of color and orientation. Human observers attended to one out of four concurrently presented superimposed fields of randomly moving horizontal or vertical bars of red or blue color to detect brief intervals of coherent motion. Selective stimulus processing in early visual cortex was assessed by recordings of steady-state visual evoked potentials (SSVEPs) elicited by each of the flickering fields of stimuli. We directly contrasted attentional selection of single features and feature conjunctions and found that SSVEP amplitudes on conditions in which selection was based on a single feature only (color or orientation) exactly predicted the magnitude of attentional enhancement of SSVEPs when attending to a conjunction of both features. Furthermore, enhanced SSVEP amplitudes elicited by attended stimuli were accompanied by equivalent reductions of SSVEP amplitudes elicited by unattended stimuli in all cases. We conclude that attentional selection of a feature-conjunction stimulus is accomplished by the parallel and independent facilitation of its constituent feature dimensions in early visual cortex. The ability to perceive the world is limited by the brain's processing capacity. Attention affords adaptive behavior by selectively prioritizing processing of relevant stimuli based on their features (location, color, orientation, etc.). We found that attentional mechanisms for selection of different features belonging to the same object operate independently and in parallel: concurrent attentional selection of two stimulus features is simply the sum of attending to each of those features separately. This result is key to understanding attentional selection in complex (natural) scenes, where relevant stimuli are likely to be defined by a combination of stimulus features. Copyright © 2015 the authors 0270-6474/15/359912-08$15.00/0.

  3. A simple method for finding explicit analytic transition densities of diffusion processes with general diploid selection.

    PubMed

    Song, Yun S; Steinrücken, Matthias

    2012-03-01

    The transition density function of the Wright-Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright-Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation-selection balance.

  4. A Simple Method for Finding Explicit Analytic Transition Densities of Diffusion Processes with General Diploid Selection

    PubMed Central

    Song, Yun S.; Steinrücken, Matthias

    2012-01-01

    The transition density function of the Wright–Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright–Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation–selection balance. PMID:22209899

  5. A computational study on convolutional feature combination strategies for grade classification in colon cancer using fluorescence microscopy data

    NASA Astrophysics Data System (ADS)

    Chowdhury, Aritra; Sevinsky, Christopher J.; Santamaria-Pang, Alberto; Yener, Bülent

    2017-03-01

    The cancer diagnostic workflow is typically performed by highly specialized and trained pathologists, for which analysis is expensive both in terms of time and money. This work focuses on grade classification in colon cancer. The analysis is performed over 3 protein markers; namely E-cadherin, beta actin and colagenIV. In addition, we also use a virtual Hematoxylin and Eosin (HE) stain. This study involves a comparison of various ways in which we can manipulate the information over the 4 different images of the tissue samples and come up with a coherent and unified response based on the data at our disposal. Pre- trained convolutional neural networks (CNNs) is the method of choice for feature extraction. The AlexNet architecture trained on the ImageNet database is used for this purpose. We extract a 4096 dimensional feature vector corresponding to the 6th layer in the network. Linear SVM is used to classify the data. The information from the 4 different images pertaining to a particular tissue sample; are combined using the following techniques: soft voting, hard voting, multiplication, addition, linear combination, concatenation and multi-channel feature extraction. We observe that we obtain better results in general than when we use a linear combination of the feature representations. We use 5-fold cross validation to perform the experiments. The best results are obtained when the various features are linearly combined together resulting in a mean accuracy of 91.27%.

  6. AVC: Selecting discriminative features on basis of AUC by maximizing variable complementarity.

    PubMed

    Sun, Lei; Wang, Jun; Wei, Jinmao

    2017-03-14

    The Receiver Operator Characteristic (ROC) curve is well-known in evaluating classification performance in biomedical field. Owing to its superiority in dealing with imbalanced and cost-sensitive data, the ROC curve has been exploited as a popular metric to evaluate and find out disease-related genes (features). The existing ROC-based feature selection approaches are simple and effective in evaluating individual features. However, these approaches may fail to find real target feature subset due to their lack of effective means to reduce the redundancy between features, which is essential in machine learning. In this paper, we propose to assess feature complementarity by a trick of measuring the distances between the misclassified instances and their nearest misses on the dimensions of pairwise features. If a misclassified instance and its nearest miss on one feature dimension are far apart on another feature dimension, the two features are regarded as complementary to each other. Subsequently, we propose a novel filter feature selection approach on the basis of the ROC analysis. The new approach employs an efficient heuristic search strategy to select optimal features with highest complementarities. The experimental results on a broad range of microarray data sets validate that the classifiers built on the feature subset selected by our approach can get the minimal balanced error rate with a small amount of significant features. Compared with other ROC-based feature selection approaches, our new approach can select fewer features and effectively improve the classification performance.

  7. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.

    PubMed

    Ni, Qianwu; Chen, Lei

    2017-01-01

    Correct prediction of protein structural class is beneficial to investigation on protein functions, regulations and interactions. In recent years, several computational methods have been proposed in this regard. However, based on various features, it is still a great challenge to select proper classification algorithm and extract essential features to participate in classification. In this study, a feature and algorithm selection method was presented for improving the accuracy of protein structural class prediction. The amino acid compositions and physiochemical features were adopted to represent features and thirty-eight machine learning algorithms collected in Weka were employed. All features were first analyzed by a feature selection method, minimum redundancy maximum relevance (mRMR), producing a feature list. Then, several feature sets were constructed by adding features in the list one by one. For each feature set, thirtyeight algorithms were executed on a dataset, in which proteins were represented by features in the set. The predicted classes yielded by these algorithms and true class of each protein were collected to construct a dataset, which were analyzed by mRMR method, yielding an algorithm list. From the algorithm list, the algorithm was taken one by one to build an ensemble prediction model. Finally, we selected the ensemble prediction model with the best performance as the optimal ensemble prediction model. Experimental results indicate that the constructed model is much superior to models using single algorithm and other models that only adopt feature selection procedure or algorithm selection procedure. The feature selection procedure or algorithm selection procedure are really helpful for building an ensemble prediction model that can yield a better performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Toward a low-cost, low-power, low-complexity DAC-based multilevel (M-ary QAM) coherent transmitter using compact linear optical field modulator

    NASA Astrophysics Data System (ADS)

    Dingel, Benjamin

    2017-01-01

    In this invited paper, we summarize the current developments in linear optical field modulators (LOFMs) for coherent multilevel optical transmitters. Our focus is the presentation of a new, novel LOFM design that provides beneficial and necessary features such as lowest hardware component counts, lowered insertion loss, smaller RF power consumption, smaller footprint, simple structure, and lowered cost. We refer to this modulator as called Double-Pass LOFM (DP-LOFM) that becomes the building block for high-performance, linear Dual-Polarization, In-Phase- Quadrature-Phase (DP-IQ) modulator. We analyze its performance in term of slope linearity, and present one of its unique feature -- a built-in compensation functionality that no other linear modulators possessed till now.

  9. Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features.

    PubMed

    Ion-Mărgineanu, Adrian; Kocevar, Gabriel; Stamile, Claudio; Sima, Diana M; Durand-Dubief, Françoise; Van Huffel, Sabine; Sappey-Marinier, Dominique

    2017-01-01

    Purpose: The purpose of this study is classifying multiple sclerosis (MS) patients in the four clinical forms as defined by the McDonald criteria using machine learning algorithms trained on clinical data combined with lesion loads and magnetic resonance metabolic features. Materials and Methods: Eighty-seven MS patients [12 Clinically Isolated Syndrome (CIS), 30 Relapse Remitting (RR), 17 Primary Progressive (PP), and 28 Secondary Progressive (SP)] and 18 healthy controls were included in this study. Longitudinal data available for each MS patient included clinical (e.g., age, disease duration, Expanded Disability Status Scale), conventional magnetic resonance imaging and spectroscopic imaging. We extract N -acetyl-aspartate (NAA), Choline (Cho), and Creatine (Cre) concentrations, and we compute three features for each spectroscopic grid by averaging metabolite ratios (NAA/Cho, NAA/Cre, Cho/Cre) over good quality voxels. We built linear mixed-effects models to test for statistically significant differences between MS forms. We test nine binary classification tasks on clinical data, lesion loads, and metabolic features, using a leave-one-patient-out cross-validation method based on 100 random patient-based bootstrap selections. We compute F1-scores and BAR values after tuning Linear Discriminant Analysis (LDA), Support Vector Machines with gaussian kernel (SVM-rbf), and Random Forests. Results: Statistically significant differences were found between the disease starting points of each MS form using four different response variables: Lesion Load, NAA/Cre, NAA/Cho, and Cho/Cre ratios. Training SVM-rbf on clinical and lesion loads yields F1-scores of 71-72% for CIS vs. RR and CIS vs. RR+SP, respectively. For RR vs. PP we obtained good classification results (maximum F1-score of 85%) after training LDA on clinical and metabolic features, while for RR vs. SP we obtained slightly higher classification results (maximum F1-score of 87%) after training LDA and SVM-rbf on clinical, lesion loads and metabolic features. Conclusions: Our results suggest that metabolic features are better at differentiating between relapsing-remitting and primary progressive forms, while lesion loads are better at differentiating between relapsing-remitting and secondary progressive forms. Therefore, combining clinical data with magnetic resonance lesion loads and metabolic features can improve the discrimination between relapsing-remitting and progressive forms.

  10. Non-negative matrix factorization in texture feature for classification of dementia with MRI data

    NASA Astrophysics Data System (ADS)

    Sarwinda, D.; Bustamam, A.; Ardaneswari, G.

    2017-07-01

    This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).

  11. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression

    PubMed Central

    Jiang, Feng; Han, Ji-zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods. PMID:29623088

  12. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression.

    PubMed

    Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  13. Linear feature projection-based real-time decoding of limb state from dorsal root ganglion recordings.

    PubMed

    Han, Sungmin; Chu, Jun-Uk; Park, Jong Woong; Youn, Inchan

    2018-05-15

    Proprioceptive afferent activities recorded by a multichannel microelectrode have been used to decode limb movements to provide sensory feedback signals for closed-loop control in a functional electrical stimulation (FES) system. However, analyzing the high dimensionality of neural activity is one of the major challenges in real-time applications. This paper proposes a linear feature projection method for the real-time decoding of ankle and knee joint angles. Single-unit activity was extracted as a feature vector from proprioceptive afferent signals that were recorded from the L7 dorsal root ganglion during passive movements of ankle and knee joints. The dimensionality of this feature vector was then reduced using a linear feature projection composed of projection pursuit and negentropy maximization (PP/NEM). Finally, a time-delayed Kalman filter was used to estimate the ankle and knee joint angles. The PP/NEM approach had a better decoding performance than did other feature projection methods, and all processes were completed within the real-time constraints. These results suggested that the proposed method could be a useful decoding method to provide real-time feedback signals in closed-loop FES systems.

  14. Decoding of finger trajectory from ECoG using deep learning.

    PubMed

    Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek

    2018-06-01

    Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.

  15. Decoding of finger trajectory from ECoG using deep learning

    NASA Astrophysics Data System (ADS)

    Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek

    2018-06-01

    Objective. Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. Approach. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. Main results. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. Significance. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.

  16. Comparison of Genetic Algorithm, Particle Swarm Optimization and Biogeography-based Optimization for Feature Selection to Classify Clusters of Microcalcifications

    NASA Astrophysics Data System (ADS)

    Khehra, Baljit Singh; Pharwaha, Amar Partap Singh

    2017-04-01

    Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.

  17. Feature Selection for Classification of Polar Regions Using a Fuzzy Expert System

    NASA Technical Reports Server (NTRS)

    Penaloza, Mauel A.; Welch, Ronald M.

    1996-01-01

    Labeling, feature selection, and the choice of classifier are critical elements for classification of scenes and for image understanding. This study examines several methods for feature selection in polar regions, including the list, of a fuzzy logic-based expert system for further refinement of a set of selected features. Six Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) arctic scenes are classified into nine classes: water, snow / ice, ice cloud, land, thin stratus, stratus over water, cumulus over water, textured snow over water, and snow-covered mountains. Sixty-seven spectral and textural features are computed and analyzed by the feature selection algorithms. The divergence, histogram analysis, and discriminant analysis approaches are intercompared for their effectiveness in feature selection. The fuzzy expert system method is used not only to determine the effectiveness of each approach in classifying polar scenes, but also to further reduce the features into a more optimal set. For each selection method,features are ranked from best to worst, and the best half of the features are selected. Then, rules using these selected features are defined. The results of running the fuzzy expert system with these rules show that the divergence method produces the best set features, not only does it produce the highest classification accuracy, but also it has the lowest computation requirements. A reduction of the set of features produced by the divergence method using the fuzzy expert system results in an overall classification accuracy of over 95 %. However, this increase of accuracy has a high computation cost.

  18. Robust Segmentation of Planar and Linear Features of Terrestrial Laser Scanner Point Clouds Acquired from Construction Sites.

    PubMed

    Maalek, Reza; Lichti, Derek D; Ruwanpura, Janaka Y

    2018-03-08

    Automated segmentation of planar and linear features of point clouds acquired from construction sites is essential for the automatic extraction of building construction elements such as columns, beams and slabs. However, many planar and linear segmentation methods use scene-dependent similarity thresholds that may not provide generalizable solutions for all environments. In addition, outliers exist in construction site point clouds due to data artefacts caused by moving objects, occlusions and dust. To address these concerns, a novel method for robust classification and segmentation of planar and linear features is proposed. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a new robust clustering method, the robust complete linkage method. A robust method is also proposed to extract the points of flat-slab floors and/or ceilings independent of the aforementioned stages to improve computational efficiency. The applicability of the proposed method is evaluated in eight datasets acquired from a complex laboratory environment and two construction sites at the University of Calgary. The precision, recall, and accuracy of the segmentation at both construction sites were 96.8%, 97.7% and 95%, respectively. These results demonstrate the suitability of the proposed method for robust segmentation of planar and linear features of contaminated datasets, such as those collected from construction sites.

  19. Robust Segmentation of Planar and Linear Features of Terrestrial Laser Scanner Point Clouds Acquired from Construction Sites

    PubMed Central

    Maalek, Reza; Lichti, Derek D; Ruwanpura, Janaka Y

    2018-01-01

    Automated segmentation of planar and linear features of point clouds acquired from construction sites is essential for the automatic extraction of building construction elements such as columns, beams and slabs. However, many planar and linear segmentation methods use scene-dependent similarity thresholds that may not provide generalizable solutions for all environments. In addition, outliers exist in construction site point clouds due to data artefacts caused by moving objects, occlusions and dust. To address these concerns, a novel method for robust classification and segmentation of planar and linear features is proposed. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a new robust clustering method, the robust complete linkage method. A robust method is also proposed to extract the points of flat-slab floors and/or ceilings independent of the aforementioned stages to improve computational efficiency. The applicability of the proposed method is evaluated in eight datasets acquired from a complex laboratory environment and two construction sites at the University of Calgary. The precision, recall, and accuracy of the segmentation at both construction sites were 96.8%, 97.7% and 95%, respectively. These results demonstrate the suitability of the proposed method for robust segmentation of planar and linear features of contaminated datasets, such as those collected from construction sites. PMID:29518062

  20. Developing approaches for linear mixed modeling in landscape genetics through landscape-directed dispersal simulations

    USGS Publications Warehouse

    Row, Jeffrey R.; Knick, Steven T.; Oyler-McCance, Sara J.; Lougheed, Stephen C.; Fedy, Bradley C.

    2017-01-01

    Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.

  1. Predicting Retention Times of Naturally Occurring Phenolic Compounds in Reversed-Phase Liquid Chromatography: A Quantitative Structure-Retention Relationship (QSRR) Approach

    PubMed Central

    Akbar, Jamshed; Iqbal, Shahid; Batool, Fozia; Karim, Abdul; Chan, Kim Wei

    2012-01-01

    Quantitative structure-retention relationships (QSRRs) have successfully been developed for naturally occurring phenolic compounds in a reversed-phase liquid chromatographic (RPLC) system. A total of 1519 descriptors were calculated from the optimized structures of the molecules using MOPAC2009 and DRAGON softwares. The data set of 39 molecules was divided into training and external validation sets. For feature selection and mapping we used step-wise multiple linear regression (SMLR), unsupervised forward selection followed by step-wise multiple linear regression (UFS-SMLR) and artificial neural networks (ANN). Stable and robust models with significant predictive abilities in terms of validation statistics were obtained with negation of any chance correlation. ANN models were found better than remaining two approaches. HNar, IDM, Mp, GATS2v, DISP and 3D-MoRSE (signals 22, 28 and 32) descriptors based on van der Waals volume, electronegativity, mass and polarizability, at atomic level, were found to have significant effects on the retention times. The possible implications of these descriptors in RPLC have been discussed. All the models are proven to be quite able to predict the retention times of phenolic compounds and have shown remarkable validation, robustness, stability and predictive performance. PMID:23203132

  2. Unbiased feature selection in learning random forests for high-dimensional data.

    PubMed

    Nguyen, Thanh-Tung; Huang, Joshua Zhexue; Nguyen, Thuy Thi

    2015-01-01

    Random forests (RFs) have been widely used as a powerful classification method. However, with the randomization in both bagging samples and feature selection, the trees in the forest tend to select uninformative features for node splitting. This makes RFs have poor accuracy when working with high-dimensional data. Besides that, RFs have bias in the feature selection process where multivalued features are favored. Aiming at debiasing feature selection in RFs, we propose a new RF algorithm, called xRF, to select good features in learning RFs for high-dimensional data. We first remove the uninformative features using p-value assessment, and the subset of unbiased features is then selected based on some statistical measures. This feature subset is then partitioned into two subsets. A feature weighting sampling technique is used to sample features from these two subsets for building trees. This approach enables one to generate more accurate trees, while allowing one to reduce dimensionality and the amount of data needed for learning RFs. An extensive set of experiments has been conducted on 47 high-dimensional real-world datasets including image datasets. The experimental results have shown that RFs with the proposed approach outperformed the existing random forests in increasing the accuracy and the AUC measures.

  3. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection.

    PubMed

    Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C

    2011-09-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.

  4. Evaluation of aircraft microwave data for locating zones for well stimulation and enhanced gas recovery. [Arkansas Arkoma Basin

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W.; Elachi, C.; Babcock, R.; Konig, R.; Gattis, J.; Borengasser, M.; Tolman, D.

    1980-01-01

    Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered.

  5. Vibronic bands in the HOMO-LUMO excitation of linear polyyne molecules

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Tomonari; Wada, Yoriko; Iwahara, Naoya; Sato, Tohru

    2013-04-01

    Hydrogen-capped linear carbon chain molecules, namely polyynes H(C≡C)nH (n>=2), give rise to three excited states in the HOMO-LUMO excitation. Electric dipole transition from the ground state is fully allowed to one of the three excited states, while forbidden for the other two low-lying excited states. In addition to the strong absorption bands in the UV for the allowed transition, the molecules exhibit weak absorption and emission bands in the near UV and visible wavelength regions. The weak features are the vibronic bands in the forbidden transition. In this article, symmetry considerations are presented for the optical transitions in the centrosymmetric linear polyyne molecule. The argument includes Herzberg-Teller expansion for the state mixing induced by nuclear displacements along the normal coordinate of the molecule, intensity borrowing from fully allowed transitions, and inducing vibrational modes excited in the vibronic transition. The vibronic coupling considered here includes off-diagonal matrix elements for second derivatives along the normal coordinate. The vibronic selection rule for the forbidden transition is derived and associated with the transition moment with respect to the molecular axis. Experimental approaches are proposed for the assignment of the observed vibronic bands.

  6. Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin

    2018-02-01

    This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.

  7. A Systematic Investigation of Computation Models for Predicting Adverse Drug Reactions (ADRs)

    PubMed Central

    Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong

    2014-01-01

    Background Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. Principal Findings In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Conclusion Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms. PMID:25180585

  8. Automatic staging of bladder cancer on CT urography

    NASA Astrophysics Data System (ADS)

    Garapati, Sankeerth S.; Hadjiiski, Lubomir M.; Cha, Kenny H.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon; Alva, Ajjai; Paramagul, Chintana; Wei, Jun; Zhou, Chuan

    2016-03-01

    Correct staging of bladder cancer is crucial for the decision of neoadjuvant chemotherapy treatment and minimizing the risk of under- or over-treatment. Subjectivity and variability of clinicians in utilizing available diagnostic information may lead to inaccuracy in staging bladder cancer. An objective decision support system that merges the information in a predictive model based on statistical outcomes of previous cases and machine learning may assist clinicians in making more accurate and consistent staging assessments. In this study, we developed a preliminary method to stage bladder cancer. With IRB approval, 42 bladder cancer cases with CTU scans were collected from patient files. The cases were classified into two classes based on pathological stage T2, which is the decision threshold for neoadjuvant chemotherapy treatment (i.e. for stage >=T2) clinically. There were 21 cancers below stage T2 and 21 cancers at stage T2 or above. All 42 lesions were automatically segmented using our auto-initialized cascaded level sets (AI-CALS) method. Morphological features were extracted, which were selected and merged by linear discriminant analysis (LDA) classifier. A leave-one-case-out resampling scheme was used to train and test the classifier using the 42 lesions. The classification accuracy was quantified using the area under the ROC curve (Az). The average training Az was 0.97 and the test Az was 0.85. The classifier consistently selected the lesion volume, a gray level feature and a contrast feature. This predictive model shows promise for assisting in assessing the bladder cancer stage.

  9. SU-C-207B-06: Comparison of Registration Methods for Modeling Pathologic Response of Esophageal Cancer to Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riyahi, S; Choi, W; Bhooshan, N

    2016-06-15

    Purpose: To compare linear and deformable registration methods for evaluation of tumor response to Chemoradiation therapy (CRT) in patients with esophageal cancer. Methods: Linear and multi-resolution BSpline deformable registration were performed on Pre-Post-CRT CT/PET images of 20 patients with esophageal cancer. For both registration methods, we registered CT using Mean Square Error (MSE) metric, however to register PET we used transformation obtained using Mutual Information (MI) from the same CT due to being multi-modality. Similarity of Warped-CT/PET was quantitatively evaluated using Normalized Mutual Information and plausibility of DF was assessed using inverse consistency Error. To evaluate tumor response four groupsmore » of tumor features were examined: (1) Conventional PET/CT e.g. SUV, diameter (2) Clinical parameters e.g. TNM stage, histology (3)spatial-temporal PET features that describe intensity, texture and geometry of tumor (4)all features combined. Dominant features were identified using 10-fold cross-validation and Support Vector Machine (SVM) was deployed for tumor response prediction while the accuracy was evaluated by ROC Area Under Curve (AUC). Results: Average and standard deviation of Normalized mutual information for deformable registration using MSE was 0.2±0.054 and for linear registration was 0.1±0.026, showing higher NMI for deformable registration. Likewise for MI metric, deformable registration had 0.13±0.035 comparing to linear counterpart with 0.12±0.037. Inverse consistency error for deformable registration for MSE metric was 4.65±2.49 and for linear was 1.32±2.3 showing smaller value for linear registration. The same conclusion was obtained for MI in terms of inverse consistency error. AUC for both linear and deformable registration was 1 showing no absolute difference in terms of response evaluation. Conclusion: Deformable registration showed better NMI comparing to linear registration, however inverse consistency of transformation was lower in linear registration. We do not expect to see significant difference when warping PET images using deformable or linear registration. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  10. Applying a new unequally weighted feature fusion method to improve CAD performance of classifying breast lesions

    NASA Astrophysics Data System (ADS)

    Zargari Khuzani, Abolfazl; Danala, Gopichandh; Heidari, Morteza; Du, Yue; Mashhadi, Najmeh; Qiu, Yuchen; Zheng, Bin

    2018-02-01

    Higher recall rates are a major challenge in mammography screening. Thus, developing computer-aided diagnosis (CAD) scheme to classify between malignant and benign breast lesions can play an important role to improve efficacy of mammography screening. Objective of this study is to develop and test a unique image feature fusion framework to improve performance in classifying suspicious mass-like breast lesions depicting on mammograms. The image dataset consists of 302 suspicious masses detected on both craniocaudal and mediolateral-oblique view images. Amongst them, 151 were malignant and 151 were benign. The study consists of following 3 image processing and feature analysis steps. First, an adaptive region growing segmentation algorithm was used to automatically segment mass regions. Second, a set of 70 image features related to spatial and frequency characteristics of mass regions were initially computed. Third, a generalized linear regression model (GLM) based machine learning classifier combined with a bat optimization algorithm was used to optimally fuse the selected image features based on predefined assessment performance index. An area under ROC curve (AUC) with was used as a performance assessment index. Applying CAD scheme to the testing dataset, AUC was 0.75+/-0.04, which was significantly higher than using a single best feature (AUC=0.69+/-0.05) or the classifier with equally weighted features (AUC=0.73+/-0.05). This study demonstrated that comparing to the conventional equal-weighted approach, using an unequal-weighted feature fusion approach had potential to significantly improve accuracy in classifying between malignant and benign breast masses.

  11. Structures of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation.

    PubMed

    Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh

    2011-05-01

    This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively.

  12. On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off.

    PubMed

    Xiang, S; Xiao, S; Fuji, K; Shibuya, K; Endo, T; Yumoto, N; Morimoto, T; Aoki, N; Bird, J P; Ochiai, Y

    2014-03-26

    We investigate the linear and non-linear conductance of quantum point contacts (QPCs), in the region near pinch-off where Kondo physics has previously been connected to the appearance of the 0.7 feature. In studies of seven different QPCs, fabricated in the same high-mobility GaAs/AlGaAs heterojunction, the linear conductance is widely found to show the presence of the 0.7 feature. The differential conductance, on the other hand, does not generally exhibit the zero-bias anomaly (ZBA) that has been proposed to indicate the Kondo effect. Indeed, even in the small subset of QPCs found to exhibit such an anomaly, the linear conductance does not always follow the universal temperature-dependent scaling behavior expected for the Kondo effect. Taken collectively, our observations demonstrate that, unlike the 0.7 feature, the ZBA is not a generic feature of low-temperature QPC conduction. We furthermore conclude that the mere observation of the ZBA alone is insufficient evidence for concluding that Kondo physics is active. While we do not rule out the possibility that the Kondo effect may occur in QPCs, our results appear to indicate that its observation requires a very strict set of conditions to be satisfied. This should be contrasted with the case of the 0.7 feature, which has been apparent since the earliest experimental investigations of QPC transport.

  13. Multimodal Deep Autoencoder for Human Pose Recovery.

    PubMed

    Hong, Chaoqun; Yu, Jun; Wan, Jian; Tao, Dacheng; Wang, Meng

    2015-12-01

    Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method using non-linear mapping with multi-layered deep neural network. It is based on feature extraction with multimodal fusion and back-propagation deep learning. In multimodal fusion, we construct hypergraph Laplacian with low-rank representation. In this way, we obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix. In back-propagation deep learning, we learn a non-linear mapping from 2D images to 3D poses with parameter fine-tuning. The experimental results on three data sets show that the recovery error has been reduced by 20%-25%, which demonstrates the effectiveness of the proposed method.

  14. Flexible cue combination in the guidance of attention in visual search

    PubMed Central

    Brand, John; Oriet, Chris; Johnson, Aaron P.; Wolfe, Jeremy M.

    2014-01-01

    Hodsoll and Humphreys (2001) have assessed the relative contributions of stimulus-driven and user-driven knowledge on linearly- and nonlinearly separable search. However, the target feature used to determine linear separability in their task (i.e., target size) was required to locate the target. In the present work, we investigated the contributions of stimulus-driven and user-driven knowledge when a linearly- or nonlinearly-separable feature is available but not required for target identification. We asked observers to complete a series of standard color X orientation conjunction searches in which target size was either linearly- or nonlinearly separable from the size of the distractors. When guidance by color X orientation and by size information are both available, observers rely on whichever information results in the best search efficiency. This is the case irrespective of whether we provide target foreknowledge by blocking stimulus conditions, suggesting that feature information is used in both a stimulus-driven and user-driven fashion. PMID:25463553

  15. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    PubMed

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  16. Anionic Lanthanide MOFs as a Platform for Iron-Selective Sensing, Systematic Color Tuning, and Efficient Nanoparticle Catalysis.

    PubMed

    Wu, Ya-Pan; Xu, Guo-Wang; Dong, Wen-Wen; Zhao, Jun; Li, Dong-Sheng; Zhang, Jian; Bu, Xianhui

    2017-02-06

    New porous anionic Ln-MOFs, namely, [Me 2 NH 2 ][Ln(CPA) 2 (H 2 O) 2 ] (Ln = Eu, Gd), have been prepared through the self-assembly of 5-(4-carboxy phenyl)picolinic acid (H 2 CPA) and lanthanide ions. They feature open anionic frameworks with 1-D hydrophilic channels and exchangeable dimethylamine ions. The Eu phase could detect Fe 3+ ions with high selectivity and sensitivity in either aqueous solution or biological condition. The ratios of lanthanide ions on this structure platform could be rationally tuned to not only achieve dichromatic emission colors with linear correlation but also attain three primary colors (RGB) and even white light with favorable correlated color temperature. Furthermore, the Ag(I)-exchanged phases can be readily reduced to afford Ag nanoparticles. The as-prepared Ag@Ln-MOFs composite shows highly efficient catalytic performance for the reduction of 4-nitrophenol.

  17. Genetic Programming and Frequent Itemset Mining to Identify Feature Selection Patterns of iEEG and fMRI Epilepsy Data

    PubMed Central

    Smart, Otis; Burrell, Lauren

    2014-01-01

    Pattern classification for intracranial electroencephalogram (iEEG) and functional magnetic resonance imaging (fMRI) signals has furthered epilepsy research toward understanding the origin of epileptic seizures and localizing dysfunctional brain tissue for treatment. Prior research has demonstrated that implicitly selecting features with a genetic programming (GP) algorithm more effectively determined the proper features to discern biomarker and non-biomarker interictal iEEG and fMRI activity than conventional feature selection approaches. However for each the iEEG and fMRI modalities, it is still uncertain whether the stochastic properties of indirect feature selection with a GP yield (a) consistent results within a patient data set and (b) features that are specific or universal across multiple patient data sets. We examined the reproducibility of implicitly selecting features to classify interictal activity using a GP algorithm by performing several selection trials and subsequent frequent itemset mining (FIM) for separate iEEG and fMRI epilepsy patient data. We observed within-subject consistency and across-subject variability with some small similarity for selected features, indicating a clear need for patient-specific features and possible need for patient-specific feature selection or/and classification. For the fMRI, using nearest-neighbor classification and 30 GP generations, we obtained over 60% median sensitivity and over 60% median selectivity. For the iEEG, using nearest-neighbor classification and 30 GP generations, we obtained over 65% median sensitivity and over 65% median selectivity except one patient. PMID:25580059

  18. A Near-Infrared and Thermal Imager for Mapping Titan's Surface Features

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Hewagma, T.; Jennings, D. E.; Nixon, C.

    2012-01-01

    Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.

  19. Method of generating features optimal to a dataset and classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruillard, Paul J.; Gosink, Luke J.; Jarman, Kenneth D.

    A method of generating features optimal to a particular dataset and classifier is disclosed. A dataset of messages is inputted and a classifier is selected. An algebra of features is encoded. Computable features that are capable of describing the dataset from the algebra of features are selected. Irredundant features that are optimal for the classifier and the dataset are selected.

  20. Temporal Correlation Mechanisms and Their Role in Feature Selection: A Single-Unit Study in Primate Somatosensory Cortex

    PubMed Central

    Gomez-Ramirez, Manuel; Trzcinski, Natalie K.; Mihalas, Stefan; Niebur, Ernst

    2014-01-01

    Studies in vision show that attention enhances the firing rates of cells when it is directed towards their preferred stimulus feature. However, it is unknown whether other sensory systems employ this mechanism to mediate feature selection within their modalities. Moreover, whether feature-based attention modulates the correlated activity of a population is unclear. Indeed, temporal correlation codes such as spike-synchrony and spike-count correlations (rsc) are believed to play a role in stimulus selection by increasing the signal and reducing the noise in a population, respectively. Here, we investigate (1) whether feature-based attention biases the correlated activity between neurons when attention is directed towards their common preferred feature, (2) the interplay between spike-synchrony and rsc during feature selection, and (3) whether feature attention effects are common across the visual and tactile systems. Single-unit recordings were made in secondary somatosensory cortex of three non-human primates while animals engaged in tactile feature (orientation and frequency) and visual discrimination tasks. We found that both firing rate and spike-synchrony between neurons with similar feature selectivity were enhanced when attention was directed towards their preferred feature. However, attention effects on spike-synchrony were twice as large as those on firing rate, and had a tighter relationship with behavioral performance. Further, we observed increased rsc when attention was directed towards the visual modality (i.e., away from touch). These data suggest that similar feature selection mechanisms are employed in vision and touch, and that temporal correlation codes such as spike-synchrony play a role in mediating feature selection. We posit that feature-based selection operates by implementing multiple mechanisms that reduce the overall noise levels in the neural population and synchronize activity across subpopulations that encode the relevant features of sensory stimuli. PMID:25423284

  1. The evolution of phenotypic correlations and ‘developmental memory’

    PubMed Central

    Watson, Richard A.; Wagner, Günter P.; Pavlicev, Mihaela; Weinreich, Daniel M.; Mills, Rob

    2014-01-01

    Development introduces structured correlations among traits that may constrain or bias the distribution of phenotypes produced. Moreover, when suitable heritable variation exists, natural selection may alter such constraints and correlations, affecting the phenotypic variation available to subsequent selection. However, exactly how the distribution of phenotypes produced by complex developmental systems can be shaped by past selective environments is poorly understood. Here we investigate the evolution of a network of recurrent non-linear ontogenetic interactions, such as a gene regulation network, in various selective scenarios. We find that evolved networks of this type can exhibit several phenomena that are familiar in cognitive learning systems. These include formation of a distributed associative memory that can ‘store’ and ‘recall’ multiple phenotypes that have been selected in the past, recreate complete adult phenotypic patterns accurately from partial or corrupted embryonic phenotypes, and ‘generalise’ (by exploiting evolved developmental modules) to produce new combinations of phenotypic features. We show that these surprising behaviours follow from an equivalence between the action of natural selection on phenotypic correlations and associative learning, well-understood in the context of neural networks. This helps to explain how development facilitates the evolution of high-fitness phenotypes and how this ability changes over evolutionary time. PMID:24351058

  2. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data

    NASA Astrophysics Data System (ADS)

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-01

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively.

  3. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data.

    PubMed

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-05

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Feature Selection Methods for Zero-Shot Learning of Neural Activity.

    PubMed

    Caceres, Carlos A; Roos, Matthew J; Rupp, Kyle M; Milsap, Griffin; Crone, Nathan E; Wolmetz, Michael E; Ratto, Christopher R

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.

  5. Recent advances in integrated photonic sensors.

    PubMed

    Passaro, Vittorio M N; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-11-09

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection.

  6. Recent Advances in Integrated Photonic Sensors

    PubMed Central

    Passaro, Vittorio M. N.; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-01-01

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection. PMID:23202223

  7. Realization and performance of cryogenic selection mechanisms

    NASA Astrophysics Data System (ADS)

    Aitink-Kroes, Gabby; Bettonvil, Felix; Kragt, Jan; Elswijk, Eddy; Tromp, Niels

    2014-07-01

    Within Infra-Red large wavelength bandwidth instruments the use of mechanisms for selection of observation modes, filters, dispersing elements, pinholes or slits is inevitable. The cryogenic operating environment poses several challenges to these cryogenic mechanisms; like differential thermal shrinkage, physical property change of materials, limited use of lubrication, high feature density, limited space etc. MATISSE the mid-infrared interferometric spectrograph and imager for ESO's VLT interferometer (VLTI) at Paranal in Chile coherently combines the light from 4 telescopes. Within the Cold Optics Bench (COB) of MATISSE two concepts of selection mechanisms can be distinguished based on the same design principles: linear selection mechanisms (sliders) and rotating selection mechanisms (wheels).Both sliders and wheels are used at a temperature of 38 Kelvin. The selection mechanisms have to provide high accuracy and repeatability. The sliders/wheels have integrated tracks that run on small, accurately located, spring loaded precision bearings. Special indents are used for selection of the slider/wheel position. For maximum accuracy/repeatability the guiding/selection system is separated from the actuation in this case a cryogenic actuator inside the cryostat. The paper discusses the detailed design of the mechanisms and the final realization for the MATISSE COB. Limited lifetime and performance tests determine accuracy, warm and cold and the reliability/wear during life of the instrument. The test results and further improvements to the mechanisms are discussed.

  8. Hyperspectral Features of Oil-Polluted Sea Ice and the Response to the Contamination Area Fraction

    PubMed Central

    Li, Ying; Liu, Chengyu; Xie, Feng

    2018-01-01

    Researchers have studied oil spills in open waters using remote sensors, but few have focused on extracting reflectance features of oil pollution on sea ice. An experiment was conducted on natural sea ice in Bohai Bay, China, to obtain the spectral reflectance of oil-contaminated sea ice. The spectral absorption index (SAI), spectral peak height (SPH), and wavelet detail coefficient (DWT d5) were calculated using stepwise multiple linear regression. The reflectances of some false targets were measured and analysed. The simulated false targets were sediment, iron ore fines, coal dust, and the melt pool. The measured reflectances were resampled using five common sensors (GF-2, Landsat8-OLI, Sentinel3-OLCI, MODIS, and AVIRIS). Some significant spectral features could discriminate between oil-polluted and clean sea ice. The indices correlated well with the oil area fractions. All of the adjusted R2 values exceeded 0.9. The SPH model1, based on spectral features at 507–670 and 1627–1746 nm, displayed the best fitting. The resampled data indicated that these multi-spectral and hyper-spectral sensors could be used to detect crude oil on the sea ice if the effect of noise and spatial resolution are neglected. The spectral features and their identified changes may provide reference on sensor design and band selection. PMID:29342945

  9. Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals

    PubMed Central

    2011-01-01

    Background Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. Methods We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Results Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. Conclusions We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies. PMID:21810266

  10. Learning accurate and interpretable models based on regularized random forests regression

    PubMed Central

    2014-01-01

    Background Many biology related research works combine data from multiple sources in an effort to understand the underlying problems. It is important to find and interpret the most important information from these sources. Thus it will be beneficial to have an effective algorithm that can simultaneously extract decision rules and select critical features for good interpretation while preserving the prediction performance. Methods In this study, we focus on regression problems for biological data where target outcomes are continuous. In general, models constructed from linear regression approaches are relatively easy to interpret. However, many practical biological applications are nonlinear in essence where we can hardly find a direct linear relationship between input and output. Nonlinear regression techniques can reveal nonlinear relationship of data, but are generally hard for human to interpret. We propose a rule based regression algorithm that uses 1-norm regularized random forests. The proposed approach simultaneously extracts a small number of rules from generated random forests and eliminates unimportant features. Results We tested the approach on some biological data sets. The proposed approach is able to construct a significantly smaller set of regression rules using a subset of attributes while achieving prediction performance comparable to that of random forests regression. Conclusion It demonstrates high potential in aiding prediction and interpretation of nonlinear relationships of the subject being studied. PMID:25350120

  11. Performance improvement for optimization of the non-linear geometric fitting problem in manufacturing metrology

    NASA Astrophysics Data System (ADS)

    Moroni, Giovanni; Syam, Wahyudin P.; Petrò, Stefano

    2014-08-01

    Product quality is a main concern today in manufacturing; it drives competition between companies. To ensure high quality, a dimensional inspection to verify the geometric properties of a product must be carried out. High-speed non-contact scanners help with this task, by both speeding up acquisition speed and increasing accuracy through a more complete description of the surface. The algorithms for the management of the measurement data play a critical role in ensuring both the measurement accuracy and speed of the device. One of the most fundamental parts of the algorithm is the procedure for fitting the substitute geometry to a cloud of points. This article addresses this challenge. Three relevant geometries are selected as case studies: a non-linear least-squares fitting of a circle, sphere and cylinder. These geometries are chosen in consideration of their common use in practice; for example the sphere is often adopted as a reference artifact for performance verification of a coordinate measuring machine (CMM) and a cylinder is the most relevant geometry for a pin-hole relation as an assembly feature to construct a complete functioning product. In this article, an improvement of the initial point guess for the Levenberg-Marquardt (LM) algorithm by employing a chaos optimization (CO) method is proposed. This causes a performance improvement in the optimization of a non-linear function fitting the three geometries. The results show that, with this combination, a higher quality of fitting results a smaller norm of the residuals can be obtained while preserving the computational cost. Fitting an ‘incomplete-point-cloud’, which is a situation where the point cloud does not cover a complete feature e.g. from half of the total part surface, is also investigated. Finally, a case study of fitting a hemisphere is presented.

  12. YADCLAN: yet another digitally-controlled linear artificial neuron.

    PubMed

    Frenger, Paul

    2003-01-01

    This paper updates the author's 1999 RMBS presentation on digitally controlled linear artificial neuron design. Each neuron is based on a standard operational amplifier having excitatory and inhibitory inputs, variable gain, an amplified linear analog output and an adjustable threshold comparator for digital output. This design employs a 1-wire serial network of digitally controlled potentiometers and resistors whose resistance values are set and read back under microprocessor supervision. This system embodies several unique and useful features, including: enhanced neuronal stability, dynamic reconfigurability and network extensibility. This artificial neuronal is being employed for feature extraction and pattern recognition in an advanced robotic application.

  13. Feature engineering for drug name recognition in biomedical texts: feature conjunction and feature selection.

    PubMed

    Liu, Shengyu; Tang, Buzhou; Chen, Qingcai; Wang, Xiaolong; Fan, Xiaoming

    2015-01-01

    Drug name recognition (DNR) is a critical step for drug information extraction. Machine learning-based methods have been widely used for DNR with various types of features such as part-of-speech, word shape, and dictionary feature. Features used in current machine learning-based methods are usually singleton features which may be due to explosive features and a large number of noisy features when singleton features are combined into conjunction features. However, singleton features that can only capture one linguistic characteristic of a word are not sufficient to describe the information for DNR when multiple characteristics should be considered. In this study, we explore feature conjunction and feature selection for DNR, which have never been reported. We intuitively select 8 types of singleton features and combine them into conjunction features in two ways. Then, Chi-square, mutual information, and information gain are used to mine effective features. Experimental results show that feature conjunction and feature selection can improve the performance of the DNR system with a moderate number of features and our DNR system significantly outperforms the best system in the DDIExtraction 2013 challenge.

  14. Effect of feature-selective attention on neuronal responses in macaque area MT

    PubMed Central

    Chen, X.; Hoffmann, K.-P.; Albright, T. D.

    2012-01-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color). PMID:22170961

  15. Effect of feature-selective attention on neuronal responses in macaque area MT.

    PubMed

    Chen, X; Hoffmann, K-P; Albright, T D; Thiele, A

    2012-03-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color).

  16. Salient in space, salient in time: Fixation probability predicts fixation duration during natural scene viewing.

    PubMed

    Einhäuser, Wolfgang; Nuthmann, Antje

    2016-09-01

    During natural scene viewing, humans typically attend and fixate selected locations for about 200-400 ms. Two variables characterize such "overt" attention: the probability of a location being fixated, and the fixation's duration. Both variables have been widely researched, but little is known about their relation. We use a two-step approach to investigate the relation between fixation probability and duration. In the first step, we use a large corpus of fixation data. We demonstrate that fixation probability (empirical salience) predicts fixation duration across different observers and tasks. Linear mixed-effects modeling shows that this relation is explained neither by joint dependencies on simple image features (luminance, contrast, edge density) nor by spatial biases (central bias). In the second step, we experimentally manipulate some of these features. We find that fixation probability from the corpus data still predicts fixation duration for this new set of experimental data. This holds even if stimuli are deprived of low-level images features, as long as higher level scene structure remains intact. Together, this shows a robust relation between fixation duration and probability, which does not depend on simple image features. Moreover, the study exemplifies the combination of empirical research on a large corpus of data with targeted experimental manipulations.

  17. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.

    PubMed

    Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki

    2016-07-01

    We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.

  18. TH-E-BRF-05: Comparison of Survival-Time Prediction Models After Radiotherapy for High-Grade Glioma Patients Based On Clinical and DVH Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magome, T; Haga, A; Igaki, H

    Purpose: Although many outcome prediction models based on dose-volume information have been proposed, it is well known that the prognosis may be affected also by multiple clinical factors. The purpose of this study is to predict the survival time after radiotherapy for high-grade glioma patients based on features including clinical and dose-volume histogram (DVH) information. Methods: A total of 35 patients with high-grade glioma (oligodendroglioma: 2, anaplastic astrocytoma: 3, glioblastoma: 30) were selected in this study. All patients were treated with prescribed dose of 30–80 Gy after surgical resection or biopsy from 2006 to 2013 at The University of Tokyomore » Hospital. All cases were randomly separated into training dataset (30 cases) and test dataset (5 cases). The survival time after radiotherapy was predicted based on a multiple linear regression analysis and artificial neural network (ANN) by using 204 candidate features. The candidate features included the 12 clinical features (tumor location, extent of surgical resection, treatment duration of radiotherapy, etc.), and the 192 DVH features (maximum dose, minimum dose, D95, V60, etc.). The effective features for the prediction were selected according to a step-wise method by using 30 training cases. The prediction accuracy was evaluated by a coefficient of determination (R{sup 2}) between the predicted and actual survival time for the training and test dataset. Results: In the multiple regression analysis, the value of R{sup 2} between the predicted and actual survival time was 0.460 for the training dataset and 0.375 for the test dataset. On the other hand, in the ANN analysis, the value of R{sup 2} was 0.806 for the training dataset and 0.811 for the test dataset. Conclusion: Although a large number of patients would be needed for more accurate and robust prediction, our preliminary Result showed the potential to predict the outcome in the patients with high-grade glioma. This work was partly supported by the JSPS Core-to-Core Program(No. 23003) and Grant-in-aid from the JSPS Fellows.« less

  19. K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: Revisited

    NASA Astrophysics Data System (ADS)

    Wang, Dong

    2016-03-01

    Gears are the most commonly used components in mechanical transmission systems. Their failures may cause transmission system breakdown and result in economic loss. Identification of different gear crack levels is important to prevent any unexpected gear failure because gear cracks lead to gear tooth breakage. Signal processing based methods mainly require expertize to explain gear fault signatures which is usually not easy to be achieved by ordinary users. In order to automatically identify different gear crack levels, intelligent gear crack identification methods should be developed. The previous case studies experimentally proved that K-nearest neighbors based methods exhibit high prediction accuracies for identification of 3 different gear crack levels under different motor speeds and loads. In this short communication, to further enhance prediction accuracies of existing K-nearest neighbors based methods and extend identification of 3 different gear crack levels to identification of 5 different gear crack levels, redundant statistical features are constructed by using Daubechies 44 (db44) binary wavelet packet transform at different wavelet decomposition levels, prior to the use of a K-nearest neighbors method. The dimensionality of redundant statistical features is 620, which provides richer gear fault signatures. Since many of these statistical features are redundant and highly correlated with each other, dimensionality reduction of redundant statistical features is conducted to obtain new significant statistical features. At last, the K-nearest neighbors method is used to identify 5 different gear crack levels under different motor speeds and loads. A case study including 3 experiments is investigated to demonstrate that the developed method provides higher prediction accuracies than the existing K-nearest neighbors based methods for recognizing different gear crack levels under different motor speeds and loads. Based on the new significant statistical features, some other popular statistical models including linear discriminant analysis, quadratic discriminant analysis, classification and regression tree and naive Bayes classifier, are compared with the developed method. The results show that the developed method has the highest prediction accuracies among these statistical models. Additionally, selection of the number of new significant features and parameter selection of K-nearest neighbors are thoroughly investigated.

  20. Landscape features influence postrelease predation on endangered black-footed ferrets

    USGS Publications Warehouse

    Poessel, S.A.; Breck, S.W.; Biggins, D.E.; Livieri, T.M.; Crooks, K.R.; Angeloni, L.

    2011-01-01

    Predation can be a critical factor influencing recovery of endangered species. In most recovery efforts lethal and nonlethal influences of predators are not sufficiently understood to allow prediction of predation risk, despite its importance. We investigated whether landscape features could be used to model predation risk from coyotes (Canis latrans) and great horned owls (Bubo virginianus) on the endangered black-footed ferret (Mustela nigripes). We used location data of reintroduced ferrets from 3 sites in South Dakota to determine whether exposure to landscape features typically associated with predators affected survival of ferrets, and whether ferrets considered predation risk when choosing habitat near perches potentially used by owls or near linear features predicted to be used by coyotes. Exposure to areas near likely owl perches reduced ferret survival, but landscape features potentially associated with coyote movements had no appreciable effect on survival. Ferrets were located within 90 m of perches more than expected in 2 study sites that also had higher ferret mortality due to owl predation. Densities of potential coyote travel routes near ferret locations were no different than expected in all 3 sites. Repatriated ferrets might have selected resources based on factors other than predator avoidance. Considering an easily quantified landscape feature (i.e., owl perches) can enhance success of reintroduction efforts for ferrets. Nonetheless, development of predictive models of predation risk and management strategies to mitigate that risk is not necessarily straightforward for more generalist predators such as coyotes. ?? 2011 American Society of Mammalogists.

  1. Diagnosis of multiple sclerosis from EEG signals using nonlinear methods.

    PubMed

    Torabi, Ali; Daliri, Mohammad Reza; Sabzposhan, Seyyed Hojjat

    2017-12-01

    EEG signals have essential and important information about the brain and neural diseases. The main purpose of this study is classifying two groups of healthy volunteers and Multiple Sclerosis (MS) patients using nonlinear features of EEG signals while performing cognitive tasks. EEG signals were recorded when users were doing two different attentional tasks. One of the tasks was based on detecting a desired change in color luminance and the other task was based on detecting a desired change in direction of motion. EEG signals were analyzed in two ways: EEG signals analysis without rhythms decomposition and EEG sub-bands analysis. After recording and preprocessing, time delay embedding method was used for state space reconstruction; embedding parameters were determined for original signals and their sub-bands. Afterwards nonlinear methods were used in feature extraction phase. To reduce the feature dimension, scalar feature selections were done by using T-test and Bhattacharyya criteria. Then, the data were classified using linear support vector machines (SVM) and k-nearest neighbor (KNN) method. The best combination of the criteria and classifiers was determined for each task by comparing performances. For both tasks, the best results were achieved by using T-test criterion and SVM classifier. For the direction-based and the color-luminance-based tasks, maximum classification performances were 93.08 and 79.79% respectively which were reached by using optimal set of features. Our results show that the nonlinear dynamic features of EEG signals seem to be useful and effective in MS diseases diagnosis.

  2. Modified Bat Algorithm for Feature Selection with the Wisconsin Diagnosis Breast Cancer (WDBC) Dataset

    PubMed

    Jeyasingh, Suganthi; Veluchamy, Malathi

    2017-05-01

    Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License

  3. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    PubMed Central

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  4. Sentiment analysis of feature ranking methods for classification accuracy

    NASA Astrophysics Data System (ADS)

    Joseph, Shashank; Mugauri, Calvin; Sumathy, S.

    2017-11-01

    Text pre-processing and feature selection are important and critical steps in text mining. Text pre-processing of large volumes of datasets is a difficult task as unstructured raw data is converted into structured format. Traditional methods of processing and weighing took much time and were less accurate. To overcome this challenge, feature ranking techniques have been devised. A feature set from text preprocessing is fed as input for feature selection. Feature selection helps improve text classification accuracy. Of the three feature selection categories available, the filter category will be the focus. Five feature ranking methods namely: document frequency, standard deviation information gain, CHI-SQUARE, and weighted-log likelihood -ratio is analyzed.

  5. Computer-aided classification of breast microcalcification clusters: merging of features from image processing and radiologists

    NASA Astrophysics Data System (ADS)

    Lo, Joseph Y.; Gavrielides, Marios A.; Markey, Mia K.; Jesneck, Jonathan L.

    2003-05-01

    We developed an ensemble classifier for the task of computer-aided diagnosis of breast microcalcification clusters,which are very challenging to characterize for radiologists and computer models alike. The purpose of this study is to help radiologists identify whether suspicious calcification clusters are benign vs. malignant, such that they may potentially recommend fewer unnecessary biopsies for actually benign lesions. The data consists of mammographic features extracted by automated image processing algorithms as well as manually interpreted by radiologists according to a standardized lexicon. We used 292 cases from a publicly available mammography database. From each cases, we extracted 22 image processing features pertaining to lesion morphology, 5 radiologist features also pertaining to morphology, and the patient age. Linear discriminant analysis (LDA) models were designed using each of the three data types. Each local model performed poorly; the best was one based upon image processing features which yielded ROC area index AZ of 0.59 +/- 0.03 and partial AZ above 90% sensitivity of 0.08 +/- 0.03. We then developed ensemble models using different combinations of those data types, and these models all improved performance compared to the local models. The final ensemble model was based upon 5 features selected by stepwise LDA from all 28 available features. This ensemble performed with AZ of 0.69 +/- 0.03 and partial AZ of 0.21 +/- 0.04, which was statistically significantly better than the model based on the image processing features alone (p<0.001 and p=0.01 for full and partial AZ respectively). This demonstrated the value of the radiologist-extracted features as a source of information for this task. It also suggested there is potential for improved performance using this ensemble classifier approach to combine different sources of currently available data.

  6. Landsat analysis for uranium exploration in Northeast Turkey

    USGS Publications Warehouse

    Lee, Keenan

    1983-01-01

    No uranium deposits are known in the Trabzon, Turkey region, and consequently, exploration criteria have not been defined. Nonetheless, by analogy with uranium deposits studied elsewhere, exploration guides are suggested to include dense concentrations of linear features, lineaments -- especially with northwest trend, acidic plutonic rocks, and alteration indicated by limonite. A suite of digitally processed images of a single Landsat scene served as the image base for mapping 3,376 linear features. Analysis of the linear feature data yielded two statistically significant trends, which in turn defined two sets of strong lineaments. Color composite images were used to map acidic plutonic rocks and areas of surficial limonitic materials. The Landsat interpretation yielded a map of these exploration guides that may be used to evaluate relative uranium potential. One area in particular shows a high coincidence of favorable indicators.

  7. Mutual information criterion for feature selection with application to classification of breast microcalcifications

    NASA Astrophysics Data System (ADS)

    Diamant, Idit; Shalhon, Moran; Goldberger, Jacob; Greenspan, Hayit

    2016-03-01

    Classification of clustered breast microcalcifications into benign and malignant categories is an extremely challenging task for computerized algorithms and expert radiologists alike. In this paper we present a novel method for feature selection based on mutual information (MI) criterion for automatic classification of microcalcifications. We explored the MI based feature selection for various texture features. The proposed method was evaluated on a standardized digital database for screening mammography (DDSM). Experimental results demonstrate the effectiveness and the advantage of using the MI-based feature selection to obtain the most relevant features for the task and thus to provide for improved performance as compared to using all features.

  8. Multiview Locally Linear Embedding for Effective Medical Image Retrieval

    PubMed Central

    Shen, Hualei; Tao, Dacheng; Ma, Dianfu

    2013-01-01

    Content-based medical image retrieval continues to gain attention for its potential to assist radiological image interpretation and decision making. Many approaches have been proposed to improve the performance of medical image retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these features are concatenated into a long vector to represent medical images, and thus traditional dimension reduction techniques such as locally linear embedding (LLE), principal component analysis (PCA), or laplacian eigenmaps (LE) can be employed to reduce the “curse of dimensionality”. Though these approaches show promising performance for medical image retrieval, the feature-concatenating method ignores the fact that different features have distinct physical meanings. In this paper, we propose a new method called multiview locally linear embedding (MLLE) for medical image retrieval. Following the patch alignment framework, MLLE preserves the geometric structure of the local patch in each feature space according to the LLE criterion. To explore complementary properties among a range of features, MLLE assigns different weights to local patches from different feature spaces. Finally, MLLE employs global coordinate alignment and alternating optimization techniques to learn a smooth low-dimensional embedding from different features. To justify the effectiveness of MLLE for medical image retrieval, we compare it with conventional spectral embedding methods. We conduct experiments on a subset of the IRMA medical image data set. Evaluation results show that MLLE outperforms state-of-the-art dimension reduction methods. PMID:24349277

  9. Efficient coding of spectrotemporal binaural sounds leads to emergence of the auditory space representation

    PubMed Central

    Młynarski, Wiktor

    2014-01-01

    To date a number of studies have shown that receptive field shapes of early sensory neurons can be reproduced by optimizing coding efficiency of natural stimulus ensembles. A still unresolved question is whether the efficient coding hypothesis explains formation of neurons which explicitly represent environmental features of different functional importance. This paper proposes that the spatial selectivity of higher auditory neurons emerges as a direct consequence of learning efficient codes for natural binaural sounds. Firstly, it is demonstrated that a linear efficient coding transform—Independent Component Analysis (ICA) trained on spectrograms of naturalistic simulated binaural sounds extracts spatial information present in the signal. A simple hierarchical ICA extension allowing for decoding of sound position is proposed. Furthermore, it is shown that units revealing spatial selectivity can be learned from a binaural recording of a natural auditory scene. In both cases a relatively small subpopulation of learned spectrogram features suffices to perform accurate sound localization. Representation of the auditory space is therefore learned in a purely unsupervised way by maximizing the coding efficiency and without any task-specific constraints. This results imply that efficient coding is a useful strategy for learning structures which allow for making behaviorally vital inferences about the environment. PMID:24639644

  10. Parkes full polarization spectra of OH masers - II. Galactic longitudes 240° to 350°

    NASA Astrophysics Data System (ADS)

    Caswell, J. L.; Green, J. A.; Phillips, C. J.

    2014-04-01

    Full polarization measurements of 1665 and 1667 MHz OH masers at 261 sites of massive star formation have been made with the Parkes radio telescope. Here, we present the resulting spectra for 157 southern sources, complementing our previously published 104 northerly sources. For most sites, these are the first measurements of linear polarization, with good spectral resolution and complete velocity coverage. Our spectra exhibit the well-known predominance of highly circularly polarized features, interpreted as σ components of Zeeman patterns. Focusing on the generally weaker and rarer linear polarization, we found three examples of likely full Zeeman triplets (a linearly polarized π component, straddled in velocity by σ components), adding to the solitary example previously reported. We also identify 40 examples of likely isolated π components, contradicting past beliefs that π components might be extremely rare. These were recognized at 20 sites where a feature with high linear polarization on one transition is accompanied on the other transition by a matching feature, at the same velocity and also with significant linear polarization. Large velocity ranges are rare, but we find eight exceeding 25 km s-1, some of them indicating high-velocity blue-shifted outflows. Variability was investigated on time-scales of one year and over several decades. More than 20 sites (of 200) show high variability (intensity changes by factors of 4 or more) in some prominent features. Highly stable sites are extremely rare.

  11. Feature Selection Methods for Zero-Shot Learning of Neural Activity

    PubMed Central

    Caceres, Carlos A.; Roos, Matthew J.; Rupp, Kyle M.; Milsap, Griffin; Crone, Nathan E.; Wolmetz, Michael E.; Ratto, Christopher R.

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy. PMID:28690513

  12. Combining familiarity and landscape features helps break down the barriers between movements and home ranges in a non-territorial large herbivore.

    PubMed

    Marchand, Pascal; Garel, Mathieu; Bourgoin, Gilles; Duparc, Antoine; Dubray, Dominique; Maillard, Daniel; Loison, Anne

    2017-03-01

    Recent advances in animal ecology have enabled identification of certain mechanisms that lead to the emergence of territories and home ranges from movements considered as unbounded. Among them, memory and familiarity have been identified as key parameters in cognitive maps driving animal navigation, but have been only recently used in empirical analyses of animal movements. At the same time, the influence of landscape features on movements of numerous species and on space division in territorial animals has been highlighted. Despite their potential as exocentric information in cognitive maps and as boundaries for home ranges, few studies have investigated their role in the design of home ranges of non-territorial species. Using step selection analyses, we assessed the relative contribution of habitat characteristics, familiarity preferences and linear landscape features in movement step selection of 60 GPS-collared Mediterranean mouflon Ovis gmelini musimon × Ovis sp. monitored in southern France. Then, we evaluated the influence of these movement-impeding landscape features on the design of home ranges by testing for a non-random distribution of these behavioural barriers within sections of space differentially used by mouflon. We reveal that familiarity and landscape features are key determinants of movements, relegating to a lower level certain habitat constraints (e.g. food/cover trade-off) that we had previously identified as important for this species. Mouflon generally avoid crossing both anthropogenic (i.e. roads, tracks and hiking trails) and natural landscape features (i.e. ridges, talwegs and forest edges) while moving in the opposite direction, preferentially toward familiar areas. These specific behaviours largely depend on the relative position of each movement step regarding distance to the landscape features or level of familiarity in the surroundings. We also revealed cascading consequences on the design of home ranges in which most landscape features were excluded from cores and relegated to the peripheral areas. These results provide crucial information on landscape connectivity in a context of marked habitat fragmentation. They also call for more research on the role of landscape features in the emergence of home ranges in non-territorial species using recent methodological developments bridging the gap between movements and space use patterns. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  13. Constant size descriptors for accurate machine learning models of molecular properties

    NASA Astrophysics Data System (ADS)

    Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole; Yaron, David J.

    2018-06-01

    Two different classes of molecular representations for use in machine learning of thermodynamic and electronic properties are studied. The representations are evaluated by monitoring the performance of linear and kernel ridge regression models on well-studied data sets of small organic molecules. One class of representations studied here counts the occurrence of bonding patterns in the molecule. These require only the connectivity of atoms in the molecule as may be obtained from a line diagram or a SMILES string. The second class utilizes the three-dimensional structure of the molecule. These include the Coulomb matrix and Bag of Bonds, which list the inter-atomic distances present in the molecule, and Encoded Bonds, which encode such lists into a feature vector whose length is independent of molecular size. Encoded Bonds' features introduced here have the advantage of leading to models that may be trained on smaller molecules and then used successfully on larger molecules. A wide range of feature sets are constructed by selecting, at each rank, either a graph or geometry-based feature. Here, rank refers to the number of atoms involved in the feature, e.g., atom counts are rank 1, while Encoded Bonds are rank 2. For atomization energies in the QM7 data set, the best graph-based feature set gives a mean absolute error of 3.4 kcal/mol. Inclusion of 3D geometry substantially enhances the performance, with Encoded Bonds giving 2.4 kcal/mol, when used alone, and 1.19 kcal/mol, when combined with graph features.

  14. Iron oxide bands in the visible and near-infrared reflectance spectra of primitive asteroids

    NASA Technical Reports Server (NTRS)

    Jarvis, Kandy S.; Vilas, Faith; Gaffey, Michael J.

    1993-01-01

    High resolution reflectance spectra of primitive asteroids (C, P, and D class and associated subclasses) have commonly revealed an absorption feature centered at 0.7 microns attributed to an Fe(2+)-Fe(3+) charge transfer transition in iron oxides and/or oxidized iron in phyllosilicates. A smaller feature identified at 0.43 microns has been attributed to an Fe(3+) spin-forbidden transition in iron oxides. In the spectra of the two main-belt primitive asteroids 368 Haidea (D) and 877 Walkure (F), weak absorption features which were centered near the location of 0.60-0.65 microns and 0.80-0.90 microns prompted a search for features at these wavelengths and an attempt to identify their origin(s). The CCD reflectance spectra obtained between 1982-1992 were reviewed for similar absorption features located near these wavelengths. The spectra of asteroids in which these absorption features have been identified are shown. These spectra are plotted in order of increasing heliocentric distance. No division of the asteroids by class has been attempted here (although the absence of these features in the anhydrous S-class asteroids, many of which have presumably undergone full heating and differentiation should be noted). For this study, each spectrum was treated as a continuum with discrete absorption features superimposed on it. For each object, a linear least squares fit to the data points defined a simple linear continuum. The linear continuum was then divided into each spectrum, thus removing the sloped continuum and permitting the intercomparison of residual spectral features.

  15. On application of kernel PCA for generating stimulus features for fMRI during continuous music listening.

    PubMed

    Tsatsishvili, Valeri; Burunat, Iballa; Cong, Fengyu; Toiviainen, Petri; Alluri, Vinoo; Ristaniemi, Tapani

    2018-06-01

    There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio. NEW METHOD: fMRI data from naturalistic music listening experiment were employed here. Kernel principal component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features were examined. The generated features captured musical percepts that were hidden from the linear PCA features, namely Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations associated to processing of complex rhythms, including auditory, motor, and frontal areas. Results were compared with the findings in the previously published study, which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study. Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus features, which can in turn reveal new brain structures involved in music processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K; Able, A

    Purpose: To evaluate an Enhanced Dynamic Wedge (EDW) as part of machine commission process with feature study. Methods: The EDW system in this study was from a Truebeam, which is the Linear accelerator manufactured by Varian Medical Systems. The EDW feature vectors includes selected elements. These elements were dosimetric output spots check, field size, wedge angles, dose rate, collimator orientation, and different energy settings. Point dose measurement was done by a PTW farmer chamber, and profiles were measured by Gafchromic EBT2 films positing at different depths of the Solidwater based on the study elements. The output spot measurements were donemore » with PTW farmer chamber with Solidwater setting for all orientation and wedge angles in the EDW system. The profiles comparisons were done by IMRT measurement function in RIT software at version 6.3. And the films were scanned by Vidar scanner. Dosimetry calculation were done by using the same Solidwater scanned by GE LightSpeed CT in Eclipse Treatment Planning System (TPS). Then measurements were compared to simulation results in TPS. Results: The energy average percentage difference between chamber measurement and TPS was 0.16% with standard deviation (SD) at 0.93%. For selected features, the average percentage difference between film measurement and computation was 0.93% with SD at 1.55% in horizontal profiles, and 1.18% with SD at 0.98% at vertical profiles. The average gamma difference for film measurement and TPS computing results was at 0.924 with SD at 0.314. Conclusion: A feature vector was developed to describe the commission of EDW, and developing a complete set of features for sufficiency of commission of a LINAC function could provide optimal commission instance with acceptable confident level of clinical application of the machine. Given the institution specific vector pattern and big data process, it could provide wide range clinical outcome comparison information in application of EDW.« less

  17. Two-layer contractive encodings for learning stable nonlinear features.

    PubMed

    Schulz, Hannes; Cho, Kyunghyun; Raiko, Tapani; Behnke, Sven

    2015-04-01

    Unsupervised learning of feature hierarchies is often a good strategy to initialize deep architectures for supervised learning. Most existing deep learning methods build these feature hierarchies layer by layer in a greedy fashion using either auto-encoders or restricted Boltzmann machines. Both yield encoders which compute linear projections of input followed by a smooth thresholding function. In this work, we demonstrate that these encoders fail to find stable features when the required computation is in the exclusive-or class. To overcome this limitation, we propose a two-layer encoder which is less restricted in the type of features it can learn. The proposed encoder is regularized by an extension of previous work on contractive regularization. This proposed two-layer contractive encoder potentially poses a more difficult optimization problem, and we further propose to linearly transform hidden neurons of the encoder to make learning easier. We demonstrate the advantages of the two-layer encoders qualitatively on artificially constructed datasets as well as commonly used benchmark datasets. We also conduct experiments on a semi-supervised learning task and show the benefits of the proposed two-layer encoders trained with the linear transformation of perceptrons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Comparing success levels of different neural network structures in extracting discriminative information from the response patterns of a temperature-modulated resistive gas sensor

    NASA Astrophysics Data System (ADS)

    Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.

    2015-06-01

    Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.

  19. Optimal number of features as a function of sample size for various classification rules.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Lowey, James; Suh, Edward; Dougherty, Edward R

    2005-04-15

    Given the joint feature-label distribution, increasing the number of features always results in decreased classification error; however, this is not the case when a classifier is designed via a classification rule from sample data. Typically (but not always), for fixed sample size, the error of a designed classifier decreases and then increases as the number of features grows. The potential downside of using too many features is most critical for small samples, which are commonplace for gene-expression-based classifiers for phenotype discrimination. For fixed sample size and feature-label distribution, the issue is to find an optimal number of features. Since only in rare cases is there a known distribution of the error as a function of the number of features and sample size, this study employs simulation for various feature-label distributions and classification rules, and across a wide range of sample and feature-set sizes. To achieve the desired end, finding the optimal number of features as a function of sample size, it employs massively parallel computation. Seven classifiers are treated: 3-nearest-neighbor, Gaussian kernel, linear support vector machine, polynomial support vector machine, perceptron, regular histogram and linear discriminant analysis. Three Gaussian-based models are considered: linear, nonlinear and bimodal. In addition, real patient data from a large breast-cancer study is considered. To mitigate the combinatorial search for finding optimal feature sets, and to model the situation in which subsets of genes are co-regulated and correlation is internal to these subsets, we assume that the covariance matrix of the features is blocked, with each block corresponding to a group of correlated features. Altogether there are a large number of error surfaces for the many cases. These are provided in full on a companion website, which is meant to serve as resource for those working with small-sample classification. For the companion website, please visit http://public.tgen.org/tamu/ofs/ e-dougherty@ee.tamu.edu.

  20. Enhancing the Performance of LibSVM Classifier by Kernel F-Score Feature Selection

    NASA Astrophysics Data System (ADS)

    Sarojini, Balakrishnan; Ramaraj, Narayanasamy; Nickolas, Savarimuthu

    Medical Data mining is the search for relationships and patterns within the medical datasets that could provide useful knowledge for effective clinical decisions. The inclusion of irrelevant, redundant and noisy features in the process model results in poor predictive accuracy. Much research work in data mining has gone into improving the predictive accuracy of the classifiers by applying the techniques of feature selection. Feature selection in medical data mining is appreciable as the diagnosis of the disease could be done in this patient-care activity with minimum number of significant features. The objective of this work is to show that selecting the more significant features would improve the performance of the classifier. We empirically evaluate the classification effectiveness of LibSVM classifier on the reduced feature subset of diabetes dataset. The evaluations suggest that the feature subset selected improves the predictive accuracy of the classifier and reduce false negatives and false positives.

Top