Science.gov

Sample records for linear ion crystals

  1. Rare earth ion doped non linear laser crystals

    NASA Astrophysics Data System (ADS)

    Jaque, D.; Romero, J. J.; Ramirez, M. O.; Garcia, J. A. S.; de Las Heras, C.; Bausa, L. E.; Sole, J. G.

    2003-01-01

    We show how non linear crystals activated with Yb3+ or Nd3+ ions can be used to develop diode pumped solid state lasers emitting in the visible region of the electromagnetic spectrum. For this purpose we have selected relevant examples of systems investigated in our laboratory.

  2. Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.

    PubMed

    Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R

    2015-12-17

    Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.

  3. Hopping of an impurity defect in ion crystals in linear traps

    SciTech Connect

    Liang, J.; Haljan, P. C.

    2011-06-15

    Laser-cooled arrays or crystals of {sup 171}Yb{sup +} ions containing a single impurity, {sup 172}Yb{sup +} isotope, are confined in a linear radio-frequency Paul trap. Site-to-site hopping of the impurity ion, distinguished by a lack of fluorescence, is studied as a function of the {sup 171}Yb{sup +} laser-cooling parameters and as a function of the anisotropy of the trapping potential. Imaging of the independently resolved crystal sites permits the extraction of the impurity's hopping trajectory, from which the dwell times at a given site can be obtained as well as the spatial distribution of hopping rate and hopping destination. The onset of rapid hopping is found to occur at average thermal energies approaching a significant fraction of the Coulomb potential energy. Furthermore, the hopping rate is enhanced at trap anisotropies near the critical value for the structural phase transition to a two-dimensional zigzag phase. Finally, the hopping mobility of the impurity ion is observed to be highest near the center of the crystal, which may have an intrinsic cause related to the crystal structure and dynamics near the zigzag transition.

  4. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  5. Characterization of ion Coulomb crystals for fundamental sciences

    NASA Astrophysics Data System (ADS)

    Okada, Kunihiro; Ichikawa, Masanari; Wada, Michiharu

    2015-11-01

    We performed classical molecular dynamics (MD) simulations in order to search the conditions for efficient sympathetic cooling of highly charged ions (HCIs) in a linear Paul trap. Small two-component ion Coulomb crystals consisting of laser-cooled ions and HCIs were characterized by the results of the MD simulations. We found that the spatial distribution is determined by not only the charge-to-mass ratio but also the space charge effect. Moreover, the simulation results suggest that the temperature of HCIs do not necessarily decrease with increasing the number of laser-cooled ions in the cases of linear ion crystals. We also determined the cooling limit of sympathetically cooled 165Ho14+ ions in small linear ion Coulomb crystals. The present results show that sub-milli-Kelvin temperatures of at least 10 Ho14+ ions will be achieved by sympathetic cooling with a single laser-cooled Be+.

  6. Three-Rod Linear Ion Traps

    NASA Technical Reports Server (NTRS)

    Janik, Gary R.; Prestage, John D.; Maleki, Lutfollah

    1993-01-01

    Three-parallel-rod electrode structures proposed for use in linear ion traps and possibly for electrostatic levitation of macroscopic particles. Provides wider viewing angle because they confine ions in regions outside rod-electrode structures.

  7. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  8. Improved Linear-Ion-Trap Frequency Standard

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    Improved design concept for linear-ion-trap (LIT) frequency-standard apparatus proposed. Apparatus contains lengthened linear ion trap, and ions processed alternately in two regions: ions prepared in upper region of trap, then transported to lower region for exposure to microwave radiation, then returned to upper region for optical interrogation. Improved design intended to increase long-term frequency stability of apparatus while reducing size, mass, and cost.

  9. Atomic Clock Based On Linear Ion Trap

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Dick, G. John

    1992-01-01

    Highly stable atomic clock based on excitation and measurement of hyperfine transition in 199Hg+ ions confined in linear quadrupole trap by radio-frequency and static electric fields. Configuration increases stability of clock by enabling use of enough ions to obtain adequate signal while reducing non-thermal component of motion of ions in trapping field, reducing second-order Doppler shift of hyperfine transition. Features described in NPO-17758 "Linear Ion Trap for Atomic Clock." Frequency standard based on hyperfine transition described in NPO-17456, "Trapped-Mercury-Ion Frequency Standard."

  10. Microfabricated linear Paul-Straubel ion trap

    DOEpatents

    Mangan, Michael A.; Blain, Matthew G.; Tigges, Chris P.; Linker, Kevin L.

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  11. Extended linear ion trap frequency standard apparatus

    NASA Technical Reports Server (NTRS)

    Prestage, John D. (Inventor)

    1995-01-01

    A linear ion trap for frequency standard applications is provided with a plurality of trapping rods equally spaced and applied quadruple rf voltages for radial confinement of atomic ions and biased level pins at each end for axial confinement of the ions. The trapping rods are divided into two linear ion trap regions by a gap in each rod in a common radial plane to provide dc discontinuity, thus dc isolating one region from the other. A first region for ion-loading and preparation fluorescence is biased with a dc voltage to transport ions into a second region for resonance frequency comparison with a local oscillator derived frequency while the second region is held at zero voltage. The dc bias voltage of the regions is reversed for transporting the ions back into the first region for fluorescence measurement. The dual mode cycle is repeated continuously for comparison and feedback control of the local oscillator derived frequency. Only the second region requires magnetic shielding for the resonance function which is sensitive to any ambient magnetic fields.

  12. Ion cloud model for a linear quadrupole ion trap.

    PubMed

    Douglas, Don J; Konenkov, Nikolai V

    2012-01-01

    If large numbers of ions are stored in a linear quadrupole ion trap, space charge causes the oscillation frequencies of ions to decrease. Ions then appear at higher apparent masses when resonantly ejected for mass analysis. In principle, to calculate mass shifts requires calculating the positions of all ions, interacting with each other, at all times, with a self-consistent space charge field. Here, we propose a simpler model for the ion cloud in the case where mass shifts and frequency shifts are relatively small (ca 0.2% and 0.4%, respectively), the trapping field is much stronger (ca × 10(2)) than the space charge field and space charge only causes small perturbations to the ion motion. The self-consistent field problem need not be considered. As test ions move with times long compared to a cycle of the trapping field, the motion of individual ions can be ignored. Static positions of the ions in the cloud are used. To generate an ion cloud, trajectories of N (ca 10,000) ions are calculated for random times between 10 and 100 cycles of the trapping radio frequency field. The ions are then distributed axially randomly in a trap four times the field radius, r(0) in length. The potential and electric field from the ion cloud are calculated from the ion positions. Near the trap center (distances r< 1r(0)), the potential and electric fields from space charge are not cylindrically symmetric, but are quite symmetric for greater values of r. Trajectories of test ions, oscillation frequencies and mass shifts can then be calculated in the trapping field, including the space charge field. Mass shifts are in good agreement with experiments for reasonable values of the initial positions and speeds of the ions. Agreement with earlier analytical models for the ion cloud, based on a uniform occupation of phase space, or a thermal (Boltzmann) distribution of ions trapped in the effective potential [D. Douglas and N.V. Konenkov, Rapid Commun. Mass Spectrom. 26, 2105 (2012)] is

  13. Sympathetic cooling of laser-produced doubly charged ions in a few-ion crystal

    SciTech Connect

    Kwapien, T.; Eichmann, U.; Sandner, W.

    2007-06-15

    We present experimental results in which single Ca{sup +} ions in a chain of laser cooled Ca{sup +} ions are further ionized by means of an intense short pulse laser. The ions are trapped in a linear Paul trap, which is instantaneously loaded by ions from a laser-produced ablation plasma. Due to sympathetic cooling the doubly charged ions are held in place. We study and characterize linear few-ion crystals with mixed charges by applying a radio frequency field, which excites the center of mass (c.m.) and breathing modes of different configurations. From the position shift of laser cooled ions initiated through the higher charge state we can deduce the charge of the nonfluorescing ion. This information might be used as an intensity probe for high intensity lasers.

  14. An improved linear ion trap physics package

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.

    1993-01-01

    This article describes an improvement in the architecture of the physics package used in the Linear Ion Trap (LIT)-based frequency standard recently developed at JPL. This new design is based on the observation that ions can be moved along the axis of an LIT by applied dc voltages. The state selection and interrogation region can be separated from the more critical microwave resonance region where the multiplied local oscillator signal is compared with the stable atomic transition. This separation relaxes many of the design constraints of the present units. Improvements include increased frequency stability and a substantial reduction in size, mass, and cost of the final frequency standard.

  15. Miniaturized Linear Wire Ion Trap Mass Analyzer.

    PubMed

    Wu, Qinghao; Li, Ailin; Tian, Yuan; Zare, Richard N; Austin, Daniel E

    2016-08-01

    We report a linear ion trap (LIT) in which the electric field is formed by fine wires held under tension and accurately positioned using holes drilled in two end plates made of plastic. The coordinates of the hole positions were optimized in simulation. The stability diagram and mass spectra using boundary ejection were compared between simulation and experiment and good agreement was found. The mass spectra from experiments show peak widths (fwhm) in units of mass-to-charge of around 0.38 Th using a scan rate of 3830 Th/s. The limits of detection are 137 ppbv and 401 ppbv for benzene and toluene, respectively. Different sizes of the wire ion trap can be easily fabricated by drilling holes in scaled positions. Other distinguishing features, such as high ion and photon transmission, low capacitance, high tolerance to mechanical and assembly error, and low weight, are discussed. PMID:27373557

  16. Linear ion trap based atomic frequency standard

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Dick, G. J.; Maleki, Lute

    1991-01-01

    In order to develop a trapped ion-based fieldable frequency standard with stability 1 x 10 to the -13th/sq rt tau for averaging times tau greater than 10,000 s, a hybrid RF/DC linear ion trap was developed which permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. The authors have confined Hg-199(+) ions in this trap and have measured very high Q transitions with good SNRs. In preliminary measurements they obtained stabilities of 1.6 x 10 to the -13th/sq rt tau (tau between 50 and 800 s) with a 160-mHz wide atomic resonance linewidth and a signal-to-noise ratio of 40 for each measurement cycle. Atomic resonance lines as narrow as 30 mHz on the 40.5-GHz clock transition have been measured with no appreciable reduction in the ion signal. A stability of 7 x 10 to the -14th/sq rt tau is made possible by the signal-to-noise and line Q of this measured transition. Analysis of fundamental sources of frequency instability indicates that a long-term stability of 2 x 10 to the -16th is feasible for this device with existing technology for tau = 10 to the 6th s or more.

  17. Doppler Sideband Spectra for Ions in a Linear Trap

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.

    1993-01-01

    We describe a spectroscopic measurement of the temperature and linear density of HG+ ions held in a linear ion trap (LIT). The inferred temperature and number result from analysis of sidebands on the 40.5 GHz resonance line.

  18. Simple analytic potentials for linear ion traps

    NASA Technical Reports Server (NTRS)

    Janik, G. R.; Prestage, J. D.; Maleki, L.

    1990-01-01

    A simple analytical model was developed for the electric and ponderomotive (trapping) potentials in linear ion traps. This model was used to calculate the required voltage drive to a mercury trap, and the result compares well with experiments. The model gives a detailed picture of the geometric shape of the trapping potential and allows an accurate calculation of the well depth. The simplicity of the model allowed an investigation of related, more exotic trap designs which may have advantages in light-collection efficiency.

  19. Simple analytic potentials for linear ion traps

    NASA Technical Reports Server (NTRS)

    Janik, G. R.; Prestage, J. D.; Maleki, L.

    1989-01-01

    A simple analytical model was developed for the electric and ponderomotive (trapping) potentials in linear ion traps. This model was used to calculate the required voltage drive to a mercury trap, and the result compares well with experiments. The model gives a detailed picture of the geometric shape of the trapping potenital and allows an accurate calculation of the well depth. The simplicity of the model allowed an investigation of related, more exotic trap designs which may have advantages in light-collection efficiency.

  20. Coulomb crystallization of sympathetically cooled highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, José R.

    2015-05-01

    Wave functions of inner-shell electrons significantly overlap with the nucleus, whereby enormously magnified relativistic, quantum electrodynamic (QED) and nuclear size effects emerge. In highly charged ions (HCI), the relative reduction of electronic correlations contributions improves the visibility of these effects. This well known facts have driven research efforts with HCI, yet the typically high temperatures at which these can be prepared in the laboratory constitutes a serious hindrance for application of laser spectroscopic methods. The solution for this, cooling HCI down to crystallization has remained an elusive target for more than two decades. By applying laser cooling to an ensemble of Be+ ions, we build Coulomb crystals that we use for stopping the motion of HCI and for cooling them. HCI, in this case Ar13+ ions are extracted from an electron beam ion trap with an energy spread of a few 100's of eV, due to the ion temperature within the trap. Carefully timed electric pulses in a potential-gradient decelerate and bunch the HCI. We achieve Coulomb crystallization of these HCI by re-trapping them in a cryogenic linear radiofrequency trap where they are sympathetically cooled through Coulomb interaction with the directly laser-cooled ensemble. Furthermore, we also demonstrate cooling of a single Ar13+ ion by a single Be+ ion, prerequisite for quantum logic spectroscopy with potentially 10-19 relative accuracy. The strongly suppressed thermal motion of the embedded HCI offers novel possibilities for investigation of questions related to the time variation of fundamental constants, parity non-conservation effects, Lorentz invariance and quantum electrodynamics. Achieving a seven orders-of-magnitude decrease in HCI temperature, from the starting point at MK values in the ion source down to the mK range within the Coulomb crystal eliminates the major obstacle for HCI investigation with high precision laser spectroscopy and quantum computation schemes.

  1. Kinetics of ion transport through supramolecular channels in single crystals.

    PubMed

    Assouma, Cyrille D; Crochet, Aurélien; Chérémond, Yvens; Giese, Bernd; Fromm, Katharina M

    2013-04-22

    Single-crystal to single-crystal transformations are possible by ion-exchange and transport reactions through supramolecular channels that are composed of crown ether molecules and use trihalide ions as scaffolds. Kinetic measurements of ion transport at different temperatures provide activation energy data and show that a very fast exchange of K(+) ions with Na(+) ions occurs.

  2. Birefringence of the antiferromagnetic crystals linear in a magnetic field

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Kharchenko, N. F.; Beliy, L. I.; Tutakina, O. P.

    1980-01-01

    The new linear magneto-optical effect-birefringence-of a linear polarized light which is directly proportional to the magnetic field strength has been observed. This effect is permitted in crystals which allow piezo-magnetic properties. One was studied in antiferromagnet CoF 2 and CoCO 3 for the longitudinal geometry of an experiment.

  3. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    SciTech Connect

    Ong, H.L.; Meyer, R.B.; Hurd, A.J.; Karn, A.J.; Arakelian, S.M.; Shen, Y.R.; Sanda, P.N.; Dove, D.B.; Jansen, S.A.; Hoffmann, R.

    1989-01-01

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition. 50 refs.

  4. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, Ralph

    1994-01-11

    A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

  5. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  6. Linear ion source with magnetron hollow cathode discharge

    SciTech Connect

    Tang, D.L.; Pu, S.H.; Wang, L.S.; Qiu, X.M.; Chu, Paul K.

    2005-11-15

    A linear ion source with magnetron hollow cathode discharge is described in this paper. The linear ion source is based on an anode layer thruster with closed-drift electrons that move in a closed path in the ExB fields. An open slit configuration is designed at the end of the ion source for the extraction of the linear ion beam produced by the magnetron hollow cathode discharge. The special configurations enable uninterrupted and expanded operation with oxygen as well as other reactive gases because of the absence of an electron source in the ion source. The ion current density and uniformity were experimentally evaluated. Using the ion source, surface modification was conducted on polyethylene terephthalate polymer films to improve the adhesion strength with ZnS coatings.

  7. Imaging linear polarimetry using a single ferroelectric liquid crystal modulator.

    PubMed

    Gendre, Luc; Foulonneau, Alban; Bigué, Laurent

    2010-09-01

    In the field of polarimetry, ferroelectric liquid crystal cells are mostly used as bistable polarization rotators suitable to analyze crossed polarizations. This paper shows that, provided such a cell is used at its nominal wavelength and correctly driven, its behavior is close to that of a tunable half-wave plate, and it can be used with much benefit in lightweight imaging polarimetric setups. A partial Stokes polarimeter using a single digital video camera and a single ferroelectric liquid crystal modulator is designed and implemented for linear polarization analysis. Polarization azimuthal angle and degree of linear polarization are available at 150 frames per second with a good accuracy. PMID:20820209

  8. Control of the conformations of ion Coulomb crystals in a Penning trap.

    PubMed

    Mavadia, Sandeep; Goodwin, Joseph F; Stutter, Graham; Bharadia, Shailen; Crick, Daniel R; Segal, Daniel M; Thompson, Richard C

    2013-01-01

    Laser-cooled atomic ions form ordered structures in radiofrequency ion traps and in Penning traps. Here we demonstrate in a Penning trap the creation and manipulation of a wide variety of ion Coulomb crystals formed from small numbers of ions. The configuration can be changed from a linear string, through intermediate geometries, to a planar structure. The transition from a linear string to a zigzag geometry is observed for the first time in a Penning trap. The conformations of the crystals are set by the applied trap potential and the laser parameters, and agree with simulations. These simulations indicate that the rotation frequency of a small crystal is mainly determined by the laser parameters, independent of the number of ions and the axial confinement strength. This system has potential applications for quantum simulation, quantum information processing and tests of fundamental physics models from quantum field theory to cosmology. PMID:24096901

  9. Control of the conformations of ion Coulomb crystals in a Penning trap.

    PubMed

    Mavadia, Sandeep; Goodwin, Joseph F; Stutter, Graham; Bharadia, Shailen; Crick, Daniel R; Segal, Daniel M; Thompson, Richard C

    2013-01-01

    Laser-cooled atomic ions form ordered structures in radiofrequency ion traps and in Penning traps. Here we demonstrate in a Penning trap the creation and manipulation of a wide variety of ion Coulomb crystals formed from small numbers of ions. The configuration can be changed from a linear string, through intermediate geometries, to a planar structure. The transition from a linear string to a zigzag geometry is observed for the first time in a Penning trap. The conformations of the crystals are set by the applied trap potential and the laser parameters, and agree with simulations. These simulations indicate that the rotation frequency of a small crystal is mainly determined by the laser parameters, independent of the number of ions and the axial confinement strength. This system has potential applications for quantum simulation, quantum information processing and tests of fundamental physics models from quantum field theory to cosmology.

  10. Control of the conformations of ion Coulomb crystals in a Penning trap

    PubMed Central

    Mavadia, Sandeep; Goodwin, Joseph F.; Stutter, Graham; Bharadia, Shailen; Crick, Daniel R.; Segal, Daniel M.; Thompson, Richard C.

    2013-01-01

    Laser-cooled atomic ions form ordered structures in radiofrequency ion traps and in Penning traps. Here we demonstrate in a Penning trap the creation and manipulation of a wide variety of ion Coulomb crystals formed from small numbers of ions. The configuration can be changed from a linear string, through intermediate geometries, to a planar structure. The transition from a linear string to a zigzag geometry is observed for the first time in a Penning trap. The conformations of the crystals are set by the applied trap potential and the laser parameters, and agree with simulations. These simulations indicate that the rotation frequency of a small crystal is mainly determined by the laser parameters, independent of the number of ions and the axial confinement strength. This system has potential applications for quantum simulation, quantum information processing and tests of fundamental physics models from quantum field theory to cosmology. PMID:24096901

  11. Linear electric field time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  12. Non-linear optical titanyl arsenates: Crystal growth and properties

    NASA Astrophysics Data System (ADS)

    Nordborg, Jenni Eva Louise

    Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic

  13. Linear optical and SHG characterization of new chalcone crystals

    NASA Astrophysics Data System (ADS)

    Raghavendra, S.; Jayarama, A.; Shekhara Shetty, T. Chandra; Dharmaprakash, S. M.

    2013-02-01

    Two new non linear optical (NLO) materials: (2E)-1-(4-chloro-3-methyl phenyl)-3-(2, 3-dimethoxy phenyl) prop-2-en-1-one (CMDP) and (2E)-1-(4-chloro-3-methylphenyl)-3-(2,4,5-tri methoxy phenyl) prop-2-en-1-one (CMTP) were crystallized using methanol solution. Various functional groups present in CMDP and CMTP were identified by FTIR spectra. The second harmonic generation (SHG) in CMDP and CMTP crystals was observed for a Q-switched and pulsed Nd:YAG laser of wavelength 1064nm. The SHG efficiency of the CMDP and CMTP was found to be 0.5 and 5 times that of urea, respectively. The linear optical properties of the compounds have been determined from the absorbance spectrum, collected using UV-VIS spectrophotometer. The absorption edges, direct and indirect optical band gaps of the crystals were determined.

  14. Ion Coulomb Crystals and Their Applications

    NASA Astrophysics Data System (ADS)

    Drewsen, Michael

    The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].

  15. Crystal blocking in heavy ion reactions

    SciTech Connect

    del Campo, J.G.

    1986-01-01

    The crystal blocking technique, used to measure very short lifetime (10/sup -18/ sec), was developed during the 1960's primarily in connection with the study of the channeling effect. Early blocking lifetime measurements involved light ion resonance reactions yielding typical lifetime values down to the order of 10/sup -17/ sec. Recently, studies of heavy-ion induced fission and fusion have extended the technique into the 10/sup -18/ to 10/sup -19/ sec scale. In this work measurements of fusion for /sup 16/O + Ge and deep inelastic reactions for /sup 28/Si + Ge are presented for bombarding energies around 8 nucleon. Also measurements of the projectile fragmenatation of 44 MeV/nucleon /sup 40/Ar + Ge are discussed. In all reactions studied the presence of particle evaporation is the dominant mechanism that determines the reaction times of about 10/sup -18/ sec extracted with the blocking technique. 16 refs., 9 figs.

  16. Metal-ion-ligand interactions in thermotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Diehl, P.; Wasser, H. R.; Gowda, G. A. Nagana; Suryaprakash, N.; Khetrapal, C. L.

    1989-07-01

    The interactions of lithium perchlorate with ligands such as dimethyl sulphoxide, acetonitrile, pyridine and the Schiff base liquid crystals are investigated. The experiments open a new field for the study of metal-ion-ligand interactions in thermotropic liquid crystals.

  17. On the Linear Stability of Crystals in the Schrödinger-Poisson Model

    NASA Astrophysics Data System (ADS)

    Komech, A.; Kopylova, E.

    2016-09-01

    We consider the Schrödinger-Poisson-Newton equations for crystals with one ion per cell. We linearize this dynamics at the periodic minimizers of energy per cell and introduce a novel class of the ion charge densities that ensures the stability of the linearized dynamics. Our main result is the energy positivity for the Bloch generators of the linearized dynamics under a Wiener-type condition on the ion charge density. We also adopt an additional `Jellium' condition which cancels the negative contribution caused by the electrostatic instability and provides the `Jellium' periodic minimizers and the optimality of the lattice: the energy per cell of the periodic minimizer attains the global minimum among all possible lattices. We show that the energy positivity can fail if the Jellium condition is violated, while the Wiener condition holds. The proof of the energy positivity relies on a novel factorization of the corresponding Hamilton functional. The Bloch generators are nonselfadjoint (and even nonsymmetric) Hamilton operators. We diagonalize these generators using our theory of spectral resolution of the Hamilton operators with positive definite energy (Komech and Kopylova in, J Stat Phys 154(1-2):503-521, 2014, J Spectral Theory 5(2):331-361, 2015). The stability of the linearized crystal dynamics is established using this spectral resolution.

  18. On the Linear Stability of Crystals in the Schrödinger-Poisson Model

    NASA Astrophysics Data System (ADS)

    Komech, A.; Kopylova, E.

    2016-10-01

    We consider the Schrödinger-Poisson-Newton equations for crystals with one ion per cell. We linearize this dynamics at the periodic minimizers of energy per cell and introduce a novel class of the ion charge densities that ensures the stability of the linearized dynamics. Our main result is the energy positivity for the Bloch generators of the linearized dynamics under a Wiener-type condition on the ion charge density. We also adopt an additional `Jellium' condition which cancels the negative contribution caused by the electrostatic instability and provides the `Jellium' periodic minimizers and the optimality of the lattice: the energy per cell of the periodic minimizer attains the global minimum among all possible lattices. We show that the energy positivity can fail if the Jellium condition is violated, while the Wiener condition holds. The proof of the energy positivity relies on a novel factorization of the corresponding Hamilton functional. The Bloch generators are nonselfadjoint (and even nonsymmetric) Hamilton operators. We diagonalize these generators using our theory of spectral resolution of the Hamilton operators with positive definite energy (Komech and Kopylova in, J Stat Phys 154(1-2):503-521, 2014, J Spectral Theory 5(2):331-361, 2015). The stability of the linearized crystal dynamics is established using this spectral resolution.

  19. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  20. Linear and NLO properties of an organic single crystal

    NASA Astrophysics Data System (ADS)

    Rajesh Kumara, P. C.; Ravindrachary, V.; Janardhana, K.; Poojary, Boja; Manjunath, K. B.; Umesh, G.

    2012-06-01

    Organic compound of 1-(4-methoxyphenyl)-3-(2-methoxy 5-bromophenyl)prop-2-en-1-one [MMBPP] with molecular formula C16H11BrO3 was synthesized using Schmidt condensation method. A FT-IR spectrum was recorded to identify the various functional groups present in the compound. The single crystals were grown using slow evaporation solution growth technique. The high quality transparent crystals up to a size 10×7×5 mm3 are obtained with in fifteen days. UV-Visible spectrum reveals that the crystal is transparent in the entire visible region. The single crystal XRD study shows that the compound crystallizes in orthorhombic crystal system with a space group P212121 and the observed cell parameters are a =7.6095(13) Å, b =13.049(2) Å, c = 15.525(3) Å, Volume 1541.6(5) Å3. The third order Nonlinearity was confirmed by Z-scan technique and non-linear parameters were determined.

  1. Electrochemical growth of linear conducting crystals in microgravity

    NASA Technical Reports Server (NTRS)

    Cronise, Raymond J., IV

    1988-01-01

    Much attention has been given to the synthesis of linear conducting materials. These inorganic, organic, and polymeric materials have some very interesting electrical and optical properties, including low temperature superconductivity. Because of the anisotropic nature of these compounds, impurities and defects strongly influences the unique physical properties of such crystals. Investigations have demonstrated that electrochemical growth has provided the most reproducible and purest crystals. Space, specifically microgravity, eliminates phenomena such as buoyancy driven convection, and could permit formation of crystals many times purer than the ones grown to date. Several different linear conductors were flown on Get Away Special G-007 on board the Space Shuttle Columbia, STS 61-C, the first of a series of Project Explorer payloads. These compounds were grown by electrochemical methods, and the growth was monitored by photographs taken throughout the mission. Due to some thermal problems, no crystals of appreciable size were grown. The experimental results will be incorporated into improvements for the next 2 missions of Project Explorer. The results and conclusions of the first mission are discussed.

  2. Locations of Halide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Adimurthy, Ganapathi; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions play an important role in the crystallization of lysozyme, and are known to bind to the crystalline protein. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. Studies using other approaches have reported more chloride ion binding sites, but their locations were not known. Knowing the precise location of these anions is also useful in determining the correct electrostatic fields surrounding the protein. In the first part of this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from the lysozyme crystals grown in bromide and chloride solutions under identical conditions. The anion locations were then obtained from standard crystallographic methods and five possible anion binding sites were found in this manner. The sole chloride ion binding site found in previous studies was confirmed. The remaining four sites were new ones for tetragonal lysozyme crystals. However, three of these new sites and the previously found one corresponded to the four unique binding sites found for nitrate ions in monoclinic crystals. This suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed. It is unlikely that there are many more anions in the tetragonal lysozyme crystal structure. Assuming osmotic equilibrium it can be shown that there are at most three more anions in the crystal channels. Some of the new anion binding sites found in this study were, as expected, in pockets containing basic residues. However, some of them were near neutral, but polar, residues. Thus, the study also showed the importance of uncharged, but polar groups, on the protein surface in determining its electrostatic field. This was important for the second part of this study where the electrostatic field

  3. Ion Isolation in a Linear Ion Trap Using Dual Resonance Frequencies

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Cooks, R. Graham

    2016-09-01

    Ion isolation in a linear ion trap is demonstrated using dual resonance frequencies, which are applied simultaneously. One frequency is used to eject ions of a broad m/z range higher in m/z than the target ion, and the second frequency is set to eject a range of ions lower in m/z. The combination of the two thus results in ion isolation. Despite the simplicity of the method, even ions of low intensity may be isolated since signal attenuation is less than an order of magnitude in most cases. The performance of dual frequency isolation is demonstrated by isolating individual isotopes of brominated compounds.

  4. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  5. Spiroborate Ions for Crystallization and Resolution

    NASA Astrophysics Data System (ADS)

    Wong, Lawrence Wan Yin

    Spiroborate anions are boron compounds with two oxygen based chelating ligands which offer useful prospects for crystallization and chiral resolution. In particular the application and the rationale of using chiral spiroborates with either B-based or ligand-based chirality as a simple, cheap and effective auxiliaries for resolution are studied. In Chapter 2 the scope and limitations of spiroborate formation and crystallization are explored through different classes by investigating their structures and properties. Structures of five different classes are described including spiroborates derived from various diols, catechols, a-hydroxy acids, hydroxybenzoic acids and hydroxyl oximes. The crystallizing abilities are demonstrated with successful isolation of stable product using differing cations. Both limitations and difficulties in each system are also discussed. In chapter 3 chiral spiroborate anions bora-bis-mandelate [B(Man) 2] anions are introduced as highly effective auxiliary for resolution of various racemic chiral cations. The scope of their application is well exemplified by, though not limited to, three disparate examples; the pharmaceutically important natural alkaloid tetrahydropalmatine (THP) which forms a mono-cation, the small 1,2-diaminopropane (1,2-dap) which forms a dication and the metal-organic complex [Co(phen)3]3+. The resulting salts with [B(Man)2] are 1:1, 1:2 and 1:3 stoichiometry. The resolutions may be either by a facile one-pot solvothermal procedure or via counter-ion exchange in metathesis crystallizations using a pre-prepared salt such as Na[B(Man) 2]. High ee of > 90 % have been achieved in all three systems and confirmed by chiral chromatography and/or Circular Dichroism spectroscopy. In Chapter 4 the investigation of spiroborate diastereomeric ion pairs using chiral [B(Man)2] anions and chiral aminoalcohols were undertaken to better understand the structural issues of chiral resolution and predict the resolution result. Three other

  6. Ion crystal transducer for strong coupling between single ions and single photons.

    PubMed

    Lamata, L; Leibrandt, D R; Chuang, I L; Cirac, J I; Lukin, M D; Vuletić, V; Yelin, S F

    2011-07-15

    A new approach for the realization of a quantum interface between single photons and single ions in an ion crystal is proposed and analyzed. In our approach the coupling between a single photon and a single ion is enhanced via the collective degrees of freedom of the ion crystal. Applications including single-photon generation, a memory for a quantum repeater, and a deterministic photon-photon, photon-phonon, or photon-ion entangler are discussed.

  7. Product ion scanning using a Q-q-Q linear ion trap (Q TRAP) mass spectrometer.

    PubMed

    Hager, James W; Yves Le Blanc, J C

    2003-01-01

    The use of a Q-q-Q(linear ion trap) instrument to obtain product ion spectra is described. The instrument is based on the ion path of a triple quadrupole mass spectrometer with Q3 operable as either a conventional RF/DC quadrupole mass filter or a linear ion trap mass spectrometer with axial ion ejection. This unique ion optical arrangement allows de-coupling of precursor ion isolation and fragmentation from the ion trap itself. The result is a high sensitivity tandem mass spectrometer with triple quadrupole fragmentation patterns and no inherent low mass cut-off. The use of the entrance RF-only section of the instrument as accumulation ion trap while the linear ion trap mass spectrometer is scanning enhances duty cycles and results in increased sensitivities by as much as a factor of 20. The instrument is also capable of all of the triple quadrupole scans including multiple-reaction monitoring (MRM) as well as precursor and constant neutral loss scanning. The high product ion scanning sensitivity allows the recording of useful product ion spectra near the MRM limit of quantitation.

  8. Stabilizing blue phase liquid crystals with linearly polarized UV light

    NASA Astrophysics Data System (ADS)

    Xu, Daming; Yuan, Jiamin; Schadt, Martin; Yan, Jing; Wu, Shin-Tson

    2015-03-01

    Polymer-stabilized blue-phase liquid crystal (PS-BPLC) has become an increasingly important technology trend for information display and photonic applications. BPLC exhibits several attractive features, such as reasonably wide temperature range, submillisecond gray-to-gray response time, no need for alignment layer, optically isotropic voltageoff state, and large cell gap tolerance when an in-plane switching (IPS) cell is employed. However, some bottlenecks such as high operation voltage, relatively low transmittance, and noticeable hysteresis and prolonged response time at high field region for IPS mode, still remain to be overcome before widespread application of BPLC can be realized. To reduce operation voltage, both new BPLC materials and new device structures have been investigated. In this paper, we demonstrate the stabilization a photopolymer-embedded blue phase liquid crystal precursor using a linearly polarized UV light for first time. When the UV polarization axis is perpendicular to the stripe electrodes of an IPS cell, anisotropic polymer networks are formed through the linear photo-polymerization process and the electrostriction effect is suppressed. As a result, the measured hysteresis is dramatically reduced from 6.95% to 0.36% and the response time shortened by ~2X compared to unpolarized UV exposure. To induce larger anisotropy in polymer networks for mitigating the electrostriction effect, high-intensity linearly polarized UV exposure is preferred. It is foreseeable this method will guide future BPLC device and material development as well as manufacturing process. The dawn of BPLCD is near.

  9. Linear analysis of ion cyclotron interaction in a multicomponent plasma

    NASA Technical Reports Server (NTRS)

    Gendrin, R.; Ashour-Abdalla, M.; Omura, Y.; Quest, K.

    1984-01-01

    The mechanism by which hot anisotropic protons generate electromagnetic ion cyclotron waves in a plasma containing cold H(+) and He(+) ions is quantitatively studied. Linear growth rates (both temporal and spatial) are computed for different plasma parameters: concentration, temperature,and anisotropy of cold He(+) ions and of hot protons. It is shown that: (1) for parameters typical of the geostationary altitude the maximum growth rates are not drastically changed when a small proportion (about 1 to 20 percent) of cold He(+) ions is present; (2) because of the important cyclotron absorption by thermal He(+) ions in the vicinity of the He(+) gyrofrequency, waves which could resonate with the bulk of the He(+) distribution cannot be generated. Therefore quasi-linear effects, in a homogeneous medium at least, cannot be responsible for the heating of He(+) ions which is often observed in conjunction with ion cyclotron waves. The variation of growth rate versus wave number is also studied for its importance in selecting suitable parameters in numerical simulation experiments.

  10. Ion effects in future circular and linear accelerators

    SciTech Connect

    Raubenheimer, T.O.

    1995-05-01

    In this paper, the author discusses ion effects relevant to future storage rings and linear colliders. The author first reviews the conventional ion effects observed in present storage rings and then discusses how these effects will differ in the next generation of rings and linacs. These future accelerators operate in a new regime because of the high current long bunch trains and the very small transverse beam emittances. Usually, storage rings are designed with ion clearing gaps to prevent ion trapping between bunch trains or beam revolutions. Regardless, ions generated within a single bunch train can have significant effects. The same is true in transport lines and linacs, where typical vacuum pressures are relatively high. Amongst other effects, the author addresses the tune spreads due to the ions and the resulting filamentation which can severely limit emittance correction techniques in future linear colliders, the bunch-to-bunch coupling due to the ions which can cause a multi-bunch instability with fast growth rates, and the betatron coupling and beam halo creation which limit the vertical emittance and beam lifetimes.

  11. A simulation study of linear RF ion guides for AMS

    NASA Astrophysics Data System (ADS)

    Zhao, X.-L.; Litherland, A. E.

    2015-02-01

    The use of radiofrequency multipoles and particularly the radiofrequency quadrupole (RFQ) controlled gas cell to facilitate on-line isobar separations for Accelerator Mass Spectrometry (AMS) is being explored experimentally and theoretically in a preliminary way at present. These new methods have the potential to extend greatly the analytical scope of AMS. However, there are many technical challenges to adapt an RF gas cell isobar separating device and still maintain stable and high transmission for routine AMS using the high current Cs+ sputter ion sources developed for nuclear physics and adapted to the detection of rare radioactive isotopes for AMS. An overview of linear RF ion guide properties is therefore needed to assist in the conceptualization of their efficient additions into AMS. In this work the intrinsic properties of linear RF ion guides, which are relevant to the generation of the RF induced ion energy distributions and for the evaluation of the ion transmissions in vacuum, are systematically studied using SIMION 8.1. These properties are compared among radiofrequency quadrupole, hexapole and octupole ion guides, so that their usefulness for AMS applications can be evaluated and compared. By simulation it is found that to prepare a typical RF captured AMS ion beam to within a safe range of ion energies prior to the onset of gas interactions, a higher multipole is more suitable for the first RF field receptor, while a quadrupole operated with q2 ∼ 0.5 is more suited as the final ion guide for concentrating the energy-cooled ions near axis.

  12. Simulation of Uranyl Nitrate Crystallization Process in Linear Crystallizer Using Simsar Software

    NASA Astrophysics Data System (ADS)

    Ochoa Bique, A.; Gozhimov, A.; Chursin, Yu; Schmidt, O.

    2016-08-01

    The paper deals with simulation of linear crystallizer work process for the research of technic operating modes and searching the most effective for material's nano-purity achievement. The model is realized by using SimSar software. Importance of device's geometry and process variables are marked. The model was included in the complex's composition of closed nuclear fuel cycle.

  13. PARMELA simulations of RF linear accelerators for ion implantation

    SciTech Connect

    Swenson, D. R.; Wan Zhimin; Di Vergilio, W. F.; Saadatmand, K.

    1999-06-10

    RF linear accelerators (LINACs) offer the highest beam energies and currents available to the high-energy segment of the ion-implantation industry. We are using the computer code PARMELA to simulate a variety of beam parameters. The simulations are used to generate beam tunes, optimize LINAC performance, and to design new LINACs.

  14. Location of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.

  15. Rapid crystallization of externally produced ions in a Penning trap

    NASA Astrophysics Data System (ADS)

    Murböck, T.; Schmidt, S.; Birkl, G.; Nörtershäuser, W.; Thompson, R. C.; Vogel, M.

    2016-10-01

    We have studied the cooling dynamics, formation process, and geometric structure of mesoscopic crystals of externally produced magnesium ions in a Penning trap. We present a cooling model and measurements for a combination of buffer gas cooling and laser cooling which has been found to reduce the ion kinetic energy by eight orders of magnitude from several hundreds of eV to μ eV and below within seconds. With ion numbers of the order of 1 ×103 to 1 ×105 , such cooling leads to the formation of ion Coulomb crystals which display a characteristic shell structure in agreement with the theory of non-neutral plasmas. We show the production and characterization of two-species ion crystals as a means of sympathetic cooling of ions lacking a suitable laser-cooling transition.

  16. A Linear RFQ Ion Trap for the Enriched Xenon Observatory

    SciTech Connect

    Flatt, B.; Green, M.; Wodin, J.; DeVoe, R.; Fierlinger, P.; Gratta, G.; LePort, F.; Montero Diez, M.; Neilson, R.; O'Sullivan, K.; Pocar, A.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank Jr., W.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; Hauger, M.; Hodgson, J.; /Stanford U., Phys. Dept. /Neuchatel U. /SLAC /Colorado State U. /Laurentian U. /Carleton U. /Alabama U.

    2008-01-14

    The design, construction, and performance of a linear radio-frequency ion trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are described. EXO aims to detect the neutrinoless double-beta decay of {sup 136}Xe to {sup 136}Ba. To suppress possible backgrounds EXO will complement the measurement of decay energy and, to some extent, topology of candidate events in a Xe filled detector with the identification of the daughter nucleus ({sup 136}Ba). The ion trap described here is capable of accepting, cooling, and confining individual Ba ions extracted from the site of the candidate double-beta decay event. A single trapped ion can then be identified, with a large signal-to-noise ratio, via laser spectroscopy.

  17. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  18. Progress Report on the Improved Linear Ion Trap Physics Package

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    This article describes the first operational results from the extended linear ion trap frequency standard now being developed at JPL. This new design separates the state selection/interrogation region from the more critical microwave resonance region where the multiplied local oscillator (LO) signal is compared to the stable atomic transition. Hg+ ions have been trapped, shuttled back and forth between the resonance and state selection traps. In addition, microwave transitions between the Hg+ clock levels have been driven in the resonance trap and detected in the state selection trap.

  19. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  20. Linear Stability and Instability Patterns in Ion Bombarded Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Madi, Charbel Said

    2011-12-01

    This thesis is a combined experimental and theoretical study of the fundamental physical mechanisms governing nanoscale surface morphology evolution of Ar + ion bombarded silicon surfaces. I experimentally determined the topographical phase diagram resulting from Ar+ ion irradiation of Si surfaces at room temperature in the linear regime of surface dynamics as we vary the control parameters ion beam energy and incidence angle. At all energies, it is characterized by a diverging wavelength bifurcation from a smooth stable surface to parallel mode ripples (wavevector parallel to the projected ion beam on the surface) as the ion beam incidence angle is varied. At sufficiently high angles theta ≈ 85°, I observed perpendicular mode ripples (wavevector perpendicular to the ion beam). Through real-time Grazing-Incidence Small Angle X-ray Scattering, I have definitively established that ion-induced erosion, which is the consensus predominant cause of pattern formation, is not only of the wrong sign to explain the measured curvature coefficients responsible in driving the surface dynamics, but also is so small in magnitude as to be essentially negligible for pattern formation except possibly at the most grazing angles of incidence where both erosion and redistribution effects converge to zero. That the contribution of ion impact induced prompt atomic redistribution effects entirely overwhelms that of erosion in both the stabilizing and destabilizing regimes is of profound significance, as it overturns the erosion-based paradigm that has dominated the pattern formation field for over two decades. In situ wafer curvature measurements using the Multi-beam Optical Stress Sensor system were performed during amorphization of silicon by normal incidence 250 eV ion irradiation. An average compressive saturation stress built up in the amorphous layer was found to be as large as 1.5 GPa. By assuming the ion-induced amorphization layer to be modeled as a viscoelastic film that is

  1. Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron-positron-ion plasmas

    SciTech Connect

    Khan, S. A.; Masood, W.

    2008-06-15

    The linear and nonlinear quantum ion-acoustic waves propagating obliquely in two dimensions in superdense, magnetized electron-positron-ion quantum plasma are investigated on the basis of quantum hydrodynamic model. It is found in linear analysis that the quantum corrections of diffraction are important in the very short wavelength regime that may be found in dense astrophysical plasmas. To investigate the solitary waves, the Zakharov-Kuznetsov equation is derived and the solution is presented in the small amplitude limit. By numerical analysis, it is found that the soliton structure of the ion acoustic wave depends upon quantum pressure, concentration of positrons, strength of magnetic field, and the propagation angle.

  2. Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Masood, W.

    2008-06-01

    The linear and nonlinear quantum ion-acoustic waves propagating obliquely in two dimensions in superdense, magnetized electron-positron-ion quantum plasma are investigated on the basis of quantum hydrodynamic model. It is found in linear analysis that the quantum corrections of diffraction are important in the very short wavelength regime that may be found in dense astrophysical plasmas. To investigate the solitary waves, the Zakharov-Kuznetsov equation is derived and the solution is presented in the small amplitude limit. By numerical analysis, it is found that the soliton structure of the ion acoustic wave depends upon quantum pressure, concentration of positrons, strength of magnetic field, and the propagation angle.

  3. Structure and dynamics of ion clusters in linear octupole traps: Phase diagrams, chirality, and melting mechanisms

    SciTech Connect

    Yurtsever, E.; Onal, E. D.; Calvo, F.

    2011-05-15

    The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.

  4. The effective temperature of ions stored in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Donald, William A; Khairallah, George N; O'Hair, Richard A J

    2013-06-01

    The extent of internal energy deposition into ions upon storage, radial ejection, and detection using a linear quadrupole ion trap mass spectrometer is investigated as a function of ion size (m/z 59 to 810) using seven ion-molecule thermometer reactions that have well characterized reaction entropies and enthalpies. The average effective temperatures of the reactants and products of the ion-molecule reactions, which were obtained from ion-molecule equilibrium measurements, range from 295 to 350 K and do not depend significantly on the number of trapped ions, m/z value, ion trap q z value, reaction enthalpy/entropy, or the number of vibrational degrees of freedom for the seven reactions investigated. The average of the effective temperature values obtained for all seven thermometer reactions is 318 ± 23 K, which indicates that linear quadrupole ion trap mass spectrometers can be used to study the structure(s) and reactivity of ions at near ambient temperature.

  5. Optimization of quasiperiodic structures in a linear resonance ion accelerator

    NASA Astrophysics Data System (ADS)

    Garashchenko, F. G.; Sokolov, L. S.; Tsulaya, A. V.

    1980-06-01

    A method is proposed for optimizing the parameters of a linear ion accelerator with rectangular or trapezoidal shape of the accelerating voltage between the tubes, systematic allowance being made for the quasiperiodicity of their arrangement. Numerical calculations have demonstrated the effectiveness of the method and also the fairly simple structure of its realization. A detailed algorithm is given. An estimate is made of the interval of entrance phases, the maximal value of which exceeds by several percent the limits previously predicted.

  6. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap.

    PubMed

    Rajabi, Khadijeh

    2015-02-01

    A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution.

  7. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap.

    PubMed

    Rajabi, Khadijeh

    2015-02-01

    A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution. PMID:25553956

  8. Synthesis, linear optical, non-linear optical, thermal and mechanical characterizations of dye-doped semi-organic NLO crystals

    NASA Astrophysics Data System (ADS)

    Sesha Bamini, N.; Vidyalakshmy, Y.; Choedak, Tenzin; Kejalakshmy, N.; Muthukrishnan, P.; Ancy, C. J.

    2015-06-01

    Organic laser dyes Coumarin 485, Coumarin 540 and Rhodamine 590 Chloride were used to dope potassium acid phthalate crystals (KAP). Dye-doped KAP crystals with different dye concentrations such as 0.01 mM, 0.03 mM, 0.05 mM, 0.07 mM and 0.09 mM (in the KAP growth solution) were grown. The linear optical, non-linear optical, mechanical and thermal characterizations of dye-doped KAP crystals were studied and compared to understand the effect of dye and dye concentration on the KAP crystal. Absorption and emission studies of KAP and dye-doped KAP single crystals indicated the inclusion of the dye into the KAP crystal lattice. The effect of dye and its concentration on the SHG efficiency of the KAP crystal was studied using the Kurtz and Perry powder technique. It was observed that the absorption maximum wavelength and concentration of the dye used for doping the KAP single crystal decided the SHG efficiency of the dye-doped KAP single crystals. The mechanical hardness of the dye-doped and undoped (pure) KAP single crystals were studied using the Vickner’s microhardness test. It was observed that doping the KAP crystals with the laser dyes changed them from softer material to harder material. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with laser dyes.

  9. Ion-acoustic cnoidal wave and associated non-linear ion flux in dusty plasma

    SciTech Connect

    Jain, S. L.; Tiwari, R. S.; Mishra, M. K.

    2012-10-15

    Using reductive perturbation method with appropriate boundary conditions, coupled evolution equations for first and second order potentials are derived for ion-acoustic waves in a collisionless, un-magnetized plasma consisting of hot isothermal electrons, cold ions, and massive mobile charged dust grains. The boundary conditions give rise to renormalization term, which enable us to eliminate secular contribution in higher order terms. Determining the non secular solution of these coupled equations, expressions for wave phase velocity and averaged non-linear ion flux associated with ion-acoustic cnoidal wave are obtained. Variation of the wave phase velocity and averaged non-linear ion flux as a function of modulus (k{sup 2}) dependent wave amplitude are numerically examined for different values of dust concentration, charge on dust grains, and mass ratio of dust grains with plasma ions. It is found that for a given amplitude, the presence of positively (negatively) charged dust grains in plasma decreases (increases) the wave phase velocity. This behavior is more pronounced with increase in dust concentrations or increase in charge on dust grains or decrease in mass ratio of dust grains. The averaged non-linear ion flux associated with wave is positive (negative) for negatively (positively) charged dust grains in the plasma and increases (decreases) with modulus (k{sup 2}) dependent wave amplitude. For given amplitude, it increases (decreases) as dust concentration or charge of negatively (positively) charged dust grains increases in the plasma.

  10. Laser-generated waves and wakes in rotating ion crystals.

    PubMed

    Kriesel, J M; Bollinger, J J; Mitchell, T B; King, L B; Dubin, D H E

    2002-03-25

    Locally excited plasma waves are generated in a Coulomb crystal by "pushing" with radiation pressure on a rotating cloud of laser-cooled 9Be+ ions. The waves form a stationary wake that is directly imaged through the dependence of the ion fluorescence on Doppler shifts, and theoretical calculations in a slab geometry are shown to accurately reproduce these images. The technique demonstrates a new method of exciting and studying waves in cold ion clouds.

  11. Cryogenic Linear Ion Trap for Large-Scale Quantum Simulations

    NASA Astrophysics Data System (ADS)

    Pagano, Guido; Hess, Paul; Kaplan, Harvey; Birckelbaw, Eric; Hernanez, Micah; Lee, Aaron; Smith, Jake; Zhang, Jiehang; Monroe, Christopher

    2016-05-01

    Ions confined in RF Paul traps are a useful tool for quantum simulation of long-range spin-spin interaction models. As the system size increases, classical simulation methods become incapable of modeling the exponentially growing Hilbert space, necessitating quantum simulation for precise predictions. Current experiments are limited to less than 30 qubits due to collisions with background gas that regularly destroys the ion crystal. We present progress toward the construction of a cryogenic ion trap apparatus, which uses differential cryopumping to reduce vacuum pressure to a level where collisions do not occur. This should allow robust trapping of about 100 ions/qubits in a single chain with long lifetimes. Such a long chain will provide a platform to investigate simultaneously cooling of various vibrational modes and will enable quantum simulations that outperform their classical counterpart. Our apparatus will provide a powerful test-bed to investigate a large variety of Hamiltonians, including spin 1 and spin 1/2 systems with Ising or XY interactions. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, the IC Fellowship Program and the NSF Physics Frontier Center at JQI.

  12. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Yuan; Chen, Hung-Ying; Sun, Liuyang; Chen, Wei-Liang; Chang, Yu-Ming; Ahn, Hyeyoung; Li, Xiaoqin; Gwo, Shangjr

    2015-07-01

    The development of ultrasmooth, macroscopic-sized silver (Ag) crystals exhibiting reduced losses is critical to fully characterize the ultimate performance of Ag as a plasmonic material, and to enable cascaded and integrated plasmonic devices. Here we demonstrate the growth of single-crystal Ag plates with millimetre lateral sizes for linear and nonlinear plasmonic applications. Using these Ag crystals, surface plasmon polariton propagation lengths beyond 100 μm in the red wavelength region are measured. These lengths exceed the predicted values using the widely cited Johnson and Christy data. Furthermore, they allow the fabrication of highly reproducible plasmonic nanostructures by focused ion beam milling. We have designed and fabricated double-resonant nanogroove arrays using these crystals for spatially uniform and spectrally tunable second-harmonic generation. In conventional `hot-spot'-based nonlinear processes such as surface-enhanced Raman scattering and second-harmonic generation, strong enhancement can only occur in random, localized regions. In contrast, our approach enables uniform nonlinear signal generation over a large area.

  13. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics

    PubMed Central

    Wang, Chun-Yuan; Chen, Hung-Ying; Sun, Liuyang; Chen, Wei-Liang; Chang, Yu-Ming; Ahn, Hyeyoung; Li, Xiaoqin; Gwo, Shangjr

    2015-01-01

    The development of ultrasmooth, macroscopic-sized silver (Ag) crystals exhibiting reduced losses is critical to fully characterize the ultimate performance of Ag as a plasmonic material, and to enable cascaded and integrated plasmonic devices. Here we demonstrate the growth of single-crystal Ag plates with millimetre lateral sizes for linear and nonlinear plasmonic applications. Using these Ag crystals, surface plasmon polariton propagation lengths beyond 100 μm in the red wavelength region are measured. These lengths exceed the predicted values using the widely cited Johnson and Christy data. Furthermore, they allow the fabrication of highly reproducible plasmonic nanostructures by focused ion beam milling. We have designed and fabricated double-resonant nanogroove arrays using these crystals for spatially uniform and spectrally tunable second-harmonic generation. In conventional ‘hot-spot'-based nonlinear processes such as surface-enhanced Raman scattering and second-harmonic generation, strong enhancement can only occur in random, localized regions. In contrast, our approach enables uniform nonlinear signal generation over a large area. PMID:26174058

  14. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics.

    PubMed

    Wang, Chun-Yuan; Chen, Hung-Ying; Sun, Liuyang; Chen, Wei-Liang; Chang, Yu-Ming; Ahn, Hyeyoung; Li, Xiaoqin; Gwo, Shangjr

    2015-07-15

    The development of ultrasmooth, macroscopic-sized silver (Ag) crystals exhibiting reduced losses is critical to fully characterize the ultimate performance of Ag as a plasmonic material, and to enable cascaded and integrated plasmonic devices. Here we demonstrate the growth of single-crystal Ag plates with millimetre lateral sizes for linear and nonlinear plasmonic applications. Using these Ag crystals, surface plasmon polariton propagation lengths beyond 100 μm in the red wavelength region are measured. These lengths exceed the predicted values using the widely cited Johnson and Christy data. Furthermore, they allow the fabrication of highly reproducible plasmonic nanostructures by focused ion beam milling. We have designed and fabricated double-resonant nanogroove arrays using these crystals for spatially uniform and spectrally tunable second-harmonic generation. In conventional 'hot-spot'-based nonlinear processes such as surface-enhanced Raman scattering and second-harmonic generation, strong enhancement can only occur in random, localized regions. In contrast, our approach enables uniform nonlinear signal generation over a large area.

  15. Linear and nonlinear ion-acoustic waves in an unmagnetized electron-positron-ion quantum plasma

    NASA Astrophysics Data System (ADS)

    Ali, S.; Moslem, W. M.; Shukla, P. K.; Schlickeiser, R.

    2007-08-01

    The linear and nonlinear properties of the ion-acoustic waves (IAWs) are investigated by using the quantum hydrodynamic equations together with the Poisson equation in a three-component quantum electron-positron-ion plasma. For this purpose, a linear dispersion relation, a Korteweg-de Vries equation and an energy equation containing quantum corrections are derived. Computational investigations have been performed to examine the quantum mechanical effects on the linear and nonlinear waves. It is found that both the linear and nonlinear properties of the IAWs are significantly affected by the inclusion of the quantum corrections. The relevance of the present investigation to dense white dwarfs (where the electron-positron annihilation can be unimportant) is discussed.

  16. Molecular structure and mechanisms of action of cyclic and linear ion transport antibiotics.

    PubMed

    Duax, W L; Griffin, J F; Langs, D A; Smith, G D; Grochulski, P; Pletnev, V; Ivanov, V

    1996-01-01

    Ionophores are antibiotics that induce ion transport across natural and artificial membranes. The specific function of a given ionophore depends upon its selectivity and the kinetics of ion capture, transport, and release. Systematic studies of complexed and uncomplexed forms of linear and cyclic ionophores provide insight into molecular mechanisms of ion capture and release and the basis for ion selectivity. The cyclic dodecadepsipeptide valinomycin, cyclo[(-L-Val-D-Hyi-D-Val-L-Lac)3-], transports potassium ions across cellular membrane bilayers selectively. The x-ray crystallographic and nmr spectroscopic data concerning the structures of Na+, K+, and Ba+2 complexes are consistent and provide a rationale for the K+ selectivity of valinomycin. Three significantly different conformations of valinomycin are observed in anhydrous crystals, in hydrated crystals grown from dimethylsulfoxide, and in crystals grown from dioxane. Each of these conformations suggests a different mechanism of ion capture. One of the observed conformations has an elliptical structure stabilized by four 4<--1 intramolecular hydrogen bonds and two 5<--1 hydrogen bonds. Ion capture could be readily achieved by disruption of the 5<--1 hydrogen bonds to permit coordination to a potassium ion entering the cavity. The conformation found in crystals obtained from dimethyl sulfoxide is an open flower shape having three petals and three 4<--1 hydrogen bonds. Complexation could proceed by a closing up of the three petals of the flower around the desolvating ion. In the third form, water molecules reside in the central cavity of a bracelet structure having six 4<--1 hydrogen bonds. Two of these bracelets stack over one another with their valine-rich faces surrounding a dioxane molecule. The stacked molecules form a channel approximately 20 A in length, suggesting that under certain circumstances valinomycin might function as a channel. A series of analogues of valinomycin differing in ring composition

  17. Control of the conformations of ion Coulomb crystals in a Penning trap

    SciTech Connect

    Thompson, R. C.; Mavadia, S.; Goodwin, J. F.; Stutter, G.; Bharadia, S.; Crick, D. R.; Segal, D. M.

    2015-06-29

    Ion Coulomb crystals containing small numbers of ions have been created and manipulated in a wide range of configurations in a Penning trap, from a linear string, through various three-dimensional conformations, to a planar crystal. We show that the dynamics of the system simplifies enormously in a frame which rotates at half the cyclotron frequency and we discuss the effect of the radial cooling laser beam in this frame. Simulations show that the crystal conformations can be reproduced by finding the minimum energy configuration in a frame whose radial potential is modified by the rotation of the ion crystal. The rotation frequency of the crystal deduced from the simulations is consistent with the known laser parameters. We also show that even though the number of ions in our system is small (typically less than 20), the system still behaves like a plasma and its static properties can be calculated using the standard model for a single-component plasma in a trap.

  18. Phase and Radial Motion in Ion Linear Accelerators

    2007-03-29

    Parmila is an ion-linac particle-dynamics code. The name comes from the phrase, "Phase and Radial Motion in Ion Linear Accelerators." The code generates DTL, CCDTL, and CCL accelerating cells and, using a "drift-kick" method, transforms the beam, represented by a collection of particles, through the linac. The code includes a 2-D and 3-D space-charge calculations. Parmila uses data generated by the Poisson Superfish postprocessor SEC. This version of Parmila was written by Harunori Takeda andmore » was supported through Feb. 2006 by James H. Billen. Setup installs executable programs Parmila.EXE, Lingraf.EXE, and ReadPMI.EXE in the LANL directory. The directory LANL\\Examples\\Parmila contains several subdirectories with sample files for Parmila.« less

  19. LINEAR ELECTROSTATIC INSTABILITY OF THE ELECTRON BEAM ION SOURCE

    SciTech Connect

    Litwin, C.; Vella, M.C.; Sessler, A.

    1981-12-01

    Linear plasma fluid theory is used to study the stability of a cold electron beam in Brillouin equilibrium which passes through a stationary cold ion background, with particular interest in stability for parameters relevant to EBIS devices. Dispersion is studied both analytically and numerically. For {ell}=0, the usual infinite medium two stream instability condition is shown to correspond to a requirement that beam perveance exceed a minimum value, P>33 {micro}pervs; hence, this mode is stable for EBIS (P {approx} l{micro}perv). The Brillouin equilibrium rotation is shown to cause an electron-ion rotating stream instability, which is convectively unstable. The {ell}=1 mode is also found to be unstable. Higher modes numbers, {ell}>1, are unstable, but have reduced growth. Instability is only weakly affected by finite beam radius and boundary conditions.

  20. Crystal growth and vibrational spectroscopic studies of the semiorganic non-linear optical crystal--bisthiourea magnesium sulphate.

    PubMed

    Krishnakumar, V; Ramachandraraja, C; Sundararajan, R S

    2007-09-01

    The semiorganic non-linear optical crystal bisthiourea magnesium sulphate (BTMS) was grown by slow evaporation technique using water as solvent. Vibrational spectra were recorded to determine the symmetries of molecular vibrations. The observed Raman and infrared bands were also assigned and discussed. The optical transmission spectral study was carried out to test the transmitting ability of the crystal in the visible range. The second harmonic generation test of BTMS revealed the non-linear nature of the crystal. The TGA/DTA curve was also recorded for the experimental crystal. PMID:17185029

  1. Visibility of Young's Interference Fringes: Scattered Light from Small Ion Crystals.

    PubMed

    Wolf, Sebastian; Wechs, Julian; von Zanthier, Joachim; Schmidt-Kaler, Ferdinand

    2016-05-01

    We observe interference in the light scattered from trapped ^{40}Ca^{+} ion crystals. By varying the intensity of the excitation laser, we study the influence of elastic and inelastic scattering on the visibility of the fringe pattern and discriminate its effect from that of the ion temperature and wave-packet localization. In this way we determine the complex degree of coherence and the mutual coherence of light fields produced by individual atoms. We obtain interference fringes from crystals consisting of two, three, and four ions in a harmonic trap. Control of the trapping potential allows for the adjustment of the interatomic distances and thus the formation of linear arrays of atoms serving as a regular grating of microscopic scatterers.

  2. Locations of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystals grown in bromide and chloride solutions. Five possible anion-binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four further sites were found which corresponded to the four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion-binding sites in lysozyme remain unchanged even when different anions and different crystal forms of lysozyme are employed.

  3. Heavy ion mutagenesis: linear energy transfer effects and genetic linkage

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.; Gauny, S.; Criddle, K.; Vannais, D.; Ueno, A.; Kraemer, S.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We have characterized a series of 69 independent mutants at the endogenous hprt locus of human TK6 lymphoblasts and over 200 independent S1-deficient mutants of the human x hamster hybrid cell line AL arising spontaneously or following low-fluence exposures to densely ionizing Fe ions (600 MeV/amu, linear energy transfer = 190 keV/microns). We find that large deletions are common. The entire hprt gene (> 44 kb) was missing in 19/39 Fe-induced mutants, while only 2/30 spontaneous mutants lost the entire hprt coding sequence. When the gene of interest (S1 locus = M1C1 gene) is located on a nonessential human chromosome 11, multilocus deletions of several million base pairs are observed frequently. The S1 mutation frequency is more than 50-fold greater than the frequency of hprt mutants in the same cells. Taken together, these results suggest that low-fluence exposures to Fe ions are often cytotoxic due to their ability to create multilocus deletions that may often include the loss of essential genes. In addition, the tumorigenic potential of these HZE heavy ions may be due to the high potential for loss of tumor suppressor genes. The relative insensitivity of the hprt locus to mutation is likely due to tight linkage to a gene that is required for viability.

  4. Absorption mode Fourier transform electrostatic linear ion trap mass spectrometry.

    PubMed

    Hilger, Ryan T; Wyss, Phillip J; Santini, Robert E; McLuckey, Scott A

    2013-09-01

    In Fourier transform mass spectrometry, it is well-known that plotting the spectrum in absorption mode rather than magnitude mode has several advantages. However, magnitude spectra remain commonplace due to difficulties associated with determining the phase of each frequency at the onset of data acquisition, which is required for generating absorption spectra. The phasing problem for electrostatic traps is much simpler than for Fourier transform ion cyclotron resonance (FTICR) instruments, which greatly simplifies the generation of absorption spectra. Here, we present a simple method for generating absorption spectra from a Fourier transform electrostatic linear ion trap mass spectrometer. The method involves time shifting the data prior to Fourier transformation in order to synchronize the onset of data acquisition with the moment of ion acceleration into the electrostatic trap. Under these conditions, the initial phase of each frequency at the onset of data acquisition is zero. We demonstrate that absorption mode provides a 1.7-fold increase in resolution (full width at half maximum, fwhm) as well as reduced peak tailing. We also discuss methodology that may be applied to unsynchronized data in order to determine the time shift required to generate an absorption spectrum.

  5. Linear Ion Trap for the Mars Organic Molecule Analyzer

    NASA Astrophysics Data System (ADS)

    Brinckerhoff, William; Arevalo, Ricardo; Danell, Ryan; van Amerom, Friso; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Mahaffy, Paul; Goesmann, Fred; Steininger, Harald

    2014-05-01

    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. MOMA includes a linear, or 2D, ion trap mass spectrometer (ITMS) that is designed to analyze molecular composition of (i) gas evolved from pyrolyzed powder samples and separated on a gas chromatograph and (ii) ions directly desorbed from solid samples at Mars ambient pressure using a pulsed laser and a fast-valve capillary ion inlet system. This "dual source" approach gives MOMA unprecedented breadth of detection over a wide range of molecular weights and volatilities. Analysis of nonvolatile, higher-molecular weight organics such as carboxylic acids and peptides even in the presence of significant perchlorate concentrations is enabled by the extremely short (~1 ns) pulses of the desorption laser. Use of the ion trap's tandem mass spectrometry mode permits selective focus on key species for isolation and controlled fragmentation, providing structural analysis capabilities. The flight-like engineering test unit (ETU) of the ITMS, now under construction, will be used to verify breadboard performance with high fidelity, while simultaneously supporting the development of analytical scripts and spectral libraries using synthetic and natural Mars analog samples guided by current results from MSL. ETU campaign data will strongly advise the specifics of the calibration applied to the MOMA flight model as well as the science operational procedures during the mission.

  6. Quantum simulation of the cooperative Jahn-Teller transition in 1D ion crystals.

    PubMed

    Porras, Diego; Ivanov, Peter A; Schmidt-Kaler, Ferdinand

    2012-06-01

    The Jahn-Teller effect explains distortions and nondegenerate energy levels in molecular and solid-state physics via a coupling of effective spins to collective bosons. Here we propose and theoretically analyze the quantum simulation of a many-body Jahn-Teller model with linear ion crystals subjected to magnetic field gradients. We show that the system undergoes a quantum magnetic structural phase transition which leads to a reordering of particle positions and the formation of a spin-phonon quasicondensate in mesoscopic ion chains. PMID:23003971

  7. Crystal structure and magnetic properties of a linear tetranuclear Co(II) cluster.

    PubMed

    Wang, Yingying; Wen, Meixia; Gao, Zhongjun; Sheng, Ning

    2016-09-01

    Polynuclear complexes are an important class of inorganic functional materials and are of interest particularly for their applications in molecular magnets. Multidentate chelating ligands play an important role in the design and syntheses of polynuclear metal clusters. A novel linear tetranuclear Co(II) cluster, namely bis{μ3-(E)-2-[(2-oxidobenzylidene)amino]phenolato}bis{μ2-(E)-2-[(2-oxidobenzylidene)amino]phenolato}bis(1,10-phenanthroline)tetracobalt(II), [Co4(C14H11NO2)4(C12H8N2)2], was prepared under solvothermal conditions through a mixed-ligand synthetic strategy. The structure was determined by X-ray single-crystal diffraction and bulk purity was confirmed by powder X-ray diffraction. The complex molecule has a centrosymmetric tetranuclear chain-like structure and the four Co(II) ions are located in two different coordination environments. The Co(II) ions at the ends of the chain are in a slightly distorted octahedral geometry, while the two inner Co(II) ions are in five-coordinate distorted trigonal bipyramidal environments. A magnetic study reveals ferromagnetic Co(II)...Co(II) exchange interactions for the complex. PMID:27585934

  8. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    SciTech Connect

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  9. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Martinavičius, A.; Abrasonis, G.; Möller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm-2), ion energy (0.5-1.2 keV), and temperature (370-430 °C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  10. OPCPA modeling using YCOB as the non-linear crystal

    NASA Astrophysics Data System (ADS)

    Pires, Hugo; Cardoso, Luis; Wemans, João; João, Celso; Figueira, Gonçalo

    2010-04-01

    In this work, we evaluate numerically the performance of the nonlinear crystal yttrium calcium oxyborate (YCOB) as the gain medium in a noncollinear, angularly dispersed beam OPCPA configuration, and compare it to other well-studied crystals. In particular, we study its use in the context of an ultrahigh peak and average power amplifier setup. Possible bandwidths are assessed.

  11. Temperature and heating rate of ion crystals in Penning traps

    SciTech Connect

    Jensen, Marie J.; Hasegawa, Taro; Bollinger, John J.

    2004-09-01

    We have determined the temperature and heating rate of laser-cooled ions in a Penning trap using Doppler laser spectroscopy. Between 10{sup 4} and 10{sup 6} {sup 9}Be{sup +} ions are trapped in a Penning trap and Doppler laser cooled to temperatures of a few millikelvin, where they form ion crystals. This system is an example of a strongly coupled one-component plasma. The ion temperature was measured as a function of time after turning off the laser-cooling. In the solid phase, we measured a heating rate of {approx}65 mK/s. Information about possible heating mechanisms was obtained directly from temperature measurements, and also from measurements of the rate of radial expansion of the ion plasma. We determined that the observed heating is due to collisions with the {approx}4x10{sup -9} Pa residual gas of our vacuum system.

  12. Structural phase transitions and topological defects in ion Coulomb crystals

    SciTech Connect

    Partner, Heather L.; Nigmatullin, Ramil; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Plenio, Martin B.; Retzker, Alex; Zurek, Wojciech Hubert; del Campo, Adolfo; Mehlstaubler, Tanja E.

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  13. Highly Non-Linear Optical (NLO) organic crystals

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    This research project involves the synthesis and characterization of organic materials having powerful nonlinear optical (NLO) properties and the growth of highly ordered crystals and monomolecular films of these materials. Research in four areas is discussed: theoretical design of new materials, characterization of NLO materials, synthesis of new materials and development of coupling procedures for forming layered films, and improvement of the techniques for vapor phase and solution phase growth of high quality organic crystals. Knowledge gained from these experiments will form the basis for experiments in the growth of these crystals.

  14. Linear and nonlinear coupled drift and ion acoustic waves in collisional pair ion-electron magnetoplasma

    SciTech Connect

    Mushtaq, A.; Saeed, R.; Haque, Q.

    2011-04-15

    Linear and nonlinear coupled electrostatic drift and ion acoustic waves are studied in inhomogeneous, collisional pair ion-electron plasma. The Korteweg-de Vries-Burgers (KdVB) equation for a medium where both dispersion and dissipation are present is derived. An attempt is made to obtain exact solution of KdVB equation by using modified tanh-coth method for arbitrary velocity of nonlinear drift wave. Another exact solution for KdVB is obtained, which gives a structure of shock wave. Korteweg-de Vries (KdV) and Burgers equations are derived in limiting cases with solitary and monotonic shock solutions, respectively. Effects of species density, magnetic field, obliqueness, and the acoustic to drift velocity ratio on the solitary and shock solutions are investigated. The results discussed are useful in understanding of low frequency electrostatic waves at laboratory pair ion plasmas.

  15. Theory of ion-chirality relation in ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Lahiri, T.; Pal Majumder, T.

    2012-04-01

    The presence of impurity ions in ferroelectric liquid crystals (FLC) could produce a significant impact on the chirality of the medium with a possible modification in the polarization profile of the system. We theoretically observed these possibilities by considering an in-plane and bulk free energy density for the sample. Based on a suitable chirality transfer formalism, we explained the role of impurity ions in altering the chiral nature of a FLC medium. A continuous transition from modulated phases to uniform phases is also predicted within the framework of this theory. Then, we investigated the possible modification in the polarization profile driven by ionic impurities.

  16. An ion trap built with photonic crystal fibre technology

    SciTech Connect

    Lindenfelser, F. Keitch, B.; Kienzler, D.; Home, J. P.; Bykov, D.; Uebel, P.; Russell, P. St. J.

    2015-03-15

    We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787 ± 24 quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 μm and 10 μm.

  17. A hand-portable digital linear ion trap mass spectrometer.

    PubMed

    Xue, Bing; Sun, Lulu; Huang, Zhengxu; Gao, Wei; Fan, Rongrong; Cheng, Ping; Ding, Li; Ma, Li; Zhou, Zhen

    2016-10-01

    A hand-portable digital linear ion trap mass spectrometer (DLIT-MS) has been developed for VOC analysis. It has a weight of 18 kg with dimensions of 49 cm × 39 cm × 16 cm, and consumes an average power of ca. 60 W. As a result of the introduction of a digital waveform, the DLIT-MS can be driven at a lower voltage (±100 V) to cover a mass range of 30-300 Th with a unit resolution. Compact electronics has been designed to control the DLIT-MS and record mass spectra. The mass drift was reduced after the improvement in electronics to stabilize the digital waveform voltage during the mass scan. Tandem mass spectrometry (MS) has been achieved by using digital asymmetric waveform isolation (DAWI), forward and reverse scan, and collision induced dissociation (CID). The isolation and CID efficiency for methyl salicylate were 83.9% and 81.3%, respectively. A novel buffer gas inlet system was designed to enhance the sensitivity and allow easy and safe use of the instrument. Limits of detection below 1 ppbv were obtained for several mixed gaseous samples. PMID:27396834

  18. A hand-portable digital linear ion trap mass spectrometer.

    PubMed

    Xue, Bing; Sun, Lulu; Huang, Zhengxu; Gao, Wei; Fan, Rongrong; Cheng, Ping; Ding, Li; Ma, Li; Zhou, Zhen

    2016-10-01

    A hand-portable digital linear ion trap mass spectrometer (DLIT-MS) has been developed for VOC analysis. It has a weight of 18 kg with dimensions of 49 cm × 39 cm × 16 cm, and consumes an average power of ca. 60 W. As a result of the introduction of a digital waveform, the DLIT-MS can be driven at a lower voltage (±100 V) to cover a mass range of 30-300 Th with a unit resolution. Compact electronics has been designed to control the DLIT-MS and record mass spectra. The mass drift was reduced after the improvement in electronics to stabilize the digital waveform voltage during the mass scan. Tandem mass spectrometry (MS) has been achieved by using digital asymmetric waveform isolation (DAWI), forward and reverse scan, and collision induced dissociation (CID). The isolation and CID efficiency for methyl salicylate were 83.9% and 81.3%, respectively. A novel buffer gas inlet system was designed to enhance the sensitivity and allow easy and safe use of the instrument. Limits of detection below 1 ppbv were obtained for several mixed gaseous samples.

  19. Linear electronic field time-of-flight ion mass spectrometers

    DOEpatents

    Funsten, Herbert O.

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  20. Ion Bernstein instability in the magnetosphere: linear dispersion theory

    SciTech Connect

    Gary, S Peter; Liu, Kaijun; Winske, Dan

    2010-12-10

    Nonthermal ion velocity distributions may drive kinetic instabilities which lead to enhanced field fluctuations near {omega}{sub r} {approx} {Omega}{sub p} in the magnetosphere. These fluctuations resonate with, and thus scatter, both ions and electrons. Ions are thermalized. Fast electrons undergo both pitch-angle scattering and acceleration.

  1. Ion exchange in KTiOPO4 crystals irradiated by copper and hydrogen ions.

    PubMed

    Zhang, Ruifeng; Lu, Fei; Lian, Jie; Liu, Hanping; Liu, Xiangzhi; Lu, Qingming; Ma, Hongji

    2008-05-12

    Cs(+)-K+ ion exchanges were produced on KTiOPO4 crystals which is prior irradiated by Cu+ can H+ ions. The energy and dose of implanted Cu+ ions are 1.5 MeV and 0.5 x 10(14) ions/cm2, and that of H+ are 300 keV and 1 x 10(16) ions/cm2, respectively. The temperature of ions exchange is 430 degrees C, and the time range from 15 minutes to 30 minutes. The prism coupling method is used to measure the dark mode spectra of the samples. Compared with results of ion exchange on the sample without irradiations, both the number of guided mode and its corresponding effective refractive index are decreased. The experimental results indicate that the ion exchange rate closely related with the lattice damage and the damage layers formed in the depth of maximum nuclear energy deposition act as a barrier to block the ions diffuse into the sample and the concentration of defects can modify the speed of ion exchange..

  2. Ion implantation for manufacturing bent and periodically bent crystals

    SciTech Connect

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo Mazzolari, Andrea; Paternò, Gianfranco; Lanzoni, Luca

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams.

  3. Adsorption of ions onto nanosolids dispersed in liquid crystals: Towards understanding the ion trapping effect in nanocolloids

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yuriy

    2016-05-01

    The ion capturing effect in liquid crystal nanocolloids was quantified by means of the ion trapping coefficient. The dependence of the ion trapping coefficient on the concentration of nano-dopants and their ionic purity was calculated for a variety of nanosolids dispersed in liquid crystals: carbon nanotubes, graphene nano-flakes, diamond nanoparticles, anatase nanoparticles, and ferroelectric nanoparticles. The proposed method perfectly fits existing experimental data and can be useful in the design of highly efficient ion capturing nanomaterials.

  4. Induced Li-site vacancies and non-linear optical behavior of doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Xue, D.; Betzler, K.; Hesse, H.

    2001-04-01

    Second-order non-linear optical (NLO) properties of doped lithium niobate (LN) crystals (abbreviated as M:LN, where M=Mg 2+,Zn 2+, and In 3+, respectively) have been quantitatively studied from the chemical bond viewpoint. Our results show that the second-order NLO response of doped LN crystals decreases remarkably with increasing dopant concentration in the crystal. The approximately linear composition-property correlation in these doped LN crystals is quantitatively expressed in the current work. A comparison of the different influences of Mg, Zn and In dopants, respectively, shows that these dopants affect the NLO properties of LN crystals mainly via the number of Li-site vacancies induced.

  5. The JPL Hg(sup +) Extended Linear Ion Trap Frequency Standard: Status, Stability, and Accuracy Prospects

    NASA Technical Reports Server (NTRS)

    Tjoelker, R. L.; Prestage, J. D.; Maleki, L.

    1996-01-01

    Microwave frequency standards based on room temperature (sup 199)Hg(sup +) ions in a Linear Ion Trap (LITS) presently achieve a Signal to Noise and line Q inferred short frequency stability. Long term stability has been measured for averaging intervals up to 5 months with apparent sensitivity to variations in ion number/temperature limiting the flicker floor.

  6. Production of Ar{sup q+} ions with a tandem linear Paul trap

    SciTech Connect

    Higaki, H. Nagayasu, K.; Iwai, T.; Ito, K.; Okamoto, H.

    2015-06-29

    A tandem linear Paul trap was used to create highly charged Argon ions by electron impact ionizations. By improving the operation scheme, the production of Ar{sup 4+} ions was confirmed. Possible improvements for the future experiments with laser cooled Ca{sup +} ions are suggested.

  7. Adding Mono- and Multivalent Ions to Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Tortora, Luana; Park, Heung-Shik; Antion, Kelly; Woolwerton, Chris; Finotello, Daniele; Lavrentovich, Oleg

    2006-03-01

    Lyotropic Chromonic Liquid Crystals (LCLCs) are a distinct class of liquid crystals formed in aqueous solutions by molecules with rigid polyaromatic cores and ionic groups at the periphery [1-4]. The phase diagrams of these materials should depend on entropic factors (as in the Onsager model) and electrostatic interactions. Using optical polarizing microscopy, we studied the effects of mono- and multivalent ions on the phase diagrams of Blue 27 [3] and Sunset Yellow [2]. The monovalent ions change the temperatures of phase transitions, as described in [4], while the effect of multivalent ions is more dramatic and, in addition to the changed temperatures of phase transitions by tens of degrees, it often involves condensation of LCLC aggregates into domains with birefringence much higher than that in a normal nematic phase. Work supported by OBR B-7844. [1]J. Lydon, Current Opin. Colloid & Interface Sci. 3, 458 (1998);8, 480-489 (2004); [2]V. R. Horowitz, L. A. Janowitz, A. L. Modic, P. J. Heiney, and P. J. Collings, 2005, Phys. Rew. E 72, 041710; [3]Yu. A. Nastishin, H. Liu, T. Schneider, T., V. Nazarenko, R. Vasyuta, S. V. Shiyanovskii, and O. D. Lavrentovich, 2005, Phys. Rev. E 72, 041711; [4]A.F. Kostko, B. H. Cipriano, O. A. Pinchuk, L. Ziserman, M. A. Anisimov, D. Danino, and S. R. Raghavan. J. Phys. Chem. B 109, 19126-19133 (2005)

  8. Interstitial silicon ions in rutile Ti O2 crystals

    NASA Astrophysics Data System (ADS)

    Golden, E. M.; Giles, N. C.; Yang, Shan; Halliburton, L. E.

    2015-04-01

    Electron paramagnetic resonance (EPR) is used to identify a new and unique photoactive silicon-related point defect in single crystals of rutile Ti O2 . The importance of this defect lies in its assignment to interstitial silicon ions and the unexpected establishment of silicon impurities as a major hole trap in Ti O2 . Principal g values of this new S =1 /2 center are 1.9159, 1.9377, and 1.9668 with principal axes along the [1 ¯10 ],[001 ] , and [110 ] directions, respectively. Hyperfine structure in the EPR spectrum shows the unpaired spin interacting equally with two Ti nuclei and unequally with two Si nuclei. These silicon ions are present in the Ti O2 crystals as unintentional impurities. Principal values for the larger of the two Si hyperfine interactions are 91.4, 95.4, and 316.4 MHz with principal axes also along the [1 ¯10 ],[001 ] , and [110 ] directions. The model for the defect consists of two adjacent Si ions, one at a tetrahedral interstitial site and the other occupying a Ti site. Together, they form a neutral nonparamagnetic [Siint-S iTi] 0 complex. When a crystal is illuminated below 40 K with 442-nm laser light, holes are trapped by these silicon complexes and form paramagnetic [Siint-S iTi] + defects, while electrons are trapped at oxygen vacancies. Thermal anneal results show that the [Siint-S iTi] + EPR signal disappears in two steps, coinciding with the release of electrons from neutral oxygen vacancies and singly ionized oxygen vacancies. These released electrons recombine with the holes trapped at the silicon complexes.

  9. Crystal structure of a heterotetrameric NMDA receptor ion channel.

    PubMed

    Karakas, Erkan; Furukawa, Hiro

    2014-05-30

    N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.

  10. A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed*

    PubMed Central

    Olsen, Jesper V.; Schwartz, Jae C.; Griep-Raming, Jens; Nielsen, Michael L.; Damoc, Eugen; Denisov, Eduard; Lange, Oliver; Remes, Philip; Taylor, Dennis; Splendore, Maurizio; Wouters, Eloy R.; Senko, Michael; Makarov, Alexander; Mann, Matthias; Horning, Stevan

    2009-01-01

    Since its introduction a few years ago, the linear ion trap Orbitrap (LTQ Orbitrap) instrument has become a powerful tool in proteomics research. For high resolution mass spectrometry measurements ions are accumulated in the linear ion trap and passed on to the Orbitrap analyzer. Simultaneously with acquisition of this signal, the major peaks are isolated in turn, fragmented and recorded at high sensitivity in the linear ion trap, combining the strengths of both mass analyzer technologies. Here we describe a next generation LTQ Orbitrap system termed Velos, with significantly increased sensitivity and scan speed. This is achieved by a vacuum interface using a stacked ring radio frequency ion guide with 10-fold higher transfer efficiency in MS/MS mode and 3–5-fold in full scan spectra, by a dual pressure ion trap configuration, and by reduction of overhead times between scans. The first ion trap efficiently captures and fragments ions at relatively high pressure whereas the second ion trap realizes extremely fast scan speeds at reduced pressure. Ion injection times for MS/MS are predicted from full scans instead of performing automatic gain control scans. Together these improvements routinely enable acquisition of up to ten fragmentation spectra per second. Furthermore, an improved higher-energy collisional dissociation cell with increased ion extraction capabilities was implemented. Higher-collision energy dissociation with high mass accuracy Orbitrap readout is as sensitive as ion trap MS/MS scans in the previous generation of the instrument. PMID:19828875

  11. A Initio Studies of Polarisabilities of Ions in Crystals.

    NASA Astrophysics Data System (ADS)

    Tole, Philip

    Available from UMI in association with The British Library. This thesis is concerned with the ab initio calculation of polarisabilities of ions in crystals. For a binary salt the Clausius-Mossotti equation relates the refractive index to the in-crystal polarisability of the ion-pair. However, there is no experimental means of separating the sum into anion and cation components. Theoretical models which use isolated ion polarisabilities to do this are physically unrealistic and have met with little success. A much better model has been developed using ab initio all-electron CHF calculations. The in-crystal environment is represented by a 'molecular' cluster embedded in a point-charge lattice. The physical features important to the success of the model are the nearest-neighbour overlap compression and the isotropic part of the electrostatic potential arising from the point -charge lattice. Calculations on simple first row alkali halides show the cation to be independent of these forces whereas the anion becomes, smaller, more bound and less polarisable in the crystal. When corrections for correlation are added the agreement with Clausius-Mossotti polarisabilities is at the 5% level or better. This implies a reduction in polarisability by factors of up to 2 with respect to the free ion. The polarisabilities for the anions in LiF, NaF, KF, LiCl, NaCl, KCl, LiBr, NaBr, KBr, CaF _2, BeO, MgO, CaO, Li_2O, Na_2O, K_2O, BeS, CaS, Li_2S, Na_2 S and K_2S were calculated. Anion polarisability is found to vary with lattice parameter but hardly at all with coordination number. Calculations on Be_2C show that in-crystal compression is sufficient to stabilise even C^{4 -}, which has a polarisability of over 20 au. Anions at the surface of LiF and MgO were also modelled. Because anisotropic overlap and electrostatic factors tend to cancel, the ion in 5-, 4- and 3-coordinate surface sites has a polarisability only a few per cent greater than in the bulk solid. Implications for

  12. Note: A pulsed laser ion source for linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-01

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  13. Note: A pulsed laser ion source for linear induction accelerators

    SciTech Connect

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  14. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    NASA Astrophysics Data System (ADS)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E.; Sorokin, M.; Facsko, S.; Trautmann, C.

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV 129Xe(33-40)+ and with various swift heavy ions (SHI) of 30 MeV I9+ and 374 MeV-2.2 GeV 197Au25+. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  15. An electrodynamic ion funnel interface for greater sensitivity and higher throughput with linear ion trap mass spectrometers

    SciTech Connect

    Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-09-01

    An electrospray ionization interface incorporating an electrodynamic ion funnel has been designed and implemented in conjunction with a linear ion trap mass spectrometer (Thermo Electron, LTQ). We found ion transmission to be greatly improved by replacing the standard capillary-skimmer interface with the capillary-ion funnel interface. An infusion study using a serial dilution of a reserpine solution showed that ion injection times to fill the ion trap were reduced by ~90% which resulted in an ~10-fold increase in reported peak intensities. In liquid chromatography (LC)-MS and LC tandem MS (MS/MS) experiments performed using a proteomic sample from the bacterium, Shewanella oneidensis, the ion funnel interface provided an ~7-fold reduction in ion injection (accumulation) times. In a series of LC-MS/MS experiments we found that more dilute S. oneidensis samples provided more peptide and protein identifications when the ion funnel interface was used in place of the standard interface. This improvement was most pronounced at lower sample concentrations, where extended ion accumulation times are required, resulting in an ~2-fold increase in the number of protein identifications. Implementation of the ion funnel interface with a LTQ Fourier transform (FT) MS requiring much greater ion populations resulted in spectrum acquisition times reduced by ~25 to 50%.

  16. Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions

    SciTech Connect

    Qiu, Xiayang; Janson, Cheryl A.

    2010-11-16

    A topic of current interest is engineering surface mutations in order to improve the success rate of protein crystallization. This report explores the possibility of using metal-ion-mediated crystal-packing interactions to facilitate rational design. Escherichia coli apo acyl carrier protein was chosen as a test case because of its high content of negatively charged carboxylates suitable for metal binding with moderate affinity. The protein was successfully crystallized in the presence of zinc ions. The crystal structure was determined to 1.1 {angstrom} resolution with MAD phasing using anomalous signals from the co-crystallized Zn{sup 2+} ions. The case study suggested an integrated strategy for crystallization and structure solution of proteins via engineering surface Asp and Glu mutants, crystallizing them in the presence of metal ions such as Zn{sup 2+} and solving the structures using anomalous signals.

  17. Effects of a sheared ion velocity on the linear stability of ITG modes

    NASA Astrophysics Data System (ADS)

    Lontano, M.; Varischetti, M. C.; Lazzaro, E.

    2006-11-01

    The linear dispersion of the ion temperature gradient (ITG) modes, in the presence of a non uniform background ion velocity U∥ = U∥(x) ez, in the direction of the sheared equilibrium magnetic field B0 = B0(x) ez, has been studied in the frame of the two-fluid guiding center approximation, in slab geometry. Generally speaking, the presence of an ion flow destabilizes the oscillations. The role of the excited K-H instability is discussed.

  18. Deceleration, precooling, and multi-pass stopping of highly charged ions in Be{sup +} Coulomb crystals

    SciTech Connect

    Schmöger, L. Schwarz, M.; Versolato, O. O.; Baumann, T. M.; Piest, B.; Pfeifer, T.; Crespo López-Urrutia, J. R.; Ullrich, J.; Schmidt, P. O.

    2015-10-15

    Preparing highly charged ions (HCIs) in a cold and strongly localized state is of particular interest for frequency metrology and tests of possible spatial and temporal variations of the fine structure constant. Our versatile preparation technique is based on the generic modular combination of a pulsed ion source with a cryogenic linear Paul trap. Both instruments are connected by a compact beamline with deceleration and precooling properties. We present its design and commissioning experiments regarding these two functionalities. A pulsed buncher tube allows for the deceleration and longitudinal phase-space compression of the ion pulses. External injection of slow HCIs, specifically Ar{sup 13+}, into the linear Paul trap and their subsequent retrapping in the absence of sympathetic cooling is demonstrated. The latter proved to be a necessary prerequisite for the multi-pass stopping of HCIs in continuously laser-cooled Be{sup +} Coulomb crystals.

  19. Growth and birefringence studies of semi organic non-linear optical LHB single crystal

    NASA Astrophysics Data System (ADS)

    Jayaramakrishnan, V.; Prasanyaa, T.; Haris, M.; Bhoopathi, G.

    2015-02-01

    In the last few decades nonlinear optical materials are getting attention in the field of optical data storage, telecommunication, second harmonic generation (SHG) and optical signal processing, etc. In the present work we are reporting the single crystal growth of L-Histidine with hydro-bromic acid. The L-Histidine bromide (LHB) single crystals have been harvested from the solution in a span of 34 days by adopting slow cooling solution growth technique. The grown crystals have been subjected to powder X-ray diffraction studies to identify the cell parameters and structure. The crystalline perfection has been defined by rocking curve (HRXRD) analysis. Optical transmission spectra reveal the optical properties of the grown crystals. The Modified channel spectrum (MCS) method has been adopted for the study of spectral dependence of linear birefringence over the wavelength range 480-620 nm. The second harmonic generation efficiency was tested by using Kurtz and Perry method, keeping KDP as reference.

  20. Spectral, linear and nonlinear optical, electrical, mechanical behaviour of sodium succinate crystal

    NASA Astrophysics Data System (ADS)

    Venkatesan, G.; Pari, S.; Kathiravan, V.

    2016-09-01

    This article reports on the preparation and characterization of sodium succinate grown by the slow solvent evaporation method. The grown crystal was subjected to single crystal x-ray diffraction technique to determine the lattice parameters. Fourier transform infrared spectrum was recorded to identify the presence of functional groups. Linear optical studies were determined in the percentage of transmittance and other optical parameters like optical band gap, reflectance and refractive index. The nonlinear refractive index, absorption and optical limiting was measured through the z-scan technique using Nd:YAG laser. Fluorescence study was measured. The impedance spectrum used to determine the dc conductivity at first time. Dielectric constant, dielectric loss and ac conductivity of the crystal were measured. The mechanical properties were measured in the crystal. The predicted NLO properties, UV–vis absorption and Z-scan studies indicate that is an attractive material for nonlinear optics and photonics optical limiting applications.

  1. Spectral, linear and nonlinear optical, electrical, mechanical behaviour of sodium succinate crystal

    NASA Astrophysics Data System (ADS)

    Venkatesan, G.; Pari, S.; Kathiravan, V.

    2016-09-01

    This article reports on the preparation and characterization of sodium succinate grown by the slow solvent evaporation method. The grown crystal was subjected to single crystal x-ray diffraction technique to determine the lattice parameters. Fourier transform infrared spectrum was recorded to identify the presence of functional groups. Linear optical studies were determined in the percentage of transmittance and other optical parameters like optical band gap, reflectance and refractive index. The nonlinear refractive index, absorption and optical limiting was measured through the z-scan technique using Nd:YAG laser. Fluorescence study was measured. The impedance spectrum used to determine the dc conductivity at first time. Dielectric constant, dielectric loss and ac conductivity of the crystal were measured. The mechanical properties were measured in the crystal. The predicted NLO properties, UV-vis absorption and Z-scan studies indicate that is an attractive material for nonlinear optics and photonics optical limiting applications.

  2. Synthesis, crystal growth and studies on non-linear optical property of new chalcones

    NASA Astrophysics Data System (ADS)

    Sarojini, B. K.; Narayana, B.; Ashalatha, B. V.; Indira, J.; Lobo, K. G.

    2006-09-01

    The synthesis, crystal growth and non-linear optical (NLO) property of new chalcone derivatives are reported. 4-Propyloxy and 4-butoxy benzaldehydes were made to under go Claisen-Schmidt condensation with 4-methoxy, 4-nitro and 4-phenoxy acetophenones to form corresponding chalcones. The newly synthesized compounds were characterized by analytical and spectral data. The Second harmonic generation (SHG) efficiency of these compounds was measured by powder technique using Nd:YAG laser. Among tested compounds three chalcones showed NLO property. The chalcone 1-(4-methoxyphenyl)-3-(4-propyloxy phenyl)-2-propen-1-one exhibited SHG conversion efficiency 2.7 times that of urea. The bulk crystal of 1-(4-methoxyphenyl)-3-(4-butoxyphenyl)-2-propen-1-one (crystal size 65×28×15 mm 3) was grown by slow-evaporation technique from acetone. Microhardness of the crystal was tested by Vicker's microhardness method.

  3. Multigenerational Broadband Collision-Induced Dissociation of Precursor Ions in a Linear Quadrupole Ion Trap

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Cooks, R. Graham

    2016-09-01

    A method of fragmenting ions over a wide range of m/z values while balancing energy deposition into the precursor ion and available product ion mass range is demonstrated. In the method, which we refer to as "multigenerational collision-induced dissociation", the radiofrequency (rf) amplitude is first increased to bring the lowest m/z of the precursor ion of interest to just below the boundary of the Mathieu stability diagram (q = 0.908). A supplementary AC signal at a fixed Mathieu q in the range 0.2-0.35 (chosen to balance precursor ion potential well depth with available product ion mass range) is then used for ion excitation as the rf amplitude is scanned downward, thus fragmenting the precursor ion population from high to low m/z. The method is shown to generate high intensities of product ions compared with other broadband CID methods while retaining low mass ions during the fragmentation step, resulting in extensive fragment ion coverage for various components of complex mixtures. Because ions are fragmented from high to low m/z, space charge effects are minimized and multiple discrete generations of product ions are produced, thereby giving rise to "multigenerational" product ion mass spectra.

  4. Linear electrostatic waves in a three-component electron-positron-ion plasma

    SciTech Connect

    Mugemana, A. Moolla, S.; Lazarus, I. J.

    2014-12-15

    Analytical linear electrostatic waves in a magnetized three-component electron-positron-ion plasma are studied in the low-frequency limit. By using the continuity and momentum equations with Poisson's equation, the dispersion relation for the electron-positron-ion plasma consisting of cool ions, and hot Boltzmann electrons and positrons is derived. In the linear regime, the propagation of two possible modes and their evolution are studied. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. The present investigation contributes to nonlinear propagation of electrostatic waves in space and the laboratory.

  5. An electrodynamic ion funnel interface for greater sensitivity and higher throughput with linear ion trap mass spectrometers

    NASA Astrophysics Data System (ADS)

    Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-09-01

    An electrospray ionization interface incorporating an electrodynamic ion funnel has been designed and implemented on a linear ion trap mass spectrometer (Thermo Electron, LTQ). We found ion transmission to be greatly improved by replacing the standard capillary-skimmer interface with the capillary-ion funnel interface. An infusion study using a serial dilution of a reserpine solution showed that ion injection (accumulation) times to fill the ion trap at a given automatic gain control (AGC) target value were reduced by ~90% which resulted in an ~10-fold increase in peak intensities. In liquid chromatography tandem MS (LC-MS/MS) experiments performed using a global protein digest sample from the bacterium, Shewanella oneidensis, more peptides and proteins were identified when the ion funnel interface was used in place of the standard interface. This improvement was most pronounced at lower sample concentrations, where extended ion accumulation times are required, resulting in an ~2-fold increase in the number of protein identifications. Implementation of the ion funnel interface on a LTQ Fourier transform (FT) mass spectrometer showed a ~25-50% reduction in spectrum acquisition time. The duty cycle improvement in this case was due to the ion accumulation event contributing a larger portion to the total spectrum acquisition time.

  6. Linear electronics for Si-detectors and its energy calibration for use in heavy ion experiments

    NASA Astrophysics Data System (ADS)

    Taccetti, N.; Poggi, G.; Carraresi, L.; Bini, M.; Casini, G.; Ciaranfi, R.; Giuntini, L.; Maurenzig, P. R.; Montecchi, M.; Olmi, A.; Pasquali, G.; Piantelli, S.; Stefanini, A. A.

    2003-01-01

    The design and implementation of linear electronics based on small-size, low-power charge preamplifiers and shaping amplifiers, used in connection with Si-detector telescopes employed in heavy ion experiments, are presented. Bench tests and "under beam" performances are discussed. In particular, the energy calibration and the linearity test of the overall system (Si-detector and linear and digital conversion electronics) has been performed with a procedure which avoids the pulse height defect problems connected with the detection of heavy ions. The procedure, basically, consists of using bursts of MeV protons, releasing up to GeV energies inside the detector, with low ionization density.

  7. Crystallization and morphologies of linear low density polyethylene and its blends with high density polyethylene

    NASA Astrophysics Data System (ADS)

    Bischel, Marsha Stalker

    Knowledge of the kinetics of polymer crystallization is important in controlling polymer forming processes, while knowledge of the resulting microstructure is important in predicting the ultimate mechanical properties of the material. It is also known that processing parameters will affect the ultimate morphology and properties of the sample. The crystallization, morphology and mechanical properties of a specific linear low density polyethylene copolymer and its blends with two high density polyethylene homopolymers of differing molecular weight are investigated. Several new techniques are employed in an effort to examine the effect of crystallization kinetics on the development of morphology. These include the simultaneous processing of thin film and bulk samples, and the use of atomic force microscopy to generate images of the microstructure. Thermal properties, and melting and crystallization behaviors are examined with differential scanning calorimetry. The mechanical properties of the blends, as a function of crystallization temperature and blend content, are examined through the use of microhardness testing, and nanoindentation testing via the atomic force microscope. The former provides hardness values, which are related to both the elastic moduli and yield strengths of the samples; the latter technique provides a new method for deriving the relative elastic moduli of the component polymers, as well as for specific structures within the morphology. This provides a novel means of determining the distribution of the component polymers within the blend. The rates of crystallization for the blends and the component polymers are analyzed with respect to the Hoffman Kinetic Theory for the crystallization of polymers to determine whether the existing theory is adequate for describing the behaviors of the blends. It has been determined that the blend systems form a co-crystalline microstructure; however, significant amounts of linear low density polyethylene are

  8. Two-dimensional cluster-state preparation with linear ion traps

    SciTech Connect

    Wunderlich, Harald; Wunderlich, Christof; Singer, Kilian; Schmidt-Kaler, Ferdinand

    2009-05-15

    We present schemes to prepare two-dimensional cluster states [H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001)] with atomic ions confined in a microstructured linear ion trap and coupled by an engineered spin-spin interaction. In particular, we show how to prepare a nx2 cluster state by creating a linear cluster state and adding third-neighbor entanglement using selective recoupling techniques. The scheme is based on the capabilities provided by segmented linear Paul traps to confine ions in local potential wells and to separate and transport ions between these wells. Furthermore, we consider creating three- and four-qubit cluster states by engineering the coupling matrix such that through the periodicity of the time evolution unwanted couplings are canceled. All entangling operations are achieved by switching of voltages and currents and do not require interaction with laser light.

  9. Crystal Structure of a Potassium Ion Transporter TrkH

    SciTech Connect

    Y Cao; X Jin; H Huang; M Getahun Derebe; E Levin; V Kabaleeswaran; Y Pan; M Punta; J Love; et al.

    2011-12-31

    The TrkH/TrkG/KtrB proteins mediate K{sup +} uptake in bacteria and probably evolved from simple K{sup +} channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K{sup +} channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K{sup +} and Rb{sup +} over smaller ions such as Na{sup +} or Li{sup +}. Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K{sup +} flux. These results reveal the molecular basis of K{sup +} selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.

  10. Crystal structures of a double-barrelled fluoride ion channel

    PubMed Central

    Stockbridge, Randy B.; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon

    2016-01-01

    To contend with hazards posed by environmental fluoride, microorganisms export this anion through F--specific ion channels of the Fluc family1–4. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including extreme selectivity for F- over Cl- and dual-topology dimeric assembly5–6. To understand the chemical basis for F- permeation and how the antiparallel subunits convene to form a F--selective pore, we solved crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F- present, to a maximum resolution of 2.1 Å. The structures reveal a surprising “double-barrelled” channel architecture in which two F- ion pathways span the membrane and the dual-topology arrangement includes a centrally coordinated cation, most likely Na+. F- selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings. PMID:26344196

  11. The measurement results of carbon ion beam structure extracted by bent crystal from U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Barnov, E. V.; Britvich, G. I.; Chesnokov, Yu A.; Chirkov, P. N.; Durum, A. A.; Kostin, M. Yu; Maisheev, V. A.; Pitalev, V. I.; Reshetnikov, S. F.; Yanovich, A. A.; Nazhmudinov, R. M.; Kubankin, A. S.; Shchagin, A. V.

    2016-07-01

    The carbon ion +6C beam with energy 25 GeV/nucleon was extracted by bent crystal from the U-70 ring. The bent angle of silicon crystal was 85 mrad. About 2×105 particles for 109 circulated ions in the ring were observed in beam line 4a after bent crystal. Geometrical parameters, time structure and ion beam structure were measured. The ability of the bent monocrystal to extract and generate ion beam with necessary parameters for regular usage in physical experiments is shown in the first time.

  12. Development of a linear ion trap/orthogonal-time-of-flight mass spectrometer for time-dependent observation of product ions by ultraviolet photodissociation of peptide ions.

    PubMed

    Kim, Tae-Young; Schwartz, Jae C; Reilly, James P

    2009-11-01

    A hybrid linear ion trap/orthogonal time-of-flight (TOF) mass spectrometer has been developed to observe time-dependent vacuum ultraviolet photodissociation product ions. In this apparatus, a reflectron TOF mass analyzer is orthogonally interfaced to an LTQ using rf-only octopole and dc quadrupole ion guides. Precursor ions are generated by electrospray ionization and isolated in the ion trap. Subsequently they are directed to the TOF source where photodissociation occurs and product ions are extracted for mass analysis. To detect photodissociation product ions having axially divergent trajectories, a large rectangular detector is utilized. With variation of the time between photodissociation and orthogonal extraction in the TOF source, product ions formed over a range of times after photoexcitation can be sampled. Time-dependent observation of product ions following 157 nm photodissociation of a singly charged tryptic peptide ion (NWDAGFGR) showed that prompt photofragment ions (x- and v-type ions) dominate the tandem mass spectrum up to 1 micros after the laser shot, but the intensities of low energy thermal fragment ions (y-type ions) become comparable several microseconds later. Different proton mobilization time scales were observed for arginine- and lysine-terminated tryptic peptides.

  13. Linear and nonlinear dust ion acoustic solitary waves in a quantum dusty electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Emadi, E.; Zahed, H.

    2016-08-01

    The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantum diffraction parameter H can lead to the creation of compressive solitary waves.

  14. Linear and nonlinear dust ion acoustic waves using the two-fluid quantum hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Masood, W.; Mushtaq, A.; Khan, R.

    2007-12-01

    The linear and nonlinear properties of a dust ion acoustic wave (DIAW) propagating in an electron-dust-ion plasma are investigated from both analytical and numerical perspectives by employing the two-fluid quantum hydrodynamic model. Ions and dust are assumed to be mobile while electrons are considered to be inertialess. Furthermore, quantum effects (diffraction as well as statistic) due to ions and electrons are incorporated. It is emphasized that the linear dispersion characteristics of the DIAW depend on the quantum diffraction effects of both ions and electrons as well as on the dust concentration. The one-dimensional Korteweg-deVries equation is derived for the quantum DIAW using the reductive perturbative technique. It is observed that the quantum electron diffraction term shrinks the width while the dust concentration enhances both the amplitude and width of the soliton.

  15. Linear and nonlinear dust ion acoustic waves using the two-fluid quantum hydrodynamic model

    SciTech Connect

    Masood, W.; Mushtaq, A.; Khan, R.

    2007-12-15

    The linear and nonlinear properties of a dust ion acoustic wave (DIAW) propagating in an electron-dust-ion plasma are investigated from both analytical and numerical perspectives by employing the two-fluid quantum hydrodynamic model. Ions and dust are assumed to be mobile while electrons are considered to be inertialess. Furthermore, quantum effects (diffraction as well as statistic) due to ions and electrons are incorporated. It is emphasized that the linear dispersion characteristics of the DIAW depend on the quantum diffraction effects of both ions and electrons as well as on the dust concentration. The one-dimensional Korteweg-deVries equation is derived for the quantum DIAW using the reductive perturbative technique. It is observed that the quantum electron diffraction term shrinks the width while the dust concentration enhances both the amplitude and width of the soliton.

  16. Assembling a ring-shaped crystal in a microfabricated surface ion trap

    DOE PAGES

    Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco; Blain, Matthew; Clark, Craig R.; Clark, Susan; Haltli, Raymond A.; Maunz, Peter; Sterk, Jonathan D.; Tigges, Chris

    2015-09-01

    We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca+ ions with an average separation of 9 μm comprise the ion crystal.

  17. Structural, optical and dielectric studies of novel non-linear Bisglycine Lithium Nitrate piezoelectric single crystal

    NASA Astrophysics Data System (ADS)

    Dalal, Jyoti; Sinha, Nidhi; Kumar, Binay

    2014-11-01

    The novel non-linear semiorganic Bisglycine Lithium Nitrate (BGLiN) single crystals were grown by slow evaporation technique. The structural analysis revealed that it belongs to non-centrosymmetric orthorhombic structure. The presence of various functional groups in the grown crystal was confirmed by FTIR and Raman analysis. Surface morphology of the grown crystal was studied by scanning electron microscopy. The optical studies show that crystal has good transmittance (more than 80%) in the entire visible region and a wide band gap (5.17 eV). The optical constants such as extinction coefficient (K), the reflectance (R) and refractive index (n) as a function of photon energy were calculated from the optical measurements. With the help of these optical constants the electric susceptibility (χc) and both the real (εr) and imaginary (εi) parts of the dielectric constants were also calculated which are required to develop optoelectronic devices. In photoluminescence studies, a broad emission band centered at 404 nm was found in addition to a small band at 352 nm. A broad transition (from 29 to 33 °C) was observed with low dielectric constant value. A high piezoelectric charge coefficient (d33) of 14 pC/N was measured at room temperature which implies its usefulness for various sensor applications. The second harmonic generation efficiency of crystal was found to be 1.5 times to that of KDP. From thermo gravimetric analysis and differential thermal analysis, thermal stability and melting point (246 °C) were investigated. The dielectric behavior, optical characterization, piezoelectric behavior and the non-linear optical properties of the Bisglycine Lithium Nitrate single crystals were reported for the first time which established the usefulness of these crystals for various piezo- and opto-electronics applications.

  18. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer

    PubMed Central

    Gardner, Myles W.; Smith, Suncerae I.; Ledvina, Aaron R.; Madsen, James A.; Coon, Joshua J.; Schwartz, Jae C.; Stafford, George C.; Brodbelt, Jennifer S.

    2009-01-01

    A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells - the first a high pressure cell operated at nominally 5 × 10-3 Torr and the second a low pressure cell operated at nominally 3 × 10-4 Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y1 fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of ~100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra. PMID:19739654

  19. Broad spectrum drug screening using liquid chromatography-hybrid triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Stone, Judy

    2010-01-01

    Centrifuged urine, internal standard (promazine), and ammonium formate buffer are mixed in an autosampler vial to achieve a 10-fold dilution of the specimen. Without additional pretreatment, 10 microL of the sample is injected onto a C18 reverse phase column for gradient analysis with ammonium formate/acetonitrile mobile phases. Drugs in the column eluent become charged in the ion source using positive electrospray atmospheric pressure ionization. Pseudomolecular drug ions are analyzed by a hybrid triple quadrupole linear ion trap mass spectrometer operated with a 264-drug selected ion monitoring (SRM) acquisition method that includes an information-dependant acquisition (IDA) algorithm. PMID:20077072

  20. Enhanced non-linear optical response in hybrid GSPN crystals: Structural, optical and dielectric analysis

    NASA Astrophysics Data System (ADS)

    Khandpekar, M. M.; Dongare, S. S.; Patil, S. B.; Pati, S. P.

    2011-03-01

    Transparent and well defined crystals of GSPN series have been grown with alpha-glycine in simultaneous presence of two nitrates (NaNO 3 and KNO 3). Transparent and well defined crystals (22 mm × 13 mm × 5 mm) have been obtained in 3-4 weeks time by slow cooling. Addition of a strong acid (0.5% HCl) during growth is seen to enhance solubility, SHG efficiency by 2.78 times, Meyer's hardness index by 1.7 times and M.P by 42 °C of that of GSPN crystals. The SHG efficiency of acid added-GSPN has been found to be more than that of KDP crystal. GSPN is found to crystallize in orthorhombic symmetry and the presence of chemical components/groups has been identified by CHNS, EDAX and NMR analysis. Comparative FTIR and Laser Raman analysis shows the presence of active peaks indicating the molecule with a lack of center of symmetry. The UV spectrum shows existence of wide transparency window suitable for optoelectronic applications with band gap energy of about 5.72 eV. The crystals exhibit linear I-V characteristic followed by switching at 41 V/cm. The dielectric loss was seen to decrease exponentially with applied frequency from 100 Hz to 1 MHz.

  1. Numerical computation of the linear stability of the diffusion model for crystal growth simulation

    SciTech Connect

    Yang, C.; Sorensen, D.C.; Meiron, D.I.; Wedeman, B.

    1996-12-31

    We consider a computational scheme for determining the linear stability of a diffusion model arising from the simulation of crystal growth. The process of a needle crystal solidifying into some undercooled liquid can be described by the dual diffusion equations with appropriate initial and boundary conditions. Here U{sub t} and U{sub a} denote the temperature of the liquid and solid respectively, and {alpha} represents the thermal diffusivity. At the solid-liquid interface, the motion of the interface denoted by r and the temperature field are related by the conservation relation where n is the unit outward pointing normal to the interface. A basic stationary solution to this free boundary problem can be obtained by writing the equations of motion in a moving frame and transforming the problem to parabolic coordinates. This is known as the Ivantsov parabola solution. Linear stability theory applied to this stationary solution gives rise to an eigenvalue problem of the form.

  2. Observation of the effective linear polarization induced by the asymmetrical Raman gain of YVO4 crystal

    NASA Astrophysics Data System (ADS)

    Zhuang, Fengjiang; Lin, Zhiyang; Zhu, Siqi

    2016-10-01

    We originally present a linearly polarized Raman radiation emitted from an actively Q-switched Nd:YAG/YVO4 laser. An 1175.25 nm Raman output was achieved using a uniaxial a-cut YVO4 crystal in a Z-shape laser cavity. The stable Raman power of 1.8 W was obtained, corresponding conversion efficiency of 8.8% from 1064 nm to 1175 nm. The Raman radiation with a polarization extinction ratio of 10.4-dB was observed for the first time. Our experimental results demonstrate that the asymmetrical Raman crystal gain can result in a uniform linear polarization and permit emitting orthogonal polarization radiation in a cascaded Raman laser.

  3. Descriptors for ions and ion-pairs for use in linear free energy relationships.

    PubMed

    Abraham, Michael H; Acree, William E

    2016-01-22

    The determination of Abraham descriptors for single ions is reviewed, and equations are given for the partition of single ions from water to a number of solvents. These ions include permanent anions and cations and ionic species such as carboxylic acid anions, phenoxide anions and protonated base cations. Descriptors for a large number of ions and ionic species are listed, and equations for the prediction of Abraham descriptors for ionic species are given. The application of descriptors for ions and ionic species to physicochemical processes is given; these are to water-solvent partitions, HPLC retention data, immobilised artificial membranes, the Finkelstein reaction and diffusion in water. Applications to biological processes include brain permeation, microsomal degradation of drugs, skin permeation and human intestinal absorption. The review concludes with a section on the determination of descriptors for ion-pairs.

  4. Broadband ultrasonic linear array using ternary PIN-PMN-PT single crystal.

    PubMed

    Wang, Wei; Zhao, Xiangyong; Or, Siu Wing; Leung, Chung Ming; Zhang, Yaoyao; Jiao, Jie; Luo, Haosu

    2012-09-01

    Ternary Pb(In(1/2)Nb(1/2))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) single crystal was investigated for potential application in ultrasonic linear array. Orientation and temperature dependences of height extensional electromechanical coupling coefficient k'(33) for PIN-PMN-PT single crystal were studied. It was found that the [001] poled PIN-PMN-PT diced along the [100] direction would achieve a maximum k'(33) (~87%) and the service temperature was up to 110 °C. Ultrasonic linear arrays using PIN-PMN-PT single crystal and PZT ceramic were fabricated and compared. The bandwidth at -6 dB, two-way insertion loss and pulse length of the PIN-PMN-PT array were 98.6%, -45.1 dB, and 0.28 μs, respectively, which were about 25% broader, 3.7dB higher, and 0.08 μs shorter than those of the PZT array. The experimental results agreed well with the theoretical simulation. These superior performances were attributable to the excellent piezoelectric properties of PIN-PMN-PT single crystal. PMID:23020406

  5. Broadband ultrasonic linear array using ternary PIN-PMN-PT single crystal.

    PubMed

    Wang, Wei; Zhao, Xiangyong; Or, Siu Wing; Leung, Chung Ming; Zhang, Yaoyao; Jiao, Jie; Luo, Haosu

    2012-09-01

    Ternary Pb(In(1/2)Nb(1/2))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) single crystal was investigated for potential application in ultrasonic linear array. Orientation and temperature dependences of height extensional electromechanical coupling coefficient k'(33) for PIN-PMN-PT single crystal were studied. It was found that the [001] poled PIN-PMN-PT diced along the [100] direction would achieve a maximum k'(33) (~87%) and the service temperature was up to 110 °C. Ultrasonic linear arrays using PIN-PMN-PT single crystal and PZT ceramic were fabricated and compared. The bandwidth at -6 dB, two-way insertion loss and pulse length of the PIN-PMN-PT array were 98.6%, -45.1 dB, and 0.28 μs, respectively, which were about 25% broader, 3.7dB higher, and 0.08 μs shorter than those of the PZT array. The experimental results agreed well with the theoretical simulation. These superior performances were attributable to the excellent piezoelectric properties of PIN-PMN-PT single crystal.

  6. Effect of 120 MeV Ag9+ ion irradiation of YCOB single crystals

    NASA Astrophysics Data System (ADS)

    Arun Kumar, R.; Dhanasekaran, R.

    2012-09-01

    Single crystals of yttrium calcium oxy borate (YCOB) grown from boron-tri-oxide flux were subjected to swift heavy ion irradiation using silver Ag9+ ions from the 15 UD Pelletron facility at Inter University Accelerator Center, New Delhi. The crystals were irradiated at 1 × 1013, 5 × 1013 and 1 × 1014 ions/cm2 fluences at room temperature and with 5 × 1013 ions/cm2 fluence at liquid nitrogen temperature. The pristine and the irradiated samples were characterized by glancing angle X-ray diffraction, UV-Vis-NIR and photoluminescence studies. From the characterization studies performed on the samples, it is inferred that the crystals irradiated at liquid nitrogen temperature had fewer defects compared to the crystals irradiated at room temperature and the defects increased when the ion fluence was increased at room temperature.

  7. Estimation of Heavy Ion Densities From Linearly Polarized EMIC Waves At Earth

    SciTech Connect

    Kim, Eun-Hwa; Johnson, Jay R.; Lee, Dong-Hun

    2014-02-24

    Linearly polarized EMIC waves are expected to concentrate at the location where their wave frequency satisfies the ion-ion hybrid (IIH) resonance condition as the result of a mode conversion process. In this letter, we evaluate absorption coefficients at the IIH resonance in the Earth geosynchronous orbit for variable concentrations of helium and azimuthal and field-aligned wave numbers in dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentration, it only occurs for a limited range of azimuthal and field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Our results suggest that, at L = 6.6, linearly polarized EMIC waves can be generated via mode conversion from the compressional waves near the crossover frequency. Consequently, the heavy ion concentration ratio can be estimated from observations of externally generated EMIC waves that have polarization.

  8. Optimized precursor ion selection for labile ions in a linear ion trap mass spectrometer and its impact on quantification using selected reaction monitoring.

    PubMed

    Lee, Hyun-Seok; Shin, Kyong-Oh; Jo, Sung-Chan; Lee, Yong-Moon; Yim, Yong-Hyeon

    2014-12-01

    The fragmentation of fragile ions during the application of an isolation waveform for precursor ion selection and the resulting loss of isolated ion intensity is well-known in ion trap mass spectrometry (ITMS). To obtain adequate ion intensity in the selected reaction monitoring (SRM) of fragile precursor ions, a wider ion isolation width is required. However, the increased isolation width significantly diminishes the selectivity of the channels chosen for SRM, which is a serious problem for samples with complex matrices. The sensitive and selective quantification of many lipid molecules, including ceramides from real biological samples, using a linear ion trap mass spectrometer is also hindered by the same problem because of the ease of water loss from protonated ceramide ions. In this study, a method for the reliable quantification of ceramides using SRM with near unity precursor ion isolation has been developed for ITMS by utilizing alternative precursor ions generated by in-source dissociation. The selected precursor ions allow the isolation of ions with unit mass width and the selective analysis of ceramides using SRM with negligible loss of sensitivity. The quantification of C18:0-, C24:0- and C24:1-ceramides using the present method shows excellent linearity over the concentration ranges from 6 to 100, 25 to 1000 and 25 to 1000 nM, respectively. The limits of detection of C18:0-, C24:0- and C24:1-ceramides were 0.25, 0.25 and 5 fmol, respectively. The developed method was successfully applied to quantify ceramides in fetal bovine serum.

  9. Linear and nonlinear ion-acoustic waves in very dense magnetized plasmas

    SciTech Connect

    Khan, S. A.; Mahmood, S.; Saleem, H.

    2008-08-15

    Obliquely propagating linear and weakly nonlinear ion-acoustic waves in a magnetized quantum plasma are investigated by employing the quantum hydrodynamic formulation. A linear dispersion relation is presented and the nonlinear Korteweg-de Vries equation is derived using the reductive perturbative method. The dispersion caused by the quantum diffraction effects is possible only in a very short wavelength regime. The amplitude and width of the solitons formed by the ion-acoustic waves propagating in a magnetized plasma depend upon various parameters. Possible applications of the results to dense plasmas are discussed.

  10. Crystal chemistry of layered structures formed by linear rigid silyl-capped molecules

    PubMed Central

    Lumpi, Daniel; Kautny, Paul; Stöger, Berthold; Fröhlich, Johannes

    2015-01-01

    The crystallization behavior of methylthio- or methylsulfonyl-containing spacer extended Z,Z-bis-ene–yne molecules capped with trimethylsilyl groups obtained by (tandem) thiophene ring fragmentation and of two non-spacer extended analogs were investigated. The rigid and linear molecules generally crystallized in layers whereby the flexibility of the layer interfaces formed by the silyl groups leads to a remarkably rich crystal chemistry. The molecules with benzene and thiophene spacers both crystallized with C2/c symmetry and can be considered as merotypes. Increasing the steric bulk of the core by introduction of ethylenedioxythiophene (EDOT) gave a structure incommensurately modulated in the [010] direction. Further increase of steric demand in the case of a dimethoxythiophene restored periodicity along [010] but resulted in a doubling of the c vector. Two different polytypes were observed, which feature geometrically different layer interfaces (non-OD, order–disorder, polytypes), one with a high stacking fault probability. Oxidation of the methylthio groups of the benzene-based molecule to methylsulfonyl groups led to three polymorphs (two temperature-dependent), which were analyzed by Hirshfeld surface d e/d i fingerprint plots. The analogously oxidized EDOT-based molecule crystallized as systematic twins owing to its OD polytypism. Shortening of the backbone by removal of the aryl core resulted in an enantiomorphic structure and a further shortening by removal of a methylthio-ene fragment again in a systematically twinned OD polytype. PMID:26306200

  11. Discovery of linear receptors for multiple dihydrogen phosphate ions using dynamic combinatorial chemistry.

    PubMed

    Beeren, Sophie R; Sanders, Jeremy K M

    2011-03-23

    We describe the use of dynamic combinatorial chemistry to discover a new series of linear hydrazone-based receptors that bind multiple dihydrogen phosphate ions. Through the use of a template-driven, selection-based approach to receptor synthesis, dynamic combinatorial chemistry allows for the identification of unexpected host structures and binding motifs. Notably, we observed the unprecedented selection of these linear receptors in preference to competing macrocyclic hosts. Furthermore, linear receptors containing up to nine building blocks and three different building blocks were amplified in the dynamic combinatorial library. The receptors were formed using a dihydrazide building block based on an amino acid-disubstituted ferrocene scaffold. A detailed study of the linear pentamer revealed that it forms a helical ditopic receptor that employs four acylhydrazone hydrogen-bond donor motifs to cooperatively bind two dihydrogen phosphate ions.

  12. Macroscopic quasi-linear theory and particle-in-cell simulation of helium ion anisotropy instabilities

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Seough, Jungjoon; Hwang, Junga; Nariyuki, Yasuhiro

    2015-08-01

    The protons and helium ions in the solar wind are observed to possess anisotropic temperature profiles. The anisotropy appears to be limited by various marginal instability conditions. One of the efficient methods to investigate the global dynamics and distribution of various temperature anisotropies in the large-scale solar wind models may be that based upon the macroscopic quasi-linear approach. The present paper investigates the proton and helium ion anisotropy instabilities on the basis of the quasi-linear theory versus particle-in-cell simulation. It is found that the overall dynamical development of the particle temperatures is quite accurately reproduced by the macroscopic quasi-linear scheme. The wave energy development in time, however, shows somewhat less restrictive comparisons, indicating that while the quasi-linear method is acceptable for the particle dynamics, the wave analysis probably requires higher-order physics, such as wave-wave coupling or nonlinear wave-particle interaction.

  13. Strong electron and ion emissions induced by a pyroelectric crystal

    NASA Astrophysics Data System (ADS)

    Hockley, M.; Huang, Z.

    2013-01-01

    A novel method of high voltage pulse generation was developed, based on charging a capacitor by changing the temperature of a pyroelectric crystal. A high voltage pulse is formed when a miniature spark gap device in connection with the charging capacitor is suddenly switched on. This high voltage pulse is then used to trigger strong electron and ion emissions from a ferroelectric cathode. The developments of voltage and emission with time were compared with those when the voltage pulse was produced by an external power source, and the differences were explained as due to different electric boundary conditions, based on the surface plasma assisted emission mechanisms. Factors affecting the ferroelectric cathode emissions, such as the capacitance of the charging capacitor, the polarity of the voltage pulses being applied to the front or rear electrode of the cathode, and the shape of the front grid electrode, have been investigated. Significantly higher current and total emitted electrons were observed in the case of a negative voltage applied to the front electrode. Other emission features such as the energy of the emitted particles and density distribution were also characterised.

  14. Single crystal growth and the electronic structure of orthorhombic Tl3PbBr5: A novel material for non-linear optics

    NASA Astrophysics Data System (ADS)

    Khyzhun, O. Y.; Bekenev, V. L.; Parasyuk, O. V.; Danylchuk, S. P.; Denysyuk, N. M.; Fedorchuk, A. O.; AlZayed, N.; Kityk, I. V.

    2013-03-01

    The X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of a Tl3PbBr5 single crystal grown by the Bridgman-Stockbarger method have been measured. The present X-ray photoelectron spectroscopy (XPS) results reveal high chemical stability of Tl3PbBr5 single crystal surface. Total and partial densities of states of constituent atoms of low-temperature (LT) orthorhombic Tl3PbBr5 phase (space group P21212) have been calculated using the full potential linearized augmented plane wave (FP-LAPW) method. The FP-LAPW data reveal that contributions of the Br 4p-like states dominate in the valence band of LT-Tl3PbBr5; they contribute mainly into the top and the central portion of the valence band with also significant contributions throughout the whole valence-band region. The bottom of the valence band of LT-Tl3PbBr5 is composed mainly of the Tl 6s-like states, whilst the unoccupied Pb 6p- and Tl 6p-like states dominate at the bottom of the conduction band. We have explored the crystallochemistry and origin of the chemical bonds in Tl3PbBr5 with respect to the use as mid-IR non-linear optical crystals. Comparison of the spectral dependence to the second order susceptibilities for the titled crystals is performed with respect to the 3.39 μm illuminated crystals. Possibility of the use of Tl3PbBr5 crystals as IR operated non-linear optical crystals is discussed.

  15. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    PubMed

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development. PMID:25906029

  16. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    PubMed

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development.

  17. Effects of heavy ions on the quasi-linear diffusion coefficients from resonant interactions with electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Jordanova, V. K.; Kozyra, J. U.; Nagy, A. F.

    1996-09-01

    Ion composition measurements provided by recent satellite missions have confirmed the presence of heavy ions in the terrestrial magnetosphere. In order to describe the resonance of energetic ring current particles with electromagnetic ion cyclotron (EMIC) waves in a more realistic terrestrial environment, general expressions are derived that provide quasi-linear diffusion coefficients in a cold plasma containing heavy ions. Cold plasma theory is used as a first approximation. In such plasma, EMIC waves do not propagate in the frequency range between the ion gyrofrequency and the cutoff frequency for each ion component but form multiple stop bands. No interactions occur within the stop bands and the diffusion coefficients are zero over the corresponding frequency intervals. For most of the wave frequencies of interest, the particles in a multicomponent plasma resonate at lower parallel energies than particles in an electron-proton plasma for a given harmonic value. Therefore resonance with a fixed frequency wave occurs at larger pitch angles (lower parallel energies) in a multi-ion than in a proton-electron plasma. As a direct consequence, pitch angle diffusion coefficients for a given energy decrease at small pitch angles and increase at large pitch angles as heavy ions are added to the plasma. The energy and mixed diffusion coefficients change correspondingly. Also, higher harmonics need to be included in the calculations for resonances at higher energies. The pitch angle diffusion lifetimes are calculated for given plasmaspheric and wave parameters corresponding to conditions at a radial distance L=4. The values of the diffusion lifetimes decrease at low energies and increase at high energies in a multi-ion as compared to an electron-proton plasma. As a result, the resonances at lower energies (~ approximately tens of keV) will contribute to the ion precipitation losses from the ring current during geomagnetic storms.

  18. Propagation of linear and nonlinear ion-sound monopulses in dusty plasma waveguides

    NASA Astrophysics Data System (ADS)

    Grimalsky, V. V.; Koshevaya, S. V.; Siqueiros Alatorre, J.; Kotsarenko, A. N.; Perez Enriquez, R.

    2007-08-01

    The propagation of monopulse (baseband) linear and nonlinear ion-sound waves in dusty plasma waveguides is investigated. These waveguides are formed by prolonged inclusions of dusty plasma within the electron-ion one. The planar and cylindrical geometries are studied numerically. It has been demonstrated that nonlinear dynamics of baseband pulse propagation in a dusty plasma waveguide possesses essentially non-solitonic behaviour. Namely, the propagation of ion-sound pulses of finite amplitudes leads to an excitation of shock-like waves and, then, to the destruction of the pulses but not to emerging stable localized nonlinear structures.

  19. Spectroscopy of V{sup 4+} and V{sup 3+} ions in a forsterite crystal

    SciTech Connect

    Veremeichik, T F; Gaister, A V; Subbotin, Kirill A; Zharikov, Evgeny V; Protopopov, V N; Smirnov, Valerii A

    2000-05-31

    The absorption spectra of impurity vanadium ions in forsterite crystals are studied in the wavelength range from 600 to 2000 nm. It is found that the V{sup 4+} ion in the tetrahedral coordination in crystals grown by the Czochralski technique exhibits strong absorption in the range from 600 to 1200 nm. The intense electron-vibrational progressions in the absorption spectra of impurity d-ions in crystals were observed for the first time at temperatures 300 and 77 K. In the authors' opinion, these progressions appear due to the formation of the oxovanadate complex and distortions of the structural tetrahedron. The forsterite crystal doped with V{sup 4+} ions has a very high absorption cross section (up to 2.1x10{sup -18} cm{sup 2}) and a continuous broad absorption band, which makes this crystal promising as a passive laser switch in the range between 600 and 1200 nm. At the same time, the V{sup 4+} ions in the forsterite crystal do not emit luminescence because of a high probability of the nonradiative relaxation of their excited state. It is shown that luminescence of a V:Mg{sub 2}SiO{sub 4} crystal is related to the tetrahedral V{sup 3+} ion. (laser applications and other topics in quantum electronics)

  20. Linear ion trap for second-order Doppler shift reduction in frequency standard applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Janik, Gary R.; Dick, G. John; Maleki, Lute

    1990-01-01

    The authors have designed and are presently testing a novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. This new trap should store about 20 times the number of ions as a conventional RF trap with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced. The authors have succeeded in trapping mercury ions and xenon ions in the presence of helium buffer gas. Trap times as long as 2000 s have been measured.

  1. Ion strength limit of computed excess functions based on the linearized Poisson-Boltzmann equation.

    PubMed

    Fraenkel, Dan

    2015-12-01

    The linearized Poisson-Boltzmann (L-PB) equation is examined for its κ-range of validity (κ, Debye reciprocal length). This is done for the Debye-Hückel (DH) theory, i.e., using a single ion size, and for the SiS treatment (D. Fraenkel, Mol. Phys. 2010, 108, 1435), which extends the DH theory to the case of ion-size dissimilarity (therefore dubbed DH-SiS). The linearization of the PB equation has been claimed responsible for the DH theory's failure to fit with experiment at > 0.1 m; but DH-SiS fits with data of the mean ionic activity coefficient, γ± (molal), against m, even at m > 1 (κ > 0.33 Å(-1) ). The SiS expressions combine the overall extra-electrostatic potential energy of the smaller ion, as central ion-Ψa>b (κ), with that of the larger ion, as central ion-Ψb>a (κ); a and b are, respectively, the counterion and co-ion distances of closest approach. Ψa>b and Ψb>a are derived from the L-PB equation, which appears to conflict with their being effective up to moderate electrolyte concentrations (≈1 m). However, the L-PB equation can be valid up to κ ≥ 1.3 Å(-1) if one abandons the 1/κ criterion for its effectiveness and, instead, use, as criterion, the mean-field electrostatic interaction potential of the central ion with its ion cloud, at a radial distance dividing the cloud charge into two equal parts. The DH theory's failure is, thus, not because of using the L-PB equation; the lethal approximation is assigning a single size to the positive and negative ions. PMID:26493019

  2. Ion strength limit of computed excess functions based on the linearized Poisson-Boltzmann equation.

    PubMed

    Fraenkel, Dan

    2015-12-01

    The linearized Poisson-Boltzmann (L-PB) equation is examined for its κ-range of validity (κ, Debye reciprocal length). This is done for the Debye-Hückel (DH) theory, i.e., using a single ion size, and for the SiS treatment (D. Fraenkel, Mol. Phys. 2010, 108, 1435), which extends the DH theory to the case of ion-size dissimilarity (therefore dubbed DH-SiS). The linearization of the PB equation has been claimed responsible for the DH theory's failure to fit with experiment at > 0.1 m; but DH-SiS fits with data of the mean ionic activity coefficient, γ± (molal), against m, even at m > 1 (κ > 0.33 Å(-1) ). The SiS expressions combine the overall extra-electrostatic potential energy of the smaller ion, as central ion-Ψa>b (κ), with that of the larger ion, as central ion-Ψb>a (κ); a and b are, respectively, the counterion and co-ion distances of closest approach. Ψa>b and Ψb>a are derived from the L-PB equation, which appears to conflict with their being effective up to moderate electrolyte concentrations (≈1 m). However, the L-PB equation can be valid up to κ ≥ 1.3 Å(-1) if one abandons the 1/κ criterion for its effectiveness and, instead, use, as criterion, the mean-field electrostatic interaction potential of the central ion with its ion cloud, at a radial distance dividing the cloud charge into two equal parts. The DH theory's failure is, thus, not because of using the L-PB equation; the lethal approximation is assigning a single size to the positive and negative ions.

  3. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    NASA Technical Reports Server (NTRS)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  4. Tunable photonic band-gaps in one-dimensional photonic crystals containing linear graded index material

    NASA Astrophysics Data System (ADS)

    Singh, Bipin K.; Kumar, Pawan; Pandey, Praveen C.

    2014-12-01

    We have demonstrated control of the photonic band gaps (PBGs) in 1-D photonic crystals using linear graded index material. The analysis of PBG has been done in THz region by considering photonic crystals in the form of ten periods of second, third and fourth generation of the Fibonacci sequence as unit cell. The unit cells are constituted of two kinds of layers; one is taken of linear graded index material and other of normal dielectric material. For this investigation, we used a theoretical model based on transfer matrix method. We have obtained a large number of PBGs and their bandwidths can be tuned by changing the grading profile and thicknesses of linear graded index layers. The number of PBGs increases with increase in the thicknesses of layers and their bandwidths can be controlled by the contrast of initial and final refractive index of the graded layers. In this way, we provide more design freedom for photonic devices such as reflectors, filters, optical sensors, couplers, etc.

  5. A strain-tunable nanoimprint lithography for linear variable photonic crystal filters.

    PubMed

    Liu, Longju; Khan, Haris A; Li, Jingjing; Hillier, Andrew C; Lu, Meng

    2016-07-22

    This paper presents the fabrication methodology of a linear variable photonic crystal (PC) filter with narrowband reflection that varies over a broad spectral range along the length of the filter. The key component of the linear variable PC filter is a polymer surface-relief grating whose period changes linearly as a function of its position on the filter. The grating is fabricated using a nanoreplica molding process with a wedge-shaped elastomer mold. The top surface of the mold carries the grating pattern and the wedge is formed by a shallow angle between the top and bottom surfaces of the mold. During the replica molding process, a uniaxial force is applied to stretch the mold, resulting in a nearly linearly varying grating period. The period of the grating is determined using the magnitude of the force and the local thickness of the mold. The grating period of the fabricated device spans a range of 421.8-463.3 nm over a distance of 20 mm. A high refractive index dielectric film is deposited on the graded-period grating to act as the waveguide layer of the PC device. The resonance reflection feature of the device varies linearly in a range of 680.2-737.0 nm over the length of the grating. PMID:27276512

  6. A strain-tunable nanoimprint lithography for linear variable photonic crystal filters

    NASA Astrophysics Data System (ADS)

    Liu, Longju; Khan, Haris A.; Li, Jingjing; Hillier, Andrew C.; Lu, Meng

    2016-07-01

    This paper presents the fabrication methodology of a linear variable photonic crystal (PC) filter with narrowband reflection that varies over a broad spectral range along the length of the filter. The key component of the linear variable PC filter is a polymer surface-relief grating whose period changes linearly as a function of its position on the filter. The grating is fabricated using a nanoreplica molding process with a wedge-shaped elastomer mold. The top surface of the mold carries the grating pattern and the wedge is formed by a shallow angle between the top and bottom surfaces of the mold. During the replica molding process, a uniaxial force is applied to stretch the mold, resulting in a nearly linearly varying grating period. The period of the grating is determined using the magnitude of the force and the local thickness of the mold. The grating period of the fabricated device spans a range of 421.8-463.3 nm over a distance of 20 mm. A high refractive index dielectric film is deposited on the graded-period grating to act as the waveguide layer of the PC device. The resonance reflection feature of the device varies linearly in a range of 680.2-737.0 nm over the length of the grating.

  7. Growth and investigation of new non-linear optical crystals of LAP family

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. M.; Sukiasyan, R. P.; Karapetyan, H. A.; Terzyan, S. S.; Feigelson, R. S.

    2000-05-01

    The possibility of preparing new analogs of L-arginine phosphate monohydrate, (LAP), has been investigated. Single crystals of the compound L-Arg·HCOOH, which had earlier been obtained in powdered form, were successfully grown during the course of this investigation. In addition, we have found that there is a class of compounds having the Arg·2Ax composition, (where Ax is one of several inorganic or organic acids). Such compounds (Arg·2HIO 3, Arg·2HNO 3, Arg·2H 3PO 4, Arg·2HF, Arg·2HCl·H 2O, and Arg·2HBr·H 2O) have been synthesized and single crystals grown. The crystals grown in this investigation were studied by IR and X-ray diffraction methods. The influence of the different amino acid groups on crystal symmetry and the influence of this symmetry on non-linear optical properties are discussed.

  8. Linear viscoelasticity of hard sphere colloidal crystals from resonance detected with dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Phan, See-Eng; Li, Min; Russel, William B.; Zhu, Jixiang; Chaikin, Paul M.; Lant, Chris T.

    1999-08-01

    We present measurements of the high-frequency shear modulus and dynamic viscosity for nonaqueous hard sphere colloidal crystals both in normal and microgravity environments. All experiments were performed on a multipurpose PHaSE instrument. For the rheological measurements, we detect the resonant response to oscillatory forcing with a dynamic light scattering scheme. The resonant response for colloidal crystals formed in normal and microgravity environments was similar, indicating that the bulk rheological properties are unaffected by differing crystal structure and crystallite size within the experimental error. Our high-frequency shear modulus seems reasonable, lying close to Frenkel and Ladd's predictions [Phys. Rev. Lett. 59, 1169 (1987)] for the static modulus of hard sphere crystals. Our high-frequency dynamic viscosity, on the other hand, seems high, exceeding Shikata and Pearson [J. Rheol. 38, 601 (1994)] and van der Werff et al.'s measurements [Phys. Rev. A 39, 795 (1989)] on the high-frequency dynamic viscosity for metastable fluids. The measurements are in the linear regime for the shear modulus but may not be for the dynamic viscosity as Frith et al. [Powder Technol. 51, 27 (1987)] report that the dynamic viscosity passes through a maximum with strain amplitude.

  9. A Linear Single-Crystal Bragg-Fresnel Lens With SiO2 Surface Structure

    SciTech Connect

    Kuznetsov, S.; Yunkin, V.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.

    2004-05-12

    Bragg-Fresnel lens (BFL) as thin silicon dioxide strips grown on the surface of perfect silicon crystal was designed, manufactured and experimentally tested. In this case the BFL structure consists of a set of silicon dioxide rectangular shape etched zones arranged by the Fresnel zone law. The stress within coated and uncoated crystal regions is opposite in sign, whether tensile or compressive. The strain in the substrate crystal lattice directly underneath discontinuities in the deposited film give rise to phase difference between waves diffracted from coated and uncoated crystal regions. This phase difference is known to be dependent on the thickness and composition of film and substrate. The focusing properties of Si/SiO2 BFLs with 107 zones and 0.3 micrometer outermost zone width were experimentally studied as a function of the silicon oxide thickness in the range of 100 - 400 nanometers. It was shown that deformation Bragg-Fresnel lenses could effectively focus hard X-rays to a linear focal spot of about 2 microns. The efficiency of focusing was found to be about 16% at energy 10 keV. The developed lens design is a promising approach to extend the angular range of focusing by Bragg-Fresnel optical elements and to avoid some drawbacks of BFL properties related to aspect-ratio dependent etching.

  10. General theory of electronic transport in molecular crystals. I. Local linear electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Silbey, R.; Munn, R. W.

    1980-02-01

    An improved general theory of electronic transport in molecular crystals with local linear electron-phonon coupling is presented. It is valid for arbitrary electronic and phonon bandwidths and for arbitrary electron-phonon coupling strength, yielding small-polaron theory for narrow electronic bands and strong coupling, and semiconductor theory for wide electronic bands and weak coupling. Detailed results are derived for electronic excitations fully clothed with phonons and having a bandwidth no larger than the phonon frequency; the electronic and phonon densities of states are taken as Gaussian for simplicity. The dependence of the diffusion coefficient on temperature and on the other parameters is analyzed thoroughly. The calculated behavior provides a rational interpretation of observed trends in the magnitude and temperature dependence of charge-carrier drift mobilities in molecular crystals.

  11. Amplitude autocorrelation of femtosecond laser pulses using linear photogalvanic effect in sillenite crystals

    NASA Astrophysics Data System (ADS)

    Grachev, A. I.; Romashko, R. V.; Kulchin, Yu. N.; Golik, S. S.; Nippolainen, E.; Kamshilin, A. A.

    2012-06-01

    We demonstrate excitation of the linear photogalvanic current in a Bi12TiO20 crystal by two orthogonally polarized femtosecond laser pulses with detecting the electrical current via charge accumulation on the sample electrodes. Such a setup was used to implement an interferometric autocorrelation technique for characterization of ultrashort light pulses. Integration of the detected current in femtosecond time domain leads to vanishing of a bipolar component of the photogalvanic current which arises due to a pulse chirping. The advantage of the proposed technique is that it produces the electric field correlation function directly without the need for data processing using a compact, robust, and non-expensive detector in the form of a photoconductive cell of a non-centrosymmetric crystal.

  12. Negative linear compressibility in a crystal of α-BiB3O6

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Jiang, Xingxing; Luo, Siyang; Gong, Pifu; Li, Wei; Wu, Xiang; Li, Yanchun; Li, Xiaodong; Chen, Chuangtian; Lin, Zheshuai

    2015-08-01

    Negative linear compressibility (NLC), a rare and important mechanical effect with many application potentials, in a crystal of α-BiB3O6 (BIBO) is comprehensively investigated using first-principles calculations and high-pressure synchrotron X-ray diffraction experiments. The results indicate that the BIBO crystal exhibits the second largest NLC among all known inorganic materials over a broad pressure range. This unusual NLC behaviour is due to the rotation and displacement of the rigid [BO3] and [BO4] building units that result in hinge motion in an umbrella-like topology. More importantly, the parallel-polar lone-pair electrons on the Bi3+ cations act as “umbrella stands” to withstand the B-O hinges, thus significantly enhancing the NLC effect. BIBO presents a unique example of a “collapsible umbrella” mechanism for achieving NLC, which could be applied to other framework materials with lone-pair electrons.

  13. Crystal-field calculations for transition-metal ions by application of an opposing potential

    DOE PAGES

    Zhou, Fei; Aberg, Daniel

    2016-02-16

    We propose a fully ab initio method, the opposing crystal potential (OCP), to calculate the crystal-field parameters of transition-metal impurities in insulator hosts. Through constrained density functional calculations, OCP obtains the constraining Lagrange multipliers, which act as a cancellation potential against the crystal field and lead to spherical d-electron distribution. Furthermore, the method is applied to several insulators doped with Mn4+ and Mn2+ ions and shown to be in good agreement with experiment.

  14. Surface adsorption of Cs137 ions on quartz crystals

    USGS Publications Warehouse

    Antkiw, Stephen; Waesche, H.; Senftle, F.

    1954-01-01

    Adsorption tests were made on four large synthetic and three natural quartz crystals to see if surface defects might be detected by subsequent autoradiography techniques. The adsorbent used was radioactive Cs137 in a solution of Cs 137Cl. Natural quartz crystals adsorbed more cesium than the synthetic crystals. Certain surface defects were made evident by this method, but twinning features could not be detected.

  15. Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma

    SciTech Connect

    Ema, S. A. Mamun, A. A.; Hossen, M. R.

    2015-09-15

    A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.

  16. Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Ema, S. A.; Hossen, M. R.; Mamun, A. A.

    2015-09-01

    A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.

  17. Quasi-linear pitch angle and energy diffusion of pickup ions near Comet Halley

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Johnstone, A. D.; Coates, A. J.; Neubauer, F. M.

    1991-01-01

    The process of ion pickup in the environment of Halley's comet is studied in order to see if velocity diffusion driven by the observed level of turbulence can explain the observed development of the implanted ion distribution. The theoretical description used is based on a quasi-linear approach and considers the implantation and transport of cometary ions along solar wind flow lines. To make such a study requires some way of extrapolating the measurements on the Giotto trajectory into the upstream region; models for mass loading and turbulence are used. A simplified kinetic equation describing the source, convection, and quasi-linear velocity diffusion of the heavy cometary ions is solved numerically along flow lines parallel to the sun-comet line. Full two-dimensional (pitch angle and velocity) distributions are obtained at positions along the Giotto trajectory, which are compared with measurements. This study finds that quasi-linear theory, with the empirical model for the observed turbulence level, produces the right order of pitch angle diffusion.

  18. Fluid electron, gyrokinetic ion simulations of linear internal kink and energetic particle modes

    SciTech Connect

    Cole, Michael Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf; Borchardt, Matthias

    2014-07-15

    The internal kink mode is an important plasma instability responsible for a broad class of undesirable phenomena in tokamaks, including the sawtooth cycle and fishbones. To predict and discover ways to mitigate this behaviour in current and future devices, numerical simulations are necessary. The internal kink mode can be modelled by reduced magnetohydrodynamics (MHD). Fishbone modes are an inherently kinetic and non-linear phenomenon based on the n = 1 Energetic Particle Mode (EPM), and have been studied using hybrid codes that combine a reduced MHD bulk plasma model with a kinetic treatment of fast ions. In this work, linear simulations are presented using a hybrid model which couples a fluid treatment of electrons with a gyrokinetic treatment of both bulk and fast ions. Studies of the internal kink mode in geometry relevant to large tokamak experiments are presented and the effect of gyrokinetic ions is considered. Interaction of the kink with gyrokinetic fast ions is also considered, including the destabilisation of the linear n = 1 EPM underlying the fishbone.

  19. Large ion Coulomb crystals: A near-ideal medium for coupling optical cavity modes to matter

    NASA Astrophysics Data System (ADS)

    Dantan, A.; Albert, M.; Marler, J. P.; Herskind, P. F.; Drewsen, M.

    2009-10-01

    We present an investigation of the coherent coupling of various transverse field modes of an optical cavity to ion Coulomb crystals. The obtained experimental results, which include the demonstration of identical collective coupling rates for different transverse modes of a cavity field to ions in the same large Coulomb crystal, are in excellent agreement with theoretical predictions. The results furthermore suggest that Coulomb crystals in the future may serve as near-ideal media for high-fidelity multimode quantum information processing and communication purposes, including the generation and storage of single-photon qubits encoded in different transverse modes.

  20. Assembling a ring-shaped crystal in a microfabricated surface ion trap

    SciTech Connect

    Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco; Blain, Matthew; Clark, Craig R.; Clark, Susan; Haltli, Raymond A.; Maunz, Peter; Sterk, Jonathan D.; Tigges, Chris

    2015-09-01

    We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca+ ions with an average separation of 9 μm comprise the ion crystal.

  1. Linear and nonlinear evolution of the ion resonance instability in cylindrical traps: A numerical study

    SciTech Connect

    Sengupta, M.; Ganesh, R.

    2015-07-15

    Numerical experiments have been performed to investigate the linear and nonlinear dynamics, and energetics of the ion resonance instability in cylindrically confined nonneutral plasma. The instability is excited on a set of parametrically different unstable equilibria of a cylindrical nonneutral cloud, composed of electrons partially neutralized by a much heavier ion species of single ionization. A particle-in-cell code has been developed and employed to carry out these simulations. The results obtained from the initial exponential growth phase of the instability in these numerical experiments are in agreement with the linearised analytical model of the ion resonance instability. As the simulations delve much further in time beyond the exponential growth phase, very interesting nonlinear phenomena of the ion resonance instability are revealed, such as a process of simultaneous wave breaking of the excited poloidal mode on the ion cloud and pinching of the poloidal perturbations on the electron cloud. This simultaneous nonlinear dynamics of the two components is associated with an energy transfer process from the electrons to the ions. At later stages there is heating induced cross-field transport of the heavier ions and tearing across the pinches on the electron cloud followed by an inverse cascade of the torn sections.

  2. Enhancement of Ion Activation and Collision-Induced Dissociation by Simultaneous Dipolar Excitation of Ions in x- and y-Directions in a Linear Ion Trap.

    PubMed

    Dang, Qiankun; Xu, Fuxing; Xie, Xiaodong; Xu, Chongsheng; Dai, Xinhua; Fang, Xiang; Ding, Li; Ding, Chuan-Fan

    2015-06-01

    Collision-induced dissociation (CID) in linear ion traps is usually performed by applying a dipolar alternating current (AC) signal to one pair of electrodes, which results in ion excitation mainly in one direction. In this paper, we report simulation and experimental studies of the ion excitation in two coordinate directions by applying identical dipolar AC signals to two pairs of electrodes simultaneously. Theoretical analysis and simulation results demonstrate that the ion kinetic energy is higher than that using the conventional CID method. Experimental results show that more activation energy (as determined by the intensity ratio of the a4/b4 fragments from the CID of protonated leucine enkephalin) can be deposited into parent ions in this method. The dissociation rate constant in this method was about 3.8 times higher than that in the conventional method under the same experimental condition, at the Mathieu parameter qu (where u = x, y) value of 0.25. The ion fragmentation efficiency is also significantly improved. Compared with the conventional method, the smaller qu value can be used in this method to obtain the same internal energy deposited into ions. Consequently, the "low mass cut-off" is redeemed and more fragment ions can be detected. This excitation method can be implemented easily without changing any experimental parameters.

  3. Comparative Results on Collimation of the SPS Beam of Protons and Pb Ions with Bent Crystals

    SciTech Connect

    Scandale, W.; Arduini, G.; Assmann, R.; Bracco, C.; Cerutti, F.; Christiansen, J.; Gilardoni, S.; Laface, E.; Losito, R.; Masi, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Previtali, V.; Redaelli, S.; Valentino, G.; Schoofs, P.; Smirnov, G.; Tlustos, L.; Bagli, E.; Baricordi, S.; /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /Frascati /Frascati /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Rome /INFN, Rome /INFN, Rome /INFN, Rome /INFN, Naples /Serpukhov, IHEP /Serpukhov, IHEP /Serpukhov, IHEP /Serpukhov, IHEP /Serpukhov, IHEP /Dubna, JINR /Dubna, JINR /Dubna, JINR /St. Petersburg, INP /St. Petersburg, INP /St. Petersburg, INP /St. Petersburg, INP /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Brookhaven /SLAC /SLAC /SLAC

    2012-04-30

    New experiments on crystal assisted collimation have been carried out at the CERN SPS with stored beams of 120 GeV/c protons and Pb ions. Bent silicon crystals of 2 mm long with about 170 {mu}rad bend angle and a small residual torsion were used as primary collimators. In channeling conditions, the beam loss rate induced by inelastic interactions of particles with the crystal nuclei is minimal. The loss reduction was about 6 for protons and about 3 for Pb ions. Lower reduction value for Pb ions can be explained by their considerably larger ionization losses in the crystal. In one of the crystals, the measured fraction of the Pb ion beam halo deflected in channeling conditions was 74%, a value very close to that for protons. The intensity of the off-momentum halo leaking out from the collimation station was measured in the first high dispersion area downstream. The particle population in the shadow of the secondary collimator-absorber was considerably smaller in channeling conditions than for amorphous orientations of the crystal. The corresponding reduction was in the range of 2-5 for both protons and Pb ions.

  4. Lubricating and waxy esters, I. Synthesis, crystallization, and melt behavior of linear monoesters.

    PubMed

    Bouzidi, Laziz; Li, Shaojun; Di Biase, Steve; Rizvi, Syed Q; Narine, Suresh S

    2012-01-01

    Four pure jojoba wax-like esters (JLEs), having carbon chain length of 36, 40 (two isomers) and 44, were prepared by Steglish esterification of fatty acids (or acid chlorides) with fatty alcohols at room temperature. Calorimetric and diffraction data was used to elucidate the phase behavior of the esters. The primary thermal parameters (crystallization and melting temperatures) obtained from the DSC of the symmetrical molecules correspond well with the carbon numbers of the JLEs. However, the data also suggests that carbon number is not the only factor since the symmetry of the molecule also plays a significant role in the phase behavior. Overall, the JLEs show very little polymorphic activity at the experimental conditions used, suggesting that they are likely to transform the same way during melting as well as crystallization, a characteristic which may be useful in designing new waxes and lubricants. The XRD data clearly show that the solid phase in all samples consists of a mixture of a β-phase and a β'-phase; fully distinguishable by their characteristic diffraction peaks. Subtle differences between the subcell patterns and phase development of the samples were observed. Different layering of the samples was also observed, understandably because of the chain length differences between the compounds. The long spacings were perfectly linearly proportional to the number of carbon atoms. The length of the ester layers with n carbon atoms can be calculated by a formula similar to that used for the layers in linear alkane molecules.

  5. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    SciTech Connect

    Ostafiychuk, B. K.; Yaremiy, I. P. Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  6. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    NASA Astrophysics Data System (ADS)

    Ostafiychuk, B. K.; Yaremiy, I. P.; Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-01

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He+ ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  7. Crystallization of calcium sulfate dihydrate in the presence of some metal ions

    NASA Astrophysics Data System (ADS)

    Hamdona, Samia K.; Al Hadad, Umaima A.

    2007-02-01

    Crystallization of calcium sulfate dihydrate (CaSO 4·2H 2O gypsum) in sodium chloride solutions in the presence of some metal ions, and over a range of relative super-saturation has been studied. The addition of metal ions, even at relatively low concentration (10 -6 mol l -1), markedly retard the rate of crystallization of gypsum. Retardation effect was enhanced with increase in the additives contents. Moreover, the effect was enhanced as the relative super-saturation decreases. Influence of mixed additives on the rate of crystallization (Cd 2++Arg, Cd 2++H 3PO 4 and Cd 2++PAA) has also been studied. Direct adsorption experiments of these metal ions on the surface of gypsum crystals have been made for comparison.

  8. On the energy spectra of secondary ions emitted from silicon and graphite single crystals

    NASA Astrophysics Data System (ADS)

    Khvostov, V. V.; Khrustachev, I. K.; Minnebaev, K. F.; Zykova, E. Yu.; Ivanenko, I. P.; Yurasova, V. E.

    2014-03-01

    Secondary ion emission from silicon and graphite single crystals bombarded by argon ions with energies E 0 varied from 1 to 10 keV at various angles of incidence α has been studied. The evolution of the energy spectra of C+ and Si+ secondary ions has been traced in which the positions of maxima ( E max) shift toward higher secondary-ion energies E 1 with increasing polar emission angle θ (measured from the normal to the sample surface). The opposite trend has been observed for ions emitted from single crystals heated to several hundred degrees Centigrade; the E max values initially remain unchanged and then shift toward lower energies E 1 with increasing angle θ. It is established that the magnitude and position of a peak in the energy spectrum of secondary C+ ions is virtually independent of E 0, angle α, and the surface relief of the sample (in the E 0 and α intervals studied). Unusual oscillating energy distributions are discussed, which have been observed for secondary ions emitted from silicon (111) and layered graphite (0001) faces. Numerical simulations of secondary ion sputtering and charge exchange have been performed. A comparison of the measured and calculated data for graphite crystals has shown that C+ ions are formed as a result of charge exchange between secondary ions and bombarding Ar+ ions, which takes place both outside and inside the target. This substantially differs from the ion sputtering process in metals and must be taken into account when analyzing secondary ion emission mechanisms and in practical applications of secondary-ion mass spectrometry.

  9. Linear and nonlinear optical properties of terbium calcium oxyborate single crystals.

    PubMed

    Yuan, Dongsheng; Gao, Zeliang; Zhang, Shaojun; Jia, Zhitai; Shu, Jun; Li, Yang; Wang, Zhengping; Tao, Xutang

    2014-11-01

    The linear and nonlinear optical properties of TbCa4O(BO3)3 (abbreviated as TbCOB) single crystals were investigated for the first time. The refractive indices of TbCOB at several wavelengths were measured by using the minimum deviation method and the parameters of Sellmeier's dispersion equation were determined from the experimental data. The complete set of six second-order nonlinear optical (NLO) coefficients of TbCOB single crystals were obtained using the Maker fringe (FM) technique, with the largest d32 being on the order of 1.65 pm/V. Moreover, the phase-matching (PM) configurations of second-order harmonic generation (SHG) in the principal planes were calculated, and the largest effective NLO coefficient is deff = 0.86 pm/V along (22.56°, 180°) PM direction. The SHG conversion efficiency from 1064 nm to 532 nm of 8 mm long crystal samples without AR coating along this direction was achieved 57.1% at 28.2 mW input power, and it has a small walk-off angle of 13.8 mrad. In addition, the comparison and discussion with GdCOB and YCOB were carried out.

  10. Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions

    SciTech Connect

    Deng, K.; Che, H.; Ge, Y. P.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H.; Lan, Y.

    2015-09-21

    RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle.

  11. Third-order nonlinear and linear time-dependent dynamical diffraction of X-rays in crystals.

    PubMed

    Balyan, Minas K

    2016-07-01

    For the first time the third-order nonlinear time-dependent Takagi's equations of X-rays in crystals are obtained and investigated. The third-order nonlinear and linear time-dependent dynamical diffraction of X-rays spatially restricted in the diffraction plane pulses in crystals is investigated theoretically. A method of solving the linear and the third-order nonlinear time-dependent Takagi's equations is proposed. Based on this method, results of analytical and numerical calculations for both linear and nonlinear diffraction cases are presented and compared.

  12. Tailored noise waveform/collision-induced dissociation of ions stored in a linear ion trap combined with liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Vilkov, Andrey N; Bogdanov, Bogdan; Pasa-Tolić, Ljiljana; Prior, Dave C; Anderson, Gordon A; Masselon, Christophe D; Moore, Ronald J; Smith, Richard D

    2004-01-01

    A new collision-induced dissociation (CID) technique based on broadband tailored noise waveform (TNW) excitation of ions stored in a linear ion trap has been developed. In comparison with the conventional sustained off-resonance irradiation (SORI) CID method commonly used in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), this MS/MS technique increases throughput by eliminating the long pump-down delay associated with gas introduction into the high vacuum ICR cell region. In addition, the TNW-CID method speeds spectrum acquisition since it does not require Fourier transformation, calculation of resonant frequencies and generation of the excitation waveforms. We demonstrate TNW-CID coupled with on-line capillary reverse-phase liquid chromatography separations for the identification of peptides. The experimental results are compared with data obtained using conventional quadrupole ion trap MS/MS and SORI-CID MS/MS in an ICR cell.

  13. Intensities of hypersensitive transitions in garnet crystals doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Bol'Shakova, E. V.; Malov, A. V.; Ryabochkina, P. A.; Ushakov, S. N.; Nishchev, K. N.

    2011-06-01

    We examine the oscillator strengths and the intensity parameters Ω t ( t = 2, 4, 6) of yttrium-aluminum, scandium-containing, and gallium garnet crystals doped with Er3+ ions. A comparative analysis of the oscillator strengths and the intensity parameters Ω t ( t = 2, 4, 6) of garnets with different contents of Al3+ and Sc3+ ions (Gd2.4Er0.5Sc1.8Al3.3O12, Gd2.4Er0.5Sc1.9Al3.2O12, Gd2.4Er0.5Sc2.0Al3.1O12) is performed, as a result of which the oscillator strengths and the intensity parameters Ω t ( t = 2, 4, 6) of these crystals are shown to have close values. We find that Ca3(NbGa)5O12 crystals doped with Er3+ ions are characterized by highest values of the oscillator strengths for hypersensitive transitions and of the intensity parameter Ω2 of Er3+ ions compared to the values of these quantities in the examined garnet crystals, which is determined by the fact that the symmetry of the local environment of Er3+ ions in these crystals is C 1, C 2, or C 2ν. We reveal that, as the concentration of Er3+ ions in these crystals increases from 1 to 39 at %, both the oscillator strength of the hypersensitive transition 4 I 15/2 → 2 H 11/2 of Er3+ ions and their intensity parameter Ω2 tend to decrease, which can be related to an increase in the relative fraction of Er3+ ions with higher symmetry of the local environment.

  14. Large linear magnetoresistance and Shubnikov-de Hass oscillations in single crystals of YPdBi Heusler topological insulators.

    PubMed

    Wang, Wenhong; Du, Yin; Xu, Guizhou; Zhang, Xiaoming; Liu, Enke; Liu, Zhongyuan; Shi, Youguo; Chen, Jinglan; Wu, Guangheng; Zhang, Xi-Xiang

    2013-01-01

    We report the observation of a large linear magnetoresistance (MR) and Shubnikov-de Hass (SdH) quantum oscillations in single crystals of YPdBi Heusler topological insulators. Owning to the successfully obtained the high-quality YPdBi single crystals, large non-saturating linear MR of as high as 350% at 5K and over 120% at 300 K under a moderate magnetic field of 7 T is observed. In addition to the large, field-linear MR, the samples exhibit pronounced SdH quantum oscillations at low temperature. Analysis of the SdH data manifests that the high-mobility bulk electron carriers dominate the magnetotransport and are responsible for the observed large linear MR in YPdBi crystals. These findings imply that the Heusler-based topological insulators have superiorities for investigating the novel quantum transport properties and developing the potential applications.

  15. Island embryo regression driven by a beam of self-ions in the linear regime

    NASA Astrophysics Data System (ADS)

    Flynn, C. P.

    2010-10-01

    The kinetics of island growth and regression are discussed under the approximation of linear response, including the Gibbs-Thompson potential, for a reacting assembly of adatoms and advacancies (thermal defects) on a surface irradiated with a beam of self-ions. First the quasistatic growth or shrinkage rate, for islands of size n less than the critical size \\hat {n} , is calculated for the driven system, exactly, for linear response. This result is employed to determine successively: (i) the regression rate of driven embryo islands with n \\lt \\hat {n} ; and (ii) the structure of the steady state decay chain established when embryos of a particular size n_{0}\\lt \\hat {n} are created by ion beam impacts. The changed embryo distribution caused by irradiation differs markedly from the populations of the embryos at equilibrium.

  16. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    SciTech Connect

    Carbajal, L. Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  17. Enhanced localized energetic ion losses resulting from first-orbit linear and non-linear interactions with Alfvén eigenmodes in DIII-D

    SciTech Connect

    Chen, X.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Grierson, B. A.; Podesta, M.; Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K.; Zeng, L.; Austin, M. E.

    2014-08-15

    Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred from the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. An analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.

  18. Enhanced localized energetic ion losses resulting from first-orbit linear and non-linear interactions with Alfvén eigenmodes in DIII-Da)

    NASA Astrophysics Data System (ADS)

    Chen, X.; Heidbrink, W. W.; Kramer, G. J.; Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K.; Nazikian, R.; Zeng, L.; Austin, M. E.; Grierson, B. A.; Podesta, M.

    2014-08-01

    Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred from the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. An analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.

  19. Quasi-linear analysis of ion Weibel instability in the earth's neutral sheet

    NASA Technical Reports Server (NTRS)

    Lui, Anthony T. Y.; Yoon, Peter H.; Chang, Chia-Lie

    1993-01-01

    A quasi-linear analysis of the ion Weibel instability (IWI) for waves with parallel propagation is carried out for parameters appropriate to the earth's neutral sheet during the substorm interval. For ion drift speed reaching sizable fraction of the ion thermal speed, unstable waves grow to a nonlinear regime in a time interval greater than an ion gyroperiod. The saturation level is attained with current density reduced to about 15-28 percent of its preactivity level. The unstable wave amplitude normalized to the initial ambient field is found to be in the range of 0.2-0.8. This is accompanied by ion heating along the magnetic field with the parallel temperature being enhanced by 25-90 percent. Thus, the IWI can provide nonadiabatic heating of ions in current disruptions during substorms. The associated anomalous resistivity is estimated to be about 1 x 10 exp -7 to 1 x 10 exp -6 s, which is about 11 to 12 orders of magnitude above the classical resistivity.

  20. Two regimes in the decay behavior of ions from a linear r.f. Paul trap

    NASA Astrophysics Data System (ADS)

    Kwolek, Jonathan; Wells, James; Goodman, Douglas; Blümel, Reinhold; Smith, Winthrop

    2016-05-01

    A linear Paul trap (LPT) enables ions to be trapped for use in a variety of experiments. In many of these experiments, such as those measuring charge exchange or sympathetic cooling, the decay of ions from the trap is used to measure some quantity of interest. This decay is typically modeled as a single exponential. We have found that in cases where the trap is loaded to high numbers of ions, the ion decay is better described by a double exponential decay function. We have experimentally examined the decay of ions from an LPT loaded by photoionization from a magneto-optical trap as a function of the q stability parameter of the Paul trap. The LPT is loaded to steady-state, then the loading is stopped and the number of trapped ions as a function of time is monitored to determine the decay. We present numerical simulations and experimental results that demonstrate two distinct regions in the decay. For high steady-state values, the trap exhibits a double-exponential behavior. However, if the trap is filled to a steady-state value below a threshold, the decay recovers the typical single-exponential behavior. This behavior should be universal to any Paul trap regardless of the geometry or species trapped. NSF Grant No. PHY-1307874.

  1. Large and Anisotropic Linear Magnetoresistance in Single Crystals of Black Phosphorus Arising From Mobility Fluctuations.

    PubMed

    Hou, Zhipeng; Yang, Bingchao; Wang, Yue; Ding, Bei; Zhang, Xiaoming; Yao, Yuan; Liu, Enke; Xi, Xuekui; Wu, Guangheng; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2016-01-01

    Black Phosphorus (BP) is presently attracting immense research interest on the global level due to its high mobility and suitable band gap for potential application in optoelectronics and flexible devices. It was theoretically predicted that BP has a large direction-dependent electrical and magnetotransport anisotropy. Investigations on magnetotransport of BP may therefore provide a new platform for studying the nature of electron transport in layered materials. However, to the best of our knowledge, magnetotransport studies, especially the anisotropic magnetoresistance (MR) effect in layered BP, are rarely reported. Here, we report a large linear MR up to 510% at a magnetic field of 7 Tesla in single crystals of BP. Analysis of the temperature and angle dependence of MR revealed that the large linear MR in our sample originates from mobility fluctuations. Furthermore, we reveal that the large linear MR of layered BP in fact follows a three-dimensional behavior rather than a two-dimensional one. Our results have implications to both the fundamental understanding and magnetoresistive device applications of BP.

  2. Large and Anisotropic Linear Magnetoresistance in Single Crystals of Black Phosphorus Arising From Mobility Fluctuations

    NASA Astrophysics Data System (ADS)

    Hou, Zhipeng; Yang, Bingchao; Wang, Yue; Ding, Bei; Zhang, Xiaoming; Yao, Yuan; Liu, Enke; Xi, Xuekui; Wu, Guangheng; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2016-03-01

    Black Phosphorus (BP) is presently attracting immense research interest on the global level due to its high mobility and suitable band gap for potential application in optoelectronics and flexible devices. It was theoretically predicted that BP has a large direction-dependent electrical and magnetotransport anisotropy. Investigations on magnetotransport of BP may therefore provide a new platform for studying the nature of electron transport in layered materials. However, to the best of our knowledge, magnetotransport studies, especially the anisotropic magnetoresistance (MR) effect in layered BP, are rarely reported. Here, we report a large linear MR up to 510% at a magnetic field of 7 Tesla in single crystals of BP. Analysis of the temperature and angle dependence of MR revealed that the large linear MR in our sample originates from mobility fluctuations. Furthermore, we reveal that the large linear MR of layered BP in fact follows a three-dimensional behavior rather than a two-dimensional one. Our results have implications to both the fundamental understanding and magnetoresistive device applications of BP.

  3. On the formation of shocks of electromagnetic plane waves in non-linear crystals

    NASA Astrophysics Data System (ADS)

    Christodoulou, Demetrios; Perez, Daniel Raoul

    2016-08-01

    An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global C2-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density, assuming no dispersion.

  4. Large and Anisotropic Linear Magnetoresistance in Single Crystals of Black Phosphorus Arising From Mobility Fluctuations

    PubMed Central

    Hou, Zhipeng; Yang, Bingchao; Wang, Yue; Ding, Bei; Zhang, Xiaoming; Yao, Yuan; Liu, Enke; Xi, Xuekui; Wu, Guangheng; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2016-01-01

    Black Phosphorus (BP) is presently attracting immense research interest on the global level due to its high mobility and suitable band gap for potential application in optoelectronics and flexible devices. It was theoretically predicted that BP has a large direction-dependent electrical and magnetotransport anisotropy. Investigations on magnetotransport of BP may therefore provide a new platform for studying the nature of electron transport in layered materials. However, to the best of our knowledge, magnetotransport studies, especially the anisotropic magnetoresistance (MR) effect in layered BP, are rarely reported. Here, we report a large linear MR up to 510% at a magnetic field of 7 Tesla in single crystals of BP. Analysis of the temperature and angle dependence of MR revealed that the large linear MR in our sample originates from mobility fluctuations. Furthermore, we reveal that the large linear MR of layered BP in fact follows a three-dimensional behavior rather than a two-dimensional one. Our results have implications to both the fundamental understanding and magnetoresistive device applications of BP. PMID:27030141

  5. Large and Anisotropic Linear Magnetoresistance in Single Crystals of Black Phosphorus Arising From Mobility Fluctuations.

    PubMed

    Hou, Zhipeng; Yang, Bingchao; Wang, Yue; Ding, Bei; Zhang, Xiaoming; Yao, Yuan; Liu, Enke; Xi, Xuekui; Wu, Guangheng; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2016-01-01

    Black Phosphorus (BP) is presently attracting immense research interest on the global level due to its high mobility and suitable band gap for potential application in optoelectronics and flexible devices. It was theoretically predicted that BP has a large direction-dependent electrical and magnetotransport anisotropy. Investigations on magnetotransport of BP may therefore provide a new platform for studying the nature of electron transport in layered materials. However, to the best of our knowledge, magnetotransport studies, especially the anisotropic magnetoresistance (MR) effect in layered BP, are rarely reported. Here, we report a large linear MR up to 510% at a magnetic field of 7 Tesla in single crystals of BP. Analysis of the temperature and angle dependence of MR revealed that the large linear MR in our sample originates from mobility fluctuations. Furthermore, we reveal that the large linear MR of layered BP in fact follows a three-dimensional behavior rather than a two-dimensional one. Our results have implications to both the fundamental understanding and magnetoresistive device applications of BP. PMID:27030141

  6. Linear Ion Traps in Space: The Mars Organic Molecule Analyzer (MOMA) Instrument and Beyond

    NASA Astrophysics Data System (ADS)

    Arevalo, Ricardo; Brinckerhoff, William; Mahaffy, Paul; van Amerom, Friso; Danell, Ryan; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Grubisic, Andrej; Goesmann, Fred; Cottin, Hervé

    2015-11-01

    Historically, quadrupole mass spectrometer (QMS) instruments have been used to explore a wide survey of planetary targets in our solar system, from Venus (Pioneer Venus) to Saturn (Cassini-Huygens). However, linear ion trap (LIT) mass spectrometers have found a niche as smaller, versatile alternatives to traditional quadrupole analyzers.The core astrobiological experiment of ESA’s ExoMars Program is the Mars Organic Molecule Analyzer (MOMA) onboard the ExoMars 2018 rover. The MOMA instrument is centered on a linear (or 2-D) ion trap mass spectrometer. As opposed to 3-D traps, LIT-based instruments accommodate two symmetrical ion injection pathways, enabling two complementary ion sources to be used. In the case of MOMA, these two analytical approaches are laser desorption mass spectrometry (LDMS) at Mars ambient pressures, and traditional gas chromatography mass spectrometry (GCMS). The LIT analyzer employed by MOMA also offers: higher ion capacity compared to a 3-D trap of the same volume; redundant detection subassemblies for extended lifetime; and, a link to heritage QMS designs and assembly logistics. The MOMA engineering test unit (ETU) has demonstrated the detection of organics in the presence of wt.%-levels of perchlorate, effective ion enhancement via stored waveform inverse Fourier transform (SWIFT), and derivation of structural information through tandem mass spectrometry (MS/MS).A more progressive linear ion trap mass spectrometer (LITMS), funded by the NASA ROSES MatISSE Program, is being developed at NASA GSFC and promises to augment the capabilities of the MOMA instrument by way of: an expanded mass range (i.e., 20 - 2000 Da); detection of both positive and negative ions; spatially resolved (<1 mm) characterization of individual rock core layers; and, evolved gas analysis and GCMS with pyrolysis up to 1300° C (enabling breakdown of refractory phases). The Advanced Resolution Organic Molecule Analyzer (AROMA) instrument, being developed through NASA

  7. Impact of Protein-Metal Ion Interactions on the Crystallization of Silk Fibroin Protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy

    2009-03-01

    Proteins can easily form bonds with a variety of metal ions, which provides many unique biological functions for the protein structures, and therefore controls the overall structural transformation of proteins. We use advanced thermal analysis methods such as temperature modulated differential scanning calorimetry and quasi-isothermal TMDSC, combined with Fourier transform infrared spectroscopy, and scanning electron microscopy, to investigate the protein-metallic ion interactions in Bombyx mori silk fibroin proteins. Silk samples were mixed with different metal ions (Ca^2+, K^+, Ma^2+, Na^+, Cu^2+, Mn^2+) with different mass ratios, and compared with the physical conditions in the silkworm gland. Results show that all metallic ions can directly affect the crystallization behavior and glass transition of silk fibroin. However, different ions tend to have different structural impact, including their role as plasticizer or anti-plasticizer. Detailed studies reveal important information allowing us better to understand the natural silk spinning and crystallization process.

  8. Growth and characterization of ADP single crystals doped with alkali and alkaline metal ions

    NASA Astrophysics Data System (ADS)

    Kavya, H.; Bhavyashree, M.; Kumari, R. Ananda

    2016-05-01

    Pure and KBr, KI, MgCl2 & LiCl added ammonium dihydrogen orthophosphate (ADP) single crystals have been grown at room temperature by the slow evaporation method. The grown crystals have been subjected to powder XRD, FTIR, UV-Vis, and SHG studies. The crystallinity and the functional groups are confirmed by powder XRD and FTIR spectroscopy. Good transparency in the entire visible region which is an essential requirement for a nonlinear optical crystal is observed for the grown crystals. Results of the non-linear optical measurements indicate the enhancement of second harmonic generation efficiency due to the dopants and show the suitability of the ingot for nonlinear optical application

  9. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells

    NASA Astrophysics Data System (ADS)

    Xia, Jian; Petibon, Remi; Xiong, Deijun; Ma, Lin; Dahn, J. R.

    2016-10-01

    Some of the problems of current electrolytes for high voltage Li-ion cells originate from ethylene carbonate (EC) which is thought to be an essential electrolyte component for Li-ion cells. Ethylene carbonate-free electrolytes containing 1 M LiPF6 in ethylmethyl carbonate (EMC) with small loadings of vinylene carbonate, fluoroethylene carbonate, or (4R,5S)-4,5-Difluoro-1,3-dioxolan-2-one acting as "enablers" were developed. These electrolytes used in Li(Ni0.4Mn0.4Co0.2)O2/graphite pouch type Li-ion cells tested at 4.2 V and 4.5 V yielded excellent charge-discharge cycling and storage properties. The results for cells containing linear alkyl carbonate electrolytes with no EC were compared to those of cells with EC-containing electrolytes incorporating additives proven to enhance cyclability of cells. The combination of EMC with appropriate amounts of these enablers yields cells with better performance than cells with EC-containing electrolytes incorporating additives tested to 4.5 V. Further optimizing these linear alkyl carbonate electrolytes with appropriate co-additives may represent a viable path to the successful commercial utilization of NMC/graphite Li-ion cells operated to 4.5 V and above.

  10. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  11. Generalized Jeans' Escape of Pick-Up Ions in Quasi-Linear Relaxation

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2011-01-01

    Jeans escape is a well-validated formulation of upper atmospheric escape that we have generalized to estimate plasma escape from ionospheres. It involves the computation of the parts of particle velocity space that are unbound by the gravitational potential at the exobase, followed by a calculation of the flux carried by such unbound particles as they escape from the potential well. To generalize this approach for ions, we superposed an electrostatic ambipolar potential and a centrifugal potential, for motions across and along a divergent magnetic field. We then considered how the presence of superthermal electrons, produced by precipitating auroral primary electrons, controls the ambipolar potential. We also showed that the centrifugal potential plays a small role in controlling the mass escape flux from the terrestrial ionosphere. We then applied the transverse ion velocity distribution produced when ions, picked up by supersonic (i.e., auroral) ionospheric convection, relax via quasi-linear diffusion, as estimated for cometary comas [1]. The results provide a theoretical basis for observed ion escape response to electromagnetic and kinetic energy sources. They also suggest that super-sonic but sub-Alfvenic flow, with ion pick-up, is a unique and important regime of ion-neutral coupling, in which plasma wave-particle interactions are driven by ion-neutral collisions at densities for which the collision frequency falls near or below the gyro-frequency. As another possible illustration of this process, the heliopause ribbon discovered by the IBEX mission involves interactions between the solar wind ions and the interstellar neutral gas, in a regime that may be analogous [2].

  12. Water molecule-driven reversible single-crystal to single-crystal transformation of a multi-metallic coordination polymer with controllable metal ion movement.

    PubMed

    Niu, Zheng; Ma, Jian-Gong; Shi, Wei; Cheng, Peng

    2014-02-21

    A single-crystal to single-crystal (SC-SC) transformation process driven by water molecules has been exhibited by a multi-metallic coordination polymer. The in situ heating single crystal X-ray diffraction technique was applied to study the control of metal ion movement in the reversible SC-SC transformation process.

  13. Effects of ferroelectric nanoparticles on ion-transport in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Garvey, Alfred; Basu, Rajratan

    2015-03-01

    A small quantity of BaTiO3 ferroelectric nanoparticles (FNPs) of 50 nm diameter was doped in a nematic liquid crystal (LC), and the free ion concentration was found to be significantly reduced in the LC +FNP hybrid compared to that of the pure LC. The strong electric fields, due to the permanent dipole moment of the FNPs, trapped some mobile ions, reducing the free ion concentration in the LC media. The reduction of free ions was found to have coherent impacts on the LC's conductivity, rotational viscosity, and electric field-induced nematic switching.

  14. Effects of ferroelectric nanoparticles on ion transport in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Basu, Rajratan; Garvey, Alfred

    2014-10-01

    A small quantity of BaTiO3 ferroelectric nanoparticles (FNPs) of 50 nm diameter was doped in a nematic liquid crystal (LC), and the free ion concentration was found to be significantly reduced in the LC + FNP hybrid compared to that of the pure LC. The strong electric fields, due to the permanent dipole moment of the FNPs, trapped some mobile ions, reducing the free ion concentration in the LC media. The reduction of free ions was found to have coherent impacts on the LC's conductivity, rotational viscosity, and electric field-induced nematic switching.

  15. Fabrication and Characterization of Linear Terahertz Detector Arrays Based on Lithium Tantalate Crystal

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Wang, Jun; Gou, Jun; Huang, Zehua; Jiang, Yadong

    2015-01-01

    Two samples of 30-pixel linear terahertz detector arrays (TDAs) were fabricated based on lithium tantalate (LT) crystals. Pixel readout circuit (ROC) was designed to extract the weak current signal of TDAs. A test platform was established for performance evaluation of TDA+ROC components. By using a 2.52THz laser as radiation source, the test results reveal that average voltage responsivities of the components were larger than 7000V/W and non-uniformity no more than 2.1%. Average noise equivalent power ( NEP) of one sample was measured to be 1.5×10-9 W/Hz1/2, which is low enough and desirable for high performance THz detector.

  16. Highly non-linear solid core photonic crystal fiber with one nano hole

    NASA Astrophysics Data System (ADS)

    Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar

    2015-08-01

    The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm2), high nonlinearity (36.34 W-1km-1) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for the SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.

  17. Design and fabrication of ytterbium-doped photonic crystal fiber with low non-linearity

    NASA Astrophysics Data System (ADS)

    Wu, Jiale; Zhang, Wei; Zhou, Guiyao; Xia, Changming; Liu, Jiantao; Zheng, Yan; Tian, Hongchun; Hou, Zhiyun

    2015-05-01

    We report on an ytterbium-doped photonic crystal fiber fabricated by laser sintering technology combined with a solution doping method. This novel fabrication process has never been reported to the best of our knowledge. Together with low non-linearity, this PCF combines the advantages of high pump absorption efficiency and bend-insensitive, which makes this fiber predestinated for the high power fiber laser applications. The fiber laser experiment was conducted with a simple Fabry-Perot cavity to verify the performance of the PCF. A high slope efficiency of ~70.6% was obtained from a 1.5 m-long fiber. During the experiment, no roll over was observed up to the highest power level, which was only limited by the available pump power. The experimental results reveal the enormous output power scaling potential of the PCF.

  18. Crystal structure of Sr2CdPt2 containing linear platinum chains

    PubMed Central

    Nawawi, Effendi; Gulo, Fakhili; Köhler, Jürgen

    2016-01-01

    The ternary inter­metallic title phase, distrontium cadmium diplatinum, was prepared from stoichiometric amounts of the elements at 1123 K for one day. The crystal structure adopts the ortho­rhom­bic Ca2GaCu2 structure type in space group Immm. Its main features are characterized by linear (Pt—Pt⋯Pt—Pt)n chains that are aligned along [010] and condensed through cadmium atoms forming Cd-centred Pt2Cd2/2 rectangles to build up sheets parallel to (001). These sheets are connected to each other via alternating (001) sheets of strontium atoms along [001]. The strontium sheets consists of corrugated Sr4 units that are condensed to each other through edge-sharing parallel to [100]. PMID:26958374

  19. Non-linear electro-optical effects in the study of the helical smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Nowicka, K.; Kuczyński, W.

    2016-04-01

    Measurements of the non-linear electro-optical effects for the well-known prototype liquid crystal material (MHPOBC) are presented. The method to identify liquid crystalline phases and to determine temperatures of phase transitions based on the analysis of the second harmonic component of electro-optical response spectra is used. Applying that method, the values of the frequency (?) at which the second harmonic electro-optic response (EOR) possesses an extremum are determined for each smectic phase. We suggest that this characteristic frequency correspond to the phase-type mode processes. Furthermore, we show that the usually neglected results on heating can be useful in discussions of dynamical behaviour of second harmonic EOR in case of smectic phases.

  20. Crystal orientation mapping via ion channeling: An alternative to EBSD.

    PubMed

    Langlois, C; Douillard, T; Yuan, H; Blanchard, N P; Descamps-Mandine, A; Van de Moortèle, B; Rigotti, C; Epicier, T

    2015-10-01

    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. PMID:26094201

  1. Piezoelectric single crystal and magnetostrictive Metglas composites: Linear and nonlinear magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Finkel, P.; Li, Jiefang; Viehland, D.

    2014-04-01

    Both the linear (αV) and nonlinear (αV,n) magnetoelectric coefficients were systemically studied in laminated composites of Metglas and [001]-orientated piezoelectric single crystals of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) and Mn-doped PMN-PT. The coefficients were close in value in both cases at quasistatic mode (i.e., 3.8 V/Oe relative to 3.5 V/Oe) and were enhanced by factors of ×18 (Metglas/PMN-PT) and ×32 (Metglas/Mn-doped PMN-PT) at the electromechanical resonance (EMR). The use of Mn-doped PMN-PT crystals results in a higher gain factor due to a larger mechanical quality factor (i.e., 20.9 relative to 40.6). Accordingly, both types of laminates had similar values of αV,n when modulated at 1 kHz, but Mn-doped PMN-PT ones had a higher value when modulated at the EMR.

  2. Electrochemical Ion-Exchange Regeneration and Fluidized Bed Crystallization for Zero-Liquid-Discharge Water Softening.

    PubMed

    Chen, Yingying; Davis, Jake R; Nguyen, Chi H; Baygents, James C; Farrell, James

    2016-06-01

    This research investigated the use of an electrochemical system for regenerating ion-exchange media and for promoting the crystallization of hardness minerals in a fluidized bed crystallization reactor (FBCR). The closed-loop process eliminates the creation of waste brine solutions that are normally produced when regenerating ion-exchange media. A bipolar membrane electrodialysis stack was used to generate acids and bases from 100 mM salt solutions. The acid was used to regenerate weak acid cation (WAC) ion-exchange media used for water softening. The base solutions were used to absorb CO2 gas and to provide a source of alkalinity for removing noncarbonate hardness by WAC media operated in H(+) form. The base solutions were also used to promote the crystallization of CaCO3 and Mg(OH)2 in a FBCR. The overall process removes hardness ions from the water being softened and replaces them with H(+) ions, slightly decreasing the pH value of the softened water. The current utilization efficiency for acid and base production was ∼75% over the operational range of interest, and the energy costs for producing acids and bases were an order of magnitude lower than the costs for purchasing acid and base in bulk quantities. Ion balances indicate that the closed-loop system will accumulate SO4(2-), Cl(-), and alkali metal ions. Acid and base balances indicate that for a typical water, small amounts of base will be accumulated. PMID:27161852

  3. Electrochemical Ion-Exchange Regeneration and Fluidized Bed Crystallization for Zero-Liquid-Discharge Water Softening.

    PubMed

    Chen, Yingying; Davis, Jake R; Nguyen, Chi H; Baygents, James C; Farrell, James

    2016-06-01

    This research investigated the use of an electrochemical system for regenerating ion-exchange media and for promoting the crystallization of hardness minerals in a fluidized bed crystallization reactor (FBCR). The closed-loop process eliminates the creation of waste brine solutions that are normally produced when regenerating ion-exchange media. A bipolar membrane electrodialysis stack was used to generate acids and bases from 100 mM salt solutions. The acid was used to regenerate weak acid cation (WAC) ion-exchange media used for water softening. The base solutions were used to absorb CO2 gas and to provide a source of alkalinity for removing noncarbonate hardness by WAC media operated in H(+) form. The base solutions were also used to promote the crystallization of CaCO3 and Mg(OH)2 in a FBCR. The overall process removes hardness ions from the water being softened and replaces them with H(+) ions, slightly decreasing the pH value of the softened water. The current utilization efficiency for acid and base production was ∼75% over the operational range of interest, and the energy costs for producing acids and bases were an order of magnitude lower than the costs for purchasing acid and base in bulk quantities. Ion balances indicate that the closed-loop system will accumulate SO4(2-), Cl(-), and alkali metal ions. Acid and base balances indicate that for a typical water, small amounts of base will be accumulated.

  4. A high-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap.

    SciTech Connect

    Robbins, D L; Chen, H; Beiersdorfer, P; Faenov, A Y; Pikuz, T A; May, M J; Dunn, J; Smith, A J

    2004-04-14

    A compact high-resolution ({lambda}/{Delta}{lambda} {approx} 10000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured.

  5. Studies on L-citrulline doped potassium dihydrogen phosphate- A non linear crystal with significant nonlinear properties

    NASA Astrophysics Data System (ADS)

    Sreevalsa, V. G.; Jayalekshmi, S.

    2014-01-01

    Potassium Dihydrogen Phosphate (KDP) single crystal is considered as one of the best representative of nonlinear optical crystals. Recently, amino acids having excellent nonlinear optical characteristics are being investigated as prospective dopants to improve the non linear optical characteristics of KDP. The present work is an attempt in this direction and L citrulline, one of the non essential amino acids showing good non linear optical characteristics is used as the dopant for KDP. Good quality crystals of L-citrulline doped KDP crystals were grown by slow evaporation technique. From the powder X-ray diffraction studies of doped KDP crystal, the structure of the doped crystals was determined by direct method and refined by Pawley method employing Topaz version program using the single crystal X-ray data for pure KDP. The lattice parameters for L citrulline doped KDP are a=7.467A0, b=7.467 A0, c=6.977 A0. The crystal falls into the tetragonal crystal system with space group I42 d. The presence of carbon and oxygen, which are primary components of amino acids, in the EDAX spectrum confirms the effectiveness of doping. The absorption spectra of the doped samples show that the crystals are transparent in the entire visible region. The second harmonic generation efficiency of the doped samples was determined by Kurtz powder technique using the Q-switched Nd:YAG laser beam and is found to be 2.2 times that of KDP. The nonlinear optical properties can be well studied by the open aperture Z scan technique. The open aperture curve exhibits a normalized transmittance valley. The nonlinear absorption coefficient β is obtained by theoretical fitting for two photon absorption. It is inferred that doping KDP with L citrulline has enhanced the nonlinearity considerably. This obviously suggests the potentiality of the crystal as an optical power limiter and also for various optical device applications.

  6. Studies on L-citrulline doped potassium dihydrogen phosphate- A non linear crystal with significant nonlinear properties

    SciTech Connect

    Sreevalsa, V. G. E-mail: jayalekshmi@cusat.ac.in; Jayalekshmi, S. E-mail: jayalekshmi@cusat.ac.in

    2014-01-28

    Potassium Dihydrogen Phosphate (KDP) single crystal is considered as one of the best representative of nonlinear optical crystals. Recently, amino acids having excellent nonlinear optical characteristics are being investigated as prospective dopants to improve the non linear optical characteristics of KDP. The present work is an attempt in this direction and L citrulline, one of the non essential amino acids showing good non linear optical characteristics is used as the dopant for KDP. Good quality crystals of L-citrulline doped KDP crystals were grown by slow evaporation technique. From the powder X-ray diffraction studies of doped KDP crystal, the structure of the doped crystals was determined by direct method and refined by Pawley method employing Topaz version program using the single crystal X-ray data for pure KDP. The lattice parameters for L citrulline doped KDP are a=7.467A{sup 0}, b=7.467 A{sup 0}, c=6.977 A{sup 0}. The crystal falls into the tetragonal crystal system with space group I42 d. The presence of carbon and oxygen, which are primary components of amino acids, in the EDAX spectrum confirms the effectiveness of doping. The absorption spectra of the doped samples show that the crystals are transparent in the entire visible region. The second harmonic generation efficiency of the doped samples was determined by Kurtz powder technique using the Q-switched Nd:YAG laser beam and is found to be 2.2 times that of KDP. The nonlinear optical properties can be well studied by the open aperture Z scan technique. The open aperture curve exhibits a normalized transmittance valley. The nonlinear absorption coefficient β is obtained by theoretical fitting for two photon absorption. It is inferred that doping KDP with L citrulline has enhanced the nonlinearity considerably. This obviously suggests the potentiality of the crystal as an optical power limiter and also for various optical device applications.

  7. Surface morphological instability of silicon (100) crystals under microwave ion physical etching

    NASA Astrophysics Data System (ADS)

    Yafarov, R. K.; Shanygin, V. Ya.

    2016-02-01

    This paper presents the results of studies of the dynamics of relaxation modification of the morphological characteristics of atomically clean surfaces of silicon (100) crystals with different types of conductivity after microwave ion physical etching in an argon atmosphere. For the first time, the effect of the electronic properties on the morphological characteristics and the surface free energy of silicon crystals is experimentally shown and proven by physicochemical methods.

  8. Note: A novel design of a microwave feed for a microwave frequency standard with a linear ion trap

    SciTech Connect

    Zhang, J. W. Miao, K.; Wang, S. G.; Wang, Z. B.

    2014-07-15

    Linear ion traps are important tools in many applications, particularly in mass spectrum analyzers and frequency standards. Here a novel design of a microwave feed integrated into one electrode of a linear quadrupole ion trap is demonstrated for the application of a microwave frequency standard based on cadmium ions. The mechanical structure of the microwave feed is compact and easy to build. The ion trap integrated with this microwave feed is successfully applied to measure the hyperfine splitting of the ground state of {sup 113}Cd{sup +}, thus demonstrating the practicality and reliability of the microwave feed.

  9. Improving Brush Polymer Infrared One-Dimensional Photonic Crystals via Linear Polymer Additives

    SciTech Connect

    Macfarlane, Robert J.; Kim, Bongkeun; Lee, Byeongdu; Weitekamp, Raymond A.; Bates, Christopher M.; Lee, Siu Fung; Chang, Alice B.; Delaney, Kris T.; Fredrickson, Glen H.; Atwater, Harry A.; Grubbs, Robert H.

    2014-12-17

    Brush block copolymers (BBCPs) enable the rapid fabrication of self-assembled one-dimensional photonic crystals with photonic band gaps that are tunable in the UV-vis-IR, where the peak wavelength of reflection scales with the molecular weight of the BBCPs. Due to the difficulty in synthesizing very large BBCPs, the fidelity of the assembled lamellar nanostructures drastically erodes as the domains become large enough to reflect IR light, severely limiting their performance as optical filters. To overcome this challenge, short linear homopolymers are used to swell the arrays to ~180% of the initial domain spacing, allowing for photonic band gaps up to~1410 nm without significant opacity in the visible, demonstrating improved ordering of the arrays. Additionally, blending BBCPs with random copolymers enables functional groups to be incorporated into the BBCP array without attaching them directly to the BBCPs. The addition of short linear polymers to the BBCP arrays thus offers a facile means of improving the self-assembly and optical properties of these materials, as well as adding a route to achieving films with greater functionality and tailorability, without the need to develop or optimize the processing conditions for each new brush polymer synthesized.

  10. Liquid crystal surface alignments by using ion beam sputtered magnetic thin films

    SciTech Connect

    Wu, H.-Y.; Pan, R.-P.

    2007-08-13

    A method for liquid crystal surface alignment by using a one-step, ion beam bombardment of the glass substrates is demonstrated. Precoating by polyimide is not necessary. The authors show that the homeotropic alignment is achieved due to orientation of the diamagnetic nematogenic molecules by the magnetic field from the {gamma}-Fe{sub 2}O{sub 3} ferrimagnetic thin films created on the substrates by ion beam bombardment. The film exhibits a high Curie temperature well above 300 K and a compensation temperature which is the typical feature of ferrimagnetism. This is a simple, noncontact, and reliable alignment method for liquid crystal devices.

  11. Focused ion-beam writing of channel waveguides in bismuth germanate crystal for telecommunication bands

    NASA Astrophysics Data System (ADS)

    He, Ruiyun; Vanga, Sudheer Kumar; Bettiol, Andrew A.; Chen, Feng

    2015-05-01

    We report on the fabrication of channel waveguides in bismuth germanate (BGO) crystal using focused ion-beam writing. 1 and 2 MeV He+ ions with different fluences are utilized to directly write waveguides in BGO crystal. The guiding properties of the BGO waveguides are explored at the wavelengths of 632.8 nm, 1.31 μm and 1.55 μm, showing that the channel waveguides support light guidance from visible to telecommunication bands along both transverse-electric and transverse-magnetic polarizations.

  12. A simple model for /f-->d transitions of rare-earth ions in crystals

    NASA Astrophysics Data System (ADS)

    Duan, C. K.; Reid, M. F.

    2003-02-01

    Theoretical simulation and interpretation of f→ d transitions of rare earth ions in crystals are more difficult than for f→ f transitions, because f→ d transitions involve many more energy levels and are further complicated by strong vibronic transitions, so the experimental spectra contain many fewer resolvable peaks. In order to better understand the structure of the spectra, a simple model is developed to take into account the main interactions in the fN-1 d configuration. This model leads to quantum numbers characterizing the states and the associated transition selection rules. Relative transition intensities can be quantitatively estimated. The model is applied to Eu 2+ and Sm 3+ ions in crystals.

  13. Micro and nano-patterning of single-crystal diamond by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    García, G.; Preda, I.; Díaz-Híjar, M.; Tormo-Márquez, V.; Peña-Rodríguez, O.; Olivares, J.; Bosia, F.; Pugno, N. M.; Picollo, F.; Giuntini, L.; Sordini, A.; Olivero, P.; López-Mir, L.; Ocal, C.

    2016-10-01

    This paper presents experimental data and analysis of the structural damage caused by swift-heavy ion irradiation of single-crystal diamond. The patterned buried structural damage is shown to generate, via swelling, a mirror-pattern on the sample surface, which remains largely damage-free. While extensive results are available for light ion implantations, this effect is reported here for the first time in the heavy ion regime, where a completely different range of input parameters (in terms of ion species, energy, stopping power, etc.) is available for customized irradiation. The chosen ion species are Au and Br, in the energy range 10-40 MeV. The observed patterns, as characterized by profilometry and atomic force microscopy, are reported in a series of model experiments, which show swelling patterns ranging from a few nm to above 200 nm. Moreover, a systematic phenomenological modelling is presented, in which surface swelling measurements are correlated to buried crystal damage. A comparison is made with data for light ion implantations, showing good compatibility with the proposed models. The modelling presented in this work can be useful for the design and realization of micropatterned surfaces in single crystal diamond, allowing to generate highly customized structures by combining appropriately chosen irradiation parameters and masks.

  14. Effect of rare earth ions on the properties of glycine phosphite single crystals

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Moorthy Babu, S.; Kumar, Binay; Bhagavannarayana, G.

    2013-01-01

    Optically transparent glycine phosphite (GPI) single crystals doped with rare earth metal ions (Ce, Nd and La) were grown from aqueous solution by employing the solvent evaporation and slow cooling methods. Co-ordination of dopants with GPI was confirmed by X-ray fluorescence spectroscopic analysis. Single crystal X-ray diffraction analysis was carried out to determine the lattice parameters and to analyze the structural morphology of GPI with dopants, which indicates that cell parameters of doped crystals were significantly varied with pure GPI. Crystalline perfection of doped GPI crystals was determined by high resolution X-ray diffraction analysis by means of full width at half maximum values. Influence of the dopants on the optical properties of the material was determined. Paraelectric to ferroelectric transition temperature (Tc) of doped GPI crystals were identified using differential scanning calorimetric measurements. Piezoelectric charge coefficient d33 was measured for pure and doped GPI crystals. Hysteresis (P-E) loop was traced for ferroelectric b-axis and (100) plane of pure and doped GPI crystals with different biasing field and ferroelectric parameters were calculated. Mechanical stability of crystals was determined by Vickers microhardness measurements; elastic stiffness constant 'C11' and yield strength 'σy' were calculated from hardness values. Mechanical and ferroelectric properties of doped crystals were improved with doping of rare earth metals.

  15. A Proteomics Grade Electron Transfer Dissociation-enabled Hybrid Linear Ion Trap-orbitrap Mass Spectrometer

    PubMed Central

    McAlister, Graeme C.; Berggren, W. Travis; Horning, Stevan; Makarov, Alexander; Phanstiel, Doug; Griep-Raming, Jens; Stafford, George; Swaney, Danielle L.; Syka, John E. P.; Zabrouskov, Vlad

    2008-01-01

    Here we describe the modification of a quadrupole linear ion trap-orbitrap hybrid (QLT-orbitrap) mass spectrometer to accommodate a negative chemical ionization (NCI) source. The NCI source is used to produce fluoranthene radical anions for imparting electron transfer dissociation (ETD). The anion beam is stable, robust, and intense so that a sufficient amount of reagents can be injected into the QLT in only 4 - 8 ms. Following ion/ion reaction in the QLT, ETD product ions are mass-to-charge (m/z) analyzed in either the QLT (for speed and sensitivity) or the orbitrap (for mass resolution and accuracy). Here we describe the physical layout of this device, parametric optimization of anion transport, an evaluation of relevant ETD figures of merit, and the application of this instrument to protein sequence analysis. Described proteomic applications include complex peptide mixture analysis, post-translational modification (PTM) site identification, isotope-encoded quantitation, large peptide characterization, and intact protein analysis. From these experiments we conclude the ETD-enabled orbitrap will provide the proteomic field with several new opportunities and represents an advance in protein sequence analysis technologies. PMID:18613715

  16. A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps

    SciTech Connect

    Greenwood, J. B.; Kelly, O.; Calvert, C. R.; Duffy, M. J.; King, R. B.; Belshaw, L.; Graham, L.; Alexander, J. D.; Williams, I. D.; Bryan, W. A.; Turcu, I. C. E.; Cacho, C. M.; Springate, E.

    2011-04-15

    In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components.

  17. Automated identification of elemental ions in macromolecular crystal structures

    SciTech Connect

    Echols, Nathaniel Morshed, Nader; Afonine, Pavel V.; McCoy, Airlie J.; Read, Randy J.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-04-01

    The solvent-picking procedure in phenix.refine has been extended and combined with Phaser anomalous substructure completion and analysis of coordination geometry to identify and place elemental ions. Many macromolecular model-building and refinement programs can automatically place solvent atoms in electron density at moderate-to-high resolution. This process frequently builds water molecules in place of elemental ions, the identification of which must be performed manually. The solvent-picking algorithms in phenix.refine have been extended to build common ions based on an analysis of the chemical environment as well as physical properties such as occupancy, B factor and anomalous scattering. The method is most effective for heavier elements such as calcium and zinc, for which a majority of sites can be placed with few false positives in a diverse test set of structures. At atomic resolution, it is observed that it can also be possible to identify tightly bound sodium and magnesium ions. A number of challenges that contribute to the difficulty of completely automating the process of structure completion are discussed.

  18. Solid-State Structure and Crystallization in Double-Crystalline Diblock Copolymers of Linear Polyethylene and Hydrogenated Polynorbornene

    SciTech Connect

    Li, Sheng; Myers, Sasha B.; Register, Richard A.

    2012-10-10

    Double-crystalline diblock copolymers of linear polyethylene (LPE) and hydrogenated polynorbornene (hPN) are synthesized, and their crystallization behavior and morphology are examined using small-angle (SAXS) and wide-angle X-ray scattering (WAXS). In symmetric hPN/LPE diblocks with molecular weights above 50 kg/mol, the hPN block has previously been shown to crystallize first and set the solid-state microstructure. Two-dimensional WAXS on hand-drawn fiber specimens reveals that the LPE crystals formed in confinement stack orthogonally to the hPN crystals. By adjusting total molecular weight, the order of block crystallization may be reversed, even while holding the block length ratio fixed. At a diblock molecular weight of 20 kg/mol, simultaneous time-resolved SAXS/WAXS reveals that the LPE block crystallizes first, even when LPE is the minority component, and restricts hPN to crystallize between the LPE lamellae. The relative orientation of the LPE and hPN crystals in the lower molecular weight diblocks is examined by modeling changes in the SAXS primary peak intensity on cooling two diblocks through the hPN crystal-crystal transition, where hPN densifies as it adopts a rotationally ordered crystal structure. Only a perpendicular stacking of hPN and LPE crystals consistently yields the large reduction in primary SAXS peak intensity observed for both diblocks. Thus, even though the templating block switches from hPN to LPE as the diblock molecular weight is reduced, the orthogonal stacking motif is retained for both high- and low-molecular-weight copolymers.

  19. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    NASA Astrophysics Data System (ADS)

    Told, D.; Cookmeyer, J.; Astfalk, P.; Jenko, F.

    2016-07-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm’s law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  20. Time-Resolved Imaging of the MALDI Linear-TOF Ion Cloud: Direct Visualization and Exploitation of Ion Optical Phenomena Using a Position- and Time-Sensitive Detector

    NASA Astrophysics Data System (ADS)

    Ellis, Shane R.; Soltwisch, Jens; Heeren, Ron M. A.

    2014-05-01

    In this study, we describe the implementation of a position- and time-sensitive detection system (Timepix detector) to directly visualize the spatial distributions of the matrix-assisted laser desorption ionization ion cloud in a linear-time-of-flight (MALDI linear-ToF) as it is projected onto the detector surface. These time-resolved images allow direct visualization of m/z-dependent ion focusing effects that occur within the ion source of the instrument. The influence of key parameters, namely extraction voltage ( E V ), pulsed-ion extraction (PIE) delay, and even the matrix-dependent initial ion velocity was investigated and were found to alter the focusing properties of the ion-optical system. Under certain conditions where the spatial focal plane coincides with the detector plane, so-called x-y space focusing could be observed (i.e., the focusing of the ion cloud to a small, well-defined spot on the detector). Such conditions allow for the stigmatic ion imaging of intact proteins for the first time on a commercial linear ToF-MS system. In combination with the ion-optical magnification of the system (~100×), a spatial resolving power of 11-16 μm with a pixel size of 550 nm was recorded within a laser spot diameter of ~125 μm. This study demonstrates both the diagnostic and analytical advantages offered by the Timepix detector in ToF-MS.

  1. The Crystal Structure of PPIL1 Bound to Cyclosporine A Suggests a Binding Mode for a Linear Epitope of the SKIP Protein

    PubMed Central

    Stegmann, Christian M.; Lührmann, Reinhard; Wahl, Markus C.

    2010-01-01

    Background The removal of introns from pre-mRNA is carried out by a large macromolecular machine called the spliceosome. The peptidyl-prolyl cis/trans isomerase PPIL1 is a component of the human spliceosome and binds to the spliceosomal SKIP protein via a binding site distinct from its active site. Principal Findings Here, we have studied the PPIL1 protein and its interaction with SKIP biochemically and by X-ray crystallography. A minimal linear binding epitope derived from the SKIP protein could be determined using a peptide array. A 36-residue region of SKIP centred on an eight-residue epitope suffices to bind PPIL1 in pull-down experiments. The crystal structure of PPIL1 in complex with the inhibitor cyclosporine A (CsA) was obtained at a resolution of 1.15 Å and exhibited two bound Cd2+ ions that enabled SAD phasing. PPIL1 residues that have previously been implicated in binding of SKIP are involved in the coordination of Cd2+ ions in the present crystal structure. Employing the present crystal structure, the determined minimal binding epitope and previously published NMR data [1], a molecular docking study was performed. In the docked model of the PPIL1·SKIP interaction, a proline residue of SKIP is buried in a hydrophobic pocket of PPIL1. This hydrophobic contact is encircled by several hydrogen bonds between the SKIP peptide and PPIL1. Conclusion We characterized a short, linear epitope of SKIP that is sufficient to bind the PPIL1 protein. Our data indicate that this SKIP peptide could function in recruiting PPIL1 into the core of the spliceosome. We present a molecular model for the binding mode of SKIP to PPIL1 which emphasizes the versatility of cyclophilin-type PPIases to engage in additional interactions with other proteins apart from active site contacts despite their limited surface area. PMID:20368803

  2. Crystal growth, perfection, linear and nonlinear optical, photoconductivity, dielectric, thermal and laser damage threshold properties of 4-methylimidazolium picrate: an interesting organic crystal for photonic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rajesh, K.; Arun, A.; Mani, A.; Praveen Kumar, P.

    2016-10-01

    The 4-methylimidazolium picrate has been synthesized and characterized successfully. Single and powder x-ray diffraction studies were conducted which confirmed the crystal structure, and the value of the strain was calculated. The crystal perfection was determined by a HRXR diffractometer. The transmission spectrum exhibited a better transmittance of the crystal in the entire visible region with a lower cut-off wavelength of 209 nm. The linear absorption value was calculated by the optical limiting method. A birefringence study was also carried out. Second and third order nonlinear optical properties of the crystal were found by second harmonic generation and the z-scan technique. The crystals were also characterized by dielectric measurement and a photoconductivity analyzer to determine the dielectric property and the optical conductivity of the crystal. The laser damage threshold activity of the grown crystal was studied by a Q-switched Nd:YAG laser beam. Thermal studies established that the compound did not undergo a phase transition and was stable up to 240 °C.

  3. Site location and crystal field of Nd3+ ions in congruent strontium barium niobate

    NASA Astrophysics Data System (ADS)

    Molina, P.; Loro, H.; Álvarez-García, S.; Bausá, L. E.; Rodriguez, E. Martín; Guillot-Noël, O.; Goldner, Ph.; Bettinelli, M.; Ghigna, P.; Solé, J. García

    2009-08-01

    The site location of Nd3+ ions in congruent strontium barium niobate (Sr0.6Ba0.4Nb2O6) has been systematically investigated by means of low-temperature optical and electron paramagnetic resonance spectroscopies. The experimental results obtained by these complementary techniques clearly indicate that Nd3+ ions are mainly located in only one of the four available cationic sites, the A2 sites, and preserving the Cs local symmetry of these host cation sites. The energy levels and g -factor value experimentally obtained by both techniques have been used to calculate the crystal field parameters for the Nd3+ ions in this A2 cationic site.

  4. Synthesis of guanidinium–sulfonimide ion pairs: towards novel ionic liquid crystals

    PubMed Central

    Butschies, Martin; Neidhardt, Manuel M; Mansueto, Markus; Tussetschläger, Stefan

    2013-01-01

    Summary The recently introduced concept of ionic liquid crystals (ILCs) with complementary ion pairs, consisting of both, mesogenic cation and anion, was extended from guanidinium sulfonates to guanidinium sulfonimides. In this preliminary study, the synthesis and mesomorphic properties of selected derivatives were described, which provide the first example of an ILC with the sulfonimide anion directly attached to the mesogenic unit. PMID:23766823

  5. Investigations of hyperfine and isotope structures in optical spectra of crystals with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Popova, M. N.

    2015-10-01

    This is a review of works on hyperfine and isotope structures in the spectra of rare-earth ions in crystals that have been performed at the Laboratory of Fourier Spectroscopy of the Institute for Spectroscopy, Russian Academy of Sciences. The applicability of these studies to the development of optical quantum memory is discussed.

  6. Polarised infrared and Raman studies of YCa 4O(BO 3) 3 a non-linear optical single crystal

    NASA Astrophysics Data System (ADS)

    Krishnakumar, V.; Nagalakshmi, R.

    2004-10-01

    YCa 4O(BO 3) 3-(YCOB) is a non-linear optical (NLO) material grown by Czochralski technique. Polarised IR, ATR-IR, polarised Raman and optical transmission spectral measurements were made. A series of absorption bands have been observed with intensities depending on the functional groups of the crystals. The observed bands were assigned and discussed.

  7. Structural phase transitions in low-dimensional ion crystals

    SciTech Connect

    Fishman, Shmuel; Chiara, Gabriele de; Calarco, Tommaso; Morigi, Giovanna

    2008-02-01

    A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag configuration when the radial potential reaches a critical value, depending on the particle number. This structural change is a phase transition of second order, whose order parameter is the crystal displacement from the chain axis. We study analytically the transition using Landau theory and find full agreement with numerical predictions by Schiffer [Phys. Rev. Lett. 70, 818 (1993)] and Piacente et al. [Phys. Rev. B 69, 045324 (2004)]. Our theory allows us to determine analytically the system's behavior at the transition point.

  8. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan

    2013-11-01

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  9. Radiation damage in urania crystals implanted with low-energy ions

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien Hien; Garrido, Frédérico; Debelle, Aurélien; Mylonas, Stamatis; Nowicki, Lech; Thomé, Lionel; Bourçois, Jérôme; Moeyaert, Jérémy

    2014-05-01

    Implantations with low-energy ions (470-keV Xe and 500-keV La with corresponding ion range Rp ∼ 85 nm and range straggling ΔRp ∼ 40 nm) have been performed to investigate both radiation and chemical effects due to the incorporation of different species in UO2 (urania) crystals. The presence of defects was monitored in situ after each implantation fluence step by the RBS/C technique. Channelling data were analysed afterwards by Monte-Carlo simulations with a model of defects involving (i) randomly displaced atoms (RDA) and (ii) distorted rows, i.e. bent channels (BC). While increasing the ion fluence, the accumulation of RDA leads to a steep increase of the defect fraction in the range from 4 to 7 dpa regardless of the nature of bombarding ions followed by a saturation plateau over a large dpa range. A clear difference of 6% in the yield of saturation plateaus between irradiation with Xe and La ions was observed. Conversely, the evolutions of the fraction of BC showed a similar regular increase with increasing ion fluence for both ions. Moreover, this increase is shifted to a larger fluence in comparison to the sharp increase step of RDA. This phenomenon indicates a continuous structural modification of UO2 crystals under irradiation unseen by the measurement of RDA.

  10. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  11. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guo, Ming; Tian, Hong; He, Fei-Yue; Lee, Gene-Hsiang; Peng, Shie-Ming

    2006-11-01

    One-dimensional alternative chains of two lanthanum complexes: [La( L1) 3(CH 3OH)(H 2O) 2]·5H 2O ( L1=anion of α-cyano-4-hydroxycinnamic acid ) 1 and [La( L2) 3(H 2O) 2]·3H 2O ( L2=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C 31H 36LaN 3O 17, triclinic, P-1, a=9.8279(4) Å, b=11.8278(5) Å, c=17.8730(7) Å, α=72.7960(10)°, β=83.3820(10)°, γ=67.1650(10)º, Z=2, R1=0.0377, wR2=0.0746; for 2: C 33H 37LaO 14, triclinic, P-1, a=8.7174(5) Å, b=9.9377(5) Å, c=21.153(2) Å, α=81.145(2)°, β=87.591(2)°, γ=67.345(5)°, Z=2, R1=0.0869, wR2=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two η3-O bridges and four bridges (two η2-O and two η3-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.

  12. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Hell, N.; Brown, G. V.

    2016-11-01

    We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.

  13. Planar optical waveguides in Nd:BSO crystals fabricated by He and C ion implantation

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Guo, Sha-Sha; Zhao, Jin-Hua; Guan, Jing; Wang, Xue-Lin

    2011-01-01

    Planar optical waveguides in Nd:BSO crystals were fabricated by the implantation of 500 keV He ions and 6.0 MeV C ions at two different substrate temperatures. The guiding modes were measured by the prism-coupling method with a He-Ne beam at 633 nm. The intensity calculation method (ICM) and reflectivity calculation method (RCM) were used for reconstructing refractive index profiles. The near-field intensity distribution of the waveguide, formed by He and C ions implanted after annealing at 300 °C, was measured by the end-face coupling setup. It was in reasonable agreement with the intensity of the waveguide mode simulated by the finite-difference beam propagation method (FD-BPM). The absorption spectra of the sample with He ions implanted at fluences of 3 × 1016 ions/cm2 were measured using a spectrophotometer.

  14. Electron Transfer Governed Crystal Transformation of Tungsten Trioxide upon Li Ions Intercalation.

    PubMed

    Wang, Zhiguo; He, Yang; Gu, Meng; Du, Yingge; Mao, Scott X; Wang, Chongmin

    2016-09-21

    Reversible insertion/extraction of foreign ions into/from a host lattice constitutes the fundamental operating principle of rechargeable battery and electrochromic materials. The insertion of foreign ions is a far more commonly observed structural evolution of the host lattice, and for the most cases such a lattice evolution is subtle. However, it has not been clear what factors control such a lattice structural evolution. Based on the tungsten trioxide (WO3) model crystal, we use in situ transmission electron microscopy (TEM) combined with density functional theory calculations to explore the nature of Li ions intercalation induced crystal symmetry evolution of WO3. We discovered that Li insertion into the octahedral cavity of the WO3 lattice will lead to a low to high symmetry transition, featuring a sequential monoclinic → tetragonal → cubic phase transition. The density functional theory results reveal that the phase transition is essentially governed by the electron transfer from Li to the WO6 octahedrons, which effectively leads to the weakening the W-O bond and modifies system band structure, resulting in an insulator-to-metal transition. The observation of the electronic effect on crystal symmetry and conductivity is significant, providing deep insights on the intercalation reactions in secondary rechargeable ion batteries and the approach for tailoring the functionalities of material based on insertion of ions in the lattice. PMID:27575951

  15. Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal

    NASA Astrophysics Data System (ADS)

    Nath, R.; Dalmonte, M.; Glaetzle, A. W.; Zoller, P.; Schmidt-Kaler, F.; Gerritsma, R.

    2015-06-01

    We propose a trapped ion scheme en route to realize spin Hamiltonians on a Kagome lattice which, at low energies, are described by emergent {{{Z}}}2 gauge fields, and support a topological quantum spin liquid ground state. The enabling element in our scheme is the hexagonal plaquette spin-spin interactions in a two-dimensional ion crystal. For this, the phonon-mode spectrum of the crystal is engineered by standing-wave optical potentials or by using Rydberg excited ions, thus generating localized phonon-modes around a hexagon of ions selected out of the entire two-dimensional crystal. These tailored modes can mediate spin-spin interactions between ion-qubits on a hexagonal plaquette when subject to state-dependent optical dipole forces. We discuss how these interactions can be employed to emulate a generalized Balents-Fisher-Girvin model in minimal instances of one and two plaquettes. This model is an archetypical Hamiltonian in which gauge fields are the emergent degrees of freedom on top of the classical ground state manifold. Under realistic situations, we show the emergence of a discrete Gauss’s law as well as the dynamics of a deconfined charge excitation on a gauge-invariant background using the two-plaquettes trapped ions spin-system. The proposed scheme in principle allows further scaling in a future trapped ion quantum simulator, and we conclude that our work will pave the way towards the simulation of emergent gauge theories and quantum spin liquids in trapped ion systems.

  16. The determination of dopant ion valence distributions in insulating crystals using XANES measurements.

    PubMed

    Hughes-Currie, Rosa B; Ivanovskikh, Konstantin V; Wells, Jon-Paul R; Reid, Michael F; Gordon, Robert A

    2016-04-01

    Ytterbium-doped wide-bandgap fluoride crystals CaF2, SrF2 and NaMgF3 have been measured using x-ray absorption near edge structure (XANES) on the L3 edge to determine the ratio of trivalent to divalent Yb ions present in the crystals. This study improves upon previous XANES measurements of dopant ion valency by taking into account the x-ray emission transition probabilities for the divalent and trivalent species instead of simply assuming that the relative concentrations may be determined by the ratio of the x-ray excitation band areas. Trivalent to divalent ratios as high as 5 are inferred even at low total dopant ion concentrations of 0.05 mol% Yb. PMID:26941175

  17. Linear magnetoresistance and zero-field anomalies in HfNiSn single crystals

    NASA Astrophysics Data System (ADS)

    Steinke, Lucia; Kistner-Morris, Jedediah J.; Deng, Haiming; Geschwind, Gayle; Aronson, Meigan C.

    The Half-Heusler compound HfNiSn is probably best known as a candidate material for thermoelectric applications, and studies of its properties have mainly focused on polycrystalline samples and thin films. However, magnetotransport studies of HfNiSn show unusual transport properties like linear magnetoresistance (LMR), where single-crystalline samples of HfNiSn exhibit unexpected LMR at very low fields. In this work, we optimized the solution growth of HfNiSn to obtain high-quality single crystals, where electrical transport measurements show that it is a compensated semimetal below ~ 200 K, where the Hall voltage is zero. At higher temperatures, we see a finite Hall contribution from activated excess carriers. In the semimetallic regime, we observe transport anomalies like resistive signals that strongly depend on contact configuration, and LMR below 5 K. Both low-field DC and low frequency AC magntization measurements show pronounced diamagnetic behavior and the onset of paramagnetism below 4 K. High-frequency diamagnetic screening may be attributed to a decreased skin depth with decreased resistance, but this scenario seems unlikely in HfNiSn since the measured resistance increases steeply at the lowest temperatures This research was supported by the Army Research Office.

  18. Highly non-linear solid core photonic crystal fiber with one nano hole

    SciTech Connect

    Gangwar, Rahul Kumar Bhardwaj, Vanita Singh, Vinod Kumar

    2015-08-28

    The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm{sup 2}), high nonlinearity (36.34 W{sup −1}km{sup −1}) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for the SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.

  19. Photodetachment of the H‑ ion in a linear time-dependent electric field

    NASA Astrophysics Data System (ADS)

    Wang, De-Hua; Chen, Zhaohang; Cheng, Shaohao

    2016-10-01

    Using the time-dependent closed orbit theory, we study the photodetachment of the H‑ ion in a linear time-dependent electric field for the first time. An analytical formula for calculating the time-dependent photodetachment cross section of this system has been put forward. It is found when the external electric field changes very slowly with time, there is only one closed orbit of the detached electron and the photodetachment cross section is quite stable. However, when the electric field changes quickly with time, three different types of closed orbits are found and the photodetachment cross section oscillates in a much more complex way. The connection of each type of closed orbit with the oscillatory structure in the photodetachment cross section is analyzed quantitatively. In addition, the photon energy and the laser field parameters can also have great influence on the time-dependent photodetachment cross section of this system. This study provides a clear and intuitive picture for the photodetachment dynamics of a negative ion in the presence of a time-dependent electric field and may guide future experimental studies exploring the quantum effect in the photodetachment dynamics of negative ions from a time-dependent viewpoint.

  20. Improvement of trace element analysis system using RIKEN electron cyclotron resonance ion source and linear accelerator

    SciTech Connect

    Kidera, M.; Nakagawa, T.; Takahashi, K.; Enomoto, S.; Igarashi, K.; Fujimaki, M.; Ikezawa, E.; Kamigaito, O.; Kase, M.; Goto, A.; Yano, Y.

    2006-03-15

    We have developed a new analytical system that consists of an electron cyclotron resonance ion source (RIKEN 18 GHz ECRIS) and a RIKEN heavy ion linear accelerator (RILAC). This system is called trace element analysis using electron cyclotron resonance ion source and RILAC (ECRIS-RILAC-TEA). ECRIS-RILAC-TEA has several advantages as described in the work of Kidera et al. [AIP Conf. Proc. 749, 85 (2005)]. However, many experimental results during the last several years revealed a few problems: (1) large background contamination in the ECRIS, particularly at the surface of the plasma chamber wall, (2) high counting of the ionization chamber and the data taking system that is monitored by the direct beam from the accelerator, and (3) difficulty in the selection of the pilot sample and pilot beam production from the ECRIS for the purpose of normalization. In order to overcome these problems, we conducted several test experiments over the past year. In this article, we report the experimental results in detail and future plans for improving this system.

  1. Integrated Cavity QED in a linear Ion Trap Chip for Enhanced Light Collection

    NASA Astrophysics Data System (ADS)

    Benito, Francisco; Jonathan, Sterk; Boyan, Tabakov; Haltli, Raymond; Tigges, Chris; Stick, Daniel; Balin, Matthew; Moehring, David

    2012-06-01

    Realizing a scalable trapped-ion quantum information processor may require integration of tools to manipulate qubits into trapping devices. We present efforts towards integrating a 1 mm optical cavity into a microfabricated surface ion trap to efficiently connect nodes in a quantum network. The cavity is formed by a concave mirror and a flat coated silicon mirror around a linear trap where ytterbium ions can be shuttled in and out of the cavity mode. By utilizing the Purcell effect to increase the rate of spontaneous emission into the cavity mode, we expect to collect up to 13% of the emitted photons. This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Towards a unified linear kinetic transport model with the trace ion module for EIRENE

    PubMed Central

    Seebacher, J.; Kendl, A.

    2012-01-01

    Linear kinetic Monte Carlo particle transport models are frequently employed in fusion plasma simulations to quantify atomic and surface effects on the main plasma flow dynamics. Separate codes are used for transport of neutral particles (incl. radiation) and charged particles (trace impurity ions). Integration of both modules into main plasma fluid solvers provides then self-consistent solutions, in principle. The required interfaces are far from trivial, because rapid atomic processes in particular in the edge region of fusion plasmas require either smoothing and resampling, or frequent transfer of particles from one into the other Monte Carlo code. We propose a different scheme here, in which despite the inherently different mathematical form of kinetic equations for ions and neutrals (e.g. Fokker–Planck vs. Boltzmann collision integrals) both types of particle orbits can be integrated into one single code. We show that the approximations and shortcomings of this “single sourcing” concept (e.g., restriction to explicit ion drift orbit integration) can be fully tolerable in a wide range of typical fusion edge plasma conditions, and be overcompensated by the code-system simplicity, as well as by inherently ensured consistency in geometry (one single numerical grid only) and (the common) atomic and surface process modules. PMID:22474397

  3. Trends in Atomic Parameters for Crystals and Free Ions across the Lanthanide Series: The Case of LaCl3:Ln(3+).

    PubMed

    Yeung, Y Y; Tanner, P A

    2015-06-18

    Analyses of the crystal field energy levels of the series LaCl3:Ln(3+) using a semiempirical Hamiltonian shows that only five ions (Pr, Nd, Pm, Dy, Ho) meet the criteria to avoid overfitting of the atomic part. A new parameter (SNES) has been introduced to represent the strength of the normalized electrostatic repulsion for these ions. This parameter varies linearly (R(2)adj = 0.9994, N = 5) with the reciprocal of the radius of the tripositive lanthanide ion, as expected from the form of repulsive Coulomb interaction. The Slater parameters from the crystal field analyses, F(k)(corr) (i.e., corrected for the effects of the two-particle component of the three-body operator associated with the T(2) parameter), exhibit an exponential variation with the number of electrons, n, in 4f(n). This is explained by reference to the radial part of a hydrogen-like wave function. The ratio of F(k)(corr) with the ab initio free ion Slater parameter F(k)(ab initio) varies linearly with n. Fitted parameters F(k)(corr: free ion) from the free ion data for Pr(3+) and Nd(3+) show that the corresponding ab initio values are between 14 and 27% too high. The spin-orbit coupling constant from crystal field analyses (ζ4f) exhibits a quartic variation with atomic number, and the ratio ζ4f/ζ4f(ab initio) follows an exponential growth model with n. The results serve to confirm the hypothesis that smooth trends can be observed across the Ln(3+) series for the fitted parameters despite the fact that the majority of experimental data is lacking. PMID:25985076

  4. Trends in Atomic Parameters for Crystals and Free Ions across the Lanthanide Series: The Case of LaCl3:Ln(3+).

    PubMed

    Yeung, Y Y; Tanner, P A

    2015-06-18

    Analyses of the crystal field energy levels of the series LaCl3:Ln(3+) using a semiempirical Hamiltonian shows that only five ions (Pr, Nd, Pm, Dy, Ho) meet the criteria to avoid overfitting of the atomic part. A new parameter (SNES) has been introduced to represent the strength of the normalized electrostatic repulsion for these ions. This parameter varies linearly (R(2)adj = 0.9994, N = 5) with the reciprocal of the radius of the tripositive lanthanide ion, as expected from the form of repulsive Coulomb interaction. The Slater parameters from the crystal field analyses, F(k)(corr) (i.e., corrected for the effects of the two-particle component of the three-body operator associated with the T(2) parameter), exhibit an exponential variation with the number of electrons, n, in 4f(n). This is explained by reference to the radial part of a hydrogen-like wave function. The ratio of F(k)(corr) with the ab initio free ion Slater parameter F(k)(ab initio) varies linearly with n. Fitted parameters F(k)(corr: free ion) from the free ion data for Pr(3+) and Nd(3+) show that the corresponding ab initio values are between 14 and 27% too high. The spin-orbit coupling constant from crystal field analyses (ζ4f) exhibits a quartic variation with atomic number, and the ratio ζ4f/ζ4f(ab initio) follows an exponential growth model with n. The results serve to confirm the hypothesis that smooth trends can be observed across the Ln(3+) series for the fitted parameters despite the fact that the majority of experimental data is lacking.

  5. Modification of phonon processes in nanostructured rare-earth-ion-doped crystals

    NASA Astrophysics Data System (ADS)

    Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang

    2016-07-01

    Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap crystals to enable or improve persistent spectral hole burning and coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and optical quantum memories. As an example, we discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the convenient telecommunication band and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y2SiO5 , a widely used material in current quantum memory research.

  6. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator

    SciTech Connect

    Yu Haijun; Zhu Jun; Chen Nan; Xie Yutong; Jiang Xiaoguo; Jian Cheng

    2010-04-15

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10{sup 21}/m{sup 3} and 2-3 mm/{mu}s, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.

  7. Design and Performance Evaluation of a Linear Ion Trap Mass Analyzer Featuring Half Round Rod Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxu; Zhang, Xiaohua; Yao, Rujiao; He, Yang; Zhu, Yongyong; Qian, Jie

    2015-05-01

    A novel linear ion trap mass analyzer featuring half round rod electrodes (HreLIT) has been built. It is mainly composed of two pairs of stainless steel electrodes which have a cross-section of half round rod and a pair of end electrodes. The HreLIT has a simple structure and so it could be assembled by hand with relatively high mechanical accuracy. The external dimension of HreLIT is 50 mm × 29.5 mm × 28 mm (length × width × height) and its internal volume is about 3.8 cm3. A home-made HreLIT mass spectrometer with three-stage vacuum system was built and the performance of HreLIT was characterized using reserpine solution and PPG standard solution. When the scan rate was 254 u/s, mass peak with FWHM of 0.14 u was achieved for ions with m/z 609, which corresponds to a mass resolution of 4350. The HreLIT was also operated at a low q value of 0.28 to extend its mass range. The experiment result showed a mass range of over 2800 u and the amplitude of radio frequency (rf) signal was only 1560 V (0-p). Three-stage tandem mass spectrometry was successfully performed in the HreLIT, and the collision-induced dissociation (CID) efficiencies of MS2 (CID of ions with m/z 609) and MS3 (CID of ions with m/z 448) were 78% and 59%, respectively.

  8. Thermal kinetics of OH- ions in LiNbO3:Mg crystals above the photorefractive threshold

    NASA Astrophysics Data System (ADS)

    Lengyel, K.; Kovács, L.; Péter, Á.; Polgár, K.; Corradi, G.; Baraldi, A.; Capelletti, R.

    2010-05-01

    OH stretching vibrations in LiNbO3 (LN) crystals having various Li/Nb ratios and doped with Mg above the photorefractive threshold concentration were investigated in the 20-500 °C temperature range. Beside the 3534 cm-1 above-threshold band another peak at about 3465 cm-1, known from below-threshold stoichiometric LN, was found to appear at a temperature depending on the Mg surplus concentration and grow further with increasing temperature at the expense of the 3534 cm-1 band. The energy difference between the OH- ions was determined to be ΔE =0.25±0.02 eV independently from the composition and Mg concentration. A kinetic model describing the thermal process predicts a linear Mg surplus dependence of the ratio of band areas at a given temperature.

  9. Metal electrode dependent field effect transistors made of lanthanide ion-doped DNA crystals

    NASA Astrophysics Data System (ADS)

    Reddy Dugasani, Sreekantha; Hwang, Taehyun; Kim, Jang Ah; Gnapareddy, Bramaramba; Kim, Taesung; Park, Sung Ha

    2016-03-01

    We fabricated lanthanide ion (Ln3+, e.g. Dy3+, Er3+, Eu3+, and Gd3+)-doped self-assembled double-crossover (DX) DNA crystals grown on the surface of field effect transistors (FETs) containing either a Cr, Au, or Ni electrode. Here we demonstrate the metal electrode dependent FET characteristics as a function of various Ln3+. The drain-source current (I ds), controlled by the drain-source voltage (V ds) of Ln3+-doped DX DNA crystals with a Cr electrode on an FET, changed significantly under various gate voltages (V g) due to the relative closeness of the work function of Cr to the energy band gap of Ln3+-DNA crystals compared to those of Au and Ni. For Ln3+-DNA crystals on an FET with either a Cr or Ni electrode at a fixed V ds, I ds decreased with increasing V g ranging from  -2 to 0 V and from 0 to  +3 V in the positive and negative regions, respectively. By contrast, I ds for Ln3+-DNA crystals on an FET with Au decreased with increasing V g in only the positive region due to the greater electronegativity of Au. Furthermore, Ln3+-DNA crystals on an FET exhibited behaviour sensitive to V g due to the appreciable charge carriers generated from Ln3+. Finally, we address the resistivity and the mobility of Ln3+-DNA crystals on an FET with different metal electrodes obtained from I ds-V ds and I ds-V g curves. The resistivities of Ln3+-DNA crystals on FETs with Cr and Au electrodes were smaller than those of pristine DNA crystals on an FET, and the mobility of Ln3+-DNA crystals on an FET with Cr was relatively higher than that associated with other electrodes.

  10. Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass

    NASA Astrophysics Data System (ADS)

    Qin, T.; Mountjoy, G.; Afify, N. D.; Reid, M. F.; Yeung, Y. Y.; Speghini, A.; Bettinelli, M.

    2011-09-01

    Rare-earth-doped glasses are key materials for optical technology due to the luminescent properties of 4fn ions. The crystal-field model describes the effect of local environment on transitions between 4f electrons. We present a detailed modeling study of the optical spectra of sodium disilicate glass, 33Na2O·67SiO2, doped with 0.2% and 1.0 mol% Eu2O3. This study uses very large molecular dynamics models with up to 100 Eu3+ ions, the superposition model for covalent and overlap effects on crystal-field parameters, and realistic values for homogeneous linewidth broadening. The simulated spectra are in reasonable agreement with experiment. The trends in 7FJ energy levels across different Eu3+ ion sites have been examined and a very detailed analysis is presented that looks at how features of the spectra are related to features of the local environment of Eu3+ ions. Increasing the crystal-field strength Stotal causes the 7F0 energy level to decrease and causes the splitting of 7FJ manifolds to increase, and this is due to increasing mixing of 4f wave functions. To a reasonable approximation the crystal-field strength components Sk depend on angular positions of ligands independently of distances to ligands. The former are seen to be more significant in determining Sk, which are closely related to the rotationally invariant bond-orientational order parameters Qk. The values of S2 are approximately linear in Q2, and the values of Q2 are higher for fivefold than sixfold coordinated rare-earth ions. These results can be of importance for efforts to enhance the local environment of rare-earth ions in oxide glasses for optical applications.

  11. Novel ion-containing liquid crystals and liquid crystalline polymers

    SciTech Connect

    Cheng, P.

    1992-01-01

    The properties of main chain polymeric liquid crystals (PLC's) based on trans-1,2-bis(4,4[prime]-pyridyl)ethylene mesogens, alkyl spacers and various counterions are described. The mesomorphic properties of model compounds are also described. Some of these are based on [open quotes]Siamese twin[close quotes] systems with the 4-alkoxystilbazole mesogen similar to the trans-1,2-bis(4,4[prime]-pyridyl)ethylene used in the polymer. Some model compounds are low molecular mass monomer analogues of the polymer. The structural parameters investigated were the length of the flexible spacer, the nature of the mesogen, the ionic density of the system and the nature and size of the counterion. The introduction of ionic sites into a main chain PLC's far from inhibiting appears to promote mesophase formation and enhance the stability of the mesophase. The phenomena described here involve high transition temperatures strong odd-even oscillations and supercooling effects. The twins and polymers display a great variety of smectic mesophases, the nature of which depends strongly on the nature of the counterion. Large organic counterions such as methylsulfonates promote the formation of smectic mesophases, sometimes of lower order (S[sub A] or S[sub C]) whilst toluenesulfonate promote often higher order smectic polymorphism. The polymers display also lyotropic liquid crystallinity.

  12. The linear and non-linear characterization of dust ion acoustic mode in complex plasma in presence of dynamical charging of dust

    SciTech Connect

    Bhattacharjee, Saurav Das, Nilakshi

    2015-10-15

    A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping of DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.

  13. The effect of CuII ions in L-asparagine single crystals

    NASA Astrophysics Data System (ADS)

    Santana, Ricardo C.; Gontijo, Henrique O.; Menezes, Arthur F.; Martins, José A.; Carvalho, Jesiel F.

    2016-11-01

    We report the synthesis, crystal growth, and spectroscopic characterization of L-asparagine monohydrate (LAM) single crystals doped with CuII. The crystals were successfully grown by slow cooling from a supersaturated aqueous solution up to size of 16×12×2 mm3;the effect of copper impurities in the crystals morphology was discussed. Electron Paramagnetic Resonance (EPR) was used to calculate the g and hyperfine coupling (A) tensors of the CuII ions (g1=2.044, g2=2.105, g3=2.383and A1≈0, A2=35, A3=108 Gauss). The EPR spectra for certain orientations of the magnetic field suggest that CuII ions are coordinated to two 14N atoms. Correlating the EPR and optical absorption results, the crystal field and the CuII orbital bond parameters were calculated. The results indicate that the paramagnetic center occupies interstitial rhombic distorted site and the ground orbital state for the unpaired electron is the d(x2-y2).

  14. Zirconium tungstate hydroxide hydrate revisited: Crystallization dependence on halide and hydronium ions

    SciTech Connect

    Colin, Julie A. Camper, DeMarco V.; Gates, Stacy D.; Simon, Monty D. Witker, Karen L. Lind, Cora

    2007-12-15

    The formation of zirconium tungstate hydroxide hydrate, a precursor to the negative thermal expansion material cubic zirconium tungstate, shows a strong dependence on hydrothermal reaction conditions. It was found that not only the acid concentration, but also the acid counterion plays a significant role in the crystallization of ZrW{sub 2}O{sub 7}(OH){sub 2}.2H{sub 2}O. High temperatures, high acid concentrations, and the presence of chloride or bromide ions promote the formation of well-crystallized ZrW{sub 2}O{sub 7}(OH){sub 2}.2H{sub 2}O. For low acid concentrations, a new zirconium tungstate hydrate polymorph is observed, which transforms to tetragonal ZrW{sub 2}O{sub 7}(OH){sub 2}.2H{sub 2}O at longer reaction times. A study of crystallization kinetics in hydrochloric acid is presented. - Graphical abstract: The formation of ZrW{sub 2}O{sub 7}(OH){sub 2}.2H{sub 2}O shows a strong dependence on reaction conditions. Both acid concentration and acid counterion play a significant role in the crystallization. High temperatures, high acid concentrations, and the presence of chloride or bromide ions promote the formation of well-crystallized ZrW{sub 2}O{sub 7}(OH){sub 2}.2H{sub 2}O. For low acid concentrations, a new zirconium tungstate hydrate polymorph is observed.

  15. Synthesis, structural, topographical, linear and nonlinear optical, electrical and mechanical properties of Bisthiourea zinc acetate single crystal

    NASA Astrophysics Data System (ADS)

    Rajendran, V.; Uma, J.

    2016-07-01

    Nonlinear optical material Bisthiourea Zinc Acetate (BTZA) was synthesized by slow evaporation solution growth technique. The grown crystals were characterised by Single crystal XRD and powder XRD studies. The presence of functional groups and the co-ordination of metal ions to Thiourea were confirmed by FTIR analysis. The UV-vis -NIR spectrum shows a low absorption in the entire visible and IR region. Optical band gap of the grown crystal was found to be 4.18 eV. The photoluminescence studies carried out and the crystal has blue emission. The Refractive Index was determined experimentally for the first time and found to be 1.508 for the incident wavelength of 632.8 nm. The second harmonic generation efficiency was determined using Kurtz and Perry powder technique and it was 0.7 times than that of the KDP crystal. Thermal properties were studied by thermo gravimetric analysis and differential thermal analysis. Dielectric studies were carried out at different frequencies for various temperatures. The mechanical behaviour of the grown crystal was studied using Vickers micro hardness tester. The growth mechanism and surface features are investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM).

  16. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons.

    PubMed

    Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice

    2014-06-18

    Electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry (CV) measurements were used to characterize ion adsorption in carbide-derived carbon (CDC) with two different average pore sizes (1 and 0.65 nm), from neat and solvated 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI) electrolytes. From the electrode mass change in neat EMI-TFSI, it was shown that one net charge stored corresponds almost to one single ion at high polarization; in that case, no ion-pairing or charge screening by co-ions were observed. In 2 M EMI-TFSI in acetonitrile electrolyte, experimental solvation numbers were estimated for EMI(+) cation, showing a partial desolvation when cations were adsorbed in confined carbon pores. The extent of desolvation increased when decreasing the carbon pore size (from 1 down to 0.65 nm). The results also suggest that EMI(+) cation owns higher mobility than TFSI(-) anion in these electrolytes.

  17. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal.

    PubMed

    Utikal, T; Eichhammer, E; Petersen, L; Renn, A; Götzinger, S; Sandoghdar, V

    2014-04-11

    The narrow optical transitions and long spin coherence times of rare earth ions in crystals make them desirable for a number of applications ranging from solid-state spectroscopy and laser physics to quantum information processing. However, investigations of these features have not been possible at the single-ion level. Here we show that the combination of cryogenic high-resolution laser spectroscopy with optical microscopy allows one to spectrally select individual praseodymium ions in yttrium orthosilicate. Furthermore, this spectral selectivity makes it possible to resolve neighbouring ions with a spatial precision of the order of 10 nm. In addition to elaborating on the essential experimental steps for achieving this long-sought goal, we demonstrate state preparation and read out of the three ground-state hyperfine levels, which are known to have lifetimes of the order of hundred seconds.

  18. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal.

    PubMed

    Utikal, T; Eichhammer, E; Petersen, L; Renn, A; Götzinger, S; Sandoghdar, V

    2014-01-01

    The narrow optical transitions and long spin coherence times of rare earth ions in crystals make them desirable for a number of applications ranging from solid-state spectroscopy and laser physics to quantum information processing. However, investigations of these features have not been possible at the single-ion level. Here we show that the combination of cryogenic high-resolution laser spectroscopy with optical microscopy allows one to spectrally select individual praseodymium ions in yttrium orthosilicate. Furthermore, this spectral selectivity makes it possible to resolve neighbouring ions with a spatial precision of the order of 10 nm. In addition to elaborating on the essential experimental steps for achieving this long-sought goal, we demonstrate state preparation and read out of the three ground-state hyperfine levels, which are known to have lifetimes of the order of hundred seconds. PMID:24722142

  19. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal

    NASA Astrophysics Data System (ADS)

    Utikal, T.; Eichhammer, E.; Petersen, L.; Renn, A.; Götzinger, S.; Sandoghdar, V.

    2014-04-01

    The narrow optical transitions and long spin coherence times of rare earth ions in crystals make them desirable for a number of applications ranging from solid-state spectroscopy and laser physics to quantum information processing. However, investigations of these features have not been possible at the single-ion level. Here we show that the combination of cryogenic high-resolution laser spectroscopy with optical microscopy allows one to spectrally select individual praseodymium ions in yttrium orthosilicate. Furthermore, this spectral selectivity makes it possible to resolve neighbouring ions with a spatial precision of the order of 10 nm. In addition to elaborating on the essential experimental steps for achieving this long-sought goal, we demonstrate state preparation and read out of the three ground-state hyperfine levels, which are known to have lifetimes of the order of hundred seconds.

  20. Angular Distortion around Cr3+ Ions Doped Diammonium Hexaaqua Magnesium Sulphate Single Crystal

    NASA Astrophysics Data System (ADS)

    Ciresan, M.; Vaida, M.; Avram, N. M.

    2007-11-01

    The aim of the present study is to explain the local distortion around Cr 3+ ions doped in the title crystal using the latest experimental data regarding optical and EPR spectra. We calculated gǁ, g⊥, and D spin-Hamiltonian parameter as function of angle between the C3 axis and metal-ligand chemical bond in local distorted octahedral cluster [CrO6] 9- formed after doped crystal. The method is based on the single spin-orbit coupling parameter model, in the cluster approach using Macfarlane high order perturbation formulae. The results compared with experimental data give a reasonable agreement.

  1. Broadband linear high-voltage amplifier for radio frequency ion traps.

    PubMed

    Kuhlicke, Alexander; Palis, Klaus; Benson, Oliver

    2014-11-01

    We developed a linear high-voltage amplifier for small capacitive loads consisting of a high-voltage power supply and a transistor amplifier. With this cost-effective circuit including only standard parts sinusoidal signals with a few volts can be amplified to 1.7 kVpp over a usable frequency range at large-signal response spanning four orders of magnitude from 20 Hz to 100 kHz under a load of 10 pF. For smaller output voltages the maximum frequency shifts up to megahertz. We test different capacitive loads to probe the influence on the performance. The presented amplifier is sustained short-circuit proof on the output side, which is a significant advantage over other amplifier concepts. The amplifier can be used to drive radio frequency ion traps for single charged nano- and microparticles, which will be presented in brief.

  2. Linkage determination of linear oligosaccharides by MS(n) (n > 2) collision-induced dissociation of Z₁ ions in the negative ion mode.

    PubMed

    Konda, Chiharu; Bendiak, Brad; Xia, Yu

    2014-02-01

    Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MS(n), n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides (18)O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS(3) CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MS(n) CID (n = 3 - 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.

  3. Two-dimensional ion crystals in radio-frequency traps for quantum simulation

    NASA Astrophysics Data System (ADS)

    Richerme, Philip

    2016-09-01

    The computational difficulty of solving fully quantum many-body spin problems is a significant obstacle to understanding the behavior of strongly correlated quantum matter. Experimental ion trap quantum simulation is a promising approach for studying these lattice spin models, but has so far been limited to one-dimensional systems. This work argues that such quantum simulation techniques are extendable to a two-dimensional (2D) ion crystal confined in a radio-frequency (rf) trap. Using appropriately chosen parameters, driven ion motion due to the rf fields can be made small and will not limit the types of quantum spin models that can be experimentally encoded. The rf-driven motion is calculated to modestly reduce the stability region of a 2D crystal and must be considered when designing the 2D trap. The system will be scalable to 100+ quantum particles, far beyond the realm of classical intractability, while maintaining the traditional ion trap strengths of individual-ion control, long quantum coherence times, and site-resolved projective spin measurements.

  4. Formation of dislocations and hardening of LiF crystals irradiated with energetic Au, Bi, Pb, and S ions

    NASA Astrophysics Data System (ADS)

    Maniks, J.; Manika, Ilze; Schwartz, K.; Toulemonde, M.; Trautmann, C.

    2003-08-01

    The irradiation of LiF crystals with Au, Pb, Bi, and S ions in the range of 400 - 2200 MeV leads to a remarkable increase of the hardness. The effect appears for Bi and Pb ions at fluences above 109 ions/cm2 and for S ions above 1010 ions/cm2. The increase of hardness follows the energy loss and is related to the formation of defects along the ion path. Defect complexes, clusters and aggregates with nanoscale dimensions serve as strong obstacles for dislocations and cause dispersion strengthening. Structural investigations reveal the generation of long-range stress in the adjacent non-irradiated part of the crystal. Close to the implantation zone, the stress exceeds the yield strength, causing microplastic deformation and work hardening. Compared to light S ions, heavy ions (Au, Pb, Bi) cause more severe structural damage, larger hardening effects, and higher internal and long-range stress.

  5. Optical planar waveguide in magnesium aluminate spinel crystal using oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Song, Hong-Lian; Yu, Xiao-Fei; Zhang, Lian; Wang, Tie-Jun; Qiao, Mei; Liu, Peng; Zhao, Jin-Hua; Wang, Xue-Lin

    2015-07-01

    A planar optical waveguide in MgAl2O4 crystal sample was fabricated using 6.0 MeV oxygen ion implantation at a fluence of 1.5 × 1015 ions/cm2 at room temperature. The optical modes were measured at a wavelength of 633 nm using a model 2010 prism coupler. The near-field intensity files in the visible band were measured and simulated with end-face coupling and FD-BPM methods, respectively. The absorption spectra show that the implantation process has almost no effect on the visible and near-infrared band absorption.

  6. Ion-induced x-ray studies with a high luminosity von Hamos crystal spectrometer

    SciTech Connect

    Vane, C.R.; Smith, M.; Raman, S.; Heard, J.; Walkiewicz, T.

    1986-01-01

    A high-resolution, high-efficiency, von Hamos geometry, Bragg crystal x-ray spectrometer has been developed and mounted on a beamline at the Holifield Heavy Ion Research Facility at the Oak Ridge National Laboratory. Measurements have been made of K and L x-rays emitted from a variety of targets and projectiles. Instrument performance characteristics are reported here along with spectra from fast projectile ions and very low intensity target emission - areas of measurement for which this spectrometer is especially suitable.

  7. Crystal growth and spectroscopic properties of Er3+ ions doped CdF2 single crystals

    NASA Astrophysics Data System (ADS)

    Djellab, S.; Diaf, M.; Labbaci, K.; Guerbous, L.

    2014-04-01

    Single crystals of Er3+:CdF2 with good optical quality were grown by a Bridgman technique after purification of the starting materials. Absorption and emission spectra are recorded at room temperature. The Judd-Ofelt (JO) analysis was applied to obtain the three phenomenological intensity parameters and the transition strengths. These JO parameters are used to calculate the radiative transition probabilities, the radiation lifetimes and the branching ratios. The results obtained are in good agreement with those of other fluoride laser materials. We also carried out luminescence measurements for red and green emission. The studied host may offer infrared and visible laser emissions.

  8. Scanning-force-microscopy study of MeV-atomic-ion-induced surface tracks in organic crystals

    SciTech Connect

    Kopniczky, J.; Reimann, C.T.; Hallen, A.; Sundqvist, B.U.R. ); Tengvall, P.; Erlandsson, R. )

    1994-01-01

    We present scanning force microscope images of craterlike defects induced by individual 78.2-MeV [sup 127]I ions incident on organic single-crystal [ital L]-valine surfaces. For grazing incidence ions, the craters are elongated along the ion azimuth of incidence and display a raised tail in the surface above the ion track. This permanent plastic deformation of the surface indicates that a hydrodynamic pressure-pulse phenomenon occurs in response to the electronically deposited energy.

  9. Thermal-independent properties of PIN-PMN-PT single-crystal linear-array ultrasonic transducers.

    PubMed

    Chen, Ruimin; Wu, Jinchuan; Ho Lam, Kwok; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K Kirk

    2012-12-01

    In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In(1/2)Nb(1/2))-Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PIN-PMN-PT) and binary Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PMNPT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a -6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising. PMID:23221227

  10. Immobilization of bovine serum albumin as a sensitive biosensor for the detection of trace lead ion in solution by piezoelectric quartz crystal impedance.

    PubMed

    Yin, Jian; Wei, Wanzhi; Liu, Xiaoying; Kong, Bo; Wu, Ling; Gong, Shuguo

    2007-01-01

    A biosensor based on bovine serum albumin (BSA) for the detection of lead (Pb(2+)) ion was developed and characterized. BSA was immobilized onto a colloidal Au-modified piezoelectric quartz crystal (PQC) as a biosensor for the detection of Pb(2+) ion by piezoelectric quartz crystal impedance (PQCI). Calibration curves for the quantification of Pb(2+) ion showed excellent linearity throughout the concentration range from 1.0 x 10(-7) to 3.0 x 10(-9)mol/L. The interaction between the Pb(2+) ions and the sensor chip is influenced significantly by the pH of the reaction buffer, and the optimal pH for the experiment was 5.4. Under the optimal conditions, the detection limit of 1.0 x 10(-9)mol/L for Pb(2+) was obtained. Kinetic parameters of the Pb(2+)-BSA interactions were also determined by using this chip. The sensor chip could be regenerated for use by dipping in the ethylenediaminetetraacetic acid (EDTA) solution for approximately 2h, and the chip was used to detect Pb(2+) ion for eight times without obvious signal attenuation.

  11. Crystalline perfection, optical and third harmonic generation analyses of non-linear optical single crystal of L-lysine acetate.

    PubMed

    Rani, Neelam; Vijayan, N; Thukral, Kanika; Maurya, K K; Haranath, D; Bhagavannarayana, G; Verma, S; Wahab, M A

    2013-03-15

    The potential organic non-linear optical single crystal of L-lysine acetate has been grown by slow evaporation solution growth technique (SEST) at room temperature. It crystallizes in the monoclinic system with space group of P2(1). The crystalline perfection of the grown single crystal has been examined by high resolution X-ray diffraction analysis (HRXRD). The functional groups of the synthesized compound have been identified by (13)C NMR, (1)H NMR and FTIR analyses. The optical absorption studies show that the crystal is transparent in the entire visible region with a cut-off wavelength of 236 nm. The optical band gap is found to be 5.29 eV. The steady-state PL spectra was recorded for pure L-lysine acetate crystal at room temperature. The third harmonic generation efficiency of the crystal has been evaluated by Z-scan technique and its non-linear optical coefficient has been calculated. Birefringence measurement has been carried out in order to see the optical homogeneity of the grown specimen. Its electrical properties has been assessed by dielectric measurement at different temperatures. The calculated optical band gap is 5.29 eV. Its thermal parameters like thermal diffusivity (α), thermal effusivity (e), thermal conductivity (k) and heat capacity (C(p)) have been determined by photopyroelectric technique. Vickers micro hardness studies were carried out using a Vickers hardness tester equipped with a diamond square indenter. The piezoelectric measurement for L-lysine acetate has been also been carried at ambient condition.

  12. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project

    NASA Astrophysics Data System (ADS)

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  13. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    PubMed

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation. PMID:26931946

  14. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    PubMed

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  15. Optical properties of Dy3+ ion in PbF2 laser crystal

    NASA Astrophysics Data System (ADS)

    Chen, G. Z.; Yin, J. G.; Zhang, L. H.; He, M. Z.; Ma, E.; Ning, K. J.; Zhang, P. X.; Liu, Y. C.; Hang, Y.

    2013-11-01

    High-quality Dy:PbF2 crystal is grown by the Bridgman method in a nonvacuum atmosphere. By measuring the area under absorption bands, the experimental oscillator strengths are determined. The Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4, 6) are evaluated by the least-squares fit method. These phenomenological parameters are used to predict radiative transition probabilities, radiative lifetime and branching ratios for various excited levels of the Dy3+:PbF2 crystal. Photoluminescence spectra and lifetime of 6H13/2 levels of the Dy3+ ions have been measured. The laser transitions with most potential are identified and the utility of the PbF2 crystal as laser active material is discussed.

  16. Eu[sup 3+] ion luminescence crystal structural determination for lanthanide sesquioxides

    SciTech Connect

    Tanner, P.A.; Rudowicz, C. )

    1993-01-01

    Recently, Chen et al. have suggsted that the Eu[sup 3+] ion luminescence from f-f transitions could be used as an alternative to x-ray diffraction in the determination of crystal structure. From the results of the room-temperature luminescence data for three different host crystals only, the authors claim that this method is easier and can be more quickly performed than the usual powder diffraction technique. However, the spectra have not been convincingly assigned and are utilized as finger-prints of structure types. This literature survey has indicated that all the data have been previously reported in the literature. In this note we critically comment on the paper and correct some errors and misconceptions therein. The main conclusion is that the luminescence crystal structure determination cannot be regarded as an alternative shortcut method to the crystallographic structure determination for several reasons. 20 refs.

  17. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Hui-Lin; Wang, Xue-Lin

    2013-07-01

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon.

  18. EPR study of Cu(2+) ion doped orotato(nicotinamid)cobalt(II) single crystal.

    PubMed

    Yıldırım, I; Karabulut, B; Büyükgüngör, O

    2016-01-01

    We have studied the Cu(2+) ion doped orotato(nicotinamid)cobalt(II) complex by using EPR spectroscopy and X-ray diffraction. The single crystal is triclinic with the space group P1‾. The unit cell dimensions of the crystal are a=7.2785(4)Å, b=10.2349(5)Å, c=12.7372(6)Å, α=69.297(4)°, β=74.791(4)° and γ=76.995(4)°, with Z=2. We analyzed the EPR spectra of both single crystal and powder of the complex at room temperature. EPR analysis indicates the presence of only one Cu(2+) site. We obtained the spin Hamiltonian parameters from the single crystal data for the complex. The spin Hamiltonian parameters are gx=2.032, gy=2.116, gz=2.319, Ax=28G, Ay=66G, Az=126G. These data indicate that the symmetry of paramagnetic center is rhombic. We constructed the ground state wave function of the Cu(2+) ion.

  19. A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap.

    PubMed

    Doroudi, Alireza

    2012-01-01

    In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method. PMID:22792612

  20. First Observation of the Deflection of a 33 TeV Pb Ion Beam in a Bent Silicon Crystal

    NASA Astrophysics Data System (ADS)

    Elsener, K.; Biino, C.; Clement, M.; Doble, N.; Gatignon, L.; Grafstrom, P.; Mikkelsen, U.; Taratin, A.; Møller, S. P.; Uggerhøj, E.

    1997-05-01

    The deflection of an ultra-relativistic, fully stripped Pb(82+) ion beam in a bent silicon crystal has been observed for the first time. The ions were provided by the CERN-SPS in the H4 beam at a momentum of 400 GeV/c/Z. A 60 mm long silicon crystal, bent over 50 mm to give a 4 mrad deflection angle, was used in this experiment. The measured Pb ion deflection efficiencies are comparable to the ones obtained with protons at an equivalent ratio p/Z, and are found to be about 15% for a beam with a divergence of 50 microradians (FWHM). The interaction rate observed in a background counter is reduced by about the same 15% when the crystal is well aligned with the beam. This corroborates further the channeling model, which predicts that channeled ions are steered away from regions of high electron densities as well as from the nuclei in the crystal.

  1. Growth, structural and optical studies on mixed glycine nitrate (d-GBC) crystals of non linear optical origin

    NASA Astrophysics Data System (ADS)

    Dongare, Shailesh S.; Patil, S. B.; Khandpekar, M. M.

    2015-06-01

    A semi organic crystal of mixed amino-nitrate d-GBC having non linear optical characteristics has been grown from solution by slow evaporation technique at room temperature. Transparent crystals (11 × 9 × 4 mm3) have been obtained in 3-4 weeks time. The solubility of d-GBC has been determined in water. The new d-GBC crystals have been characterized by powder XRD, FTIR and UV Spectra. The grown crystal belongs to orthorhombic system with cell parameters a=8.110 A.U, b=17.666 A.U, c=7.476 A.U and unit cell volume of 1071.14 A.U3. The presence of fundamental groups has been verified. A wide transparency window useful for optoelectronic applications is indicated by the UV Studies. The optical second harmonic generation conversion efficiency of d-GBC using characteristic 1064nm Nd-YAG laser (Kurtz and Perry method) is found to be 0.919 times that of KDP. Vickers Microhardness studies shows work hardening coefficient (n= 4.23) indicating soft category of Crystals.

  2. Quantitative analysis with advanced compensated polarized light microscopy on wavelength dependence of linear birefringence of single crystals causing arthritis

    NASA Astrophysics Data System (ADS)

    Takanabe, Akifumi; Tanaka, Masahito; Taniguchi, Atsuo; Yamanaka, Hisashi; Asahi, Toru

    2014-07-01

    To improve our ability to identify single crystals causing arthritis, we have developed a practical measurement system of polarized light microscopy called advanced compensated polarized light microscopy (A-CPLM). The A-CPLM system is constructed by employing a conventional phase retardation plate, an optical fibre and a charge-coupled device spectrometer in a polarized light microscope. We applied the A-CPLM system to measure linear birefringence (LB) in the visible region, which is an optical anisotropic property, for tiny single crystals causing arthritis, i.e. monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD). The A-CPLM system performance was evaluated by comparing the obtained experimental data using the A-CPLM system with (i) literature data for a standard sample, MgF2, and (ii) experimental data obtained using an established optical method, high-accuracy universal polarimeter, for the MSUM. The A-CPLM system was found to be applicable for measuring the LB spectra of the single crystals of MSUM and CPPD, which cause arthritis, in the visible regions. We quantitatively reveal the large difference in LB between MSUM and CPPD crystals. These results demonstrate the usefulness of the A-CPLM system for distinguishing the crystals causing arthritis.

  3. Fabrication of waveguides in Yb:YCOB crystal by MeV oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Chen, Feng; Wang, Xue-Lin; Wang, Ke-Ming; Wang, Lei; Wang, Liang-Ling; Zhang, Huai-Jin; Lu, Qing-Ming; Ma, Hong-Ji; Nie, Rui

    2007-07-01

    Oxygen ions with energies of 6.0 or 3.0 MeV were implanted into y-cut Yb:YCOB crystals at fluences ranging from 5.0 × 10 13 to 2.0 × 10 15 ions/cm 2 at room temperature, forming optical planar waveguide structures. Dark-mode line spectroscopy was applied at two wavelengths, 633 and 1539 nm, in various excitation configurations, showing strong enhancement of one of the indices ( nx) in the implanted near surface. The nx refractive index profile is reconstructed by a reflectivity calculation method and compared to the ion energy losses profiles deduced from SRIM-code simulation. Moreover, the near-field patterns were imaged by an end-fire coupling arrangement.

  4. Zenithal alignment of liquid crystal on homeotropic polyimide film irradiated by ion beam.

    PubMed

    Choi, Yoonseuk; Yoon, Tae-Hoon; Kwon, Jin Hyuk; Yi, Jonghoon; Gwag, Jin Seog

    2012-01-01

    We investigate the pretilt characteristics of a nematic liquid crystal [LC] in terms of ion beam exposure conditions on the homeotropic polyimide alignment layer. The pretilt angle of LCs in the case of high-energy ion beam treatment was decreased considerably almost the same to that of the homogenous alignment layer though we used homeotropic polyimide film at first. Increasing irradiating energy, we could control the pretilt from 90° to 1° with several steps. We believe that this is because the side chain with hydrophobicity in the used polyimide is broken by ion beam exposure. To confirm it, contact angle measurement was carried out. With this result, we can easily control the LC pretilt in the pixel with appropriate exposure conditions which is critical to achieve excellent electrooptic characteristics and good image quality. PMID:22221956

  5. Zenithal alignment of liquid crystal on homeotropic polyimide film irradiated by ion beam

    PubMed Central

    2012-01-01

    We investigate the pretilt characteristics of a nematic liquid crystal [LC] in terms of ion beam exposure conditions on the homeotropic polyimide alignment layer. The pretilt angle of LCs in the case of high-energy ion beam treatment was decreased considerably almost the same to that of the homogenous alignment layer though we used homeotropic polyimide film at first. Increasing irradiating energy, we could control the pretilt from 90° to 1° with several steps. We believe that this is because the side chain with hydrophobicity in the used polyimide is broken by ion beam exposure. To confirm it, contact angle measurement was carried out. With this result, we can easily control the LC pretilt in the pixel with appropriate exposure conditions which is critical to achieve excellent electrooptic characteristics and good image quality. PMID:22221956

  6. Zenithal alignment of liquid crystal on homeotropic polyimide film irradiated by ion beam

    NASA Astrophysics Data System (ADS)

    Choi, Yoonseuk; Yoon, Tae-Hoon; Kwon, Jin Hyuk; Yi, Jonghoon; Gwag, Jin Seog

    2012-01-01

    We investigate the pretilt characteristics of a nematic liquid crystal [LC] in terms of ion beam exposure conditions on the homeotropic polyimide alignment layer. The pretilt angle of LCs in the case of high-energy ion beam treatment was decreased considerably almost the same to that of the homogenous alignment layer though we used homeotropic polyimide film at first. Increasing irradiating energy, we could control the pretilt from 90° to 1° with several steps. We believe that this is because the side chain with hydrophobicity in the used polyimide is broken by ion beam exposure. To confirm it, contact angle measurement was carried out. With this result, we can easily control the LC pretilt in the pixel with appropriate exposure conditions which is critical to achieve excellent electrooptic characteristics and good image quality.

  7. Tracer diffusion coefficient of oxide ions in LaCoO 3 single crystal

    NASA Astrophysics Data System (ADS)

    Ishigaki, Takamasa; Yamauchi, Shigeru; Mizusaki, Junichiro; Fueki, Kazuo; Tamura, Hifumi

    1984-08-01

    The tracer diffusion coefficient, D∗ O, of oxide ions in LaCoO 3 single crystal was determined over the temperature range of 700-1000°C by a gas-solid isotopic exchange technique using 18O tracer. For the determination, two methods, the gas phase analysis and the depth profile measurement, were employed. Under an oxygen pressure of 34 Torr, the temperature dependence of D∗ O in LaCoO 3 was expressed by D∗ O( cm2· sec-1) = 3.63 × 10 4exp- {(74 ± 5) kcal · mole-1}/{RT} D∗ O at 950°C was found to be proportional to P-0.35O 2. The diffusion of oxide ions occurs through a vacancy mechanism. The activation energy for the migration of oxide ion vacancies was estimated as 18 kcal · mole -1.

  8. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  9. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE PAGES

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalousmore » diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  10. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions.

    PubMed

    Yang, Shengyuan; Wu, Chao; Tan, Hui; Wu, Yan; Liao, Shuzhen; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2013-01-01

    In this study, to enhance the capability of metal ions disturbing the orientation of liquid crystals (LCs), we designed a new label-free LC biosensor for the highly selective and sensitive detection of heavy metal ions. This strategy makes use of the target-induced DNA conformational change to enhance the disruption of target molecules for the orientation of LC leading to an amplified optical signal. The Hg(2+) ion, which possesses a unique property to bind specifically to two DNA thymine (T) bases, is used as a model heavy metal ion. In the presence of Hg(2+), the specific oligonucleotide probes form a conformational reorganization of the oligonucleotide probes from hairpin structure to duplex-like complexes. The duplex-like complexes are then bound on the triethoxysilylbutyraldehyde/N,N-dimethyl-N-octadecyl (3-aminopropyl) trimethoxysilyl chloride (TEA/DMOAP)-coated substrate modified with capture probes, which can greatly distort the orientational profile of LC, making the optical image of LC cell birefringent as a result. The optical signal of LC sensor has a visible change at the Hg(2+) concentration of low to 0.1 nM, showing good detection sensitivity. The cost-effective LC sensing method can translate the concentration signal of heavy metal ions in solution into the presence of DNA duplexes and is expected to be a sensitive detection platform for heavy metal ions and other small molecule monitors. PMID:23214408

  11. Ion Insertion on the Crystal Structure, Photoluminescence, and Dielectric Properties of o-Mullite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Rashad, M. M.; Abdel-Aal, E. A.; El-Shahat, M. F.; Powers, K.

    2014-09-01

    Nanocrystalline Gd3+-doped Gd x Al6- x Si2O13 mullite powders with x from 0.005 to 0.025 have been synthesized via a facile coprecipitation technique. X-ray diffraction results revealed that o-mullite was detected as the major phase for x = 0.0 to 0.01, whereas corundum α-Al2O3 was predominant for x = 0.025. It was found that the volume of the mullite unit cell increased with Gd3+ ion incorporation. Differential scanning calorimetry thermograms evinced that the exothermic peak temperature of mullite shifted to lower values with Gd3+ ion insertion. Transmission electron microscopy observations of pure mullite nanoparticles displayed orthorhombic-like shapes. Meanwhile, at 0.5% Gd3+ ion content, the mullite particles exhibited platelet-like shapes, which distorted into spheroidal-like crystals at high Gd3+ ion contents (1% and 2.5%). The photoluminescence spectra indicated that the intensity of the emission spectra improved considerably with Gd3+ ion doping. On the other hand, dielectric measurements of sintered samples showed that the maximum dielectric loss values were 1.7 and 1.4 at 1.5 MHz and 1.5 GHz, respectively, with 2.5% Gd3+ ion content.

  12. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    PubMed Central

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-01-01

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering. PMID:25945580

  13. Crystal field splitting of the 4f 5d electronic configuration of Pr 3+ ions in wide band gap fluoride dielectric crystals

    NASA Astrophysics Data System (ADS)

    Sarantopoulou, E.; Kollia, Z.; Cefalas, A. C.; Semashko, V. V.; Yu. Abdulsabirov, R.; Naumov, A. K.; Korableva, S. L.; Szczurek, T.; Kobe, S.; McGuiness, P. J.

    2002-07-01

    The absorption and the laser-induced fluorescence spectra of Pr 3+ ion in YF 3, LaF 3, KY 3 F 10 and LiLuF 4, single crystal hosts were obtained in the vacuum ultraviolet region of the spectrum. The energy position and the spacing of the levels of the 4f 5d electronic configuration depend on the host matrix. In addition, strong vacuum ultraviolet emission bands were observed, following crystal excitation at 157 nm with the molecular fluorine laser. The emission bands were due to the interconfigurational 4 f 5 d→4 f2 dipole-allowed transitions in Pr 3+ ions, and they were assigned to the transitions between the edge of the lowest Stark component of the 4f 5d electronic configuration and the levels of the 4f 2 electronic configuration. The VUV spectra can be interpreted by applying the crystal field model, and taking into consideration that lanthanide contraction of the 4f n-1 5d electronic configurations of the rare earth ions, and shielding of the positive ion charge from the electrons in the 4f n electronic configuration is taking place. Finally, a new method for monitoring the concentration of the rare earth ions in wide band gap fluoride dielectric crystals in a non-destructive way, by measuring magnetic dipole moments with the vibrating sample magnetometer (VSM) method, is presented for the first time to our knowledge for this type of crystals.

  14. System for measuring temporal profiles of scintillation at high and different linear energy transfers by using pulsed ion beams.

    PubMed

    Koshimizu, Masanori; Kurashima, Satoshi; Taguchi, Mitsumasa; Iwamatsu, Kazuhiro; Kimura, Atsushi; Asai, Keisuke

    2015-01-01

    We have developed a system for measuring the temporal profiles of scintillation at high linear energy transfer (LET) by using pulsed ion beams from a cyclotron. The half width at half maximum time resolution was estimated to be 1.5-2.2 ns, which we attributed mainly to the duration of the pulsed ion beam and timing jitter between the trigger signal and the arrival of the ion pulse. The temporal profiles of scintillation of BaF2 at different LETs were successfully observed. These results indicate that the proposed system is a powerful tool for analyzing the LET effects in temporal profiles of scintillation.

  15. Unidirectional growth, rocking curve, linear and nonlinear optical properties of LPHCl single crystals

    NASA Astrophysics Data System (ADS)

    Kumar, P. Ramesh; Gunaseelan, R.; Raj, A. Antony; Selvakumar, S.; Sagayaraj, P.

    2012-06-01

    Nonlinear optical amino-acid single crystal of L-phenylalanine hydrochloride (LPHCl) was successfully grown by unidirectional Sankaranarayanan-Ramasamy (SR) method under ambient conditions for the first time. The grown single crystal was subjected to different characterization analyses in order to find out its suitability for device fabrication. The crystalline perfection was evaluated using high-resolution X-ray diffractometry. It is evident from the optical absorption study that crystal has excellent transmission in the entire visible region with its lower cut off wavelength around 290 nm.

  16. Characteristics of the guided modes in a two-dimensional three-component phononic crystal with linear defects

    NASA Astrophysics Data System (ADS)

    Yan-Cheng, Zhao; Lian-Zhi, Deng; Li-Bo, Yuan

    2012-02-01

    A two-dimensional (2D) phononic crystal (PC), including a type of linear defect that is composed of third component materials, is proposed in this paper. The sonic guided characteristics of the structure are investigated by combining the plane-wave expansion method and a supercell technique. The results show that there are guided modes in the original band gap when third material-based linear defects are introduced in the two-component PC. The frequency of the guided modes changes with the rotational angle and filling fraction of the linear defect. The frequency distribution is symmetric to the (0, 1) direction. The sonic waveguide characteristics of the PC do not change with the orientation and the type of cross-section of the defect cylinders when the filling fraction is very small. This property has potential application in controlling the guided modes in a 2D PC.

  17. Linear Chains of Magnetic Ions Stacked with Variable Distance: Ferromagnetic Ordering with a Curie Temperature above 20 K.

    PubMed

    Friedländer, Stefan; Liu, Jinxuan; Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rüger, Robert; Kuc, Agnieszka; Guo, Wei; Zhou, Wencai; Lukose, Binit; Wang, Zhengbang; Weidler, Peter G; Pöppl, Andreas; Ziese, Michael; Heine, Thomas; Wöll, Christof

    2016-10-01

    We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion. PMID:27599895

  18. Linear Chains of Magnetic Ions Stacked with Variable Distance: Ferromagnetic Ordering with a Curie Temperature above 20 K.

    PubMed

    Friedländer, Stefan; Liu, Jinxuan; Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rüger, Robert; Kuc, Agnieszka; Guo, Wei; Zhou, Wencai; Lukose, Binit; Wang, Zhengbang; Weidler, Peter G; Pöppl, Andreas; Ziese, Michael; Heine, Thomas; Wöll, Christof

    2016-10-01

    We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion.

  19. Influence of some foreign metal ions on crystal growth kinetics of brushite (CaHPO 4·2H 2O)

    NASA Astrophysics Data System (ADS)

    Rosa, Silvia; Lundager Madsen, Hans E.

    2010-10-01

    Brushite, CaHPO 4·2H 2O, has been precipitated at 25 °C in the presence of Mg 2+, Ba 2+ or Cu 2+ at concentrations up to 0.5 mM. When initial pH is sufficiently low to exclude nanocrystalline apatite as the initial solid phase, overall crystal growth rate may be determined from simple mass crystallization by recording pH as function of time. A combination of surface nucleation (birth-and-spread) and spiral (BCF) growth was found. Edge free energy was determined from the former contribution and was found to be a linear function of chemical potential of the additive, indicating constant adsorption over a wide range of additive concentrations. Average distances between adsorbed additive ions as calculated from slopes of plots are compatible with lattice parameters of brushite: 0.54 nm for Mg 2+, 0.43 nm for Ba 2+ and 0.86 nm for Cu 2+. With the latter a sharp decrease in growth rate occurred early in the crystallization process, followed by an equally sharp increase to the previous level. When interpreted in terms of the Cabrera-Vermilyea theory of crystal growth inhibition, the results are consistent with an average distance between Cu ions of 0.88 nm, in perfect agreement with the above value.

  20. Linear self-assembly of nanoparticles within liquid crystal defect arrays.

    PubMed

    Coursault, Delphine; Grand, Johan; Zappone, Bruno; Ayeb, Habib; Lévi, Georges; Félidj, Nordin; Lacaze, Emmanuelle

    2012-03-15

    In the presence of oriented smectic liquid crystal defects, hybrid systems of nanoparticles/liquid crystals form straight chains of nanoparticles of length longer than tens of micrometers and width equal to one single nanoparticle. The interparticle distance in a chain can be varied between a few micrometers and 1.5 nm, highlighting the control of optical absorption by light polarization monitored by gold nanoparticle concentration.

  1. Investigations on the vibrational modes and non-linear optical properties of 4-Fluoro Chalcone crystal

    NASA Astrophysics Data System (ADS)

    Prabu, S.; Nagalakshmi, R.; Balaji, J.; Srinivasan, P.

    2014-08-01

    Organic Nonlinear Optical (NLO) crystals of 4-fluorochalcone (4FC) were synthesized and grown by slow evaporation solution growth method. The grown crystals have been characterised by powder X-ray diffraction, factor group analysis, FTIR, FT-Raman, UV-Vis Spectroscopy, powder SHG and Vickers microhardness tests. Theoretical quantum chemical analysis were performed to determine the first order hyperpolarizability (β) and HOMO-LUMO analysis of the title compound were computed by GAUSSIAN 03 package.

  2. Crystallization of ion clouds in octupole traps: Structural transitions, core melting, and scaling laws

    SciTech Connect

    Calvo, F.; Champenois, C.; Yurtsever, E.

    2009-12-15

    The stable structures and melting properties of ion clouds in isotropic octupole traps are investigated using a combination of semianalytical and numerical models, with a particular emphasis at finite-size scaling effects. Small-size clouds are found to be hollow and arranged in shells corresponding approximately to the solutions of the Thomson problem. The shell structure is lost in clusters containing more than a few thousands of ions, the inner parts of the cloud becoming soft and amorphous. While melting is triggered in the core shells, the melting temperature follows the rule expected for three-dimensional dense particles, with a depression scaling linearly with the inverse radius.

  3. Formation of GPS-Linked Global Ensemble of Hydrogen Masers, and Comparison to JPL's Linear Ion Trap

    NASA Technical Reports Server (NTRS)

    Young, L. E.; Jefferson, D. C.; Lichten, S. M.; Tjoelker, R. L.; Maleki, L.

    1996-01-01

    This paper will describe the use of precision GPS time transfer to form an ensemble of hydrogen maser clocks. The performance of this ensemble, including the GPS time-transfer system, was measured relative to a stable Linear Ion Trap Standard.

  4. MSM, an Efficient Workflow for Metabolite Identification Using Hybrid Linear Ion Trap Orbitrap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Cho, Robert; Huang, Yingying; Schwartz, Jae C.; Chen, Yan; Carlson, Timothy J.; Ma, Ji

    2012-05-01

    Identification of drug metabolites can often yield important information regarding clearance mechanism, pharmacologic activity, or toxicity for drug candidate molecules. Additionally, the identification of metabolites can provide beneficial structure-activity insight to help guide lead optimization efforts towards molecules with optimal metabolic profiles. There are challenges associated with detecting and identifying metabolites in the presence of complex biological matrices, and new LC-MS technologies have been developed to meet these challenges. In this report, we describe the development of an experimental approach that applies unique features of the hybrid linear ion trap Orbitrap mass spectrometer to streamline in vitro and in vivo metabolite identification experiments. The approach, referred to as MSM, utilizes multiple collision cells, dissociation methods, mass analyzers, and detectors. With multiple scan types and different dissociation modes built into one experimental method, along with flexible post-acquisition analysis options, the MSM workflow offers an attractive option to fast and reliable identification of metabolites in different kinds of in vitro and in vivo samples. The MSM workflow was successfully applied to metabolite identification analysis of verapamil in both in vitro rat hepatocyte incubations and in vivo rat bile samples.

  5. Investigation on the influence of foreign metal ions in crystal growth and characterization of L-Alaninium Maleate (LAM) single crystals

    NASA Astrophysics Data System (ADS)

    Ruby Nirmala, L.; Thomas Joseph Prakash, J.

    2013-11-01

    A Nonlinear Optical, good quality, single crystals of doped and undoped L-Alaninium Maleate (LAM) were grown by slow evaporation solution growth technique at room temperature. The lattice parameters were analyzed by single crystal X-ray diffraction technique. The identification of Cadmium ion in the doped crystals was done using the EDAX spectrum. The presence of functional group of the dopant with LAM molecule was studied using FTIR spectra. The results of UV-Vis study is used to compare the transparencies of the doped and undoped LAM crystals. The optical band gap energy of the grown crystal was also calculated. The relative second harmonic generation (SHG) efficiency measurement with KDP reference is used to find the incorporation of metal to L-Alaninium Maleate crystals and the parent material. Also the thermal stability of the grown crystals was studied by TGA/DTA spectrum. The mechanical stability of the grown crystals was confirmed through Vickers micro hardness study. By parallel plate capacitor technique, the dielectric response was studied over a wide range of frequencies at different temperatures. The various studies showed the incorporation of the impurity Cd2+ into LAM crystals and the investigations indicated that the impurity played an important role in the changes of the spectral and structural properties of LAM crystals.

  6. Investigation on the influence of foreign metal ions in crystal growth and characterization of L-Alaninium Maleate (LAM) single crystals.

    PubMed

    Ruby Nirmala, L; Thomas Joseph Prakash, J

    2013-11-01

    A Nonlinear Optical, good quality, single crystals of doped and undoped l-Alaninium Maleate (LAM) were grown by slow evaporation solution growth technique at room temperature. The lattice parameters were analyzed by single crystal X-ray diffraction technique. The identification of Cadmium ion in the doped crystals was done using the EDAX spectrum. The presence of functional group of the dopant with LAM molecule was studied using FTIR spectra. The results of UV-Vis study is used to compare the transparencies of the doped and undoped LAM crystals. The optical band gap energy of the grown crystal was also calculated. The relative second harmonic generation (SHG) efficiency measurement with KDP reference is used to find the incorporation of metal to l-Alaninium Maleate crystals and the parent material. Also the thermal stability of the grown crystals was studied by TGA/DTA spectrum. The mechanical stability of the grown crystals was confirmed through Vickers micro hardness study. By parallel plate capacitor technique, the dielectric response was studied over a wide range of frequencies at different temperatures. The various studies showed the incorporation of the impurity Cd(2+) into LAM crystals and the investigations indicated that the impurity played an important role in the changes of the spectral and structural properties of LAM crystals.

  7. Structural Distinction of Diacyl-, Alkylacyl, and Alk-1-Enylacyl Glycerophosphocholines as [M - 15]- Ions by Multiple-Stage Linear Ion-Trap Mass Spectrometry with Electrospray Ionization

    NASA Astrophysics Data System (ADS)

    Hsu, Fong-Fu; Lodhi, Irfan J.; Turk, John; Semenkovich, Clay F.

    2014-08-01

    We describe a linear ion-trap (LIT) multiple-stage (MSn) mass spectrometric approach towards differentiation of alkylacyl, alk-1-enylacyl- and diacyl-glycerophoscholines (PCs) as the [M - 15]- ions desorbed by electrospray ionization (ESI) in the negative-ion mode. The MS4 mass spectra of the [M - 15 - R2'CH = CO]- ions originated from the three PC subfamilies are readily distinguishable, resulting in unambiguous distinction of the lipid classes. This method is applied to two alkyl ether rich PC mixtures isolated from murine bone marrow neutrophils and kidney, respectively, to explore its utility in the characterization of complex PC mixture of biological origin, resulting in the realization of the detailed structures of the PC species, including various classes and many minor isobaric isomers.

  8. Ultrafast state detection and 2D ion crystals in a Paul trap

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2016-05-01

    Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.

  9. Photonic crystal structures in ion-sliced lithium niobate thin films.

    PubMed

    Sulser, Frederik; Poberaj, Gorazd; Koechlin, Manuel; Günter, Peter

    2009-10-26

    We report on the first realization of photonic crystal structures in 600-nm thick ion-sliced, single-crystalline lithium niobate thin films bonded on a lithium niobate substrate using adhesive polymer benzocyclobutene (BCB). Focused ion beam (FIB) milling is used for fast prototyping of photonic crystal structures with regular cylindrical holes. Unwanted redeposition effects leading to conically shaped holes in lithium niobate are minimized due to the soft BCB layer underneath. A high refractive index contrast of 0.65 between the lithium niobate thin film and the BCB underlayer enables strong light confinement in the vertical direction. For TE polarized light a triangular photonic crystal lattice of air holes with a diameter of 240 nm and a separation of 500 nm has a photonic bandgap in the wavelength range from 1390 to 1500 nm. Experimentally measured transmission spectra show a spectral power dip for the GK direction of the reci ocal lattice with an extinction ratio of up to 15 dB. This is in good agreement with numerical simulations based on the three-dimensional plane wave expansion (PWE) and the finite-difference time-domain (FDTD) method.

  10. Structural, morphological and electrical studies of lithium ion irradiated sodium potassium niobate single crystal grown by flux method

    SciTech Connect

    Saravanan, R.; Rajesh, D.; Rajasekaran, S. V.; Perumal, R.; Chitra, M.; Jayavel, R.

    2013-02-05

    Single crystals of sodium potassium niobate (K{sub 0.5}Na{sub 0.5})NbO{sub 3} (KNN) were grown by flux method and crystals were irradiated with 45 MeV Li ions to modify the electrical properties. Energy of the irradiated heavy ion was lower than the threshold energy to produce columnar defect and only clusters of defect was observed. The surface morphology of the irradiated single crystals was studied using scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the surface roughness value was found to increase with increasing fluence.

  11. Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Mahmood, R.; Johnson, D. L.

    1979-01-01

    A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.

  12. Applications of metal ions and liquid crystals for multiplex detection of DNA.

    PubMed

    Liu, Yanyang; Yang, Kun-Lin

    2015-02-01

    Many cations such as sodium ions have strong influence on anchoring behaviors of liquid crystals (LC). Since DNA is negatively charged and forms complex with metal ions, it is possible to form DNA/metal ions complex on surfaces to disrupt orientations of LC. This phenomenon is used to establish a principle for detecting surface immobilized DNA by using LC. In contrast, peptide nucleic acid (PNA) is electroneutral. It does not complex with metal ions or affect the orientations of LC. Therefore, PNA can be used as a probe to hybridize with specific DNA with a unique sequence, and the principle mentioned above can be used to detect the DNA target by using metal ions and LC. Based on this method, a 600bp DNA target in buffer can be detected with a limit of detection at 10fM. Unlike other fluorescence-based DNA assays, this LC-based detection method does not require labeling of DNA, and the test result can be viewed with the naked eye under a polarized microscope.

  13. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  14. Plasticized poly(vinyl chloride)-based photonic crystal for ion sensing.

    PubMed

    Aki, Shoma; Endo, Tatsuro; Sueyoshi, Kenji; Hisamoto, Hideaki

    2014-12-16

    In this study, we, for the first time, developed a plasticized poly(vinyl chloride) (PVC)-based two-dimensional photonic crystal (2D-PhC) optical sensor using nanoimprint lithography (NIL), which can perform highly sensitive, fast, and selective ion sensing based on ion extraction. Concerning the principle of response, present plasticized PVC-based PhC works as a waveguide and a grating. Incident light was guided in the bulk of plasticized PVC and, then, guided light of a specific wavelength was diffracted by a periodic nanostructure. The guided and diffracted light intensity changes of PVC-based PhCs possessing various thicknesses were monitored at 580 nm; then, we found that the 0.35 μm-thick PhC film exhibited the highest diffraction intensity. For the ion-sensing application, potassium-selective sensing elements involving potassium ionophore and lipophilic dye were dissolved in a plasticized PVC-based PhC, and the K(+)-selective response was successfully observed by monitoring the diffracted peak intensity change. The present 2D-PhC optical sensor exhibited a fast response within 5 s (95% response time) due to the use of thin film, and sensitivity was 20 times higher than that of a PVC plane-film optical sensor, due to efficient collection of diffracted light by employing a periodic nanostructure of the photonic crystal. PMID:25397688

  15. Local environment of optically active Nd3+ ions in the ultratransparent BaMgF4 ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Muñoz-Santiuste, J. E.; Loro, H.; Marino, R.; Goldner, Ph.; Vasyliev, V.; Víllora, E. G.; Shimamura, K.; Molina, P.; Ramírez, M. O.; Bausá, L. E.

    2012-05-01

    A comprehensive study of the site location of Nd3+ ions in the BaMgF4 ultratransparent ferroelectric crystal is presented. By combining different low-temperature optical spectroscopies and electron paramagnetic resonance, the crystal field energy levels of Nd3+ ions and the gyromagnetic factors are experimentally determined. These results are employed to perform the crystal field analysis of Nd3+ ions considering a Cs point symmetry. The crystal field calculation yields a small root-mean-square deviation of 18 cm-1 and reveals a large crystal field strength (621 cm-1), verifying the assignment of the Ba2+ cationic site as the location for Nd3+ ions in this fluoride host. The results suggest a slight displacement of Nd3+ from the barium regular site with a rearrangement of the fluorine ions around it. The work gives a deep insight into the properties of the Nd3+-doped BaMgF4 crystal, a ferroelectric widely ultra-transparent material with potential applications as optical device operating in the Vacuum Ultraviolet-Ultraviolet and midinfrared spectral regions.

  16. The effect of chromium ions on the formation of color centers in crystals with the structure of garnet

    NASA Astrophysics Data System (ADS)

    Ashurov, M. Kh.; Zharikov, E. V.; Laptev, V. V.; Nasyrov, I. N.; Osiko, V. V.

    Experiments have been carried out on crystals of gadolinium-gallium garnet, gadolinium-scandium garnet, yttrium-scandium-gallium garnet, and yttrium-aluminum garnet to investigate the effect of chromium ions on the formation of color centers in these highly efficient laser materials. It is found that following gamma irradiation at 300 K, all chromium-free specimens become colored, whereas specimens activated by Cr(3+) ions do not acquire any additional color at wavelengths greater than 300 nm. It is concluded that chromium ions enhance the radiation stability of crystals with the structure of garnet.

  17. Theoretical modeling of the linear and nonlinear optical properties of organic crystals within the rigorous local field theory (RLFT)

    SciTech Connect

    Seidler, T.; Stadnicka, K.; Champagne, B.

    2015-03-30

    This contribution summarizes our current findings in the field of calculating and predicting the linear and second-order nonlinear electric susceptibility tensor components of organic crystals. The methodology used for this purpose is based on a combination of the electrostatic interaction scheme developed by Munn and his coworkers (RLFT) with high-level electronic structure calculations. We compare the results of calculations with available experimental data for several examples of molecular crystals. We show the quality of the final results is influenced by i) the chromophore geometry, ii) the method used for molecular properties calculations and iii) the partitioning scheme used. In conclusion we summarize further plans to improve the reliability and predictability of the method.

  18. Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide.

    PubMed

    Xiang, Bingxi; Ren, Xikui; Ruan, Shuangchen; Wang, Lei; Yan, Peiguang; Han, Huangpu; Wang, Meng; Yin, Jinde

    2016-08-16

    This paper reports on the supercontinuum generation in yttrium orthosilicate bulk crystal and 6-mm-long ion implanted planar waveguide. The waveguide is fabricated by 6 MeV oxygen ions implantation with fluence of 5 × 10(14) ions/cm(2) at room temperature. The yttrium orthosilicate bulk crystal and waveguide are pumped using a mode-locked Ti:Sapphire laser with a center wavelength of 800 nm. The generated broadest supercontinuum spans 720 nm (at -30 dB points) from 380 to 1100 nm in bulk crystal and 510 nm (at -30 dB points) from 490 to 1000 nm in ion implanted waveguide, respectively. Compared to the bulk crystal, the ion implanted waveguide requires almost three orders of magnitude lower pump power to achieve a similar level of broadening. The supercontinuum is generated in the normal dispersion regime and exhibits a relatively smooth spectral shape. Our research findings indicate that ion implantation is an efficient method to produce waveguide in yttrium orthosilicate crystal for low-threshold supercontinuum generation.

  19. Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide

    NASA Astrophysics Data System (ADS)

    Xiang, Bingxi; Ren, Xikui; Ruan, Shuangchen; Wang, Lei; Yan, Peiguang; Han, Huangpu; Wang, Meng; Yin, Jinde

    2016-08-01

    This paper reports on the supercontinuum generation in yttrium orthosilicate bulk crystal and 6-mm-long ion implanted planar waveguide. The waveguide is fabricated by 6 MeV oxygen ions implantation with fluence of 5 × 1014 ions/cm2 at room temperature. The yttrium orthosilicate bulk crystal and waveguide are pumped using a mode-locked Ti:Sapphire laser with a center wavelength of 800 nm. The generated broadest supercontinuum spans 720 nm (at ‑30 dB points) from 380 to 1100 nm in bulk crystal and 510 nm (at ‑30 dB points) from 490 to 1000 nm in ion implanted waveguide, respectively. Compared to the bulk crystal, the ion implanted waveguide requires almost three orders of magnitude lower pump power to achieve a similar level of broadening. The supercontinuum is generated in the normal dispersion regime and exhibits a relatively smooth spectral shape. Our research findings indicate that ion implantation is an efficient method to produce waveguide in yttrium orthosilicate crystal for low-threshold supercontinuum generation.

  20. Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide.

    PubMed

    Xiang, Bingxi; Ren, Xikui; Ruan, Shuangchen; Wang, Lei; Yan, Peiguang; Han, Huangpu; Wang, Meng; Yin, Jinde

    2016-01-01

    This paper reports on the supercontinuum generation in yttrium orthosilicate bulk crystal and 6-mm-long ion implanted planar waveguide. The waveguide is fabricated by 6 MeV oxygen ions implantation with fluence of 5 × 10(14) ions/cm(2) at room temperature. The yttrium orthosilicate bulk crystal and waveguide are pumped using a mode-locked Ti:Sapphire laser with a center wavelength of 800 nm. The generated broadest supercontinuum spans 720 nm (at -30 dB points) from 380 to 1100 nm in bulk crystal and 510 nm (at -30 dB points) from 490 to 1000 nm in ion implanted waveguide, respectively. Compared to the bulk crystal, the ion implanted waveguide requires almost three orders of magnitude lower pump power to achieve a similar level of broadening. The supercontinuum is generated in the normal dispersion regime and exhibits a relatively smooth spectral shape. Our research findings indicate that ion implantation is an efficient method to produce waveguide in yttrium orthosilicate crystal for low-threshold supercontinuum generation. PMID:27527662

  1. Visible to near-infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide

    PubMed Central

    Xiang, Bingxi; Ren, Xikui; Ruan, Shuangchen; Wang, Lei; Yan, Peiguang; Han, Huangpu; Wang, Meng; Yin, Jinde

    2016-01-01

    This paper reports on the supercontinuum generation in yttrium orthosilicate bulk crystal and 6-mm-long ion implanted planar waveguide. The waveguide is fabricated by 6 MeV oxygen ions implantation with fluence of 5 × 1014 ions/cm2 at room temperature. The yttrium orthosilicate bulk crystal and waveguide are pumped using a mode-locked Ti:Sapphire laser with a center wavelength of 800 nm. The generated broadest supercontinuum spans 720 nm (at −30 dB points) from 380 to 1100 nm in bulk crystal and 510 nm (at −30 dB points) from 490 to 1000 nm in ion implanted waveguide, respectively. Compared to the bulk crystal, the ion implanted waveguide requires almost three orders of magnitude lower pump power to achieve a similar level of broadening. The supercontinuum is generated in the normal dispersion regime and exhibits a relatively smooth spectral shape. Our research findings indicate that ion implantation is an efficient method to produce waveguide in yttrium orthosilicate crystal for low-threshold supercontinuum generation. PMID:27527662

  2. Broad-Spectrum Drug Screening Using Liquid Chromatography-Hybrid Triple-Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Stone, Judy

    2016-01-01

    Urine is processed with a simple C18 solid-phase extraction (SPE) and reconstituted in mobile phase. The liquid chromatography system (LC) injects 10 μL of extracted sample onto a reverse-phase LC column for gradient analysis with ammonium formate/acetonitrile mobile phases. Drugs in the column eluent become charged in the ion source using positive electrospray ionization (ESI). Pseudomolecular ions (M + H) are analyzed by a hybrid triple-quadrupole linear ion trap (QqQ and QqLIT) mass spectrometer using an SRM-IDA-EPI acquisition. An initial 125 compound selected ion monitoring (SRM) survey scan (triple quadrupole or QqQ mode) is processed by the information-dependent acquisition (IDA) algorithm. The IDA algorithm selects SRM signals from the survey scan with a peak height above the threshold (the three most abundant SRM signals above 1000 cps) to define precursor ions for subsequent dependent scanning. In the dependent QqLIT scan(s), selected precursor ion(s) are passed through the first quadrupole (Q1), fragmented with three different collision energies in the collision cell (Q2 or q), and product ions are collected in the third quadrupole (Q3), now operating as a linear ion trap (LIT). The ions are scanned out of the LIT in a mass dependent manner to produce a full-scan product ion spectrum (m/z 50-700) defined as an Enhanced (meaning acquired in LIT mode) Product Ion (EPI) spectrum (Mueller et al., Rapid Commun Mass Spectrom 19:1332-1338, 2005). Each EPI spectrum is linked to its precursor ion and to the associated SRM peak from the survey scan. EPI spectra are automatically searched against a 125 drug library of reference EPI spectra for identification. When the duty cycle is complete (one survey scan of 125 SRMs plus 0-3 dependent IDA-EPI scans) the mass spectrometer begins another survey scan of the 125 SRMs. PMID:26660183

  3. Research on temperature field of KDP crystal under ion beam cleaning.

    PubMed

    Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin

    2016-06-20

    KH2PO4 (KDP) crystal is a kind of excellent nonlinear optical component used as a laser frequency conversion unit in a high-power laser system. However, KDP crystal has raised a huge challenge in regards to its fabrication for high precision: KDP crystal has special physical and chemical characteristics. Abrasive-free water-dissolution magnetorheological finishing is used in KDP figuring in our lab. But the iron powders of MRF fluid are easily embedded into the soft surface of KDP crystal, which will greatly decrease the laser-induced damage resistance. This paper proposes to utilize ion beam figuring (IBF) technology to figure and clean the surface of a KDP component. Although IBF has many good performances, the thermal effect control is a headachy problem for the KDP process. To solve this problem, we have established its thermal effect models, which are used to calculate a component's surface temperature and thermal gradient in the whole process. By this way, we can understand how to control a temperature map and its gradient in the IBF process. Many experiments have been done to validate and optimize this method. Finally, a KDP component with the size of 200×200×12  mm is successfully processed by this method. PMID:27409114

  4. Crystal structures of supramolecular assemblies based on a para-dicyclohexanocucurbit[6]uil with metal ions

    NASA Astrophysics Data System (ADS)

    Qin, Xiao; Chen, Wen-Jian; Zhang, Yun-Qian; Zhu, Qian-Jiang; Xue, Sai-Feng; Tao, Zhu

    2011-06-01

    Five crystals based on para-dicyclohexanocucurbit[6]uil (DCyHQ[6]) were synthesized and structurally characterized by single-crystal X-ray diffractions. They are {Dioxane@DCyHQ[6]}·18H 2O ( 1), {[Cu(HO)6]2DCyHQ[6]}·2SO42-·10HO ( 2), {[Zn(HO)6]2DCyHQ[6]}·2SO42-·10HO ( 3), {[Sr(HO)5]2DCyHQ[6]}·5Cl·(HO)+·8HO ( 4), {[Na(HO)4]2DCyHQ[6]}·4Br·2(HO)+·14HO ( 5). The compound 1 which is a dioxane @DCyHQ[6] inclusion host-guest complex; the other three crystal structures of the compounds 2, 3 and 4 show supramolecular assemblies comprising of DCyHQ[6] and metal ions or their aqueous complexes through hydrogen bonding; while the crystal structure of the compound 5 shows a one-dimensional supramolecular polymer through direct coordination of sodium cations to the portal carbonyl oxygen atoms of the DCyHQ[6].

  5. Polarization bremsstrahlung of a hydrogen-like ion in a single crystal

    SciTech Connect

    Astapenko, V. A.

    2009-01-15

    Polarization bremsstrahlung (PB) that arises when a fast hydrogen-like ion is scattered in a single crystal is investigated theoretically. Four types of the process are analyzed that are caused by virtual excitation of electrons of the target and of the incident particle (IP), as well as by a coherent and incoherent interaction between the IP and the single crystal. The spectral, angular, and velocity (of the IP) characteristics of PB are calculated with regard to the spectral function of a photodetector. Optimal observation conditions and regions in which different types of PB are dominant are determined, and the dependence of these regions on the charge of the IP nucleus and of the target atoms is revealed.

  6. Liquid Crystal Alignment on Solution Derived Zinc Oxide Films via Ion Beam Irradiation.

    PubMed

    Park, Hong-Gyu; Han, Jae-Jun; Seo, Dae-Shik

    2016-03-01

    A 75-nm-thick ZnO film was deposited by a sol-gel method on indium-tin oxide (ITO)-coated glass. This film served as a liquid crystal (LC) alignment layer. We report the fabrication and characteristics of this film after ion-beam (IB) irradiation. Uniform LC alignment was achieved at an IB incident energy above 2400 eV. The IB-treated ZnO surface was analyzed by X-ray photoelectron spectroscopy (XPS), monitoring the intensity of the Zn 2p and O 1s peaks as a function of IB-irradiation energy density. The electro-optical (EO) characteristics of a twisted nematic-liquid crystal display (TN-LCD) were comparable to rubbed polyimide. PMID:27455726

  7. Matrix-assisted laser ablation production of gold cluster ions from Au-coated photonic crystals.

    PubMed

    Li, Jincheng; Liu, Jian'an; Chen, Yi

    2012-05-01

    A new strategy was explored to generate pure gold cluster ions, Au(n)(+/-), from gold films deposited on solid substrates via a matrix-assisted laser ablation technique. The gold films deposited on SiO(2)-particle-assembled photonic crystals were demonstrated to be the most ideal compared with the films deposited on various glass slides. Dropped with a matrix of 2-(4-hydroxyphenylazo) benzoic acid and bombarded by nitrogen pulse laser (355 nm), they could release a series of Au(n)(+) with n more than 110 or Au(n)(-) with n more than 60 according to the data obtained by inline time-of-flight mass spectrometry. The gold-deposited photonic crystal substrates could be stored at room temperature for at least 6 months. The method is hence steady and convenient in use. PMID:22576875

  8. Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal

    NASA Astrophysics Data System (ADS)

    Xiu-Rong, Ma; Yu-Qing, Liang; Song, Wang; Shuang-Gen, Zhang; Yun-Long, Shan

    2016-07-01

    We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation (AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-ion-doped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo’s intensity and efficiency. The theoretical analysis is validated by numerical simulations. Project supported by Special Funds for Scientific and Technological Innovation Projects in Tianjin, China (Grant No. 10FDZDGX00400) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCQNJC01100).

  9. Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal

    NASA Astrophysics Data System (ADS)

    Xiu-Rong, Ma; Yu-Qing, Liang; Song, Wang; Shuang-Gen, Zhang; Yun-Long, Shan

    2016-07-01

    We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation (AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-ion-doped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo’s intensity and efficiency. The theoretical analysis is validated by numerical simulations. Project supported by Special Funds for Scientific and Technological Innovation Projects in Tianjin, China (Grant No. 10FDZDGX00400) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCQNJC01100).

  10. Growth and piezoelectric features of La2CaB10O19 crystals doped with Pr3+ ions

    NASA Astrophysics Data System (ADS)

    Ozga, K.; Majchrowski, A.; AlZayed, N.; Michalski, E.; Jaroszewicz, L.; Rakus, P.; Kityk, I. V.; Nabialek, M.; Szota, M.

    2012-04-01

    High quality La2CaB10O19 single crystals doped with Pr3+ ions were grown by means of the top seeded solution growth method. The concentration of Pr3+ ions in the starting melt was equal to 4 at%, which, due to small distribution coefficient, in consequence gave single crystals containing 2.5 at% of Pr3+ions. The piezoelectric coefficients were measured for the pure and Pr+3 doped crystals. The principal changes under influence of the nanosecond pulsed 1064 nm Nd:YAG laser were observed for the LCBO nanocrystallites incorporated into the polymer matrices. The introduction of the Pr3+ ions favors enhanced piezoelectric constants. In turn the nanocrystallites with enhanced piezoelectricity lead to the enhanced laser threshold damage.

  11. Number-conserving linear reponse study of low-velocity ion stopping in a collisional magnetized classical plasma

    NASA Astrophysics Data System (ADS)

    Nersisyan, Hrachya; Deutsch, Claude; Das, A. K.; PlasMag1 Collaboration

    2011-10-01

    The results of a theoretical investigation on the low-velocity stopping power of the ions moving in a magnetized and collisional plasma are discussed. The stopping power for an ion is calculated through linear response theory (LRT) with a dielectric function approach. Collisions, leading to a damping of the plasma excitations are taken into account with a number-conserving relaxation time approximation within LRT. In order to highlight the combined effects of collisions and magnetization, we compare analytical and numerical results derived for a nonzero damping and magnetic field to those with none. It is thus demonstrated that collisions remove the anomalous friction obtained previously for collisionless magnetized plasmas at low ion velocities. One of our main goals is to contrast present theoretical results with those derived from a novel diffusion formulation based on the one-component plasma hydromodes respectively framed on target ions and electrons.

  12. Linear dispersion relation of beta-induced Alfvén eigenmodes in presence of anisotropic energetic ions

    SciTech Connect

    Ma, Ruirui; Chavdarovski, Ilija; Ye, Gaoxiang; Wang, Xin

    2014-06-15

    Using the theoretical framework of the generalized fishbone-like dispersion relation, the linear properties of beta-induced Alfvén eigenmodes (BAEs) and energetic particle continuum modes (EPMs) excited by anisotropic slowing-down energetic ions are investigated analytically and numerically. The resonant contribution of energetic ions to the potential energy perturbation as well as fluid-like term describing the background plasma and adiabatic contribution of energetic ions are derived. For high-mode numbers, numerical results show smooth transition between the EP continuous spectrum and BAEs in the gap. EPMs and/or BAEs are destabilized by energetic ions, with real frequencies and growth rates strongly dependent on the energetic particle density and resonant frequency.

  13. Amorphisation of MgO single crystal specimens prepared by ion milling for transmission electron microscopy studies.

    PubMed

    Khan, M Y; Brown, L M; Chaudhri, M M

    1990-08-01

    Single crystal MgO specimens having low load Vickers indentations were thinned in an ion milling machine employing a single ion gun, and their characteristics were investigated with optical microscopy and high voltage electron microscopy (HVEM). It was found that the state of cleanliness of the specimen chamber of the ion milling machine had a very marked influence on the quality of the thinned specimens. If the specimen chamber was not well cleaned before ion milling a fresh specimen, the latter tended to show amorphisation due to the deposition on the specimen of the debris left in the chamber from the previously ion-milled specimens. Such observations were made from MgO specimens ion milled in several different types of commercial ion milling machine employing a single gun. It is proposed that to obtain good-quality ion milled TEM specimens, it is important to clean the specimen chamber thoroughly prior to milling.

  14. Ion Bernstein instability dependence on the proton-to-electron mass ratio: Linear dispersion theory

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2016-07-01

    Fast magnetosonic waves, which have as their source ion Bernstein instabilities driven by tenuous ring-like proton velocity distributions, are frequently observed in the inner magnetosphere. One major difficulty in the simulation of these waves is that they are excited in a wide frequency range with discrete harmonic nature and require time-consuming computations. To overcome this difficulty, recent simulation studies assumed a reduced proton-to-electron mass ratio, mp/me, and a reduced light-to-Alfvén speed ratio, c/vA, to reduce the number of unstable modes and, therefore, computational costs. Although these studies argued that the physics of wave-particle interactions would essentially remain the same, detailed investigation of the effect of this reduced system on the excited waves has not been done. In this study, we investigate how the complex frequency, ω = ωr+iγ, of the ion Bernstein modes varies with mp/me for a sufficiently large c/vA (such that ωpe2/Ωe2≡(me/mp)(c/vA)2≫1) using linear dispersion theory assuming two different types of energetic proton velocity distributions, namely, ring and shell. The results show that low- and high-frequency harmonic modes respond differently to the change of mp/me. For the low harmonic modes (i.e., ωr˜Ωp), both ωr/Ωp and γ/Ωp are roughly independent of mp/me, where Ωp is the proton cyclotron frequency. For the high harmonic modes (i.e., Ωp≪ωr≲ωlh, where ωlh is the lower hybrid frequency), γ/ωlh (at fixed ωr/ωlh) stays independent of mp/me when the parallel wave number, k∥, is sufficiently large and becomes inversely proportional to (mp/me)1/4 when k∥ goes to zero. On the other hand, the frequency range of the unstable modes normalized to ωlh remains independent of mp/me, regardless of k∥.

  15. Orientating layers with adjustable pretilt angles for liquid crystals deposited by a linear atmospheric pressure plasma source

    SciTech Connect

    Jian, Shih-Jie; Kou, Chwung-Shan; Hwang, Jennchang; Lee, Chein-Dhau; Lin, Wei-Cheng

    2013-06-15

    A method for controlling the pretilt angles of liquid crystals (LC) was developed. Hexamethyldisiloxane polymer films were first deposited on indium tin oxide coated glass plates using a linear atmospheric pressure plasma source. The films were subsequently treated with the rubbing method for LC alignment. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy measurements were used to characterize the film composition, which could be varied to control the surface energy by adjusting the monomer feed rate and input power. The results of LC alignment experiments showed that the pretilt angle continuously increased from 0 Degree-Sign to 90 Degree-Sign with decreasing film surface energy.

  16. Non-polar InGaN quantum dot emission with crystal-axis oriented linear polarization

    SciTech Connect

    Reid, Benjamin P. L. Chan, Christopher C. S.; Taylor, Robert A.; Kocher, Claudius; Zhu, Tongtong; Oehler, Fabrice; Oliver, Rachel A.

    2015-04-27

    Polarization sensitive photoluminescence is performed on single non-polar InGaN quantum dots. The studied InGaN quantum dots are found to have linearly polarized emission with a common polarization direction defined by the [0001] crystal axis. Around half of ∼40 studied dots have a polarization degree of 1. For those lines with a polarization degree less than 1, we can resolve fine structure splittings between −800 μeV and +800 μeV, with no clear correlation between fine structure splitting and emission energy.

  17. Investigations of structural, dielectric and optical properties on silicon ion irradiated glycine monophosphate single crystals

    NASA Astrophysics Data System (ADS)

    Kanagasekaran, T.; Mythili, P.; Bhagavannarayana, G.; Kanjilal, D.; Gopalakrishnan, R.

    2009-08-01

    The 50 MeV silicon ion irradiation induced modifications on structural, optical and dielectric properties of solution grown glycine monophosphate (GMP) crystals were studied. The high-resolution X-ray diffraction study shows the unaltered value of integrated intensity on irradiation. The dielectric constant as a function of frequency and temperature was studied. UV-visible studies reveal the decrease in bandgap values on irradiation and presence of F-centers. The fluorescence spectrum shows the existence of some energy levels, which remains unaffected after irradiation. The scanning electron micrographs reveal the defects formed on irradiation.

  18. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry.

    PubMed

    Shen, Yan; Han, Chao; Liu, Bin; Lin, Zhengfeng; Zhou, Xiujin; Wang, Chengjun; Zhu, Zhenou

    2014-02-01

    A simple, precise, accurate, and validated liquid chromatography-quadrupole linear ion trap mass spectrometry method was developed for the determination of vanillin, ethyl vanillin, and coumarin in infant formula samples. Following ultrasonic extraction with methanol/water (1:1, vol/vol), and clean-up on an HLB solid-phase extraction cartridge (Waters Corp., Milford, MA), samples were separated on a Waters XSelect HSS T3 column (150 × 2.1-mm i.d., 5-μm film thickness; Waters Corp.), with 0.1% formic acid solution-acetonitrile as mobile phase at a flow rate of 0.25 mL/min. Quantification of the target was performed by the internal standard approach, using isotopically labeled compounds for each chemical group, to correct matrix effects. Data acquisition was carried out in multiple reaction monitoring transitions mode, monitoring 2 multiple reaction monitoring transitions to ensure an accurate identification of target compounds in the samples. Additional identification and confirmation of target compounds were performed using the enhanced product ion modus of the linear ion trap. The novel liquid chromatography-quadrupole linear ion trap mass spectrometry platform offers the best sensitivity and specificity for characterization and quantitative determination of vanillin, ethyl vanillin, and coumarin in infant formula and fulfills the quality criteria for routine laboratory application.

  19. Structure of latent tracks in rutile single crystal of titanium dioxide induced by swift heavy ions

    SciTech Connect

    Awazu, Koichi; Wang, Xiaomin; Fujimaki, Makoto; Komatsubara, Tetsuo; Ikeda, Takahiro; Ohki, Yoshimichi

    2006-08-15

    The structurally damaged zone in titanium dioxide rutile single crystal induced by MeV-order heavy ions was observed using high resolution electronic microscopy (HREM). Stressed regions as well as amorphous regions were identified in the damaged areas. Both stressed and amorphous regions were etched with hydrofluoric acid. The thermal spike model was used to calculate the track radii variation versus electron stopping power. When the calculated lattice temperature did not exceed the melting point of rutile titanium dioxide (2130 K), no structural change introduced by ions, such as 90 MeV Cl, was observed by HREM. It was found that the radius of the lattice temperature over the melting point corresponded closely to the radius of the stressed region. It was concluded that both stressed and amorphous regions are the result of quenching by molten titanium dioxide.

  20. Homeotropic orientation behavior of nematic liquid crystals induced by copper ions.

    PubMed

    Li, Guang; Gao, Bin; Yang, Meng; Chen, Long-Cong; Xiong, Xing-Liang

    2015-06-01

    A homeotropic ordering film of nematic liquid crystal (LC) induced by copper ions (Cu(2+)) had been developed. The Cu(ClO4)2 was directly spin-coated on the glass substrate without any other chemical modification. A homeotropic orientation of LC thin-film was generated by the interfacial chemical interaction between nitrile-containing LC and copper ions on the surface. Results showed that an appropriate density of Cu(2+) could shorten the response time of orientation, but a shelf-time was prolonged. The LC film fabrication not only offered a simple process, but also presented a great repeatability to detect organophosphonates (DMMP). This study provided guidance for the design of LC films responding to organic molecules as a biosensor. PMID:25935262

  1. Development of a Linear Ion Trap Mass Spectrometer (LITMS) Investigation for Future Planetary Surface Missions

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W.; Danell, R.; Van Ameron, F.; Pinnick, V.; Li, X.; Arevalo, R.; Glavin, D.; Getty, S.; Mahaffy, P.; Chu, P.; Zacny, K.; Rogacki, S.; Grubisic, A.; Cornish, T.

    2014-01-01

    Future surface missions to Mars and other planetary bodies will benefit from continued advances in miniature sensor and sample handling technologies that enable high-performance chemical analyses of natural samples. Fine-scale (approx.1 mm and below) analyses of rock surfaces and interiors, such as exposed on a drill core, will permit (1) the detection of habitability markers including complex organics in association with their original depositional environment, and (2) the characterization of successive layers and gradients that can reveal the time-evolution of those environments. In particular, if broad-based and highly-sensitive mass spectrometry techniques could be brought to such scales, the resulting planetary science capability would be truly powerful. The Linear Ion Trap Mass Spectrometer (LITMS) investigation is designed to conduct fine-scale organic and inorganic analyses of short (approx.5-10 cm) rock cores such as could be acquired by a planetary lander or rover arm-based drill. LITMS combines both pyrolysis/gas chromatograph mass spectrometry (GCMS) of sub-sampled core fines, and laser desorption mass spectrometry (LDMS) of the intact core surface, using a common mass analyzer, enhanced from the design used in the Mars Organic Molecule Analyzer (MOMA) instrument on the 2018 ExoMars rover. LITMS additionally features developments based on the Sample Analysis at Mars (SAM) investigation on MSL and recent NASA-funded prototype efforts in laser mass spectrometry, pyrolysis, and precision subsampling. LITMS brings these combined capabilities to achieve its four measurement objectives: (1) Organics: Broad Survey Detect organic molecules over a wide range of molecular weight, volatility, electronegativity, concentration, and host mineralogy. (2) Organic: Molecular Structure Characterize internal molecular structure to identify individual compounds, and reveal functionalization and processing. (3) Inorganic Host Environment Assess the local chemical

  2. A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping.

    PubMed

    Burt, Eric A; Diener, William A; Tjoelker, Robert L

    2008-12-01

    The multi-pole linear ion trap frequency standard (LITS) being developed at the Jet Propulsion Laboratory (JPL) has demonstrated excellent short- and long-term stability. The technology has now demonstrated long-term field operation providing a new capability for timekeeping standards. Recently implemented enhancements have resulted in a record line Q of 5 x 10(12) for a room temperature microwave atomic transition and a short-term fractional frequency stability of 5 x 10(-14)/tau(1/2). A scheme for compensating the second order Doppler shift has led to a reduction of the combined sensitivity to the primary LITS systematic effects below 5 x 10(-17) fractional frequency. Initial comparisons to JPL's cesium fountain clock show a systematic floor of less than 2 x 10(-16). The compensated multi-pole LITS at JPL was operated continuously and unattended for a 9-mo period from October 2006 to July 2007. During that time it was used as the frequency reference for the JPL geodetic receiver known as JPLT, enabling comparisons to any clock used as a reference for an International GNSS Service (IGS) site. Comparisons with the laser-cooled primary frequency standards that reported to the Bureau International des Poids et Mesures (BIPM) over this period show a frequency deviation less than 2.7 x 10(-17)/day. In the capacity of a stand-alone ultra-stable flywheel, such a standard could be invaluable for long-term timekeeping applications in metrology labs while its methodology and robustness make it ideal for space applications as well. PMID:19126484

  3. Linear ion-trap mass spectrometric characterization of human pituitary nitrotyrosine-containing proteins

    NASA Astrophysics Data System (ADS)

    Zhan, Xianquan; Desiderio, Dominic M.

    2007-01-01

    The nitric oxide-mediated Tyr-nitration of endogenous proteins is associated with several pathological and physiological processes. In order to investigate the presence - and potential roles - of Tyr-nitration in the human pituitary, a large-format two-dimensional gel separation plus a Western blot against a specific anti-3-nitrotyrosine antibody were used to separate and detect nitroproteins from a human pituitary proteome. The nitroproteins were subjected to in-gel trypsin digestion, and high-sensitivity vacuum matrix-assisted laser desorption/ionization (vMALDI) linear ion-trap tandem mass spectrometry was used to analyze the tryptic peptides. Those MS/MS data were used to determine the amino acid sequence and the specific nitration site of each tryptic nitropeptide, and were matched to corresponding proteins with Bioworks TuboSEQUEST software. Compared to our previous study, 16 new nitrotyrosine-immunoreactive positive Western blot spots were found within the area pI 3.0-10 and Mr 10-100 kDa. Four new nitroproteins were discovered: the stanniocalcin 1 precursor--involved in calcium and phosphate metabolism; mitochondrial co-chaperone protein HscB, which might act as a co-chaperone in iron-sulfur cluster assembly in mitochrondria; progestin and adipoQ receptor family member III--a seven-transmembrane receptor; proteasome subunit alpha type 2--involved in an ATP/ubiquitin-dependent non-lysosomal proteolytic pathway. Those data demonstrate that nitric oxide-mediated Tyr-nitration might participate in various biochemical, metabolic, and pathological processes in the human pituitary.

  4. Linearly coupled oscillations in fully degenerate pair and warm pair-ion astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Ilyas, M.; Wazir, Z.; Ehsan, Zahida

    2014-08-01

    In this paper we study the coexisting low frequency oscillations in strongly degenerate, magnetized, (electron-positron) pair and warm pair-ion plasma. The dispersion relations are obtained for both the cases in macroscopic quantum hydrodynamics approximation. In pair-ion case, the dispersion equation shows coupling of electrostatic and (shear) electromagnetic modes under certain circumstances with important role of ion temperature. Domain of existence of such waves and their relevance to dense degenerate astrophysical plasmas is pointed out. Results are analyzed numerically for typical systems with variation of ion concentration and ion temperature.

  5. Identification of microcystin toxins from a strain of Microcystis aeruginosa by liquid chromatography introduction into a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Diehnelt, Chris W; Dugan, Nicholas R; Peterman, Scott M; Budde, William L

    2006-01-15

    The cyclic heptapeptide microcystin toxins produced by a strain of Microcystis aeruginosa that has not been investigated previously were separated by liquid chromatography and identified by high-accuracy m/z measurements of their [M + H]+ ions and the fragment ions produced by collision-activated dissociation of the [M + H]+ ions. The cyanobacteria B2666 strain was cultured in a standard growth medium, and the toxins were released from the cells, extracted from the aqueous phase, and concentrated using standard procedures. The microcystins were separated by reversed-phase microbore liquid chromatography and introduced directly into a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer with electrospray ionization. The known microcystins (MC) MC-LR, MC-LA, [MeSer7]MC-LR, MC-LL, MC-LF, and MC-L(Aba) were identified along with the two previously unreported structural variants [Asp3]MC-LA and [Asp3]MC-LL. In addition to the [M + H]+ ions, accurate m/z measurements were made of 12-18 product ions for each identified microcystin. The mean difference between measured and calculated exact m/z was less than 2 parts per million, which often allowed assignment of unique compositions to the observed ions. A mechanism is presented that accounts for an important collision-activated dissociation process that gives valuable sequence ions from microcystins that do not contain arginine. The analytical technique used in this work is capable of supporting fairly rapid and very reliable identifications of known microcystins when standards are not available and of most structural variants independent of additional information from other analytical techniques.

  6. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper. PMID:26931953

  7. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator

    NASA Astrophysics Data System (ADS)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  8. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  9. Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp.

    PubMed

    Bouillard, J-S; Vilain, S; Dickson, W; Wurtz, G A; Zayats, A V

    2012-01-01

    Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses.

  10. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules

    SciTech Connect

    Larriba-Andaluz, Carlos Hogan, Christopher J.

    2014-11-21

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements.

  11. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules.

    PubMed

    Larriba-Andaluz, Carlos; Hogan, Christopher J

    2014-11-21

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements. PMID:25416874

  12. The direct crystallographic evidences of undissociated HCl hydrates and unconventional cis-linear conformation of the water dimer in an organic crystal determined at ambient condition

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Feng, Ya; Shen, Chen; Yong, Guoping

    2016-08-01

    The unprecedentedly undissociated HCl hydrates, and unconventional cis-linear conformation of the water dimer at ambient condition were found in a novel organic crystal by direct crystallographic evidences. The peculiar tricyclo[6.2.0.0]-type configuration of hydrogen-bonding network induces such unexpected undissociated HCl hydrates, and unusual cis-linear conformation of the water dimer.

  13. Magnetism and variable temperature and pressure crystal structures of a linear oligonuclear cobalt bis-semiquinonate.

    PubMed

    Overgaard, Jacob; Møller, Louise H; Borup, Mette A; Tricoire, Maxime; Walsh, James P S; Diehl, Marcel; Rentschler, Eva

    2016-08-01

    The crystal structure of the first oligomeric cobalt dioxolene complex, Co3(3,5-DBSQ)2((t)BuCOO)4(NEt3)2, 1, where DBSQ is 3,5-di-tert-butyl-semiquinonate, has been studied at various temperatures between 20 and 200 K. Despite cobalt-dioxolene complexes being generally known for their extensive ability to exhibit valence tautomerism (VT), we show here that the molecular geometry of compound 1 is essentially unchanged over the full temperature range, indicating the complete absence of electron transfer between ligand and metal. Magnetic susceptibility measurements clearly support the lack of VT between 8 and 300 K. The crystal structure is also determined at elevated pressures in the range from 0 to 2.5 GPa. The response of the crystal structure is surprisingly dependent on the dynamics of pressurisation: following rapid pressurization to 2 GPa, a structural phase transition occurs; yet, this is absent when the pressure is increased incrementally to 2.6 GPa. In the new high pressure phase, Z' is 2 and one of the two molecules displays changes in the coordination of one bridging carboxylate from μ2:κO:κO' to μ2:κ(2)O,O':κO', while the other molecule remains unchanged. Despite the significant changes to the molecular connectivity, analysis of the crystal structures shows that the phase transition leaves the spin and oxidation states of the molecules unaltered. Intermolecular interactions in the high pressure crystal structures have been analysed using Hirshfeld surfaces but they cannot explain the origin of the phase transition. The lack of VT in this first oligomeric Co-dioxolene complex is speculated to be due to the coordination geometry of the terminal Co-atoms, which are trigonal bipyramidally coordinated, different from the more common octahedral coordination. The energy that is gained by a hs-to-ls change in Oh is equal to Δ, while in the case of the trigonal bipyramidal (C3v), the energy gain is equal to the splitting between d(z(2)) and degenerate d

  14. Magnetism and variable temperature and pressure crystal structures of a linear oligonuclear cobalt bis-semiquinonate.

    PubMed

    Overgaard, Jacob; Møller, Louise H; Borup, Mette A; Tricoire, Maxime; Walsh, James P S; Diehl, Marcel; Rentschler, Eva

    2016-08-01

    The crystal structure of the first oligomeric cobalt dioxolene complex, Co3(3,5-DBSQ)2((t)BuCOO)4(NEt3)2, 1, where DBSQ is 3,5-di-tert-butyl-semiquinonate, has been studied at various temperatures between 20 and 200 K. Despite cobalt-dioxolene complexes being generally known for their extensive ability to exhibit valence tautomerism (VT), we show here that the molecular geometry of compound 1 is essentially unchanged over the full temperature range, indicating the complete absence of electron transfer between ligand and metal. Magnetic susceptibility measurements clearly support the lack of VT between 8 and 300 K. The crystal structure is also determined at elevated pressures in the range from 0 to 2.5 GPa. The response of the crystal structure is surprisingly dependent on the dynamics of pressurisation: following rapid pressurization to 2 GPa, a structural phase transition occurs; yet, this is absent when the pressure is increased incrementally to 2.6 GPa. In the new high pressure phase, Z' is 2 and one of the two molecules displays changes in the coordination of one bridging carboxylate from μ2:κO:κO' to μ2:κ(2)O,O':κO', while the other molecule remains unchanged. Despite the significant changes to the molecular connectivity, analysis of the crystal structures shows that the phase transition leaves the spin and oxidation states of the molecules unaltered. Intermolecular interactions in the high pressure crystal structures have been analysed using Hirshfeld surfaces but they cannot explain the origin of the phase transition. The lack of VT in this first oligomeric Co-dioxolene complex is speculated to be due to the coordination geometry of the terminal Co-atoms, which are trigonal bipyramidally coordinated, different from the more common octahedral coordination. The energy that is gained by a hs-to-ls change in Oh is equal to Δ, while in the case of the trigonal bipyramidal (C3v), the energy gain is equal to the splitting between d(z(2)) and degenerate d

  15. Linear optical properties and electronic structures of poly(3-hexylthiophene) and poly(3-hexylselenophene) crystals from first principles

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Takao; Song, Jung-Hwan; Freeman, Arthur J.

    2012-08-01

    Linear optical properties of regio-regular-poly(3-hexythiophene) (rr-P3HT) and regio-regular-poly(3-hexyselenophene) (rr-P3HS) are investigated in relation to their anisotropic crystal structure by means of first-principles density functional calculations. The optical spectra are evaluated by calculating its dielectric functions, focusing on the frequency dependence of the imaginary part. The optical transition along the π conjugation-connecting backbone direction is found to be the most significant at the band edges. A group-theoretical analysis of the matrix elements is given to explain the interband transitions. The optical spectra, electronic structures, and structural stabilities are calculated using the all-electron full-potential linearized augmented plane wave (FLAPW) method within the local-density approximation. We proposed several possible crystal structures of rr-P3HT and performed structural optimizations to determine a stable structure. Comparing the total energy differences among these relaxed structures, a base-centered monoclinic structure belonging to the space group A2 is found to be the most stable structure. In the electronic structure, C and S orbitals belonging to polythiophene backbones are the biggest contributors at the valence band maximum and conduction band minimum, but there is almost no contribution from the hexyl side chains. Last, the differences in electronic and optical properties between rr-P3HT and rr-P3HS are discussed.

  16. Growth, structural, optical and electrical behavior of glycine potassium nitrate (GPN) crystal with non-linear optical response

    NASA Astrophysics Data System (ADS)

    Khandpekar, M. M.; Pati, S. P.

    2011-02-01

    New trapezoidal, non-linear optical crystals of glycine potassium nitrate (GPN) have been grown by slow cooling from solutions with an initial pH of 4.3. Chemical composition, phase formation and functional groups have been verified by CHN, EDAX, XRF, NMR, XRD, FTIR and Raman studies. UV studies show a much lower cut off wavelength (195 nm) compared to the much investigated glycine sodium nitrate (GSN). The powder SHG efficiency of GPN is found to be 0.6 times compared to that of potassium dihydrogen phosphate (KDP). Cut and polished crystals exposed to light indicate positive photoconductivity. Electrical conductivity studies show an activation energy of 0.16 eV and the dielectric loss is found to decay drastically at higher frequencies (1 MHz) which is desirable in electronic applications. Vickers microhardness studies indicate a Mayer's index value of 2.78. Well resolved, elongated and oriented etch pits have been observed on the side habit face (220) treated in glacial acetic acid for 5 s. Typical circular features resisting the formation of etch pits representing impurity elements have been observed on the cleavage faces. Moisture has been traced on the surface of the crystals subjected to heat treatment.

  17. Trapping of Intact, Singly-Charged, Bovine Serum Albumin Ions Injected from the Atmosphere with a 10-cm Diameter, Frequency-Adjusted Linear Quadrupole Ion Trap

    SciTech Connect

    Koizumi, Hideya; Whitten, William B; Reilly, Pete

    2008-12-01

    High-resolution real-time particle mass measurements have not been achievable because the enormous amount of kinetic energy imparted to the particles upon expansion into vacuum competes with and overwhelms the forces applied to the charged particles within the mass spectrometer. It is possible to reduce the kinetic energy of a collimated particulate ion beam through collisions with a buffer gas while radially constraining their motion using a quadrupole guide or trap over a limited mass range. Controlling the pressure drop of the final expansion into a quadrupole trap permits a much broader mass range at the cost of sacrificing collimation. To achieve high-resolution mass analysis of massive particulate ions, an efficient trap with a large tolerance for radial divergence of the injected ions was developed that permits trapping a large range of ions for on-demand injection into an awaiting mass analyzer. The design specifications required that frequency of the trapping potential be adjustable to cover a large mass range and the trap radius be increased to increase the tolerance to divergent ion injection. The large-radius linear quadrupole ion trap was demonstrated by trapping singly-charged bovine serum albumin ions for on-demand injection into a mass analyzer. Additionally, this work demonstrates the ability to measure an electrophoretic mobility cross section (or ion mobility) of singly-charged intact proteins in the low-pressure regime. This work represents a large step toward the goal of high-resolution analysis of intact proteins, RNA, DNA, and viruses.

  18. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    NASA Astrophysics Data System (ADS)

    Yan, W.; Chen, Z. Y.; Jin, W.; Lee, S. G.; Shi, Y. J.; Huang, D. W.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Zhuang, G.

    2016-11-01

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the Kα spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  19. Non-linear photoelectron effect contributes to the formation of negative matrix ions in UV-MALDI.

    PubMed

    Alonso, E; Zenobi, R

    2016-07-20

    The mechanism of negative ion formation in matrix-assisted laser desorption/ionization (MALDI) is less well understood than that of positive ions: electron capture, disproportionation, and liberation of negatively charged sample molecules or clusters have been proposed to produce the initial anions in MALDI. Here, we propose that the non-linear photoelectric effect can explain the emission of electrons from the metallic target material. Moreover, electrons with sufficient kinetic energy (0-10 eV) could be responsible for the formation of initial negative ions. Gas-phase electron capture by neutral 2,5-dihydroxy benzoic acid (DHB) to yield M(-) is investigated on the basis of a coupled physical and chemical dynamics (CPCD) theory from the literature. A three-layer energy mass balance model is utilized to calculate the surface temperature of the matrix, which is used to determine the translational temperature, the number of desorbed matrix molecules per unit area, and the ion velocity. Calculations of dissociative attachment and autoionization rates of DHB are presented. It was found that both processes contribute significantly to the formation of [M - H](-) and [M - H2](-), although the predicted yield in the fluence range of 5-100 mJ cm(-2) is low, certainly less than that for positive ions M(+). This work represents the first proposal for a comprehensive theoretical description of negative ion formation in UV-MALDI.

  20. Non-linear photoelectron effect contributes to the formation of negative matrix ions in UV-MALDI.

    PubMed

    Alonso, E; Zenobi, R

    2016-07-20

    The mechanism of negative ion formation in matrix-assisted laser desorption/ionization (MALDI) is less well understood than that of positive ions: electron capture, disproportionation, and liberation of negatively charged sample molecules or clusters have been proposed to produce the initial anions in MALDI. Here, we propose that the non-linear photoelectric effect can explain the emission of electrons from the metallic target material. Moreover, electrons with sufficient kinetic energy (0-10 eV) could be responsible for the formation of initial negative ions. Gas-phase electron capture by neutral 2,5-dihydroxy benzoic acid (DHB) to yield M(-) is investigated on the basis of a coupled physical and chemical dynamics (CPCD) theory from the literature. A three-layer energy mass balance model is utilized to calculate the surface temperature of the matrix, which is used to determine the translational temperature, the number of desorbed matrix molecules per unit area, and the ion velocity. Calculations of dissociative attachment and autoionization rates of DHB are presented. It was found that both processes contribute significantly to the formation of [M - H](-) and [M - H2](-), although the predicted yield in the fluence range of 5-100 mJ cm(-2) is low, certainly less than that for positive ions M(+). This work represents the first proposal for a comprehensive theoretical description of negative ion formation in UV-MALDI. PMID:27181273

  1. Surface degeneration of W crystal irradiated with low-energy hydrogen ions.

    PubMed

    Fan, Hongyu; You, Yuwei; Ni, Weiyuan; Yang, Qi; Liu, Lu; Benstetter, Günther; Liu, Dongping; Liu, Changsong

    2016-01-01

    The damage layer of a W (100) crystal irradiated with 120 eV hydrogen ions at a fluence of up to 1.5 × 10(25)/m(2) was investigated by scanning electron microscopy and conductive atomic force microscopy (CAFM). The periodic surface degeneration of the W crystal at a surface temperature of 373 K was formed at increasing hydrogen fluence. Observations by CCD camera and CAFM indicate the existence of ultrathin surface layers due to low-energy H irradiation. The W surface layer can contain a high density of nanometer-sized defects, resulting in the thermal instability of W atoms in the surface layer. Our findings suggest that the periodic surface degeneration of the W crystal can be ascribed to the lateral erosion of W surface layers falling off during the low-energy hydrogen irradiation. Our density functional theory calculations confirm the thermal instability of W atoms in the top layer, especially if H atoms are adsorbed on the surface.

  2. Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization

    NASA Astrophysics Data System (ADS)

    Dongna, Yuan; Yulong, Huang; Shunli, Ni; Huaxue, Zhou; Yiyuan, Mao; Wei, Hu; Jie, Yuan; Kui, Jin; Guangming, Zhang; Xiaoli, Dong; Fang, Zhou

    2016-07-01

    Large superconducting FeSe crystals of (001) orientation have been prepared via a hydrothermal ion release/introduction route for the first time. The hydrothermally derived FeSe crystals are up to 10 mm×5 mm×0.3 mm in dimension. The pure tetragonal FeSe phase has been confirmed by x-ray diffraction (XRD) and the composition determined by both inductively coupled plasma atomic emission spectroscopy (ICP-AES) and energy dispersive x-ray spectroscopy (EDX). The superconducting transition of the FeSe samples has been characterized by magnetic and transport measurements. The zero-temperature upper critical field H c2 is calculated to be 13.2-16.7 T from a two-band model. The normal-state cooperative paramagnetism is found to be predominated by strong spin frustrations below the characteristic temperature T sn, where the Ising spin nematicity has been discerned in the FeSe superconductor crystals as reported elsewhere. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574370, 11274358, and 11190020), the National Basic Research Program of China (Grant No. 2013CB921700), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100).

  3. Surface degeneration of W crystal irradiated with low-energy hydrogen ions

    PubMed Central

    Fan, Hongyu; You, Yuwei; Ni, Weiyuan; Yang, Qi; Liu, Lu; Benstetter, Günther; Liu, Dongping; Liu, Changsong

    2016-01-01

    The damage layer of a W (100) crystal irradiated with 120 eV hydrogen ions at a fluence of up to 1.5 × 1025/m2 was investigated by scanning electron microscopy and conductive atomic force microscopy (CAFM). The periodic surface degeneration of the W crystal at a surface temperature of 373 K was formed at increasing hydrogen fluence. Observations by CCD camera and CAFM indicate the existence of ultrathin surface layers due to low-energy H irradiation. The W surface layer can contain a high density of nanometer-sized defects, resulting in the thermal instability of W atoms in the surface layer. Our findings suggest that the periodic surface degeneration of the W crystal can be ascribed to the lateral erosion of W surface layers falling off during the low-energy hydrogen irradiation. Our density functional theory calculations confirm the thermal instability of W atoms in the top layer, especially if H atoms are adsorbed on the surface. PMID:27020839

  4. Silver migration and trapping in ion implanted ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Azarov, Alexander; Vines, Lasse; Rauwel, Protima; Monakhov, Edouard; Svensson, Bengt G.

    2016-05-01

    Potentially, group-Ib elements (Cu, Ag, and Au) incorporated on Zn sites can be used for p-type doping of ZnO, and in the present paper, we use ion implantation to introduce Ag atoms in wurtzite ZnO single crystals. Monitoring the Li behavior, being a residual impurity in the crystals, as a tracer, we demonstrate that Zn interstitials assist the Ag diffusion and lead to Ag pile-up behind the implanted region after annealing above 800 °C. At even higher temperatures, a pronounced Ag loss from the sample surface occurs and concurrently the Ag atoms exhibit a trap-limited diffusion into the crystal bulk with an activation energy of ˜2.6 eV. The dominant traps are most likely Zn vacancies and substitutional Li atoms, yielding substitutional Ag atoms. In addition, formation of an anomalous multipeak Ag distribution in the implanted near-surface region after annealing can be attributed to local implantation-induced stoichiometry disturbances leading to trapping of the Ag atoms by O and Zn vacancies in the vicinity of the surface and in the end-of-range region, respectively.

  5. Ion channeling study of defects in compound crystals using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.

    2014-08-01

    Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.

  6. Sealing glass-ceramics with near-linear thermal strain, Part II: Sequence of crystallization and phase stability

    DOE PAGES

    Rodriguez, Mark A.; Griego, James J. M.; Dai, Steve

    2016-08-22

    The sequence of crystallization in a recrystallizable lithium silicate sealing glass-ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high-temperature X-ray diffraction (HTXRD). Glass-ceramic specimens have been subjected to a two-stage heat-treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass-ceramic having a near-linear thermal strain,more » as opposed to the highly nonlinear glass-ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass-ceramics. While the inversion in cristobalite resembles the character of a first-order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Furthermore, localized tensile stresses on quartz and possible solid-solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass-ceramics.« less

  7. On the effect of a non-uniform longitudinal ion flow on the linear ITG mode stability.

    NASA Astrophysics Data System (ADS)

    Lontano, Maurizio; Lazzaro, Enzo; Varischetti, Maria Cecilia

    2006-10-01

    A one-dimensional model for slab ion temperature gradient (ITG) modes, in the presence of an inhomogeneous equilibrium plasma velocity along the main magnetic field direction, has been formulated in the frame of a two-fluid guiding-center approximation. The physical effects of a magnetic field gradient and of the line curvature are included by means of a gravitational drift velocity. The magnetic shear across the plasma slab is also taken into account. The linear stability of slow plasma dynamics, under the assumptions of quasi-neutrality and adiabatic electrons, is described by means of a third-degree dispersion relation. Generally speaking, the presence of a sheared longitudinal ion velocity leads to the linear destabilization of the ITG modes, especially for flat equilibrium density profiles. Transverse quasi-linear fluxes of ion thermal energy and longitudinal momentum are calculated for different equilibrium profiles of the density, temperature, momentum, and magnetic shear. Plasma configurations leading to zero transverse (or even negative) momentum fluxes are exploited and discussed in the light of their experimental implementation.

  8. Deflection and Extraction of Pb Ions up to 33 TeV/c by a Bent Silicon Crystal

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Biino, C.; Clément, M.; Cornelis, K.; Doble, N.; Elsener, K.; Ferioli, G.; Fidecaro, G.; Gatignon, L.; Grafström, P.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E.; Møller, S. P.; Uggerhøj, E.; Taratin, A.; Freund, A.; Keppler, P.; Major, J.

    1997-11-01

    The first results from an experiment to deflect a beam of fully stripped, ultrarelativistic Pb82+ ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c, by means of a bent crystal are reported. Deflection efficiencies are as high as 14%, in agreement with theoretical estimates. In a second experiment a bent crystal was used to extract 270 GeV/c-per-charge Pb82+ \\(22 TeV/c\\) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10% was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams.

  9. Theoretical investigations of the optical and EPR spectra for trivalent cerium and ytterbium ions in orthorhombic YF3 crystal

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Gang; Zheng, Wen-Chen

    2016-09-01

    The optical spectra and electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants A) for trivalent cerium and ytterbium ions in YF3 crystal with orthorhombic structure are investigated together by the complete diagonalization (of energy matrix) method (CDM). The obtained results are in reasonable agreement with the experimental ones. More importantly, two magnetically nonequivalent centers in YF3 crystal observed in EPR experiments are confirmed and ascribed to their specific positions in a unit cell by our calculations based on superposition model (SPM) analysis. Such identification of local sites with different magnetic properties would help us to understand not only the EPR spectra and magnetic susceptibility of other lanthanide ions doped in crystals with the same structure as YF3 but also the energy transfer scheme between two lanthanide ions occupying such two sites. All results are discussed carefully.

  10. Kinematic dust viscosity effect on linear and nonlinear dust-acoustic waves in space dusty plasmas with nonthermal ions

    NASA Astrophysics Data System (ADS)

    El-Hanbaly, A. M.; Sallah, M.; El-Shewy, E. K.; Darweesh, H. F.

    2015-10-01

    Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions are related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.

  11. Kinematic dust viscosity effect on linear and nonlinear dust-acoustic waves in space dusty plasmas with nonthermal ions

    SciTech Connect

    El-Hanbaly, A. M.; Sallah, M.; El-Shewy, E. K.; Darweesh, H. F.

    2015-10-15

    Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions are related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.

  12. A study of vacuum arc ion velocities using a linear set of probes

    SciTech Connect

    Hohenbild, Stefan; Grubel, Christoph; Yushkov, Georgy Yu.; Oks, Efim M.; Anders, Andre

    2008-07-15

    The most likely velocity of ions moving away from vacuum arc cathode spots was measured using a set of probes along the path of plasma expansion. The goal was to determine how much, if any, change of the ion drift velocity occurs in the expanded plasma. The arc discharge current was perturbed to create plasma density markers whose travel is picked up by the set of probes. It was found that the perturbation with current oscillations did not result in consistent data because ion current maxima and minima are not only determined by the plasma production but by the transients of the arc pulse and by the asymmetry of the ion velocity distribution function. Perturbation with a short current spike was more conclusive. The ion velocity was measured to be slightly reduced with increasing distance from the cathode, which can be explained by collisions of ions with the background of neutrals. The ion velocity was increased when the arc current was increased, which correlated with enhanced arc voltage and power dissipation. The ion velocity could be enhanced when the plasma was produced in a non-uniform magnetic field.

  13. A photoluminescence study of CuInSe2 single crystals ion implanted with 5 keV hydrogen

    NASA Astrophysics Data System (ADS)

    Yakushev, M. V.; Krustok, J.; Grossberg, M.; Volkov, V. A.; Mudryi, A. V.; Martin, R. W.

    2016-03-01

    CuInSe2 single crystals ion implanted with 5 keV hydrogen at doses from 3  ×  1014 to 1016 cm-2 are studied by photoluminescence (PL). The PL spectra before and after implantation reveal two bands, a main dominant band centred at 0.96 eV and a lower intensity band centred at 0.93 eV. Detailed analysis of the shape of these bands, their temperature and excitation intensity dependencies allow the recombination mechanisms to be identified as band-to-tail (BT) and band-to-impurity (BI), respectively. The implantation causes gradual red shifts of the bands increasing linearly with the dose. The average depth of potential fluctuations is also estimated to increase with the dose and saturates for doses above 1015 cm-2. A model is proposed which associates the potential fluctuations with the antisite defects copper on indium site and indium on copper site. The saturation is explained by full randomization of copper and indium atoms on the cation sub-lattice.

  14. A linear relationship between crystal size and fragment binding time observed crystallographically: implications for fragment library screening using acoustic droplet ejection.

    PubMed

    Cole, Krystal; Roessler, Christian G; Mulé, Elizabeth A; Benson-Xu, Emma J; Mullen, Jeffrey D; Le, Benjamin A; Tieman, Alanna M; Birone, Claire; Brown, Maria; Hernandez, Jesus; Neff, Sherry; Williams, Daniel; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S

    2014-01-01

    High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size. PMID:24988328

  15. Optical detection of a single rare-earth ion in a crystal

    PubMed Central

    Kolesov, R.; Xia, K.; Reuter, R.; Stöhr, R.; Zappe, A.; Meijer, J.; Hemmer, P.R.; Wrachtrup, J.

    2012-01-01

    Rare-earth-doped laser materials show strong prospects for quantum information storage and processing, as well as for biological imaging, due to their high-Q 4f↔4f optical transitions. However, the inability to optically detect single rare-earth dopants has prevented these materials from reaching their full potential. Here we detect a single photostable Pr3+ ion in yttrium aluminium garnet nanocrystals with high contrast photon antibunching by using optical upconversion of the excited state population of the 4f↔4f optical transition into ultraviolet fluorescence. We also demonstrate on-demand creation of Pr3+ ions in a bulk yttrium aluminium garnet crystal by patterned ion implantation. Finally, we show generation of local nanophotonic structures and cell death due to photochemical effects caused by upconverted ultraviolet fluorescence of praseodymium-doped yttrium aluminium garnet in the surrounding environment. Our study demonstrates versatile use of rare-earth atomic-size ultraviolet emitters for nanoengineering and biotechnological applications. PMID:22929786

  16. Influence of yttrium content on the location of rare earth ions in LYSO:Ce crystals

    SciTech Connect

    Ding, Dongzhou; Weng, Linhong; Yang, Jianhua; Ren, Guohao; Wu, Yuntao

    2014-01-15

    Single-crystal X-ray diffraction (SCD), X-ray fluorescence (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES) and X-ray excited luminescence (XEL) measurements were performed to investigate structure details and segregation coefficients of (Lu{sub 1−x}Y{sub x}){sub 2}SiO{sub 5}:Ce (x=0 at%, 8.7 at%, 25.7 at%, 44.7 at%, 65.7 at%, 87.9 at% and 100 at%). Y{sup 3+} cations were found to have a preferential occupation for RE1 site (7-oxygen-coordinated) over RE2 site (6-oxygen-coordinated), which results in a greater increase of cell parameter c than that of a with increase in Y content due to LYSO's microstructure characteristics. Results presented here revealed that the less the difference in electronegativity and effective ionic radius between the two ions, the easier substitution of one ion by the other, and hence the higher segregation coefficients. Besides, the contribution of luminescence of Ce1 and Ce2 in the whole XEL was evaluated, and the location of Ce{sup 3+} ion was discussed. - Graphical abstract: Segregation coefficients of (Lu{sub 1−x}Y{sub x}){sub 2}SiO{sub 5}:Cce:italic> at RT/ce:italic>. Display Omitted.

  17. Needle-like ion-doped hydroxyapatite crystals influence osteogenic properties of PCL composite scaffolds.

    PubMed

    Guarino, V; Veronesi, F; Marrese, M; Giavaresi, G; Ronca, A; Sandri, M; Tampieri, A; Fini, M; Ambrosio, Luigi

    2016-02-01

    Surface topography and chemistry both play a crucial role on influencing cell response in 3D porous scaffolds in terms of osteogenesis. Inorganic materials with peculiar morphology and chemical functionalities may be proficiently used to improve scaffold properties-in the bulk and along pore surface-promoting in vitro and in vivo osseous tissue in-growth. The present study is aimed at investigating how bone regenerative properties of composite scaffolds made of poly(Ɛ-caprolactone) (PCL) can be augmented by the peculiar properties of Mg(2+) ion doped hydroxyapatite (dHA) crystals, mainly emphasizing the role of crystal shape on cell activities mediated by microstructural properties. At the first stage, the study of mechanical response by crossing experimental compression tests and theoretical simulation via empirical models, allow recognizing a significant contribution of dHA shape factor on scaffold elastic moduli variation as a function of the relative volume fraction. Secondly, the peculiar needle-like shape of dHA crystals also influences microscopic (i.e. crystallinity, adhesion forces) and macroscopic (i.e. roughness) properties with relevant effects on biological response of the composite scaffold: differential scanning calorimetry (DSC) analyses clearly indicate a reduction of crystallization heat-from 66.75 to 43.05 J g(-1)-while atomic force microscopy (AFM) ones show a significant increase of roughness-from (78.15  ±  32.71) to (136.13  ±  63.21) nm-and of pull-off forces-from 33.7% to 48.7%. Accordingly, experimental studies with MG-63 osteoblast-like cells show a more efficient in vitro secretion of alkaline phosphatase (ALP) and collagen I and a more copious in vivo formation of new bone trabeculae, thus suggesting a relevant role of dHA to support the main mechanisms involved in bone regeneration. PMID:26928781

  18. Deflection of 32.8 TeV/c fully stripped Pb ions by means of a bent Si crystal

    NASA Astrophysics Data System (ADS)

    Biino, C.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Herr, W.; Keppler, P.; Major, J.; Mikkelsen, U.; Taratin, A.; Velasco, M.

    2000-03-01

    New results on the deflection of fully stripped 32.8 TeV/c Pb ions in a bent Si crystal at the CERN-SPS are reported. Deflection efficiencies above 10% have been measured for deflection angles in the range 4-9 mrad. The effect of particle losses due to interaction in the crystal and other systematic errors have been carefully investigated. The experimental results are in agreement with theoretical calculations.

  19. Polymer-Ion Interaction Weakens the Strain-Rate Dependence of Extension-Induced Crystallization for Poly(ethylene oxide).

    PubMed

    Hu, Tingting; Tian, Nan; Ali, Sarmad; Wang, Zhen; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-03-01

    The crystallization of poly(ethylene oxide) (PEO)-sodium iodine (NaI) composites is investigated by differential scanning calorimetry (DSC), extensional rheology, and in situ small-angle X-ray scattering (SAXS) with the aim of demonstrating versatile roles played by polymer-ion interactions. In the isothermal quiescent crystallization process, a decrease in the crystal growth rate is observed for PEO-NaI and is attributed to slow chain movement caused by the coordination between cations and polymer. In situ SAXS on extensional flow-induced crystallization (FIC) exhibits enhanced kinetics and orientation for both PEO and PEO-NaI with increasing strain rate. However, an overall weaker strain-rate dependence of FIC is observed for PEO-NaI, which can be interpreted as a synergistic consequence of promoted nucleation under flow and impeded crystal growth by polymer-ion interaction. A possible microscopic mechanism is proposed to account for the experimental observation based on the formation of transient cross-linking points in PEO-NaI and their influence on the entanglement network of polymer under various flow fields. The disclosed strain-rate dependence and various ion effects on the behavior of PEO-salt composites contribute to a comprehensive understanding of polymer-ion solid polyelectrolytes. PMID:26822166

  20. MULTI-SPACECRAFT OBSERVATIONS OF LINEAR MODES AND SIDEBAND WAVES IN ION-SCALE SOLAR WIND TURBULENCE

    SciTech Connect

    Perschke, Christopher; Motschmann, Uwe; Narita, Yasuhito; Glassmeier, Karl-Heinz

    2014-10-01

    In the scenario of weak turbulence, energy is believed to be cascaded from smaller to larger wave numbers and frequencies due to weak wave-wave interactions. Based on its perturbative treatment one may regard plasma turbulence as a superposition of linear modes (or normal modes) and sideband waves (or nonlinear modes). In this study, we use magnetic field and plasma measurements of nine solar wind events obtained by the Cluster spacecraft and make extensive use of a high-resolution wave vector analysis method, the Multi-point Signal Resonator technique, to find frequencies and wave vectors of discrete modes on ion kinetic scales in the plasma rest frame. The primarily unstructured wave observations in the frequency-wave number diagram are classified into three distinct linear modes (proton Bernstein modes, helium-alpha Bernstein modes, and kinetic Alfvén waves) and the sideband waves by comparing with the dispersion relations derived theoretically from linear Vlasov theory using observational values of the plasma parameter beta and the propagation angle from the mean magnetic field. About 60% of the observed discrete modes can be explained by the linear modes, primarily as the proton Bernstein and the kinetic Alfvén waves, within the frequency uncertainties, while the rest of the population (about 40%) cannot be classified as linear modes due to the large deviation from dispersion relations. We conclude that both the linear modes and sideband wave components are needed to construct the wave picture of solar wind turbulence on ion-kinetic scales.

  1. Linear-stability theory of thermocapillary convection in a model of float-zone crystal growth

    NASA Technical Reports Server (NTRS)

    Neitzel, G. P.; Chang, K.-T.; Jankowski, D. F.; Mittelmann, H. D.

    1992-01-01

    Linear-stability theory has been applied to a basic state of thermocapillary convection in a model half-zone to determine values of the Marangoni number above which instability is guaranteed. The basic state must be determined numerically since the half-zone is of finite, O(1) aspect ratio with two-dimensional flow and temperature fields. This, in turn, means that the governing equations for disturbance quantities will remain partial differential equations. The disturbance equations are treated by a staggered-grid discretization scheme. Results are presented for a variety of parameters of interest in the problem, including both terrestrial and microgravity cases.

  2. Fabrication and material properties of submicrometer SrTiO{sub 3} films exfoliated using crystal ion slicing

    SciTech Connect

    Roth, Ryan M.; Djukic, Djordje; Lee, Yoo Seung; Osgood, Richard M. Jr.; Lewis, Penelope A.; Bakhru, Sasha; Bakhru, Hassaram

    2007-03-12

    The crystal quality of submicrometer-thick SrTiO{sub 3} films that are formed by exfoliation from bulk crystals using deep implantation with H-ion beams is investigated. Nuclear reaction analysis and Rutherford backscattering/channeling are used to measure the implantation depth, crystal-lattice disruption, and surface damage prior to exfoliation. The surface profiles of the exfoliated films are examined with atomic force microscopy; the roughness is shown to be reducible to subnanometer levels with postexfoliation mechanical polishing.

  3. Haematite natural crystals: non-linear initial susceptibility at low temperature

    NASA Astrophysics Data System (ADS)

    Guerrero-Suarez, S.; Martín-Hernández, F.

    2016-06-01

    Several works have reported that haematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain size, foreign cations content and domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to haematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyse initial susceptibility and magnetization behaviours below Morin transition. The magnetic moment study at low temperature is completed with measurements of zero field cooled-field cooled and AC susceptibility in a range from 5 to 300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in haematite-bearing rocks.

  4. Ion pairs of crystal violet in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles.

    PubMed

    Oliveira, Carla S; Bastos, Erick L; Duarte, Evandro L; Itri, Rosangela; Baptista, Mauricio S

    2006-10-10

    The interfacial localization and the ion pair formation of the positively charged dye crystal violet (CV) in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles (AOT RMs) were studied by several structural and spectroscopic techniques and by quantum chemical calculations. The size and shape of the AOT RMs in the presence of CV were investigated by small-angle X-ray scattering, showing that CV does not significantly change the RM structure. CV localization as a function of the water to surfactant molar ratio (w(0)) was characterized by H(1) and (13)C NMR, indicating the close proximity of CV to the sulfosuccinate group of AOT at small and large w(0) values. These results were confirmed by calculation of magnetic shielding constants using the gauge-independent atomic orbital method with the HF/6-31G(d) basis set. Two different types of ion pairs between AOT and CV, i.e., contact ion pair (CIPs) and solvent-separated ion pair (SSIPs), were characterized by UV-vis spectroscopy and quantum chemical calculations using the semiempirical ZINDO-CI method. In nonpolar isotropic solvents CIPs are formed with an association constant (K(ASSOC)) of 2 x 10(4) mol(-1) L in isooctane and 750 mol(-1) L in chloroform. In AOT RMs at low w(0), CV-AOT CIPs are also formed. By increasing w(0), there is a sharp decrease in the CIP association free energy, and SSIPs are formed. (CV(+))(H(2)O)(AOT(-)) SSIPs are stable in the AOT RM up to the largest w(0) tested (w(0) = 33). PMID:17014109

  5. Ultra-compact broadband mode converter and optical diode based on linear rod-type photonic crystal waveguide.

    PubMed

    Ye, Han; Wang, Donglin; Yu, Zhongyuan; Zhang, Jinqiannan; Chen, Zhihui

    2015-04-20

    In this paper, we present extremely compact designs of both broadband mode converter and optical diode in linear rod-type photonic crystal (PhC) waveguide with functional region consisting of only 4 × 1 unit cells of perfect PhC. The dielectric distribution inside functional region are optimized by combining geometry projection method and method of moving asymptotes. Bidirectional mode converter realizes above 60% transmission efficiency within bandwidth 0.02c/a, where c and a represent light velocity and PhC lattice constant respectively. Optical diode achieves above 19 dB unidirectionality for even mode within bandwidth 0.01c/a. Moreover, the proposed designs have reasonable tolerance of rod boundary fluctuation. We expect the results will help developing recipes for future PhC devices in all-optical integrated circuits.

  6. On the ratio of magnetic losses in Fe-3% Si single crystals in rotating and linear-polarized magnetic fields

    NASA Astrophysics Data System (ADS)

    Tiunov, V. F.

    2012-12-01

    The behavior of the magnetic losses in Fe-Si crystals in rotating and linear-polarized fields has been studied and particular features of the dependence of the ratio of these losses on the induction amplitude have been revealed. It has been demonstrated that abnormally high magnitudes of magnetic losses in rotating fields at low induction values ( B < 1.0 T) are caused by the nonuniformity of the displacement speeds of 180° walls of the stripe domain structure. At high induction values ( B > 1.0 T), the high magnitude of magnetic losses is caused by particular features of the motion of 90° and 180° walls of the closure domain structure of the tested samples.

  7. Evolution of linear acoustic domains in a plane layer of a liquid crystal beyond the instability threshold

    NASA Astrophysics Data System (ADS)

    Kapustina, O. A.

    2015-05-01

    This work experimentally validates for the first time the adequacy of a model describing the abovethreshold dynamics of a system of acoustic linear domains appearing in a plane layer of a nematic liquid crystal under the action of an oscillating hydrodynamic flow induced by shear vibrations at frequencies of the audio range. Values of the domain period are determined at the threshold of the effect and above the threshold up to oscillation amplitudes corresponding to orientational turbulization of the medium in layers with a thickness of 10-80 μm at frequencies of 0.1-20 Hz. The domain period has been determined as a function of the amplitude and oscillation frequency at different values of the layer thickness.

  8. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-05-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (~30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response.

  9. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    PubMed Central

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-01-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (∼30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response. PMID:27156514

  10. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    SciTech Connect

    Ramos, Daniel Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  11. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada.

    PubMed

    Osipov, E M; Polyakov, K M; Tikhonova, T V; Kittl, R; Dorovatovskii, P V; Shleev, S V; Popov, V O; Ludwig, R

    2015-12-01

    Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu(+)- and Cu(2+)-containing solutions. Copper ions were found to be incorporated into the active site only when Cu(+) was used. A comparative analysis of the native and depleted forms of the enzymes was performed.

  12. Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles

    PubMed Central

    2016-01-01

    It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single- or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets. PMID:27656688

  13. Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles

    PubMed Central

    2016-01-01

    It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single- or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets.

  14. Lithium ion diffusion in Li β-alumina single crystals measured by pulsed field gradient NMR spectroscopy

    SciTech Connect

    Chowdhury, Mohammed Tareque Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi

    2014-03-28

    The lithium ion diffusion coefficient of a 93% Li β-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10{sup −11} m{sup 2}/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10{sup −13} m{sup 2}/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the β-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297–333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li β-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li β-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li β–alumina system.

  15. Investigation of thermal diffusivity dependence on temperature in a group of optical single crystals doped with rare earth ions

    NASA Astrophysics Data System (ADS)

    Trefon-Radziejewska, D.; Bodzenta, J.

    2015-07-01

    The group of YAG, YVO4 and GdCOB single crystals was examined to determine the thermal diffusivity as a function of temperature in range from 30 °C to 300 °C. Further investigations concerned on analysis of the influence of dopants on these dependencies. The experimental setup based on thermal wave method with mirage detection was used. The samples represented different crystallographic systems such as cubic (YAG) tetragonal (YVO4) and monoclinic (GdCOB). The anisotropy of thermal conductivity of investigated samples was taken into account in the investigations. The crystals were doped with calcium ions, rare earth ions such as ytterbium, neodymium, and thulium, and also with transition metal vanadium. The results confirmed that influence of doping on the thermal diffusivity of investigated materials strongly depends on temperature. In general the thermal diffusivity decreases with increasing of sample temperature from 30 °C to 300 °C, however the drop in thermal diffusivity is the highest for pure single crystals. Doping is another factor reducing the heat transport in single crystals. Introduction of dopant ions into a crystal lattice leads to a significant decrease in the thermal diffusivity at lower temperatures in comparison with pure crystals. However, the influence of dopants becomes less pronounced with increasing temperature, and in case of weakly doped crystals it becomes negligible at higher temperatures. The interpretation of thermal diffusivity dependence on temperature for single crystals was based on the Debye model of lattice thermal conductivity of solids. The results allowed to conclude that the decrease of thermal diffusivity with temperature and increasing concentration of impurities is caused by shortening of the phonons mean free path due to phonon-phonon and phonon-point defect scatterings.

  16. Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage.

    PubMed

    Yarema, Maksym; Wörle, Michael; Rossell, Marta D; Erni, Rolf; Caputo, Riccarda; Protesescu, Loredana; Kravchyk, Kostiantyn V; Dirin, Dmitry N; Lienau, Karla; von Rohr, Fabian; Schilling, Andreas; Nachtegaal, Maarten; Kovalenko, Maksym V

    2014-09-01

    We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12-46 nm and with excellent size distribution as small as 7-8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2-3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98-298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140-145 and 240-250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g(-1), 50% higher than those achieved for bulk Ga under identical testing conditions.

  17. Extraction of 22 TeV/c Lead Ions from the CERN SPS using a Bent Silicon Crystal

    NASA Astrophysics Data System (ADS)

    Herr, W.; Elsener, K.; Fidecaro, G.; Gyr, M.; Klem, J.; Weisse, E.

    1997-05-01

    The extraction of protons from the halo of a circulating beam has been repeatedly demonstrated at the SPS. In a recent experiment a coasting lead ion beam was available at a momentum of 270 GeV/c/Z corresponding to a total momentum of 22 TeV/c per ion and the possibility to extract ultrarelativistic lead ions with a bent crystal could be demonstrated for the first time. We present the experimental challenges, the measurements performed during this experiment and the first results.

  18. Crystallization and preliminary X-ray diffraction analysis of the trigonal crystal form of Saccharomyces cerevisiae alcohol dehydrogenase I: evidence for the existence of Zn ions in the crystal.

    PubMed

    Kim, Kyung Jin; Howard, Andrew J

    2002-08-01

    Saccharomyces cerevisiae alcohol dehydrogenase I crystallized as trigonal plates using 20% 2-propanol and 20% PEG 4000 in 0.1 M sodium citrate buffer pH 5.6 in the presence of 1 mM NAD(+). The crystals diffract to 3.0 A resolution and belong to the trigonal space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 146.3, c = 68.1 A, alpha = beta = 90, gamma = 120 degrees. X-ray data were collected from frozen crystals at the 17-ID beamline of the Advanced Photon Source. A Zn fluorescence scan of the crystal produced a peak at 9671.6 eV, suggesting the existence of Zn ions in the crystal.

  19. Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells

    PubMed Central

    Seo, Youngsik; Cho, Young-Sik; Huh, Young-Duk; Park, Heonyong

    2016-01-01

    Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions (Cu+ and Cu2+), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped Cu2O and CuO crystals were prepared to test the role of the two different ions, Cu+ and Cu2+, respectively. The Cu2O crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The Cu2O crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. Cu2O crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit Cu2O-induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of Cu+ ions in the vascular system, where Cu+ induces autophagy while Cu2+ has no detected effect. PMID:26743904

  20. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  1. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  2. Relation between ligand design and transition energy for the praseodymium ion in crystals.

    PubMed

    Zhou, Xianju; Tanner, Peter A

    2015-01-01

    Ten substituted benzoate complexes of Pr(3+) of the type [Pr(XC6H4COO)3(H2O)n(DMF)m]p·(DMF)q (X = OCH3, NO2, OH, F, Cl, NH2) have been synthesized, and for eight of these crystallographic data are available. The electronic absorption and emission spectra of the complexes have been recorded and interpreted at temperatures down to 10 K for transitions involving the (3)P0 and (1)D2 J-multiplet terms. Generally, the electron-withdrawing groups X in the benzoate moiety lead to higher (3)P0 energy than electron-donating groups. Empirical relations have been found between the energies of the (3)P0 and (1)D2(1) levels and the Hammett sigma constants for substituents and the unit cell volume per Pr(3+) ion. The latter relationship is indicative of a correlation between the electronic state energy and the ligand dipole polarizability. This has been confirmed by reference to literature data for the LaX3:Pr(3+) systems, so that the ligand dipole polarizability is a key factor in determining the nephelauxetic shifts of 4f(N) ions in crystals.

  3. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    SciTech Connect

    Osipov, E. M.; Polyakov, K. M.; Tikhonova, T. V.; Kittl, R.; Dorovatovskii, P.V.; Shleev, S. V.; Popov, V. O.; Ludwig, R.

    2015-11-18

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu{sup +}-containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu{sup +}- and Cu{sup 2+}-containing solutions. Copper ions were found to be incorporated into the active site only when Cu{sup +} was used. A comparative analysis of the native and depleted forms of the enzymes was performed.

  4. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries.

    PubMed

    Shi, Feifei; Song, Zhichao; Ross, Philip N; Somorjai, Gabor A; Ritchie, Robert O; Komvopoulos, Kyriakos

    2016-06-14

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  5. Relation between ligand design and transition energy for the praseodymium ion in crystals.

    PubMed

    Zhou, Xianju; Tanner, Peter A

    2015-01-01

    Ten substituted benzoate complexes of Pr(3+) of the type [Pr(XC6H4COO)3(H2O)n(DMF)m]p·(DMF)q (X = OCH3, NO2, OH, F, Cl, NH2) have been synthesized, and for eight of these crystallographic data are available. The electronic absorption and emission spectra of the complexes have been recorded and interpreted at temperatures down to 10 K for transitions involving the (3)P0 and (1)D2 J-multiplet terms. Generally, the electron-withdrawing groups X in the benzoate moiety lead to higher (3)P0 energy than electron-donating groups. Empirical relations have been found between the energies of the (3)P0 and (1)D2(1) levels and the Hammett sigma constants for substituents and the unit cell volume per Pr(3+) ion. The latter relationship is indicative of a correlation between the electronic state energy and the ligand dipole polarizability. This has been confirmed by reference to literature data for the LaX3:Pr(3+) systems, so that the ligand dipole polarizability is a key factor in determining the nephelauxetic shifts of 4f(N) ions in crystals. PMID:25474732

  6. Characterization of phthiocerol and phthiodiolone dimycocerosate esters of M. tuberculosis by multiple-stage linear ion-trap MS.

    PubMed

    Flentie, Kelly N; Stallings, Christina L; Turk, John; Minnaard, Adriaan J; Hsu, Fong-Fu

    2016-01-01

    Both phthiocerol/phthiodiolone dimycocerosate (PDIM) and phenolic glycolipids are abundant virulent lipids in the cell wall of various pathogenic mycobacteria, which can synthesize a wide range of complex high-molecular-mass lipids. In this article, we describe linear ion-trap MS(n) mass spectrometric approach for structural study of PDIMs, which were desorbed as the [M + Li](+) and [M + NH(4)](+) ions by ESI. We also applied charge-switch strategy to convert the mycocerosic acid substituents to their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives and analyzed them as M (+) ions, following alkaline hydrolysis of the PDIM to release mycocerosic acids. The structural information from MS(n) on the [M + Li](+) and [M + NH(4)](+) molecular species and on the M (+) ions of the mycocerosic acid-AMPP derivative affords realization of the complex structures of PDIMs in Mycobacterium tuberculosis biofilm, differentiation of phthiocerol and phthiodiolone lipid families and complete structure identification, including the phthiocerol and phthiodiolone backbones, and the mycocerosic acid substituents, including the locations of their multiple methyl side chains, can be achieved.

  7. Number-conserving linear-response study of low-velocity ion stopping in a collisional magnetized classical plasma.

    PubMed

    Nersisyan, Hrachya B; Deutsch, Claude; Das, Amal K

    2011-03-01

    The results of a theoretical investigation of the low-velocity stopping power of ions in a magnetized collisional and classical plasma are reported. The stopping power for an ion is calculated through the linear-response (LR) theory. The collisions, which lead to a damping of the excitations in the plasma, are taken into account through a number-conserving relaxation time approximation in the LR function. In order to highlight the effects of collisions and magnetic field, we present a comparison of our analytical and numerical results obtained for nonzero damping or magnetic field with those for vanishing damping or magnetic field. It is shown that the collisions remove the anomalous friction obtained previously [Nersisyan et al., Phys. Rev. E 61, 7022 (2000)] for the collisionless magnetized plasmas at low ion velocities. One of the major objectives of this paper is to compare and to contrast our theoretical results with those obtained through a diffusion coefficient formulation based on the Dufty-Berkovsky relation evaluated for a magnetized one-component plasma modeled with target ions and electrons. PMID:21517600

  8. Application of relativistic coupled cluster linear response theory to helium-like ions embedded in plasma environment

    NASA Astrophysics Data System (ADS)

    Das, Madhulita; Chaudhuri, Rajat K.; Chattopadhyay, Sudip; Sinha Mahapatra, Uttam; Mukherjee, P. K.

    2011-08-01

    Ionization potential and low lying 1S0\\longrightarrow1P1 excitation energies (EE) of highly stripped He-like ions C4 +, Al11 +, and Ar16 + embedded in plasma environment are calculated for the first time using the state-of-the-art coupled cluster (CC)-based linear response theory (LRT) with the four-component relativistic spinors and compared with available experimental data from laser plasma experiments. Debye's screening model is used to estimate the effect of plasma on the ions within the relativistic and non-relativistic framework. The transition energies computed at the CCLRT level using the Debye model agree well with experiment and with other available theoretical data. To our knowledge, no prior CCLRT calculations within the Dirac-Fock framework are available for these systems. Our calculated transition energies for helium-like ions are in accord with experiment; we trust that our predicted EE might be acceptably good for the systems considered. Our preliminary result indicates that CCLRT with the four-component relativistic spinors appears to be a valuable tool for studying the atomic systems where accurate treatments of correlation effects play a crucial role in shaping the spectral lines of ions subjected to plasma environment.

  9. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry

    PubMed Central

    Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen

    2015-01-01

    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS2 procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%–122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013

  10. Number-conserving linear-response study of low-velocity ion stopping in a collisional magnetized classical plasma

    SciTech Connect

    Nersisyan, Hrachya B.; Deutsch, Claude; Das, Amal K.

    2011-03-15

    The results of a theoretical investigation of the low-velocity stopping power of ions in a magnetized collisional and classical plasma are reported. The stopping power for an ion is calculated through the linear-response (LR) theory. The collisions, which lead to a damping of the excitations in the plasma, are taken into account through a number-conserving relaxation time approximation in the LR function. In order to highlight the effects of collisions and magnetic field, we present a comparison of our analytical and numerical results obtained for nonzero damping or magnetic field with those for vanishing damping or magnetic field. It is shown that the collisions remove the anomalous friction obtained previously [Nersisyan et al., Phys. Rev. E 61, 7022 (2000)] for the collisionless magnetized plasmas at low ion velocities. One of the major objectives of this paper is to compare and to contrast our theoretical results with those obtained through a diffusion coefficient formulation based on the Dufty-Berkovsky relation evaluated for a magnetized one-component plasma modeled with target ions and electrons.

  11. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry.

    PubMed

    Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen

    2015-01-01

    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS(2) procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%-122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013

  12. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    SciTech Connect

    Kono, M.; Vranjes, J.

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  13. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Kono, M.; Vranjes, J.

    2015-11-01

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  14. A perpendicular ion beam instability - Solutions to the linear dispersion relation. [for F region ionosphere

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M. C.

    1983-01-01

    A 200-eV Xe(+) ion beam directed perpendicular to the terrestrial magnetic field in the F region ionosphere produced very narrow band electrostatic emissions just above multiples of the hydrogen cyclotron frequency. Although the plasma conditions associated with the ion beam were undoubtedly very complex, a simple ion beam in a background ionosphere is considered first. The dispersion relation for flute mode waves and an unmagnetized perpendicular ion beam is solved for a diffuse H(+) plasma and then for a combination of dense O(+) and diffuse H(+). These solutions account for most of the wave properties, including the observation of narrow spectral peaks separated by the hydrogen cyclotron frequency and the observation of no spectral peaks below 2000 Hz. We cannot dismiss field-aligned currents associated with the Xe(+) beam as an alternate source of free energy for the narrow band emissions. However, our intention here is to examine closely the Xe(+) beam as a source for directly exciting the plasma waves.

  15. Near-LTE linear response calculations with a collisional-radiative model for He-like Al ions

    SciTech Connect

    More, R.M.; Kato, T.

    1998-01-06

    We investigate the non-equilibrium atomic kinetics using a collisional-radiative (CR) model modified to include line absorption. Steady-state emission is calculated for He-like aluminum ions immersed in a specified radiation field having fixed deviations from a Planck spectrum. The net emission is interpreted in terms of NLTE population changes. The calculation provides an NLTE response matrix, and in agreement with a general relation of non-equilibrium thermodynamics, the response matrix is symmetric. We compute the response matrix for 1% and 50% changes in the photon temperature and find linear response over a surprisingly large range.

  16. Formation of buried epitaxial Si-Ge alloy layers in Si<100>crystal by high dose Ge ion implantation

    SciTech Connect

    Yu, Kin Man; Brown, I.G.; Im, S.

    1991-11-01

    We have synthesized single crystal Si{sub 1-x}Ge{sub x} alloy layers in Si <100> crystals by high dose Ge ion implantation and solid phase epitaxy. The implantation was performed using the metal vapor vacuum arc (Mevva) ion source. Ge ions at mean energies of 70 and 1000 keV and with doses ranging from 1{times}10{sup 16} to 7{times}10{sup 16} ions/cm{sup 2} were implanted into Si <100> crystals at room temperature, resulting in the formation of Si{sub 1-x}Ge{sub x} alloy layers with peak Ge concentrations of 4 to 13 atomic %. Epitaxial regrowth of the amorphous layers were initiated by thermal annealing at temperatures higher than 500{degrees}C. The solid phase epitaxy process, the crystal quality, microstructures, interface morphology and defect structures were characterized by ion channeling and transmission electron microscopy. Compositionally graded single crystal Si{sub 1-x}Ge{sub x} layers with full width at half maximum {approximately}100nm were formed under a {approximately}30nm Si layer after annealing at 600{degrees}C for 15 min. A high density of defects was found in the layers as well as in the substrate Si just below the original amorphous/crystalline interface. The concentration of these defects was significantly reduced after annealing at 900{degrees}C. The kinetics of the regrowth process, the crystalline quality of the alloy layers, the annealing characteristics of the defects, and the strains due to the lattice mismatch between the alloy and the substrate are discussed.

  17. Influence of crystal-orientation effects on pulse-shape-based identification of heavy-ions stopped in silicon detectors

    NASA Astrophysics Data System (ADS)

    Bardelli, L.; Bini, M.; Casini, G.; Pasquali, G.; Poggi, G.; Barlini, S.; Becla, A.; Berjillos, R.; Borderie, B.; Bougault, R.; Bruno, M.; Cinausero, M.; D'Agostino, M.; de Sanctis, J.; Dueñas, J. A.; Edelbruck, P.; Geraci, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lavergne, L.; Marini, P.; Nannini, A.; Negoita, F.; Olmi, A.; Ordine, A.; Piantelli, S.; Rauly, E.; Rivet, M. F.; Rosato, E.; Scian, C.; Stefanini, A. A.; Vannini, G.; Velica, S.; Vigilante, M.; Fazia Collaboration

    2009-07-01

    Current and charge signals have been collected for Se ions at 408 MeV, S at 160 MeV and Ni at 703 MeV, all stopped in silicon detectors. Some detectors were cut 0∘ off the <1 1 1> axis and some off the <1 0 0> axis. Important effects on the shape of the silicon current and charge signals have been observed, depending on the orientation of the impinging ion relative to the crystal axes and planes. A degradation of the energy and risetime resolution of about a factor ˜3 with respect to the measured optimal values (for example 7∘ off-axis orientation) is observed for ion impinging directions close to crystal axes and/or planes, i.e. the common scenario for normal incidence on 0∘ cut detectors. For Pulse Shape Analysis applications, the necessity of using such "random" oriented silicon detectors is demonstrated.

  18. Separation of Contributions from the Ion Core and Free Charge Carriers to the Magnetic Susceptibility of an Anisotropic Semiconductor Bi2Te3-Sb2Te3 Crystal

    NASA Astrophysics Data System (ADS)

    Stepanov, N. P.; Nalivkin, V. Yu.

    2016-05-01

    A technique is presented, by which the magnetic susceptibility χ | G of the ion core of an anisotropic semiconductor Bi2Te3-Sb2Te3 crystal is determined from experimental data on the magnetic susceptibility χ ∥ and χ ⊥ obtained with allowance for the orientation of the magnetic field vector H with respect to the trigonal C3 axis of the crystal in accordance with the expression χ ∥/ χ ⊥ = ( χ ∥ eh + χ G )/( χ ⊥ eh + χ G ).In this expression, the value of the magnetic susceptibility of free charge carriers χ ∥ eh and χ ⊥ eh depending on their effective masses m ∥ * and m ⊥ * known from the experiment is calculated within the framework of the Pauli and Landau- Peierls approaches. The found value of χ | G for Bi2Te3-Sb2Te3 crystals is in good agreement with experimental data, as well as with the estimates obtained in the framework of the Larmor approach explaining, in particular, a linear dependence of the molar magnetic susceptibility on the number of electrons in the molecule observed for a large number of compounds. The proposed technique can be extended to other anisotropic semiconductors.

  19. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    SciTech Connect

    Margarone, D.; Prokupek, J.; Rus, B.; Krasa, J.; Velyhan, A.; Laska, L.; Giuffrida, L.; Torrisi, L.; Picciotto, A.; Nowak, T.; Musumeci, P.; Mocek, T.; Ullschmied, J.

    2011-05-15

    Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.

  20. In situ hydrothermal crystallization of hexagonal hydroxyapatite tubes from yttrium ion-doped hydroxyapatite by the Kirkendall effect.

    PubMed

    Li, Chengfeng; Ge, Xiaolu; Li, Guochang; Lu, Hao; Ding, Rui

    2014-12-01

    An in situ hydrothermal crystallization method with presence of glutamic acid, urea and yttrium ions was employed to fabricate hexagonal hydroxyapatite (HAp, Ca5(PO4)3(OH)) tubes with length of 200 nm-1 μm. Firstly, yttrium ion-doped HAp (Y-HAp, Ca(5-x)Y(x)(PO4)3(OH)) was synthesized after hydrolysis of urea and HPO4(2-) ions at 100°C with a dwell time of 24h. The shift of X-ray diffraction peaks of HAp to high angle was caused the substitution of Ca(2+) ions by small-sized Y(3+) ions. At 160°C, further hydrolysis reactions of urea and HPO4(2-) ions resulted in the generation of ample OH(-) and PO4(3-) ions, which provided a high chemical potential for the dissolution of Y-HAp and recrystallization of HAp and YPO4. Finally, HAp tubes were formed in situ on Y-HAp according to the Kirkendall effect as a result of the difference of diffusion rate of cations (Ca(2+) ions, outward and slow) and anions (OH(-) and PO4(3-) ions, inward and fast). The formation process of HAp tube was simulated by the encapsulation of fluorescein molecules in precipitates. Photoluminescence properties were enhanced for HAp tubes with thick and dense walls. This novel tubular material could find wide applications as carriers of drugs, dyes and catalysts.

  1. Revelation of endogenously bound Fe{sup 2+} ions in the crystal structure of ferritin from Escherichia coli

    SciTech Connect

    Thiruselvam, Viswanathan; Sivaraman, Padavattan; Kumarevel, Thirumananseri; Ponnuswamy, Mondikalipudur Nanjappagounder

    2014-10-24

    Highlights: • Crystal structure of ferritin was determined. • Endogenously expressed iron’s were identified. • Binuclear iron sites were observed at A and B active sites. - Abstract: Ferritin is an iron regulatory protein. It is responsible for storage and detoxification of excess iron thereby it regulates iron level in the body. Here we report the crystal structure of ferritin with two endogenously expressed Fe atoms binding in both the sites. The protein was purified and characterized by MALDI-TOF and N-terminal amino acid sequencing. The crystal belongs to I4 space group and it diffracted up to 2.5 Å. The structural analysis suggested that it crystallizes as hexamer and confirmed that it happened to be the first report of endogenously expressed Fe ions incorporated in both the A and B sites, situated in between the helices.

  2. Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation

    SciTech Connect

    Saberian, E.; Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M.

    2013-03-15

    The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.

  3. Triterpenoid saponins profiling by adducts-targeted neutral loss triggered enhanced resolution and product ion scanning using triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Yan, Zhixiang; Lin, Ge; Ye, Yang; Wang, Yitao; Yan, Ru

    2014-03-28

    Triterpenoid saponins (TSs) are a unique class of high molecular weight glycosides and have been frequently used in cosmetic and phytotherapy industry. There is a great need to comprehensively profile these plant metabolites for studying their functions. In the present study, a novel adducts targeted neutral loss (NL), triggered enhanced resolution (ER) and enhanced product ion (EPI) scanning approach were described for TSs profiling using a triple quadrupole linear ion trap mass spectrometry. This approach circumvented the disadvantages of poor glycosidic bond cleavage of TSs by monitoring the NH3 (NL17) and HCOOH (NL46) loss of their abundant ammonium and formate adducts, respectively. The sugar-loss independent NL scanning served as a sensitive survey scan and triggered information-dependent ER and EPI scans to increase peak assignment confidence. NL17 was superior to NL46 for TSs characterization due to the better fragmentation of ammonium adducts than formate adducts. For those TSs undetectable by NL17, precursor ion (PI) scan for sapogenin fragments could be used to screen out non-adducted TSs. The NL/PI-ER-EPI approach was applied for TSs profiling in Astragali Radix, a famous medicinal and nutritional plant widely used in Asian countries and United States. In total, 136 TSs were detected while previous research using high resolution mass spectrometry based full scan only detected 22 TSs in this herb.

  4. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  5. Development of Linear Mode Detection for Top-down Ion Implantation of Low Energy Sb Donors

    NASA Astrophysics Data System (ADS)

    Pacheco, Jose; Singh, Meenakshi; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Fabrication of donor spin qubits for quantum computing applications requires deterministic control over the number of implanted donors and the spatial accuracy to within which these can be placed. We present an ion implantation and detection technique that allows us to deterministically implant a single Sb ion (donor) with a resulting volumetric distribution of <10 nm. This donor distribution is accomplished by implanting 30keV Sb into Si which yields a longitudinal straggle of <10 nm and combined with a <50 nm spot size using the Sandia NanoImplanter (nI). The ion beam induced charge signal is collected using a MOS detector that is integrated with a Si quantum dot for transport measurments. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  6. Comment on the paper: "Crystal growth and spectroscopic characterization of Aloevera amino acid added lithium sulfate monohydrate: a non-linear optical crystal".

    PubMed

    Srinivasan, Bikshandarkoil R

    2015-01-01

    The title paper (Manimekalai et al., 2014) reports a slow evaporation solution growth of a so called 'Aloevera amino acid added lithium sulfate monohydrate' (AALSMH) crystal. In this communication, many points of criticism, concerning the crystal growth, NMR spectrum and X-ray powder pattern of this so called AALSMH nonlinear optical crystal are highlighted.

  7. Interplay of energy dissipation, ion-induced mixing, and crystal structure recovery, and surface effects in ion-irradiated magnetic Fe/Cr/Fe trilayers

    SciTech Connect

    Brodyanski, A.; Bock, W.; Kopnarski, M.; Reuscher, B.; Blomeier, S.; Hillebrands, B.; Gnaser, H.

    2011-12-01

    The influence of the ion irradiation by 30 keV Ga{sup +} ions on the crystal structure, chemical ordering, magnetic properties, and topography of epitaxial Fe/Cr/Fe trilayers was investigated by different analytical techniques. We present direct experimental evidence, supported by theoretical estimates, that two processes take place concurrently due to the Ga-ion implantation. (i) A complete atom mixing of the Cr atoms within the Fe multilayers is occurring due to the collision cascades during the ballistic regime, and (ii) an essentially complete recovery of the initial single-crystal quality of the Fe multilayers by healing the melted and damaged area through the thermal spike phase occurs. Based on the experimental range distributions and theoretical modeling, channeling of Ga{sup +} ions in the experiments is found to contribute weakly to ion penetration and stopping, and the relative fraction of the well-channeled ions is marginally small. On the other hand, this weak channeling is sufficient to reduce the sputter yield by a factor of more than 5 in comparison with the sputtering of polycrystalline samples, evidence for the fact that the magnitude of channeling is not of primary importance for the sputtering. We offer an explanation for the observation of dramatic and abrupt changes in the surface roughness with increasing fluences in terms of a transformation from a single-phase single-crystal implanted region (bcc-Fe) to a mixture of the polycrystalline {alpha}-Fe-like bcc and {alpha}-Fe{sub 3}Ga structures within the outer half of the original Fe/Cr/Fe trilayer at fluences above 6.25 x 10{sup 16} ion/cm{sup 2}. The wall-like elevations appearing at the boundary of the irradiated areas were analyzed experimentally by varying the irradiation conditions. We showed that the wall size is governed by the ion-current density applied. A physical explanation for the appearance of such topographic features is presented, which would be valid for any material

  8. Measurements of ion and electron temperature profiles on NSTX with an X-ray imaging crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Bitter, M.; Beiersdorfer, P.; Gu, M. F.

    2005-10-01

    The prototype of a new X-ray imaging crystal spectrometer has been installed on NSTX to measure profiles of the ion and electron temperatures from spatially resolved dielectronic satellite spectra of ArXVII in the wavelength range from 3.9 to 4.0 A [1]. The spectrometer consists of a spherically bent 110-quartz crystal, with a radius of curvature of 389 cm and a diameter of 10 cm, and a 10 cm x 30 cm, two-dimensional, position-sensitive, multi-wire proportional counter. It projects an image of a large area of the plasma with an extension of +/- 40 cm below and above the horizontal mid-plane of NSTX onto the detector with a demagnification of 2.5. The resolution in the plasma is solely determined by the Bragg angle, the height of the crystal and its distance from the plasma; and it is about 3 cm, if the crystal is fully opened. The concept of this new spectrometer is also of interest for ion temperature measurements on ITER [2]. The paper will present results from profile measurements of the ion and electron temperature from NSTX discharges with pure ohmic heating as well as RF and neutral-beam heating. [1] M. Bitter et al., Rev. Sci. Instrum.75, 3660 (2004); [2] R. Barnsley et al., Rev. Sci. Instrum.75, 3743 (2004).

  9. Polarised infrared and Raman studies of YCa4O(BO3)3 a non-linear optical single crystal.

    PubMed

    Krishnakumar, V; Nagalakshmi, R

    2004-10-01

    YCa4O(BO3)3-(YCOB) is a non-linear optical (NLO) material grown by Czochralski technique. Polarised IR, ATR-IR, polarised Raman and optical transmission spectral measurements were made. A series of absorption bands have been observed with intensities depending on the functional groups of the crystals. The observed bands were assigned and discussed.

  10. Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Yongwon; Lee, Jaegi; Kim, Hyungsub; Kang, Kisuk; Choi, Nam-Soon

    2016-07-01

    Employing linear carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) as electrolyte solvents provides an opportunity to design appropriate electrolyte systems for high-performance sodium-ion batteries (SIBs). However, in practice, the use of linear carbonate-containing electrolytes is quite challenging because linear carbonates readily decompose at Na metal electrodes or sodiated anodes. One of the promising approaches is using an electrolyte additive to resolve the critical problems related to linear carbonates. Our investigation reveals that remarkable enhancement in electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes with linear carbonate-containing electrolytes is achieved by using a fluoroethylene carbonate (FEC) additive. Importantly, the initial Coulombic efficiency of the Na deposition/stripping on a stainless steel (SS) electrode is drastically improved from 16% to 90% by introducing the FEC additive into ethylene carbonate (EC)/propylene carbonate (PC)/DEC (5/3/2, v/v/v)/0.5 M NaClO4. The underlying mechanism of FEC at the electrode-electrolyte interface is clearly demonstrated by 13C nuclear magnetic resonance (NMR). In addition, the Na4Fe3(PO4)2(P2O7) cathode in EC/PC/DEC (5/3/2, v/v/v)/0.5 M sodium perchlorate (NaClO4) with FEC delivers a discharge capacity of 90.5 mAh g-1 at a current rate of C/2 and exhibits excellent capacity retention of 97.5% with high Coulombic efficiency of 99.6% after 300 cycles at 30 °C.

  11. Effect of 120 MeV Au9+ ion irradiation on structural, optical and dielectric properties of YCa4O(BO3)3 nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Kalidasan, M.; Arun Kumar, R.; Asokan, K.; Dhanasekaran, R.

    2012-06-01

    Yttrium calcium oxy borate (YCOB) is an important nonlinear optical (NLO) crystal belongs to RECOB (RE = Gd, Sm, Nd, Er, La and Y) family of crystals with the general formula RECa4O(BO3)3. YCOB is a negative biaxial crystal which crystallizes in the monoclinic structure with non-centrosymmetric space group Cm. In the present work, the flux grown YCOB single crystals were irradiated with various fluences of 120 MeV Au9+ heavy ions at ambient and at liquid nitrogen (LN2) temperatures, respectively. Grazing incidence angle X-ray diffraction (GIXRD) studies of pristine and irradiated crystals confirm the ion induced surface modification. UV-Visible spectral analysis shows that there was a red shift of optical edge of the pristine sample with ion fluence from 1011 to 1013 ions/cm2. Laser Raman spectrum of YCOB crystal presents the intense band of (BO3)3- modes at 1123 cm-1 and its peak intensity reduces with ion fluence. The dielectric loss and relative permittivity of YCOB crystal show a marked increase with ion irradiation fluence.

  12. Linear gyrokinetic calculations of toroidal momentum transport in a tokamak due to the ion temperature gradient mode

    SciTech Connect

    Peeters, A.G.; Angioni, C.

    2005-07-15

    It is shown from a symmetry in the gyrokinetic equation that for up-down symmetric tokamak equilibria and for u{sub {phi}}>>{rho}{upsilon}{sub thi}/r (where u{sub {phi}} is the toroidal velocity, {upsilon}{sub thi} is the thermal ion velocity, {rho} is the Larmor radius, and r is the radius of the flux surface), the transport of parallel momentum can be written as the sum of a diffusive and a pinch contribution with no off-diagonal terms due to temperature and pressure gradients. The measured parallel velocity gradient in ASDEX Upgrade [O. Gruber, H.-S. Bosch, S. Guenter et al., Nucl. Fusion 39, 1321 (1999)] is insufficient to drive the parallel velocity shear instability. The parallel velocity is then transported by the ion temperature gradient mode. The diffusive contribution to the transport flux is investigated using a linear gyrokinetic approach, and it is found that the diffusion coefficient for parallel velocity transport divided by the ion heat conductivity coefficient is close to 1, and only weakly dependent on plasma parameters.

  13. Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction

    NASA Astrophysics Data System (ADS)

    Yun, Di; Miao, Yinbin; Xu, Ruqing; Mei, Zhigang; Mo, Kun; Mohamed, Walid; Ye, Bei; Pellin, Michael J.; Yacout, Abdellatif M.

    2016-04-01

    Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 μm, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performed to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations.

  14. Upscaling Radionuclide Retardation?Linking the Surface Complexation and Ion Exchange Mechanistic Approach to a Linear Kd Approach

    SciTech Connect

    Zavarin, M; Carle, S; Maxwell, R

    2004-05-14

    The LLNL near-field hydrologic source term (HST) model is based on a mechanistic approach to radionuclide retardation-that is, a thermodynamic description of chemical processes governing retardation in the near field, such as aqueous speciation, surface complexation, ion exchange, and precipitation The mechanistic approach allows for radionuclide retardation to vary both in space and time as a function of the complex reaction chemistry of the medium. This level of complexity is necessary for near-field HST transport modeling because of the non-linear reaction chemistry expected close to the radiologic source. Large-scale Corrective Action Unit (CAU) models-into which the near-field HST model results feed-require that the complexity of the mechanistic approach be reduced to a more manageable form (e.g. Linear, Langmuir, or Freundlich sorption isotherms, etc). The linear sorption isotherm (or K{sub d}) approach is likely the most simple approach for large-scale CAU models. It may also be the most appropriate since the reaction chemistry away from the near field is expected to be less complex and relatively steady state. However, if the radionuclide retardation approaches in near-field HST and large-scale CAU models are different, they must be proved consistent. In this report, we develop a method to link the near-field HST and large-scale CAU model radionuclide retardation approaches.

  15. Non-linear effects in hopping conduction of single-crystal La2CuO4 + δ

    NASA Astrophysics Data System (ADS)

    Belevtsev, B. I.; Dalakova, N. V.; Panfilov, A. S.

    1998-11-01

    The unusual non-linear effects in hopping conduction of single-crystal La2CuO4+δ with excess oxygen has been observed. The resistance is measured as a function of the applied voltage U (voltage controlled regime) in the temperature range 5 K⩽T⩽300 K and voltage range 10-3-25 V. At relatively high voltage (approximately at U>0.1 V) the conduction of sample investigated corresponds well to variable-range hopping (VRH). That is, in the range 0.1 Vlinear effect is quite expected in the frame of VRH mechanism, since the applied electric field increases the hopping probability. A completely different and unusual conduction behavior is found, however, in the low voltage range (approximately below 0.1 V), where the influence of electric field and (or) electron heating effect on VRH ought to be neglected. Here we have observed strong increase in resistance at increasing U at T⩽20 K, whereas at T>20 K the resistance decreases with increasing U. The magnetoresistance of the sample below 20 K has been positive at low voltage and negative at high voltage. The observed unusual non-Ohmic behavior at low voltage range is attributable to inhomogeneity of the sample, namely, to the enrichment of sample surface with oxygen during the course of the heat treatment of the sample in helium and air atmosphere before measurements. At low enough temperature (below ≈20 K) the surface layer with increased oxygen concentration is presumed to consist of disconnected superconducting regions in a poorly conducting (dielectric) matrix. This allows us to explain the observed unusual non-linear effects in the conduction of sample studied. The results obtained demonstrate that in some cases the

  16. Piezoelectric quartz crystal microbalance sensor for trace aqueous cyanide ion determination.

    PubMed

    Timofeyenko, Yegor G; Rosentreter, Jeffrey J; Mayo, Susan

    2007-01-01

    Using selective reaction chemistry, our present research has developed an online, real-time sensor capable of monitoring toxic cyanide at both drinking water standard and environmental regulatory concentrations. Through the use of a flow cell, aqueous samples containing cyanide are reacted with a gold electrode of a piezoelectric crystal to indirectly sense cyanide concentration by the dissolution of metallic gold. The quartz crystal is an AT-cut wafer sandwiched between two neoprene O-rings within the liquid flow cell. The presence of cyanide in solution results in the selective formation of a soluble dicyano-gold complex according to the Elsner reaction: 4Au + 8CN- + 2H2O + O2 <=> 4Au(CN)2- + 4OH-. The resulting loss of gold from the electrode is detected by the piezoelectric crystal as a resonant frequency change. Since free cyanide is a weak acid (pKa = 9.3), available protons compete for cyanide ligands. Therefore, increased sample pH provides higher sensitivity. The detection limits at pH 12 are 16.1 and 2.7 ppb for analysis times of 10 min and 1 h, respectively. The incorporation of the flow cell improves both analyte sensitivity and instrument precision, with an average signal intensity drift of only 5% over a 2-h analysis. The calibrations show excellent linearity over a variety of cyanide concentrations ranging from low ppb to hundreds of ppm. This detection method offers the advantage of selectively detecting cyanides posing a biohazard while avoiding detection of stable metal cyanides. This aspect of the system is based on competitive exchange of available metals and gold with cyanide ligands. Stable metal cyanide complexes possess a higher formation constant than cyanoaurate. This detection system has been configured into a flow injection analysis array for simple adaptation to automation. Anions commonly found in natural waters have been examined for interference effects. Additionally, the sensor is free from interference by aqueous cyanide analogues

  17. A Generic Multiple Reaction Monitoring Based Approach for Plant Flavonoids Profiling Using a Triple Quadrupole Linear Ion Trap Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yan, Zhixiang; Lin, Ge; Ye, Yang; Wang, Yitao; Yan, Ru

    2014-06-01

    Flavonoids are one of the largest classes of plant secondary metabolites serving a variety of functions in plants and associating with a number of health benefits for humans. Typically, they are co-identified with many other secondary metabolites using untargeted metabolomics. The limited data quality of untargeted workflow calls for a shift from the breadth-first to the depth-first screening strategy when a specific biosynthetic pathway is focused on. Here we introduce a generic multiple reaction monitoring (MRM)-based approach for flavonoids profiling in plants using a hybrid triple quadrupole linear ion trap (QTrap) mass spectrometer. The approach includes four steps: (1) preliminary profiling of major aglycones by multiple ion monitoring triggered enhanced product ion scan (MIM-EPI); (2) glycones profiling by precursor ion triggered EPI scan (PI-EPI) of major aglycones; (3) comprehensive aglycones profiling by combining MIM-EPI and neutral loss triggered EPI scan (NL-EPI) of major glycone; (4) in-depth flavonoids profiling by MRM-EPI with elaborated MRM transitions. Particularly, incorporation of the NH3 loss and sugar elimination proved to be very informative and confirmative for flavonoids screening. This approach was applied for profiling flavonoids in Astragali radix ( Huangqi), a famous herb widely used for medicinal and nutritional purposes in China. In total, 421 flavonoids were tentatively characterized, among which less than 40 have been previously reported in this medicinal plant. This MRM-based approach provides versatility and sensitivity that required for flavonoids profiling in plants and serves as a useful tool for plant metabolomics.

  18. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    PubMed

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice. PMID:27462908

  19. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation

    PubMed Central

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET–dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice. PMID:27462908

  20. A generic multiple reaction monitoring based approach for plant flavonoids profiling using a triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Yan, Zhixiang; Lin, Ge; Ye, Yang; Wang, Yitao; Yan, Ru

    2014-06-01

    Flavonoids are one of the largest classes of plant secondary metabolites serving a variety of functions in plants and associating with a number of health benefits for humans. Typically, they are co-identified with many other secondary metabolites using untargeted metabolomics. The limited data quality of untargeted workflow calls for a shift from the breadth-first to the depth-first screening strategy when a specific biosynthetic pathway is focused on. Here we introduce a generic multiple reaction monitoring (MRM)-based approach for flavonoids profiling in plants using a hybrid triple quadrupole linear ion trap (QTrap) mass spectrometer. The approach includes four steps: (1) preliminary profiling of major aglycones by multiple ion monitoring triggered enhanced product ion scan (MIM-EPI); (2) glycones profiling by precursor ion triggered EPI scan (PI-EPI) of major aglycones; (3) comprehensive aglycones profiling by combining MIM-EPI and neutral loss triggered EPI scan (NL-EPI) of major glycone; (4) in-depth flavonoids profiling by MRM-EPI with elaborated MRM transitions. Particularly, incorporation of the NH3 loss and sugar elimination proved to be very informative and confirmative for flavonoids screening. This approach was applied for profiling flavonoids in Astragali radix (Huangqi), a famous herb widely used for medicinal and nutritional purposes in China. In total, 421 flavonoids were tentatively characterized, among which less than 40 have been previously reported in this medicinal plant. This MRM-based approach provides versatility and sensitivity that required for flavonoids profiling in plants and serves as a useful tool for plant metabolomics.

  1. On the reduced interaction probability for fully stripped 33 TeV/c Pb ions channeled in a bent Si crystal

    NASA Astrophysics Data System (ADS)

    Biino, C.; Clément, M.; Doble, N.; Elsener, K.; Freund, A.; Gatignon, L.; Grafström, P.; Herr, W.; Taratin, A.; Uggerhøj, U. I.; Uzhinskii, V. V.; Velasco, M.

    2002-10-01

    We compare experimental results and computer simulations on the reduction of inelastic interactions for 33 TeV Pb 82+ ions channeled in a bent silicon crystal. The comparison shows that a very small fraction of the initially channeled ions suffer nuclear interactions while traversing the 60 mm long crystal under perfect alignment, even though its thickness would correspond to about 1.2 nuclear interaction lengths for an amorphous material. This result indicates that a bent crystal approach to extraction of high energy, fully stripped ions from e.g. RHIC or LHC might be feasible.

  2. Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K

    PubMed Central

    Nakamura, Ippei; Yoshihiro, Tatsuya; Inagawa, Hironori; Fujiyoshi, Satoru; Matsushita, Michio

    2014-01-01

    Optical read-out and manipulation of the nuclear spin state of single rare-earth ions doped in a crystal enable the large-scale storage and the transport of quantum information. Here, we report the photo-luminescence excitation spectroscopy results of single Pr3+ ions in a bulk crystal of LaF3 at 1.5 K. In a bulk sample, the signal from a single ion at the focus is often hidden under the background signal originating from numerous out-of-focus ions in the entire sample. To combine with a homemade cryogenic confocal microscope, we developed a reflecting objective that works in superfluid helium with a numerical aperture of 0.99, which increases the signal by increasing the solid angle of collection to 1.16π and reduces the background by decreasing the focal volume. The photo-luminescence excitation spectrum of single Pr3+ was measured at a wing of the spectral line of the 3H4 → 3P0 transition at 627.33 THz (477.89 nm). The spectrum of individual Pr3+ ions appears on top of the background of 60 cps as isolated peaks with intensities of 20–30 cps and full-width at half-maximum widths of approximately 3 MHz at an excitation intensity of 80 W cm−2. PMID:25482137

  3. Low-damage surface smoothing of laser crystallized polycrystalline silicon using gas cluster ion beam

    NASA Astrophysics Data System (ADS)

    Tokioka, H.; Yamarin, H.; Fujino, T.; Inoue, M.; Seki, T.; Matsuo, J.

    2007-04-01

    Surface smoothing of laser crystallized polycrystalline silicon (poly-Si) films using gas cluster ion beam (GCIB) technology has been studied. It is found that both SF6-GCIB and O2-GCIB decrease the height of hillocks and reduce the surface roughness of the irradiated films. The mean surface roughness value of poly-Si films was reduced from 10.8 nm to 2.8 nm by SF6-GCIB irradiation at 80°. Ultraviolet reflectance measurement reveals that GCIB irradiation causes damage near-surface of the poly-Si films. Formation of the damage, however, can be suppressed by using GCIB irradiation at high incident angle. Effect of GCIB irradiation in a metal-insulator-semiconductor (MIS) capacitor has also been investigated. The capacitance-voltage curves of MIS capacitor with SF6-GCIB irradiation are distorted. On the contrary, the distortion is reduced by O2-GCIB irradiation at 80, which suggests that electrical-activated damage of the films can be decreased by using O2-GCIB irradiation.

  4. Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Zhang, Zhengxi; Li, Sijian; Yang, Li; Hirano, Shin-ichi

    2016-03-01

    In this work, composite polymer electrolytes (CPEs), that is, 80%[(1-x)PIL-(x)SN]-20%LiTFSI, are successfully prepared by using a pyrrolidinium-based polymeric ionic liquid (P(DADMA)TFSI) as a polymer host, succinonitrile (SN) as a plastic crystal, and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a lithium salt. XRD and DSC measurements confirm that the as-obtained CPEs have amorphous structures. The 80%[50%PIL-50%SN]-20%LiTFSI (50% SN) electrolyte reveals a high room temperature ionic conductivity of 5.74 × 10-4 S cm-1, a wide electrochemical window of 5.5 V, as well as good mechanical strength with a Young's modulus of 4.9 MPa. Li/LiFePO4 cells assembled with the 50% SN electrolyte at 0.1C rate can deliver a discharge capacity of about 150 mAh g-1 at 25 °C, with excellent capacity retention. Furthermore, such cells are able to achieve stable discharge capacities of 131.8 and 121.2 mAh g-1 at 0.5C and 1.0C rate, respectively. The impressive findings demonstrate that the electrolyte system prepared in this work has great potential for application in lithium ion batteries.

  5. Rapid screening and characterization of drug metabolites using multiple ion monitoring dependent product ion scan and postacquisition data mining on a hybrid triple quadrupole-linear ion trap mass spectrometer.

    PubMed

    Yao, Ming; Ma, Li; Duchoslav, Eva; Zhu, Mingshe

    2009-06-01

    Multiple ion monitoring (MIM)-dependent acquisition with a triple quadrupole-linear ion trap mass spectrometer (Q-trap) was previously developed for drug metabolite profiling. In the analysis, multiple predicted metabolite ions are monitored in both Q1 and Q3 regardless of their fragmentations. The collision energy in Q2 is set to a low value to minimize fragmentation. Once an expected metabolite is detected by MIM, enhanced product ion (EPI) spectral acquisition of the metabolite is triggered. To analyze in vitro metabolites, MIM-EPI retains the sensitivity and selectivity similar to that of multiple reaction monitoring (MRM)-EPI in the analysis of in vitro metabolites. Here we present an improved approach utilizing MIM-EPI for data acquisition and multiple data mining techniques for detection of metabolite ions and recovery of their MS/MS spectra. The postacquisition data processing tools included extracted ion chromatographic analysis, product ion filtering and neutral loss filtering. The effectiveness of this approach was evaluated by analyzing oxidative metabolites of indinavir and glutathione (GSH) conjugates of clozapine and 4-ethylphenol in liver microsome incubations. Results showed that the MIM-EPI-based data mining approach allowed for comprehensive detection of metabolites based on predicted protonated molecules, product ions or neutral losses without predetermination of the parent drug MS/MS spectra. Additionally, it enabled metabolite detection and MS/MS acquisition in a single injection. This approach is potentially useful in high-throughout screening of metabolic soft spots and reactive metabolites at the drug discovery stage.

  6. Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing.

    PubMed

    Shang, Zhen; Tan, Yang; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2015-10-19

    We report on a cladding-like waveguide structure in Nd:YAG crystal fabricated by the multiple carbon ion beam irradiation. After the designed multiple irradiation process, the cladding-like waveguide with triple refractive-index layers were constructed in the region near the surface of the crystal. With such a structure, the waveguiding core was compressed and refractive index profile was modified, resulting in a higher light intensity than that of the single ion-beam-irradiated monolayer waveguide. The waveguide lasing at wavelength of 1064 nm was achieved with enhanced performance in the cladding-like structures with both planar and ridge configurations by the optical pump at 810 nm.

  7. Plasma polymerization and deposition of linear, cyclic and aromatic fluorocarbons on (100)-oriented single crystal silicon substrates

    NASA Astrophysics Data System (ADS)

    Yang, G. H.; Oh, S. W.; Kang, E. T.; Neoh, K. G.

    2002-11-01

    Fluoropolymer films were deposited on the Ar plasma-pretreated Si(100) surfaces by plasma polymerization of perfluorohexane (PFH, a linear fluorocarbon), perfluoro(methylcyclohexane) (MCH, a cyclic fluorocarbon), and hexafluorobenzene (HFB, an aromatic fluorocarbon) under different glow discharge conditions. The effects of the radio-frequency plasma power on the chemical composition and structure of the plasma-polymerized fluoropolymer films were studied by x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, time-of-flight secondary ion mass spectrometry, and water contact angle measurements. The changes in structure and composition of the three types of the plasma-deposited films from those of the respective fluorocarbons were compared. Under similar glow discharge conditions: (i) the extent of defluorination was highest for the PFH polymer, (ii) the deposition rate was highest for the HFB polymer, (iii) the cyclic structure of MCH was less well preserved than the aromatic structure of HFB, (iv) aliphatic structures appeared in the plasma-deposited MCH polymer, and (v) the plasma-polymerized HFB has the highest thermal stability due to the preservation of the aromatic rings. The adhesive tape peel test results revealed that the plasma-polymerized and deposited fluoropolymer layers were strongly bonded to the Ar plasma-pretreated Si(100) surfaces.

  8. Synthesis of Large-Sized Single-Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition.

    PubMed

    Wang, Haolin; Zhang, Xingwang; Liu, Heng; Yin, Zhigang; Meng, Junhua; Xia, Jing; Meng, Xiang-Min; Wu, Jinliang; You, Jingbi

    2015-12-22

    Large-sized single-crystal h-BN domains with a lateral size up to 100 μm are synthesized on Ni foils by ion-beam sputtering deposition. The nucleation density of h-BN is dramatically decreased by reducing the concentrations of both active sites and species on the Ni surface through a brief in situ pretreatment of the substrate and optimization of the growth parameters, enabling the growth of large-sized domains.

  9. Strong tendency of homeotropic alignment and anisotropic lithium ion conductivity of sulfonate functionalized zwitterionic imidazolium ionic liquid crystals.

    PubMed

    Rondla, Rohini; Lin, Joseph C Y; Yang, C T; Lin, Ivan J B

    2013-09-17

    Here, we report the first attempt to investigate the liquid crystal (LC) behavior of SO3(-) functionalized imidazolium zwitterionic (SO3(-)ImZI) salts, which display homeotropic alignment on a glass slide without the aid of any aligning approach. Doping lithium salt to ImZI salts lowers the melting temperatures and raises the clearing temperatures substantially to form room temperature ImZILCs. Excellent anisotropic lithium ion conductivity is achieved; which is strengthened by their tendency for homeotropic alignment. PMID:24010889

  10. Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation.

    PubMed

    Jia, Yuechen; Dong, Ningning; Chen, Feng; Vázquez de Aldana, Javier R; Akhmadaliev, Sh; Zhou, Shengqiang

    2012-04-23

    We report on the fabrication of ridge waveguide in Nd:GGG crystal by using swift C(5+) ion irradiation and femtosecond laser ablation. At room temperature continuous wave laser oscillation at wavelength of ~1063 nm has been realized through the optical pump at 808 nm with a slope efficiency of 41.8% and the pump threshold is 71.6 mW.

  11. Lattice damage and waveguide properties of a proton-exchanged LiNbO3 crystal after oxygen-ion implantation

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Liu, Peng; Liu, Tao; Guo, Sha-Sha; Zhang, Lian; Wang, Xue-Lin

    2012-09-01

    A z-cut LiNbO3 crystal was immersed in a molten benzoic acid for 10 min and then was implanted with 6-MeV oxygen ions at a fluence of 6 × 1014 ions/cm2. Lattice damage in this crystal was measured by a Rutherford backscattering and channeling technique and was compared with lattice damage in a proton-exchanged LiNbO3 crystal and an oxygen-ion-implanted LiNbO3 crystal. A totally amorphous layer was formed at the crystal's surface after both proton exchange and oxygen-ion implantation processes were performed, even though either process alone never led to a relative disorder of the lattice up to 0.2. It indicates that the crystal lattice in the proton-exchanged layer is unstable and can be easily damaged by ion implantation subsequently. The waveguide structure formed by proton exchange was destroyed by oxygen-ion implantation. Oxygen-ion implantation induced an increase in extraordinary refractive index and formed another waveguide structure underneath the amorphous surface layer.

  12. Prospects for Ultra-Stable Timekeeping with Sealed Vacuum Operation in Multi-Pole Linear Ion Trap Standards

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Tjoelker, R. L.

    2007-01-01

    A recent long-term comparison between the compensated multi-pole Linear Ion Trap Standard (LITS) and the laser-cooled primary standards via GPS carrier phase time transfer showed a deviation of less than 2.7x10(exp -17)/day. A subsequent evaluation of potential drift contributors in the LITS showed that the leading candidates are fluctuations in background gases and the neon buffer gas. The current vacuum system employs a "flow-through" turbomolecular pump and a diaphragm fore pump. Here we consider the viability of a "sealed" vacuum system pumped by a non-evaporable getter for long-term ultra-stable clock operation. Initial tests suggests that both further stability improvement and longer mean-time-between-maintenance can be achieved using this approach

  13. Orbitrap™ monostage MS versus hybrid linear ion trap MS: application to multi-allergen screening in wine.

    PubMed

    Pilolli, Rosa; De Angelis, Elisabetta; Godula, Michal; Visconti, Angelo; Monaci, Linda

    2014-12-01

    Food allergen research has made giant steps in the last years thanks to the features offered by the latest technology of mass analyzers placed on the market allowing multiplex sensitive detection of proteins. Potentials and features of two mass analyzers namely a linear ion trap capable of performing a data dependent or selected reaction monitoring analysis and an Orbitrap(TM) stand-alone MS enabling a broadband fragmentation without mass selection at highest mass resolving power are herein described and applied to the multiplex screening of allergens in a type of wine chosen as a reference matrix. Quantitative and confirmative capabilities of both platforms were assessed on the specific case study, the multiple detection of egg and milk -related proteins, typically employed in white wines as fining agents. Commercial bioinformatic tools used for a quick allergen identification will be also discussed. PMID:25476943

  14. Co-crystal and crystal: Supramolecular arrangement obtained from 4-aminosalicylic acid, bpa ligand and cobalt ion

    NASA Astrophysics Data System (ADS)

    Garcia, Humberto C.; Cunha, Ronaldo T.; Diniz, Renata; de Oliveira, Luiz Fernando C.

    2012-02-01

    In this study, the synthesis, spectroscopic properties (infrared and Raman) and crystal structures of two new compounds co-crystal and crystal named HASbpa (1) and [Co(bpa)(H2O)4]AS2ṡ4H2O (2) have been reported, where bpa is trans-1,2-bis(4-pyridyl)ethane, HAS is 4-aminosalicylic acid and AS- is aminosalicylate anion. The crystalline arrangement of the compound 1 exhibits a triclinic system with space group P1¯. The formation of a structure known as co-crystal, composed by building blocks in their neutral form; being the first work of this type involving the HAS and nitrogen ligand as bpa. For compound 2, a monoclinic system was observed with P21/c space group. The crystalline arrangement of the structure consisted of a covalent one-dimensional cationic [Co(bpa)(H2O)4]2+ chain, which interacts by hydrogen bonding, π-stacking and electrostatic interactions with aminosalicylate anions and water molecules that were trapped in the crystal. These interactions form supramolecular cavities denominated as pseudo honeycombs. For compound 1, the infrared spectrum revealed the presence of bands at 1643 and 1601 cm-1 assigned to the stretching mode of CO [ν(CO)] and CC/CN groups [ν(CC/CN)]. For the Raman spectrum, these same modes appear around 1644 and 1602 cm-1 related to HAS and bpa blocks, respectively. For compound 2, the largest displacement of the bands compared to free ligand suggested the formation of covalent bonds between bpa ligand and metallic site and loss of the proton in HAS molecule. In the infrared spectrum we can observe the presence of bands around 1635 and 1618 cm-1 attributed to the stretching ν(COO-) and ν(CC/CN), for the Raman spectrum these same modes appear around 1631 and 1619 cm-1 related to AS- and bpa ligand respectively.

  15. Room-temperature single photon sources with definite circular and linear polarizations based on single-emitter fluorescence in liquid crystal hosts

    NASA Astrophysics Data System (ADS)

    Bissell, Luke J.; Lukishova, Svetlana G.; Schmid, Ansgar W.; Hahn, Megan A.; Evans, Chris M.; Krauss, Todd D.; Stroud, Carlos R., Jr.; Boyd, Robert W.

    2010-09-01

    Experimental results of two room-temperature, robust and efficient single-photon sources with definite circular and linear polarization using single-emitter fluorescence in cholesteric and nematic liquid crystal hosts are discussed. For single emitters, we used nanocrystal quantum dots, single color centers in nanodiamonds, and single dye molecules. Single-photon sources based on single emitters in liquid crystals are the room temperature alternatives to cryogenic single-photon sources base on semiconductor heterostructured quantum dots in microcavities prepared by molecular beam epitaxy.

  16. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF.

    PubMed

    Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J

    2012-04-01

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.

  17. Optimization of direct analysis in real time (DART) linear ion trap parameters for the detection and quantitation of glucose.

    PubMed

    Saang'onyo, Daudi S; Smith, Darrin L

    2012-02-15

    Presented here are findings for the development and optimization of a simple, high-throughput, and rapid method for the analysis of glucose. Because the applications of glucose and other six-carbon sugars is a growing field of interest especially in the production of biofuels, an efficient and rapid method for their quantitation from lignocelluloses is necessary. Glucose was analyzed using direct analysis in real time (DART) ionization and formed adducts (along with fragmentation) were observed with a linear ion trap (LIT) mass spectrometer. Since DART can be considered a complex thermal desorption ionization process, an optimization study of the helium gas temperature and introduction into the ionization region was performed. It was observed these parameters have a significant effect on the overall signal intensity as well as the signal-to-noise ratios in DART mass spectra. Using these optimized parameters, a set of different glucose concentrations (ranging from 10 to 3000  μM) were analyzed and used to determine a linear dynamic range (with the use of an internal standard). The analysis of the samples was done with minimal sample preparation and found to be reproducible on different days.

  18. Banana Regime Neoclassical Ion Heat Flux with Retention of the Field Term in the Linearized Collision Operator

    NASA Astrophysics Data System (ADS)

    Parker, J. B.; Catto, P. J.

    2011-10-01

    The standard calculation of neoclassical ion heat flux in the large aspect ratio, circular flux surface, banana regime limit uses a model collision operator where only pitch angle scattering is retained and an ad hoc term is introduced to preserve conservation of momentum. The full linearized collision operator contains also an energy diffusion term and a complicated field term which involves an integral over the perturbed distribution, both of which are dropped in the standard calculation. We reexamine the standard treatment by considering the field as well as the test particle portions of the linearized collision operator and by using an expansion in the eigenfunctions associated with the transit-averaged pitch angle scattering collision operator. We focus on modifications due to the field term to attempt to determine if corrections are needed to the standard result in the large aspect ratio limit. Work supported by a U.S. DOE FES Fellowship and by U.S. DOE Contract No. DE-FG02-91ER-54109.

  19. Measurement of changes in linear accelerator photon energy through flatness variation using an ion chamber array

    SciTech Connect

    Gao Song; Balter, Peter A.; Rose, Mark; Simon, William E.

    2013-04-15

    Purpose: To compare the use of flatness versus percent depth dose (PDD) for determining changes in photon beam energy for a megavoltage linear accelerator. Methods: Energy changes were accomplished by adjusting the bending magnet current by up to {+-}15% in 5% increments away from the value used clinically. Two metrics for flatness, relative flatness in the central 80% of the field (Flat) and average maximum dose along the diagonals normalized by central axis dose (F{sub DN}), were measured using a commercially available planner ionization chamber array. PDD was measured in water at depths of 5 and 10 cm in 3 Multiplication-Sign 3 cm{sup 2} and 10 Multiplication-Sign 10 cm{sup 2} fields using a cylindrical chamber. Results: PDD was more sensitive to changes in energy when the beam energy was increased than when it was decreased. For the 18-MV beam in particular, PDD was not sensitive to energy reductions below the nominal energy. The value of Flat was found to be more sensitive to decreases in energy than to increases, with little sensitivity to energy increases above the nominal energy for 18-MV beams. F{sub DN} was the only metric that was found to be sensitive to both increases and reductions of energy for both the 6- and 18-MV beams. Conclusions: Flatness based metrics were found to be more sensitive to energy changes than PDD, In particular, F{sub DN} was found to be the most sensitive metric to energy changes for photon beams of 6 and 18 MV. The ionization chamber array allows this metric to be conveniently measured as part of routine accelerator quality assurance.

  20. Differential protein expression analysis using stable isotope labeling and PQD linear ion trap MS technology.

    PubMed

    Armenta, Jenny M; Hoeschele, Ina; Lazar, Iulia M

    2009-07-01

    An isotope tags for relative and absolute quantitation (iTRAQ)-based reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) method was developed for differential protein expression profiling in complex cellular extracts. The estrogen positive MCF-7 cell line, cultured in the presence of 17beta-estradiol (E2) and tamoxifen (Tam), was used as a model system. MS analysis was performed with a linear trap quadrupole (LTQ) instrument operated by using pulsed Q dissociation (PQD) detection. Optimization experiments were conducted to maximize the iTRAQ labeling efficiency and the number of quantified proteins. MS data filtering criteria were chosen to result in a false positive identification rate of <4%. The reproducibility of protein identifications was approximately 60%-67% between duplicate, and approximately 50% among triplicate LC-MS/MS runs, respectively. The run-to-run reproducibility, in terms of relative standard deviations (RSD) of global mean iTRAQ ratios, was better than 10%. The quantitation accuracy improved with the number of peptides used for protein identification. From a total of 530 identified proteins (P < 0.001) in the E2/Tam treated MCF-7 cells, a list of 255 proteins (quantified by at least two peptides) was generated for differential expression analysis. A method was developed for the selection, normalization, and statistical evaluation of such datasets. An approximate approximately 2-fold change in protein expression levels was necessary for a protein to be selected as a biomarker candidate. According to this data processing strategy, approximately 16 proteins involved in biological processes such as apoptosis, RNA processing/metabolism, DNA replication/transcription/repair, cell proliferation and metastasis, were found to be up- or down-regulated. PMID:19345114

  1. Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions.

    PubMed

    Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2013-09-21

    A novel quartz crystal microbalance (QCM) sensor for rapid, highly selective and sensitive detection of copper ions was developed. As a signal amplifier, gold nanoparticles (Au NPs) were self-assembled onto the surface of the sensor. A simple dip-and-dry method enabled the whole detection procedure to be accomplished within 20 min. High selectivity of the sensor towards copper ions is demonstrated by both individual and coexisting assays with interference ions. This gold nanoparticle mediated amplification allowed a detection limit down to 3.1 μM. Together with good repeatability and regeneration, the QCM sensor was also applied to the analysis of copper contamination in drinking water. This work provides a flexible method for fabricating QCM sensors for the analysis of important small molecules in environmental and biological samples. PMID:23888301

  2. Crystal structure of the ATP-gated P2X[subscript 4] ion channel in the closed state

    SciTech Connect

    Kawate, Toshimitsu; Michel, Jennifer Carlisle; Birdsong, William T.; Gouaux, Eric

    2009-08-13

    P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X{sub 4} receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in {beta}-strands, have large acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an {approx}8 {angstrom} slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.

  3. Energy transfer and non-linear optical properties at near ultraviolet wavelengths: Rare earth 4f yields 5d transitions in crystals and glasses

    SciTech Connect

    Hamilton, D.S.

    1992-08-01

    The following topics were studied: two-photon transitions from 4f ground state to 5d excited states in Ce{sup 3+}:CaF{sub 2}; optical absorption and photoionization measurements from excited state of Ce{sup 3+}:Y{sub 3}Al{sub 5}O{sub 12}; excited state photoionization of Ce{sup 3+} ions in Ce{sub 3+}:CaF{sub 2}; optical gain and loss studies in Ce{sup 3+}:LiYF{sub 4}; Gd {yields}Cr energy transfer in Cr{sup 3+}:GSGG, Cr{sup 3+}:GSAG and Cr{sup 3+}:GGG crystals; nonradiative relaxation in Ce{sup 3+} doped crystals and glasses; and grating formation in impurity doped crystals.

  4. Carbon Ion Irradiation of the Rat Spinal Cord: Dependence of the Relative Biological Effectiveness on Linear Energy Transfer

    SciTech Connect

    Saager, Maria; Glowa, Christin; Peschke, Peter; Brons, Stephan; Scholz, Michael; Huber, Peter E.; Debus, Jürgen; Karger, Christian P.

    2014-09-01

    Purpose: To measure the relative biological effectiveness (RBE) of carbon ions in the rat spinal cord as a function of linear energy transfer (LET). Methods and Materials: As an extension of a previous study, the cervical spinal cord of rats was irradiated with single doses of carbon ions at 6 positions of a 6-cm spread-out Bragg peak (16-99 keV/μm). The TD{sub 50} values (dose at 50% complication probability) were determined according to dose-response curves for the development of paresis grade 2 within an observation time of 300 days. The RBEs were calculated using TD{sub 50} for photons of our previous study. Results: Minimum latency time was found to be dose-dependent, but not significantly LET-dependent. The TD{sub 50} values for the onset of paresis grade 2 within 300 days were 19.5 ± 0.4 Gy (16 keV/μm), 18.4 ± 0.4 Gy (21 keV/μm), 17.7 ± 0.3 Gy (36 keV/μm), 16.1 ± 1.2 Gy (45 keV/μm), 14.6 ± 0.5 Gy (66 keV/μm), and 14.8 ± 0.5 Gy (99 keV/μm). The corresponding RBEs increased from 1.26 ± 0.05 (16 keV/μm) up to 1.68 ± 0.08 at 66 keV/μm. Unexpectedly, the RBE at 99 keV/μm was comparable to that at 66 keV/μm. Conclusions: The data suggest a linear relation between RBE and LET at high doses for late effects in the spinal cord. Together with additional data from ongoing fractionated irradiation experiments, these data will provide an extended database to systematically benchmark RBE models for further improvements of carbon ion treatment planning.

  5. Non-linear wave-particle interactions and fast ion loss induced by multiple Alfvén eigenmodes in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Kramer, G. J.; Heidbrink, W. W.; Fisher, R. K.; Pace, D. C.; Petty, C. C.; Podesta, M.; Van Zeeland, M. A.

    2014-08-01

    A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE—a change in wave-particle phase k · r by one mode alters the force exerted by the next. The loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ion transport.

  6. An ion microprobe study of the intra-crystalline behavior of REE and selected trace elements in pyroxene from mare basalts with different cooling and crystallization histories

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Papike, J. J.; Simon, S. B.; Shimizu, N.

    1989-01-01

    The effects of crystallization interaction on the trace element zoning characteristics of pyroxenes are analyzed using electron and ion microprobe techniques. Four pigeonite basalts with similar isochemical composition, but different cooling rates and crystallization histories are studied. Pyroxene quadrilaterals displaying crystallization trends are presented. The crystal chemical rationalization of REE zoning, pattern shapes, and abundances are examined. The data reveal that the trace element zoning characteristics in pyroxene and the partitioning of trace elements between pyroxene and the melt are related to the interaction between the efficiency of the crystallization process, the kinetics at the crystal-melt interface, the kinetics of plagioclase nucleation and the characteristics of the crystal chemical substitutions in the pyroxene and the associated crystallizing phase.

  7. A differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer: a mass spectrometer capable of MS(n) experiments free from interfering reactions.

    PubMed

    Owen, Benjamin C; Jarrell, Tiffany M; Schwartz, Jae C; Oglesbee, Rob; Carlsen, Mark; Archibold, Enada F; Kenttämaa, Hilkka I

    2013-12-01

    A novel differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer was designed and built to facilitate tandem MS experiments free from interfering reactions. The instrument consists of two differentially pumped Thermo Scientific linear quadrupole ion trap (LQIT) systems that have been connected via an ion transfer octupole encased in a machined manifold. Tandem MS experiments can be performed in the front trap and then the resulting product ions can be transferred via axial ejection into the back trap for further, independent tandem MS experiments in a differentially pumped area. This approach allows the examination of consecutive collision-activated dissociation (CAD) and ion-molecule reactions without unwanted side reactions that often occur when CAD and ion-molecule reactions are examined in the same space. Hence, it greatly facilitates investigations of ion structures. In addition, the overall lower pressure of the DLQIT, as compared to commercial LQIT instruments, results in a reduction of unwanted side reactions with atmospheric contaminants, such as water and oxygen, in CAD and ion-molecule experiments. PMID:24171553

  8. Unidirectional growth of non-linear optical triglycine calcium dibromide single crystal by a Sankaranaryanan-Ramasamy method

    NASA Astrophysics Data System (ADS)

    Babu Rao, G.; Rajesh, P.; Ramasamy, P.

    2016-04-01

    Single crystals oriented along prerequisite direction are very important in terms of reducing loss of material and cost during nonlinear optical device fabrication. A transparent uniaxial triglycine calcium dibromide single crystal having dimension of 10 mm diameter and 126 mm length was grown by a Sankaranarayanan-Ramasamy (SR) method with a growth rate of 2 mm per day. From the optical transmittance study it is observed that the crystal grown by the SR method has 10% higher transmittance compared to a conventional method grown crystals. High intense luminescence at 368 nm for the SR method grown crystal is observed from the photoluminescence study. The etch pit density of the conventional and SR method grown crystal is found as 4.5×103 cm-2 and 3.5×103 cm-2 respectively. The average laser damage threshold obtained on the conventional method grown crystal was 3.74 Gw/cm2 whereas a high damage threshold of 4.78 Gw/cm2 was obtained for the SR grown crystal. The crystal grown by the SR method shows high mechanical strength and good laser damage stability with low dislocation density which make it suitable for the SHG device fabrication.

  9. Improved 6-Plex Tandem Mass Tags Quantification Throughput Using a Linear Ion Trap-High-Energy Collision Induced Dissociation MS(3) Scan.

    PubMed

    Liu, Jane M; Sweredoski, Michael J; Hess, Sonja

    2016-08-01

    The use of tandem mass tags (TMT) as an isobaric labeling strategy is a powerful method for quantitative proteomics, yet its accuracy has traditionally suffered from interference. This interference can be largely overcome by selecting MS(2) fragment precursor ions for high-energy collision induced dissociation (HCD) MS(3) analysis in an Orbitrap scan. While this approach minimizes the interference effect, sensitivity suffers due to the high AGC targets and long acquisition times associated with MS(3) Orbitrap detection. We investigated whether acquiring the MS(3) scan in a linear ion trap with its lower AGC target would increase overall quantification levels with a minimal effect on precision and accuracy. Trypsin-digested proteins from Saccharomyces cerevisiae were tagged with 6-plex TMT reagents. The sample was subjected to replicate analyses using either the Orbitrap or the linear ion trap for the HCD MS(3) scan. HCD MS(3) detection in the linear ion trap vs Orbitrap increased protein identification by 66% with minor loss in precision and accuracy. Thus, the use of a linear ion trap-HCD MS(3) scan during a 6-plex TMT experiment can improve overall identification levels while maintaining the power of multiplexed quantitative analysis. PMID:27377715

  10. Imaging MS Methodology for More Chemical Information in Less Data Acquisition Time Utilizing a Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer

    SciTech Connect

    Perdian, D. C.; Lee, Young Jin

    2010-11-15

    A novel mass spectrometric imaging method is developed to reduce the data acquisition time and provide rich chemical information using a hybrid linear ion trap-orbitrap mass spectrometer. In this method, the linear ion trap and orbitrap are used in tandem to reduce the acquisition time by incorporating multiple linear ion trap scans during an orbitrap scan utilizing a spiral raster step plate movement. The data acquisition time was decreased by 43-49% in the current experiment compared to that of orbitrap-only scans; however, 75% or more time could be saved for higher mass resolution and with a higher repetition rate laser. Using this approach, a high spatial resolution of 10 {micro}m was maintained at ion trap imaging, while orbitrap spectra were acquired at a lower spatial resolution, 20-40 {micro}m, all with far less data acquisition time. Furthermore, various MS imaging methods were developed by interspersing MS/MS and MSn ion trap scans during orbitrap scans to provide more analytical information on the sample. This method was applied to differentiate and localize structural isomers of several flavonol glycosides from an Arabidopsis flower petal in which MS/MS, MSn, ion trap, and orbitrap images were all acquired in a single data acquisition.

  11. Liquid chromatography quadrupole linear ion trap mass spectrometry for multiclass screening and identification of lipophilic marine biotoxins in bivalve mollusks.

    PubMed

    Wu, Haiyan; Guo, Mengmeng; Tan, Zhijun; Cheng, Haiyan; Li, Zhaoxin; Zhai, Yuxiu

    2014-09-01

    A liquid chromatography quadrupole linear ion trap mass spectrometry method with fast polarity switching and a scheduled multiple reaction monitoring algorithm mode was developed for multiclass screening and identification of lipophilic marine biotoxins in bivalve molluscs. A major advantage of the method is that it can detect members of all six groups of lipophilic marine biotoxins [okadaic acid (OA), yessotoxins (YTX), azaspiracids (AZA), pectenotoxins (PTX), cyclic imines (CI), and brevetoxins (PbTx)], thereby allowing quantification and high confidence identification from a single liquid chromatography tandem mass spectrometry (LC-MS/MS) injection. An enhanced product ion (EPI) library was constructed after triggered collection of data via information-dependent acquisition (IDA) of EPI spectra from standard samples. A separation method for identifying 17 target toxins in a single analysis within 12min was developed and tested. Different solid phase extraction sorbents, the matrix effect (for oyster, scallop, and mussel samples), and stability of the standards also were evaluated. Matrix-matched calibration was used for quantification of the toxins. The limits of detection were 0.12-13.6μg/kg, and the limits of quantification were 0.39-45.4μg/kg. The method was used to analyze 120 shellfish samples collected from farming areas along the coast of China, and 7% of the samples were found to be contaminated with toxins. The library search identified PbTx-3, YTX, OA, PTX2, AZA1, AZA2, and desmethylspirolide C (SPX1). Overall, the method exhibited excellent sensitivity and reproducibility, and it will have broad applications in the monitoring of lipophilic marine biotoxins.

  12. Laser induced rovibrational cooling of the linear polyatomic ion C{sub 2}H{sub 2}{sup +}

    SciTech Connect

    Deb, Nabanita; Heazlewood, Brianna R.; Rennick, Christopher J.; Softley, Timothy P.

    2014-04-28

    The laser-induced blackbody-assisted rotational cooling of a linear polyatomic ion, C{sub 2}H{sub 2}{sup +}, in its {sup 2}Π ground electronic state in the presence of the blackbody radiation field at 300 K and 77 K is investigated theoretically using a rate-equations model. Although pure rotational transitions are forbidden in this non-polar species, the ν{sub 5} cis-bending mode is infrared active and the (1-0) band of this mode strongly overlaps the 300 K blackbody spectrum. Hence the lifetimes of state-selected rotational levels are found to be short compared to the typical timescale of ion trapping experiments. The ν{sub 5} (1-0) transition is split by the Renner-Teller coupling of vibrational and electronic angular momentum, and by the spin-orbit coupling, into six principal components and these effects are included in the calculations. In this paper, a rotational-cooling scheme is proposed that involves simultaneous pumping of a set of closely spaced Q-branch transitions on the {sup 2}Δ{sub 5/2} − {sup 2}Π{sub 3/2} band together with two Q-branch lines in the {sup 2}Σ{sup +} − {sup 2}Π{sub 1/2} band. It is shown that this should lead to >70% of total population in the lowest rotational level at 300 K and over 99% at 77 K. In principle, the multiple Q-branch lines could be pumped with just two broad-band (∼Δν = 0.4–3 cm{sup −1}) infrared lasers.

  13. Liquid chromatography quadrupole linear ion trap mass spectrometry for multiclass screening and identification of lipophilic marine biotoxins in bivalve mollusks.

    PubMed

    Wu, Haiyan; Guo, Mengmeng; Tan, Zhijun; Cheng, Haiyan; Li, Zhaoxin; Zhai, Yuxiu

    2014-09-01

    A liquid chromatography quadrupole linear ion trap mass spectrometry method with fast polarity switching and a scheduled multiple reaction monitoring algorithm mode was developed for multiclass screening and identification of lipophilic marine biotoxins in bivalve molluscs. A major advantage of the method is that it can detect members of all six groups of lipophilic marine biotoxins [okadaic acid (OA), yessotoxins (YTX), azaspiracids (AZA), pectenotoxins (PTX), cyclic imines (CI), and brevetoxins (PbTx)], thereby allowing quantification and high confidence identification from a single liquid chromatography tandem mass spectrometry (LC-MS/MS) injection. An enhanced product ion (EPI) library was constructed after triggered collection of data via information-dependent acquisition (IDA) of EPI spectra from standard samples. A separation method for identifying 17 target toxins in a single analysis within 12min was developed and tested. Different solid phase extraction sorbents, the matrix effect (for oyster, scallop, and mussel samples), and stability of the standards also were evaluated. Matrix-matched calibration was used for quantification of the toxins. The limits of detection were 0.12-13.6μg/kg, and the limits of quantification were 0.39-45.4μg/kg. The method was used to analyze 120 shellfish samples collected from farming areas along the coast of China, and 7% of the samples were found to be contaminated with toxins. The library search identified PbTx-3, YTX, OA, PTX2, AZA1, AZA2, and desmethylspirolide C (SPX1). Overall, the method exhibited excellent sensitivity and reproducibility, and it will have broad applications in the monitoring of lipophilic marine biotoxins. PMID:25086754

  14. Third order optical non-linear (Z-scan), birefringence, photoluminescence, mechanical and etching studies on melaminium levulinate monohydrate (MLM) single crystal for optical device applications

    NASA Astrophysics Data System (ADS)

    Sivakumar, N.; Anbalagan, G.

    2016-10-01

    Z-scan studies on the grown crystal was investigated by diode-pumped Nd; YAG laser. Nonlinear refractive index (n2) and third-order nonlinear optical susceptibility (χ3) values of MLM were found to be -1.0 × 10-8 cm2/W and 1.36 × 10-6 esu respectively. Powder X-ray diffraction analysis depicted that the crystal belongs to monoclinic system with space group P21/c. Birefringence study revealed the optical dispersion behavior of MLM crystal. Linear refractive index on (10-1) plane was measured by prism coupling technique and was estimated to be 1.4705. Hardness study was carried out along three different planes which exhibit hardness anisotropy of 41.11%. Meyer's index values of the grown crystal for the (10-1), (010) and (111) planes were found to be 2.39, 2.61 and 2.04 respectively. Etching studies on the prominent (10-1) growth plane was explained by two dimensional layer growth mechanisms. Photoluminescence study was performed on MLM crystal to explore its efficacy towards optical device fabrications.

  15. Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals

    NASA Astrophysics Data System (ADS)

    Steinkemper, H.; Fischer, S.; Hermle, M.; Goldschmidt, J. C.

    2013-05-01

    Rare earth ions embedded in host crystals are of great interest for many applications. Due to the crystal field of the host material, the energy levels of the rare earth ions split into several Stark levels. The resulting broadening of the spectral line shapes of transitions between those levels determines the upconversion phenomena, especially under broad-spectrum illumination, which are relevant for photovoltaics for instance. In this paper, we present a method to determine the spectral line shape of energy level transitions of rare earth ions from the absorption spectrum of the investigated material. A parameter model is used to describe the structure of the individual energy levels based on a representation of the Stark splitting. The parameters of the model are then determined with an evolutionary optimization algorithm. The described method is applied to the model system of β-NaEr0.2Y0.8F4. The results indicate that for illumination with a wavelength around 1523 nm, simple upconversion processes such as two-step absorption or direct energy transfer are less efficient than commonly assumed. Hence a sequence of efficient processes is suggested as an explanation for the high upconversion quantum yield of β-NaEr0.2Y0.8F4, which has not yet been reported in the literature.

  16. Crystal-field analysis for RE 3+ ions in laser materials: II. Absorption spectra and energy levels calculations for Nd 3+ ions doped into SrLaGa 3O 7 and BaLaGa 3O 7 crystals and Tm 3+ ions in SrGdGa 3O 7

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Gnutek, P.; Rudowicz, C.; Ryba-Romanowski, W.

    2011-08-01

    Low temperature polarized absorption spectra are analyzed to achieve assignments of energy levels for Nd 3+ and Tm 3+ ions at monoclinic C s site symmetry in ABC 3O 7 crystals. Based on the concept of average optical center, the experimental energy levels for single crystals of SrLaGa 3O 7:Nd 3+ (SLG:Nd), BaLaGa 3O 7:Nd 3+ (BLG:Nd), and SrGdGa 3O 7:Tm 3+ (SGG:Tm) were analyzed in terms of the free-ion parameters and the crystal field (CF) ones, B kq. Assignments of the energy levels resolved in the spectra were done in stages applying the ascent/descent in symmetry method in CF analysis. The actual monoclinic C s site symmetry at the metal centers in ABC 3O 7 crystals and the approximated orthorhombic C 2v and tetragonal C 4v symmetry were considered. The starting values of B kq's for SLG:Nd and BLG:Nd crystals were obtained from superposition model (SPM) analysis. The final fitted crystal field parameters show high compatibility with the existing data for structurally similar ion-host systems. The obtained values of the intrinsic parameters provide basis for SPM analysis of CF parameters for rare earth ions in other similar systems, especially those exhibiting low-symmetry sites. The SPM parameters derived for SLG:Nd are used for simulation and assignment of the energy levels involved in the potential laser transitions at about 1800 nm due to Tm 3+ ions in SGG crystals. The evaluated emission cross-section is about two times lower than that obtained previously.

  17. VUV spectroscopy of nominally pure and rare-earth ions doped LiCaAIF6 single crystals as promising materials for 157 nm photolithography

    NASA Astrophysics Data System (ADS)

    Cefalas, Alkiviadis C.; Sarantopoulou, Evangelia; Kollia, Z.; Abdulsabirov, R. Y.; Korableva, S. L.; Naumov, A. K.; Semashko, V. V.; Kobe, S.; McGuiness, P. J.

    2002-07-01

    Recently it was found that birefringence is induced in CaF2 crystals when they are illuminated with laser light at 157 nm. Taking into consideration that CaF2 is the only optical material used in 157 nm photolithography today, the possibility to use new wide band gap fluoride crystals as optical elements for 157 nm photolithography, even those of non-cubic symmetry, should be considered. Additionally fluoride dielectric crystals with wide band gaps doped with trivalent rare-earth (RE) ions can be used as passive or active optical elements int eh VUV. For doped crystals, applications depend on the structure of the energy level pattern of the 4fn-15d electronic configuration and RE ion concentration. In this work we are exploiting the use of wide band gap fluoride dielectric crystals doped with RE ions. The laser induced fluorescence spectrum at 157 nm, and the absorption spectra of the LiCaAlF6 crystals, pure and doped with RE ions, were investigated in the VUV region of the spectrum. A new m4tehod for monitoring RE concentration in wide band gap fluoride crystals, that is based on vibrating sample magnetometer measurement is presented as well.

  18. Enhanced visible light activity of nano-titanium dioxide doped with multiple ions: Effect of crystal defects

    SciTech Connect

    Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Gopakumar Warrier, Krishna

    2012-12-15

    Titanium dioxide photocatalysts co-doped with iron(III) and lanthanum(III) have been prepared through a modified sol-gel method. Doping with Fe{sup 3+} resulted in a relatively lower anatase to rutile phase transformation temperature, while La{sup 3+} addition reduced the crystal growth and thus retarded the phase transformation of titania nanoparticles. The presence of Fe{sup 3+} ions shifted the absorption profile of titania to the longer wavelength side of the spectrum and enhanced the visible light activity. On the other hand, La{sup 3+} addition improved the optical absorption of titania nanoparticles. Both the dopants improved the life time of excitons by proper transferring and trapping of photoexcited charges. In the present work, considerable enhancement in photocatalytic activity under visible light was achieved through synergistic effect of optimum concentrations of the two dopants and associated crystal defects. - Graphical abstract: Photocatalytic activity studies indicate a synergistic effect of dopants and crystal defects leading to an enhanced photochemical activity. Highlights: Black-Right-Pointing-Pointer An aqueous sol-gel synthesis of Fe{sup 3+} and La{sup 3+} co-doped TiO{sub 2} is being reported. Black-Right-Pointing-Pointer Optical and microstructural properties of titania were modified by co-doping. Black-Right-Pointing-Pointer Enhanced activity of titania by the crystal defects is being reported.

  19. Direct fabrication of complex 3D hierarchical nanostructures by reactive ion etching of hollow sphere colloidal crystals.

    PubMed

    Zhong, Kuo; Li, Jiaqi; Van Cleuvenbergen, Stijn; Clays, Koen

    2016-09-21

    Direct reactive ion etching (RIE) of hollow SiO2 sphere colloidal crystals (HSCCs) is employed as a facile, low-cost method to fabricate complex three-dimensional (3D) hierarchical nanostructures. These multilayered structures are gradually transformed into nanostructures of increasing complexity by controlling the etching time, without complicated procedures (no mask needed). The resulting 3D topologies are unique, and cannot be obtained through traditional approaches. The formation mechanism of these structures is explained in detail by geometrical modeling during the different etching stages, through shadow effects of the higher layers. SEM images confirm the modeled morphological changes. The nanostructures obtained by our approach show very fine features as small as ∼30 nm. Our approach opens new avenues to directly obtain complex 3D nanostructures from colloidal crystals and can find applications in sensing, templating, and catalysis where fine tuning the specific surface might be critical. PMID:27545098

  20. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching

    NASA Astrophysics Data System (ADS)

    Li, Zhiqin; Chen, Yiqin; Zhu, Xupeng; Zheng, Mengjie; Dong, Fengliang; Chen, Peipei; Xu, Lihua; Chu, Weiguo; Duan, Huigao

    2016-09-01

    Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.