Sample records for linear feedback shift

  1. A m-ary linear feedback shift register with binary logic

    NASA Technical Reports Server (NTRS)

    Perlman, M. (Inventor)

    1973-01-01

    A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producible with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tubulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers.

  2. Periodic binary sequence generators: VLSI circuits considerations

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1984-01-01

    Feedback shift registers are efficient periodic binary sequence generators. Polynomials of degree r over a Galois field characteristic 2(GF(2)) characterize the behavior of shift registers with linear logic feedback. The algorithmic determination of the trinomial of lowest degree, when it exists, that contains a given irreducible polynomial over GF(2) as a factor is presented. This corresponds to embedding the behavior of an r-stage shift register with linear logic feedback into that of an n-stage shift register with a single two-input modulo 2 summer (i.e., Exclusive-OR gate) in its feedback. This leads to Very Large Scale Integrated (VLSI) circuit architecture of maximal regularity (i.e., identical cells) with intercell communications serialized to a maximal degree.

  3. Improved diagonal queue medical image steganography using Chaos theory, LFSR, and Rabin cryptosystem.

    PubMed

    Jain, Mamta; Kumar, Anil; Choudhary, Rishabh Charan

    2017-06-01

    In this article, we have proposed an improved diagonal queue medical image steganography for patient secret medical data transmission using chaotic standard map, linear feedback shift register, and Rabin cryptosystem, for improvement of previous technique (Jain and Lenka in Springer Brain Inform 3:39-51, 2016). The proposed algorithm comprises four stages, generation of pseudo-random sequences (pseudo-random sequences are generated by linear feedback shift register and standard chaotic map), permutation and XORing using pseudo-random sequences, encryption using Rabin cryptosystem, and steganography using the improved diagonal queues. Security analysis has been carried out. Performance analysis is observed using MSE, PSNR, maximum embedding capacity, as well as by histogram analysis between various Brain disease stego and cover images.

  4. Bit error rate tester using fast parallel generation of linear recurring sequences

    DOEpatents

    Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.

    2003-05-06

    A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.

  5. Is Linear Displacement Information Or Angular Displacement Information Used During The Adaptation of Pointing Responses To An Optically Shifted Image?

    NASA Technical Reports Server (NTRS)

    Bautista, Abigail B.

    1994-01-01

    Twenty-four observers looked through a pair of 20 diopter wedge prisms and pointed to an image of a target which was displaced vertically from eye level by 6 cm at a distance of 30 cm. Observers pointed 40 times, using only their right hand, and received error-corrective feedback upon termination of each pointing response (terminal visual feedback). At three testing distances, 20, 30, and 40 cm, ten pre-exposure and ten post-exposure pointing responses were recorded for each hand as observers reached to a mirror-viewed target located at eye level. The difference between pre- and post-exposure pointing response (adaptive shift) was compared for both Exposed and Unexposed hands across all three testing distances. The data were assessed according to the results predicted by two alternative models for processing spatial-information: one using angular displacement information and another using linear displacement information. The angular model of spatial mapping best predicted the observer's pointing response for the Exposed hand. Although the angular adaptive shift did not change significantly as a function of distance (F(2,44) = 1.12, n.s.), the linear adaptive shift increased significantly over the three testing distances 02 44) = 4.90 p less than 0.01).

  6. Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.

    PubMed

    Cheng, Sen; Sabes, Philip N

    2007-04-01

    The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.

  7. Impact of optical feedback on current-induced polarization behavior of 1550 nm vertical-cavity surface-emitting lasers.

    PubMed

    Deng, Tao; Wu, Zheng-Mao; Xie, Yi-Yuan; Wu, Jia-Gui; Tang, Xi; Fan, Li; Panajotov, Krassimir; Xia, Guang-Qiong

    2013-06-01

    Polarization switching (PS) between two orthogonal linearly polarized fundamental modes is experimentally observed in commercial free-running 1550 nm vertical-cavity surface-emitting lasers (VCSELs) (Raycan). The characteristics of this PS are strongly modified after introducing a polarization-preserved (PP) or polarization-orthogonal (PO) optical feedback. Under the case that the external cavity is approximately 30 cm, the PP optical feedback results in the PS point shifting toward a lower injection current, and the region within which the two polarization modes coexist is enlarged with the increase of the PP feedback strength. Under too-strong PP feedback levels, the PS disappears. The impact of PO optical feedback on VCSEL polarization behavior is quite similar to that of PP optical feedback, but larger feedback strength is needed to obtain similar results.

  8. CSI feedback-based CS for underwater acoustic adaptive modulation OFDM system with channel prediction

    NASA Astrophysics Data System (ADS)

    Kuai, Xiao-yan; Sun, Hai-xin; Qi, Jie; Cheng, En; Xu, Xiao-ka; Guo, Yu-hui; Chen, You-gan

    2014-06-01

    In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.

  9. Optimal control of the gear shifting process for shift smoothness in dual-clutch transmissions

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Görges, Daniel

    2018-03-01

    The control of the transmission system in vehicles is significant for the driving comfort. In order to design a controller for smooth shifting and comfortable driving, a dynamic model of a dual-clutch transmission is presented in this paper. A finite-time linear quadratic regulator is proposed for the optimal control of the two friction clutches in the torque phase for the upshift process. An integral linear quadratic regulator is introduced to regulate the relative speed difference between the engine and the slipping clutch under the optimization of the input torque during the inertia phase. The control objective focuses on smoothing the upshift process so as to improve the driving comfort. Considering the available sensors in vehicles for feedback control, an observer design is presented to track the immeasurable variables. Simulation results show that the jerk can be reduced both in the torque phase and inertia phase, indicating good shift performance. Furthermore, compared with conventional controllers for the upshift process, the proposed control method can reduce shift jerk and improve shift quality.

  10. J3Gen: A PRNG for Low-Cost Passive RFID

    PubMed Central

    Melià-Seguí, Joan; Garcia-Alfaro, Joaquin; Herrera-Joancomartí, Jordi

    2013-01-01

    Pseudorandom number generation (PRNG) is the main security tool in low-cost passive radio-frequency identification (RFID) technologies, such as EPC Gen2. We present a lightweight PRNG design for low-cost passive RFID tags, named J3Gen. J3Gen is based on a linear feedback shift register (LFSR) configured with multiple feedback polynomials. The polynomials are alternated during the generation of sequences via a physical source of randomness. J3Gen successfully handles the inherent linearity of LFSR based PRNGs and satisfies the statistical requirements imposed by the EPC Gen2 standard. A hardware implementation of J3Gen is presented and evaluated with regard to different design parameters, defining the key-equivalence security and nonlinearity of the design. The results of a SPICE simulation confirm the power-consumption suitability of the proposal. PMID:23519344

  11. Random numbers from vacuum fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com; Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  12. A megahertz-frequency tunable piecewise-linear electromechanical resonator realized via nonlinear feedback

    NASA Astrophysics Data System (ADS)

    Bajaj, Nikhil; Chiu, George T.-C.; Rhoads, Jeffrey F.

    2018-07-01

    Vibration-based sensing modalities traditionally have relied upon monitoring small shifts in natural frequency in order to detect structural changes (such as those in mass or stiffness). In contrast, bifurcation-based sensing schemes rely on the detection of a qualitative change in the behavior of a system as a parameter is varied. This can produce easy-to-detect changes in response amplitude with high sensitivity to structural change, but requires resonant devices with specific dynamic behavior which is not always easily reproduced. Desirable behavior for such devices can be produced reliably via nonlinear feedback circuitry, but has in past efforts been largely limited to sub-MHz operation, partially due to the time delay limitations present in certain nonlinear feedback circuits, such as multipliers. This work demonstrates the design and implementation of a piecewise-linear resonator realized via diode- and integrated circuit-based feedback electronics and a quartz crystal resonator. The proposed system is fabricated and characterized, and the creation and selective placement of the bifurcation points of the overall electromechanical system is demonstrated by tuning the circuit gains. The demonstrated circuit operates at 16 MHz. Preliminary modeling and analysis is presented that qualitatively agrees with the experimentally-observed behavior.

  13. Full path compensation laser feedback interferometry for remote sensing with recovered nanometer resolutions

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Tan, Yidong; Zhang, Shulian

    2018-03-01

    The accuracy of the existing laser feedback interferometry for measuring the remote target is limited to several microns due to environmental disturbances. A novel approach is presented in this paper based on the double-beam frequency-shift feedback of the laser, which can completely eliminate the dead path errors and measure the displacement or vibration with accuracy at nanometer scale even at a far measurement distance. The two beams emitted from one Nd:YVO4 crystal are incident on the measurement target and its adjacent reference surface, respectively. The reference surface could be taken from the nearby stationary object, without the need to put a reference mirror. The feedback paths and shift frequencies of the two beams are the same, so the air disturbances and the thermal effects in the way could be fully compensated. Under common room conditions, the displacement of a steel block at a distance of 10 m is measured, which proved that the system's stability is ±12 nm in 100 s and ±50 nm in 1000 s, the short-term resolution is better than 3 nm, and the linearity within the 300 mm range is 5 × 10-6 and within the 100 μm range is 1 × 10-4.

  14. Interdecadal Change in the Tropical Pacific Precipitation Anomaly Pattern around the Late 1990s during Boreal Spring

    NASA Astrophysics Data System (ADS)

    Wen, Zhiping; Guo, Yuanyuan; Wu, Renguang

    2017-04-01

    The leading mode of boreal spring precipitation variability over the tropical Pacific experienced a pronounced interdecadal change around the late 1990s. The pattern before 1998 features positive precipitation anomalies over the equatorial eastern Pacific (EP) with positive principle component years. The counterpart after 1998 exhibits a westward shift of the positive center to the equatorial central Pacific (CP). Observational evidence shows that this interdecadal change in the leading mode of precipitation variability is closely associated with a distinctive sea surface temperature (SST) anomaly pattern. The westward shift of the anomalous precipitation center after 1998 is in tandem with a similar shift of maximum warming from the EP to CP. Diagnostic analyses based on a linear equation of the mixed layer temperature anomaly exhibit that an interdecadal enhancement of zonal advection (ZA) feedback process plays a vital role in the shift in the leading mode of both the tropical Pacific SST and the precipitation anomaly during spring. Moreover, the variability of the anomalous zonal current at the upper ocean dominates the ZA feedback change, while the mean zonal SST gradient associated with a La Niña-like pattern of the mean state only accounts for a relatively trivial proportion of the ZA feedback change. It was found that both the relatively rapid decaying of the SST anomalies in the EP and the La Niña-like mean state make it conceivable that the shift of the leading mode of the tropical precipitation anomaly only occurs in spring. In addition, the largest variance of the anomalous zonal current in spring might contribute to the unique interdecadal change in the tropical spring precipitation anomaly pattern.

  15. Applications of Probabilistic Combiners on Linear Feedback Shift Register Sequences

    DTIC Science & Technology

    2016-12-01

    on the resulting output strings show a drastic increase in complexity, while simultaneously passing the stringent randomness tests required by the...a three-variable function. Our tests on the resulting output strings show a drastic increase in complex- ity, while simultaneously passing the...10001101 01000010 11101001 Decryption of a message that has been encrypted using bitwise XOR is quite simple. Since each bit is its own additive inverse

  16. Progressive Mid-latitude Afforestation: Local and Remote Climate Impacts in the Framework of Two Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Lague, Marysa

    Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.

  17. Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers

    PubMed Central

    Thompson, Clarissa A.; Opfer, John E.

    2016-01-01

    Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy. PMID:26834688

  18. Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers.

    PubMed

    Thompson, Clarissa A; Opfer, John E

    2016-01-01

    Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children's representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.

  19. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  20. Feedback and Control of Linear and Nonlinear Global MHD Modes in Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Finn, J. M.; Chacon, L.

    2002-11-01

    We present studies of feedback applied to resistive wall modes in the presence of plasma rotation. The main tool used is a Newton-Krylov nonlinear reduced resistive MHD code with completely implicit time stepping[1]. The effects of proportional and derivative gain and toroidal phase shift are investigated. In addition to studying the complete stabilization of the resistive wall mode, we present results on controlling the amplitude of nonlinear modes locked to the wall but propagating slowly; we also show results on reducing the hysteresis in the locking-unlocking bifurcation diagram. [1] L. Chacon, D. A. Knoll and J. M. Finn, "An implicit, nonlinear reduced resistive MHD solver", J. Comp. Phys. v. 178, pp 15-36 (2002).

  1. Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics

    NASA Technical Reports Server (NTRS)

    Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John

    1996-01-01

    We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.

  2. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  3. A non-linear piezoelectric actuator calibration using N-dimensional Lissajous figure

    NASA Astrophysics Data System (ADS)

    Albertazzi, A.; Viotti, M. R.; Veiga, C. L. N.; Fantin, A. V.

    2016-08-01

    Piezoelectric translators (PZTs) are very often used as phase shifters in interferometry. However, they typically present a non-linear behavior and strong hysteresis. The use of an additional resistive or capacitive sensor make possible to linearize the response of the PZT by feedback control. This approach works well, but makes the device more complex and expensive. A less expensive approach uses a non-linear calibration. In this paper, the authors used data from at least five interferograms to form N-dimensional Lissajous figures to establish the actual relationship between the applied voltages and the resulting phase shifts [1]. N-dimensional Lissajous figures are formed when N sinusoidal signals are combined in an N-dimensional space, where one signal is assigned to each axis. It can be verified that the resulting Ndimensional ellipsis lays in a 2D plane. By fitting an ellipsis equation to the resulting 2D ellipsis it is possible to accurately compute the resulting phase value for each interferogram. In this paper, the relationship between the resulting phase shift and the applied voltage is simultaneously established for a set of 12 increments by a fourth degree polynomial. The results in speckle interferometry show that, after two or three interactions, the calibration error is usually smaller than 1°.

  4. Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming

    USGS Publications Warehouse

    Euskirchen, E.S.; McGuire, A.D.; Chapin, F.S.

    2007-01-01

    The warming associated with changes in snow cover in northern high-latitude terrestrial regions represents an important energy feedback to the climate system. Here, we simulate snow cover-climate feedbacks (i.e. changes in snow cover on atmospheric heating) across the Pan-arctic over two distinct warming periods during the 20th century, 1910-1940 and 1970-2000. We offer evidence that increases in snow cover-climate feedbacks during 1970-2000 were nearly three times larger than during 1910-1940 because the recent snow-cover change occurred in spring, when radiation load is highest, rather than in autumn. Based on linear regression analysis, we also detected a greater sensitivity of snow cover-climate feedbacks to temperature trends during the more recent time period. Pan-arctic vegetation types differed substantially in snow cover-climate feedbacks. Those with a high seasonal contrast in albedo, such as tundra, showed much larger changes in atmospheric heating than did those with a low seasonal contrast in albedo, such as forests, even if the changes in snow-cover duration were similar across the vegetation types. These changes in energy exchange warrant careful consideration in studies of climate change, particularly with respect to associated shifts in vegetation between forests, grasslands, and tundra. ?? 2007 Blackwell Publishing Ltd.

  5. High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization

    DTIC Science & Technology

    1992-05-01

    High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization A Thesis Presented by Louis Joseph PoehIman, Captain, USAF B.S., U.S. Air...High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization by Louis Joseph Poehlman, Captain, USAF Submitted to the Department of...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback

  6. Understanding The Neural Mechanisms Involved In Sensory Control Of Voice Production

    PubMed Central

    Parkinson, Amy L.; Flagmeier, Sabina G.; Manes, Jordan L.; Larson, Charles R.; Rogers, Bill; Robin, Donald A.

    2012-01-01

    Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0. PMID:22406500

  7. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  8. The sensitivity of auditory-motor representations to subtle changes in auditory feedback while singing

    PubMed Central

    Keough, Dwayne; Jones, Jeffery A.

    2009-01-01

    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers’ and untrained singers’ (nonsingers’) sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel ∕ta∕ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers’ F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers’ models appear to be more sensitive in response to subtle discrepancies in auditory feedback. PMID:19640048

  9. The sensitivity of auditory-motor representations to subtle changes in auditory feedback while singing.

    PubMed

    Keough, Dwayne; Jones, Jeffery A

    2009-08-01

    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers' and untrained singers' (nonsingers') sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel /ta/ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers' F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers' models appear to be more sensitive in response to subtle discrepancies in auditory feedback.

  10. Shadowing emergency medicine residents by medical education specialists to provide feedback on non-medical knowledge-based ACGME sub-competencies.

    PubMed

    Waterbrook, Anna L; Spear Ellinwood, Karen C; Pritchard, T Gail; Bertels, Karen; Johnson, Ariel C; Min, Alice; Stoneking, Lisa R

    2018-01-01

    Non-medical knowledge-based sub-competencies (multitasking, professionalism, accountability, patient-centered communication, and team management) are challenging for a supervising emergency medicine (EM) physician to evaluate in real-time on shift while also managing a busy emergency department (ED). This study examines residents' perceptions of having a medical education specialist shadow and evaluate their nonmedical knowledge skills. Medical education specialists shadowed postgraduate year 1 and postgraduate year 2 EM residents during an ED shift once per academic year. In an attempt to increase meaningful feedback to the residents, these specialists evaluated resident performance in selected non-medical knowledge-based Accreditation Council of Graduate Medical Education (ACGME) sub-competencies and provided residents with direct, real-time feedback, followed by a written evaluation sent via email. Evaluations provided specific references to examples of behaviors observed during the shift and connected these back to ACGME competencies and milestones. Twelve residents participated in this shadow experience (six post graduate year 1 and six postgraduate year 2). Two residents emailed the medical education specialists ahead of the scheduled shadow shift requesting specific feedback. When queried, five residents voluntarily requested their feedback to be included in their formal biannual review. Residents received milestone scores and narrative feedback on the non-medical knowledge-based ACGME sub-competencies and indicated the shadow experience and subsequent feedback were valuable. Medical education specialists who observe residents over the course of an entire shift and evaluate non-medical knowledge-based skills are perceived by EM residents to provide meaningful feedback and add valuable information for the biannual review process.

  11. The detection error of thermal test low-frequency cable based on M sequence correlation algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin

    2018-04-01

    The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.

  12. Closing the Loop on Student Feedback: The Case of Australian and Scottish Universities

    ERIC Educational Resources Information Center

    Shah, Mahsood; Cheng, Ming; Fitzgerald, Robert

    2017-01-01

    Universities have a long history of collecting student feedback using surveys and other mechanisms. The last decade has witnessed a significant shift in how student feedback is systematically collected, analysed, reported, and used by governments and institutions. This shift is due to a number of factors, including changes in government policy…

  13. Probing the nature of superfluid helium-3 very near its critical temperature

    NASA Astrophysics Data System (ADS)

    Nishimori, Arito

    We have measured with high resolution the static magnetization and NMR frequency shift of bulk superfluid 3He near its critical point. The static magnetization measurements at 31.4 bars and 33.7 bars in the magnetic field of 36.1 mT show that the size of the magnetization change through the A1 region is smaller than 0.1% of the total magnetization in the normal phase. NMR frequency shifts which have the similar |Delta|2 dependency(Delta:order parameter) to that of the magnetization are measured at the melting pressure in magnetic fields from 29.6 mT to 425 mT using a new feedback technique. We find that the frequency shifts agree very well with the mean field calculations based on the spin fluctuation feedback model proposed by Brinkman, Serene and Anderson(BSA) and there is no high temperature tail above T A1 nor smearing of kinks at TA 1 and TA2 originating from critical fluctuations. From the fitting parameters, the Brinkman-Anderson parameter delta averaged over the data in 92.6 mT, 154 mT and 213 mT at the melting pressure is found to be 0.57+/-0.02. We also obtained the widths of the A1 phase at low magnetic fields. Its linear dependence on magnetic field strength is consistent with the mean field calculation.

  14. Relational interaction in occupational therapy: Conversation analysis of positive feedback.

    PubMed

    Weiste, Elina

    2018-01-01

    The therapeutic relationship is an important factor for good therapy outcomes. The primary mediator of a beneficial therapy relationship is clinician-client interaction. However, few studies identify the observable interactional attributes of good quality relational interactions, e.g. offering the client positive feedback. The present paper aims to expand current understanding of relational interaction by analyzing the real-time interactional practices therapists use for offering positive feedback, an important value in occupational therapy. The analysis is based on the conversation analysis of 15 video-recorded occupational therapy encounters in psychiatric outpatient clinics. Two types of positive feedback were identified. In aligning feedback, therapists encouraged and complimented clients' positive perspectives on their own achievements in adopting certain behaviour, encouraging and supporting their progress. In redirecting feedback, therapists shifted the perspective from clients' negative experiences to their positive experiences. This shift was interactionally successful if they laid the foundation for the shift in perspective and attuned their expressions to the clients' emotional states. Occupational therapists routinely provide their clients with positive feedback. Awareness of the interactional attributes related to positive feedback is critically important for successful relational interaction.

  15. Long frame sync words for binary PSK telemetry

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1975-01-01

    Correlation criteria have previously been established for identifying whether a given binary sequence would be a good frame sync word for phase-shift keyed telemetry. In the past, the search for a good K-bit sync word has involved the application of these criteria to the entire set of 2 exponent K binary K-tuples. It is shown that restricting this search to a much smaller subset consisting of K-bit prefixes of pseudonoise sequences results in sync words of comparable quality, with greatly reduced computer search times for larger values of K. As an example, this procedure is used to find good sync words of length 16-63; from a storage viewpoint, each of these sequences can be generated by a 5- or 6-bit linear feedback shift register.

  16. The relative degree enhancement problem for MIMO nonlinear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenwald, D.A.; Oezguener, Ue.

    1995-07-01

    The authors present a result for linearizing a nonlinear MIMO system by employing partial feedback - feedback at all but one input-output channel such that the SISO feedback linearization problem is solvable at the remaining input-output channel. The partial feedback effectively enhances the relative degree at the open input-output channel provided the feedback functions are chosen to satisfy relative degree requirements. The method is useful for nonlinear systems that are not feedback linearizable in a MIMO sense. Several examples are presented to show how these feedback functions can be computed. This strategy can be combined with decentralized observers for amore » completely decentralized feedback linearization result for at least one input-output channel.« less

  17. Accuracy and speed feedback: Global and local effects on strategy use

    PubMed Central

    Touron, Dayna R.; Hertzog, Christopher

    2013-01-01

    Background Skill acquisition often involves a shift from an effortful algorithm-based strategy to more fluent memory-based performance. Older adults’ slower strategy transitions can be ascribed to both slowed learning and metacognitive factors. Experimenters often provide feedback on response accuracy; this emphasis may either inadvertently reinforce older adults’ conservatism or might highlight that retrieval is generally quite accurate. RT feedback can lead to more rapid shift to retrieval (Hertzog, Touron, & Hines, 2007). Methods This study parametrically varied trial-by-trial feedback to examine whether strategy shifts in the noun-pair task in younger (M = 19) and older adults (M = 67) were influenced by type of performance feedback: none, trial accuracy, trial RT, or both accuracy and RT. Results Older adults who received accuracy feedback retrieved more often, particularly on difficult rearranged trials, and participants who receive speed feedback performed the scanning strategy more quickly. Age differences were also obtained in local (trial-level) reactivity to task performance, but these were not affected by feedback. Conclusions Accuracy and speed feedback had distinct global (general) influences on task strategies and performance. In particular, it appears that the standard practice of providing trial-by-trial accuracy feedback might facilitate older adults’ use of retrieval strategies in skill acquisition tasks. PMID:24785594

  18. Shadowing emergency medicine residents by medical education specialists to provide feedback on non-medical knowledge-based ACGME sub-competencies

    PubMed Central

    Waterbrook, Anna L; Spear Ellinwood, Karen C; Pritchard, T Gail; Bertels, Karen; Johnson, Ariel C; Min, Alice; Stoneking, Lisa R

    2018-01-01

    Objective Non-medical knowledge-based sub-competencies (multitasking, professionalism, accountability, patient-centered communication, and team management) are challenging for a supervising emergency medicine (EM) physician to evaluate in real-time on shift while also managing a busy emergency department (ED). This study examines residents’ perceptions of having a medical education specialist shadow and evaluate their nonmedical knowledge skills. Methods Medical education specialists shadowed postgraduate year 1 and postgraduate year 2 EM residents during an ED shift once per academic year. In an attempt to increase meaningful feedback to the residents, these specialists evaluated resident performance in selected non-medical knowledge-based Accreditation Council of Graduate Medical Education (ACGME) sub-competencies and provided residents with direct, real-time feedback, followed by a written evaluation sent via email. Evaluations provided specific references to examples of behaviors observed during the shift and connected these back to ACGME competencies and milestones. Results Twelve residents participated in this shadow experience (six post graduate year 1 and six postgraduate year 2). Two residents emailed the medical education specialists ahead of the scheduled shadow shift requesting specific feedback. When queried, five residents voluntarily requested their feedback to be included in their formal biannual review. Residents received milestone scores and narrative feedback on the non-medical knowledge-based ACGME sub-competencies and indicated the shadow experience and subsequent feedback were valuable. Conclusion Medical education specialists who observe residents over the course of an entire shift and evaluate non-medical knowledge-based skills are perceived by EM residents to provide meaningful feedback and add valuable information for the biannual review process. PMID:29765259

  19. Which way will the circulation shift in a changing climate? Possible nonlinearity of extratropical cloud feedbacks

    NASA Astrophysics Data System (ADS)

    Tandon, Neil F.; Cane, Mark A.

    2017-06-01

    In a suite of idealized experiments with the Community Atmospheric Model version 3 coupled to a slab ocean, we show that the atmospheric circulation response to CO2 increase is sensitive to extratropical cloud feedback that is potentially nonlinear. Doubling CO2 produces a poleward shift of the Southern Hemisphere (SH) midlatitude jet that is driven primarily by cloud shortwave feedback and modulated by ice albedo feedback, in agreement with earlier studies. More surprisingly, for CO2 increases smaller than 25 %, the SH jet shifts equatorward. Nonlinearities are also apparent in the Northern Hemisphere, but with less zonal symmetry. Baroclinic instability theory and climate feedback analysis suggest that as the CO2 forcing amplitude is reduced, there is a transition from a regime in which cloud and circulation changes are largely decoupled to a regime in which they are highly coupled. In the dynamically coupled regime, there is an apparent cancellation between cloud feedback due to warming and cloud feedback due to the shifting jet, and this allows the ice albedo feedback to dominate in the high latitudes. The extent to which dynamical coupling effects exceed thermodynamic forcing effects is strongly influenced by cloud microphysics: an alternate model configuration with slightly increased cloud liquid (LIQ) produces poleward jet shifts regardless of the amplitude of CO2 forcing. Altering the cloud microphysics also produces substantial spread in the circulation response to CO2 doubling: the LIQ configuration produces a poleward SH jet shift approximately twice that produced under the default configuration. Analysis of large ensembles of the Canadian Earth System Model version 2 demonstrates that nonlinear, cloud-coupled jet shifts are also possible in comprehensive models. We still expect a poleward trend in SH jet latitude for timescales on which CO2 increases by more than 25 %. But on shorter timescales, our results give good reason to expect significant equatorward deviations. We also discuss the implications for understanding the circulation response to small external forcings from other sources, such as the solar cycle.

  20. Linear systems with structure group and their feedback invariants

    NASA Technical Reports Server (NTRS)

    Martin, C.; Hermann, R.

    1977-01-01

    A general method described by Hermann and Martin (1976) for the study of the feedback invariants of linear systems is considered. It is shown that this method, which makes use of ideas of topology and algebraic geometry, is very useful in the investigation of feedback problems for which the classical methods are not suitable. The transfer function as a curve in the Grassmanian is examined. The general concepts studied in the context of specific systems and applications are organized in terms of the theory of Lie groups and algebraic geometry. Attention is given to linear systems which have a structure group, linear mechanical systems, and feedback invariants. The investigation shows that Lie group techniques are powerful and useful tools for analysis of the feedback structure of linear systems.

  1. Examining recognition criterion rigidity during testing using a biased feedback technique: Evidence for adaptive criterion learning

    PubMed Central

    Han, Sanghoon; Dobbins, Ian G.

    2009-01-01

    Recognition models often assume that subjects use specific evidence values (decision criteria) to adaptively parse continuous memory evidence into response categories (e.g., “old” or “new”). Although explicit pre-test instructions influence criterion placement, these criteria appear extremely resistant to change once testing begins. We tested criterion sensitivity to local feedback using a novel, biased feedback technique designed to tacitly encourage certain errors by indicating they were correct choices. Experiment 1 demonstrated that fully correct feedback had little effect on criterion placement, whereas biased feedback during Experiments 2 and 3 yielded prominent, durable, and adaptive criterion shifts, with observers reporting they were unaware of the manipulation in Experiment 3. These data suggest recognition criteria can be easily modified during testing through a form of feedback learning that operates independent of stimulus characteristics and observer awareness of the nature of the manipulation. This mechanism may be fundamentally different than criterion shifts following explicit instructions and warnings, or shifts linked to manipulations of stimulus characteristics combined with feedback highlighting those manipulations. PMID:18604954

  2. On the nonlinear forced response of the North Atlantic atmosphere to meridional shifts of the Gulf Stream path

    NASA Astrophysics Data System (ADS)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.; Ummenhofer, C.

    2016-12-01

    This study examines the North Atlantic atmospheric circulation response to the meridional shift of Gulf Stream path using a large-ensemble, high-resolution, and hemispheric-scale WRF simulations. The model is forced with wintertime SST anomalies derived from a wide range of Gulf Stream shift scenarios. The key result of the model experiments, supported in part by an independent analysis of a reanalysis data set, is that the large-scale, quasi-steady North Atlantic circulation response is unambiguously nonlinear about the sign and amplitude of chosen SST anomalies. This nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation, the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the anomalous southward shift of the North Atlantic eddy-driven jet stream, which is reinforced nearly equally by the high-frequency transient eddy feedback and the low-frequency high-latitude wave breaking events. The result highlights the importance of the intrinsically nonlinear transient eddy dynamics and eddy-mean flow interactions in generating the nonlinear forced response to the meridional shift in the Gulf Stream.

  3. Continuous wave operation of quantum cascade lasers with frequency-shifted feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyakh, A., E-mail: arkadiy.lyakh@ucf.edu; NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, FL 32826; College of Optics and Photonics, University of Central Florida, 304 Scorpius St, Orlando, FL 32826

    2016-01-15

    Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm{sup −1} for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials.

  4. Audio-vocal responses of vocal fundamental frequency and formant during sustained vowel vocalizations in different noises.

    PubMed

    Lee, Shao-Hsuan; Hsiao, Tzu-Yu; Lee, Guo-She

    2015-06-01

    Sustained vocalizations of vowels [a], [i], and syllable [mə] were collected in twenty normal-hearing individuals. On vocalizations, five conditions of different audio-vocal feedback were introduced separately to the speakers including no masking, wearing supra-aural headphones only, speech-noise masking, high-pass noise masking, and broad-band-noise masking. Power spectral analysis of vocal fundamental frequency (F0) was used to evaluate the modulations of F0 and linear-predictive-coding was used to acquire first two formants. The results showed that while the formant frequencies were not significantly shifted, low-frequency modulations (<3 Hz) of F0 significantly increased with reduced audio-vocal feedback across speech sounds and were significantly correlated with auditory awareness of speakers' own voices. For sustained speech production, the motor speech controls on F0 may depend on a feedback mechanism while articulation should rely more on a feedforward mechanism. Power spectral analysis of F0 might be applied to evaluate audio-vocal control for various hearing and neurological disorders in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A Bayesian Account of Vocal Adaptation to Pitch-Shifted Auditory Feedback

    PubMed Central

    Hahnloser, Richard H. R.

    2017-01-01

    Motor systems are highly adaptive. Both birds and humans compensate for synthetically induced shifts in the pitch (fundamental frequency) of auditory feedback stemming from their vocalizations. Pitch-shift compensation is partial in the sense that large shifts lead to smaller relative compensatory adjustments of vocal pitch than small shifts. Also, compensation is larger in subjects with high motor variability. To formulate a mechanistic description of these findings, we adapt a Bayesian model of error relevance. We assume that vocal-auditory feedback loops in the brain cope optimally with known sensory and motor variability. Based on measurements of motor variability, optimal compensatory responses in our model provide accurate fits to published experimental data. Optimal compensation correctly predicts sensory acuity, which has been estimated in psychophysical experiments as just-noticeable pitch differences. Our model extends the utility of Bayesian approaches to adaptive vocal behaviors. PMID:28135267

  6. Feedback linearizing control of a MIMO power system

    NASA Astrophysics Data System (ADS)

    Ilyes, Laszlo

    Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

  7. Next Generation Robots for STEM Education andResearch at Huston Tillotson University

    DTIC Science & Technology

    2017-11-10

    dynamics through the following command: roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion : After...understood the system’s natural dynamics. roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion ...is created using the following command: roslaunch mtb_lab6_feedback_linearization gravity_inversion.launch Gravity inversion is just one

  8. Aspheric figure generation using feedback from an infrared phase-shifting interferometer.

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.; Ketelsen, D.

    This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments and how it is affected by the surface roughness produced by each generator tool.

  9. Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.

    NASA Astrophysics Data System (ADS)

    Marino, Riccardo

    The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.

  10. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation

    NASA Astrophysics Data System (ADS)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  11. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation.

    PubMed

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  12. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning

    PubMed Central

    McGregor, Heather R.; Mohatarem, Ayman

    2017-01-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634

  13. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.

    PubMed

    Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L

    2017-07-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.

  14. Nonlinear force feedback control of piezoelectric-hydraulic pump actuator for automotive transmission shift control

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2008-03-01

    In recent years, researchers have investigated the feasibility of utilizing piezoelectric-hydraulic pump based actuation systems for automotive transmission controls. This new concept could eventually reduce the complexity, weight, and fuel consumption of the current transmissions. In this research, we focus on how to utilize this new approach on the shift control of automatic transmissions (AT), which generally requires pressure profiling for friction elements during the operation. To illustrate the concept, we will consider the 1--> 2 up shift control using band brake friction elements. In order to perform the actuation force tracking for AT shift control, nonlinear force feedback control laws are designed based on the sliding mode theory for the given nonlinear system. This paper will describe the modeling of the band brake actuation system, the design of the nonlinear force feedback controller, and simulation and experimental results for demonstration of the new concept.

  15. Conditions for Stabilizability of Linear Switched Systems

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu

    2011-06-01

    This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.

  16. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    PubMed

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  17. Nonlinear compensation techniques for magnetic suspension systems. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Trumper, David L.

    1991-01-01

    In aerospace applications, magnetic suspension systems may be required to operate over large variations in air-gap. Thus the nonlinearities inherent in most types of suspensions have a significant effect. Specifically, large variations in operating point may make it difficult to design a linear controller which gives satisfactory stability and performance over a large range of operating points. One way to address this problem is through the use of nonlinear compensation techniques such as feedback linearization. Nonlinear compensators have received limited attention in the magnetic suspension literature. In recent years, progress has been made in the theory of nonlinear control systems, and in the sub-area of feedback linearization. The idea is demonstrated of feedback linearization using a second order suspension system. In the context of the second order suspension, sampling rate issues in the implementation of feedback linearization are examined through simulation.

  18. A Study of Strong Stability of Distributed Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cataltepe, Tayfun

    1989-01-01

    The strong stability of distributed systems is studied and the problem of characterizing strongly stable semigroups of operators associated with distributed systems is addressed. Main emphasis is on contractive systems. Three different approaches to characterization of strongly stable contractive semigroups are developed. The first one is an operator theoretical approach. Using the theory of dilations, it is shown that every strongly stable contractive semigroup is related to the left shift semigroup on an L(exp 2) space. Then, a decomposition for the state space which identifies strongly stable and unstable states is introduced. Based on this decomposition, conditions for a contractive semigroup to be strongly stable are obtained. Finally, extensions of Lyapunov's equation for distributed parameter systems are investigated. Sufficient conditions for weak and strong stabilities of uniformly bounded semigroups are obtained by relaxing the equivalent norm condition on the right hand side of the Lyanupov equation. These characterizations are then applied to the problem of feedback stabilization. First, it is shown via the state space decomposition that under certain conditions a contractive system (A,B) can be strongly stabilized by the feedback -B(*). Then, application of the extensions of the Lyapunov equation results in sufficient conditions for weak, strong, and exponential stabilizations of contractive systems by the feedback -B(*). Finally, it is shown that for a contractive system, the first derivative of x with respect to time = Ax + Bu (where B is any linear bounded operator), there is a related linear quadratic regulator problem and a corresponding steady state Riccati equation which always has a bounded nonnegative solution.

  19. Nonlinear gearshifts control of dual-clutch transmissions during inertia phase.

    PubMed

    Hu, Yunfeng; Tian, Lu; Gao, Bingzhao; Chen, Hong

    2014-07-01

    In this paper, a model-based nonlinear gearshift controller is designed by the backstepping method to improve the shift quality of vehicles with a dual-clutch transmission (DCT). Considering easy-implementation, the controller is rearranged into a concise structure which contains a feedforward control and a feedback control. Then, robustness of the closed-loop error system is discussed in the framework of the input to state stability (ISS) theory, where model uncertainties are considered as the additive disturbance inputs. Furthermore, due to the application of the backstepping method, the closed-loop error system is ordered as a linear system. Using the linear system theory, a guideline for selecting the controller parameters is deduced which could reduce the workload of parameters tuning. Finally, simulation results and Hardware in the Loop (HiL) simulation are presented to validate the effectiveness of the designed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex.

    PubMed

    Greenlee, Jeremy D W; Behroozmand, Roozbeh; Larson, Charles R; Jackson, Adam W; Chen, Fangxiang; Hansen, Daniel R; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70-150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.

  1. Sensory-Motor Interactions for Vocal Pitch Monitoring in Non-Primary Human Auditory Cortex

    PubMed Central

    Larson, Charles R.; Jackson, Adam W.; Chen, Fangxiang; Hansen, Daniel R.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (−100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70–150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control. PMID:23577157

  2. Offset quadrature communications with decision-feedback carrier synchronization

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Smith, J. G.

    1974-01-01

    In order to accommodate a quadrature amplitude-shift-keyed (QASK) signal, Simon and Smith (1974) have modified the decision-feedback loop which tracks a quadrature phase-shift-keyed (QPSK). In the investigation reported approaches are considered to modify the loops in such a way that offset QASK signals can be tracked, giving attention to the special case of an offset QPSK. The development of the stochastic integro-differential equation of operation for a decision-feedback offset QASK loop is discussed along with the probability density function of the phase error process.

  3. Response of microchip solid-state laser to external frequency-shifted feedback and its applications

    PubMed Central

    Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning

    2013-01-01

    The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without precise environmental control. Furthermore, a strong response, including chaotic harmonic and parametric oscillation, is observed, and the spectrum of this response, as examined by a frequency-stabilised Nd:YAG laser, indicates laser spectral linewidth broadening. PMID:24105389

  4. Response of microchip solid-state laser to external frequency-shifted feedback and its applications.

    PubMed

    Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning

    2013-10-09

    The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without precise environmental control. Furthermore, a strong response, including chaotic harmonic and parametric oscillation, is observed, and the spectrum of this response, as examined by a frequency-stabilised Nd:YAG laser, indicates laser spectral linewidth broadening.

  5. Molecular genetic analysis of circadian timekeeping in Drosophila

    PubMed Central

    Hardin, Paul E.

    2014-01-01

    A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene - the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail, and provide an in depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shift to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons, and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here I will review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals. PMID:21924977

  6. On the dynamic nature of response criterion in recognition memory: effects of base rate, awareness, and feedback.

    PubMed

    Rhodes, Matthew G; Jacoby, Larry L

    2007-03-01

    The authors examined whether participants can shift their criterion for recognition decisions in response to the probability that an item was previously studied. Participants in 3 experiments were given recognition tests in which the probability that an item was studied was correlated with its location during the test. Results from all 3 experiments indicated that participants' response criteria were sensitive to the probability that an item was previously studied and that shifts in criterion were robust. In addition, awareness of the bases for criterion shifts and feedback on performance were key factors contributing to the observed shifts in decision criteria. These data suggest that decision processes can operate in a dynamic fashion, shifting from item to item.

  7. An Iterative Information-Reduced Quadriphase-Shift-Keyed Carrier Synchronization Scheme Using Decision Feedback for Low Signal-to-Noise Ratio Applications

    NASA Technical Reports Server (NTRS)

    Simon, M.; Tkacenko, A.

    2006-01-01

    In a previous publication [1], an iterative closed-loop carrier synchronization scheme for binary phase-shift keyed (BPSK) modulation was proposed that was based on feeding back data decisions to the input of the loop, the purpose being to remove the modulation prior to carrier synchronization as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. The idea there was that, with sufficient independence between the received data and the decisions on it that are fed back (as would occur in an error-correction coding environment with sufficient decoding delay), a pure tone in the presence of noise would ultimately be produced (after sufficient iteration and low enough error probability) and thus could be tracked without any squaring loss. This article demonstrates that, with some modification, the same idea of iterative information reduction through decision feedback can be applied to quadrature phase-shift keyed (QPSK) modulation, something that was mentioned in the previous publication but never pursued.

  8. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    NASA Astrophysics Data System (ADS)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  9. Spacecraft nonlinear control

    NASA Technical Reports Server (NTRS)

    Sheen, Jyh-Jong; Bishop, Robert H.

    1992-01-01

    The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.

  10. RF power recovery feedback circulator

    DOEpatents

    Sharamentov, Sergey I [Bolingbrook, IL

    2011-03-29

    A device and method for improving the efficiency of RF systems having a Reflective Load. In the preferred embodiment, Reflected Energy from a superconducting resonator of a particle accelerator is reintroduced to the resonator after the phase of the Reflected Energy is aligned with the phase of the Supply Energy from a RF Energy Source. In one embodiment, a Circulator is used to transfer Reflected Energy from the Reflective Load into a Phase Adjuster which aligns the phase of the Reflected Energy with that of the Supply Energy. The phase-aligned energy is then combined with the Supply Energy, and reintroduced into the Reflective Load. In systems having a constant phase shift, the Phase Adjuster may be designed to shift the phase of the Reflected Energy by a constant amount using a Phase Shifter. In systems having a variety (variable) phase shifts, a Phase Shifter controlled by a phase feedback loop comprising a Phase Detector and a Feedback Controller to account for the various phase shifts is preferable.

  11. A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcai; Jiang, Minglu; Inoue, Yasuaki

    Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for ±2.5V power supply voltages, respectively.

  12. Who wants feedback? An investigation of the variables influencing residents' feedback-seeking behavior in relation to night shifts.

    PubMed

    Teunissen, Pim W; Stapel, Diederik A; van der Vleuten, Cees; Scherpbier, Albert; Boor, Klarke; Scheele, Fedde

    2009-07-01

    The literature on feedback in clinical medical education has predominantly treated trainees as passive recipients. Past research has focused on how clinical supervisors can use feedback to improve a trainee's performance. On the basis of research in social and organizational psychology, the authors reconceptualized residents as active seekers of feedback. They investigated what individual and situational variables influence residents' feedback-seeking behavior on night shifts. Early in 2008, the authors sent obstetrics-gynecology residents in the Netherlands--both those in their first two years of graduate training and those gaining experience between undergraduate and graduate training--a questionnaire that assessed four predictor variables (learning and performance goal orientation, and instrumental and supportive leadership), two mediator variables (perceived feedback benefits and costs), and two outcome variables (frequency of feedback inquiry and monitoring). They used structural equation modeling software to test a hypothesized model of relationships between variables. The response rate was 76.5%. Results showed that residents who perceive more feedback benefits report a higher frequency of feedback inquiry and monitoring. More perceived feedback costs result mainly in more feedback monitoring. Residents with a higher learning goal orientation perceive more feedback benefits and fewer costs. Residents with a higher performance goal orientation perceive more feedback costs. Supportive physicians lead residents to perceive more feedback benefits and fewer costs. This study showed that some residents actively seek feedback. Residents' feedback-seeking behavior partially depends on attending physicians' supervisory style. Residents' goal orientations influence their perceptions of the benefits and costs of feedback-seeking.

  13. Partial Compensation for Altered Auditory Feedback: A Tradeoff with Somatosensory Feedback?

    ERIC Educational Resources Information Center

    Katseff, Shira; Houde, John; Johnson, Keith

    2012-01-01

    Talkers are known to compensate only partially for experimentally-induced changes to their auditory feedback. In a typical experiment, talkers might hear their F1 feedback shifted higher (so that /[epsilon]/ sounds like /[ash]/, for example), and compensate by lowering F1 in their subsequent speech by about a quarter of that distance. Here, we…

  14. Fiber Bragg grating interrogation using a wavelength modulated 1651-nm tunable distributed feedback laser and a fiber ring resonator for wearable biomedical sensors

    NASA Astrophysics Data System (ADS)

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-01

    This paper demonstrates the interrogation of a fiber Bragg grating with a flat-topped reflection spectrum centred on 1649.55 nm using only a single mode tunable 1651.93 nm semiconductor laser and a fiber ring resonator. The Bragg shift is accurately measured with the fiber-optic ring resonator that has a free spectral range (FSR) of 0.1008 GHz and a broadband photo-detector. Laser wavelength modulation and harmonic detection are used to transform the gentle edges of the flat-topped FBG spectrum into prominent leading and trailing peaks, either of which can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution of 0.9 pm. A Raspberry Pi-based low-cost embedded processor is used to measure the temperature-induced spectral shifts over the range 30˚C - 80˚C. The shift was linear with a temperature sensitivity of 12.8 pm/˚C. This technique does not use an optical spectrum analyzer at any stage of its design or operation. The laser does not need to be pre-characterized either. This technique can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments.

  15. Audio-vocal system regulation in children with autism spectrum disorders.

    PubMed

    Russo, Nicole; Larson, Charles; Kraus, Nina

    2008-06-01

    Do children with autism spectrum disorders (ASD) respond similarly to perturbations in auditory feedback as typically developing (TD) children? Presentation of pitch-shifted voice auditory feedback to vocalizing participants reveals a close coupling between the processing of auditory feedback and vocal motor control. This paradigm was used to test the hypothesis that abnormalities in the audio-vocal system would negatively impact ASD compensatory responses to perturbed auditory feedback. Voice fundamental frequency (F(0)) was measured while children produced an /a/ sound into a microphone. The voice signal was fed back to the subjects in real time through headphones. During production, the feedback was pitch shifted (-100 cents, 200 ms) at random intervals for 80 trials. Averaged voice F(0) responses to pitch-shifted stimuli were calculated and correlated with both mental and language abilities as tested via standardized tests. A subset of children with ASD produced larger responses to perturbed auditory feedback than TD children, while the other children with ASD produced significantly lower response magnitudes. Furthermore, robust relationships between language ability, response magnitude and time of peak magnitude were identified. Because auditory feedback helps to stabilize voice F(0) (a major acoustic cue of prosody) and individuals with ASD have problems with prosody, this study identified potential mechanisms of dysfunction in the audio-vocal system for voice pitch regulation in some children with ASD. Objectively quantifying this deficit may inform both the assessment of a subgroup of ASD children with prosody deficits, as well as remediation strategies that incorporate pitch training.

  16. Mars channel observations 1877-90, compared with modern Orbiter data

    NASA Astrophysics Data System (ADS)

    Gerstbach, G.

    2003-10-01

    The astronomic sensation of 1877, Schiaparelli's Canali, were a main research topic for 80 years (in a way they are it now again). Up to Mariner 4 (1965) many institutes believed in melted ice and periodic vegetation along the gray or green linear structures. Mars mapping reached a 2nd summit by Antoniadi, whose map 1936 was the basis of the US Mariner program. But ~1915 the shift from linear to area drawing caused some quality losses in planetography. In the fifties the Canali were mostly interpreted as optical illusions or contrast effects. The rivers and tectonics seen by Orbiters encouraged me to special studies: 60% of Schiaparelli channels correlate with: Albedo patterns, terrace-shadow structures, broad valley systems (e.g. Valles Marineris) and rows of craters or clouds. Experienced observers know that linear structures can be "seen" even if their elements are below the resolution. Feedback of this fact to space-born Remote Sensing is recommended - for maximal use of the modern planet Orbiters and special studies of geology, dust storms and clouds.

  17. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  18. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.

    PubMed

    Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo

    2017-08-15

    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

  19. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality.

    PubMed

    Zenner, Andre; Kruger, Antonio

    2017-04-01

    We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.

  20. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  1. Investigating the impact of automated feedback on students' scientific argumentation

    NASA Astrophysics Data System (ADS)

    Zhu, Mengxiao; Lee, Hee-Sun; Wang, Ting; Liu, Ou Lydia; Belur, Vinetha; Pallant, Amy

    2017-08-01

    This study investigates the role of automated scoring and feedback in supporting students' construction of written scientific arguments while learning about factors that affect climate change in the classroom. The automated scoring and feedback technology was integrated into an online module. Students' written scientific argumentation occurred when they responded to structured argumentation prompts. After submitting the open-ended responses, students received scores generated by a scoring engine and written feedback associated with the scores in real-time. Using the log data that recorded argumentation scores as well as argument submission and revisions activities, we answer three research questions. First, how students behaved after receiving the feedback; second, whether and how students' revisions improved their argumentation scores; and third, did item difficulties shift with the availability of the automated feedback. Results showed that the majority of students (77%) made revisions after receiving the feedback, and students with higher initial scores were more likely to revise their responses. Students who revised had significantly higher final scores than those who did not, and each revision was associated with an average increase of 0.55 on the final scores. Analysis on item difficulty shifts showed that written scientific argumentation became easier after students used the automated feedback.

  2. Work first then play: Prior task difficulty increases motivation-related brain responses in a risk game.

    PubMed

    Schmidt, Barbara; Mussel, Patrick; Osinsky, Roman; Rasch, Björn; Debener, Stefan; Hewig, Johannes

    2017-05-01

    Task motivation depends on what we did before. A recent theory differentiates between tasks that we want to do and tasks that we have to do. After a have-to task, motivation shifts towards a want-to task. We measured this shift of motivation via brain responses to monetary feedback in a risk game that was used as want-to task in our study. We tested 20 healthy participants that were about 28 years old in a within-subjects design. Participants worked on a Stroop task (have-to task) or an easier version of the Stroop task as a control condition and played a risk game afterwards (want-to task). After the Stroop task, brain responses to monetary feedback in the risk game were larger compared to the easier control task, especially for feedback indicating higher monetary rewards. We conclude that higher amplitudes of feedback-related brain responses in the risk game reflect the shift of motivation after a have-to task towards a want-to task. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Aspheric figure generation using feedback from an infrared phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.; Ketelsen, D.

    An infrared phase-shifting interferometric system has been integrated with a novel optical figure generator at the University of Arizona Optical Sciences Center. This unique generator facility can produce generalized axially symmetric surface figures in a timely and cost-effective manner. The success of this facility depends on both its ability to efficiently remove material while forming the surface figure, and its ability to monitor the surface figure during the generation process to provide feedback to the optician. The facility has been used on several occasions to custom-generate off-axis parabolic segments. Figures to within 0.30 microns rms of the desired figure have been obtained. This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments, and how it is affected by the surface roughness produced by each generator tool.

  4. Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa

    PubMed Central

    Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan

    2017-01-01

    Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813

  5. Effects of Voice Harmonic Complexity on ERP Responses to Pitch-Shifted Auditory Feedback

    PubMed Central

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R.

    2011-01-01

    Objective The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Methods Event-related potentials (ERPs) were recorded in response to +200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. Results During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. Conclusions These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. Significance This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. PMID:21719346

  6. Computation of output feedback gains for linear stochastic systems using the Zangwill-Powell method

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1977-01-01

    Because conventional optimal linear regulator theory results in a controller which requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. To this effect a stochastic linear model has been developed that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was then performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell.

  7. Synthesis procedure for linear time-varying feedback systems with large parameter ignorance

    NASA Technical Reports Server (NTRS)

    Mcdonald, T. E., Jr.

    1972-01-01

    The development of synthesis procedures for linear time-varying feedback systems is considered. It is assumed that the plant can be described by linear differential equations with time-varying coefficients; however, ignorance is associated with the plant in that only the range of the time-variations are known instead of exact functional relationships. As a result of this plant ignorance the use of time-varying compensation is ineffective so that only time-invariant compensation is employed. In addition, there is a noise source at the plant output which feeds noise through the feedback elements to the plant input. Because of this noise source the gain of the feedback elements must be as small as possible. No attempt is made to develop a stability criterion for time-varying systems in this work.

  8. Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback.

    PubMed

    Behroozmand, Roozbeh; Larson, Charles R

    2011-06-06

    The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback. Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli. Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.

  9. Optical feedback technique extends frequency response of photoconductors

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.

    1975-01-01

    Feedback circuit consists of high-gain light-to-voltage converter with frequency-limited nonlinear photoconductor inside feedback loop. Feedback element is visible light-emitting diode with light-out versus current-in characteristic that is linear over several decades.

  10. Linear system theory

    NASA Technical Reports Server (NTRS)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  11. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  12. The generalized pole assignment problem. [dynamic output feedback problems

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Two dynamic output feedback problems for a linear, strictly proper system are considered, along with their interrelationships. The problems are formulated in the frequency domain and investigated in terms of linear equations over rings of polynomials. Necessary and sufficient conditions are expressed using genericity.

  13. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  14. Linear feedback stabilization of a dispersively monitored qubit

    NASA Astrophysics Data System (ADS)

    Patti, Taylor Lee; Chantasri, Areeya; García-Pintos, Luis Pedro; Jordan, Andrew N.; Dressel, Justin

    2017-08-01

    The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse time scale to be long compared to the feedback delay yields the best stabilization.

  15. Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: part I a linear coupled framework

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Ying; Jin, Fei-Fei

    2018-03-01

    The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.

  16. Social influences on adaptive criterion learning.

    PubMed

    Cassidy, Brittany S; Dubé, Chad; Gutchess, Angela H

    2015-07-01

    People adaptively shift decision criteria when given biased feedback encouraging specific types of errors. Given that work on this topic has been conducted in nonsocial contexts, we extended the literature by examining adaptive criterion learning in both social and nonsocial contexts. Specifically, we compared potential differences in criterion shifting given performance feedback from social sources varying in reliability and from a nonsocial source. Participants became lax when given false positive feedback for false alarms, and became conservative when given false positive feedback for misses, replicating prior work. In terms of a social influence on adaptive criterion learning, people became more lax in response style over time if feedback was provided by a nonsocial source or by a social source meant to be perceived as unreliable and low-achieving. In contrast, people adopted a more conservative response style over time if performance feedback came from a high-achieving and reliable source. Awareness that a reliable and high-achieving person had not provided their feedback reduced the tendency to become more conservative, relative to those unaware of the source manipulation. Because teaching and learning often occur in a social context, these findings may have important implications for many scenarios in which people fine-tune their behaviors, given cues from others.

  17. A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

    PubMed Central

    Wang, Wei; Chen, Jiapin; Zivkovic, Aleksandar. S.; Xie, Huikai

    2016-01-01

    A Fourier transform spectrometer (FTS) that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS) micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF) bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD) for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work. PMID:27690047

  18. Applications of nonlinear systems theory to control design

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1988-01-01

    For most applications in the control area, the standard practice is to approximate a nonlinear mathematical model by a linear system. Since the feedback linearizable systems contain linear systems as a subclass, the procedure of approximating a nonlinear system by a feedback linearizable one is examined. Because many physical plants (e.g., aircraft at the NASA Ames Research Center) have mathematical models which are close to feedback linearizable systems, such approximations are certainly justified. Results and techniques are introduced for measuring the gap between the model and its truncated linearizable part. The topic of pure feedback systems is important to the study.

  19. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena

    1993-01-01

    This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.

  20. A feedback linearization approach to spacecraft control using momentum exchange devices. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dzielski, John Edward

    1988-01-01

    Recent developments in the area of nonlinear control theory have shown how coordiante changes in the state and input spaces can be used with nonlinear feedback to transform certain nonlinear ordinary differential equations into equivalent linear equations. These feedback linearization techniques are applied to resolve two problems arising in the control of spacecraft equipped with control moment gyroscopes (CMGs). The first application involves the computation of rate commands for the gimbals that rotate the individual gyroscopes to produce commanded torques on the spacecraft. The second application is to the long-term management of stored momentum in the system of control moment gyroscopes using environmental torques acting on the vehicle. An approach to distributing control effort among a group of redundant actuators is described that uses feedback linearization techniques to parameterize sets of controls which influence a specified subsystem in a desired way. The approach is adapted for use in spacecraft control with double-gimballed gyroscopes to produce an algorithm that avoids problematic gimbal configurations by approximating sets of gimbal rates that drive CMG rotors into desirable configurations. The momentum management problem is stated as a trajectory optimization problem with a nonlinear dynamical constraint. Feedback linearization and collocation are used to transform this problem into an unconstrainted nonlinear program. The approach to trajectory optimization is fast and robust. A number of examples are presented showing applications to the proposed NASA space station.

  1. Structural Properties and Estimation of Delay Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kwong, R. H. S.

    1975-01-01

    Two areas in the theory of delay systems were studied: structural properties and their applications to feedback control, and optimal linear and nonlinear estimation. The concepts of controllability, stabilizability, observability, and detectability were investigated. The property of pointwise degeneracy of linear time-invariant delay systems is considered. Necessary and sufficient conditions for three dimensional linear systems to be made pointwise degenerate by delay feedback were obtained, while sufficient conditions for this to be possible are given for higher dimensional linear systems. These results were applied to obtain solvability conditions for the minimum time output zeroing control problem by delay feedback. A representation theorem is given for conditional moment functionals of general nonlinear stochastic delay systems, and stochastic differential equations are derived for conditional moment functionals satisfying certain smoothness properties.

  2. Nonlinear, nonbinary cyclic group codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    New cyclic group codes of length 2(exp m) - 1 over (m - j)-bit symbols are introduced. These codes can be systematically encoded and decoded algebraically. The code rates are very close to Reed-Solomon (RS) codes and are much better than Bose-Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)-tuples are identified with a subgroup of the binary m-tuples which represents the field GF(2 exp m). Encoding is systematic and involves a two-stage procedure consisting of the usual linear feedback register (using the division or check polynomial) and a small table lookup. For low rates, a second shift-register encoding operation may be invoked. Decoding uses the RS error-correcting procedures for the m-tuple codes for m = 4, 5, and 6.

  3. Origin of Pareto-like spatial distributions in ecosystems.

    PubMed

    Manor, Alon; Shnerb, Nadav M

    2008-12-31

    Recent studies of cluster distribution in various ecosystems revealed Pareto statistics for the size of spatial colonies. These results were supported by cellular automata simulations that yield robust criticality for endogenous pattern formation based on positive feedback. We show that this patch statistics is a manifestation of the law of proportionate effect. Mapping the stochastic model to a Markov birth-death process, the transition rates are shown to scale linearly with cluster size. This mapping provides a connection between patch statistics and the dynamics of the ecosystem; the "first passage time" for different colonies emerges as a powerful tool that discriminates between endogenous and exogenous clustering mechanisms. Imminent catastrophic shifts (such as desertification) manifest themselves in a drastic change of the stability properties of spatial colonies.

  4. Thermal Signature Identification System (TheSIS)

    NASA Technical Reports Server (NTRS)

    Merritt, Scott; Bean, Brian

    2015-01-01

    We characterize both nonlinear and high order linear responses of fiber-optic and optoelectronic components using spread spectrum temperature cycling methods. This Thermal Signature Identification System (TheSIS) provides much more detail than conventional narrowband or quasi-static temperature profiling methods. This detail allows us to match components more thoroughly, detect subtle reversible shifts in performance, and investigate the cause of instabilities or irreversible changes. In particular, we create parameterized models of athermal fiber Bragg gratings (FBGs), delay line interferometers (DLIs), and distributed feedback (DFB) lasers, then subject the alternative models to selection via the Akaike Information Criterion (AIC). Detailed pairing of components, e.g. FBGs, is accomplished by means of weighted distance metrics or norms, rather than on the basis of a single parameter, such as center wavelength.

  5. An inductor-based converter with EMI reduction for low-voltage thermoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Chuang; Zhao, Kai; Li, Zunchao

    2017-07-01

    This paper presents a self-powered inductor-based converter which harvests thermoelectric energy and boosts extremely low voltage to a typical voltage level for supplying body sensor nodes. Electromagnetic interference (EMI) of the converter is reduced by spreading spectrum of fundamental frequency and harmonics via pseudo-random modulation, which is obtained via combining the linear feedback shift register and digitally controlled oscillator. Besides, the methods, namely extracting energy near MPP and reducing the power dissipation, are employed to improve the power efficiency. The presented inductor-based converter is designed and verified in CSMC CMOS 0.18-µm 1P6M process. The results reveal that it achieves the high efficiency and EMI reduction at the same time.

  6. Strength of German accent under altered auditory feedback

    PubMed Central

    HOWELL, PETER; DWORZYNSKI, KATHARINA

    2007-01-01

    Borden’s (1979, 1980) hypothesis that speakers with vulnerable speech systems rely more heavily on feedback monitoring than do speakers with less vulnerable systems was investigated. The second language (L2) of a speaker is vulnerable, in comparison with the native language, so alteration to feedback should have a detrimental effect on it, according to this hypothesis. Here, we specifically examined whether altered auditory feedback has an effect on accent strength when speakers speak L2. There were three stages in the experiment. First, 6 German speakers who were fluent in English (their L2) were recorded under six conditions—normal listening, amplified voice level, voice shifted in frequency, delayed auditory feedback, and slowed and accelerated speech rate conditions. Second, judges were trained to rate accent strength. Training was assessed by whether it was successful in separating German speakers speaking English from native English speakers, also speaking English. In the final stage, the judges ranked recordings of each speaker from the first stage as to increasing strength of German accent. The results show that accents were more pronounced under frequency-shifted and delayed auditory feedback conditions than under normal or amplified feedback conditions. Control tests were done to ensure that listeners were judging accent, rather than fluency changes caused by altered auditory feedback. The findings are discussed in terms of Borden’s hypothesis and other accounts about why altered auditory feedback disrupts speech control. PMID:11414137

  7. Interresponse Time Structures in Variable-Ratio and Variable-Interval Schedules

    ERIC Educational Resources Information Center

    Bowers, Matthew T.; Hill, Jade; Palya, William L.

    2008-01-01

    The interresponse-time structures of pigeon key pecking were examined under variable-ratio, variable-interval, and variable-interval plus linear feedback schedules. Whereas the variable-ratio and variable-interval plus linear feedback schedules generally resulted in a distinct group of short interresponse times and a broad distribution of longer…

  8. Strategies in probabilistic feedback learning in Parkinson patients OFF medication.

    PubMed

    Bellebaum, C; Kobza, S; Ferrea, S; Schnitzler, A; Pollok, B; Südmeyer, M

    2016-04-21

    Studies on classification learning suggested that altered dopamine function in Parkinson's Disease (PD) specifically affects learning from feedback. In patients OFF medication, enhanced learning from negative feedback has been described. This learning bias was not seen in observational learning from feedback, indicating different neural mechanisms for this type of learning. The present study aimed to compare the acquisition of stimulus-response-outcome associations in PD patients OFF medication and healthy control subjects in active and observational learning. 16 PD patients OFF medication and 16 controls were examined with three parallel learning tasks each, two feedback-based (active and observational) and one non-feedback-based paired associates task. No acquisition deficit was seen in the patients for any of the tasks. More detailed analyses on the learning strategies did, however, reveal that the patients showed more lose-shift responses during active feedback learning than controls, and that lose-shift and win-stay responses more strongly determined performance accuracy in patients than controls. For observational feedback learning, the performance of both groups correlated similarly with the performance in non-feedback-based paired associates learning and with the accuracy of observed performance. Also, patients and controls showed comparable evidence of feedback processing in observational learning. In active feedback learning, PD patients use alternative learning strategies than healthy controls. Analyses on observational learning did not yield differences between patients and controls, adding to recent evidence of a differential role of the human striatum in active and observational learning from feedback. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback

    PubMed Central

    2011-01-01

    Background The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback. Results Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli. Conclusions Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds. PMID:21645406

  10. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback.

    PubMed

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R

    2011-12-01

    The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Event-related potentials (ERPs) were recorded in response to+200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. A new approach to approximating the linear quadratic optimal control law for hereditary systems with control delays

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.

  12. Extending a Lippmann style seismometer's dynamic range by using a non-linear feedback circuit

    NASA Astrophysics Data System (ADS)

    Romeo, Giovanni; Spinelli, Giuseppe

    2013-04-01

    A Lippmann style seismometer uses a single-coil velocity-feedback method in order to extend toward lower frequencies a geophone's frequency response. Strong seismic signals may saturate the electronics, sometimes producing a characteristic whale-shaped recording. Adding a non linear feedback in the electronic circuit may avoid saturation, allowing the strong-motion use of the seismometer without affecting the usual performance. We show results from both simulations and experiments, using a Teledyne Geotech s13 as a mechanical part.

  13. Closed-loop stability of linear quadratic optimal systems in the presence of modeling errors

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R.; Sridhar, B.

    1976-01-01

    The well-known stabilizing property of linear quadratic state feedback design is utilized to evaluate the robustness of a linear quadratic feedback design in the presence of modeling errors. Two general conditions are obtained for allowable modeling errors such that the resulting closed-loop system remains stable. One of these conditions is applied to obtain two more particular conditions which are readily applicable to practical situations where a designer has information on the bounds of modeling errors. Relations are established between the allowable parameter uncertainty and the weighting matrices of the quadratic performance index, thereby enabling the designer to select appropriate weighting matrices to attain a robust feedback design.

  14. New nonlinear control algorithms for multiple robot arms

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Bejczy, A. K.; Yun, X.

    1988-01-01

    Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.

  15. Robust consensus control with guaranteed rate of convergence using second-order Hurwitz polynomials

    NASA Astrophysics Data System (ADS)

    Fruhnert, Michael; Corless, Martin

    2017-10-01

    This paper considers homogeneous networks of general, linear time-invariant, second-order systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilisable. We show that consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. To achieve this, we provide a new and simple derivation of the conditions for a second-order polynomial with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback.

  16. Computation of output feedback gains for linear stochastic systems using the Zangnill-Powell Method

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1975-01-01

    Because conventional optimal linear regulator theory results in a controller which requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. To this effect a stochastic linear model has been developed that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was then performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.

  17. Self-monitoring in the cerebral cortex: Neural responses to small pitch shifts in auditory feedback during speech production.

    PubMed

    Franken, Matthias K; Eisner, Frank; Acheson, Daniel J; McQueen, James M; Hagoort, Peter; Schoffelen, Jan-Mathijs

    2018-06-21

    Speaking is a complex motor skill which requires near instantaneous integration of sensory and motor-related information. Current theory hypothesizes a complex interplay between motor and auditory processes during speech production, involving the online comparison of the speech output with an internally generated forward model. To examine the neural correlates of this intricate interplay between sensory and motor processes, the current study uses altered auditory feedback (AAF) in combination with magnetoencephalography (MEG). Participants vocalized the vowel/e/and heard auditory feedback that was temporarily pitch-shifted by only 25 cents, while neural activity was recorded with MEG. As a control condition, participants also heard the recordings of the same auditory feedback that they heard in the first half of the experiment, now without vocalizing. The participants were not aware of any perturbation of the auditory feedback. We found auditory cortical areas responded more strongly to the pitch shifts during vocalization. In addition, auditory feedback perturbation resulted in spectral power increases in the θ and lower β bands, predominantly in sensorimotor areas. These results are in line with current models of speech production, suggesting auditory cortical areas are involved in an active comparison between a forward model's prediction and the actual sensory input. Subsequently, these areas interact with motor areas to generate a motor response. Furthermore, the results suggest that θ and β power increases support auditory-motor interaction, motor error detection and/or sensory prediction processing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Comment on "Synchronization of chaotic systems with delay using intermittent linear state feedback" [Chaos 18, 033122 (2008)].

    PubMed

    Zhang, Yinping; Wang, Qing-Guo

    2008-12-01

    In the referenced paper, there is technical carelessness in the third lemma and in the main result. Hence, it is a possible failure when the result is used to design the intermittent linear state feedback controller for exponential synchronization of two chaotic delayed systems.

  19. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  20. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    PubMed

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  1. A Heart Rate Analysis of Developmental Change in Feedback Processing and Rule Shifting from Childhood to Early Adulthood

    ERIC Educational Resources Information Center

    Crone, Eveline A.; Somsen, Riek J. M.; Zanolie, Kiki; Van der Molen, Maurits W.

    2006-01-01

    Over the course of development, the ability to switch between different tasks on the basis of feedback cues increases profoundly, but the role of performance monitoring remains unclear. Heart rate indexes can provide critical information about how individuals monitor feedback cues indicating that performance should be adjusted. In this study,…

  2. "Now That's the Feedback I Want!" Students' Reactions to Feedback on Graded Work and What They Do with It

    ERIC Educational Resources Information Center

    Pitt, Edd; Norton, Lin

    2017-01-01

    Since the introduction of the National Student Survey (NSS) in 2005, like many other institutions, the university where this study took place has expended substantial effort in improving the quality of feedback to students. However, despite much research, changes in pedagogical approaches and shifts in conceptual understanding related to feedback…

  3. ERP Correlates of Language-Specific Processing of Auditory Pitch Feedback during Self-Vocalization

    ERIC Educational Resources Information Center

    Chen, Zhaocong; Liu, Peng; Wang, Emily Q.; Larson, Charles R.; Huang, Dongfeng; Liu, Hanjun

    2012-01-01

    The present study investigated whether the neural correlates for auditory feedback control of vocal pitch can be shaped by tone language experience. Event-related potentials (P2/N1) were recorded from adult native speakers of Mandarin and Cantonese who heard their voice auditory feedback shifted in pitch by -50, -100, -200, or -500 cents when they…

  4. Feedback control of combustion instabilities from within limit cycle oscillations using H∞ loop-shaping and the ν-gap metric

    PubMed Central

    Morgans, Aimee S.

    2016-01-01

    Combustion instabilities arise owing to a two-way coupling between acoustic waves and unsteady heat release. Oscillation amplitudes successively grow, until nonlinear effects cause saturation into limit cycle oscillations. Feedback control, in which an actuator modifies some combustor input in response to a sensor measurement, can suppress combustion instabilities. Linear feedback controllers are typically designed, using linear combustor models. However, when activated from within limit cycle, the linear model is invalid, and such controllers are not guaranteed to stabilize. This work develops a feedback control strategy guaranteed to stabilize from within limit cycle oscillations. A low-order model of a simple combustor, exhibiting the essential features of more complex systems, is presented. Linear plane acoustic wave modelling is combined with a weakly nonlinear describing function for the flame. The latter is determined numerically using a level set approach. Its implication is that the open-loop transfer function (OLTF) needed for controller design varies with oscillation level. The difference between the mean and the rest of the OLTFs is characterized using the ν-gap metric, providing the minimum required ‘robustness margin’ for an H∞ loop-shaping controller. Such controllers are designed and achieve stability both for linear fluctuations and from within limit cycle oscillations. PMID:27493558

  5. Feedback Linearization in a Six Degree-of-Freedom MAG-LEV Stage

    NASA Technical Reports Server (NTRS)

    Ludwick, Stephen J.; Trumper, David L.; Holmes, Michael L.

    1996-01-01

    A six degree-of-freedom electromagnetically suspended motion control stage (the Angstrom Stage) has been designed and constructed for use in short-travel, high-resolution motion control applications. It achieves better than 0.5 nm resolution over a 100 micron range of travel. The stage consists of a single moving element (the platen) floating in an oil filled chamber. The oil is crucial to the stage's operation since it forms squeeze film dampers between the platen and the frame. Twelve electromagnetic actuators provide the forces necessary to suspend and servo the platen, and six capacitance probes measure its position relative to the frame. The system is controlled using a digital signal processing board residing in a '486 based PC. This digital controller implements a feedback linearization algorithm in real-time to account for nonlinearities in both the magnetic actuators and the fluid film dampers. The feedback linearization technique reduces a highly nonlinear plant with coupling between the degrees of freedom into one that is linear, decoupled, and setpoint independent. The key to this procedure is a detailed plant model. The operation of the feedback linearization procedure is transparent to the outer loop of the controller, and so a proportional controller is sufficient for normal operation. We envision applications of this stage in scanned probe microscopy and for integrated circuit measurement.

  6. Dual-range linearized transimpedance amplifier system

    DOEpatents

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  7. Decoupling in linear time-varying multivariable systems

    NASA Technical Reports Server (NTRS)

    Sankaran, V.

    1973-01-01

    The necessary and sufficient conditions for the decoupling of an m-input, m-output, linear time varying dynamical system by state variable feedback is described. The class of feedback matrices which decouple the system are illustrated. Systems which do not satisfy these results are described and systems with disturbances are considered. Some examples are illustrated to clarify the results.

  8. Self-sustained micro mechanical oscillator with linear feedback

    DOE PAGES

    Chen, Changyao; Zanette, Damian H.; Guest, Jeffrey R.; ...

    2016-07-01

    Autonomous oscillators, such as clocks and lasers, produce periodic signals without any external frequency reference. In order to sustain stable periodic motions, there needs to be external energy supply as well as nonlinearity built into the oscillator to regulate the amplitude. Usually, nonlinearity is provided by the sustaining feedback mechanism, which also supplies energy, whereas the constituent resonator that determines the output frequency stays linear. Here we propose a new self-sustaining scheme that relies on the nonlinearity originating from the resonator itself to limit the oscillation amplitude, while the feedback remains linear. We introduce a model to describe the workingmore » principle of the self-sustained oscillations and validate it with experiments performed on a nonlinear microelectromechanical (MEMS) based oscillator.« less

  9. Robust H(infinity) tracking control of boiler-turbine systems.

    PubMed

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Reduced-order model based feedback control of the modified Hasegawa-Wakatani model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goumiri, I. R.; Rowley, C. W.; Ma, Z.

    2013-04-15

    In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in flow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then, a model-based feedback controller is designed for the reduced order model using linear quadratic regulators. Finally, a linear quadratic Gaussian controller which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHW equations to stabilizemore » the equilibrium and suppress the transition to drift-wave induced turbulence.« less

  11. Reduced-Order Model Based Feedback Control For Modified Hasegawa-Wakatani Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goumiri, I. R.; Rowley, C. W.; Ma, Z.

    2013-01-28

    In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modi ed Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in ow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then a modelbased feedback controller is designed for the reduced order model using linear quadratic regulators (LQR). Finally, a linear quadratic gaussian (LQG) controller, which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHWmore » equations to stabilize the equilibrium and suppress the transition to drift-wave induced turbulence.« less

  12. Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2003-01-01

    In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.

  13. Permanent magnet flux-biased magnetic actuator with flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  14. Feedback shift register sequences versus uniformly distributed random sequences for correlation chromatography

    NASA Technical Reports Server (NTRS)

    Kaljurand, M.; Valentin, J. R.; Shao, M.

    1996-01-01

    Two alternative input sequences are commonly employed in correlation chromatography (CC). They are sequences derived according to the algorithm of the feedback shift register (i.e., pseudo random binary sequences (PRBS)) and sequences derived by using the uniform random binary sequences (URBS). These two sequences are compared. By applying the "cleaning" data processing technique to the correlograms that result from these sequences, we show that when the PRBS is used the S/N of the correlogram is much higher than the one resulting from using URBS.

  15. The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales

    USDA-ARS?s Scientific Manuscript database

    Regime shifts are difficult-to-reverse transitions that occur when an ecosystem reorganizes around a new set of self-reinforcing feedbacks. Regime shifts are predicted to occur when the intensity of some exogenous driver variable, such as temperature, annual harvest rate, or nutrient addition rate, ...

  16. Phase-Shifted Laser Feedback Interferometry

    NASA Technical Reports Server (NTRS)

    Ovryn, Benjie

    1999-01-01

    Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.

  17. Compensation for pitch-shifted auditory feedback during the production of Mandarin tone sequences

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Larson, Charles R.; Bauer, Jay J.; Hain, Timothy C.

    2004-08-01

    Recent research has found that while speaking, subjects react to perturbations in pitch of voice auditory feedback by changing their voice fundamental frequency (F0) to compensate for the perceived pitch-shift. The long response latencies (150-200 ms) suggest they may be too slow to assist in on-line control of the local pitch contour patterns associated with lexical tones on a syllable-to-syllable basis. In the present study, we introduced pitch-shifted auditory feedback to native speakers of Mandarin Chinese while they produced disyllabic sequences /ma ma/ with different tonal combinations at a natural speaking rate. Voice F0 response latencies (100-150 ms) to the pitch perturbations were shorter than syllable durations reported elsewhere. Response magnitudes increased from 50 cents during static tone to 85 cents during dynamic tone productions. Response latencies and peak times decreased in phrases involving a dynamic change in F0. The larger response magnitudes and shorter latency and peak times in tasks requiring accurate, dynamic control of F0, indicate this automatic system for regulation of voice F0 may be task-dependent. These findings suggest that auditory feedback may be used to help regulate voice F0 during production of bi-tonal Mandarin phrases.

  18. Global desertification: Drivers and feedbacks

    NASA Astrophysics Data System (ADS)

    D'Odorico, Paolo; Bhattachan, Abinash; Davis, Kyle F.; Ravi, Sujith; Runyan, Christiane W.

    2013-01-01

    Desertification is a change in soil properties, vegetation or climate, which results in a persistent loss of ecosystem services that are fundamental to sustaining life. Desertification affects large dryland areas around the world and is a major cause of stress in human societies. Here we review recent research on the drivers, feedbacks, and impacts of desertification. A multidisciplinary approach to understanding the drivers and feedbacks of global desertification is motivated by our increasing need to improve global food production and to sustainably manage ecosystems in the context of climate change. Classic desertification theories look at this process as a transition between stable states in bistable ecosystem dynamics. Climate change (i.e., aridification) and land use dynamics are the major drivers of an ecosystem shift to a “desertified” (or “degraded”) state. This shift is typically sustained by positive feedbacks, which stabilize the system in the new state. Desertification feedbacks may involve land degradation processes (e.g., nutrient loss or salinization), changes in rainfall regime resulting from land-atmosphere interactions (e.g., precipitation recycling, dust emissions), or changes in plant community composition (e.g., shrub encroachment, decrease in vegetation cover). We analyze each of these feedback mechanisms and discuss their possible enhancement by interactions with socio-economic drivers. Large scale effects of desertification include the emigration of “environmental refugees” displaced from degraded areas, climatic changes, and the alteration of global biogeochemical cycles resulting from the emission and long-range transport of fine mineral dust. Recent research has identified some possible early warning signs of desertification, which can be used as indicators of resilience loss and imminent shift to desert-like conditions. We conclude with a brief discussion on some desertification control strategies implemented in different regions around the world.

  19. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. © 2016 John Wiley & Sons Ltd.

  20. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  1. Feedback control of an electrorheological long-stroke vibration damper

    NASA Astrophysics Data System (ADS)

    Sims, Neil D.; Stanway, Roger; Johnson, Andrew R.; Peel, David J.; Bullough, William A.

    1999-06-01

    It is widely acknowledged that the inherent non-linearity of smart fluid dampers is inhibiting the development of effective control regimes, and mass-production devices. In an earlier publication, an innovative solution to this problem was presented -- using a simple feedback control strategy to linearize the response. The study used a quasi-steady model of a long-stroke Electrorheological damper, and showed how proportional feedback control could linearize the simulated response. However, this initial research did not consider the dynamics of the damper's behavior, and so the development of a more advanced model has been necessary. In this article, the authors present an extension to this earlier study, using a model of the damper's response that is capable of accurately predicting the dynamic response of the damper. To introduce the topic, the electrorheological long-stroke damper test rig is described, and an overview of the earlier study is given. The advanced model is then derived, and its predictions are compared to experimental data from the test rig. This model is then incorporated into the feedback control simulations, and it is shown how the control strategy is still able to linearize the response in simulations.

  2. VLF wave growth and discrete emission triggering in the magnetosphere - A feedback model

    NASA Technical Reports Server (NTRS)

    Helliwell, R. A.; Inan, U. S.

    1982-01-01

    A simple nonlinear feedback model is presented to explain VLF wave growth and emission triggering observed in VLF transmission experiments. The model is formulated in terms of the interaction of electrons with a slowly varying wave in an inhomogeneous medium as in an unstable feedback amplifier with a delay line; constant frequency oscillations are generated on the magnetic equator, while risers and fallers are generated on the downstream and upstream sides of the equator, respectively. Quantitative expressions are obtained for the stimulated radiation produced by energy exchanged between energetic electrons and waves by Doppler-shifted cyclotron resonance, and feedback between the stimulated radiation and the phase bunched currents is incorporated in terms of a two-port discrete time model. The resulting model is capable of explaining the observed temporal growth and saturation effects, phase advance, retardation or frequency shift during growth in the context of a single parameter depending on the energetic particle distribution function, as well as pretermination triggering.

  3. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    PubMed

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  4. A van der Waals-like Transition Between Normal and Cancerous Phases in Cell Populations Dynamics of Colorectal Cancer

    NASA Astrophysics Data System (ADS)

    Qiu, Kang; Wang, Li-Fang; Shen, Jian; Yousif, Alssadig A. M.; He, Peng; Shao, Dan-Dan; Zhang, Xiao-Min; Kirunda, John B.; Jia, Ya

    2016-11-01

    Based on a deterministic continuous model of cell populations dynamics in the colonic crypt and in colorectal cancer, we propose four combinations of feedback mechanisms in the differentiations from stem cells (SCs) to transit cells (TCs) and then to differentiated cells (DCs), the four combinations include the double linear (LL), the linear and saturating (LS), the saturating and linear (SL), and the double saturating (SS) feedbacks, respectively. The relative fluctuations of the population of SCs, TCs, and DCs around equilibrium states with four feedback mechanisms are studied by using the Langevin method. With the increasing of net growth rate of TCs, it is found that the Fano factors of TCs and DCs go to a peak in a transient phase, and then increase again to infinity in the cases of LS and SS feedbacks. The “up-down-up” characteristic on the Fano factor (like the van der Waals loop) demonstrates that there exists a transient phase between the normal and cancerous phases, our novel findings suggest that the mathematical model with LS or SS feedback might be better to elucidate the dynamics of a normal and abnormal (cancerous) phases.

  5. Reduced-order dynamic output feedback control of uncertain discrete-time Markov jump linear systems

    NASA Astrophysics Data System (ADS)

    Morais, Cecília F.; Braga, Márcio F.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.

    2017-11-01

    This paper deals with the problem of designing reduced-order robust dynamic output feedback controllers for discrete-time Markov jump linear systems (MJLS) with polytopic state space matrices and uncertain transition probabilities. Starting from a full order, mode-dependent and polynomially parameter-dependent dynamic output feedback controller, sufficient linear matrix inequality based conditions are provided for the existence of a robust reduced-order dynamic output feedback stabilising controller with complete, partial or none mode dependency assuring an upper bound to the ? or the ? norm of the closed-loop system. The main advantage of the proposed method when compared to the existing approaches is the fact that the dynamic controllers are exclusively expressed in terms of the decision variables of the problem. In other words, the matrices that define the controller realisation do not depend explicitly on the state space matrices associated with the modes of the MJLS. As a consequence, the method is specially suitable to handle order reduction or cluster availability constraints in the context of ? or ? dynamic output feedback control of discrete-time MJLS. Additionally, as illustrated by means of numerical examples, the proposed approach can provide less conservative results than other conditions in the literature.

  6. Virtual reality and exercise: behavioral and psychological effects of visual feedback.

    PubMed

    Mestre, Daniel R; Ewald, Marine; Maiano, Christophe

    2011-01-01

    We herein report an experimental study examining the potential positive effects of Virtual Reality (VR) feedback during an indoor bicycling exercise. Using a regular bike coupled to a VR system, we compared conditions of no VR feedback, VR feedback and VR feedback with the presence of a virtual coach, acting as a pacer. In VR feedback conditions, we observed a decreased level of perceived exertion and an increased level of enjoyment of physical activity, when compared to a regular exercise situation (no VR feedback). We also observed a shift in the subjects' attentional focus, from association (in the absence of VR feedback) to dissociation (in VR feedback conditions). Moreover, the presence of a virtual coach in the VR environment triggered a systematic regulation of the (virtual) displacement speed, whose relationship with perceived enjoyment and exertion require further work.

  7. The rotational feedback on linear-momentum balance in glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Martinec, Zdenek; Hagedoorn, Jan

    2015-04-01

    The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial-isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea-level equation, has been mathematically described by the sea-level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea-level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar motion response to the GIA process and the rotationally-induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not. Numerical simulations show that the resulting difference in radial displacement and sea-level change between these situations since the Last Glacial Maximum reaches values of ± 25 m and ± 1.8 m, respectively. Furthermore, the surface deformation pattern is modified by up to 10% in areas of former or ongoing glaciation, but by up to 50% at the bottom of the southern Indian ocean. This also results in the movement of coastlines during the last deglaciation to differ between the two cases due to the difference in the ocean loading, which is seen for instance in the area around Hudson Bay, Canada, and along the Chinese, Australian, or Argentinian coastlines.

  8. The rotational feedback on linear-momentum balance in glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Martinec, Zdeněk; Hagedoorn, Jan

    2014-12-01

    The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea level equation, has been mathematically described by the sea level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism, which is studied in this paper, as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models developed by Martinec and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar-motion response to the GIA process and the rotationally induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not. Numerical simulations show that the resulting difference in radial displacement and sea level change between these situations since the Last Glacial Maximum reaches values of ±25 and ±1.8 m, respectively. Furthermore, the surface deformation pattern is modified by up to 10 per cent in areas of former or ongoing glaciation, but by up to 50 per cent at the bottom of the southern Indian ocean. This also results in the movement of coastlines during the last deglaciation to differ between the two cases due to the difference in the ocean loading, which is seen for instance in the area around Hudson Bay, Canada and along the Chinese, Australian or Argentinian coastlines.

  9. Active control of multiple resistive wall modes

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  10. Manipulator control by exact linearization

    NASA Technical Reports Server (NTRS)

    Kruetz, K.

    1987-01-01

    Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.

  11. R-parametrization and its role in classification of linear multivariable feedback systems

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.

    1988-01-01

    A classification of all the compensators that stabilize a given general plant in a linear, time-invariant multi-input, multi-output feedback system is developed. This classification, along with the associated necessary and sufficient conditions for stability of the feedback system, is achieved through the introduction of a new parameterization, referred to as R-Parameterization, which is a dual of the familiar Q-Parameterization. The classification is made to the stability conditions of the compensators and the plant by themselves; and necessary and sufficient conditions are based on the stability of Q and R themselves.

  12. Changes in regional and temporal patterns of activity associated with aging during the performance of a lexical set-shifting task.

    PubMed

    Martins, Ruben; Simard, France; Provost, Jean-Sebastien; Monchi, Oury

    2012-06-01

    Some older individuals seem to use compensatory mechanisms to maintain high-level performance when submitted to cognitive tasks. However, whether and how these mechanisms affect fronto-striatal activity has never been explored. The purpose of this study was to investigate how aging affects brain patterns during the performance of a lexical analog of the Wisconsin Card Sorting Task, which has been shown to strongly depend on fronto-striatal activity. In the present study, both younger and older individuals revealed significant fronto-striatal loop activity associated with planning and execution of set-shifts, though age-related striatal activity reduction was observed. Most importantly, while the younger group showed the involvement of a "cognitive loop" during the receiving negative feedback period (which indicates that a set-shift will be required to perform the following trial) and the involvement of a "motor loop" during the matching after negative feedback period (when the set-shift must be performed), older participants showed significant activation of both loops during the matching after negative feedback period only. These findings are in agreement with the "load-shift" model postulated by Velanova et al. (Velanova K, Lustig C, Jacoby LL, Buckner RL. 2007. Evidence for frontally mediated controlled processing differences in older adults. Cereb Cortex. 17:1033-1046.) and indicate that the model is not limited to memory retrieval but also applies to executive processes relying on fronto-striatal regions.

  13. Geometric foundations of the theory of feedback equivalence

    NASA Technical Reports Server (NTRS)

    Hermann, R.

    1987-01-01

    A description of feedback control is presented within the context of differential equations, differential geometry, and Lie theory. Work related to the integration of differential geometry with the control techniques of feedback linearization is summarized. Particular attention is given to the application of the theory of vector field systems. Feedback invariants for control systems in state space form are also addressed.

  14. Qualitative and quantitative feedback in the context of competency-based education.

    PubMed

    Tekian, Ara; Watling, Christopher J; Roberts, Trudie E; Steinert, Yvonne; Norcini, John

    2017-12-01

    Research indicates the importance and usefulness of feedback, yet with the shift of medical curricula toward competencies, feedback is not well understood in this context. This paper attempts to identify how feedback fits within a competency-based curriculum. After careful consideration of the literature, the following conclusions are drawn: (1) Because feedback is predicated on assessment, the assessment should be designed to optimize and prevent inaccuracies in feedback; (2) Giving qualitative feedback in the form of a conversation would lend credibility to the feedback, address emotional obstacles and create a context in which feedback is comfortable; (3) Quantitative feedback in the form of individualized data could fulfill the demand for more feedback, help students devise strategies on how to improve, allow students to compare themselves to their peers, recognizing that big data have limitations; and (4) Faculty development needs to incorporate and promote cultural and systems changes with regard to feedback. A better understanding of the role of feedback in competency-based education could result in more efficient learning for students.

  15. Robot-Arm Dynamic Control by Computer

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.

    1987-01-01

    Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.

  16. Acoustic feedback margin improvements in hearing instruments using a prototype DFS (digital feedback suppression) system.

    PubMed

    Dyrlund, O; Bisgaard, N

    1991-01-01

    The properties of a prototype DFS (digital feedback suppression) system have been investigated. 21 ears fitted with behind-the-ear (BTE) hearing instruments and hard acrylic ear-moulds and 4 ears fitted with vented in-the-ear (ITE) hearing instruments were selected for the investigation. Two ITE instruments with different venting were employed to one of the ears. Complex loop gain has been measured in an anechoic room, and from these measurements the improvements in acoustic feedback margin due to the DFS system have been determined. For the BTE group, median values of 13.1 and 10.0 dB of improvement were established for two sets of measurements introducing a 180 degrees phase shift in connection with the last set of measurements. For the ITE group, values from 9.8 to 16.1 dB and from 13.7 to 16.3 dB of improvement were observed for the normal and the 180 degrees phase shift conditions respectively. Beyond this the DFS system may improve the sound quality to some extent, because the amplitude distortion, caused by the external feedback signal, is almost completely eliminated.

  17. The Stability Region for Feedback Control of the Wake Behind Twin Oscillating Cylinders

    NASA Astrophysics Data System (ADS)

    Borggaard, Jeff; Gugercin, Serkan; Zietsman, Lizette

    2016-11-01

    Linear feedback control has the ability to stabilize vortex shedding behind twin cylinders where cylinder rotation is the actuation mechanism. Complete elimination of the wake is only possible for certain Reynolds numbers and cylinder spacing. This is related to the presence of asymmetric unstable modes in the linearized system. We investigate this region of parameter space using a number of closed-loop simulations that bound this region. We then consider the practical issue of designing feedback controls based on limited state measurements by building a nonlinear compensator using linear robust control theory with and incorporating the nonlinear terms in the compensator (e.g., using the extended Kalman filter). Interpolatory model reduction methods are applied to the large discretized, linearized Navier-Stokes system and used for computing the control laws and compensators. Preliminary closed-loop simulations of a three-dimensional version of this problem will also be presented. Supported in part by the National Science Foundation.

  18. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  19. Model-independent particle accelerator tuning

    DOE PAGES

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less

  20. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.

  1. Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.

    PubMed

    McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2013-12-13

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.

  2. Reduced state feedback gain computation. [optimization and control theory for aircraft control

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    Because application of conventional optimal linear regulator theory to flight controller design requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. Therefore, a stochastic linear model that was developed is presented which accounts for aircraft parameter and initial uncertainty, measurement noise, turbulence, pilot command and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.

  3. Asymptotic Eigenstructures

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.

    1980-01-01

    The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.

  4. Analysis of the faster-than-Nyquist optimal linear multicarrier system

    NASA Astrophysics Data System (ADS)

    Marquet, Alexandre; Siclet, Cyrille; Roque, Damien

    2017-02-01

    Faster-than-Nyquist signalization enables a better spectral efficiency at the expense of an increased computational complexity. Regarding multicarrier communications, previous work mainly relied on the study of non-linear systems exploiting coding and/or equalization techniques, with no particular optimization of the linear part of the system. In this article, we analyze the performance of the optimal linear multicarrier system when used together with non-linear receiving structures (iterative decoding and direct feedback equalization), or in a standalone fashion. We also investigate the limits of the normality assumption of the interference, used for implementing such non-linear systems. The use of this optimal linear system leads to a closed-form expression of the bit-error probability that can be used to predict the performance and help the design of coded systems. Our work also highlights the great performance/complexity trade-off offered by decision feedback equalization in a faster-than-Nyquist context. xml:lang="fr"

  5. How linear response shaped models of neural circuits and the quest for alternatives.

    PubMed

    Herfurth, Tim; Tchumatchenko, Tatjana

    2017-10-01

    In the past decades, many mathematical approaches to solve complex nonlinear systems in physics have been successfully applied to neuroscience. One of these tools is the concept of linear response functions. However, phenomena observed in the brain emerge from fundamentally nonlinear interactions and feedback loops rather than from a composition of linear filters. Here, we review the successes achieved by applying the linear response formalism to topics, such as rhythm generation and synchrony and by incorporating it into models that combine linear and nonlinear transformations. We also discuss the challenges encountered in the linear response applications and argue that new theoretical concepts are needed to tackle feedback loops and non-equilibrium dynamics which are experimentally observed in neural networks but are outside of the validity regime of the linear response formalism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Linear and nonlinear winter atmospheric responses to extreme phases of low frequency Pacific sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Cao, Dandan; Wu, Qigang; Hu, Aixue; Yao, Yonghong; Liu, Shizuo; Schroeder, Steven R.; Yang, Fucheng

    2018-02-01

    This study examines Northern Hemisphere winter (DJFM) atmospheric responses to opposite strong phases of interdecadal (low frequency, LF) Pacific sea surface temperature (SST) forcing, which resembles El Niño-Southern Oscillation (ENSO) on a longer time scale, in observations and GFDL and CAM4 model simulations. Over the Pacific-North America (PNA) sector, linear observed responses of 500-hPa height (Z500) anomalies resemble the PNA teleconnection pattern, but show a PNA-like nonlinear response because of a westward Z500 shift in the negative (LF-) relative to the positive LF (LF+) phase. Significant extratropical linear responses include a North Atlantic Oscillation (NAO)-like Z500 anomaly, a dipole-like Z500 anomaly over northern Eurasia associated with warming over mid-high latitude Eurasia, and a Southern Annular anomaly pattern associated with warming in southern land areas. Significant nonlinear Z500 responses also include a NAO-like anomaly pattern. Models forced by LF+ and LF- SST anomalies reproduce many aspects of observed linear and nonlinear responses over the Pacific-North America sector, and linear responses over southern land, but not in the North Atlantic-European sector and Eurasia. Both models simulate PNA-like linear responses in the North Pacific-North America region similar to observed, but show larger PNA-like LF+ responses, resulting in a PNA nonlinear response. The nonlinear PNA responses result from both nonlinear western tropical Pacific rainfall changes and extratropical transient eddy feedbacks. With LF tropical Pacific forcing only (LFTP+ and LFTP-, climatological SST elsewhere), CAM4 simulates a significant NAO response to LFTP-, including a linear negative and nonlinear positive NAO response.

  7. Cortico-Cortical interactions between and within three cortical auditory areas specialized for time-domain signal processing

    PubMed Central

    Tang, Jie; Suga, Nobuo

    2009-01-01

    In auditory cortex of the mustached bat, the FF (F means frequency modulation), dorsal fringe (DF) and ventral fringe (VF) areas consist of “combination-sensitive” neurons tuned to the pair of an emitted biosonar pulse and its echo with a specific delay (best delay: BD). The DF and VF areas are hierarchically at a higher level than the FF area. Focal electric stimulation of the FF area evokes “centrifugal” BD shifts of DF neurons, i.e., shifts away from the BD of the stimulated FF neurons, whereas stimulation of the DF neurons evokes “centripetal” BD shifts of FF neurons, i.e., shifts toward the BD of the stimulated DF neurons. In our current studies, we found that the feed forward projection from FF neurons evokes centrifugal BD shifts of VF neurons, that the feedback projection from VF neurons evokes centripetal BD shifts of FF neurons, that the contralateral projection from DF neurons evokes centripetal BD shifts of DF neurons, and that the centripetal BD shifts evoked by the DF and VF neurons are 2.5 times larger than the centrifugal BD shifts evoked by the FF neurons. The centrifugal BD shifts shape the selective neural representation of a specific target-distance, whereas the centripetal BD shifts expand the representation of the selected specific target-distance to focus on the processing of the target information at a specific distance. The centrifugal and centripetal BD shifts evoked by the feed forward and feedback projections promote finer analysis of a target at shorter distances. PMID:19494145

  8. A bilateral cortical network responds to pitch perturbations in speech feedback

    PubMed Central

    Kort, Naomi S.; Nagarajan, Srikantan S.; Houde, John F.

    2014-01-01

    Auditory feedback is used to monitor and correct for errors in speech production, and one of the clearest demonstrations of this is the pitch perturbation reflex. During ongoing phonation, speakers respond rapidly to shifts of the pitch of their auditory feedback, altering their pitch production to oppose the direction of the applied pitch shift. In this study, we examine the timing of activity within a network of brain regions thought to be involved in mediating this behavior. To isolate auditory feedback processing relevant for motor control of speech, we used magnetoencephalography (MEG) to compare neural responses to speech onset and to transient (400ms) pitch feedback perturbations during speaking with responses to identical acoustic stimuli during passive listening. We found overlapping, but distinct bilateral cortical networks involved in monitoring speech onset and feedback alterations in ongoing speech. Responses to speech onset during speaking were suppressed in bilateral auditory and left ventral supramarginal gyrus/posterior superior temporal sulcus (vSMG/pSTS). In contrast, during pitch perturbations, activity was enhanced in bilateral vSMG/pSTS, bilateral premotor cortex, right primary auditory cortex, and left higher order auditory cortex. We also found speaking-induced delays in responses to both unaltered and altered speech in bilateral primary and secondary auditory regions, the left vSMG/pSTS and right premotor cortex. The network dynamics reveal the cortical processing involved in both detecting the speech error and updating the motor plan to create the new pitch output. These results implicate vSMG/pSTS as critical in both monitoring auditory feedback and initiating rapid compensation to feedback errors. PMID:24076223

  9. Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: A case study at 6000 years B.P.

    USGS Publications Warehouse

    Kutzbach, J.-E.; Bartlein, P.J.; Foley, J.A.; Harrison, S.P.; Hosteller, S.W.; Liu, Z.; Prentice, I.C.; Webb, T.

    1996-01-01

    Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10-5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCM1, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100-200 km north in most sectors. Both CCM1 and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets.

  10. Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun

    2014-08-01

    By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.

  11. The possibility of a tipping point in the Arctic sea ice cover, and associated early-warning signals

    NASA Astrophysics Data System (ADS)

    Jastamin Steene, Rebekka

    2017-04-01

    As the Arctic sea ice has become one of the primer indicators of global climate change, with a seemingly accelerated loss in both ice extent and volume the latest decades, the existence of a tipping point related to the Arctic sea ice cover has been widely debated. Several observed and potential abrupt transitions in the climate system may be interpreted as bifurcations in randomly driven dynamical systems. This means that a system approaching a bifurcation point shifts from one stable state to another, and we say that the system is subject to a critical transition. As the equilibrium states become unstable in the vicinity of a bifurcation point the characteristic relaxation times increases, and the system is said to experience a "critical slowing down". This makes it plausible to observe so called early-warning signals (EWS) when approaching a critical transition. In the Arctic non-linear mechanisms like the temperature response of the ice-albedo feedback can potentially cause a sudden shift to an ice-free Arctic Ocean. Using bifurcation theory and potential analyses we examine time series of observational data of the Arctic sea ice, investigating the possibility of multiple states in the behavior of the ice cover. We further debate whether a shift between states is irreversible, and whether it can be preluded by early-warning signals.

  12. A linear quadratic Gaussian with loop transfer recovery proximity operations autopilot for spacecraft. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Chen, George T.

    1987-01-01

    An automatic control scheme for spacecraft proximity operations is presented. The controller is capable of holding the vehicle at a prescribed location relative to a target, or maneuvering it to a different relative position using straight line-of-sight translations. The autopilot uses a feedforward loop to initiate and terminate maneuvers, and for operations at nonequilibrium set-points. A multivariate feedback loop facilitates precise position and velocity control in the presence of sensor noise. The feedback loop is formulated using the Linear Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) design procedure. Linear models of spacecraft dynamics, adapted from Clohessey-Wiltshire Equations, are augmented and loop shaping techniques are applied to design a target feedback loop. The loop transfer recovery procedure is used to recover the frequency domain properties of the target feedback loop. The resulting compensator is integrated into an autopilot which is tested in a high fidelity Space Shuttle Simulator. The autopilot performance is evaluated for a variety of proximity operations tasks envisioned for future Shuttle flights.

  13. A comparative study of linear and nonlinear MIMO feedback configurations

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Lin, C. A.

    1984-01-01

    In this paper, a comparison is conducted of several feedback configurations which have appeared in the literature (e.g. unity-feedback, model-reference, etc.). The linear time-invariant multi-input multi-output case is considered. For each configuration, the stability conditions are specified, the relation between achievable I/O maps and the achievable disturbance-to-output maps is examined, and the effect of various subsystem perturbations on the system performance is studied. In terms of these considerations, it is demonstrated that one of the configurations considered is better than all the others. The results are then extended to the nonlinear multi-input multi-output case.

  14. Fiber Bragg grating interrogation using wavelength modulated tunable distributed feedback lasers and a fiber-optic Mach-Zehnder interferometer.

    PubMed

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-20

    This paper demonstrates a technique of high-resolution interrogation of two fiber Bragg gratings (FBGs) with flat-topped reflection spectra centered on 1649.55 nm and 1530.182 nm with narrow line width tunable semiconductor lasers emitting at 1651.93 nm and 1531.52 nm, respectively. The spectral shift of the reflection spectrum in response to temperature and strain is accurately measured with a fiber-optic Mach-Zehnder interferometer that has a free spectral range of 0.0523 GHz and a broadband photodetector. Laser wavelength modulation and harmonic detection techniques are used to transform the gentle edges of the flat-topped FBG into prominent leading and trailing peaks that are up to five times narrower than the FBG spectrum. Either of these peaks can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution down to a value of 0.47 pm. A digital signal processing board is used to measure the temperature-induced spectral shifts over the range of 30°C-80°C and strain-induced spectral shifts from 0  μϵ to 12,000  μϵ. The shift is linear in both cases with a temperature sensitivity of 12.8 pm/°C and strain sensitivity of 0.12  pm/μϵ. The distinctive feature of this technique is that it does not use an optical spectrum analyzer at any stage of its design or operation. It can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments and for biomedical applications in stroke rehabilitation monitoring.

  15. Fixed order dynamic compensation for multivariable linear systems

    NASA Technical Reports Server (NTRS)

    Kramer, F. S.; Calise, A. J.

    1986-01-01

    This paper considers the design of fixed order dynamic compensators for multivariable time invariant linear systems, minimizing a linear quadratic performance cost functional. Attention is given to robustness issues in terms of multivariable frequency domain specifications. An output feedback formulation is adopted by suitably augmenting the system description to include the compensator states. Either a controller or observer canonical form is imposed on the compensator description to reduce the number of free parameters to its minimal number. The internal structure of the compensator is prespecified by assigning a set of ascending feedback invariant indices, thus forming a Brunovsky structure for the nominal compensator.

  16. Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility

    NASA Technical Reports Server (NTRS)

    Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

    2014-01-01

    The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

  17. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  18. Motivation and attention: Incongruent effects of feedback on the processing of valence.

    PubMed

    Rothermund, Klaus

    2003-09-01

    Four experiments investigated the relation between outcome-related motivational states and processes of automatic attention allocation. Experiments 1-3 analyzed influences of feedback on evaluative decisions. Words of opposite valence to the feedback were processed faster, indicating that it is easier to allocate attention to the valence of an affectively incongruent word. Experiment 4 replicated the incongruent effect with interference effects of word valence in a grammatical-categorization task, indicating that the effect reflects automatic attentional capture. In all experiments, incongruent effects of feedback emerged only in a situation involving an attentional shift between words that differed in valence.

  19. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  20. Flatness-based control and Kalman filtering for a continuous-time macroeconomic model

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.

    2017-11-01

    The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.

  1. Regulating recognition decisions through incremental reinforcement learning.

    PubMed

    Han, Sanghoon; Dobbins, Ian G

    2009-06-01

    Does incremental reinforcement learning influence recognition memory judgments? We examined this question by subtly altering the relative validity or availability of feedback in order to differentially reinforce old or new recognition judgments. Experiment 1 probabilistically and incorrectly indicated that either misses or false alarms were correct in the context of feedback that was otherwise accurate. Experiment 2 selectively withheld feedback for either misses or false alarms in the context of feedback that was otherwise present. Both manipulations caused prominent shifts of recognition memory decision criteria that remained for considerable periods even after feedback had been altogether removed. Overall, these data demonstrate that incremental reinforcement-learning mechanisms influence the degree of caution subjects exercise when evaluating explicit memories.

  2. Minimal-Inversion Feedforward-And-Feedback Control System

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1990-01-01

    Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.

  3. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1987-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  4. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1988-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  5. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models

    DOE PAGES

    Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...

    2012-05-15

    We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less

  6. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans.

    PubMed

    Fukuoka, Yoshiyuki; Iihoshi, Masaaki; Nazunin, Juhelee Tuba; Abe, Daijiro; Fukuba, Yoshiyuki

    2017-01-01

    Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency), breath-by-breath ventilation (V̇E) and gas exchange (CO2 output (V̇CO2) and O2 uptake (V̇O2)) responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min). The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW) was significantly greater than that during sinusoidal cycling (SC), and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward) and muscle afferent feedback.

  7. How vegetation and sediment transport feedbacks drive landscape change in the Everglades and wetlands worldwide

    USGS Publications Warehouse

    Larsen, Laurel G.; Harvey, Judson W.

    2010-01-01

    Mechanisms reported to promote landscape self‐organization cannot explain vegetation patterning oriented parallel to flow. Recent catastrophic shifts in Everglades landscape pattern and ecological function highlight the need to understand the feedbacks governing these ecosystems. We modeled feedback between vegetation, hydrology, and sediment transport on the basis of a decade of experimentation. Results from more than 100 simulations showed that flows just sufficient to redistribute sediment from sparsely vegetated sloughs to dense ridges were needed for an equilibrium patterned landscape oriented parallel to flow. Surprisingly, although vegetation heterogeneity typically conveys resilience, in wetlands governed by flow/sediment feedbacks it indicates metastability, whereby the landscape is prone to catastrophic shifts. Substantial increases or decreases in flow relative to the equilibrium condition caused an expansion of emergent vegetation and loss of open‐water areas that was unlikely to revert upon restoration of the equilibrium hydrology. Understanding these feedbacks is critical in forecasting wetland responses to changing conditions and designing management strategies that optimize ecosystem services, such as carbon sequestration or habitat provision. Our model and new sensitivity analysis techniques address these issues and make it newly apparent that simply returning flow to predrainage conditions in the Everglades may not be sufficient to restore historic landscape patterns and processes.

  8. Remembrance of ecohydrologic extremes past

    NASA Astrophysics Data System (ADS)

    Band, L. E.; Hwang, T.

    2013-12-01

    Ecohydrological systems operate at time scales that span several orders of magnitude. Significant processes and feedbacks range from subdaily physiologic response to meteorological drivers, to soil forming and geomorphic processes ranging up through 10^3-10^4 years. While much attention in ecohydrology has focused on ecosystem optimization paradigms, these systems can show significant transience in structure and function, with apparent memory of hydroclimate extremes and regime shifts. While optimization feedbacks can be reconciled with system transience, a better understanding of the time scales and mechanisms of adjustment to increased hydroclimate variability and to specific events is required to understand and predict dynamics and vulnerability of ecosystems. Under certain circumstances of slowly varying hydroclimate, we hypothesize that ecosystems can remain adjusted to changing climate regimes, without displaying apparent system memory. Alternatively, rapid changes in hydroclimate and increased hydroclimate variability, amplified with well expressed non-linearity in the processes controlling feedbacks between water, carbon and nutrients, can move ecosystems far from adjusted states. The Coweeta Hydrological Laboratory is typical of humid, broadleaf forests in eastern North America, with a range of forest biomes from northern hardwoods at higher elevations, to oak-pine assemblages at lower elevations. The site provides almost 80 years of rainfall-runoff records for a set of watersheds under different management, along with multi-decadal forest plot structural information, soil moisture conditions and stream chemistry. An initial period of multi-decadal cooling, was followed by three decades of warming and increased hydroclimate variability. While mean temperature has risen over this time period, precipitation shows no long term trends in the mean, but has had a significant rise in variability with repeated extreme drought and wet periods. Over this latter period, intra and interannual shifts of canopy structure and phenology are discernable, along with long term canopy adjustment. We use a combination of field observations, long term remote sensing records and distributed ecohydrological modeling to investigate transient behavior, apparent memory and mechanisms of ecosystem adjustment to hydroclimate variability and change over the range of biomes in the watershed.

  9. Ecosystem Design Principles for Restoring Deltaic Floodplains: Examples from Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Twilley, R.

    2017-12-01

    The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to flooding from coastal storms. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how landward migration of fringe wetlands of coastal basins as result of river management over the last 75 years can provide insights to these complex issues. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 yrs (p< 0.001), resulting in migration rates of 218 m/yr (0.22 km/yr) and < 0.5 m/yr, respectively. Shifts in fringe wetlands were very distinct in these two basins with gain of 25% in the Terrebonne Basin compared to 90% decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types coincide with an increase in wind fetch in Terrebonne Bay, where we estimate that the wave power has increased by 50% 100% from 1932 to 2010 as the bathymetric and topographic conditions changed, and increase in maximum storm surge height also increased owing to the reduction of vegetated shorelines. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. The nonlinear response of migrating fringe wetlands as wind fetch increases is a critical feedback effect that should influence human river management decisions in deltaic coast. Restoration features focused on living shorelines may contribute to solutions to these non-linear feedbacks; but certain ecosystem design features have to be considered so such shorelines can adapt to relative sea level rise. Shorelines must have adaptive strategies compared to fixed hard structures - resulting on sediment management and redistribution as critical process to shoreline stabilization. Policies in US to encourage sediment placement associated with national dredge activities must be integrated to ecosystems services of fringe wetland restoration.

  10. Feedback linearization of singularly perturbed systems based on canonical similarity transformations

    NASA Astrophysics Data System (ADS)

    Kabanov, A. A.

    2018-05-01

    This paper discusses the problem of feedback linearization of a singularly perturbed system in a state-dependent coefficient form. The result is based on the introduction of a canonical similarity transformation. The transformation matrix is constructed from separate blocks for fast and slow part of an original singularly perturbed system. The transformed singular perturbed system has a linear canonical form that significantly simplifies a control design problem. Proposed similarity transformation allows accomplishing linearization of the system without considering the virtual output (as it is needed for normal form method), a technique of a transition from phase coordinates of the transformed system to state variables of the original system is simpler. The application of the proposed approach is illustrated through example.

  11. A parametric LQ approach to multiobjective control system design

    NASA Technical Reports Server (NTRS)

    Kyr, Douglas E.; Buchner, Marc

    1988-01-01

    The synthesis of a constant parameter output feedback control law of constrained structure is set in a multiple objective linear quadratic regulator (MOLQR) framework. The use of intuitive objective functions such as model-following ability and closed-loop trajectory sensitivity, allow multiple objective decision making techniques, such as the surrogate worth tradeoff method, to be applied. For the continuous-time deterministic problem with an infinite time horizon, dynamic compensators as well as static output feedback controllers can be synthesized using a descent Anderson-Moore algorithm modified to impose linear equality constraints on the feedback gains by moving in feasible directions. Results of three different examples are presented, including a unique reformulation of the sensitivity reduction problem.

  12. Control design based on a linear state function observer

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1992-01-01

    An approach to the design of low-order controllers for large scale systems is proposed. The method is derived from the theory of linear state function observers. First, the realization of a state feedback control law is interpreted as the observation of a linear function of the state vector. The linear state function to be reconstructed is the given control law. Then, based on the derivation for linear state function observers, the observer design is formulated as a parameter optimization problem. The optimization objective is to generate a matrix that is close to the given feedback gain matrix. Based on that matrix, the form of the observer and a new control law can be determined. A four-disk system and a lightly damped beam are presented as examples to demonstrate the applicability and efficacy of the proposed method.

  13. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  14. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  15. Different auditory feedback control for echolocation and communication in horseshoe bats.

    PubMed

    Liu, Ying; Feng, Jiang; Metzner, Walter

    2013-01-01

    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  16. Different Auditory Feedback Control for Echolocation and Communication in Horseshoe Bats

    PubMed Central

    Liu, Ying; Feng, Jiang; Metzner, Walter

    2013-01-01

    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea. PMID:23638137

  17. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.

    PubMed

    Peters, Sabine; Van Duijvenvoorde, Anna C K; Koolschijn, P Cédric M P; Crone, Eveline A

    2016-06-01

    Feedback learning is a crucial skill for cognitive flexibility that continues to develop into adolescence, and is linked to neural activity within a frontoparietal network. Although it is well conceptualized that activity in the frontoparietal network changes during development, there is surprisingly little consensus about the direction of change. Using a longitudinal design (N=208, 8-27 years, two measurements in two years), we investigated developmental trajectories in frontoparietal activity during feedback learning. Our first aim was to test for linear and nonlinear developmental trajectories in dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), supplementary motor area (SMA) and anterior cingulate cortex (ACC). Second, we tested which factors (task performance, working memory, cortical thickness) explained additional variance in time-related changes in activity besides age. Developmental patterns for activity in DLPFC and SPC were best characterized by a quadratic age function leveling off/peaking in late adolescence. There was a linear increase in SMA and a linear decrease with age in ACC activity. In addition to age, task performance explained variance in DLPFC and SPC activity, whereas cortical thickness explained variance in SMA activity. Together, these findings provide a novel perspective of linear and nonlinear developmental changes in the frontoparietal network during feedback learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Theoretical transient analysis of a hearing aid feedback canceller with a saturation type nonlinearity in the direct path.

    PubMed

    Costa, Márcio Holsbach

    2017-12-01

    Feedback cancellation in a hearing aid is essential for achieving high maximum stable gain to compensate for the losses in severe to profound hearing impaired people. The performance of adaptive feedback cancellers has been studied by assuming that the feedback path can be modeled as a linear system. However, limited dynamic range, low-cost loudspeakers, and nonlinear power amplifiers may distort the hearing aid output signal. In this way, linear-based predictions of the canceller performance may lead to significant deviations from its actual behavior. This work presents a theoretical performance analysis of a Least Mean Square based shadow filter that is applied to set up the coefficients of a feedback canceller, which is subject to a static saturation type nonlinearity at the output of the direct path. Deterministic recursive equations are derived to predict the mean square feedback error and the mean coefficient vector evolution between updates of the feedback canceller. These models are defined as functions of the canceller parameters and input signal statistics. Comparisons with Monte Carlo simulations show the provided models are highly accurate under the considered assumptions. The developed models allow inferences about the potential impact of an overdriven loudspeaker over the transient performance of the direct method feedback canceller, serving as insightful tools for understanding the involved mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More

    NASA Technical Reports Server (NTRS)

    Kou, Yu; Lin, Shu; Fossorier, Marc

    1999-01-01

    Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.

  20. Running key mapping in a quantum stream cipher by the Yuen 2000 protocol

    NASA Astrophysics Data System (ADS)

    Shimizu, Tetsuya; Hirota, Osamu; Nagasako, Yuki

    2008-03-01

    A quantum stream cipher by Yuen 2000 protocol (so-called Y00 protocol or αη scheme) consisting of linear feedback shift register of short key is very attractive in implementing secure 40 Gbits/s optical data transmission, which is expected as a next-generation network. However, a basic model of the Y00 protocol with a very short key needs a careful design against fast correlation attacks as pointed out by Donnet This Brief Report clarifies an effectiveness of irregular mapping between running key and physical signals in the driver for selection of M -ary basis in the transmitter, and gives a design method. Consequently, quantum stream cipher by the Y00 protocol with our mapping has immunity against the proposed fast correlation attacks on a basic model of the Y00 protocol even if the key is very short.

  1. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres

    NASA Astrophysics Data System (ADS)

    Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael

    2018-06-01

    Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.

  2. A primary shift rotation nurse scheduling using zero-one linear goal programming.

    PubMed

    Huarng, F

    1999-01-01

    In this study, the author discusses the effect of nurse shift schedules on circadian rhythm and some important ergonomics criteria. The author also reviews and compares different nurse shift scheduling methods via the criteria of flexibility, fairness, continuity in shift assignments, nurses' preferences, and ergonomics principles. In this article, a primary shift rotation system is proposed to provide better continuity in shift assignments to satisfy nurses' preferences. The primary shift rotation system is modeled as a zero-one linear goal programming (LGP) problem. To generate the shift assignment for a unit with 13 nurses, the zero-one LGP model takes less than 3 minutes on average, whereas the head nurses spend approximately 2 to 3 hours on shift scheduling. This study reports the process of implementing the primary shift rotation system.

  3. Using Confidence as Feedback in Multi-Sized Learning Environments

    ERIC Educational Resources Information Center

    Hench, Thomas L.

    2014-01-01

    This paper describes the use of existing confidence and performance data to provide feedback by first demonstrating the data's fit to a simple linear model. The paper continues by showing how the model's use as a benchmark provides feedback to allow current or future students to infer either the difficulty or the degree of under or over…

  4. Further Results on the Disturbance Response of a Double Integrator Controlled by Saturating Linear Static State Feedback

    DTIC Science & Technology

    2011-07-13

    Anton A. Stoorvogel b, Håvard Fjær Grip a aSchool of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164-2752...utwente.nl ( Anton A. Stoorvogel), grip@ieee.org (Håvard Fjær Grip). of a double integrator controlled by a saturating linear static state feedback...References Chitour, Y., 2001. On the Lp stabilization of the double integrator subject to input saturation. ESAIM: Control, Optimization and Calculus

  5. A Note on the Disturbance Decoupling Problem for Retarded Systems.

    DTIC Science & Technology

    1984-10-01

    disturbance decoupling problem f or linear control system is to design a feedback control law in such a way that the disturbances do not * influence...and in 141 by Pandolfi who analyses the situation in some detail. HeU concludes that for retarded systems one needs an unbounded feedback control law...ult) 6 JP is the control input, d(t) 6 AR is same disturbance, and z(t) e 3k is the output to be regularted. We assume that L is a bounded linear

  6. Response Feedback and Short-Term Motor Retention

    ERIC Educational Resources Information Center

    Adams, Jack A; And Others

    1972-01-01

    The hypothesis was tested that forgetting could be found on one trial in the absence of interference if the conditions or response-produced feedback were sufficiently reduced. The task was the learning and recall of a linear movement. (Author)

  7. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  8. Improvements In Ball-Screw Linear Actuators

    NASA Technical Reports Server (NTRS)

    Iskenderian, Theodore; Joffe, Benjamin; Summers, Robert

    1996-01-01

    Report describes modifications of design of type of ball-screw linear actuator driven by dc motor, with linear-displacement feedback via linear variable-differential transformer (LVDT). Actuators used to position spacecraft engines to direct thrust. Modifications directed toward ensuring reliable and predictable operation during planned 12-year cruise and interval of hard use at end of cruise.

  9. Oscillatory mode transition for supersonic open cavity flows

    NASA Astrophysics Data System (ADS)

    Kumar, Mayank; Vaidyanathan, Aravind

    2018-02-01

    The transition in the primary oscillatory mode in an open cavity has been experimentally investigated and the associated characteristics in a Mach 1.71 flow has been analyzed. The length-to-depth (L/D) ratios of the rectangular cavities are varied from 1.67 to 3.33. Unsteady pressure measurement and flow visualization are employed to understand the transitional flow physics. Flow visualization revealed the change in oscillation pattern from longitudinal mode to transverse mode and is also characterized by the presence of two bow shocks at the trailing edge instead of one. The transition is found to occur between L/D 1.67 and 2, marked by a change in the feedback mechanism, resulting in a shift from the vortex circulation driven transverse feedback mode to the oscillating shear layer driven longitudinal feedback mode. Cavities oscillating in the transition mode exhibit multiple tones of comparable strength. Correlation analysis indicated the shift in the feedback mechanism. Wavelet analysis revealed the temporal behaviour of tones during transition. Tone switching is observed in deeper cavities and is attributed to the occurrence of two bow shocks as evident from the temporo-spectral characteristics of transition that affects the shear layer modal shape.

  10. Temporal responses of coastal hypoxia to nutrient loading and physical controls

    NASA Astrophysics Data System (ADS)

    Kemp, W. M.; Testa, J. M.; Conley, D. J.; Gilbert, D.; Hagy, J. D.

    2009-12-01

    The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Worldwide, there is strong interest in reducing the size and duration of hypoxia in coastal waters, because hypoxia causes negative effects for many organisms and ecosystem processes. Although strategies to reduce hypoxia by decreasing nutrient loading are predicated on the assumption that this action would reverse eutrophication, recent analyses of historical data from European and North American coastal systems suggest little evidence for simple linear response trajectories. We review published parallel time-series data on hypoxia and loading rates for inorganic nutrients and labile organic matter to analyze trajectories of oxygen (O2) response to nutrient loading. We also assess existing knowledge of physical and ecological factors regulating O2 in coastal marine waters to facilitate analysis of hypoxia responses to reductions in nutrient (and/or organic matter) inputs. Of the 24 systems identified where concurrent time series of loading and O2 were available, half displayed relatively clear and direct recoveries following remediation. We explored in detail 5 well-studied systems that have exhibited complex, non-linear responses to variations in loading, including apparent "regime shifts". A summary of these analyses suggests that O2 conditions improved rapidly and linearly in systems where remediation focused on organic inputs from sewage treatment plants, which were the primary drivers of hypoxia. In larger more open systems where diffuse nutrient loads are more important in fueling O2 depletion and where climatic influences are pronounced, responses to remediation tended to follow non-linear trends that may include hysteresis and time-lags. Improved understanding of hypoxia remediation requires that future studies use comparative approaches and consider multiple regulating factors. These analyses should consider: (1) the dominant temporal scales of the hypoxia, (2) the relative contributions of inorganic and organic nutrients, (3) the influence of shifts in climatic and oceanographic processes, and (4) the roles of feedback interactions whereby O2-sensitive biogeochemistry, trophic interactions, and habitat conditions influence the nutrient and algal dynamics that regulate O2 levels.

  11. Coastal hypoxia responses to remediation

    NASA Astrophysics Data System (ADS)

    Kemp, W. M.; Testa, J. M.; Conley, D. J.; Gilbert, D.; Hagy, J. D.

    2009-07-01

    The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Because of the negative effects hypoxia has on many organisms, extensive efforts have been made to reduce the size and duration of hypoxia in many coastal waters. Although it has been broadly assumed that reductions in nutrient loading rates would reverse eutrophication and consequently, hypoxia, recent analyses of historical data from European and North American coastal systems suggest little evidence for simple linear response trajectories. We review existing data, analyses, and models that relate variations in the extent and intensity of hypoxia to changes in loading rates for inorganic nutrients and labile organic matter. We also assess existing knowledge of physical and ecological factors regulating oxygen in coastal marine waters and examine a broad range of examples where hypoxia responses to reductions in nutrient (or organic matter) inputs have been documented. Of the 22 systems identified where concurrent time series of loading and O2 were available, half displayed relatively clear and direct recoveries following remediation. We explored in detail 5 well-studied systems that have exhibited complex, non-linear responses to loading, including apparent "regime shifts." A summary of these analyses suggests that O2 conditions improved rapidly and linearly in systems where remediation focused on organic inputs from sewage plants, which were the primary drivers of hypoxia. In larger more open systems where diffuse nutrient loads are more important in fueling O2 depletion and where climatic influences are pronounced, responses to remediation tend to follow non-linear trends that may include hysteresis and time-lags. Improved understanding of hypoxia remediation requires that future studies use comparative approaches and consider multiple regulating factors including: (1) the dominant temporal scales of the hypoxia, (2) the relative contributions of inorganic and organic nutrients, (3) the influence of shifts in climatic and oceanographic processes, and (4) the roles of feedback interactions whereby O2-sensitive biogeochemistry, food-webs, and habitats influence the nutrient and algal dynamics that regulate O2 levels.

  12. Feedback control impedance matching system using liquid stub tuner for ion cyclotron heating

    NASA Astrophysics Data System (ADS)

    Nomura, G.; Yokota, M.; Kumazawa, R.; Takahashi, C.; Torii, Y.; Saito, K.; Yamamoto, T.; Takeuchi, N.; Shimpo, F.; Kato, A.; Seki, T.; Mutoh, T.; Watari, T.; Zhao, Y.

    2001-10-01

    A long pulse discharge more than 2 minutes was achieved using Ion Cyclotron Range of Frequency (ICRF) heating only on the Large Helical Device (LHD). The final goal is a steady state operation (30 minutes) at MW level. A liquid stub tuner was newly invented to cope with the long pulse discharge. The liquid surface level was shifted under a high RF voltage operation without breakdown. In the long pulse discharge the reflected power was observed to gradually increase. The shift of the liquid surface was thought to be inevitably required at the further longer discharge. An ICRF heating system consisting of a liquid stub tuner was fabricated to demonstrate a feedback control impedance matching. The required shift of the liquid surface was predicted using a forward and a reflected RF powers as well as the phase difference between them. A liquid stub tuner was controlled by the multiprocessing computer system with CINOS (CHS Integration No Operating System) methods. The prime objective was to improve the performance of data processing and controlling a signal response. By employing this method a number of the program steps was remarkably reduced. A real time feedback control was demonstrated in the system using a temporally changed electric resistance.

  13. A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1991-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.

  14. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  15. Predator-Prey Dynamics Driven by Feedback between Functionally Diverse Trophic Levels

    PubMed Central

    Wirtz, Kai; Gaedke, Ursula

    2011-01-01

    Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits—prey edibility and predator food-selectivity—and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity. PMID:22096560

  16. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    PubMed

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  17. A real-time plantar pressure feedback device for foot unloading.

    PubMed

    Femery, Virginie G; Moretto, Pierre G; Hespel, Jean-Michel G; Thévenon, André; Lensel, Ghislaine

    2004-10-01

    To develop and test a plantar pressure control device that provides both visual and auditory feedback and is suitable for correcting plantar pressure distribution patterns in persons susceptible to neuropathic foot ulceration. Pilot test. Sports medicine laboratory in a university in France. One healthy man in his mid thirties. Not applicable. Main outcome measures A device was developed based on real-time feedback, incorporating an acoustic alarm and visual signals, adjusted to a specific pressure load. Plantar pressure measured during walking, at 6 sensor locations over 27 steps under 2 different conditions: (1) natural and (2) unloaded in response to device feedback. The subject was able to modify his gait in response to the auditory and visual signals. He did not compensate for the decrease of peak pressure under the first metarsal by increasing the duration of the load shift under this area. Gait pattern modification centered on a mediolateral load shift. The auditory signal provided a warning system alerting the user to potentially harmful plantar pressures. The visual signal warned of the degree of pressure. People who have lost nociceptive perception, as in cases of diabetic neuropathy, may be able to change their walking pattern in response to the feedback provided by this device. The visual may have diagnostic value in determining plantar pressures in such patients. This pilot test indicates that further studies are warranted.

  18. From feedback- to response-based performance monitoring in active and observational learning.

    PubMed

    Bellebaum, Christian; Colosio, Marco

    2014-09-01

    Humans can adapt their behavior by learning from the consequences of their own actions or by observing others. Gradual active learning of action-outcome contingencies is accompanied by a shift from feedback- to response-based performance monitoring. This shift is reflected by complementary learning-related changes of two ACC-driven ERP components, the feedback-related negativity (FRN) and the error-related negativity (ERN), which have both been suggested to signal events "worse than expected," that is, a negative prediction error. Although recent research has identified comparable components for observed behavior and outcomes (observational ERN and FRN), it is as yet unknown, whether these components are similarly modulated by prediction errors and thus also reflect behavioral adaptation. In this study, two groups of 15 participants learned action-outcome contingencies either actively or by observation. In active learners, FRN amplitude for negative feedback decreased and ERN amplitude in response to erroneous actions increased with learning, whereas observational ERN and FRN in observational learners did not exhibit learning-related changes. Learning performance, assessed in test trials without feedback, was comparable between groups, as was the ERN following actively performed errors during test trials. In summary, the results show that action-outcome associations can be learned similarly well actively and by observation. The mechanisms involved appear to differ, with the FRN in active learning reflecting the integration of information about own actions and the accompanying outcomes.

  19. Development of a New Surface Acoustic Wave Based Gyroscope on a X-112°Y LiTaO3 Substrate

    PubMed Central

    Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang

    2011-01-01

    A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg−1 s at angular rates of up to 1,000 deg s−1 and good linearity are observed. PMID:22346678

  20. Development of a new surface acoustic wave based gyroscope on a X-112°Y LiTaO3 substrate.

    PubMed

    Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang

    2011-01-01

    A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg(-1) s at angular rates of up to 1,000 deg s(-1) and good linearity are observed.

  1. Causal Loop Analysis of coastal geomorphological systems

    NASA Astrophysics Data System (ADS)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a model, the modeller can readily assess if critical feedback loops are included.

  2. The role of vegetation-microclimate feedback in promoting shrub encroachment in the northern Chihuahuan desert.

    PubMed

    He, Yufei; D'Odorico, Paolo; De Wekker, Stephan F J

    2015-06-01

    Many arid and semi-arid landscapes around the world are affected by a shift from grassland to shrubland vegetation, presumably induced by climate warming, increasing atmospheric CO2 concentrations, and/or changing land use. This major change in vegetation cover is likely sustained by positive feedbacks with the physical environment. Recent research has focused on a feedback with microclimate, whereby cold intolerant shrubs increase the minimum nocturnal temperatures in their surroundings. Despite the rich literature on the impact of land cover change on local climate conditions, changes in microclimate resulting from shrub expansion into desert grasslands have remained poorly investigated. It is unclear to what extent such a feedback can affect the maximum extent of shrub expansion and the configuration of a stable encroachment front. Here, we focus on the case of the northern Chihuahuan desert, where creosotebush (Larrea tridentata) has been replacing grasslands over the past 100-150 years. We use a process-based coupled atmosphere-vegetation model to investigate the role of this feedback in sustaining shrub encroachment in the region. Simulations indicate that the feedback allows juvenile shrubs to establish in the grassland during average years and, once established, reduce their vulnerability to freeze-induced mortality by creating a warmer microclimate. Such a feedback is crucial in extreme cold winters as it may reduce shrub mortality. We identify the existence of a critical zone in the surroundings of the encroachment front, in which vegetation dynamics are bistable: in this zone, vegetation can be stable both as grassland and as shrubland. The existence of these alternative stable states explains why in most cases the shift from grass to shrub cover is found to be abrupt and often difficult to revert. © 2015 John Wiley & Sons Ltd.

  3. Controller design approach based on linear programming.

    PubMed

    Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa

    2013-11-01

    This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. © 2013 ISA. Published by ISA. All rights reserved.

  4. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    NASA Technical Reports Server (NTRS)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  5. A portable integrated system to control an active needle

    NASA Astrophysics Data System (ADS)

    Konh, Bardia; Motalleb, Mahdi; Ashrafiuon, Hashem

    2017-04-01

    The primary objective of this work is to introduce an integrated portable system to operate a flexible active surgical needle with actuation capabilities. The smart needle uses the robust actuation capabilities of the shape memory alloy wires to drastically improve the accuracy of in medical procedures such as brachytherapy. This, however, requires an integrated system aimed to control the insertion of the needle via a linear motor and its deflection by the SMA wire in real-time. The integrated system includes a flexible needle prototype, a Raspberry Pi computer, a linear stage motor, an SMA wire actuator, a power supply, electromagnetic tracking system, and various communication supplies. The linear stage motor guides the needle into tissue. The power supply provides appropriate current to the SMA actuator. The tracking system measures tip movement for feedback, The Raspberry Pi is the central tool that receives the tip movement feedback and controls the linear stage motor and the SMA actuator via the power supply. The implemented algorithms required for communication and feedback control are also described. This paper demonstrates that the portable integrated system may be a viable solution for more effective procedures requiring surgical needles.

  6. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    NASA Astrophysics Data System (ADS)

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves use of both CSCTA and the reduced Lyapunov Floquet transformation (RLFT) in order to design a non-delayed feedback control law. The delayed Mathieu equation is used as an illustrative example in which the closed-loop response and control effort are compared for all three control strategies. Finally, three example applications of control of time-periodic astrodynamic systems, i.e. formation flying control for an elliptic Keplerian chief orbit, body-fixed hovering control over a tumbling asteroid, and stationkeeping in Earth-Moon L1 halo orbits, are shown using versions of the control strategies introduced above. These applications employ a mixture of feedforward and non-delayed periodic-gain state feedback for tracking control of natural and non-natural motions in these systems. A major conclusion is that control effort is minimized by employing periodic-gain (rather than constant-gain) feedback control in such systems.

  7. Theory of Mind, Inhibitory Control, and Preschool-Age Children's Suggestibility in Different Interviewing Contexts

    ERIC Educational Resources Information Center

    Scullin, Matthew H.; Bonner, Karri

    2006-01-01

    The current study examined the relations among 3- to 5-year-olds' theory of mind, inhibitory control, and three measures of suggestibility: yielding to suggestive questions (yield), shifting answers in response to negative feedback (shift), and accuracy in response to misleading questions during a pressured interview about a live event. Theory of…

  8. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Continuous-wave distributed-feedback InGaAsP (λ = 1.55 μm) injection heterolasers

    NASA Astrophysics Data System (ADS)

    Baryshev, V. I.; Golikova, E. G.; Duraev, V. P.; Kuchinskiĭ, V. I.; Kizhaev, K. Yu; Kuksenkov, D. V.; Portnoĭ, E. L.; Smirnitskiĭ, V. B.

    1988-11-01

    A study was made of stimulated emission from mesa-stripe distributed-feedback lasers in the form of double heterostructures with separate electron and optical confinement. A diffraction grating with a period Λ = 0.46 μm, formed on the surface of the upper waveguide layer by holographic lithography, ensured distributed feedback in the second order. The threshold current for cw operation at room temperature was 35-70 mA, the shift of the emission wavelength with temperature was ~ 0.08 nm/K, and the feedback coefficient deduced from the width of a "Bragg gap" was 110-150 cm- 1.

  9. Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model

    NASA Astrophysics Data System (ADS)

    Fang, Xianghui; Zheng, Fei

    2018-06-01

    Severe biases exist in state-of-the-art general circulation models (GCMs) in capturing realistic central-Pacific (CP) El Niño structures. At the same time, many observational analyses have emphasized that thermocline (TH) feedback and zonal advective (ZA) feedback play dominant roles in the development of eastern-Pacific (EP) and CP El Niño-Southern Oscillation (ENSO), respectively. In this work, a simple linear air-sea coupled model, which can accurately depict the strength distribution of the TH and ZA feedbacks in the equatorial Pacific, is used to investigate these two types of El Niño. The results indicate that the model can reproduce the main characteristics of CP ENSO if the TH feedback is switched off and the ZA feedback is retained as the only positive feedback, confirming the dominant role played by ZA feedback in the development of CP ENSO. Further experiments indicate that, through a simple nonlinear control approach, many ENSO characteristics, including the existence of both CP and EP El Niño and the asymmetries between El Niño and La Niña, can be successfully captured using the simple linear air-sea coupled model. These analyses indicate that an accurate depiction of the climatological sea surface temperature distribution and the related ZA feedback, which are the subject of severe biases in GCMs, is very important in simulating a realistic CP El Niño.

  10. From Traditional Accountability to Shared Responsibility: The Benefits and Challenges of Student Consultants Gathering Midcourse Feedback in College Classrooms

    ERIC Educational Resources Information Center

    Cook-Sather, Alison

    2009-01-01

    The explicit purpose of gathering feedback in college classes is to improve those courses, usually along the lines of structure, organisation, pace, or some other aspect of the course over which the professor typically has control. A potential outcome that is less immediately obvious is the shift that can take place regarding who is responsible…

  11. Decentralization, stabilization, and estimation of large-scale linear systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Vukcevic, M. B.

    1976-01-01

    In this short paper we consider three closely related aspects of large-scale systems: decentralization, stabilization, and estimation. A method is proposed to decompose a large linear system into a number of interconnected subsystems with decentralized (scalar) inputs or outputs. The procedure is preliminary to the hierarchic stabilization and estimation of linear systems and is performed on the subsystem level. A multilevel control scheme based upon the decomposition-aggregation method is developed for stabilization of input-decentralized linear systems Local linear feedback controllers are used to stabilize each decoupled subsystem, while global linear feedback controllers are utilized to minimize the coupling effect among the subsystems. Systems stabilized by the method have a tolerance to a wide class of nonlinearities in subsystem coupling and high reliability with respect to structural perturbations. The proposed output-decentralization and stabilization schemes can be used directly to construct asymptotic state estimators for large linear systems on the subsystem level. The problem of dimensionality is resolved by constructing a number of low-order estimators, thus avoiding a design of a single estimator for the overall system.

  12. Elastic robot control - Nonlinear inversion and linear stabilization

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1986-01-01

    An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).

  13. Methane Feedbacks to the Global Climate System in a Warmer World

    NASA Astrophysics Data System (ADS)

    Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas; Aerts, Rien; Blauw, Luke G.; Egger, Matthias; Jetten, Mike S. M.; de Jong, Anniek E. E.; Meisel, Ove H.; Rasigraf, Olivia; Slomp, Caroline P.; in't Zandt, Michiel H.; Dolman, A. J.

    2018-03-01

    Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands, marine and freshwater systems, permafrost, and methane hydrates, through shifts in temperature, hydrology, vegetation, landscape disturbance, and sea level rise. Increased CH4 emissions from these systems would in turn induce further climate change, resulting in a positive climate feedback. Here we synthesize biological, geochemical, and physically focused CH4 climate feedback literature, bringing together the key findings of these disciplines. We discuss environment-specific feedback processes, including the microbial, physical, and geochemical interlinkages and the timescales on which they operate, and present the current state of knowledge of CH4 climate feedbacks in the immediate and distant future. The important linkages between microbial activity and climate warming are discussed with the aim to better constrain the sensitivity of the CH4 cycle to future climate predictions. We determine that wetlands will form the majority of the CH4 climate feedback up to 2100. Beyond this timescale, CH4 emissions from marine and freshwater systems and permafrost environments could become more important. Significant CH4 emissions to the atmosphere from the dissociation of methane hydrates are not expected in the near future. Our key findings highlight the importance of quantifying whether CH4 consumption can counterbalance CH4 production under future climate scenarios.

  14. Changes in ENSO amplitude under climate warming and cooling

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai

    2018-05-01

    The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.

  15. Age differences in feedback reactions: The roles of employee feedback orientation on social awareness and utility.

    PubMed

    Wang, Mo; Burlacu, Gabriela; Truxillo, Donald; James, Keith; Yao, Xiang

    2015-07-01

    Organizations worldwide are currently experiencing shifts in the age composition of their workforces. The workforce is aging and becoming increasingly age-diverse, suggesting that organizational researchers and practitioners need to better understand how age differences may manifest in the workplace and the implications for human resource practice. Integrating socioemotional selectivity theory with the performance feedback literature and using a time-lagged design, the current study examined age differences in moderating the relationships between the characteristics of performance feedback and employee reactions to the feedback event. The results suggest that older workers had higher levels of feedback orientation on social awareness, but lower levels of feedback orientation on utility than younger workers. Furthermore, the positive associations between favorability of feedback and feedback delivery and feedback reactions were stronger for older workers than for younger workers, whereas the positive association between feedback quality and feedback reactions was stronger for younger workers than for older workers. Finally, the current study revealed that age-related differences in employee feedback orientation could explain the different patterns of relationships between feedback characteristics and feedback reactions across older and younger workers. These findings have both theoretical and practical implications for building theory about workplace aging and improving ways that performance feedback is managed across employees from diverse age groups. (c) 2015 APA, all rights reserved).

  16. Managing Residential Electricity Demand Through Provision of Better Feedback

    NASA Astrophysics Data System (ADS)

    Collins, Myles

    New and affordable technology for providing detailed feedback on household electricity usage presents a host of opportunities for utilities and policy-makers to manage demand. This dissertation examines ways to use these devices to reduce - and shift the timing of - energy use in the residential sector by influencing consumers' behavior. The first portion of the study analyzes the impact of programmable thermostats (PTs) on energy use, focusing on residents' knowledge of climate control settings in the dwelling. I found that of households with natural gas heating systems, young households with PTs used 17 percent less heating energy on average. In addition, residents who did not know their thermostat settings tended to use 10 percent more energy for heating. The main portion of the dissertation focuses specifically on the potential for better feedback on electricity usage to reduce household energy consumption. The existing literature suggests that feedback can reduce electricity consumption in homes by 5 to 20 percent, but that significant uncertainties remain in our knowledge of the effectiveness of feedback. These uncertainties include the variation in feedback effectiveness between demographic groups and consumers in different climate regions. This analysis uses these uncertainties to perform an exploratory analysis to determine the conditions under which the benefits of feedback outweigh the costs and to compare the cost-effectiveness of providing feedback against that of other DSM programs. I found that benefits would likely outweigh costs for enhanced monthly billing and real-time feedback and that cost-effectiveness was superior to that of other DSM programs for these types of feedback. For feedback that is disaggregated by appliance type, cost effectiveness was competitive with other DSM programs under a limited set of cases. This study also examines how energy consumption devices should display feedback on GHG emissions from electricity use under a real-time pricing program. I found that load-shifting can cause GHG emissions to increase or decrease depending on region and season and in no discernable pattern. Therefore, feedback may be more useful and comprehensible to households in the form of total GHG emissions attributable to electricity usage instead of the emission rate of the marginal power plant. Finally, this dissertation explores ways to maximize the effect of feedback by evaluating which appliances may be best suited for appliance-specific feedback. Due to the energy use and behavioral factors associated with each appliance, the most promising appliances were those that heat water for taps, showers, hot tubs, and waterbeds.

  17. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    NASA Astrophysics Data System (ADS)

    Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.

    2013-04-01

    Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.

  18. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    PubMed Central

    Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J

    2013-01-01

    Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062

  19. Linear stable unity-feedback system - Necessary and sufficient conditions for stability under nonlinear plant perturbations

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Kabuli, M. G.

    1989-01-01

    The authors consider a linear (not necessarily time-invariant) stable unity-feedback system, where the plant and the compensator have normalized right-coprime factorizations. They study two cases of nonlinear plant perturbations (additive and feedback), with four subcases resulting from: (1) allowing exogenous input to Delta P or not; 2) allowing the observation of the output of Delta P or not. The plant perturbation Delta P is not required to be stable. Using the factorization approach, the authors obtain necessary and sufficient conditions for all cases in terms of two pairs of nonlinear pseudostate maps. Simple physical considerations explain the form of these necessary and sufficient conditions. Finally, the authors obtain the characterization of all perturbations Delta P for which the perturbed system remains stable.

  20. Eigenvalue assignment by minimal state-feedback gain in LTI multivariable systems

    NASA Astrophysics Data System (ADS)

    Ataei, Mohammad; Enshaee, Ali

    2011-12-01

    In this article, an improved method for eigenvalue assignment via state feedback in the linear time-invariant multivariable systems is proposed. This method is based on elementary similarity operations, and involves mainly utilisation of vector companion forms, and thus is very simple and easy to implement on a digital computer. In addition to the controllable systems, the proposed method can be applied for the stabilisable ones and also systems with linearly dependent inputs. Moreover, two types of state-feedback gain matrices can be achieved by this method: (1) the numerical one, which is unique, and (2) the parametric one, in which its parameters are determined in order to achieve a gain matrix with minimum Frobenius norm. The numerical examples are presented to demonstrate the advantages of the proposed method.

  1. A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere.

    PubMed

    Rossi, Sergio; Anfodillo, Tommaso; Cufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gricar, Jozica; Gruber, Andreas; King, Gregory M; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K

    2013-12-01

    Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.

  2. Output Containment Control of Linear Heterogeneous Multi-Agent Systems Using Internal Model Principle.

    PubMed

    Zuo, Shan; Song, Yongduan; Lewis, Frank L; Davoudi, Ali

    2017-01-04

    This paper studies the output containment control of linear heterogeneous multi-agent systems, where the system dynamics and even the state dimensions can generally be different. Since the states can have different dimensions, standard results from state containment control do not apply. Therefore, the control objective is to guarantee the convergence of the output of each follower to the dynamic convex hull spanned by the outputs of leaders. This can be achieved by making certain output containment errors go to zero asymptotically. Based on this formulation, two different control protocols, namely, full-state feedback and static output-feedback, are designed based on internal model principles. Sufficient local conditions for the existence of the proposed control protocols are developed in terms of stabilizing the local followers' dynamics and satisfying a certain H∞ criterion. Unified design procedures to solve the proposed two control protocols are presented by formulation and solution of certain local state-feedback and static output-feedback problems, respectively. Numerical simulations are given to validate the proposed control protocols.

  3. Recent results on output feedback problems

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.

    1980-01-01

    Given a real linear system sigma = (A, B, C) with m inputs, p outputs and degree n, the problem of generic pole placement by output feedback is studied, which is to compute the constant C(m,p) such that the inequality C(m,p) not less than n is necessary and sufficient for generically positioning the poles of the generic linear system by constant output feedback. A constant C prime (m,p) is determined, which gives a sufficient condition for generic pole placement and which, to the best of the author's knowledge, is at least as good an estimate of C(m,p) as any in the literature. Some results on the construction of solutions in case mp = n are announced, based on the degree formula of Brockett and Byrnes and the Galois theory. In particular, a question raised by Anderson, Bose, and Jury, on the existence of a rational procedure for computing the feedback law from the desired characteristic polynomial is answered.

  4. Concurrently examining unrealistic absolute and comparative optimism: Temporal shifts, individual-difference and event-specific correlates, and behavioural outcomes.

    PubMed

    Ruthig, Joelle C; Gamblin, Bradlee W; Jones, Kelly; Vanderzanden, Karen; Kehn, Andre

    2017-02-01

    Researchers have spent considerable effort examining unrealistic absolute optimism and unrealistic comparative optimism, yet there is a lack of research exploring them concurrently. This longitudinal study repeatedly assessed unrealistic absolute and comparative optimism within a performance context over several months to identify the degree to which they shift as a function of proximity to performance and performance feedback, their associations with global individual difference and event-specific factors, and their link to subsequent behavioural outcomes. Results showed similar shifts in unrealistic absolute and comparative optimism based on proximity to performance and performance feedback. Moreover, increases in both types of unrealistic optimism were associated with better subsequent performance beyond the effect of prior performance. However, several differences were found between the two forms of unrealistic optimism in their associations with global individual difference factors and event-specific factors, highlighting the distinctiveness of the two constructs. © 2016 The British Psychological Society.

  5. Severity of climate change dictates the direction of biophysical feedbacks of vegetation change to Arctic climate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxin; Jansson, Christer; Miller, Paul; Smith, Ben; Samuelsson, Patrick

    2014-05-01

    Vegetation-climate feedbacks induced by vegetation dynamics under climate change alter biophysical properties of the land surface that regulate energy and water exchange with the atmosphere. Simulations with Earth System Models applied at global scale suggest that the current warming in the Arctic has been amplified, with large contributions from positive feedbacks, dominated by the effect of reduced surface albedo as an increased distribution, cover and taller stature of trees and shrubs mask underlying snow, darkening the surface. However, these models generally employ simplified representation of vegetation dynamics and structure and a coarse grid resolution, overlooking local or regional scale details determined by diverse vegetation composition and landscape heterogeneity. In this study, we perform simulations using an advanced regional coupled vegetation-climate model (RCA-GUESS) applied at high resolution (0.44×0.44° ) over the Arctic Coordinated Regional Climate Downscaling Experiment (CORDEX-Arctic) domain. The climate component (RCA4) is forced with lateral boundary conditions from EC-EARTH CMIP5 simulations for three representative concentration pathways (RCP 2.6, 4.5, 8.5). Vegetation-climate response is simulated by the individual-based dynamic vegetation model (LPJ-GUESS), accounting for phenology, physiology, demography and resource competition of individual-based vegetation, and feeding variations of leaf area index and vegetative cover fraction back to the climate component, thereby adjusting surface properties and surface energy fluxes. The simulated 2m air temperature, precipitation, vegetation distribution and carbon budget for the present period has been evaluated in another paper. The purpose of this study is to elucidate the spatial and temporal characteristics of the biophysical feedbacks arising from vegetation shifts in response to different CO2 concentration pathways and their associated climate change. Our results indicate that the albedo feedback dominates simulated warming in spring in all three scenarios, while in summer, evapotranspiration feedback, governing the partitioning of the return energy flux from the surface to the atmosphere into latent and sensible heat, exerts evaporative cooling effects, the magnitude of which depends on the severity of climate change, in turn driven by the underlying GHG emissions pathway, resulting in shift in the sign of net biophysical at higher levels of warming. Spatially, western Siberia is identified as the most susceptible location, experiencing the potential to reverse biophysical feedbacks in all seasons. We further analyze how the pattern of vegetation shifts triggers different signs of net effects of biophysical feedbacks.

  6. Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback.

    PubMed

    Lawrence, Emma J; Su, Li; Barker, Gareth J; Medford, Nick; Dalton, Jeffrey; Williams, Steve C R; Birbaumer, Niels; Veit, Ralf; Ranganatha, Sitaram; Bodurka, Jerzy; Brammer, Michael; Giampietro, Vincent; David, Anthony S

    2014-03-01

    The anterior insula (AI) plays a key role in affective processing, and insular dysfunction has been noted in several clinical conditions. Real-time functional MRI neurofeedback (rtfMRI-NF) provides a means of helping people learn to self-regulate activation in this brain region. Using the Blood Oxygenated Level Dependant (BOLD) signal from the right AI (RAI) as neurofeedback, we trained participants to increase RAI activation. In contrast, another group of participants was shown 'control' feedback from another brain area. Pre- and post-training affective probes were shown, with subjective ratings and skin conductance response (SCR) measured. We also investigated a reward-related reinforcement learning model of rtfMRI-NF. In contrast to the controls, we hypothesised a positive linear increase in RAI activation in participants shown feedback from this region, alongside increases in valence ratings and SCR to affective probes. Hypothesis-driven analyses showed a significant interaction between the RAI/control neurofeedback groups and the effect of self-regulation. Whole-brain analyses revealed a significant linear increase in RAI activation across four training runs in the group who received feedback from RAI. Increased activation was also observed in the caudate body and thalamus, likely representing feedback-related learning. No positive linear trend was observed in the RAI in the group receiving control feedback, suggesting that these data are not a general effect of cognitive strategy or control feedback. The control group did, however, show diffuse activation across the putamen, caudate and posterior insula which may indicate the representation of false feedback. No significant training-related behavioural differences were observed for valence ratings, or SCR. In addition, correlational analyses based on a reinforcement learning model showed that the dorsal anterior cingulate cortex underpinned learning in both groups. In summary, these data demonstrate that it is possible to regulate the RAI using rtfMRI-NF within one scanning session, and that such reward-related learning is mediated by the dorsal anterior cingulate. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Recurrent competition explains temporal effects of attention in MSTd

    PubMed Central

    Layton, Oliver W.; Browning, N. Andrew

    2012-01-01

    Navigation in a static environment along straight paths without eye movements produces radial optic flow fields. A singularity called the focus of expansion (FoE) specifies the direction of travel (heading) of the observer. Cells in primate dorsal medial superior temporal area (MSTd) respond to radial fields and are therefore thought to be heading-sensitive. Humans frequently shift their focus of attention while navigating, for example, depending on the favorable or threatening context of approaching independently moving objects. Recent neurophysiological studies show that the spatial tuning curves of primate MSTd neurons change based on the difference in visual angle between an attentional prime and the FoE. Moreover, the peak mean population activity in MSTd retreats linearly in time as the distance between the attentional prime and FoE increases. We present a dynamical neural circuit model that demonstrates the same linear temporal peak shift observed electrophysiologically. The model qualitatively matches the neuron tuning curves and population activation profiles. After model MT dynamically pools short-range motion, model MSTd incorporates recurrent competition between units tuned to different radial optic flow templates, and integrates attentional signals from model area frontal eye fields (FEF). In the model, population activity peaks occur when the recurrent competition is most active and uncertainty is greatest about the relative position of the FoE. The nature of attention, multiplicative or non-multiplicative, is largely irrelevant, so long as attention has a Gaussian-like profile. Using an appropriately tuned sigmoidal signal function to modulate recurrent feedback affords qualitative fits of deflections in the population activity that otherwise appear to be low-frequency noise. We predict that these deflections mark changes in the balance of attention between the priming and FoE locations. PMID:23060788

  8. A Digital Map From External Forcing to the Final Surface Warming Pattern and its Seasonal Cycle

    NASA Astrophysics Data System (ADS)

    Cai, M.

    2015-12-01

    Historically, only the thermodynamic processes (e.g., water vapor, cloud, surface albedo, and atmospheric lapse rate) that directly influence the top of the atmosphere (TOA) radiative energy flux balance are considered in climate feedback analysis. One of my recent research areas is to develop a new framework for climate feedback analysis that explicitly takes into consideration not only the thermodynamic processes that the directly influence the TOA radiative energy flux balance but also the local dynamical (e.g., evaporation, surface sensible heat flux, vertical convections etc) and non-local dynamical (large-scale horizontal energy transport) processes in aiming to explain the warming asymmetry between high and low latitudes, between ocean and land, and between the surface and atmosphere. In the last 5-6 years, we have developed a coupled atmosphere-surface climate feedback-response analysis method (CFRAM) as a new framework for estimating climate feedback and sensitivity in coupled general circulation models with a full physical parameterization package. In the CFRAM, the isolation of partial temperature changes due to an external forcing alone or an individual feedback is achieved by solving the linearized infrared radiation transfer model subject to individual energy flux perturbations (external or due to feedbacks). The partial temperature changes are addable and their sum is equal to the (total) temperature change (in the linear sense). The CFRAM is used to isolate the partial temperature changes due to the external forcing, due to water vapor feedback, clouds, surface albedo, local vertical convection, and non-local atmospheric dynamical feedbacks, as well as oceanic heat storage. It has been shown that seasonal variations in the cloud feedback, surface albedo feedback, and ocean heat storage/dynamics feedback, directly caused by the strong annual cycle of insolation, contribute primarily to the large seasonal variation of polar warming. Furthermore, the CO2 forcing, and water vapor and atmospheric dynamics feedbacks add to the maximum polar warming in fall/winter.

  9. Differential reliance of chimpanzees and humans on automatic and deliberate control of motor actions.

    PubMed

    Kaneko, Takaaki; Tomonaga, Masaki

    2014-06-01

    Humans are often unaware of how they control their limb motor movements. People pay attention to their own motor movements only when their usual motor routines encounter errors. Yet little is known about the extent to which voluntary actions rely on automatic control and when automatic control shifts to deliberate control in nonhuman primates. In this study, we demonstrate that chimpanzees and humans showed similar limb motor adjustment in response to feedback error during reaching actions, whereas attentional allocation inferred from gaze behavior differed. We found that humans shifted attention to their own motor kinematics as errors were induced in motor trajectory feedback regardless of whether the errors actually disrupted their reaching their action goals. In contrast, chimpanzees shifted attention to motor execution only when errors actually interfered with their achieving a planned action goal. These results indicate that the species differed in their criteria for shifting from automatic to deliberate control of motor actions. It is widely accepted that sophisticated motor repertoires have evolved in humans. Our results suggest that the deliberate monitoring of one's own motor kinematics may have evolved in the human lineage. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Enhanced linearly polarized lasing emission from nanoimprinted surface-emitting distributed feedback laser based on polymeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Soon Moon; Ha, Na Young; Chee, Mu Guen; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo; Nishimura, Suzushi; Suzaki, Goro

    2008-12-01

    The authors have demonstrated the enhancement of linearly polarized lasing emission intensity using a structure made by a simple fabrication process. The enhanced lasing is achieved using a nanoimprinted distributed feedback structure together with spin-coated polymeric liquid crystals. The backward linearly TE-polarized lasing emission is transformed to left-handed circularly polarized light (L-CPL) by employing a dye-doped polymeric nematic liquid crystal (PNLC) film as a (-1/4)λ[=(3/4)λ] plate. The L-CPL is effectively reflected by a L-polymeric cholesteric liquid crystal film as a reflector and transformed back to TE-polarized light by the PNLC film; as a result one-directional emission intensity is enhanced.

  11. Estimation of regions of attraction and ultimate boundedness for multiloop LQ regulators. [Linear Quadratic

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1984-01-01

    Closed-loop stability is investigated for multivariable linear time-invariant systems controlled by optimal full state feedback linear quadratic (LQ) regulators, with nonlinear gains present in the feedback channels. Estimates are obtained for the region of attraction when the nonlinearities escape the (0.5, infinity) sector in regions away from the origin and for the region of ultimate boundedness when the nonlinearities escape the sector near the origin. The expressions for these regions also provide methods for selecting the performance function parameters in order to obtain LQ designs with better tolerance for nonlinearities. The analytical results are illustrated by applying them to the problem of controlling the rigid-body pitch angle and elastic motion of a large, flexible space antenna.

  12. Regional robust stabilisation and domain-of-attraction estimation for MIMO uncertain nonlinear systems with input saturation

    NASA Astrophysics Data System (ADS)

    Azizi, S.; Torres, L. A. B.; Palhares, R. M.

    2018-01-01

    The regional robust stabilisation by means of linear time-invariant state feedback control for a class of uncertain MIMO nonlinear systems with parametric uncertainties and control input saturation is investigated. The nonlinear systems are described in a differential algebraic representation and the regional stability is handled considering the largest ellipsoidal domain-of-attraction (DOA) inside a given polytopic region in the state space. A novel set of sufficient Linear Matrix Inequality (LMI) conditions with new auxiliary decision variables are developed aiming to design less conservative linear state feedback controllers with corresponding larger DOAs, by considering the polytopic description of the saturated inputs. A few examples are presented showing favourable comparisons with recently published similar control design methodologies.

  13. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution.

    PubMed

    Chen, Xiao; Liao, JianQiao; Wu, Weijiong; Zhang, Wei

    2017-01-01

    Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees' perceived insider status (PIS), as a kind of employee-organization relationship, could also influence employees' reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper.

  14. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution

    PubMed Central

    Chen, Xiao; Liao, JianQiao; Wu, Weijiong; Zhang, Wei

    2017-01-01

    Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees’ perceived insider status (PIS), as a kind of employee-organization relationship, could also influence employees’ reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper. PMID:28507527

  15. Consensus Algorithms for Networks of Systems with Second- and Higher-Order Dynamics

    NASA Astrophysics Data System (ADS)

    Fruhnert, Michael

    This thesis considers homogeneous networks of linear systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilizable. We show that, in continuous-time, consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. For networks of continuous-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback. For networks of discrete-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Schur. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. For networks of continuous-time time-variant higher-order systems, we show that uniform consensus can always be achieved if systems are quadratically stabilizable. In this case, we provide a simple condition to obtain a linear feedback control. For networks of discrete-time higher-order systems, we show that constant gains can be chosen such that consensus is achieved for a variety of network topologies. First, we develop simple results for networks of time-invariant systems and networks of time-variant systems that are given in controllable canonical form. Second, we formulate the problem in terms of Linear Matrix Inequalities (LMIs). The condition found simplifies the design process and avoids the parallel solution of multiple LMIs. The result yields a modified Algebraic Riccati Equation (ARE) for which we present an equivalent LMI condition.

  16. Decision feedback loop for tracking a polyphase modulated carrier

    NASA Technical Reports Server (NTRS)

    Simon, M. K. (Inventor)

    1974-01-01

    A multiple phase modulated carrier tracking loop for use in a frequency shift keying system is described in which carrier tracking efficiency is improved by making use of the decision signals made on the data phase transmitted in each T-second interval. The decision signal is used to produce a pair of decision-feedback quadrature signals for enhancing the loop's performance in developing a loop phase error signal.

  17. The Effect of Gender on the N1-P2 Auditory Complex while Listening and Speaking with Altered Auditory Feedback

    ERIC Educational Resources Information Center

    Swink, Shannon; Stuart, Andrew

    2012-01-01

    The effect of gender on the N1-P2 auditory complex was examined while listening and speaking with altered auditory feedback. Fifteen normal hearing adult males and 15 females participated. N1-P2 components were evoked while listening to self-produced nonaltered and frequency shifted /a/ tokens and during production of /a/ tokens during nonaltered…

  18. Feedback control of plasma instabilities with charged particle beams and study of plasma turbulence

    NASA Technical Reports Server (NTRS)

    Tham, Philip Kin-Wah

    1994-01-01

    A new non-perturbing technique for feedback control of plasma instabilities has been developed in the Columbia Linear Machine (CLM). The feedback control scheme involves the injection of a feedback modulated ion beam as a remote suppressor. The ion beam was obtained from a compact ion beam source which was developed for this purpose. A Langmuir probe was used as the feedback sensor. The feedback controller consisted of a phase-shifter and amplifiers. This technique was demonstrated by stabilizing various plasma instabilities to the background noise level, like the trapped particle instability, the ExB instability and the ion-temperature-gradient (ITG) driven instability. An important feature of this scheme is that the injected ion beam is non-perturbing to the plasma equilibrium parameters. The robustness of this feedback stabilization scheme was also investigated. The principal result is that the scheme is fairly robust, tolerating about 100% variation about the nominal parameter values. Next, this scheme is extended to the unsolved general problem of controlling multimode plasma instabilities simultaneously with a single sensor-suppressor pair. A single sensor-suppressor pair of feedback probes is desirable to reduce the perturbation caused by the probes. Two plasma instabilities the ExB and the ITG modes, were simultaneously stabilized. A simple 'state' feedback type method was used where more state information was generated from the single sensor Langmuir probe by appropriate signal processing, in this case, by differentiation. This proof-of-principle experiment demonstrated for the first time that by designing a more sophisticated electronic feedback controller, many plasma instabilities may be simultaneously controlled. Simple theoretical models showed generally good agreement with the feedback experimental results. On a parallel research front, a better understanding of the saturated state of a plasma instability was sought partly with the help of feedback. A plasma instability is usually observed in its saturated state and appears as a single feature in the frequency spectrum with a single azimuthal and parallel wavenumbers. The physics of the non-zero spectral width was investigated in detail because the finite spectral width can cause "turbulent" transport. One aspect of the "turbulence" was investigated by obtaining the scaling of the linear growth rate of the instabilities with the fluctuation levels. The linear growth rates were measured with the established gated feedback technique. The research showed that the ExB instability evolves into a quasi-coherent state when the fluctuation level is high. The coherent aspects were studied with a bispectral analysis. Moreover, the single spectral feature was discovered to be actually composed of a few radial harmonics. The radial harmonics play a role in the nonlinear saturation of the instability via three-wave coupling.

  19. Acceleration and torque feedback for robotic control - Experimental results

    NASA Technical Reports Server (NTRS)

    Mclnroy, John E.; Saridis, George N.

    1990-01-01

    Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.

  20. Adaptive feedback synchronization of a unified chaotic system

    NASA Astrophysics Data System (ADS)

    Lu, Junan; Wu, Xiaoqun; Han, Xiuping; Lü, Jinhu

    2004-08-01

    This Letter further improves and extends the work of Wang et al. [Phys. Lett. A 312 (2003) 34]. In detailed, the linear feedback synchronization and adaptive feedback synchronization with only one controller for a unified chaotic system are discussed here. It is noticed that this unified system contains the noted Lorenz and Chen systems. Two chaotic synchronization theorems are attained. Also, numerical simulations are given to show the effectiveness of these methods.

  1. Parallel multiplex laser feedback interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Song; Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn

    2013-12-15

    We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimentalmore » results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.« less

  2. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1980-01-01

    Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

  3. The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen

    2017-10-01

    In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.

  4. How Sensitive Is the Carbon Budget Approach to Potential Carbon Cycle Changes?

    NASA Astrophysics Data System (ADS)

    Matthews, D.

    2014-12-01

    The recent development of global Earth-system models, which include dynamic representations of both physical climate and carbon cycle processes, has led to new insights about how the climate responds to human carbon dioxide emissions. Notably, several model analyses have now shown that global temperature responds linearly to cumulative CO2 emissions across a wide range of emissions scenarios. This implies that the timing of CO2 emissions does not affect the overall climate response, and allows a finite global carbon carbon budget to be defined for a given global temperature target. This linear climate response, however, emerges from the interaction of several non-linear processes and feedbacks involving how carbon sinks respond to changes in atmospheric CO2 and climate. In this presentation, I will give an overview of how carbon sinks and carbon cycle feedbacks contribute to the overall linearity of the climate response to cumulative emissions, and will assess how robust this relationship is to a range of possible changes in the carbon cycle, including (a) potential positive carbon cycle feedbacks that are not well represented in the current generation of Earth-system models and (b) negative emission scenarios resulting from possible technological strategies to remove CO2 from the atmosphere.

  5. Minimal complexity control law synthesis

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Haddad, Wassim M.; Nett, Carl N.

    1989-01-01

    A paradigm for control law design for modern engineering systems is proposed: Minimize control law complexity subject to the achievement of a specified accuracy in the face of a specified level of uncertainty. Correspondingly, the overall goal is to make progress towards the development of a control law design methodology which supports this paradigm. Researchers achieve this goal by developing a general theory of optimal constrained-structure dynamic output feedback compensation, where here constrained-structure means that the dynamic-structure (e.g., dynamic order, pole locations, zero locations, etc.) of the output feedback compensation is constrained in some way. By applying this theory in an innovative fashion, where here the indicated iteration occurs over the choice of the compensator dynamic-structure, the paradigm stated above can, in principle, be realized. The optimal constrained-structure dynamic output feedback problem is formulated in general terms. An elegant method for reducing optimal constrained-structure dynamic output feedback problems to optimal static output feedback problems is then developed. This reduction procedure makes use of star products, linear fractional transformations, and linear fractional decompositions, and yields as a byproduct a complete characterization of the class of optimal constrained-structure dynamic output feedback problems which can be reduced to optimal static output feedback problems. Issues such as operational/physical constraints, operating-point variations, and processor throughput/memory limitations are considered, and it is shown how anti-windup/bumpless transfer, gain-scheduling, and digital processor implementation can be facilitated by constraining the controller dynamic-structure in an appropriate fashion.

  6. Error Discounting in Probabilistic Category Learning

    PubMed Central

    Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R.

    2011-01-01

    Some current theories of probabilistic categorization assume that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report two probabilistic-categorization experiments that investigated error discounting by shifting feedback probabilities to new values after different amounts of training. In both experiments, responding gradually became less responsive to errors, and learning was slowed for some time after the feedback shift. Both results are indicative of error discounting. Quantitative modeling of the data revealed that adding a mechanism for error discounting significantly improved the fits of an exemplar-based and a rule-based associative learning model, as well as of a recency-based model of categorization. We conclude that error discounting is an important component of probabilistic learning. PMID:21355666

  7. Feedback Seeking in Early Adolescence: Self-Enhancement or Self-Verification?

    PubMed

    Rosen, Lisa H; Principe, Connor P; Langlois, Judith H

    2013-02-13

    The authors examined whether early adolescents ( N = 90) solicit self-enhancing feedback (i.e., positive feedback) or self-verifying feedback (i.e., feedback congruent with self-views, even when these views are negative). Sixth, seventh, and eighth graders first completed a self-perception measure and then selected whether to receive positive or negative feedback from an unknown peer in different domains of self. Results were consistent with self-verification theory; adolescents who perceived themselves as having both strengths and weaknesses were more likely to seek negative feedback regarding a self-perceived weakness compared to a self-perceived strength. The authors found similar support for self-verification processes when they considered the entire sample regardless of perceived strengths and weaknesses; hierarchical linear modeling (HLM) examined the predictive power of ratings of self-perceived ability, certainty, and importance on feedback seeking for all participants and provided additional evidence of self-verification strivings in adolescence.

  8. Feedback Seeking in Early Adolescence: Self-Enhancement or Self-Verification?

    PubMed Central

    Rosen, Lisa H.; Principe, Connor P.; Langlois, Judith H.

    2012-01-01

    The authors examined whether early adolescents (N = 90) solicit self-enhancing feedback (i.e., positive feedback) or self-verifying feedback (i.e., feedback congruent with self-views, even when these views are negative). Sixth, seventh, and eighth graders first completed a self-perception measure and then selected whether to receive positive or negative feedback from an unknown peer in different domains of self. Results were consistent with self-verification theory; adolescents who perceived themselves as having both strengths and weaknesses were more likely to seek negative feedback regarding a self-perceived weakness compared to a self-perceived strength. The authors found similar support for self-verification processes when they considered the entire sample regardless of perceived strengths and weaknesses; hierarchical linear modeling (HLM) examined the predictive power of ratings of self-perceived ability, certainty, and importance on feedback seeking for all participants and provided additional evidence of self-verification strivings in adolescence. PMID:23543746

  9. Design of Linear-Quadratic-Regulator for a CSTR process

    NASA Astrophysics Data System (ADS)

    Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.

    2017-11-01

    This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.

  10. Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law

    NASA Astrophysics Data System (ADS)

    Nurmaini, Siti; Dewi, Kemala; Tutuko, Bambang

    2017-04-01

    This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination, it always produce some errors. Therefore, a mobile robot requires a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement. The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved.

  11. Rotorcraft control system design for uncertain vehicle dynamics using quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1994-01-01

    Quantitative Feedback Theory describes a frequency-domain technique for the design of multi-input, multi-output control systems which must meet time or frequency domain performance criteria when specified uncertainty exists in the linear description of the vehicle dynamics. This theory is applied to the design of the longitudinal flight control system for a linear model of the BO-105C rotorcraft. Uncertainty in the vehicle model is due to the variation in the vehicle dynamics over a range of airspeeds from 0-100 kts. For purposes of exposition, the vehicle description contains no rotor or actuator dynamics. The design example indicates the manner in which significant uncertainty exists in the vehicle model. The advantage of using a sequential loop closure technique to reduce the cost of feedback is demonstrated by example.

  12. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  13. Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks

    NASA Technical Reports Server (NTRS)

    Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

    2011-01-01

    The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

  14. The integration of temporally shifted visual feedback in a synchronization task: The role of perceptual stability in a visuo-proprioceptive conflict situation.

    PubMed

    Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J

    2010-12-01

    The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1985-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  16. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  17. Many shades of green: the dynamic tropical forest–savannah transition zones

    PubMed Central

    Oliveras, Immaculada; Malhi, Yadvinder

    2016-01-01

    The forest–savannah transition is the most widespread ecotone in tropical areas, separating two of the most productive terrestrial ecosystems. Here, we review current understanding of the factors that shape this transition, and how it may change under various drivers of local or global change. At broadest scales, the location of the transition is shaped by water availability, mediated strongly at local scales by fire regimes, herbivory pressure and spatial variation in soil properties. The frequently dynamic nature of this transition suggests that forest and savannah can exist as alternative stable states, maintained and separated by fire–grass feedbacks and tree shade–fire suppression feedback. However, this theory is still contested and the relative contributions of the main biotic and abiotic drivers and their interactions are yet not fully understood. These drivers interplay with a wide range of ecological processes and attributes at the global, continental, regional and local scales. The evolutionary history of the biotic and abiotic drivers and processes plays an important role in the current distributions of these transitions as well as in their species composition and ecosystem functioning. This ecotone can be sensitive to shifts in climate and other driving factors, but is also potentially stabilized by negative feedback processes. There is abundant evidence that these transitions are shifting under contemporary global and local changes, but the direction of shift varies according to region. However, it still remains uncertain how these transitions will respond to rapid and multi-faceted ongoing current changes, and how increasing human influence will interact with these shifts. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502373

  18. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters.

    PubMed

    He, ZeFang; Zhao, Long

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.

  19. Control of constraint forces and trajectories in a rich sensory and actuation environment.

    PubMed

    Hemami, Hooshang; Dariush, Behzad

    2010-12-01

    A simple control strategy is proposed and applied to a class of non-linear systems that have abundant sensory and actuation channels as in living systems. The main objective is the independent control of constrained trajectories of motion, and control of the corresponding constraint forces. The peripheral controller is a proportional, derivative and integral (PID) controller. A central controller produces, via pattern generators, reference signals that are the desired constrained position and velocity trajectories, and the desired constraint forces. The basic tenet of the this hybrid control strategy is the use of two mechanisms: 1. linear state and force feedback, and 2. non-linear constraint velocity feedback - sliding mode feedback. The first mechanism can be envisioned as a high gain feedback systems. The high gain attribute imitates the agonist-antagonist co-activation in natural systems. The strategy is applied to the control of the force and trajectory of a two-segment thigh-leg planar biped leg with a mass-less foot cranking a pedal that is analogous to a bicycle pedal. Five computational experiments are presented to show the effectiveness of the strategy and the performance of the controller. The findings of this paper are applicable to the design of orthoses and prostheses to supplement functional electrical stimulation for support purposes in the spinally injured cases. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Adaptive Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators with Sub-Task Extensions

    DTIC Science & Technology

    2005-01-01

    C. Hughes, Spacecraft Attitude Dynamics, New York, NY: Wiley, 1994. [8] H. K. Khalil, “Adaptive Output Feedback Control of Non- linear Systems...Closed-Loop Manipulator Control Using Quaternion Feedback ”, IEEE Trans. Robotics and Automation, Vol. 4, No. 4, pp. 434-440, (1988). [23] E...full-state feedback quaternion based controller de- veloped in [5] and focuses on the design of a general sub-task controller. This sub-task controller

  1. A nonlinear optimal control approach for chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A new nonlinear optimal control approach is proposed for stabilization of the dynamics of a chaotic finance model. The dynamic model of the financial system, which expresses interaction between the interest rate, the investment demand, the price exponent and the profit margin, undergoes approximate linearization round local operating points. These local equilibria are defined at each iteration of the control algorithm and consist of the present value of the systems state vector and the last value of the control inputs vector that was exerted on it. The approximate linearization makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. The truncation of higher order terms in the Taylor series expansion is considered to be a modelling error that is compensated by the robustness of the control loop. As the control algorithm runs, the temporary equilibrium is shifted towards the reference trajectory and finally converges to it. The control method needs to compute an H-infinity feedback control law at each iteration, and requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov stability analysis it is shown that an H-infinity tracking performance criterion holds for the control loop. This implies elevated robustness against model approximations and external perturbations. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven.

  2. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback

    PubMed Central

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-01-01

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175

  3. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.

    PubMed

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-03-13

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.

  4. Multi-Window Controllers for Autonomous Space Systems

    NASA Technical Reports Server (NTRS)

    Lurie, B, J.; Hadaegh, F. Y.

    1997-01-01

    Multi-window controllers select between elementary linear controllers using nonlinear windows based on the amplitude and frequency content of the feedback error. The controllers are relatively simple to implement and perform much better than linear controllers. The commanders for such controllers only order the destination point and are freed from generating the command time-profiles. The robotic missions rely heavily on the tasks of acquisition and tracking. For autonomous and optimal control of the spacecraft, the control bandwidth must be larger while the feedback can (and, therefore, must) be reduced.. Combining linear compensators via multi-window nonlinear summer guarantees minimum phase character of the combined transfer function. It is shown that the solution may require using several parallel branches and windows. Several examples of multi-window nonlinear controller applications are presented.

  5. Robustness in linear quadratic feedback design with application to an aircraft control problem

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Sridhar, B.; Toda, M.

    1977-01-01

    Some new results concerning robustness and asymptotic properties of error bounds of a linear quadratic feedback design are applied to an aircraft control problem. An autopilot for the flare control of the Augmentor Wing Jet STOL Research Aircraft (AWJSRA) is designed based on Linear Quadratic (LQ) theory and the results developed in this paper. The variation of the error bounds to changes in the weighting matrices in the LQ design is studied by computer simulations, and appropriate weighting matrices are chosen to obtain a reasonable error bound for variations in the system matrix and at the same time meet the practical constraints for the flare maneuver of the AWJSRA. Results from the computer simulation of a satisfactory autopilot design for the flare control of the AWJSRA are presented.

  6. Responsibility-Sharing in the Giving and Receiving of Assessment Feedback

    PubMed Central

    Nash, Robert A.; Winstone, Naomi E.

    2017-01-01

    Many argue that effective learning requires students to take a substantial share of responsibility for their academic development, complementing the responsibilities taken by their educators. Yet this notion of responsibility-sharing receives minimal discussion in the context of assessment feedback, where responsibility for enhancing learning is often framed as lying principally with educators. Developing discussion on this issue is critical: many barriers can prevent students from engaging meaningfully with feedback, but neither educators nor students are fully empowered to remove these barriers without collaboration. In this discussion paper we argue that a culture of responsibility-sharing in the giving and receiving of feedback is essential, both for ensuring that feedback genuinely benefits students by virtue of their skilled and proactive engagement, and also for ensuring the sustainability of educators' effective feedback practices. We propose some assumptions that should underpin such a culture, and we consider the practicalities of engendering this cultural shift within modern higher education. PMID:28932202

  7. Increasing Completion Rate of an M4 Emergency Medicine Student End-of-Shift Evaluation Using a Mobile Electronic Platform and Real-Time Completion.

    PubMed

    Tews, Matthew C; Treat, Robert W; Nanes, Maxwell

    2016-07-01

    Medical students on an emergency medicine rotation are traditionally evaluated at the end of each shift with paper-based forms, and data are often missing due to forms not being turned in or completed. Because students' grades depend on these evaluations, change was needed to increase form rate of return. We analyzed a new electronic evaluation form and modified completion process to determine if it would increase the completion rate without altering how faculty scored student performance. During fall 2013, 29 faculty completed paper N=339 evaluations consisting of seven competencies for 33 students. In fall 2014, an electronic evaluation form with the same competencies was designed using an electronic platform and completed N=319 times by 27 faculty using 25 students' electronic devices. Feedback checkboxes were added to facilitate collection of common comments. Data was analyzed with IBM® SPSS® 21.0 using multi-factor analysis of variance with the students' global rating (GR) as an outcome. Inter-item reliability was determined with Cronbach alpha. There was a significantly higher completion rate (p=0.001) of 98% electronic vs. 69% paper forms, lower (p=0.001) missed GR rate (1% electronic. vs 12% paper), and higher mean scores (p=0.001) for the GR with the electronic (7.0±1.1) vs. paper (6.8±1.2) form. Feedback checkboxes were completed on every form. The inter-item reliability for electronic and paper forms was each alpha=0.95. The use of a new electronic form and modified completion process for evaluating students at the end of shift demonstrated a higher faculty completion rate, a lower missed data rate, a higher global rating and consistent collection of common feedback. The use of the electronic form and the process for obtaining the information made our end-of-shift evaluation process for students more reliable and provided more accurate, up-to-date information for student feedback and when determining student grades.

  8. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  9. Iterative color-multiplexed, electro-optical processor.

    PubMed

    Psaltis, D; Casasent, D; Carlotto, M

    1979-11-01

    A noncoherent optical vector-matrix multiplier using a linear LED source array and a linear P-I-N photodiode detector array has been combined with a 1-D adder in a feedback loop. The resultant iterative optical processor and its use in solving simultaneous linear equations are described. Operation on complex data is provided by a novel color-multiplexing system.

  10. A student-centred feedback model for educators.

    PubMed

    Rudland, Joy; Wilkinson, Tim; Wearn, Andy; Nicol, Pam; Tunny, Terry; Owen, Cathy; O'Keefe, Maree

    2013-04-01

    Effective feedback is instrumental to effective learning. Current feedback models tend to be educator driven rather than learner-centred, with the focus on how the supervisor should give feedback rather than on the role of the learner in requesting and responding to feedback. An alternative approach emphasising the theoretical principles of student-centred and self-regulated learning is offered, drawing upon the literature and also upon the experience of the authors. The proposed feedback model places the student in the centre of the feedback process, and stresses that the attainment of student learning outcomes is influenced by the students themselves. This model emphasises the attributes of the student, particularly responsiveness, receptiveness and reflection, whilst acknowledging the important role that the context and attributes of the supervisor have in influencing the quality of feedback. Educational institutions should consider strategies to encourage and enable students to maximise the many feedback opportunities available to them. As a minimum, educators should remind students about their central role in the feedback process, and support them to develop confidence in meeting this role. In addition, supervisors may need support to develop the skills to shift the balance of responsibility and support students in precipitating feedback moments. Research is also required to validate the proposed model and to determine how to support students to adopt self-regulatory learning, with feedback as a central platform. © Blackwell Publishing Ltd 2013.

  11. Auditory-motor Mapping for Pitch Control in Singers and Nonsingers

    PubMed Central

    Jones, Jeffery A.; Keough, Dwayne

    2009-01-01

    Little is known about the basic processes underlying the behavior of singing. This experiment was designed to examine differences in the representation of the mapping between fundamental frequency (F0) feedback and the vocal production system in singers and nonsingers. Auditory feedback regarding F0 was shifted down in frequency while participants sang the consonant-vowel /ta/. During the initial frequency-altered trials, singers compensated to a lesser degree than nonsingers, but this difference was reduced with continued exposure to frequency-altered feedback. After brief exposure to frequency altered auditory feedback, both singers and nonsingers suddenly heard their F0 unaltered. When participants received this unaltered feedback, only singers' F0 values were found to be significantly higher than their F0 values produced during baseline and control trials. These aftereffects in singers were replicated when participants sang a different note than the note they produced while hearing altered feedback. Together, these results suggest that singers rely more on internal models than nonsingers to regulate vocal productions rather than real time auditory feedback. PMID:18592224

  12. A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere

    PubMed Central

    Rossi, Sergio; Anfodillo, Tommaso; Čufar, Katarina; Cuny, Henri E.; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gričar, Jožica; Gruber, Andreas; King, Gregory M.; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B. K.

    2013-01-01

    Background and Aims Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Methods Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1–9 years per site from 1998 to 2011. Key Results The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern Conclusions The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions. PMID:24201138

  13. Phase difference in modulated signals of two orthogonally polarized outputs of a Nd:YAG microchip laser with anisotropic optical feedback.

    PubMed

    Zhang, Peng; Tan, Yi-Dong; Liu, Ning; Wu, Yun; Zhang, Shu-Lian

    2013-11-01

    We present an experimental observation of the output responses of a Nd:YAG microchip laser with an anisotropic external cavity under weak optical feedback. The feedback mirror is stationary during the experiments. A pair of acousto-optic modulators is used to produce a frequency shift in the feedback light with respect to the initial light. The laser output is a beat signal with 40 kHz modulation frequency and is separated into two orthogonal directions by a Wollaston prism. Phase differences between the two intensity curves are observed as the laser works in two orthogonal modes, and vary with the external birefringence element and the pump power. Theoretical analyses are given, and the simulated results are consistent with the experimental phenomena.

  14. The FONT5 Bunch-by-Bunch Position and Angle Feedback System at ATF2

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Burrows, P. N.; Christian, G. B.; Constance, B.; Davis, M. R.; Gerbershagen, A.; Perry, C.; Resta-Lopez, J.

    The FONT5 upstream beam-based feedback system at ATF2 is designed to correct the position and angle jitter at the entrance to the ATF2 final-focus system, and also to demonstrate a prototype intra-train feedback system for the International Linear Collider interaction point. We discuss the hardware, from stripline BPMs to kickers, and RF and digital signal processing, as well as presenting results from the latest beam tests at ATF2.

  15. Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.

    PubMed

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G

    2016-07-01

    We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.

  16. Entanglement-assisted quantum feedback control

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  17. Output-Feedback Control of Unknown Linear Discrete-Time Systems With Stochastic Measurement and Process Noise via Approximate Dynamic Programming.

    PubMed

    Wang, Jun-Sheng; Yang, Guang-Hong

    2017-07-25

    This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.

  18. Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback

    NASA Astrophysics Data System (ADS)

    You, Xiang; Li, Zongyang; Li, Yongmin

    2017-12-01

    A scheme to achieve strong quantum squeezing of a mechanical resonator in a membrane-in-the-middle optomechanical system is developed. To this end, simultaneous linear and nonlinear coupling between the mechanical resonator and the cavity modes is applied. A two-tone driving light field, comprising unequal red-detuned and blue-detuned sidebands, helps in generating a coherent feedback force through the linear coupling with the membrane resonator. Another driving light field with its amplitude modulated at twice the mechanical frequency drives the mechanical parametric amplification through a second-order coupling with the resonator. The combined effect produces strong quantum squeezing of the mechanical state. The proposed scheme is quite robust to excess second-order coupling observed in coherent feedback operations and can suppress the fluctuations in the mechanical quadrature to far below the zero point and achieve strong squeezing (greater than 10 dB) for realistic parameters.

  19. Single link flexible beam testbed project. Thesis

    NASA Technical Reports Server (NTRS)

    Hughes, Declan

    1992-01-01

    This thesis describes the single link flexible beam testbed at the CLaMS laboratory in terms of its hardware, software, and linear model, and presents two controllers, each including a hub angle proportional-derivative (PD) feedback compensator and one augmented by a second static gain full state feedback loop, based upon a synthesized strictly positive real (SPR) output, that increases specific flexible mode pole damping ratios w.r.t the PD only case and hence reduces unwanted residual oscillation effects. Restricting full state feedback gains so as to produce a SPR open loop transfer function ensures that the associated compensator has an infinite gain margin and a phase margin of at least (-90, 90) degrees. Both experimental and simulation data are evaluated in order to compare some different observer performance when applied to the real testbed and to the linear model when uncompensated flexible modes are included.

  20. On the interaction structure of linear multi-input feedback control systems. M.S. Thesis; [problem solving, lattices (mathematics)

    NASA Technical Reports Server (NTRS)

    Wong, P. K.

    1975-01-01

    The closely-related problems of designing reliable feedback stabilization strategy and coordinating decentralized feedbacks are considered. Two approaches are taken. A geometric characterization of the structure of control interaction (and its dual) was first attempted and a concept of structural homomorphism developed based on the idea of 'similarity' of interaction pattern. The idea of finding classes of individual feedback maps that do not 'interfere' with the stabilizing action of each other was developed by identifying the structural properties of nondestabilizing and LQ-optimal feedback maps. Some known stability properties of LQ-feedback were generalized and some partial solutions were provided to the reliable stabilization and decentralized feedback coordination problems. A concept of coordination parametrization was introduced, and a scheme for classifying different modes of decentralization (information, control law computation, on-line control implementation) in control systems was developed.

  1. Discrimination Learning, Reversal, and Set-Shifting in First-Episode Schizophrenia: Stability Over Six Years and Specific Associations with Medication Type and Disorganization Syndrome

    PubMed Central

    Leeson, Verity C.; Robbins, Trevor W.; Matheson, Elizabeth; Hutton, Samuel B.; Ron, María A.; Barnes, Thomas R.E.; Joyce, Eileen M.

    2009-01-01

    Background The intradimensional/extradimensional (IDED) task assesses different forms of learning from feedback. Limited evidence suggests that attentional set-shifting deteriorates over time in schizophrenia. We tested this hypothesis and examined the specificity of learning impairments identified by this task. Method Two hundred sixty-two first-episode patients and 76 healthy control subjects, matched for age and premorbid IQ, were tested; 104 patients and 25 control subjects were reassessed 1 and 3 years later, and 31 patients were reassessed additionally 6 years later. Results Patients showed impaired set-shifting that correlated with current IQ and working memory, but there were no impairments when subgroups were matched on current IQ. In contrast, patients showed marked impairments in rule reversal learning that survived correction for IQ, were present in the context of intact rule abstraction, and correlated with disorganization symptoms. Patients prescribed second-generation antipsychotics were worse on set-shifting compared with first-generation, a finding not explained by demographic data, illness characteristics, or IQ. Patients and control subjects showed stable IDED performance over the first 6 years of illness, although set-shifting was inconsistent over the first year. Those with residual negative symptoms were more likely to fail the set-shifting stage at follow-up. Conclusions First-episode schizophrenia patients can learn and generalize rules but are inflexible when rules change, reflecting reduced responsiveness to negative feedback and difficulty in switching attention. Rule-reversal is a promising target for translational studies, because it is specific, clinically relevant, and might reflect orbitofrontal dysfunction. Set-shifting is related to poor function more generally but might be sensitive to medication effects and valuable for clinical trials. PMID:19576575

  2. Self-reinforcing impacts of plant invasions change over time.

    PubMed

    Yelenik, Stephanie G; D'Antonio, Carla M

    2013-11-28

    Returning native species to habitats degraded by biological invasions is a critical conservation goal. A leading hypothesis poses that exotic plant dominance is self-reinforced by impacts on ecosystem processes, leading to persistent stable states. Invaders have been documented to modify fire regimes, alter soil nutrients or shift microbial communities in ways that feed back to benefit themselves over competitors. However, few studies have followed invasions through time to ask whether ecosystem impacts and feedbacks persist. Here we return to woodland sites in Hawai'i Volcanoes National Park that were invaded by exotic C4 grasses in the 1960s, the ecosystem impacts of which were studied intensively in the 1990s. We show that positive feedbacks between exotic grasses and soil nitrogen cycling have broken down, but rather than facilitating native vegetation, the weakening feedbacks facilitate new exotic species. Data from the 1990s showed that exotic grasses increased nitrogen-mineralization rates by two- to fourfold, but were nitrogen-limited. Thus, the impacts of the invader created a positive feedback early in the invasion. We now show that annual net soil nitrogen mineralization has since dropped to pre-invasion levels. In addition, a seedling outplanting experiment that varied soil nitrogen and grass competition demonstrates that the changing impacts of grasses do not favour native species re-establishment. Instead, decreased nitrogen availability most benefits another aggressive invader, the nitrogen-fixing tree Morella faya. Long-term studies of invasions may reveal that ecosystem impacts and feedbacks shift over time, but that this may not benefit native species recovery.

  3. Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition

    PubMed Central

    Kent, Rafi; Michael, Yaron; Shnerb, Nadav M.

    2017-01-01

    The process of desertification in the semi-arid climatic zone is considered by many as a catastrophic regime shift, since the positive feedback of vegetation density on growth rates yields a system that admits alternative steady states. Some support to this idea comes from the analysis of static patterns, where peaks of the vegetation density histogram were associated with these alternative states. Here we present a large-scale empirical study of vegetation dynamics, aimed at identifying and quantifying directly the effects of positive feedback. To do that, we have analyzed vegetation density across 2.5 × 106 km2 of the African Sahel region, with spatial resolution of 30 × 30 meters, using three consecutive snapshots. The results are mixed. The local vegetation density (measured at a single pixel) moves towards the average of the corresponding rainfall line, indicating a purely negative feedback. On the other hand, the chance of spatial clusters (of many “green” pixels) to expand in the next census is growing with their size, suggesting some positive feedback. We show that these apparently contradicting results emerge naturally in a model with positive feedback and strong demographic stochasticity, a model that allows for a catastrophic shift only in a certain range of parameters. Static patterns, like the double peak in the histogram of vegetation density, are shown to vary between censuses, with no apparent correlation with the actual dynamical features. Our work emphasizes the importance of dynamic response patterns as indicators of the state of the system, while the usefulness of static modality features appears to be quite limited. PMID:29261678

  4. Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition.

    PubMed

    Weissmann, Haim; Kent, Rafi; Michael, Yaron; Shnerb, Nadav M

    2017-01-01

    The process of desertification in the semi-arid climatic zone is considered by many as a catastrophic regime shift, since the positive feedback of vegetation density on growth rates yields a system that admits alternative steady states. Some support to this idea comes from the analysis of static patterns, where peaks of the vegetation density histogram were associated with these alternative states. Here we present a large-scale empirical study of vegetation dynamics, aimed at identifying and quantifying directly the effects of positive feedback. To do that, we have analyzed vegetation density across 2.5 × 106 km2 of the African Sahel region, with spatial resolution of 30 × 30 meters, using three consecutive snapshots. The results are mixed. The local vegetation density (measured at a single pixel) moves towards the average of the corresponding rainfall line, indicating a purely negative feedback. On the other hand, the chance of spatial clusters (of many "green" pixels) to expand in the next census is growing with their size, suggesting some positive feedback. We show that these apparently contradicting results emerge naturally in a model with positive feedback and strong demographic stochasticity, a model that allows for a catastrophic shift only in a certain range of parameters. Static patterns, like the double peak in the histogram of vegetation density, are shown to vary between censuses, with no apparent correlation with the actual dynamical features. Our work emphasizes the importance of dynamic response patterns as indicators of the state of the system, while the usefulness of static modality features appears to be quite limited.

  5. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  6. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    NASA Astrophysics Data System (ADS)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  7. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees

    PubMed Central

    Kim, Keehoon; Colgate, James Edward; Peshkin, Michael A.; Kuiken, Todd A.

    2011-01-01

    Existing prosthetic limbs do not provide amputees with cutaneous feedback. Tactile feedback is essential to intuitive control of a prosthetic limb and it is now clear that the sense of body self-identification is also linked to cutaneous touch. Here we have created an artificial sense of touch for a prosthetic limb by coupling a pressure sensor on the hand through a robotic stimulator to surgically redirected cutaneous sensory nerves (targeted reinnervation) that once served the lost limb. We hypothesize that providing physiologically relevant cutaneous touch feedback may help an amputee incorporate an artificial limb into his or her self image. To investigate this we used a robotic touch interface coupled with a prosthetic limb and tested it with two targeted reinnervation amputees in a series of experiments fashioned after the Rubber Hand Illusion. Results from both subjective (self-reported) and objective (physiological) measures of embodiment (questionnaires, psychophysical temporal order judgements and residual limb temperature measurements) indicate that returning physiologically appropriate cutaneous feedback from a prosthetic limb drives a perceptual shift towards embodiment of the device for these amputees. Measurements provide evidence that the illusion created is vivid. We suggest that this may help amputees to more effectively incorporate an artificial limb into their self image, providing the possibility that a prosthesis becomes not only a tool, but also an integrated body part. PMID:21252109

  8. Simultaneously measured signals in scanning probe microscopy with a needle sensor: frequency shift and tunneling current.

    PubMed

    Morawski, Ireneusz; Voigtländer, Bert

    2010-03-01

    We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.

  9. Orthogonal Array Testing for Transmit Precoding based Codebooks in Space Shift Keying Systems

    NASA Astrophysics Data System (ADS)

    Al-Ansi, Mohammed; Alwee Aljunid, Syed; Sourour, Essam; Mat Safar, Anuar; Rashidi, C. B. M.

    2018-03-01

    In Space Shift Keying (SSK) systems, transmit precoding based codebook approaches have been proposed to improve the performance in limited feedback channels. The receiver performs an exhaustive search in a predefined Full-Combination (FC) codebook to select the optimal codeword that maximizes the Minimum Euclidean Distance (MED) between the received constellations. This research aims to reduce the codebook size with the purpose of minimizing the selection time and the number of feedback bits. Therefore, we propose to construct the codebooks based on Orthogonal Array Testing (OAT) methods due to their powerful inherent properties. These methods allow to acquire a short codebook where the codewords are sufficient to cover almost all the possible effects included in the FC codebook. Numerical results show the effectiveness of the proposed OAT codebooks in terms of the system performance and complexity.

  10. CSI Feedback Reduction for MIMO Interference Alignment

    NASA Astrophysics Data System (ADS)

    Rao, Xiongbin; Ruan, Liangzhong; Lau, Vincent K. N.

    2013-09-01

    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. Most of the existing IA designs require full channel state information (CSI) at the transmitters, which induces a huge CSI signaling cost. Hence it is desirable to improve the feedback efficiency for IA and in this paper, we propose a novel IA scheme with a significantly reduced CSI feedback. To quantify the CSI feedback cost, we introduce a novel metric, namely the feedback dimension. This metric serves as a first-order measurement of CSI feedback overhead. Due to the partial CSI feedback constraint, conventional IA schemes can not be applied and hence, we develop a novel IA precoder / decorrelator design and establish new IA feasibility conditions. Via dynamic feedback profile design, the proposed IA scheme can also achieve a flexible tradeoff between the degree of freedom (DoF) requirements for data streams, the antenna resources and the CSI feedback cost. We show by analysis and simulations that the proposed scheme achieves substantial reductions of CSI feedback overhead under the same DoF requirement in MIMO interference networks.

  11. Portable Dextrous Force Feedback Master for robot telemanipulation (PDMFF)

    NASA Technical Reports Server (NTRS)

    Burdea, Grigore C.; Speeter, Thomas H.

    1989-01-01

    A major drawback of open loop masters is a lack of force feedback, limiting their ability to perform complex tasks such as assembly and repair. Researchers present a simple dextrous force feedback master for computer assisted telemanipulation. The device is compact, portable and can be held in the operator hand, without the need for a special joystick or console. The system is capable of both position feed forward and force feedback, using electronic position sensors and a pneumatic micro-actuator. The level of forces exercised by the pneumatic actuator is such that near rigidity may be attained. Experimental results showing good system linearity and small time lag are given.

  12. An iterative technique to stabilize a linear time invariant multivariable system with output feedback

    NASA Technical Reports Server (NTRS)

    Sankaran, V.

    1974-01-01

    An iterative procedure for determining the constant gain matrix that will stabilize a linear constant multivariable system using output feedback is described. The use of this procedure avoids the transformation of variables which is required in other procedures. For the case in which the product of the output and input vector dimensions is greater than the number of states of the plant, general solution is given. In the case in which the states exceed the product of input and output vector dimensions, a least square solution which may not be stable in all cases is presented. The results are illustrated with examples.

  13. Computational methods for optimal linear-quadratic compensators for infinite dimensional discrete-time systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1986-01-01

    An abstract approximation theory and computational methods are developed for the determination of optimal linear-quadratic feedback control, observers and compensators for infinite dimensional discrete-time systems. Particular attention is paid to systems whose open-loop dynamics are described by semigroups of operators on Hilbert spaces. The approach taken is based on the finite dimensional approximation of the infinite dimensional operator Riccati equations which characterize the optimal feedback control and observer gains. Theoretical convergence results are presented and discussed. Numerical results for an example involving a heat equation with boundary control are presented and used to demonstrate the feasibility of the method.

  14. Time-optimal Aircraft Pursuit-evasion with a Weapon Envelope Constraint

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1990-01-01

    The optimal pursuit-evasion problem between two aircraft including a realistic weapon envelope is analyzed using differential game theory. Six order nonlinear point mass vehicle models are employed and the inclusion of an arbitrary weapon envelope geometry is allowed. The performance index is a linear combination of flight time and the square of the vehicle acceleration. Closed form solution to this high-order differential game is then obtained using feedback linearization. The solution is in the form of a feedback guidance law together with a quartic polynomial for time-to-go. Due to its modest computational requirements, this nonlinear guidance law is useful for on-board real-time implementation.

  15. Linear laser diode arrays for improvement in optical disk recording for space stations

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated.

  16. Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System

    NASA Astrophysics Data System (ADS)

    Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.

    2016-10-01

    The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).

  17. A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.

  18. An approach to multivariable control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    The paper presents simple schemes for multivariable control of multiple-joint robot manipulators in joint and Cartesian coordinates. The joint control scheme consists of two independent multivariable feedforward and feedback controllers. The feedforward controller is the minimal inverse of the linearized model of robot dynamics and contains only proportional-double-derivative (PD2) terms - implying feedforward from the desired position, velocity and acceleration. This controller ensures that the manipulator joint angles track any reference trajectories. The feedback controller is of proportional-integral-derivative (PID) type and is designed to achieve pole placement. This controller reduces any initial tracking error to zero as desired and also ensures that robust steady-state tracking of step-plus-exponential trajectories is achieved by the joint angles. Simple and explicit expressions of computation of the feedforward and feedback gains are obtained based on the linearized model of robot dynamics. This leads to computationally efficient schemes for either on-line gain computation or off-line gain scheduling to account for variations in the linearized robot model due to changes in the operating point. The joint control scheme is extended to direct control of the end-effector motion in Cartesian space. Simulation results are given for illustration.

  19. Leverage Between the Buffering Effect and the Bystander Effect in Social Networking.

    PubMed

    Chiu, Yu-Ping; Chang, Shu-Chen

    2015-08-01

    This study examined encouraged and inhibited social feedback behaviors based on the theories of the buffering effect and the bystander effect. A system program was used to collect personal data and social feedback from a Facebook data set to test the research model. The results revealed that the buffering effect induced a positive relationship between social network size and feedback gained from friends when people's social network size was under a certain cognitive constraint. For people with a social network size that exceeds this cognitive constraint, the bystander effect may occur, in which having more friends may inhibit social feedback. In this study, two social psychological theories were applied to explain social feedback behavior on Facebook, and it was determined that social network size and social feedback exhibited no consistent linear relationship.

  20. A Negative-Feedback Loop between the Detoxification/Antioxidant Response Factor SKN-1 and Its Repressor WDR-23 Matches Organism Needs with Environmental Conditions

    PubMed Central

    Leung, Chi K.; Wang, Ying; Deonarine, Andrew; Tang, Lanlan; Prasse, Stephanie

    2013-01-01

    Negative-feedback loops between transcription factors and repressors in responses to xenobiotics, oxidants, heat, hypoxia, DNA damage, and infection have been described. Although common, the function of feedback is largely unstudied. Here, we define a negative-feedback loop between the Caenorhabditis elegans detoxification/antioxidant response factor SKN-1/Nrf and its repressor wdr-23 and investigate its function in vivo. Although SKN-1 promotes stress resistance and longevity, we find that tight regulation by WDR-23 is essential for growth and reproduction. By disabling SKN-1 transactivation of wdr-23, we reveal that feedback is required to set the balance between growth/reproduction and stress resistance/longevity. We also find that feedback is required to set the sensitivity of a core SKN-1 target gene to an electrophile. Interestingly, the effect of feedback on target gene induction is greatly reduced when the stress response is strongly activated, presumably to ensure maximum activation of cytoprotective genes during potentially fatal conditions. Our work provides a framework for understanding the function of negative feedback in inducible stress responses and demonstrates that manipulation of feedback alone can shift the balance of competing animal processes toward cell protection, health, and longevity. PMID:23836880

  1. Reward abundance interferes with error-based learning in a visuomotor adaptation task

    PubMed Central

    Oostwoud Wijdenes, Leonie; Rigterink, Tessa; Overvliet, Krista E.; Smeets, Joeren B. J.

    2018-01-01

    The brain rapidly adapts reaching movements to changing circumstances by using visual feedback about errors. Providing reward in addition to error feedback facilitates the adaptation but the underlying mechanism is unknown. Here, we investigate whether the proportion of trials rewarded (the ‘reward abundance’) influences how much participants adapt to their errors. We used a 3D multi-target pointing task in which reward alone is insufficient for motor adaptation. Participants (N = 423) performed the pointing task with feedback based on a shifted hand-position. On a proportion of trials we gave them rewarding feedback that their hand hit the target. Half of the participants only received this reward feedback. The other half also received feedback about endpoint errors. In different groups, we varied the proportion of trials that was rewarded. As expected, participants who received feedback about their errors did adapt, but participants who only received reward-feedback did not. Critically, participants who received abundant rewards adapted less to their errors than participants who received less reward. Thus, reward abundance negatively influences how much participants learn from their errors. Probably participants used a mechanism that relied more on the reward feedback when the reward was abundant. Because participants could not adapt to the reward, this interfered with adaptation to errors. PMID:29513681

  2. Vocalization-Induced Enhancement of the Auditory Cortex Responsiveness during Voice F0 Feedback Perturbation

    PubMed Central

    Behroozmand, Roozbeh; Karvelis, Laura; Liu, Hanjun; Larson, Charles R.

    2009-01-01

    Objective The present study investigated whether self-vocalization enhances auditory neural responsiveness to voice pitch feedback perturbation and how this vocalization-induced neural modulation can be affected by the extent of the feedback deviation. Method Event related potentials (ERPs) were recorded in 15 subjects in response to +100, +200 and +500 cents pitch-shifted voice auditory feedback during active vocalization and passive listening to the playback of the self-produced vocalizations. Result The amplitude of the evoked P1 (latency: 73.51 ms) and P2 (latency: 199.55 ms) ERP components in response to feedback perturbation were significantly larger during vocalization than listening. The difference between P2 peak amplitudes during vocalization vs. listening was shown to be significantly larger for +100 than +500 cents stimulus. Conclusion Results indicate that the human auditory cortex is more responsive to voice F0 feedback perturbations during vocalization than passive listening. Greater vocalization-induced enhancement of the auditory responsiveness to smaller feedback perturbations may imply that the audio-vocal system detects and corrects for errors in vocal production that closely match the expected vocal output. Significance Findings of this study support previous suggestions regarding the enhanced auditory sensitivity to feedback alterations during self-vocalization, which may serve the purpose of feedback-based monitoring of one’s voice. PMID:19520602

  3. Robustness of linear quadratic state feedback designs in the presence of system uncertainty. [application to Augmentor Wing Jet STOL Research Aircraft flare control autopilot design

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Toda, M.; Sridhar, B.

    1977-01-01

    The paper deals with the problem of expressing the robustness (stability) property of a linear quadratic state feedback (LQSF) design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices so that the closed-loop system remains stable. Nonlinear time-varying and linear time-invariant perturbations are considered. The only computation required in obtaining a measure of the robustness of an LQSF design is to determine the eigenvalues of two symmetric matrices determined when solving the algebraic Riccati equation corresponding to the LQSF design problem. Results are applied to a complex dynamic system consisting of the flare control of a STOL aircraft. The design of the flare control is formulated as an LQSF tracking problem.

  4. Center/surround organization of retinal bipolar cells: High correlation of fundamental responses of center and surround to sinusoidal contrasts

    PubMed Central

    Burkhardt, Dwight A.; Bartoletti, Theodore M.; Thoreson, Wallace B.

    2012-01-01

    Receptive field organization of cone-driven bipolar cells was investigated by intracellular recording in the intact light-adapted retina of the tiger salamander (Ambystoma tigrinum). Centered spots and concentric annuli of optimum dimensions were used to selectively stimulate the receptive field center and surround with sinusoidal modulations of contrast at 3 Hz. At low contrasts, responses of both the center and surround of both ON and OFF bipolar cells were linear, showing high gain and thus contrast enhancement relative to cones. The contrast/response curves for the fundamental response, measured by a Fast Fourier Transform, reached half maximum amplitude quickly at 13% contrast followed by saturation at high contrasts. The variation of the normalized amplitude of the center and surround responses was remarkably similar, showing linear regression over the entire response range with very high correlations, r2 = 0.97 for both ON and OFF cells. The contrast/response curves of both center and surround for both ON and OFF cells were well fit (r2 = 0.98) by an equation for single-site binding. In about half the cells studied, the nonlinear waveforms of center and surround could be brought into coincidence by scaling and shifting the surround response in time. This implies that a nonlinearity, common to both center and surround, occurs after polarity inversion at the cone feedback synapse. Evidence from paired whole-cell recordings between single cones and OFF bipolar cells suggests that substantial nonlinearity is not due to transmission at the cone synapse but instead arises from intrinsic bipolar cell and network mechanisms. When sinusoidal contrast modulations were applied to the center and surround simultaneously, clear additivity was observed for small responses in both ON and OFF cells, whereas the interaction was strikingly nonadditive for large responses. The contribution of the surround was then greatly reduced, suggesting attenuation at the cone feedback synapse. PMID:21439110

  5. A tutorial on the LQG/LTR method. [Linear Quadratic Gaussian/Loop Transfer Recovery

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1986-01-01

    In this paper the so-called Linear-Quadratic-Gaussian method with Loop-Transfer-Recovery is surveyed. The objective is to provide a pragmatic exposition, with special emphasis on the step-by-step characteristics for designing multivariable feedback control systems.

  6. Control logic to track the outputs of a command generator or randomly forced target

    NASA Technical Reports Server (NTRS)

    Trankle, T. L.; Bryson, A. E., Jr.

    1977-01-01

    A procedure is presented for synthesizing time-invariant control logic to cause the outputs of a linear plant to track the outputs of an unforced (or randomly forced) linear dynamic system. The control logic uses feed-forward of the reference system state variables and feedback of the plant state variables. The feed-forward gains are obtained from the solution of a linear algebraic matrix equation of the Liapunov type. The feedback gains are the usual regulator gains, determined to stabilize (or augment the stability of) the plant, possibly including integral control. The method is applied here to the design of control logic for a second-order servomechanism to follow a linearly increasing (ramp) signal, an unstable third-order system with two controls to track two separate ramp signals, and a sixth-order system with two controls to track a constant signal and an exponentially decreasing signal (aircraft landing-flare or glide-slope-capture with constant velocity).

  7. Linear, multivariable robust control with a mu perspective

    NASA Technical Reports Server (NTRS)

    Packard, Andy; Doyle, John; Balas, Gary

    1993-01-01

    The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.

  8. Globally linearized control on diabatic continuous stirred tank reactor: a case study.

    PubMed

    Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal

    2005-07-01

    This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.

  9. Computer-Based Feedback in Linear Algebra: Effects on Transfer Performance and Motivation

    ERIC Educational Resources Information Center

    Corbalan, Gemma; Paas, Fred; Cuypers, Hans

    2010-01-01

    Two studies investigated the effects on students' perceptions (Study 1) and learning and motivation (Study 2) of different levels of feedback in mathematical problems. In these problems, an error made in one step of the problem-solving procedure will carry over to the following steps and consequently to the final solution. Providing immediate…

  10. Feedback Functions, Optimization, and the Relation of Response Rate to Reinforcer Rate

    ERIC Educational Resources Information Center

    Soto, Paul L.; McDowell, Jack J.; Dallery, Jesse

    2006-01-01

    The present experiment arranged a series of inverted U-shaped feedback functions relating reinforcer rate to response rate to test whether responding was consistent with an optimization account or with a one-to-one relation of response rate to reinforcer rate such as linear system theory's rate equation or Herrnstein's hyperbola. Reinforcer rate…

  11. Semiconductor ring lasers subject to both on-chip filtered optical feedback and external conventional optical feedback

    NASA Astrophysics Data System (ADS)

    Khoder, Mulham; Van der Sande, Guy; Danckaert, Jan; Verschaffelt, Guy

    2016-05-01

    It is well known that the performance of semiconductor lasers is very sensitive to external optical feedback. This feedback can lead to changes in lasing characteristics and a variety of dynamical effects including chaos and coherence collapse. One way to avoid this external feedback is by using optical isolation, but these isolators and their packaging will increase the cost of the total system. Semiconductor ring lasers nowadays are promising sources in photonic integrated circuits because they do not require cleaved facets or mirrors to form a laser cavity. Recently, some of us proposed to combine semiconductor ring lasers with on chip filtered optical feedback to achieve tunable lasers. The feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifier gates are used to control the feedback strength. In this work, we investigate how such lasers with filtered feedback are influenced by an external conventional optical feedback. The experimental results show intensity fluctuations in the time traces in both the clockwise and counterclockwise directions due to the conventional feedback. We quantify the strength of the conventional feedback induced dynamics be extracting the standard deviation of the intensity fluctuations in the time traces. By using filtered feedback, we can shift the onset of the conventional feedback induced dynamics to larger values of the feedback rate [ Khoder et al, IEEE Photon. Technol. Lett. DOI: 10.1109/LPT.2016.2522184]. The on-chip filtered optical feedback thus makes the semiconductor ring laser less senstive to the effect of (long) conventional optical feedback. We think these conclusions can be extended to other types of lasers.

  12. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters

    PubMed Central

    He, ZeFang

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879

  13. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    PubMed Central

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II). PMID:23133368

  14. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; MirSense, 8 avenue de la Vauve, F-91120 Palaiseau; Michel, F.

    2016-01-15

    Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10{sup ∘}C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results aremore » consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.« less

  15. A proposed method for electronic feedback compensation of damping in ferromagnetic resonance

    DOE PAGES

    Zohar, S.; Sterbinsky, G. E.

    2017-07-10

    Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  16. A proposed method for electronic feedback compensation of damping in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zohar, S.; Sterbinsky, G. E.

    2017-12-01

    We propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π / 2 , amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  17. Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning.

    PubMed

    Kastner, Lucas; Kube, Jana; Villringer, Arno; Neumann, Jane

    2017-01-01

    Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning.

  18. Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning

    PubMed Central

    Kastner, Lucas; Kube, Jana; Villringer, Arno; Neumann, Jane

    2017-01-01

    Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning. PMID:29163004

  19. Mangrove microclimates alter seedling dynamics at the range edge.

    PubMed

    Devaney, John L; Lehmann, Michael; Feller, Ilka C; Parker, John D

    2017-10-01

    Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts. © 2017 by the Ecological Society of America.

  20. Robots show us how to teach them: feedback from robots shapes tutoring behavior during action learning.

    PubMed

    Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J; Wrede, Britta

    2014-01-01

    Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction.

  1. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    PubMed

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  2. Robots Show Us How to Teach Them: Feedback from Robots Shapes Tutoring Behavior during Action Learning

    PubMed Central

    Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J.; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J.; Wrede, Britta

    2014-01-01

    Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction. PMID:24646510

  3. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene.

    PubMed

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-07-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. Graphical Abstract ᅟ.

  4. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene

    NASA Astrophysics Data System (ADS)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-04-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. [Figure not available: see fulltext.

  5. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.

    2015-05-01

    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  6. Shift-invariant optical associative memories

    NASA Astrophysics Data System (ADS)

    Psaltis, Demetri; Hong, John

    1987-01-01

    Shift invariance in the context of associative memories is discussed. Two optical systems that exhibit shift invariance are described in detail with attention given to the analysis of storage capacities. It is shown that full shift invariance cannot be achieved with systems that employ only linear interconnections to store the associations.

  7. Hyperfine frequencies of {sup 87}Rb and {sup 133}Cs atoms in Xe gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuyer, B. H.; Xia, T.; Jau, Y.-Y.

    2011-09-15

    The microwave resonant frequencies of ground-state {sup 87}Rb and {sup 133}Cs atoms in Xe buffer gas are shown to have a relatively large nonlinear dependence on the Xe pressure, presumably because of RbXe or CsXe van der Waals molecules. The nonlinear shifts for Xe are opposite in sign to the previously measured shifts for Ar and Kr, even though all three gases have negative linear shifts. The Xe data show striking discrepancies with the previous theory for nonlinear shifts. Most of this discrepancy is eliminated by accounting for the spin-rotation interaction, {gamma}N{center_dot}S, in addition to the hyperfine-shift interaction, {delta} Amore » I{center_dot}S, in the molecules. To the limit of our experimental accuracy, the shifts of {sup 87}Rb and {sup 133}Cs in He, Ne, and N{sub 2} were linear with pressure.« less

  8. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  9. Neural Correlates of the Lombard Effect in Primate Auditory Cortex

    PubMed Central

    Eliades, Steven J.

    2012-01-01

    Speaking is a sensory-motor process that involves constant self-monitoring to ensure accurate vocal production. Self-monitoring of vocal feedback allows rapid adjustment to correct perceived differences between intended and produced vocalizations. One important behavior in vocal feedback control is a compensatory increase in vocal intensity in response to noise masking during vocal production, commonly referred to as the Lombard effect. This behavior requires mechanisms for continuously monitoring auditory feedback during speaking. However, the underlying neural mechanisms are poorly understood. Here we show that when marmoset monkeys vocalize in the presence of masking noise that disrupts vocal feedback, the compensatory increase in vocal intensity is accompanied by a shift in auditory cortex activity toward neural response patterns seen during vocalizations under normal feedback condition. Furthermore, we show that neural activity in auditory cortex during a vocalization phrase predicts vocal intensity compensation in subsequent phrases. These observations demonstrate that the auditory cortex participates in self-monitoring during the Lombard effect, and may play a role in the compensation of noise masking during feedback-mediated vocal control. PMID:22855821

  10. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss?

    PubMed

    Rusaw, David; Hagberg, Kerstin; Nolan, Lee; Ramstrand, Nerrolyn

    2012-01-01

    The use of vibration as a feedback modality to convey motion of the body has been shown to improve measures of postural stability in some groups of patients. Because individuals using transtibial prostheses lack sensation distal to the amputation, vibratory feedback could possibly be used to improve their postural stability. The current investigation provided transtibial prosthesis users (n = 24, mean age 48 yr) with vibratory feedback proportional to the signal received from force transducers located under the prosthetic foot. Postural stability was evaluated by measuring center of pressure (CoP) movement, limits of stability, and rhythmic weight shift while participants stood on a force platform capable of rotations in the pitch plane (toes up/toes down). The results showed that the vibratory feedback increased the mediolateral displacement amplitude of CoP in standing balance and reduced the response time to rapid voluntary movements of the center of gravity. The results suggest that the use of vibratory feedback in an experimental setting leads to improvements in fast open-loop mechanisms of postural control in transtibial prosthesis users.

  11. Eutrophication triggers contrasting multilevel feedbacks on litter accumulation and decomposition in fens.

    PubMed

    Emsens, W-J; Aggenbach, C J S; Grootjans, A P; Nfor, E E; Schoelynck, J; Struyf, E; van Diggelen, R

    2016-10-01

    Eutrophication is a major threat for the persistence of nutrient-poor fens, as multilevel feedbacks on decomposition rates could trigger carbon loss and increase nutrient cycling. Here, we experimentally investigate the effects of macronutrient (NPK) enrichment on litter quality of six species of sedge (Carex sp.), which we relate to litter decomposition rates in a nutrient-poor and nutrient-rich environment. Our research focused on four levels: we examined how eutrophication alters (1) fresh litter production ("productivity shift"), (2) litter stoichiometry within the same species ("intraspecific shift"), (3) overall litter stoichiometry of the vegetation under the prediction that low-competitive species are outcompeted by fast-growing competitors ("interspecific shift"), and (4) litter decomposition rates due to an altered external environment (e.g., shifts in microbial activity; "exogenous shift"). Eutrophication triggered a strong increase in fresh litter production. Moreover, individuals of the same species produced litter with lower C:N and C:P ratios, higher K contents, and lower lignin, Ca and Mg contents (intraspecific shift), which increased litter decomposability. In addition, species typical for eutrophic conditions produced more easily degradable litter than did species typical for nutrient-poor conditions (interspecific shift). However, the effects of nutrient loading of the external environment (exogenous shift) were contradictory. Here, interactions between litter type and ambient nutrient level indicate that the (exogenous) effects of eutrophication on litter decomposition rates are strongly dependent of litter quality. Moreover, parameters of litter quality only correlated with decomposition rates for litter incubated in nutrient-poor environments, but not in eutrophic environments. This suggests that rates of litter decomposition can be uncoupled from litter stoichiometry under eutrophic conditions. In conclusion, our results show that eutrophication affects litter accumulation and -decomposition at multiple levels, in which stimulatory and inhibitory effects interact. The cumulative effect of these interactions ultimately determine whether peatlands remain sinks or become sources of carbon under eutrophic conditions. © 2016 by the Ecological Society of America.

  12. Output transformations and separation results for feedback linearisable delay systems

    NASA Astrophysics Data System (ADS)

    Cacace, F.; Conte, F.; Germani, A.

    2018-04-01

    The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.

  13. Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback.

    PubMed

    Keough, Dwayne; Hawco, Colin; Jones, Jeffery A

    2013-03-09

    Auditory feedback is important for accurate control of voice fundamental frequency (F(0)). The purpose of this study was to address whether task instructions could influence the compensatory responding and sensorimotor adaptation that has been previously found when participants are presented with a series of frequency-altered feedback (FAF) trials. Trained singers and musically untrained participants (nonsingers) were informed that their auditory feedback would be manipulated in pitch while they sang the target vowel [/α /]. Participants were instructed to either 'compensate' for, or 'ignore' the changes in auditory feedback. Whole utterance auditory feedback manipulations were either gradually presented ('ramp') in -2 cent increments down to -100 cents (1 semitone) or were suddenly ('constant') shifted down by 1 semitone. Results indicated that singers and nonsingers could not suppress their compensatory responses to FAF, nor could they reduce the sensorimotor adaptation observed during both the ramp and constant FAF trials. Compared to previous research, these data suggest that musical training is effective in suppressing compensatory responses only when FAF occurs after vocal onset (500-2500 ms). Moreover, our data suggest that compensation and adaptation are automatic and are influenced little by conscious control.

  14. Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback

    PubMed Central

    2013-01-01

    Background Auditory feedback is important for accurate control of voice fundamental frequency (F0). The purpose of this study was to address whether task instructions could influence the compensatory responding and sensorimotor adaptation that has been previously found when participants are presented with a series of frequency-altered feedback (FAF) trials. Trained singers and musically untrained participants (nonsingers) were informed that their auditory feedback would be manipulated in pitch while they sang the target vowel [/ɑ /]. Participants were instructed to either ‘compensate’ for, or ‘ignore’ the changes in auditory feedback. Whole utterance auditory feedback manipulations were either gradually presented (‘ramp’) in -2 cent increments down to -100 cents (1 semitone) or were suddenly (’constant‘) shifted down by 1 semitone. Results Results indicated that singers and nonsingers could not suppress their compensatory responses to FAF, nor could they reduce the sensorimotor adaptation observed during both the ramp and constant FAF trials. Conclusions Compared to previous research, these data suggest that musical training is effective in suppressing compensatory responses only when FAF occurs after vocal onset (500-2500 ms). Moreover, our data suggest that compensation and adaptation are automatic and are influenced little by conscious control. PMID:23497238

  15. Increased cognitive load enables unlearning in procedural category learning.

    PubMed

    Crossley, Matthew J; Maddox, W Todd; Ashby, F Gregory

    2018-04-19

    Interventions for drug abuse and other maladaptive habitual behaviors may yield temporary success but are often fragile and relapse is common. This implies that current interventions do not erase or substantially modify the representations that support the underlying addictive behavior-that is, they do not cause true unlearning. One example of an intervention that fails to induce true unlearning comes from Crossley, Ashby, and Maddox (2013, Journal of Experimental Psychology: General), who reported that a sudden shift to random feedback did not cause unlearning of category knowledge obtained through procedural systems, and they also reported results suggesting that this failure is because random feedback is noncontingent on behavior. These results imply the existence of a mechanism that (a) estimates feedback contingency and (b) protects procedural learning from modification when feedback contingency is low (i.e., during random feedback). This article reports the results of an experiment in which increasing cognitive load via an explicit dual task during the random feedback period facilitated unlearning. This result is consistent with the hypothesis that the mechanism that protects procedural learning when feedback contingency is low depends on executive function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Stabilization and robustness of non-linear unity-feedback system - Factorization approach

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Kabuli, M. G.

    1988-01-01

    The paper is a self-contained discussion of a right factorization approach in the stability analysis of the nonlinear continuous-time or discrete-time, time-invariant or time-varying, well-posed unity-feedback system S1(P, C). It is shown that a well-posed stable feedback system S1(P, C) implies that P and C have right factorizations. In the case where C is stable, P has a normalized right-coprime factorization. The factorization approach is used in stabilization and simultaneous stabilization results.

  17. Chemically cued suppression of coral reef resilience: Where is the tipping point?

    NASA Astrophysics Data System (ADS)

    Brooker, Rohan M.; Hay, Mark E.; Dixson, Danielle L.

    2016-12-01

    Coral reefs worldwide are shifting from high-diversity, coral-dominated communities to low-diversity systems dominated by seaweeds. This shift can impact essential recovery processes such as larval recruitment and ecosystem resilience. Recent evidence suggests that chemical cues from certain corals attract, and from certain seaweeds suppress, recruitment of juvenile fishes, with loss of coral cover and increases in seaweed cover creating negative feedbacks that prevent reef recovery and sustain seaweed dominance. Unfortunately, the level of seaweed increase and coral decline that creates this chemically cued tipping point remains unknown, depriving managers of data-based targets to prevent damaging feedbacks. We conducted flume and field assays that suggest juvenile fishes sense and respond to cues produced by low levels of seaweed cover. However, the herbivore species we tested was more tolerant of degraded reef cues than non-herbivores, possibly providing some degree of resilience if these fishes recruit, consume macroalgae, and diminish negative cues.

  18. Distributed feedback fiber laser based on a fiber Bragg grating inscribed using the femtosecond point-by-point technique

    NASA Astrophysics Data System (ADS)

    Skvortsov, M. I.; Wolf, A. A.; Dostovalov, A. V.; Vlasov, A. A.; Akulov, V. A.; Babin, S. A.

    2018-03-01

    A distributed feedback (DFB) fiber laser based on a 32-mm long pi-phase-shifted fiber Bragg grating inscribed using the femtosecond point-by-point technique in a single-mode erbium-doped optical fiber (CorActive EDF-L 1500) is demonstrated. The lasing power of the DFB laser reaches 0.7 mW at a wavelength of 1550 nm when pumped with a laser diode at a wavelength of 976 nm and power of 525 mW. The width of the lasing spectrum is 17 kHz. It is shown that the pi-phase-shifted fiber Bragg grating fs-inscribed in a non-PM fiber provides the selection of the single polarization mode of the DFB laser. DFB laser formation in a highly doped non-photosensitive optical fiber (CoreActive SCF-ER60-8/125-12) is also demonstrated.

  19. Methods and apparatus for broadband frequency comb stabilization

    DOEpatents

    Cox, Jonathan A; Kaertner, Franz X

    2015-03-17

    Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.

  20. The power of change: interpersonal attraction as a function of attitude similarity and attitude alignment.

    PubMed

    Reid, Chelsea A; Davis, Jody L; Green, Jeffrey D

    2013-01-01

    Does attitude alignment predict attraction? Would you like a stranger more who shifts her/his attitudes to more closely align with yours? In pairs, participants (N = 77) discussed social issues about which they disagreed and received false feedback on whether the partner engaged in attitude alignment (shifted her/his attitudes toward the participant's attitude) following discussion. Participants also received false feedback about the proportion of similarity to the partner on a set of issues (i.e., 25%, 50%, or 75%). Participants reported greater attraction to partners who engaged in attitude alignment and who were more similar. Moreover, similarity and attitude alignment interacted. Similarity predicted attraction when attitude alignment did not occur, but did not predict attraction when attitude alignment did occur. Finally, partner attitude alignment led to participant attitude alignment, and perceived reasoning ability mediated the attitude alignment-attraction relationship.

  1. Resilience of honeybee colonies via common stomach: A model of self-regulation of foraging

    PubMed Central

    Schmickl, Thomas

    2017-01-01

    We propose a new regulation mechanism based on the idea of the “common stomach” to explain several aspects of the resilience and homeostatic regulation of honeybee colonies. This mechanism exploits shared pools of substances (pollen, nectar, workers, brood) that modulate recruitment, abandonment and allocation patterns at the colony-level and enable bees to perform several survival strategies to cope with difficult circumstances: Lack of proteins leads to reduced feeding of young brood, to early capping of old brood and to regaining of already spent proteins through brood cannibalism. We modeled this system by linear interaction terms and mass-action law. To test the predictive power of the model of this regulatory mechanism we compared our model predictions to experimental data of several studies. These comparisons show that the proposed regulation mechanism can explain a variety of colony level behaviors. Detailed analysis of the model revealed that these mechanisms could explain the resilience, stability and self-regulation observed in honeybee colonies. We found that manipulation of material flow and applying sudden perturbations to colony stocks are quickly compensated by a resulting counter-acting shift in task selection. Selective analysis of feedback loops allowed us to discriminate the importance of different feedback loops in self-regulation of honeybee colonies. We stress that a network of simple proximate mechanisms can explain significant colony-level abilities that can also be seen as ultimate reasoning of the evolutionary trajectory of honeybees. PMID:29161278

  2. A qualitative study on trainees' and supervisors' perceptions of assessment for learning in postgraduate medical education.

    PubMed

    Dijksterhuis, Marja G K; Schuwirth, Lambert W T; Braat, Didi D M; Teunissen, Pim W; Scheele, Fedde

    2013-08-01

    Recent changes in postgraduate medical training curricula usually encompass a shift towards more formative assessment, or assessment for learning. However, though theoretically well suited to postgraduate training, evidence is emerging that engaging in formative assessment in daily clinical practice is complex. We aimed to explore trainees' and supervisors' perceptions of what factors determine active engagement in formative assessment. Focus group study with postgraduate trainees and supervisors in obstetrics and gynaecology. Three higher order themes emerged: individual perspectives on feedback, supportiveness of the learning environment and the credibility of feedback and/or feedback giver. Engaging in formative assessment with a genuine impact on learning is complex and quite a challenge to both trainees and supervisors. Individual perspectives on feedback, a supportive learning environment and credibility of feedback are all important in this process. Every one of these should be taken into account when the utility of formative assessment in postgraduate medical training is evaluated.

  3. Control of the constrained planar simple inverted pendulum

    NASA Technical Reports Server (NTRS)

    Bavarian, B.; Wyman, B. F.; Hemami, H.

    1983-01-01

    Control of a constrained planar inverted pendulum by eigenstructure assignment is considered. Linear feedback is used to stabilize and decouple the system in such a way that specified subspaces of the state space are invariant for the closed-loop system. The effectiveness of the feedback law is tested by digital computer simulation. Pre-compensation by an inverse plant is used to improve performance.

  4. The Contribution of Reasoning to the Utilization of Feedback from Software When Solving Mathematical Problems

    ERIC Educational Resources Information Center

    Olsson, Jan

    2018-01-01

    This study investigates how students' reasoning contributes to their utilization of computer-generated feedback. Sixteen 16-year-old students solved a linear function task designed to present a challenge to them using dynamic software, GeoGebra, for assistance. The data were analysed with respect both to character of reasoning and to the use of…

  5. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.

    PubMed

    Liu, Weilin; Yao, Jianping

    2014-02-15

    A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

  6. Optical Processing Techniques For Pseudorandom Sequence Prediction

    NASA Astrophysics Data System (ADS)

    Gustafson, Steven C.

    1983-11-01

    Pseudorandom sequences are series of apparently random numbers generated, for example, by linear or nonlinear feedback shift registers. An important application of these sequences is in spread spectrum communication systems, in which, for example, the transmitted carrier phase is digitally modulated rapidly and pseudorandomly and in which the information to be transmitted is incorporated as a slow modulation in the pseudorandom sequence. In this case the transmitted information can be extracted only by a receiver that uses for demodulation the same pseudorandom sequence used by the transmitter, and thus this type of communication system has a very high immunity to third-party interference. However, if a third party can predict in real time the probable future course of the transmitted pseudorandom sequence given past samples of this sequence, then interference immunity can be significantly reduced.. In this application effective pseudorandom sequence prediction techniques should be (1) applicable in real time to rapid (e.g., megahertz) sequence generation rates, (2) applicable to both linear and nonlinear pseudorandom sequence generation processes, and (3) applicable to error-prone past sequence samples of limited number and continuity. Certain optical processing techniques that may meet these requirements are discussed in this paper. In particular, techniques based on incoherent optical processors that perform general linear transforms or (more specifically) matrix-vector multiplications are considered. Computer simulation examples are presented which indicate that significant prediction accuracy can be obtained using these transforms for simple pseudorandom sequences. However, the useful prediction of more complex pseudorandom sequences will probably require the application of more sophisticated optical processing techniques.

  7. Path length dependent neutron diffraction peak shifts observed during residual strain measurements in U–8 wt% Mo castings

    DOE PAGES

    Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...

    2017-05-16

    This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less

  8. Winning in Time: Enabling Naturalistic Decision Making in Command and Control

    DTIC Science & Technology

    2000-11-01

    non-linear with non-linearity defined as a condition master chess player , the NBA basketball player , the in which a system disobeys principles of great...are made up of basic others identified in the successive sectors, are feedback structures which have known behavioral points of leverage for policy

  9. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    PubMed Central

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations. PMID:22163788

  10. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure.

    PubMed

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  11. A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn.

    PubMed Central

    Bressloff, Paul C; Cowan, Jack D

    2003-01-01

    A theory is presented of the way in which the hypercolumns in primary visual cortex (V1) are organized to detect important features of visual images, namely local orientation and spatial-frequency. Given the existence in V1 of dual maps for these features, both organized around orientation pinwheels, we constructed a model of a hypercolumn in which orientation and spatial-frequency preferences are represented by the two angular coordinates of a sphere. The two poles of this sphere are taken to correspond, respectively, to high and low spatial-frequency preferences. In Part I of the paper, we use mean-field methods to derive exact solutions for localized activity states on the sphere. We show how cortical amplification through recurrent interactions generates a sharply tuned, contrast-invariant population response to both local orientation and local spatial frequency, even in the case of a weakly biased input from the lateral geniculate nucleus (LGN). A major prediction of our model is that this response is non-separable with respect to the local orientation and spatial frequency of a stimulus. That is, orientation tuning is weaker around the pinwheels, and there is a shift in spatial-frequency tuning towards that of the closest pinwheel at non-optimal orientations. In Part II of the paper, we demonstrate that a simple feed-forward model of spatial-frequency preference, unlike that for orientation preference, does not generate a faithful representation when amplified by recurrent interactions in V1. We then introduce the idea that cortico-geniculate feedback modulates LGN activity to generate a faithful representation, thus providing a new functional interpretation of the role of this feedback pathway. Using linear filter theory, we show that if the feedback from a cortical cell is taken to be approximately equal to the reciprocal of the corresponding feed-forward receptive field (in the two-dimensional Fourier domain), then the mismatch between the feed-forward and cortical frequency representations is eliminated. We therefore predict that cortico-geniculate feedback connections innervate the LGN in a pattern determined by the orientation and spatial-frequency biases of feed-forward receptive fields. Finally, we show how recurrent cortical interactions can generate cross-orientation suppression. PMID:14561324

  12. Efficient Third-Order Distributed Feedback Laser with Enhanced Beam Pattern

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor); Kao, Tsung-Yu (Inventor)

    2015-01-01

    A third-order distributed feedback laser has an active medium disposed on a substrate as a linear array of segments having a series of periodically spaced interstices therebetween and a first conductive layer disposed on a surface of the active medium on each of the segments and along a strip from each of the segments to a conductive electrical contact pad for application of current along a path including the active medium. Upon application of a current through the active medium, the active medium functions as an optical waveguide, and there is established an alternating electric field, at a THz frequency, both in the active medium and emerging from the interstices. Spacing of adjacent segments is approximately half of a wavelength of the THz frequency in free space or an odd integral multiple thereof, so that the linear array has a coherence length greater than the length of the linear array.

  13. Transient shifts in frontal and parietal circuits scale with enhanced visual feedback and changes in force variability and error

    PubMed Central

    Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.

    2013-01-01

    When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186

  14. Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts

    PubMed Central

    Van Grootel, Tom J.; Van der Willigen, Robert F.; Van Opstal, A. John

    2012-01-01

    How the brain maintains an accurate and stable representation of visual target locations despite the occurrence of saccadic gaze shifts is a classical problem in oculomotor research. Here we test and dissociate the predictions of different conceptual models for head-unrestrained gaze-localization behavior of macaque monkeys. We adopted the double-step paradigm with rapid eye-head gaze shifts to measure localization accuracy in response to flashed visual stimuli in darkness. We presented the second target flash either before (static), or during (dynamic) the first gaze displacement. In the dynamic case the brief visual flash induced a small retinal streak of up to about 20 deg at an unpredictable moment and retinal location during the eye-head gaze shift, which provides serious challenges for the gaze-control system. However, for both stimulus conditions, monkeys localized the flashed targets with accurate gaze shifts, which rules out several models of visuomotor control. First, these findings exclude the possibility that gaze-shift programming relies on retinal inputs only. Instead, they support the notion that accurate eye-head motor feedback updates the gaze-saccade coordinates. Second, in dynamic trials the visuomotor system cannot rely on the coordinates of the planned first eye-head saccade either, which rules out remapping on the basis of a predictive corollary gaze-displacement signal. Finally, because gaze-related head movements were also goal-directed, requiring continuous access to eye-in-head position, we propose that our results best support a dynamic feedback scheme for spatial updating in which visuomotor control incorporates accurate signals about instantaneous eye- and head positions rather than relative eye- and head displacements. PMID:23118883

  15. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. II. Effects on metrics and kinematics of ongoing gaze shifts to visual targets.

    PubMed

    Freedman, Edward G; Quessy, Stephan

    2004-06-01

    Saccade kinematics are altered by ongoing head movements. The hypothesis that a head movement command signal, proportional to head velocity, transiently reduces the gain of the saccadic burst generator (Freedman 2001, Biol Cybern 84:453-462) can account for this observation. Using electrical stimulation of the rhesus monkey nucleus reticularis gigantocellularis (NRG) to alter the head contribution to ongoing gaze shifts, two critical predictions of this gaze control hypothesis were tested. First, this hypothesis predicts that activation of the head command pathway will cause a transient reduction in the gain of the saccadic burst generator. This should alter saccade kinematics by initially reducing velocity without altering saccade amplitude. Second, because this hypothesis does not assume that gaze amplitude is controlled via feedback, the added head contribution (produced by NRG stimulation on the side ipsilateral to the direction of an ongoing gaze shift) should lead to hypermetric gaze shifts. At every stimulation site tested, saccade kinematics were systematically altered in a way that was consistent with transient reduction of the gain of the saccadic burst generator. In addition, gaze shifts produced during NRG stimulation were hypermetric compared with control movements. For example, when targets were briefly flashed 30 degrees from an initial fixation location, gaze shifts during NRG stimulation were on average 140% larger than control movements. These data are consistent with the predictions of the tested hypothesis, and may be problematic for gaze control models that rely on feedback control of gaze amplitude, as well as for models that do not posit an interaction between head commands and the saccade burst generator.

  16. Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.

    This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less

  17. Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity

    DOE PAGES

    Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.; ...

    2016-01-07

    This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less

  18. Simulation and design of feedback control on resistive wall modes in Keda Torus eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chenguang; Liu, Wandong; Li, Hong

    2014-12-15

    The feedback control of resistive wall modes (RWMs) in Keda Torus eXperiment (KTX) (Liu et al., Plasma Phys. Controlled Fusion 56, 094009 (2014)) is investigated by simulation. A linear model is built to describe the growth of the unstable modes in the absence of feedback and the resulting mode suppression due to feedback, given the typical reversed field pinch plasma equilibrium. The layout of KTX with two shell structures (the vacuum vessel and the stabilizing shell) is taken into account. The feedback performance is explored both in the scheme of “clean mode control” (Zanca et al., Nucl. Fusion 47, 1425more » (2007)) and “raw mode control.” The discrete time control model with specific characteristic times will mimic the real feedback control action and lead to the favored control cycle. Moreover, the conceptual design of feedback control system is also presented, targeting on both RWMs and tearing modes.« less

  19. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control

    PubMed Central

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2015-01-01

    The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM), relative pitch (RP), and absolute pitch (AP) musicians maintained vocalizations of a vowel sound and received randomized ± 100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked) fronto-central activation within the theta band (5–8 Hz) that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced) frontal activation within the delta band (1–4 Hz) that emerged at approximately 1 s after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE), indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control. PMID:25873858

  20. Theory of mind, inhibitory control, and preschool-age children's suggestibility in different interviewing contexts.

    PubMed

    Scullin, Matthew H; Bonner, Karri

    2006-02-01

    The current study examined the relations among 3- to 5-year-olds' theory of mind, inhibitory control, and three measures of suggestibility: yielding to suggestive questions (yield), shifting answers in response to negative feedback (shift), and accuracy in response to misleading questions during a pressured interview about a live event. Theory of mind aided in the prediction of suggestibility about the live event, and inhibitory control was a moderator variable affecting the consistency of children's sensitivity to social pressure across situations. The findings indicate that theory of mind and inhibitory control predict children's suggestibility about a live event above and beyond yield, shift, and age and that the construct validity of shift may improve as children's inhibitory control develops.

  1. Using parallel banded linear system solvers in generalized eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Zhang, Hong; Moss, William F.

    1993-01-01

    Subspace iteration is a reliable and cost effective method for solving positive definite banded symmetric generalized eigenproblems, especially in the case of large scale problems. This paper discusses an algorithm that makes use of two parallel banded solvers in subspace iteration. A shift is introduced to decompose the banded linear systems into relatively independent subsystems and to accelerate the iterations. With this shift, an eigenproblem is mapped efficiently into the memories of a multiprocessor and a high speed-up is obtained for parallel implementations. An optimal shift is a shift that balances total computation and communication costs. Under certain conditions, we show how to estimate an optimal shift analytically using the decay rate for the inverse of a banded matrix, and how to improve this estimate. Computational results on iPSC/2 and iPSC/860 multiprocessors are presented.

  2. Tracking performance under time sharing conditions with a digit processing task: A feedback control theory analysis. [attention sharing effect on operator performance

    NASA Technical Reports Server (NTRS)

    Gopher, D.; Wickens, C. D.

    1975-01-01

    A one dimensional compensatory tracking task and a digit processing reaction time task were combined in a three phase experiment designed to investigate tracking performance in time sharing. Adaptive techniques, elaborate feedback devices, and on line standardization procedures were used to adjust task difficulty to the ability of each individual subject and manipulate time sharing demands. Feedback control analysis techniques were employed in the description of tracking performance. The experimental results show that when the dynamics of a system are constrained, in such a manner that man machine system stability is no longer a major concern of the operator, he tends to adopt a first order control describing function, even with tracking systems of higher order. Attention diversion to a concurrent task leads to an increase in remnant level, or nonlinear power. This decrease in linearity is reflected both in the output magnitude spectra of the subjects, and in the linear fit of the amplitude ratio functions.

  3. Shock and Vibration Control of a Golf-Swing Robot at Impacting the Ball

    NASA Astrophysics Data System (ADS)

    Hoshino, Yohei; Kobayashi, Yukinori

    A golf swing robot is a kind of fast motion manipulator with a flexible link. A robot manipulator is greatly affected by Corioli's and centrifugal forces during fast motion. Nonlinearity due to these forces can have an adverse effect on the performance of feedback control. In the same way, ordinary state observers of a linear system cannot accurately estimate the states of nonlinear systems. This paper uses a state observer that considers disturbances to improve the performance of state estimation and feedback control. A mathematical model of the golf robot is derived by Hamilton's principle. A linear quadratic regulator (LQR) that considers the vibration of the club shaft is used to stop the robot during the follow-through action. The state observer that considers disturbances estimates accurate state variables when the disturbances due to Corioli's and centrifugal forces, and impact forces work on the robot. As a result, the performance of the state feedback control is improved. The study compares the results of the numerical simulations with experimental results.

  4. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    PubMed

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  5. Equicontrollability and the model following problem

    NASA Technical Reports Server (NTRS)

    Curran, R. T.

    1971-01-01

    Equicontrollability and its application to the linear time-invariant model-following problem are discussed. The problem is presented in the form of two systems, the plant and the model. The requirement is to find a controller to apply to the plant so that the resultant compensated plant behaves, in an input-output sense, the same as the model. All systems are assumed to be linear and time-invariant. The basic approach is to find suitable equicontrollable realizations of the plant and model and to utilize feedback so as to produce a controller of minimal state dimension. The concept of equicontrollability is a generalization of control canonical (phase variable) form applied to multivariable systems. It allows one to visualize clearly the effects of feedback and to pinpoint the parameters of a multivariable system which are invariant under feedback. The basic contributions are the development of equicontrollable form; solution of the model-following problem in an entirely algorithmic way, suitable for computer programming; and resolution of questions on system decoupling.

  6. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1992-01-01

    The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.

  7. Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Schneider, Felix M.; Schöll, Eckehard

    2008-06-01

    The stability of cortical function depends critically on proper regulation. Under conditions of migraine and stroke a breakdown of transmembrane chemical gradients can spread through cortical tissue. A concomitant component of this emergent spatio-temporal pattern is a depolarization of cells detected as slow voltage variations. The propagation velocity of ˜3mm/min indicates a contribution of diffusion. We propose a mechanism for spreading depolarizations (SD) that rests upon a nonlocal or noninstantaneous feedback in a reaction-diffusion system. Depending upon the characteristic space and time scales of the feedback, the propagation of cortical SD can be suppressed by shifting the bifurcation line, which separates the parameter regime of pulse propagation from the regime where a local disturbance dies out. The optimization of this feedback is elaborated for different control schemes and ranges of control parameters.

  8. Effect of Temperature on Synthetic Positive and Negative Feedback Gene Networks

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel A.; Marshall, Sylvia; Balazsi, Gabor

    Synthetic biological systems are built and tested under well controlled laboratory conditions. How altering the environment, such as the ambient temperature affects their function is not well understood. To address this question for synthetic gene networks with positive and negative feedback, we used mathematical modeling coupled with experiments in the budding yeast Saccharomyces cerevisiae. We found that cellular growth rates and gene expression dose responses change significantly at temperatures above and below the physiological optimum for yeast. Gene expression distributions for the negative feedback-based circuit changed from unimodal to bimodal at high temperature, while the bifurcation point of the positive feedback circuit shifted up with temperature. These results demonstrate that synthetic gene network function is context-dependent. Temperature effects should thus be tested and incorporated into their design and validation for real-world applications. NSERC Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  9. Ecological feedbacks. Termite mounds can increase the robustness of dryland ecosystems to climatic change.

    PubMed

    Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E

    2015-02-06

    Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.

  10. Effects of continuous visual feedback during sitting balance training in chronic stroke survivors.

    PubMed

    Pellegrino, Laura; Giannoni, Psiche; Marinelli, Lucio; Casadio, Maura

    2017-10-16

    Postural control deficits are common in stroke survivors and often the rehabilitation programs include balance training based on visual feedback to improve the control of body position or of the voluntary shift of body weight in space. In the present work, a group of chronic stroke survivors, while sitting on a force plate, exercised the ability to control their Center of Pressure with a training based on continuous visual feedback. The goal of this study was to test if and to what extent chronic stroke survivors were able to learn the task and transfer the learned ability to a condition without visual feedback and to directions and displacement amplitudes different from those experienced during training. Eleven chronic stroke survivors (5 Male - 6 Female, age: 59.72 ± 12.84 years) participated in this study. Subjects were seated on a stool positioned on top of a custom-built force platform. Their Center of Pressure positions were mapped to the coordinate of a cursor on a computer monitor. During training, the cursor position was always displayed and the subjects were to reach targets by shifting their Center of Pressure by moving their trunk. Pre and post-training subjects were required to reach without visual feedback of the cursor the training targets as well as other targets positioned in different directions and displacement amplitudes. During training, most stroke survivors were able to perform the required task and to improve their performance in terms of duration, smoothness, and movement extent, although not in terms of movement direction. However, when we removed the visual feedback, most of them had no improvement with respect to their pre-training performance. This study suggests that postural training based exclusively on continuous visual feedback can provide limited benefits for stroke survivors, if administered alone. However, the positive gains observed during training justify the integration of this technology-based protocol in a well-structured and personalized physiotherapy training, where the combination of the two approaches may lead to functional recovery.

  11. Shift work schedule and night work load: Effects on body mass index - a four-year longitudinal study.

    PubMed

    Buchvold, Hogne Vikanes; Pallesen, Ståle; Waage, Siri; Bjorvatn, Bjørn

    2018-05-01

    Objectives The aim of this study was to investigate changes in body mass index (BMI) between different work schedules and different average number of yearly night shifts over a four-year follow-up period. Methods A prospective study of Norwegian nurses (N=2965) with different work schedules was conducted: day only, two-shift rotation (day and evening shifts), three-shift rotation (day, evening and night shifts), night only, those who changed towards night shifts, and those who changed away from schedules containing night shifts. Paired student's t-tests were used to evaluate within subgroup changes in BMI. Multiple linear regression analysis was used to evaluate between groups effects on BMI when adjusting for BMI at baseline, sex, age, marital status, children living at home, and years since graduation. The same regression model was used to evaluate the effect of average number of yearly night shifts on BMI change. Results We found that night workers [mean difference (MD) 1.30 (95% CI 0.70-1.90)], two shift workers [MD 0.48 (95% CI 0.20-0.75)], three shift workers [MD 0.46 (95% CI 0.30-0.62)], and those who changed work schedule away from [MD 0.57 (95% CI 0.17-0.84)] or towards night work [MD 0.63 (95% CI 0.20-1.05)] all had significant BMI gain (P<0.01) during the follow-up period. However, day workers had a non-significant BMI gain. Using adjusted multiple linear regressions, we found that night workers had significantly larger BMI gain compared to day workers [B=0.89 (95% CI 0.06-1.72), P<0.05]. We did not find any significant association between average number of yearly night shifts and BMI change using our multiple linear regression model. Conclusions After adjusting for possible confounders, we found that BMI increased significantly more among night workers compared to day workers.

  12. Feedback stabilization of an oscillating vertical cylinder by POD Reduced-Order Model

    NASA Astrophysics Data System (ADS)

    Tissot, Gilles; Cordier, Laurent; Noack, Bernd R.

    2015-01-01

    The objective is to demonstrate the use of reduced-order models (ROM) based on proper orthogonal decomposition (POD) to stabilize the flow over a vertically oscillating circular cylinder in the laminar regime (Reynolds number equal to 60). The 2D Navier-Stokes equations are first solved with a finite element method, in which the moving cylinder is introduced via an ALE method. Since in fluid-structure interaction, the POD algorithm cannot be applied directly, we implemented the fictitious domain method of Glowinski et al. [1] where the solid domain is treated as a fluid undergoing an additional constraint. The POD-ROM is classically obtained by projecting the Navier-Stokes equations onto the first POD modes. At this level, the cylinder displacement is enforced in the POD-ROM through the introduction of Lagrange multipliers. For determining the optimal vertical velocity of the cylinder, a linear quadratic regulator framework is employed. After linearization of the POD-ROM around the steady flow state, the optimal linear feedback gain is obtained as solution of a generalized algebraic Riccati equation. Finally, when the optimal feedback control is applied, it is shown that the flow converges rapidly to the steady state. In addition, a vanishing control is obtained proving the efficiency of the control approach.

  13. Applications of Nonlinear Control Using the State-Dependent Riccati Equation.

    DTIC Science & Technology

    1995-12-01

    method, and do not address noise rejection or robustness issues. xi Applications of Nonlinear Control Using the State-Dependent Riccati Equation I...construct a stabilizing nonlinear feedback controller. This method will be referred to as nonlinear quadratic regulation (NQR). The original intention...involves nding a state-dependent coe- cient (SDC) linear structure for which a stabilizing nonlinear feedback controller can be constructed. The

  14. Role of medial cortical, hippocampal and striatal interactions during cognitive set-shifting.

    PubMed

    Graham, Steven; Phua, Elaine; Soon, Chun Siong; Oh, Tomasina; Au, Chris; Shuter, Borys; Wang, Shih-Chang; Yeh, Ing Berne

    2009-05-01

    To date, few studies have examined the functional connectivity of brain regions involved in complex executive function tasks, such as cognitive set-shifting. In this study, eighteen healthy volunteers performed a cognitive set-shifting task modified from the Wisconsin card sort test while undergoing functional magnetic resonance imaging. These modifications allowed better disambiguation between cognitive processes and revealed several novel findings: 1) peak activation in the caudate nuclei in the first instance of negative feedback signaling a shift in rule, 2) lowest caudate activation once the rule had been identified, 3) peak hippocampal activation once the identity of the rule had been established, and 4) decreased hippocampal activation during the generation of new rule candidates. This pattern of activation across cognitive set-shifting events suggests that the caudate nuclei play a role in response generation when the identity of the new rule is unknown. In contrast, the reciprocal pattern of hippocampal activation suggests that the hippocampi help consolidate knowledge about the correct stimulus-stimulus associations, associations that become inappropriate once the rule has changed. Functional connectivity analysis using Granger Causality Mapping revealed that caudate and hippocampal regions interacted indirectly via a circuit involving the medial orbitofrontal and posterior cingulate regions, which are known to bias attention towards stimuli based on expectations built up from task-related feedback. Taken together, the evidence suggests that these medial regions may mediate striato-hippocampal interactions and hence affect goal-directed attentional transitions from a response strategy based on stimulus-reward heuristics (caudate-dependent) to one based on stimulus-stimulus associations (hippocampus-dependent).

  15. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  16. Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser.

    PubMed

    Bernhardi, E H; Khan, M R H; Roeloffzen, C G H; van Wolferen, H A G M; Wörhoff, K; de Ridder, R M; Pollnau, M

    2012-01-15

    We report the fabrication and characterization of a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminum oxide. Operation of the device is based on the optical resonances that are induced by two local phase shifts in the distributed-feedback structure. A stable microwave signal at ~15 GHz with a -3 dB width of 9 kHz was subsequently created via the heterodyne photodetection of the two laser wavelengths. The long-term frequency stability of the microwave signal produced by the free-running laser is better than ±2.5 MHz, while the power of the microwave signal is stable within ±0.35 dB.

  17. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.

    PubMed

    Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming

    2016-12-12

    A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.

  18. Robust decentralised stabilisation of uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative feedback

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Qingling; Ren, Junchao; Zhang, Yanhao

    2017-10-01

    This paper studies the problem of robust stability and stabilisation for uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative state feedback or proportional plus derivative output feedback. The basic idea of this work is to use the well-known differential mean value theorem to deal with the nonlinear model such that the considered nonlinear descriptor systems can be transformed into linear parameter varying systems. By using a parameter-dependent Lyapunov function, a decentralised proportional plus derivative state feedback controller and decentralised proportional plus derivative output feedback controller are designed, respectively such that the closed-loop system is quadratically normal and quadratically stable. Finally, a hypersonic vehicle practical simulation example and numerical example are given to illustrate the effectiveness of the results obtained in this paper.

  19. 123s and ABCs: developmental shifts in logarithmic-to-linear responding reflect fluency with sequence values.

    PubMed

    Hurst, Michelle; Monahan, K Leigh; Heller, Elizabeth; Cordes, Sara

    2014-11-01

    When placing numbers along a number line with endpoints 0 and 1000, children generally space numbers logarithmically until around the age of 7, when they shift to a predominantly linear pattern of responding. This developmental shift of responding on the number placement task has been argued to be indicative of a shift in the format of the underlying representation of number (Siegler & Opfer, ). In the current study, we provide evidence from both child and adult participants to suggest that performance on the number placement task may not reflect the structure of the mental number line, but instead is a function of the fluency (i.e. ease) with which the individual can work with the values in the sequence. In Experiment 1, adult participants respond logarithmically when placing numbers on a line with less familiar anchors (1639 to 2897), despite linear responding on control tasks with standard anchors involving a similar range (0 to 1287) and a similar numerical magnitude (2000 to 3000). In Experiment 2, we show a similar developmental shift in childhood from logarithmic to linear responding for a non-numerical sequence with no inherent magnitude (the alphabet). In conclusion, we argue that the developmental trend towards linear behavior on the number line task is a product of successful strategy use and mental fluency with the values of the sequence, resulting from familiarity with endpoints and increased knowledge about general ordering principles of the sequence.A video abstract of this article can be viewed at:http://www.youtube.com/watch?v=zg5Q2LIFk3M. © 2014 John Wiley & Sons Ltd.

  20. A qualitative study of the variable effects of audit and feedback in the ICU.

    PubMed

    Sinuff, Tasnim; Muscedere, John; Rozmovits, Linda; Dale, Craig M; Scales, Damon C

    2015-06-01

    Audit and feedback is integral to performance improvement and behaviour change in the intensive care unit (ICU). However, there remain large gaps in our understanding of the social experience of audit and feedback and the mechanisms whereby it can be optimised as a quality improvement strategy in the ICU setting. We conducted a modified grounded theory qualitative study. Seventy-two clinicians from five academic and five community ICUs in Ontario, Canada, were interviewed. Team members reviewed interview transcripts independently. Data analysis used constant comparative methods. Clinicians interviewed experienced audit and feedback as fragmented and variable in its effectiveness. Moreover, clinicians felt disconnected from the process. The audit process was perceived as being insufficiently transparent. Feedback was often untimely, incomplete and not actionable. Specific groups such as respiratory therapists and night-shift clinicians felt marginalised. Suggestions for improvement included improving information sharing about the rationale for change and the audit process, tools and metrics; implementing peer-to-peer quality discussions to avoid a top-down approach (eg, incorporating feedback into discussions at daily rounds); providing effective feedback which contains specific, transparent and actionable information; delivering timely feedback (ie, balancing feedback proximate to events with trends over time) and increasing engagement by senior management. ICU clinicians experience audit and feedback as fragmented communication with feedback being especially problematic. Attention to improving communication, integration of the process into daily clinical activities and making feedback timely, specific and actionable may increase the effectiveness of audit and feedback to affect desired change. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Social incentives improve deliberative but not procedural learning in older adults.

    PubMed

    Gorlick, Marissa A; Maddox, W Todd

    2015-01-01

    Age-related deficits are seen across tasks where learning depends on asocial feedback processing, however plasticity has been observed in some of the same tasks in social contexts suggesting a novel way to attenuate deficits. Socioemotional selectivity theory suggests this plasticity is due to a deliberative motivational shift toward achieving well-being with age (positivity effect) that reverses when executive processes are limited (negativity effect). The present study examined the interaction of feedback valence (positive, negative) and social salience (emotional face feedback - happy; angry, asocial point feedback - gain; loss) on learning in a deliberative task that challenges executive processes and a procedural task that does not. We predict that angry face feedback will improve learning in a deliberative task when executive function is challenged. We tested two competing hypotheses regarding the interactive effects of deliberative emotional biases on automatic feedback processing: (1) If deliberative emotion regulation and automatic feedback are interactive we expect happy face feedback to improve learning and angry face feedback to impair learning in older adults because cognitive control is available. (2) If deliberative emotion regulation and automatic feedback are not interactive we predict that emotional face feedback will not improve procedural learning regardless of valence. Results demonstrate that older adults show persistent deficits relative to younger adults during procedural category learning suggesting that deliberative emotional biases do not interact with automatic feedback processing. Interestingly, a subgroup of older adults identified as potentially using deliberative strategies tended to learn as well as younger adults with angry relative to happy feedback, matching the pattern observed in the deliberative task. Results suggest that deliberative emotional biases can improve deliberative learning, but have no effect on procedural learning.

  2. Self-esteem Modulates Medial Prefrontal Cortical Responses to Evaluative Social Feedback

    PubMed Central

    Kelley, William M.; Heatherton, Todd F.

    2010-01-01

    Self-esteem is a facet of personality that influences perception of social standing and modulates the salience of social acceptance and rejection. As such, self-esteem may bias neural responses to positive and negative social feedback across individuals. During functional magnetic resonance imaging scanning, participants (n = 42) engaged in a social evaluation task whereby they ostensibly received feedback from peers indicating they were liked or disliked. Results demonstrated that individuals with low self-esteem believed that they received less positive feedback from others and showed enhanced activity to positive versus negative social feedback in the ventral anterior cingulate cortex/medial prefrontal cortex (vACC/mPFC). By contrast, vACC/mPFC activity was insensitive to positive versus negative feedback in individuals with high self-esteem, and these individuals consistently overestimated the amount of positive feedback received from peers. Voxelwise analyses supported these findings; lower self-esteem predicted a linear increase in vACC/mPFC response to positive versus negative social feedback. Taken together, the present findings propose a functional role for the vACC/mPFC in representing the salience of social feedback and shaping perceptions of relative social standing. PMID:20351022

  3. Consideration of computer limitations in implementing on-line controls. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Roberts, G. K.

    1976-01-01

    A formal statement of the optimal control problem which includes the interval of dicretization as an optimization parameter, and extend this to include selection of a control algorithm as part of the optimization procedure, is formulated. The performance of the scalar linear system depends on the discretization interval. Discrete-time versions of the output feedback regulator and an optimal compensator, and the use of these results in presenting an example of a system for which fast partial-state-feedback control better minimizes a quadratic cost than either a full-state feedback control or a compensator, are developed.

  4. A new lattice hydrodynamic model based on control method considering the flux change rate and delay feedback signal

    NASA Astrophysics Data System (ADS)

    Qin, Shunda; Ge, Hongxia; Cheng, Rongjun

    2018-02-01

    In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change rate effect into account in a single lane. The linear stability condition of the new model is derived by control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect in delay feedback model.

  5. On the stabilization of decentralized control systems.

    NASA Technical Reports Server (NTRS)

    Wang, S.-H.; Davison, E. J.

    1973-01-01

    This paper considers the problem of stabilizing a linear time-variant multivariable system by using several local feedback control laws. Each local feedback control law depends only on partial system outputs. A necessary and sufficient condition for the existence of local control laws with dynamic compensation to stabilize a given system is derived. This condition is stated in terms of a new notion, called fixed modes, which is a natural generalization of the well-known concept of uncontrollable modes and unobservable modes that occur in centralized control system problems. A procedure that constructs a set of stabilizing feedback control laws is given.

  6. System identification from closed-loop data with known output feedback dynamics

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.

    1992-01-01

    This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.

  7. Local regulation of interchange turbulence in a dipole-confined plasma torus using current-collection feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, T. M., E-mail: tmr2122@columbia.edu; Mauel, M. E., E-mail: mauel@columbia.edu; Worstell, M. W.

    2015-05-15

    Turbulence in plasma confined by a magnetic dipole is dominated by interchange fluctuations with complex dynamics and short spatial coherence. We report the first use of local current-collection feedback to modify, amplify, and suppress these fluctuations. The spatial extent of turbulence regulation is limited to a correlation length near the collector. Changing the gain and phase of collection results in power either extracted from or injected into the turbulence. The measured plasma response shows some agreement with calculations of the linear response of global interchange-like MHD and entropy modes to current-collection feedback.

  8. Positive Change in Feedback Perceptions and Behavior: A 10-Year Follow-up Study.

    PubMed

    Balmer, Dorene F; Tenney-Soeiro, Rebecca; Mejia, Erika; Rezet, Beth

    2018-01-01

    Providing and learning from feedback are essential components of medical education, and typically described as resistant to change. But given a decade of change in the clinical context in which feedback occurs, the authors asked if, and how, perceptions of feedback and feedback behaviors might have changed in response to contextual affordances. In 2017, the authors conducted a follow-up, ethnographic study on 2 general pediatric floors at the same children's hospital where another ethnographic study on a general pediatric floor was conducted in 2007. Data sources included (1) 21 and 34 hours of observation in 2007 and 2017, respectively, (2) 35 and 25 interviews with general pediatric attending physicians and residents in 2007 and 2017, respectively, and (3) a review of 120 program documents spanning 2007 to 2017. Data were coded and organized around 3 recommendations for feedback that were derived from 2007 data and served as standards for assessing change in 2017. Data revealed progress in achieving each recommendation. Compared with 2007, participants in 2017 more clearly distinguished between feedback and evaluation; residents were more aware of in-the-moment feedback, and they had shifted their orientation from evaluation and grades to feedback and learning. Explanations for progress in achieving recommendations, which were derived from the data, pointed to institutional and national influences, namely, the pediatric milestones. On the basis of follow-up, ethnographic data, changes in the clinical context of pediatric education may afford positive change in perceptions of feedback and feedback behavior and point to influences within and beyond the institution. Copyright © 2018 by the American Academy of Pediatrics.

  9. Digital adaptive control of a VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Reid, G. F.

    1976-01-01

    A technique has been developed for calculating feedback and feedforward gain matrices that stabilize a VTOL aircraft while enabling it to track input commands of forward and vertical velocity. Leverrier's algorithm is used in a procedure for determining a set of state variable, feedback gains that force the closed loop poles and zeroes of one pilot input transfer function to be at preselected positions in the s plane. This set of feedback gains is then used to calculate the feedback and feedforward gains for the velocity command controller. The method is computationally attractive since the gains are determined by solving systems of linear, simultaneous equations. Responses obtained using a digital simulation of the longitudinal dynamics of the CH-47 helicopter are presented.

  10. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  11. Tracking Architecture Based on Dual-Filter with State Feedback and Its Application in Ultra-Tight GPS/INS Integration

    PubMed Central

    Zhang, Xi; Miao, Lingjuan; Shao, Haijun

    2016-01-01

    If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper. PMID:27144570

  12. Tracking Architecture Based on Dual-Filter with State Feedback and Its Application in Ultra-Tight GPS/INS Integration.

    PubMed

    Zhang, Xi; Miao, Lingjuan; Shao, Haijun

    2016-05-02

    If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper.

  13. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs.

    PubMed

    Dell, Claire L A; Longo, Guilherme O; Hay, Mark E

    2016-01-01

    Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds.

  14. A Study of Teacher-Learner Interactions: A Continuum Between Monologic and Dialogic Interactions.

    PubMed

    Kathard, Harsha; Pillay, Daisy; Pillay, Mershen

    2015-07-01

    Teachers and learners must be able to shift flexibly along the continuum of monologic and dialogic interactional repertoires to advance learning. This article describes how teachers and learners interacted during whole-class instruction along the continuum between monologic and dialogic interaction in primary school classrooms in Western Cape, South Africa. A video-observation method was used to analyze teacher-learner interactions (TLIs) across 15 lessons in intermediate-phase classrooms. TLIs were analyzed in relation to indicators such as authority, questions, feedback, explanation, metalevel connection, and collaboration. The transcriptions of TLIs were described using quantitative and qualitative techniques. The study found that teachers sustained dominant monologic interactions by asserting their authority, asking mainly closed-ended questions, and providing confirming/correcting feedback that constrained the interaction. Learners had limited opportunities for explanations or collaboration. Across most lessons, there were episodic shifts from monologic TLIs to transitional TLIs. These transitions were achieved by using mainly open-ended questions and feedback to expand the interaction. Dialogic TLIs were not evident. Monologic TLIs were dominant, closing down opportunities for communication. Although transitional TLIs were evident, they were episodic and showed the potential for opening interaction opportunities. The absence of dialogic TLIs suggested that collaborative engagement opportunities were unavailable. The opportunity for intervention to increase dialogic TLIs is discussed.

  15. Insights into low-latitude cloud feedbacks from high-resolution models.

    PubMed

    Bretherton, Christopher S

    2015-11-13

    Cloud feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus cloud regimes are particularly problematic, because they are sustained by tight interactions between clouds and unresolved turbulent circulations. Turbulence-resolving models better simulate such cloud regimes and support the GCM consensus that they contribute to positive global cloud feedbacks. Large-eddy simulations using sub-100 m grid spacings over small computational domains elucidate marine boundary-layer cloud response to greenhouse warming. Four observationally supported mechanisms contribute: 'thermodynamic' cloudiness reduction from warming of the atmosphere-ocean column, 'radiative' cloudiness reduction from CO2- and H2O-induced increase in atmospheric emissivity aloft, 'stability-induced' cloud increase from increased lower tropospheric stratification, and 'dynamical' cloudiness increase from reduced subsidence. The cloudiness reduction mechanisms typically dominate, giving positive shortwave cloud feedback. Cloud-resolving models with horizontal grid spacings of a few kilometres illuminate how cumulonimbus cloud systems affect climate feedbacks. Limited-area simulations and superparameterized GCMs show upward shift and slight reduction of cloud cover in a warmer climate, implying positive cloud feedbacks. A global cloud-resolving model suggests tropical cirrus increases in a warmer climate, producing positive longwave cloud feedback, but results are sensitive to subgrid turbulence and ice microphysics schemes. © 2015 The Author(s).

  16. Voice responses to changes in pitch of voice or tone auditory feedback

    NASA Astrophysics Data System (ADS)

    Sivasankar, Mahalakshmi; Bauer, Jay J.; Babu, Tara; Larson, Charles R.

    2005-02-01

    The present study was undertaken to examine if a subject's voice F0 responded not only to perturbations in pitch of voice feedback but also to changes in pitch of a side tone presented congruent with voice feedback. Small magnitude brief duration perturbations in pitch of voice or tone auditory feedback were randomly introduced during sustained vowel phonations. Results demonstrated a higher rate and larger magnitude of voice F0 responses to changes in pitch of the voice compared with a triangular-shaped tone (experiment 1) or a pure tone (experiment 2). However, response latencies did not differ across voice or tone conditions. Data suggest that subjects responded to the change in F0 rather than harmonic frequencies of auditory feedback because voice F0 response prevalence, magnitude, or latency did not statistically differ across triangular-shaped tone or pure-tone feedback. Results indicate the audio-vocal system is sensitive to the change in pitch of a variety of sounds, which may represent a flexible system capable of adapting to changes in the subject's voice. However, lower prevalence and smaller responses to tone pitch-shifted signals suggest that the audio-vocal system may resist changes to the pitch of other environmental sounds when voice feedback is present. .

  17. Method for neural network control of motion using real-time environmental feedback

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1997-01-01

    A method of motion control for robotics and other automatically controlled machinery using a neural network controller with real-time environmental feedback. The method is illustrated with a two-finger robotic hand having proximity sensors and force sensors that provide environmental feedback signals. The neural network controller is taught to control the robotic hand through training sets using back- propagation methods. The training sets are created by recording the control signals and the feedback signal as the robotic hand or a simulation of the robotic hand is moved through a representative grasping motion. The data recorded is divided into discrete increments of time and the feedback data is shifted out of phase with the control signal data so that the feedback signal data lag one time increment behind the control signal data. The modified data is presented to the neural network controller as a training set. The time lag introduced into the data allows the neural network controller to account for the temporal component of the robotic motion. Thus trained, the neural network controlled robotic hand is able to grasp a wide variety of different objects by generalizing from the training sets.

  18. Analysis of the Auditory Feedback and Phonation in Normal Voices.

    PubMed

    Arbeiter, Mareike; Petermann, Simon; Hoppe, Ulrich; Bohr, Christopher; Doellinger, Michael; Ziethe, Anke

    2018-02-01

    The aim of this study was to investigate the auditory feedback mechanisms and voice quality during phonation in response to a spontaneous pitch change in the auditory feedback. Does the pitch shift reflex (PSR) change voice pitch and voice quality? Quantitative and qualitative voice characteristics were analyzed during the PSR. Twenty-eight healthy subjects underwent transnasal high-speed video endoscopy (HSV) at 8000 fps during sustained phonation [a]. While phonating, the subjects heard their sound pitched up for 700 cents (interval of a fifth), lasting 300 milliseconds in their auditory feedback. The electroencephalography (EEG), acoustic voice signal, electroglottography (EGG), and high-speed-videoendoscopy (HSV) were analyzed to compare feedback mechanisms for the pitched and unpitched condition of the phonation paradigm statistically. Furthermore, quantitative and qualitative voice characteristics were analyzed. The PSR was successfully detected within all signals of the experimental tools (EEG, EGG, acoustic voice signal, HSV). A significant increase of the perturbation measures and an increase of the values of the acoustic parameters during the PSR were observed, especially for the audio signal. The auditory feedback mechanism seems not only to control for voice pitch but also for voice quality aspects.

  19. Delayed excitatory and inhibitory feedback shape neural information transmission

    NASA Astrophysics Data System (ADS)

    Chacron, Maurice J.; Longtin, André; Maler, Leonard

    2005-11-01

    Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges.

  20. Adaptive control of stochastic linear systems with unknown parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ku, R. T.

    1972-01-01

    The problem of optimal control of linear discrete-time stochastic dynamical system with unknown and, possibly, stochastically varying parameters is considered on the basis of noisy measurements. It is desired to minimize the expected value of a quadratic cost functional. Since the simultaneous estimation of the state and plant parameters is a nonlinear filtering problem, the extended Kalman filter algorithm is used. Several qualitative and asymptotic properties of the open loop feedback optimal control and the enforced separation scheme are discussed. Simulation results via Monte Carlo method show that, in terms of the performance measure, for stable systems the open loop feedback optimal control system is slightly better than the enforced separation scheme, while for unstable systems the latter scheme is far better.

  1. Consensus for multi-agent systems with time-varying input delays

    NASA Astrophysics Data System (ADS)

    Yuan, Chengzhi; Wu, Fen

    2017-10-01

    This paper addresses the consensus control problem for linear multi-agent systems subject to uniform time-varying input delays and external disturbance. A novel state-feedback consensus protocol is proposed under the integral quadratic constraint (IQC) framework, which utilises not only the relative state information from neighbouring agents but also the real-time information of delays by means of the dynamic IQC system states for feedback control. Based on this new consensus protocol, the associated IQC-based control synthesis conditions are established and fully characterised as linear matrix inequalities (LMIs), such that the consensus control solution with optimal ? disturbance attenuation performance can be synthesised efficiently via convex optimisation. A numerical example is used to demonstrate the proposed approach.

  2. Linear analysis of a force reflective teleoperator

    NASA Technical Reports Server (NTRS)

    Biggers, Klaus B.; Jacobsen, Stephen C.; Davis, Clark C.

    1989-01-01

    Complex force reflective teleoperation systems are often very difficult to analyze due to the large number of components and control loops involved. One mode of a force reflective teleoperator is described. An analysis of the performance of the system based on a linear analysis of the general full order model is presented. Reduced order models are derived and correlated with the full order models. Basic effects of force feedback and position feedback are examined and the effects of time delays between the master and slave are studied. The results show that with symmetrical position-position control of teleoperators, a basic trade off must be made between the intersystem stiffness of the teleoperator, and the impedance felt by the operator in free space.

  3. Variable structure control of nonlinear systems through simplified uncertain models

    NASA Technical Reports Server (NTRS)

    Sira-Ramirez, Hebertt

    1986-01-01

    A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.

  4. Vocal Responses to Perturbations in Voice Auditory Feedback in Individuals with Parkinson's Disease

    PubMed Central

    Liu, Hanjun; Wang, Emily Q.; Metman, Leo Verhagen; Larson, Charles R.

    2012-01-01

    Background One of the most common symptoms of speech deficits in individuals with Parkinson's disease (PD) is significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency. Methodology/Principal Findings Twelve individuals with Parkinson's disease and 13 age- and sex- matched healthy control subjects sustained a vowel sound (/α/) and received unexpected, brief (200 ms) perturbations in voice loudness (±3 or 6 dB) or pitch (±100 cents) auditory feedback. Results showed that, while all subjects produced compensatory responses in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than downward stimuli in the control subjects but not in individuals with PD. Conclusions/Significance The larger response magnitudes in individuals with PD compared with the control subjects suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be related to dysfunctional mechanisms of error detection or correction in sensory feedback processing. PMID:22448258

  5. Effect of Excessive Overtraining and Aversive Feedback on Reversal and Extradimensional Shifts in Schizophrenics

    ERIC Educational Resources Information Center

    Nolan, J. Dennis; Anderson, Deborah

    1973-01-01

    Research supported by a grant from the College of Social and Behavioral Sciences, Ohio State University, Columbus, Ohio. Reprints of article available from J. Dennis Nolan, Department of Psychology, Ohio State University, Columbus, Ohio, 43210. (DS)

  6. Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Wang, C.

    1989-01-01

    A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.

  7. Decentralized-feedback pole placement of linear systems

    NASA Technical Reports Server (NTRS)

    Wang, X.; Martin, C. F.; Gilliam, D.; Byrnes, C. I.

    1992-01-01

    A projectile product spaces model is used to analyze decentralized systems. The degree of the pole placement map is computed. The conditions under which the degree is odd are also given. Twin lift systems are studied. It is proved that the poles of a twin lift system can be assigned to any values by local static and local dynamic feedback laws if and only if the system is jointly controllable.

  8. The effect of AGN feedback on the X-ray morphologies of clusters: Simulations vs. observations

    NASA Astrophysics Data System (ADS)

    Chon, Gayoung; Puchwein, Ewald; Böhringer, Hans

    2016-07-01

    Clusters of galaxies probe the large-scale distribution of matter and are a useful tool to test the cosmological models by constraining cosmic structure growth and the expansion of the Universe. It is the scaling relations between mass observables and the true mass of a cluster through which we obtain the cosmological constraints by comparing to theoretical cluster mass functions. These scaling relations are, however, heavily influenced by cluster morphology. The presence of the slight tension in recent cosmological constraints on Ωm and σ8 based on the CMB and clusters has boosted the interests in looking for possible sources for the discrepancy. Therefore we study here the effect of active galactic nucleus (AGN) feedback as one of the major mechanisms modifying the cluster morphology influencing scaling relations. It is known that AGN feedback injects energies up to 1062 erg into the intracluster medium, controls the heating and cooling of a cluster, and re-distributes cold gas from the centre to outer radii. We have also learned that cluster simulations with AGN feedback can reproduce observed cluster properties, for example, the X-ray luminosity, temperature, and cooling rate at the centre better than without the AGN feedback. In this paper using cosmological hydrodynamical simulations we investigate how the AGN feedback changes the X-ray morphology of the simulated systems, and compare this to the observed Representative XMM-Newton Cluster Structure Survey (REXCESS) clusters. We apply two substructure measures, centre shifts (w) and power ratios (e.g. P3/P0), to characterise the cluster morphology, and find that our simulated clusters are more substructured than the observed clusters based on the values of w and P3/P0. We also show that the degree of this discrepancy is affected by the inclusion of AGN feedback. While the clusters simulated with the AGN feedback are in much better agreement with the REXCESS LX-T relation, they are also more substructured, which increases the tension with observations. When classified as non-relaxed or relaxed according to their w and P3/P0 values, we find that there are no relaxed clusters in the simulations with the AGN feedback. This suggests that not only global cluster properties, like LX and T, and radial profiles should be used to compare and to calibrate simulations with observations, but also substructure measures like centre shifts and power ratios. Finally, we discuss what changes in the simulations might ease the tension with observational constraints on these quantities.

  9. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    PubMed

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  10. A non-linear programming approach to the computer-aided design of regulators using a linear-quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1985-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.

  11. LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PILAT,F.; CAMERON,P.; PTITSYN,V.

    2002-06-02

    A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analysing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developedmore » that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10{sup -5} resolution) determines the multipole content of an IR triplet.« less

  12. The Effects of a Local Negative Feedback Function between Choice and Relative Reinforcer Rate

    PubMed Central

    Davison, Michael; Elliffe, Douglas; Marr, M. Jackson

    2010-01-01

    Four pigeons were trained on two-key concurrent variable-interval schedules with no changeover delay. In Phase 1, relative reinforcers on the two alternatives were varied over five conditions from .1 to .9. In Phases 2 and 3, we instituted a molar feedback function between relative choice in an interreinforcer interval and the probability of reinforcers on the two keys ending the next interreinforcer interval. The feedback function was linear, and was negatively sloped so that more extreme choice in an interreinforcer interval made it more likely that a reinforcer would be available on the other key at the end of the next interval. The slope of the feedback function was −1 in Phase 2 and −3 in Phase 3. We varied relative reinforcers in each of these phases by changing the intercept of the feedback function. Little effect of the feedback functions was discernible at the local (interreinforcer interval) level, but choice measured at an extended level across sessions was strongly and significantly decreased by increasing the negative slope of the feedback function. PMID:21451748

  13. Two-photon absorption induced stimulated Rayleigh-Bragg scattering

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Prasad, Paras N.

    2005-01-01

    A frequency-unshifted and backward stimulated scattering can be efficiently generated in one-photon-absorption free but two-photon absorbing materials. Using a number of novel two-photon absorbing dye solutions as the scattering media and nanosecond pulsed laser as the pump beams, a highly directional backward stimulated scattering at the exact pump wavelength can be readily observed once the pump intensity is higher than a certain threshold level. The spectral and spatial structures as well as the temporal behavior and optical phase-conjugation property of this new type of backward stimulated scattering have been experimentally studied. This stimulated scattering phenomenon can be explained by using a model of two-photon-excitation enhanced standing-wave Bragg grating initially formed by the strong forward pump beam and much weaker backward Rayleigh scattering beam; the partial reflection of the pump beam from this grating provides an positive feedback to the initial backward Rayleigh scattering beam without suffering linear attenuation influence. Comparing to other known stimulated (Raman, Brillouin, Rayleigh-wing, and Kerr) scattering effects, the stimulated Rayleigh-Bragg scattering exhibits the advantages of no frequency-shift, low pump threshold, and low spectral linewidth requirement.

  14. Linear phase encoding for holographic data storage with a single phase-only spatial light modulator.

    PubMed

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-04-01

    A linear phase encoding is presented for realizing a compact and simple holographic data storage system with a single spatial light modulator (SLM). This encoding method makes it possible to modulate a complex amplitude distribution with a single phase-only SLM in a holographic storage system. In addition, an undesired light due to the imperfection of an SLM can be removed by spatial frequency filtering with a Nyquist aperture. The linear phase encoding is introduced to coaxial holographic data storage. The generation of a signal beam using linear phase encoding is experimentally verified in an interferometer. In a coaxial holographic data storage system, single data recording, shift selectivity, and shift multiplexed recording are experimentally demonstrated.

  15. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Mu, C. C.; Abbott, B. W.; Zhao, Q.; Su, H.; Wang, S. F.; Wu, Q. B.; Zhang, T. J.; Wu, X. D.

    2017-09-01

    Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing-season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai-Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing-season carbon sink to a weak source but decreasing feature level CH4 and N2O flux. Temperature-corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5-fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils. Q10 values for respiration were typically over 4, suggesting high-temperature sensitivity of thawed carbon. Taken together, these results suggest that QTP permafrost carbon in alpine tundra is highly vulnerable to mineralization following thaw, and that N2O production could be an important noncarbon permafrost climate feedback. Permafrost collapse altered soil hydrology, shifting the ecosystem from a carbon sink to carbon source but decreasing CH4 and N2O flux. Little to no vegetation recovery after stabilization suggests potentially large net carbon losses. High N2O flux compared to Arctic and Boreal systems suggests noncarbon permafrost climate feedback.

  16. Nursing shortages: let's be flexible.

    PubMed

    Sullivan, Christine; Reading, Sonya

    2002-10-01

    The following paper is a report outlining a significant work pattern change in an acute cardiac ward at a large Brisbane-based private hospital. The nursing staff expressed the desire for more flexible rostering and the opportunity to work 12-hour shifts. After agreement was reached between the hospital, the union and the Industrial Relations Board, guidelines were put in place and a Flexible Rostering System was proposed and trialed. An 80% consensus of staff was required both to proceed with the trial and to implement any permanent changes. Initially, the trial was conducted for three months and extended to six months. The shifts trialed were between four and 12 hours in length with varied starting and finishing times. The Flexible Rostering System was evaluated using feedback from staff surveys and the results of a staff vote. In addition, patient feedback, incident reports, financial and managerial evaluation of staff costs, hours per patient day utilised, sick leave, and the use of permanent staff for voluntary extra shifts were also monitored. The outcome of the trial was positive with over 80% of staff voting to implement the Flexible Rostering System permanently. A significant reduction in sick leave of 41% and improved retention of skilled registered nursing staff was noted. There was no increase in the number of incident reports or patient complaints. Both patients and nurses commented on the improved continuity of care. Salaries and wages were within budget. Staff surveys showed positive feedback such as increased morale, increased flexibility with rosters, decreased fatigue levels, improved patient assessment on night duty and an increase in number of days off. In conclusion, the Flexible Rostering System has been accepted as a positive change for staff and is cost effective for the hospital. In light of nursing shortages, the outcome of this trial cannot be ignored.

  17. A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure.

    PubMed

    Miconi, Thomas; VanRullen, Rufin

    2016-02-01

    Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell.

  18. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.

    2015-12-01

    We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.

  19. The linear regulator problem for parabolic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kunisch, K.

    1983-01-01

    An approximation framework is presented for computation (in finite imensional spaces) of Riccati operators that can be guaranteed to converge to the Riccati operator in feedback controls for abstract evolution systems in a Hilbert space. It is shown how these results may be used in the linear optimal regulator problem for a large class of parabolic systems.

  20. Releasable High-Mechanical-Advantage Linear Actuator

    NASA Technical Reports Server (NTRS)

    Young, Gordon H.

    1994-01-01

    Proposed linear actuator includes ball-screw mechanism made to engage or disengage piston as needed. Requires low power to maintain release and no power to maintain engagement. Pins sliding radially in solenoids in yoke engage or disengage slot in piston. With help of optoelectronic feedback, yoke made to follow free piston during disengagement so always in position to "grab" piston.

  1. Approaches to the Optimal Nonlinear Analysis of Microcalorimeter Pulses

    NASA Astrophysics Data System (ADS)

    Fowler, J. W.; Pappas, C. G.; Alpert, B. K.; Doriese, W. B.; O'Neil, G. C.; Ullom, J. N.; Swetz, D. S.

    2018-03-01

    We consider how to analyze microcalorimeter pulses for quantities that are nonlinear in the data, while preserving the signal-to-noise advantages of linear optimal filtering. We successfully apply our chosen approach to compute the electrothermal feedback energy deficit (the "Joule energy") of a pulse, which has been proposed as a linear estimator of the deposited photon energy.

  2. Linear Algebra and the Experiences of a "Flipper"

    ERIC Educational Resources Information Center

    Wright, Sarah E.

    2015-01-01

    This paper describes the linear algebra class I taught during Spring 2014 semester at Adelphi University. I discuss the details of how I flipped the class and incorporated elements of inquiry-based learning as well as the reasoning behind specific decisions I made. I give feedback from the students on the success of the course and provide my own…

  3. Integration of auditory and somatosensory error signals in the neural control of speech movements.

    PubMed

    Feng, Yongqiang; Gracco, Vincent L; Max, Ludo

    2011-08-01

    We investigated auditory and somatosensory feedback contributions to the neural control of speech. In task I, sensorimotor adaptation was studied by perturbing one of these sensory modalities or both modalities simultaneously. The first formant (F1) frequency in the auditory feedback was shifted up by a real-time processor and/or the extent of jaw opening was increased or decreased with a force field applied by a robotic device. All eight subjects lowered F1 to compensate for the up-shifted F1 in the feedback signal regardless of whether or not the jaw was perturbed. Adaptive changes in subjects' acoustic output resulted from adjustments in articulatory movements of the jaw or tongue. Adaptation in jaw opening extent in response to the mechanical perturbation occurred only when no auditory feedback perturbation was applied or when the direction of adaptation to the force was compatible with the direction of adaptation to a simultaneous acoustic perturbation. In tasks II and III, subjects' auditory and somatosensory precision and accuracy were estimated. Correlation analyses showed that the relationships 1) between F1 adaptation extent and auditory acuity for F1 and 2) between jaw position adaptation extent and somatosensory acuity for jaw position were weak and statistically not significant. Taken together, the combined findings from this work suggest that, in speech production, sensorimotor adaptation updates the underlying control mechanisms in such a way that the planning of vowel-related articulatory movements takes into account a complex integration of error signals from previous trials but likely with a dominant role for the auditory modality.

  4. Vocal and neural responses to unexpected changes in voice pitch auditory feedback during register transitions

    PubMed Central

    Patel, Sona; Lodhavia, Anjli; Frankford, Saul; Korzyukov, Oleg; Larson, Charles R.

    2016-01-01

    Objective/Hypothesis It is known that singers are able to control their voice to maintain a relatively constant vocal quality while transitioning between vocal registers; however, the neural mechanisms underlying this effect are not understood. It was hypothesized that greater attention to the acoustical feedback of the voice and increased control of the vocal musculature during register transitions compared to singing within a register would be represented as neurological differences in event-related potentials (ERPs). Study Design/Methods Nine singers sang musical notes at the high end of the modal register (the boundary between the modal and head/falsetto registers) and at the low end (the boundary between the modal and fry/pulse registers). While singing, the pitch of the voice auditory feedback was unexpectedly shifted either into the adjacent register (“toward” the register boundary) or within the modal register (“away from” the boundary). Singers were instructed to maintain a constant pitch and ignore any changes to their voice feedback. Results Vocal response latencies and magnitude of the accompanying N1 and P2 ERPs were greatest at the lower (modal-fry) boundary when the pitch shift carried the subjects’ voices into the fry register as opposed to remaining within the modal register. Conclusions These findings suggest that when a singer lowers the pitch of their voice such that it enters the fry register from the modal register, there is increased sensory-motor control of the voice, reflected as increased magnitude of the neural potentials to help minimize qualitative changes in the voice. PMID:26739860

  5. Sensory-Motor Networks Involved in Speech Production and Motor Control: An fMRI Study

    PubMed Central

    Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R.; Oya, Hiroyuki; Robin, Donald A.; Howard, Matthew A.; Greenlee, Jeremy D.W.

    2015-01-01

    Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. PMID:25623499

  6. Neuronal activity during a cued strategy task: Comparison of dorsolateral, orbital and polar prefrontal cortex

    PubMed Central

    Tsujimoto, Satoshi; Genovesio, Aldo; Wise, Steven P.

    2012-01-01

    We compared neuronal activity in the dorsolateral (PFdl), orbital (PFo) and polar (PFp) prefrontal cortex as monkeys performed three tasks. In two tasks, a cue instructed one of two strategies: stay with the previous response or shift to the alternative. Visual stimuli served as cues in one of these tasks; in the other, fluid rewards did so. In the third task, visuospatial cues instructed each response. A delay period followed each cue. As reported previously, PFdl encoded strategies (stay or shift) and responses (left or right) during the cue and delay periods, while PFo encoded strategies and PFp encoded neither strategies nor responses; during the feedback period, all three areas encoded responses, not strategies. Four novel findings emerged from the present analysis. (1) The strategy encoded by PFdl and PFo cells during the cue and delay periods was modality specific. (2) The response encoded by PFdl cells was task- and modality specific during the cue period, but during the delay and feedback periods it became task- and modality general. (3) Although some PFdl and PFo cells responded to or anticipated rewards, we could rule out reward effects for most strategy-and response-related activity. (4) Immediately before feedback, only PFp signaled responses that were correct according to the cued strategy; after feedback, only PFo signaled the response that had been made, whether correct or incorrect. These signals support a role in generating responses by PFdl, assigning outcomes to choices by PFo, and assigning outcomes to cognitive processes by PFp. PMID:22875935

  7. An Algebraic Approach to Inference in Complex Networked Structures

    DTIC Science & Technology

    2015-07-09

    44], [45],[46] where the shift is the elementary non-trivial filter that generates, under an appropriate notion of shift invariance, all linear ... elementary filter, and its output is a graph signal with the value at vertex n of the graph given approximately by a weighted linear combination of...AFRL-AFOSR-VA-TR-2015-0265 An Algebraic Approach to Inference in Complex Networked Structures Jose Moura CARNEGIE MELLON UNIVERSITY Final Report 07

  8. A linear shift-invariant image preprocessing technique for multispectral scanner systems

    NASA Technical Reports Server (NTRS)

    Mcgillem, C. D.; Riemer, T. E.

    1973-01-01

    A linear shift-invariant image preprocessing technique is examined which requires no specific knowledge of any parameter of the original image and which is sufficiently general to allow the effective radius of the composite imaging system to be arbitrarily shaped and reduced, subject primarily to the noise power constraint. In addition, the size of the point-spread function of the preprocessing filter can be arbitrarily controlled, thus minimizing truncation errors.

  9. Interference Alignment With Partial CSI Feedback in MIMO Cellular Networks

    NASA Astrophysics Data System (ADS)

    Rao, Xiongbin; Lau, Vincent K. N.

    2014-04-01

    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. However, most existing IA designs require full channel state information (CSI) at the transmitters, which would lead to significant CSI signaling overhead. There are two techniques, namely CSI quantization and CSI feedback filtering, to reduce the CSI feedback overhead. In this paper, we consider IA processing with CSI feedback filtering in MIMO cellular networks. We introduce a novel metric, namely the feedback dimension, to quantify the first order CSI feedback cost associated with the CSI feedback filtering. The CSI feedback filtering poses several important challenges in IA processing. First, there is a hidden partial CSI knowledge constraint in IA precoder design which cannot be handled using conventional IA design methodology. Furthermore, existing results on the feasibility conditions of IA cannot be applied due to the partial CSI knowledge. Finally, it is very challenging to find out how much CSI feedback is actually needed to support IA processing. We shall address the above challenges and propose a new IA feasibility condition under partial CSIT knowledge in MIMO cellular networks. Based on this, we consider the CSI feedback profile design subject to the degrees of freedom requirements, and we derive closed-form trade-off results between the CSI feedback cost and IA performance in MIMO cellular networks.

  10. Making chaotic behavior in a damped linear harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Konishi, Keiji

    2001-06-01

    The present Letter proposes a simple control method which makes chaotic behavior in a damped linear harmonic oscillator. This method is a modified scheme proposed in paper by Wang and Chen (IEEE CAS-I 47 (2000) 410) which presents an anti-control method for making chaotic behavior in discrete-time linear systems. We provide a systematic procedure to design parameters and sampling period of a feedback controller. Furthermore, we show that our method works well on numerical simulations.

  11. Loudspeakers: Modeling and control

    NASA Astrophysics Data System (ADS)

    Al-Ali, Khalid Mohammad

    This thesis documented a comprehensive study of loudspeaker modeling and control. A lumped-parameter model for a voice-coil loudspeaker in a vented enclosure was presented that derived from a consideration of physical principles. In addition, a low-frequency (20 Hz to 100 Hz), feedback control method designed to improve the nonlinear performance of the loudspeaker and a suitable performance measure for use in design and evaluation were proposed. Data from experiments performed on a variety of actual loudspeakers confirmed the practicality of the theory developed in this work. The lumped-parameter loudspeaker model, although simple, captured much of the nonlinear behavior of the loudspeaker. In addition, the model formulation allowed a straightforward application of modern control system methods and lent itself well to modern parametric identification techniques. The nonlinear performance of the loudspeaker system was evaluated using a suitable distortion measure that was proposed and compared with other distortion measures currently used in practice. Furthermore, the linearizing effect of feedback using a linear controller (both static and dynamic) was studied on a class of nonlinear systems. The results illustrated that the distortion reduction was potentially significant and a useful upper bound on the closed-loop distortion was found based on the sensitivity function of the system's linearization. A feedback scheme based on robust control theory was chosen for application to the loudspeaker system. Using the pressure output of the loudspeaker system for feedback, the technique offered significant advantages over those previously attempted. Illustrative examples were presented that proved the applicability of the theory developed in this dissertation to a variety of loudspeaker systems. The examples included a vented loudspeaker model and actual loudspeakers enclosed in both vented and sealed configurations. In each example, predictable and measurable distortion reduction at the output of the closed-loop system was recorded.

  12. Formation Mechanisms for Spur and Groove Features on Fringing Reefs

    NASA Astrophysics Data System (ADS)

    Bramante, J. F.; Ashton, A. D.; Perron, J. T.

    2016-12-01

    Spur and groove systems (SAGs) are ubiquitous morphological features found on fore-reef slopes globally. SAGs consist of parallel, roughly shore-normal ridges of actively growing coral and coralline algae (spurs) separated by offshore-sloping depressions typically carpeted by a veneer of sediment (grooves). Although anecdotal observations and recent statistical analyses have reported correlations between wave exposure and the distribution of SAGs on fore-reef slopes, the physical mechanisms driving SAG formation remain poorly understood. For example, there remains significant debate regarding the importance of coral growth versus bed erosion for SAG formation. Here we investigate a hypothesis that SAG formation is controlled by feedbacks between sediment production and diffusion and coral growth. Using linear stability analysis, we find that sediment production, coral growth, and the feedbacks between them are unable to produce stable periodic structures without a sediment sink. However, if incipient grooves act as conduits for sediment transport offshore, a positive feedback can develop as the groove bed erodes through wave-driven abrasion during offshore transport. Eventually a negative feedback slows groove deepening when the groove bed is armored by sediment, and the groove bed relaxes to a sediment-veneered equilibrium profile analogous to sediment-rich shorefaces. To test this hypothesis, we apply a numerical model that incorporates coral growth and sediment production, sediment diffusion, non-linear wave-driven abrasion, and sediment advection offshore. This model produces the periodic, linear features characteristic of SAG morphology. The relative magnitude of growth, production, diffusion, abrasion, and advection rates affect periodic spacing or wavelength of the modeled SAGs. Finally, we evaluate the ability of the model to replicate geographical variability in SAG characteristics using previously published datasets and reanalysis wave data.

  13. On a theory of the evolution of surface cold fronts

    NASA Technical Reports Server (NTRS)

    Levy, Gad; Bretherton, Christopher S.

    1987-01-01

    The governing vorticity and divergence equations in the surface layer are derived and the roles of the different terms and feedback mechanisms are investigated in semigeostrophic and nongeostrophic cold-frontal systems. A planetary boundary layer model is used to perform sensitivity tests to determine that in a cold front the ageostrophic feedback mechanism as defined by Orlanski and Ross tends to act as a positive feedback mechanism, enhancing vorticity and convergence growth. Therefore, it cannot explain the phase shift between convergence and vorticity as simulated by Orlanski and Ross. An alternative plausible, though tentative, explanation in terms of a gravity wave is offered. It is shown that when the geostrophic deformation increases, nonlinear terms in the divergence equation may become important and further destabilize the system.

  14. Laser confocal feedback tomography and nano-step height measurement

    PubMed Central

    Tan, Yidong; Wang, Weiping; Xu, Chunxin; Zhang, Shulian

    2013-01-01

    A promising method for tomography and step height measurement is proposed, which combines the high sensitivity of the frequency-shifted feedback laser and the axial positioning ability of confocal microscopy. By demodulating the feedback-induced intensity modulation signals, the obtained amplitude and phase information are used to respectively determine the coarse and fine measurement of the samples. Imaging the micro devices and biological samples by the demodulated amplitude, this approach is proved to be able to achieve the cross-sectional image in highly scattered mediums. And then the successful height measurement of nano-step on a glass-substrate grating by combination of both amplitude and phase information indicates its axial high resolution (better than 2 nm) in a non-ambiguous range of about ten microns. PMID:24145717

  15. Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Juhyung; Terry, P. W.

    2013-10-15

    The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a line width related to energy transfer properties provide a measure of the average frequency and spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence, are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high frequency region of the spectrum. In themore » intermediate regime, the nonlinear frequency shift for density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width increase with poloidal wavenumber k{sub y}. In addition, in the adiabatic regime where the nonlinear interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density and potential fluctuations is observed to match a linear relation, but only if the linear response of the linearly stable eigenmode branch is included. Implications of these numerical observations are discussed.« less

  16. A Nonlinear Physics-Based Optimal Control Method for Magnetostrictive Actuators

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.

    1998-01-01

    This paper addresses the development of a nonlinear optimal control methodology for magnetostrictive actuators. At moderate to high drive levels, the output from these actuators is highly nonlinear and contains significant magnetic and magnetomechanical hysteresis. These dynamics must be accommodated by models and control laws to utilize the full capabilities of the actuators. A characterization based upon ferromagnetic mean field theory provides a model which accurately quantifies both transient and steady state actuator dynamics under a variety of operating conditions. The control method consists of a linear perturbation feedback law used in combination with an optimal open loop nonlinear control. The nonlinear control incorporates the hysteresis and nonlinearities inherent to the transducer and can be computed offline. The feedback control is constructed through linearization of the perturbed system about the optimal system and is efficient for online implementation. As demonstrated through numerical examples, the combined hybrid control is robust and can be readily implemented in linear PDE-based structural models.

  17. Field-programmable gate array-controlled sweep velocity-locked laser pulse generator

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-05-01

    A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.

  18. Adaptive receiver structures for asynchronous CDMA systems

    NASA Astrophysics Data System (ADS)

    Rapajic, Predrag B.; Vucetic, Branka S.

    1994-05-01

    Adaptive linear and decision feedback receiver structures for coherent demodulation in asynchronous code division multiple access (CDMA) systems are considered. It is assumed that the adaptive receiver has no knowledge of the signature waveforms and timing of other users. The receiver is trained by a known training sequence prior to data transmission and continuously adjusted by an adaptive algorithm during data transmission. The proposed linear receiver is as simple as a standard single-user detector receiver consisting of a matched filter with constant coefficients, but achieves essential advantages with respect to timing recovery, multiple access interference elimination, near/far effect, narrowband and frequency-selective fading interference suppression, and user privacy. An adaptive centralized decision feedback receiver has the same advantages of the linear receiver but, in addition, achieves a further improvement in multiple access interference cancellation at the expense of higher complexity. The proposed receiver structures are tested by simulation over a channel with multipath propagation, multiple access interference, narrowband interference, and additive white Gaussian noise.

  19. Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep

    1996-01-01

    Robust stability conditions obtained through generalization of the notion of energy dissipation in physical systems are discussed in this report. Linear time-invariant (LTI) systems which dissipate energy corresponding to quadratic power functions are characterized in the time-domain and the frequency-domain, in terms of linear matrix inequalities (LMls) and algebraic Riccati equations (ARE's). A novel characterization of strictly dissipative LTI systems is introduced in this report. Sufficient conditions in terms of dissipativity and strict dissipativity are presented for (1) stability of the feedback interconnection of dissipative LTI systems, (2) stability of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of uncertain linear systems. It is demonstrated that the framework of dissipative LTI systems investigated in this report unifies and extends small gain, passivity, and sector conditions for stability. Techniques for selecting power functions for characterization of uncertain plants and robust controller synthesis based on these stability results are introduced. A spring-mass-damper example is used to illustrate the application of these methods for robust controller synthesis.

  20. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  1. Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.

    PubMed

    Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika

    2015-01-01

    A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests.

  2. Stabilization of Inviscid Vortex Sheets

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Sakajo, Takashi

    2017-11-01

    In this study we investigate the problem of stabilizing inviscid vortex sheets via feedback control. Such models, expressed in terms of the Birkhoff-Rott equation, are often used to describe the Kevin-Helmholtz instability of shear layers and are known to be strongly unstable to small-scale perturbations. First, we consider the linear stability of a straight vortex sheet in the periodic setting with actuation in the form of an array of point vortices or sources located a certain distance away from the sheet. We establish conditions under which this system is controllable and observable. Next, using methods of the linear control theory, we synthesize a feedback control strategy which stabilizes a straight vortex sheet in the linear regime. Given the poor conditioning of the discretized problem, reliable solution of the resulting algebraic Riccati equation requires the use of high-precision arithmetic. Finally, we demonstrate that this control approach also succeeds in the nonlinear regime, provided the magnitude of the initial perturbation is sufficiently small.

  3. Power-ratio tunable dual-wavelength laser using linearly variable Fabry-Perot filter as output coupler.

    PubMed

    Wang, Xiaozhong; Wang, Zhongfa; Bu, Yikun; Chen, Lujian; Cai, Guoxiong; Huang, Wencai; Cai, Zhiping; Chen, Nan

    2016-02-01

    For a linearly variable Fabry-Perot filter, the peak transmission wavelengths change linearly with the transverse position shift of the substrate. Such a Fabry-Perot filter is designed and fabricated and used as an output coupler of a c-cut Nd:YVO4 laser experimentally in this paper to obtain a 1062 and 1083 nm dual-wavelength laser. The peak transmission wavelengths are gradually shifted from 1040.8 to 1070.8 nm. The peak transmission wavelength of the Fabry-Perot filter used as the output coupler for the dual-wavelength laser is 1068 nm and resides between 1062 and 1083 nm, which makes the transmissions of the desired dual wavelengths change in opposite slopes with the transverse shift of the filter. Consequently, powers of the two wavelengths change in opposite directions. A branch power, oppositely tunable 1062 and 1083 nm dual-wavelength laser is successfully demonstrated. Design principles of the linear variable Fabry-Perot filter used as an output coupler are discussed. Advantages of the method are summarized.

  4. Instructional Modules: A Paradigm Shift in Teaching.

    ERIC Educational Resources Information Center

    Darty, Mark; Brophy, James

    1999-01-01

    Describes the design and development of Internet-based instruction for a physiological psychology class. Discusses reasons for selecting the Internet-based form; tools needed to create the instructional materials; development and implementation of the Psychology Electronic Teaching Source (PETS) site; instructional delivery; feedback; and benefits…

  5. How Does the Body Affect the Mind? Role of Cardiorespiratory Coherence in the Spectrum of Emotions.

    PubMed

    Jerath, Ravinder; Crawford, Molly W

    2015-01-01

    The brain is considered to be the primary generator and regulator of emotions; however, afferent signals originating throughout the body are detected by the autonomic nervous system (ANS) and brainstem, and, in turn, can modulate emotional processes. During stress and negative emotional states, levels of cardiorespiratory coherence (CRC) decrease, and a shift occurs toward sympathetic dominance. In contrast, CRC levels increase during more positive emotional states, and a shift occurs toward parasympathetic dominance. The dynamic changes in CRC that accompany different emotions can provide insights into how the activity of the limbic system and afferent feedback manifest as emotions. The authors propose that the brainstem and CRC are involved in important feedback mechanisms that modulate emotions and higher cortical areas. That mechanism may be one of many mechanisms that underlie the physiological and neurological changes that are experienced during pranayama and meditation and may support the use of those techniques to treat various mood disorders and reduce stress.

  6. Changing theories of change: strategic shifting in implicit theory endorsement.

    PubMed

    Leith, Scott A; Ward, Cindy L P; Giacomin, Miranda; Landau, Enoch S; Ehrlinger, Joyce; Wilson, Anne E

    2014-10-01

    People differ in their implicit theories about the malleability of characteristics such as intelligence and personality. These relatively chronic theories can be experimentally altered, and can be affected by parent or teacher feedback. Little is known about whether people might selectively shift their implicit beliefs in response to salient situational goals. We predicted that, when motivated to reach a desired conclusion, people might subtly shift their implicit theories of change and stability to garner supporting evidence for their desired position. Any motivated context in which a particular lay theory would help people to reach a preferred directional conclusion could elicit shifts in theory endorsement. We examine a variety of motivated situational contexts across 7 studies, finding that people's theories of change shifted in line with goals to protect self and liked others and to cast aspersions on disliked others. Studies 1-3 demonstrate how people regulate their implicit theories to manage self-view by more strongly endorsing an incremental theory after threatening performance feedback or memories of failure. Studies 4-6 revealed that people regulate the implicit theories they hold about favored and reviled political candidates, endorsing an incremental theory to forgive preferred candidates for past gaffes but leaning toward an entity theory to ensure past failings "stick" to opponents. Finally, in Study 7, people who were most threatened by a previously convicted child sex offender (i.e., parents reading about the offender moving to their neighborhood) gravitated most to the entity view that others do not change. Although chronic implicit theories are undoubtedly meaningful, this research reveals a previously unexplored source of fluidity by highlighting the active role people play in managing their implicit theories in response to goals. 2014 APA, all rights reserved

  7. Positive And Negative Feedback Loops Coupled By Common Transcription Activator And Repressor

    NASA Astrophysics Data System (ADS)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2015-03-01

    Dynamical systems consisting of two interlocked loops with negative and positive feedback have been studied using the linear analysis of stability and numerical solutions. Conditions for saddle-node bifurcation were formulated in a general form. Conditions for Hopf bifurcations were found in a few symmetrical cases. Auto-oscillations, when they exist, are generated by the negative feedback repressive loop. This loop determines the frequency and amplitude of oscillations. The positive feedback loop of activation slightly modifies the oscillations. Oscillations are possible when the difference between Hilll's coefficients of the repression and activation is sufficiently high. The highly cooperative activation loop with a fast turnover slows down or even makes the oscillations impossible. The system under consideration can constitute a component of epigenetic or enzymatic regulation network.

  8. Sensorimotor learning in children and adults: Exposure to frequency-altered auditory feedback during speech production.

    PubMed

    Scheerer, N E; Jacobson, D S; Jones, J A

    2016-02-09

    Auditory feedback plays an important role in the acquisition of fluent speech; however, this role may change once speech is acquired and individuals no longer experience persistent developmental changes to the brain and vocal tract. For this reason, we investigated whether the role of auditory feedback in sensorimotor learning differs across children and adult speakers. Participants produced vocalizations while they heard their vocal pitch predictably or unpredictably shifted downward one semitone. The participants' vocal pitches were measured at the beginning of each vocalization, before auditory feedback was available, to assess the extent to which the deviant auditory feedback modified subsequent speech motor commands. Sensorimotor learning was observed in both children and adults, with participants' initial vocal pitch increasing following trials where they were exposed to predictable, but not unpredictable, frequency-altered feedback. Participants' vocal pitch was also measured across each vocalization, to index the extent to which the deviant auditory feedback was used to modify ongoing vocalizations. While both children and adults were found to increase their vocal pitch following predictable and unpredictable changes to their auditory feedback, adults produced larger compensatory responses. The results of the current study demonstrate that both children and adults rapidly integrate information derived from their auditory feedback to modify subsequent speech motor commands. However, these results also demonstrate that children and adults differ in their ability to use auditory feedback to generate compensatory vocal responses during ongoing vocalization. Since vocal variability also differed across the children and adult groups, these results also suggest that compensatory vocal responses to frequency-altered feedback manipulations initiated at vocalization onset may be modulated by vocal variability. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Guidance/Navigation Requirements Study Final Report. Volume III. Appendices

    DTIC Science & Technology

    1978-04-30

    shown Figure G-2. The free-flight simulation program FFSIM uses quaternions to calculate the body attitude as a function of time. To calculate the...the lack of open-loop damping, the existence of a feedback controller which will stabilize the closed-loon system depends upon the satisfaction of a...re-entry vehicle has dynamic pecularitles which tend to discourage the use of "linear-quadratic" feedback regulators in guidance. The disadvantageous

  10. Nonlinear filter based decision feedback equalizer for optical communication systems.

    PubMed

    Han, Xiaoqi; Cheng, Chi-Hao

    2014-04-07

    Nonlinear impairments in optical communication system have become a major concern of optical engineers. In this paper, we demonstrate that utilizing a nonlinear filter based Decision Feedback Equalizer (DFE) with error detection capability can deliver a better performance compared with the conventional linear filter based DFE. The proposed algorithms are tested in simulation using a coherent 100 Gb/sec 16-QAM optical communication system in a legacy optical network setting.

  11. Cooperative Solutions in Multi-Person Quadratic Decision Problems: Finite-Horizon and State-Feedback Cost-Cumulant Control Paradigm

    DTIC Science & Technology

    2007-01-01

    CONTRACT NUMBER Problems: Finite -Horizon and State-Feedback Cost-Cumulant Control Paradigm (PREPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...cooperative cost-cumulant control regime for the class of multi-person single-objective decision problems characterized by quadratic random costs and... finite -horizon integral quadratic cost associated with a linear stochastic system . Since this problem formation is parameterized by the number of cost

  12. Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate-soil carbon feedback.

    PubMed

    Harte, John; Saleska, Scott R; Levy, Charlotte

    2015-06-01

    Ecosystem responses to climate change can exert positive or negative feedbacks on climate, mediated in part by slow-moving factors such as shifts in vegetation community composition. Long-term experimental manipulations can be used to examine such ecosystem responses, but they also present another opportunity: inferring the extent to which contemporary climate change is responsible for slow changes in ecosystems under ambient conditions. Here, using 23 years of data, we document a shift from nonwoody to woody vegetation and a loss of soil carbon in ambient plots and show that these changes track previously shown similar but faster changes under experimental warming. This allows us to infer that climate change is the cause of the observed shifts in ambient vegetation and soil carbon and that the vegetation responses mediate the observed changes in soil carbon. Our findings demonstrate the realism of an experimental manipulation, allow attribution of a climate cause to observed ambient ecosystem changes, and demonstrate how a combination of long-term study of ambient and experimental responses to warming can identify mechanistic drivers needed for realistic predictions of the conditions under which ecosystems are likely to become carbon sources or sinks over varying timescales. © 2014 John Wiley & Sons Ltd.

  13. Cue quality and criterion setting in recognition memory.

    PubMed

    Kent, Christopher; Lamberts, Koen; Patton, Richard

    2018-02-02

    Previous studies on how people set and modify decision criteria in old-new recognition tasks (in which they have to decide whether or not a stimulus was seen in a study phase) have almost exclusively focused on properties of the study items, such as presentation frequency or study list length. In contrast, in the three studies reported here, we manipulated the quality of the test cues in a scene-recognition task, either by degrading through Gaussian blurring (Experiment 1) or by limiting presentation duration (Experiment 2 and 3). In Experiments 1 and 2, degradation of the test cue led to worse old-new discrimination. Most importantly, however, participants were more liberal in their responses to degraded cues (i.e., more likely to call the cue "old"), demonstrating strong within-list, item-by-item, criterion shifts. This liberal response bias toward degraded stimuli came at the cost of increasing the false alarm rate while maintaining a constant hit rate. Experiment 3 replicated Experiment 2 with additional stimulus types (words and faces) but did not provide accuracy feedback to participants. The criterion shifts in Experiment 3 were smaller in magnitude than Experiments 1 and 2 and varied in consistency across stimulus type, suggesting, in line with previous studies, that feedback is important for participants to shift their criteria.

  14. Application of modern control theory to the design of optimum aircraft controllers

    NASA Technical Reports Server (NTRS)

    Power, L. J.

    1973-01-01

    The synthesis procedure presented is based on the solution of the output regulator problem of linear optimal control theory for time-invariant systems. By this technique, solution of the matrix Riccati equation leads to a constant linear feedback control law for an output regulator which will maintain a plant in a particular equilibrium condition in the presence of impulse disturbances. Two simple algorithms are presented that can be used in an automatic synthesis procedure for the design of maneuverable output regulators requiring only selected state variables for feedback. The first algorithm is for the construction of optimal feedforward control laws that can be superimposed upon a Kalman output regulator and that will drive the output of a plant to a desired constant value on command. The second algorithm is for the construction of optimal Luenberger observers that can be used to obtain feedback control laws for the output regulator requiring measurement of only part of the state vector. This algorithm constructs observers which have minimum response time under the constraint that the magnitude of the gains in the observer filter be less than some arbitrary limit.

  15. Design and implementation of a control system for a quadrotor MAV

    NASA Astrophysics Data System (ADS)

    Bawek, Dean

    The quadrotor is a 200 g MAV with rapid-prototyped rotors that are driven by four brushless electric motors, capable of a collective thrust of around 400 g using an 11 V battery. The vehicle is compact with its largest dimension at 188 mm. Without any feedback control, the quadrotor is unstable. For flight stability, the vehicle incorporates a linear quadratic regulator to augment its dynamics for hover. The quadrotor's nonlinear dynamics are linearized about hover in order to be used in controller formulation. Feedback comes both directly from sensors and a Luenberger observer that computes the rotor velocities. A Simulink simulation uses hardware and software properties to serve as an environment for controller gain tuning prior to flight testing. The results from the simulation generate stabilizing control gains for the on-board attitude controller and for an off-board PC autopilot that uses the Vicon computer vision system for position feedback. Through the combined effort of the on-board and off-board controllers, the quadrotor successfully demonstrates stable hover in both nominal and disturbed conditions.

  16. Wing box transonic-flutter suppression using piezoelectric self-sensing actuators attached to skin

    NASA Astrophysics Data System (ADS)

    Otiefy, R. A. H.; Negm, H. M.

    2010-12-01

    The main objective of this research is to study the capability of piezoelectric (PZT) self-sensing actuators to suppress the transonic wing box flutter, which is a flow-structure interaction phenomenon. The unsteady general frequency modified transonic small disturbance (TSD) equation is used to model the transonic flow about the wing. The wing box structure and piezoelectric actuators are modeled using the equivalent plate method, which is based on the first order shear deformation plate theory (FSDPT). The piezoelectric actuators are bonded to the skin. The optimal electromechanical coupling conditions between the piezoelectric actuators and the wing are collected from previous work. Three main different control strategies, a linear quadratic Gaussian (LQG) which combines the linear quadratic regulator (LQR) with the Kalman filter estimator (KFE), an optimal static output feedback (SOF), and a classic feedback controller (CFC), are studied and compared. The optimum actuator and sensor locations are determined using the norm of feedback control gains (NFCG) and norm of Kalman filter estimator gains (NKFEG) respectively. A genetic algorithm (GA) optimization technique is used to calculate the controller and estimator parameters to achieve a target response.

  17. Linear-Quadratic-Gaussian Regulator Developed for a Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2002-01-01

    Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal dynamic regulators. It enables us to trade off regulation performance and control effort, and to take into account process and measurement noise. The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed an LQG control for a fault-tolerant magnetic bearing suspension rig to optimize system performance and to reduce the sensor and processing noise. The LQG regulator consists of an optimal state-feedback gain and a Kalman state estimator. The first design step is to seek a state-feedback law that minimizes the cost function of regulation performance, which is measured by a quadratic performance criterion with user-specified weighting matrices, and to define the tradeoff between regulation performance and control effort. The next design step is to derive a state estimator using a Kalman filter because the optimal state feedback cannot be implemented without full state measurement. Since the Kalman filter is an optimal estimator when dealing with Gaussian white noise, it minimizes the asymptotic covariance of the estimation error.

  18. Design of integrated autopilot/autothrottle for NASA TSRV airplane using integral LQG methodology. [transport systems research vehicle

    NASA Technical Reports Server (NTRS)

    Kaminer, Isaac; Benson, Russell A.

    1989-01-01

    An integrated autopilot/autothrottle control system has been developed for the NASA transport system research vehicle using a two-degree-of-freedom approach. Based on this approach, the feedback regulator was designed using an integral linear quadratic regulator design technique, which offers a systematic approach to satisfy desired feedback performance requirements and guarantees stability margins in both control and sensor loops. The resulting feedback controller was discretized and implemented using a delta coordinate concept, which allows for transient free controller switching by initializing all controller states to zero and provides a simple solution for dealing with throttle limiting cases.

  19. Event-triggered output feedback control for distributed networked systems.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Ten tips for receiving feedback effectively in clinical practice

    PubMed Central

    Algiraigri, Ali H.

    2014-01-01

    Background Despite being recognized as a fundamental part of the educational process and emphasized for several decades in medical education, the influence of the feedback process is still suboptimal. This may not be surprising, because the focus is primarily centered on only one half of the process – the teachers. The learners are the targets of the feedback process and improvement needs to be shifted. Learners need to be empowered with the skills needed to receive and utilize feedback and compensate for less than ideal feedback delivery due to the busy clinical environment. Methods Based on the available feedback literature and clinical experience regarding feedback, the author developed 10 tips to empower learners with the necessary skills to seek, receive, and handle feedback effectively, regardless of how it is delivered. Although, most of the tips are directed at the individual clinical trainee, this model can be utilized by clinical educators involved in learner development and serve as a framework for educational workshops or curriculum. Results Ten practical tips are identified that specifically address the learner's role in the feedback process. These tips not only help the learner to ask, receive, and handle the feedback, but will also ease the process for the teachers. Collectively, these tips help to overcome most, if not all, of the barriers to feedback and bridge the gaps in busy clinical practices. Conclusions Feedback is a crucial element in the educational process and it is shown that we are still behind in the optimal use of it; thus, learners need to be taught how to better receive and utilize feedback. The focus in medical education needs to balance the two sides of the feedback process. It is time now to invest on the learner's development of skills that can be utilized in a busy day-to-day clinical practice. PMID:25079664

  1. Chapter 15: Potential Surprises: Compound Extremes and Tipping Elements

    NASA Technical Reports Server (NTRS)

    Kopp, R. E.; Hayhoe, K.; Easterling, D. R.; Hall, T.; Horton, R.; Kunkel, K. E.; LeGrande, A. N.

    2017-01-01

    The Earth system is made up of many components that interact in complex ways across a broad range of temporal and spatial scales. As a result of these interactions the behavior of the system cannot be predicted by looking at individual components in isolation. Negative feedbacks, or self-stabilizing cycles, within and between components of the Earth system can dampen changes (Ch. 2: Physical Drivers of Climate Change). However, their stabilizing effects render such feedbacks of less concern from a risk perspective than positive feedbacks, or self-reinforcing cycles. Positive feedbacks magnify both natural and anthropogenic changes. Some Earth system components, such as arctic sea ice and the polar ice sheets, may exhibit thresholds beyond which these self-reinforcing cycles can drive the component, or the entire system, into a radically different state. Although the probabilities of these state shifts may be difficult to assess, their consequences could be high, potentially exceeding anything anticipated by climate model projections for the coming century.

  2. Dynamics of short-pulse generation via spectral filtering from intensely excited gain-switched 1.55-μm distributed-feedback laser diodes.

    PubMed

    Chen, Shaoqiang; Yoshita, Masahiro; Sato, Aya; Ito, Takashi; Akiyama, Hidefumi; Yokoyama, Hiroyuki

    2013-05-06

    Picosecond-pulse-generation dynamics and pulse-width limiting factors via spectral filtering from intensely pulse-excited gain-switched 1.55-μm distributed-feedback laser diodes were studied. The spectral and temporal characteristics of the spectrally filtered pulses indicated that the short-wavelength component stems from the initial part of the gain-switched main pulse and has a nearly linear down-chirp of 5.2 ps/nm, whereas long-wavelength components include chirped pulse-lasing components and steady-state-lasing components. Rate-equation calculations with a model of linear change in refractive index with carrier density explained the major features of the experimental results. The analysis of the expected pulse widths with optimum spectral widths was also consistent with the experimental data.

  3. Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5  μm.

    PubMed

    Lobach, Ivan A; Kablukov, Sergey I; Babin, Sergey A

    2017-09-15

    We report on, to the best of our knowledge, the first demonstration of a linearly polarized cascaded Raman fiber laser based on a simple half-open cavity with a broadband composite reflector and random distributed feedback in a polarization-maintaining phosphosilicate fiber with a zero dispersion wavelength at ∼1400  nm. Pumped by a 1080 nm Yb-doped fiber laser, the random laser delivers more than 8 W at 1262 nm and 9 W at 1515 nm with a polarization extinction ratio of 27 dB. The generation linewidths amount to about 1 and 3 nm, respectively, being almost independent of power, in correspondence with the theory of a cascaded random fiber lasing.

  4. Switching State-Feedback LPV Control with Uncertain Scheduling Parameters

    NASA Technical Reports Server (NTRS)

    He, Tianyi; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming G.

    2017-01-01

    This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.

  5. Some Properties and Stability Results for Sector-Bounded LTI Systems

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep; Joshi, Suresh M.

    1994-01-01

    This paper presents necessary and sufficient conditions for a linear, time-invariant (LTI) system to be inside sector (n, b) in terms of linear matrix inequalities in its state-space realization matrices, which represents a generalization of similar conditions for bounded H(sub infinity)-norm systems. Further, a weaker definition of LTI systems strictly inside closed sector (a, b) is proposed, and state-space characterization of such systems is presented. Sector conditions for stability of the negative feedback interconnection of two LTI systems and for stability of LTI systems with feedback nonlinearities are investigated using the Lyapunov function approach. It is shown that the proposed weaker conditions for an LTI system to be strictly inside a sector are sufficient to establish closed-loop stability of these systems.

  6. Optical atomic magnetometer

    DOEpatents

    Budker, Dmitry; Higbie, James; Corsini, Eric P.

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  7. Identification of linear system models and state estimators for controls

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Wen

    1992-01-01

    The following paper is presented in viewgraph format and covers topics including: (1) linear state feedback control system; (2) Kalman filter state estimation; (3) relation between residual and stochastic part of output; (4) obtaining Kalman filter gain; (5) state estimation under unknown system model and unknown noises; and (6) relationship between filter Markov parameters and system Markov parameters.

  8. Self-Mixing Thin-Slice Solid-State Laser Metrology

    PubMed Central

    Otsuka, Kenju

    2011-01-01

    This paper reviews the dynamic effect of thin-slice solid-state lasers subjected to frequency-shifted optical feedback, which led to the discovery of the self-mixing modulation effect, and its applications to quantum-noise-limited versatile laser metrology systems with extreme optical sensitivity. PMID:22319406

  9. Lessons learned from the SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, N.

    The SLAC Linear Collider (SLC) is the first example of an entirely new type of lepton collider. Many years of effort were required to develop the understanding and techniques needed to approach design luminosity. This paper discusses some of the key issues and problems encountered in producing a working linear collider. These include the polarized source, techniques for emittance preservation, extensive feedback systems, and refinements in beam optimization in the final focus. The SLC experience has been invaluable for testing concepts and developing designs for a future linear collider.

  10. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.

    PubMed

    Ottensmeyer, M P; Ben-Ur, E; Salisbury, J K

    2000-01-01

    Current efforts in surgical simulation very often focus on creating realistic graphical feedback, but neglect some or all tactile and force (haptic) feedback that a surgeon would normally receive. Simulations that do include haptic feedback do not typically use real tissue compliance properties, favoring estimates and user feedback to determine realism. When tissue compliance data are used, there are virtually no in vivo property measurements to draw upon. Together with the Center for Innovative Minimally Invasive Therapy at the Massachusetts General Hospital, the Haptics Group is developing tools to introduce more comprehensive haptic feedback in laparoscopy simulators and to provide biological tissue material property data for our software simulation. The platform for providing haptic feedback is a PHANToM Haptic Interface, produced by SensAble Technologies, Inc. Our devices supplement the PHANToM to provide for grasping and optionally, for the roll axis of the tool. Together with feedback from the PHANToM, which provides the pitch, yaw and thrust axes of a typical laparoscopy tool, we can recreate all of the haptic sensations experienced during laparoscopy. The devices integrate real laparoscopy toolhandles and a compliant torso model to complete the set of visual and tactile sensations. Biological tissues are known to exhibit non-linear mechanical properties, and change their properties dramatically when removed from a living organism. To measure the properties in vivo, two devices are being developed. The first is a small displacement, 1-D indenter. It will measure the linear tissue compliance (stiffness and damping) over a wide range of frequencies. These data will be used as inputs to a finite element or other model. The second device will be able to deflect tissues in 3-D over a larger range, so that the non-linearities due to changes in the tissue geometry will be measured. This will allow us to validate the performance of the model on large tissue deformations. Both devices are designed to pass through standard 12 mm laparoscopy trocars, and will be suitable for use during open or minimally invasive procedures. We plan to acquire data from pigs used by surgeons for training purposes, but conceivably, the tools could be refined for use on humans undergoing surgery. Our work will provide the necessary data input for surgical simulations to accurately model the force interactions that a surgeon would have with tissue, and will provide the force output to create a truly realistic simulation of minimally invasive surgery.

  11. Simulation-based medical education: time for a pedagogical shift.

    PubMed

    Kalaniti, Kaarthigeyan; Campbell, Douglas M

    2015-01-01

    The purpose of medical education at all levels is to prepare physicians with the knowledge and comprehensive skills, required to deliver safe and effective patient care. The traditional 'apprentice' learning model in medical education is undergoing a pedagogical shift to a 'simulation-based' learning model. Experiential learning, deliberate practice and the ability to provide immediate feedback are the primary advantages of simulation-based medical education. It is an effective way to develop new skills, identify knowledge gaps, reduce medical errors, and maintain infrequently used clinical skills even among experienced clinical teams, with the overall goal of improving patient care. Although simulation cannot replace clinical exposure as a form of experiential learning, it promotes learning without compromising patient safety. This new paradigm shift is revolutionizing medical education in the Western world. It is time that the developing countries embrace this new pedagogical shift.

  12. A multifaceted feedback strategy alone does not improve the adherence to organizational guideline-based standards: a cluster randomized trial in intensive care.

    PubMed

    de Vos, Maartje L G; van der Veer, Sabine N; Wouterse, Bram; Graafmans, Wilco C; Peek, Niels; de Keizer, Nicolette F; Jager, Kitty J; Westert, Gert P; van der Voort, Peter H J

    2015-07-08

    Organizational data such as bed occupancy rate and nurse-to-patient ratio are related to clinical outcomes and to the efficient use of intensive care unit (ICU) resources. Standards for these performance indicators are provided in guidelines. We studied the effects of a multifaceted feedback strategy to improve the adherence to these standards. In a cluster randomized controlled study design the intervention ICUs received extensive monthly feedback reports, they received outreach visits and initiated a quality improvement team. The control ICUs received limited quarterly feedback reports only. We collected primary data prospectively within the setting of a Dutch national ICU registry over a 14-month study period. The target indicators were bed occupancy rate (aiming at 80 % or below) and nurse-to-patient ratio (aiming at 0.5 or higher). Data were collected per 8-h nursing shift. Logistic regression analysis was performed. For both study end points, the odds ratios (OR) for improvements at follow-up versus at baseline were calculated separately for control and intervention ICUs. We analyzed data on 67,237 nursing shifts. The bed occupancy rate did not improve in the intervention group compared to baseline (adjusted OR 0.88; 95 % confidence interval (CI), 0.62-1.27) or compared to control group (OR 0.67; 95 % CI 0.39-1.15). The nurse-to-patient ratio did not improve (OR 0.72; 95 % CI 0.41-1.26 compared to baseline and OR 0.65; 95 % CI 0.35-1.19 compared to control group). A multifaceted feedback intervention did not improve the adherence to guideline-based standards on the organizational issues bed occupancy rate and nurse-to-patient ratio in the ICU. The reasons may be a limited confidence in data quality, the lack of practical tools for improvement, and the relatively short follow-up. ISRCTN50542146.

  13. Strong species-environment feedback shapes plant community assembly along environmental gradients.

    PubMed

    Jiang, Jiang; Deangelis, Donald L

    2013-10-01

    An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. In this modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species-environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increase local species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species-environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species-environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species-environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species-environment feedback on community assembly.

  14. Effect of visuomotor-map uncertainty on visuomotor adaptation.

    PubMed

    Saijo, Naoki; Gomi, Hiroaki

    2012-03-01

    Vision and proprioception contribute to generating hand movement. If a conflict between the visual and proprioceptive feedback of hand position is given, reaching movement is disturbed initially but recovers after training. Although previous studies have predominantly investigated the adaptive change in the motor output, it is unclear whether the contributions of visual and proprioceptive feedback controls to the reaching movement are modified by visuomotor adaptation. To investigate this, we focused on the change in proprioceptive feedback control associated with visuomotor adaptation. After the adaptation to gradually introduce visuomotor rotation, the hand reached the shifted position of the visual target to move the cursor to the visual target correctly. When the cursor feedback was occasionally eliminated (probe trial), the end point of the hand movement was biased in the visual-target direction, while the movement was initiated in the adapted direction, suggesting the incomplete adaptation of proprioceptive feedback control. Moreover, after the learning of uncertain visuomotor rotation, in which the rotation angle was randomly fluctuated on a trial-by-trial basis, the end-point bias in the probe trial increased, but the initial movement direction was not affected, suggesting a reduction in the adaptation level of proprioceptive feedback control. These results suggest that the change in the relative contribution of visual and proprioceptive feedback controls to the reaching movement in response to the visuomotor-map uncertainty is involved in visuomotor adaptation, whereas feedforward control might adapt in a manner different from that of the feedback control.

  15. Strong species-environment feedback shapes plant community assembly along environmental gradients

    USGS Publications Warehouse

    Jiang, Jiang; DeAngelis, Donald L.

    2013-01-01

    An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. In this modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species-environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increase local species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species-environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species-environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species-environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species-environment feedback on community assembly.

  16. Constraining new physics models with isotope shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Frugiuele, Claudia; Fuchs, Elina; Perez, Gilad; Schlaffer, Matthias

    2017-07-01

    Isotope shifts of transition frequencies in atoms constrain generic long- and intermediate-range interactions. We focus on new physics scenarios that can be most strongly constrained by King linearity violation such as models with B -L vector bosons, the Higgs portal, and chameleon models. With the anticipated precision, King linearity violation has the potential to set the strongest laboratory bounds on these models in some regions of parameter space. Furthermore, we show that this method can probe the couplings relevant for the protophobic interpretation of the recently reported Be anomaly. We extend the formalism to include an arbitrary number of transitions and isotope pairs and fit the new physics coupling to the currently available isotope shift measurements.

  17. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms.

    PubMed

    Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Toto-Arellano, Noel-Ivan; Vázquez-Castillo, José F; Robledo-Sánchez, Carlos

    2008-05-26

    An experimental setup for optical phase extraction from 2-D interferograms using a one-shot phase-shifting technique able to achieve four interferograms with 90 degrees phase shifts in between is presented. The system uses a common-path interferometer consisting of two windows in the input plane and a phase grating in Fourier plane as its pupil. Each window has a birefringent wave plate attached in order to achieve nearly circular polarization of opposite rotations one respect to the other after being illuminated with a 45 degrees linear polarized beam. In the output, interference of the fields associated with replicated windows (diffraction orders) is achieved by a proper choice of the windows spacing with respect to the grating period. The phase shifts to achieve four interferograms simultaneously to perform phase-shifting interferometry can be obtained by placing linear polarizers on each diffraction orders before detection at an appropriate angle. Some experimental results are shown.

  18. Reversal of orbital angular momentum arising from an extreme Doppler shift

    PubMed Central

    Toninelli, Ermes; Horsley, Simon A. R.; Hendry, Euan; Phillips, David B.; Padgett, Miles J.

    2018-01-01

    The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes “negative.” In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at ≈100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the “negative frequency” regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. PMID:29581257

  19. Numerical approximation for the infinite-dimensional discrete-time optimal linear-quadratic regulator problem

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1986-01-01

    An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.

  20. Top-down modulation in the infant brain: Learning-induced expectations rapidly affect the sensory cortex at 6 months.

    PubMed

    Emberson, Lauren L; Richards, John E; Aslin, Richard N

    2015-08-04

    Recent theoretical work emphasizes the role of expectation in neural processing, shifting the focus from feed-forward cortical hierarchies to models that include extensive feedback (e.g., predictive coding). Empirical support for expectation-related feedback is compelling but restricted to adult humans and nonhuman animals. Given the considerable differences in neural organization, connectivity, and efficiency between infant and adult brains, it is a crucial yet open question whether expectation-related feedback is an inherent property of the cortex (i.e., operational early in development) or whether expectation-related feedback develops with extensive experience and neural maturation. To determine whether infants' expectations about future sensory input modulate their sensory cortices without the confounds of stimulus novelty or repetition suppression, we used a cross-modal (audiovisual) omission paradigm and used functional near-infrared spectroscopy (fNIRS) to record hemodynamic responses in the infant cortex. We show that the occipital cortex of 6-month-old infants exhibits the signature of expectation-based feedback. Crucially, we found that this region does not respond to auditory stimuli if they are not predictive of a visual event. Overall, these findings suggest that the young infant's brain is already capable of some rudimentary form of expectation-based feedback.

Top