NASA Astrophysics Data System (ADS)
See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.
2018-04-01
This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.
Zeb, Salman; Yousaf, Muhammad
2017-01-01
In this article, we present a QR updating procedure as a solution approach for linear least squares problem with equality constraints. We reduce the constrained problem to unconstrained linear least squares and partition it into a small subproblem. The QR factorization of the subproblem is calculated and then we apply updating techniques to its upper triangular factor R to obtain its solution. We carry out the error analysis of the proposed algorithm to show that it is backward stable. We also illustrate the implementation and accuracy of the proposed algorithm by providing some numerical experiments with particular emphasis on dense problems.
Solution of a Complex Least Squares Problem with Constrained Phase.
Bydder, Mark
2010-12-30
The least squares solution of a complex linear equation is in general a complex vector with independent real and imaginary parts. In certain applications in magnetic resonance imaging, a solution is desired such that each element has the same phase. A direct method for obtaining the least squares solution to the phase constrained problem is described.
A quadratic-tensor model algorithm for nonlinear least-squares problems with linear constraints
NASA Technical Reports Server (NTRS)
Hanson, R. J.; Krogh, Fred T.
1992-01-01
A new algorithm for solving nonlinear least-squares and nonlinear equation problems is proposed which is based on approximating the nonlinear functions using the quadratic-tensor model by Schnabel and Frank. The algorithm uses a trust region defined by a box containing the current values of the unknowns. The algorithm is found to be effective for problems with linear constraints and dense Jacobian matrices.
An efficient variable projection formulation for separable nonlinear least squares problems.
Gan, Min; Li, Han-Xiong
2014-05-01
We consider in this paper a class of nonlinear least squares problems in which the model can be represented as a linear combination of nonlinear functions. The variable projection algorithm projects the linear parameters out of the problem, leaving the nonlinear least squares problems involving only the nonlinear parameters. To implement the variable projection algorithm more efficiently, we propose a new variable projection functional based on matrix decomposition. The advantage of the proposed formulation is that the size of the decomposed matrix may be much smaller than those of previous ones. The Levenberg-Marquardt algorithm using finite difference method is then applied to minimize the new criterion. Numerical results show that the proposed approach achieves significant reduction in computing time.
A Stochastic Total Least Squares Solution of Adaptive Filtering Problem
Ahmad, Noor Atinah
2014-01-01
An efficient and computationally linear algorithm is derived for total least squares solution of adaptive filtering problem, when both input and output signals are contaminated by noise. The proposed total least mean squares (TLMS) algorithm is designed by recursively computing an optimal solution of adaptive TLS problem by minimizing instantaneous value of weighted cost function. Convergence analysis of the algorithm is given to show the global convergence of the proposed algorithm, provided that the stepsize parameter is appropriately chosen. The TLMS algorithm is computationally simpler than the other TLS algorithms and demonstrates a better performance as compared with the least mean square (LMS) and normalized least mean square (NLMS) algorithms. It provides minimum mean square deviation by exhibiting better convergence in misalignment for unknown system identification under noisy inputs. PMID:24688412
Spacecraft inertia estimation via constrained least squares
NASA Technical Reports Server (NTRS)
Keim, Jason A.; Acikmese, Behcet A.; Shields, Joel F.
2006-01-01
This paper presents a new formulation for spacecraft inertia estimation from test data. Specifically, the inertia estimation problem is formulated as a constrained least squares minimization problem with explicit bounds on the inertia matrix incorporated as LMIs [linear matrix inequalities). The resulting minimization problem is a semidefinite optimization that can be solved efficiently with guaranteed convergence to the global optimum by readily available algorithms. This method is applied to data collected from a robotic testbed consisting of a freely rotating body. The results show that the constrained least squares approach produces more accurate estimates of the inertia matrix than standard unconstrained least squares estimation methods.
Linear Least Squares for Correlated Data
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1988-01-01
Throughout the literature authors have consistently discussed the suspicion that regression results were less than satisfactory when the independent variables were correlated. Camm, Gulledge, and Womer, and Womer and Marcotte provide excellent applied examples of these concerns. Many authors have obtained partial solutions for this problem as discussed by Womer and Marcotte and Wonnacott and Wonnacott, which result in generalized least squares algorithms to solve restrictive cases. This paper presents a simple but relatively general multivariate method for obtaining linear least squares coefficients which are free of the statistical distortion created by correlated independent variables.
Generalizations of Tikhonov's regularized method of least squares to non-Euclidean vector norms
NASA Astrophysics Data System (ADS)
Volkov, V. V.; Erokhin, V. I.; Kakaev, V. V.; Onufrei, A. Yu.
2017-09-01
Tikhonov's regularized method of least squares and its generalizations to non-Euclidean norms, including polyhedral, are considered. The regularized method of least squares is reduced to mathematical programming problems obtained by "instrumental" generalizations of the Tikhonov lemma on the minimal (in a certain norm) solution of a system of linear algebraic equations with respect to an unknown matrix. Further studies are needed for problems concerning the development of methods and algorithms for solving reduced mathematical programming problems in which the objective functions and admissible domains are constructed using polyhedral vector norms.
NASA Astrophysics Data System (ADS)
Wu, Fang-Xiang; Mu, Lei; Shi, Zhong-Ke
2010-01-01
The models of gene regulatory networks are often derived from statistical thermodynamics principle or Michaelis-Menten kinetics equation. As a result, the models contain rational reaction rates which are nonlinear in both parameters and states. It is challenging to estimate parameters nonlinear in a model although there have been many traditional nonlinear parameter estimation methods such as Gauss-Newton iteration method and its variants. In this article, we develop a two-step method to estimate the parameters in rational reaction rates of gene regulatory networks via weighted linear least squares. This method takes the special structure of rational reaction rates into consideration. That is, in the rational reaction rates, the numerator and the denominator are linear in parameters. By designing a special weight matrix for the linear least squares, parameters in the numerator and the denominator can be estimated by solving two linear least squares problems. The main advantage of the developed method is that it can produce the analytical solutions to the estimation of parameters in rational reaction rates which originally is nonlinear parameter estimation problem. The developed method is applied to a couple of gene regulatory networks. The simulation results show the superior performance over Gauss-Newton method.
Least-Squares Data Adjustment with Rank-Deficient Data Covariance Matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, J.G.
2011-07-01
A derivation of the linear least-squares adjustment formulae is required that avoids the assumption that the covariance matrix of prior parameters can be inverted. Possible proofs are of several kinds, including: (i) extension of standard results for the linear regression formulae, and (ii) minimization by differentiation of a quadratic form of the deviations in parameters and responses. In this paper, the least-squares adjustment equations are derived in both these ways, while explicitly assuming that the covariance matrix of prior parameters is singular. It will be proved that the solutions are unique and that, contrary to statements that have appeared inmore » the literature, the least-squares adjustment problem is not ill-posed. No modification is required to the adjustment formulae that have been used in the past in the case of a singular covariance matrix for the priors. In conclusion: The linear least-squares adjustment formula that has been used in the past is valid in the case of a singular covariance matrix for the covariance matrix of prior parameters. Furthermore, it provides a unique solution. Statements in the literature, to the effect that the problem is ill-posed are wrong. No regularization of the problem is required. This has been proved in the present paper by two methods, while explicitly assuming that the covariance matrix of prior parameters is singular: i) extension of standard results for the linear regression formulae, and (ii) minimization by differentiation of a quadratic form of the deviations in parameters and responses. No modification is needed to the adjustment formulae that have been used in the past. (author)« less
Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems
Van Benthem, Mark H.; Keenan, Michael R.
2008-11-11
A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.
The Inverse Problem for Confined Aquifer Flow: Identification and Estimation With Extensions
NASA Astrophysics Data System (ADS)
Loaiciga, Hugo A.; MariñO, Miguel A.
1987-01-01
The contributions of this work are twofold. First, a methodology for estimating the elements of parameter matrices in the governing equation of flow in a confined aquifer is developed. The estimation techniques for the distributed-parameter inverse problem pertain to linear least squares and generalized least squares methods. The linear relationship among the known heads and unknown parameters of the flow equation provides the background for developing criteria for determining the identifiability status of unknown parameters. Under conditions of exact or overidentification it is possible to develop statistically consistent parameter estimators and their asymptotic distributions. The estimation techniques, namely, two-stage least squares and three stage least squares, are applied to a specific groundwater inverse problem and compared between themselves and with an ordinary least squares estimator. The three-stage estimator provides the closer approximation to the actual parameter values, but it also shows relatively large standard errors as compared to the ordinary and two-stage estimators. The estimation techniques provide the parameter matrices required to simulate the unsteady groundwater flow equation. Second, a nonlinear maximum likelihood estimation approach to the inverse problem is presented. The statistical properties of maximum likelihood estimators are derived, and a procedure to construct confidence intervals and do hypothesis testing is given. The relative merits of the linear and maximum likelihood estimators are analyzed. Other topics relevant to the identification and estimation methodologies, i.e., a continuous-time solution to the flow equation, coping with noise-corrupted head measurements, and extension of the developed theory to nonlinear cases are also discussed. A simulation study is used to evaluate the methods developed in this study.
ERIC Educational Resources Information Center
Rocconi, Louis M.
2011-01-01
Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…
A constrained robust least squares approach for contaminant release history identification
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Painter, Scott L.; Wittmeyer, Gordon W.
2006-04-01
Contaminant source identification is an important type of inverse problem in groundwater modeling and is subject to both data and model uncertainty. Model uncertainty was rarely considered in the previous studies. In this work, a robust framework for solving contaminant source recovery problems is introduced. The contaminant source identification problem is first cast into one of solving uncertain linear equations, where the response matrix is constructed using a superposition technique. The formulation presented here is general and is applicable to any porous media flow and transport solvers. The robust least squares (RLS) estimator, which originated in the field of robust identification, directly accounts for errors arising from model uncertainty and has been shown to significantly reduce the sensitivity of the optimal solution to perturbations in model and data. In this work, a new variant of RLS, the constrained robust least squares (CRLS), is formulated for solving uncertain linear equations. CRLS allows for additional constraints, such as nonnegativity, to be imposed. The performance of CRLS is demonstrated through one- and two-dimensional test problems. When the system is ill-conditioned and uncertain, it is found that CRLS gave much better performance than its classical counterpart, the nonnegative least squares. The source identification framework developed in this work thus constitutes a reliable tool for recovering source release histories in real applications.
The incomplete inverse and its applications to the linear least squares problem
NASA Technical Reports Server (NTRS)
Morduch, G. E.
1977-01-01
A modified matrix product is explained, and it is shown that this product defiles a group whose inverse is called the incomplete inverse. It was proven that the incomplete inverse of an augmented normal matrix includes all the quantities associated with the least squares solution. An answer is provided to the problem that occurs when the data residuals are too large and when insufficient data to justify augmenting the model are available.
Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems.
Choi, Sou-Cheng T; Saunders, Michael A
2014-02-01
We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP.
On Some Separated Algorithms for Separable Nonlinear Least Squares Problems.
Gan, Min; Chen, C L Philip; Chen, Guang-Yong; Chen, Long
2017-10-03
For a class of nonlinear least squares problems, it is usually very beneficial to separate the variables into a linear and a nonlinear part and take full advantage of reliable linear least squares techniques. Consequently, the original problem is turned into a reduced problem which involves only nonlinear parameters. We consider in this paper four separated algorithms for such problems. The first one is the variable projection (VP) algorithm with full Jacobian matrix of Golub and Pereyra. The second and third ones are VP algorithms with simplified Jacobian matrices proposed by Kaufman and Ruano et al. respectively. The fourth one only uses the gradient of the reduced problem. Monte Carlo experiments are conducted to compare the performance of these four algorithms. From the results of the experiments, we find that: 1) the simplified Jacobian proposed by Ruano et al. is not a good choice for the VP algorithm; moreover, it may render the algorithm hard to converge; 2) the fourth algorithm perform moderately among these four algorithms; 3) the VP algorithm with the full Jacobian matrix perform more stable than that of the VP algorithm with Kuafman's simplified one; and 4) the combination of VP algorithm and Levenberg-Marquardt method is more effective than the combination of VP algorithm and Gauss-Newton method.
Using Perturbed QR Factorizations To Solve Linear Least-Squares Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avron, Haim; Ng, Esmond G.; Toledo, Sivan
2008-03-21
We propose and analyze a new tool to help solve sparse linear least-squares problems min{sub x} {parallel}Ax-b{parallel}{sub 2}. Our method is based on a sparse QR factorization of a low-rank perturbation {cflx A} of A. More precisely, we show that the R factor of {cflx A} is an effective preconditioner for the least-squares problem min{sub x} {parallel}Ax-b{parallel}{sub 2}, when solved using LSQR. We propose applications for the new technique. When A is rank deficient we can add rows to ensure that the preconditioner is well-conditioned without column pivoting. When A is sparse except for a few dense rows we canmore » drop these dense rows from A to obtain {cflx A}. Another application is solving an updated or downdated problem. If R is a good preconditioner for the original problem A, it is a good preconditioner for the updated/downdated problem {cflx A}. We can also solve what-if scenarios, where we want to find the solution if a column of the original matrix is changed/removed. We present a spectral theory that analyzes the generalized spectrum of the pencil (A*A,R*R) and analyze the applications.« less
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2006-01-01
The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.
Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems
Choi, Sou-Cheng T.; Saunders, Michael A.
2014-01-01
We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255
Calibration of Lévy Processes with American Options
NASA Astrophysics Data System (ADS)
Achdou, Yves
We study options on financial assets whose discounted prices are exponential of Lévy processes. The price of an American vanilla option as a function of the maturity and the strike satisfies a linear complementarity problem involving a non-local partial integro-differential operator. It leads to a variational inequality in a suitable weighted Sobolev space. Calibrating the Lévy process may be done by solving an inverse least square problem where the state variable satisfies the previously mentioned variational inequality. We first assume that the volatility is positive: after carefully studying the direct problem, we propose necessary optimality conditions for the least square inverse problem. We also consider the direct problem when the volatility is zero.
An improved conjugate gradient scheme to the solution of least squares SVM.
Chu, Wei; Ong, Chong Jin; Keerthi, S Sathiya
2005-03-01
The least square support vector machines (LS-SVM) formulation corresponds to the solution of a linear system of equations. Several approaches to its numerical solutions have been proposed in the literature. In this letter, we propose an improved method to the numerical solution of LS-SVM and show that the problem can be solved using one reduced system of linear equations. Compared with the existing algorithm for LS-SVM, the approach used in this letter is about twice as efficient. Numerical results using the proposed method are provided for comparisons with other existing algorithms.
Preprocessing Inconsistent Linear System for a Meaningful Least Squares Solution
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
Mathematical models of many physical/statistical problems are systems of linear equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.
Preprocessing in Matlab Inconsistent Linear System for a Meaningful Least Squares Solution
NASA Technical Reports Server (NTRS)
Sen, Symal K.; Shaykhian, Gholam Ali
2011-01-01
Mathematical models of many physical/statistical problems are systems of linear equations Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the . minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.
An efficient method for model refinement in diffuse optical tomography
NASA Astrophysics Data System (ADS)
Zirak, A. R.; Khademi, M.
2007-11-01
Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.
Linearized inversion of multiple scattering seismic energy
NASA Astrophysics Data System (ADS)
Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad
2014-05-01
Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains curvature information is modified at every iteration by a low-rank update based on gradient changes at every step. At each iteration, the data residual is imaged using GT to determine the model update. Application of the linearized inversion to synthetic data to image a vertical fault plane demonstrate the effectiveness of this methodology to properly delineate the vertical fault plane and give better amplitude information than the standard migrated image using the adjoint operator that takes into account internal multiples. Thus, least-square imaging of multiple scattering enhances the spatial resolution of the events illuminated by internal scattering energy. It also deconvolves the source signature and helps remove the fingerprint of the acquisition geometry. The final image is obtained by the superposition of the least-square solution based on single scattering assumption and the least-square solution based on double scattering assumption.
Tu, Yu-Kang; Krämer, Nicole; Lee, Wen-Chung
2012-07-01
In the analysis of trends in health outcomes, an ongoing issue is how to separate and estimate the effects of age, period, and cohort. As these 3 variables are perfectly collinear by definition, regression coefficients in a general linear model are not unique. In this tutorial, we review why identification is a problem, and how this problem may be tackled using partial least squares and principal components regression analyses. Both methods produce regression coefficients that fulfill the same collinearity constraint as the variables age, period, and cohort. We show that, because the constraint imposed by partial least squares and principal components regression is inherent in the mathematical relation among the 3 variables, this leads to more interpretable results. We use one dataset from a Taiwanese health-screening program to illustrate how to use partial least squares regression to analyze the trends in body heights with 3 continuous variables for age, period, and cohort. We then use another dataset of hepatocellular carcinoma mortality rates for Taiwanese men to illustrate how to use partial least squares regression to analyze tables with aggregated data. We use the second dataset to show the relation between the intrinsic estimator, a recently proposed method for the age-period-cohort analysis, and partial least squares regression. We also show that the inclusion of all indicator variables provides a more consistent approach. R code for our analyses is provided in the eAppendix.
Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben
2013-11-01
Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods. Copyright © 2013 Elsevier Inc. All rights reserved.
Multi-Parameter Linear Least-Squares Fitting to Poisson Data One Count at a Time
NASA Technical Reports Server (NTRS)
Wheaton, W.; Dunklee, A.; Jacobson, A.; Ling, J.; Mahoney, W.; Radocinski, R.
1993-01-01
A standard problem in gamma-ray astronomy data analysis is the decomposition of a set of observed counts, described by Poisson statistics, according to a given multi-component linear model, with underlying physical count rates or fluxes which are to be estimated from the data.
Koay, Cheng Guan; Chang, Lin-Ching; Carew, John D; Pierpaoli, Carlo; Basser, Peter J
2006-09-01
A unifying theoretical and algorithmic framework for diffusion tensor estimation is presented. Theoretical connections among the least squares (LS) methods, (linear least squares (LLS), weighted linear least squares (WLLS), nonlinear least squares (NLS) and their constrained counterparts), are established through their respective objective functions, and higher order derivatives of these objective functions, i.e., Hessian matrices. These theoretical connections provide new insights in designing efficient algorithms for NLS and constrained NLS (CNLS) estimation. Here, we propose novel algorithms of full Newton-type for the NLS and CNLS estimations, which are evaluated with Monte Carlo simulations and compared with the commonly used Levenberg-Marquardt method. The proposed methods have a lower percent of relative error in estimating the trace and lower reduced chi2 value than those of the Levenberg-Marquardt method. These results also demonstrate that the accuracy of an estimate, particularly in a nonlinear estimation problem, is greatly affected by the Hessian matrix. In other words, the accuracy of a nonlinear estimation is algorithm-dependent. Further, this study shows that the noise variance in diffusion weighted signals is orientation dependent when signal-to-noise ratio (SNR) is low (
NASA Astrophysics Data System (ADS)
Zhao, Liang; Huang, Shoudong; Dissanayake, Gamini
2018-07-01
This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM.
Least-squares Minimization Approaches to Interpret Total Magnetic Anomalies Due to Spheres
NASA Astrophysics Data System (ADS)
Abdelrahman, E. M.; El-Araby, T. M.; Soliman, K. S.; Essa, K. S.; Abo-Ezz, E. R.
2007-05-01
We have developed three different least-squares approaches to determine successively: the depth, magnetic angle, and amplitude coefficient of a buried sphere from a total magnetic anomaly. By defining the anomaly value at the origin and the nearest zero-anomaly distance from the origin on the profile, the problem of depth determination is transformed into the problem of finding a solution of a nonlinear equation of the form f(z)=0. Knowing the depth and applying the least-squares method, the magnetic angle and amplitude coefficient are determined using two simple linear equations. In this way, the depth, magnetic angle, and amplitude coefficient are determined individually from all observed total magnetic data. The method is applied to synthetic examples with and without random errors and tested on a field example from Senegal, West Africa. In all cases, the depth solutions are in good agreement with the actual ones.
NASA Technical Reports Server (NTRS)
Shakib, Farzin; Hughes, Thomas J. R.
1991-01-01
A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.
Sparse matrix methods based on orthogonality and conjugacy
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1973-01-01
A matrix having a high percentage of zero elements is called spares. In the solution of systems of linear equations or linear least squares problems involving large sparse matrices, significant saving of computer cost can be achieved by taking advantage of the sparsity. The conjugate gradient algorithm and a set of related algorithms are described.
Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qiqi, E-mail: qiqi@mit.edu; Hu, Rui, E-mail: hurui@mit.edu; Blonigan, Patrick, E-mail: blonigan@mit.edu
2014-06-15
The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical systems. The result from these methods can be too large, often by orders of magnitude, when the result is the derivative of a long time averaged quantity. This failure is known to be caused by ill-conditioned initial value problems. This paper overcomes this failure by replacing the initial value problem with the well-conditioned “least squares shadowing (LSS) problem”. The LSS problem is then linearized in our sensitivity analysis algorithm, which computes a derivative that converges to the derivative of the infinitely long time average. We demonstrate ourmore » algorithm in several dynamical systems exhibiting both periodic and chaotic oscillations.« less
NASA Astrophysics Data System (ADS)
Gardner, Robin P.; Xu, Libai
2009-10-01
The Center for Engineering Applications of Radioisotopes (CEAR) has been working for over a decade on the Monte Carlo library least-squares (MCLLS) approach for treating non-linear radiation analyzer problems including: (1) prompt gamma-ray neutron activation analysis (PGNAA) for bulk analysis, (2) energy-dispersive X-ray fluorescence (EDXRF) analyzers, and (3) carbon/oxygen tool analysis in oil well logging. This approach essentially consists of using Monte Carlo simulation to generate the libraries of all the elements to be analyzed plus any other required background libraries. These libraries are then used in the linear library least-squares (LLS) approach with unknown sample spectra to analyze for all elements in the sample. Iterations of this are used until the LLS values agree with the composition used to generate the libraries. The current status of the methods (and topics) necessary to implement the MCLLS approach is reported. This includes: (1) the Monte Carlo codes such as CEARXRF, CEARCPG, and CEARCO for forward generation of the necessary elemental library spectra for the LLS calculation for X-ray fluorescence, neutron capture prompt gamma-ray analyzers, and carbon/oxygen tools; (2) the correction of spectral pulse pile-up (PPU) distortion by Monte Carlo simulation with the code CEARIPPU; (3) generation of detector response functions (DRF) for detectors with linear and non-linear responses for Monte Carlo simulation of pulse-height spectra; and (4) the use of the differential operator (DO) technique to make the necessary iterations for non-linear responses practical. In addition to commonly analyzed single spectra, coincidence spectra or even two-dimensional (2-D) coincidence spectra can also be used in the MCLLS approach and may provide more accurate results.
Aerodynamic parameter estimation via Fourier modulating function techniques
NASA Technical Reports Server (NTRS)
Pearson, A. E.
1995-01-01
Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.
Shimizu, Yu; Yoshimoto, Junichiro; Takamura, Masahiro; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area. PMID:28700672
A decentralized square root information filter/smoother
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Belzer, M. R.
1985-01-01
A number of developments has recently led to a considerable interest in the decentralization of linear least squares estimators. The developments are partly related to the impending emergence of VLSI technology, the realization of parallel processing, and the need for algorithmic ways to speed the solution of dynamically decoupled, high dimensional estimation problems. A new method is presented for combining Square Root Information Filters (SRIF) estimates obtained from independent data sets. The new method involves an orthogonal transformation, and an information matrix filter 'homework' problem discussed by Schweppe (1973) is generalized. The employed SRIF orthogonal transformation methodology has been described by Bierman (1977).
NASA Astrophysics Data System (ADS)
Xu, Yu-Lin
The problem of computing the orbit of a visual binary from a set of observed positions is reconsidered. It is a least squares adjustment problem, if the observational errors follow a bias-free multivariate Gaussian distribution and the covariance matrix of the observations is assumed to be known. The condition equations are constructed to satisfy both the conic section equation and the area theorem, which are nonlinear in both the observations and the adjustment parameters. The traditional least squares algorithm, which employs condition equations that are solved with respect to the uncorrelated observations and either linear in the adjustment parameters or linearized by developing them in Taylor series by first-order approximation, is inadequate in our orbit problem. D.C. Brown proposed an algorithm solving a more general least squares adjustment problem in which the scalar residual function, however, is still constructed by first-order approximation. Not long ago, a completely general solution was published by W.H Jefferys, who proposed a rigorous adjustment algorithm for models in which the observations appear nonlinearly in the condition equations and may be correlated, and in which construction of the normal equations and the residual function involves no approximation. This method was successfully applied in our problem. The normal equations were first solved by Newton's scheme. Practical examples show that this converges fast if the observational errors are sufficiently small and the initial approximate solution is sufficiently accurate, and that it fails otherwise. Newton's method was modified to yield a definitive solution in the case the normal approach fails, by combination with the method of steepest descent and other sophisticated algorithms. Practical examples show that the modified Newton scheme can always lead to a final solution. The weighting of observations, the orthogonal parameters and the efficiency of a set of adjustment parameters are also considered. The definition of efficiency is revised.
A General Linear Model Approach to Adjusting the Cumulative GPA.
ERIC Educational Resources Information Center
Young, John W.
A general linear model (GLM), using least-squares techniques, was used to develop a criterion measure to replace freshman year grade point average (GPA) in college admission predictive validity studies. Problems with the use of GPA include those associated with the combination of grades from different courses and disciplines into a single measure,…
ERIC Educational Resources Information Center
Borcherds, P. H.
1986-01-01
Describes an optional course in "computational physics" offered at the University of Birmingham. Includes an introduction to numerical methods and presents exercises involving fast-Fourier transforms, non-linear least-squares, Monte Carlo methods, and the three-body problem. Recommends adding laboratory work into the course in the…
Recursive inversion of externally defined linear systems
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1988-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.
Fast Algorithms for Structured Least Squares and Total Least Squares Problems
Kalsi, Anoop; O’Leary, Dianne P.
2006-01-01
We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z1 and Z2. We develop formulas for the generators of the matrix M HM in terms of the generators of M and show that the Cholesky factorization of the matrix M HM can be computed quickly if Z1 is close to unitary and Z2 is triangular and nilpotent. These conditions are satisfied for several classes of matrices, including Toeplitz, block Toeplitz, Hankel, and block Hankel, and for matrices whose blocks have such structure. Fast Cholesky factorization enables fast solution of least squares problems, total least squares problems, and regularized total least squares problems involving these classes of matrices. PMID:27274922
Fast Algorithms for Structured Least Squares and Total Least Squares Problems.
Kalsi, Anoop; O'Leary, Dianne P
2006-01-01
We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z 1 and Z 2. We develop formulas for the generators of the matrix M (H) M in terms of the generators of M and show that the Cholesky factorization of the matrix M (H) M can be computed quickly if Z 1 is close to unitary and Z 2 is triangular and nilpotent. These conditions are satisfied for several classes of matrices, including Toeplitz, block Toeplitz, Hankel, and block Hankel, and for matrices whose blocks have such structure. Fast Cholesky factorization enables fast solution of least squares problems, total least squares problems, and regularized total least squares problems involving these classes of matrices.
Linear regression in astronomy. II
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
Least squares reconstruction of non-linear RF phase encoded MR data.
Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E
2016-09-01
The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bukhari, Hassan J.
2017-12-01
In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.
Polynomial compensation, inversion, and approximation of discrete time linear systems
NASA Technical Reports Server (NTRS)
Baram, Yoram
1987-01-01
The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.
Cooley, Richard L.
1983-01-01
This paper investigates factors influencing the degree of improvement in estimates of parameters of a nonlinear regression groundwater flow model by incorporating prior information of unknown reliability. Consideration of expected behavior of the regression solutions and results of a hypothetical modeling problem lead to several general conclusions. First, if the parameters are properly scaled, linearized expressions for the mean square error (MSE) in parameter estimates of a nonlinear model will often behave very nearly as if the model were linear. Second, by using prior information, the MSE in properly scaled parameters can be reduced greatly over the MSE of ordinary least squares estimates of parameters. Third, plots of estimated MSE and the estimated standard deviation of MSE versus an auxiliary parameter (the ridge parameter) specifying the degree of influence of the prior information on regression results can help determine the potential for improvement of parameter estimates. Fourth, proposed criteria can be used to make appropriate choices for the ridge parameter and another parameter expressing degree of overall bias in the prior information. Results of a case study of Truckee Meadows, Reno-Sparks area, Washoe County, Nevada, conform closely to the results of the hypothetical problem. In the Truckee Meadows case, incorporation of prior information did not greatly change the parameter estimates from those obtained by ordinary least squares. However, the analysis showed that both sets of estimates are more reliable than suggested by the standard errors from ordinary least squares.
NASA Astrophysics Data System (ADS)
Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis
2017-01-01
A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.
Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam
2014-07-01
This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Hartzell, S.; Mendoza, C.
1991-01-01
An iterative least-squares technique is used to simultaneously invert the strong-motion records and teleseismic P waveforms for the 1978 Tabas, Iran, earthquake to deduce the rupture history. The effects of using different data sets and different parametrizations of the problem (linear versus nonlinear) are considered. A consensus of all the inversion runs indicates a complex, multiple source for the Tabas earthquake, with four main source regions over a fault length of 90 km and an average rupture velocity of 2.5 km/sec. -from Authors
A parameter estimation subroutine package
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Nead, M. W.
1978-01-01
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. A library of FORTRAN subroutines were developed to facilitate analyses of a variety of estimation problems. An easy to use, multi-purpose set of algorithms that are reasonably efficient and which use a minimal amount of computer storage are presented. Subroutine inputs, outputs, usage and listings are given, along with examples of how these routines can be used. The routines are compact and efficient and are far superior to the normal equation and Kalman filter data processing algorithms that are often used for least squares analyses.
Kargar, Soudabeh; Borisch, Eric A; Froemming, Adam T; Kawashima, Akira; Mynderse, Lance A; Stinson, Eric G; Trzasko, Joshua D; Riederer, Stephen J
2018-05-01
To describe an efficient numerical optimization technique using non-linear least squares to estimate perfusion parameters for the Tofts and extended Tofts models from dynamic contrast enhanced (DCE) MRI data and apply the technique to prostate cancer. Parameters were estimated by fitting the two Tofts-based perfusion models to the acquired data via non-linear least squares. We apply Variable Projection (VP) to convert the fitting problem from a multi-dimensional to a one-dimensional line search to improve computational efficiency and robustness. Using simulation and DCE-MRI studies in twenty patients with suspected prostate cancer, the VP-based solver was compared against the traditional Levenberg-Marquardt (LM) strategy for accuracy, noise amplification, robustness to converge, and computation time. The simulation demonstrated that VP and LM were both accurate in that the medians closely matched assumed values across typical signal to noise ratio (SNR) levels for both Tofts models. VP and LM showed similar noise sensitivity. Studies using the patient data showed that the VP method reliably converged and matched results from LM with approximate 3× and 2× reductions in computation time for the standard (two-parameter) and extended (three-parameter) Tofts models. While LM failed to converge in 14% of the patient data, VP converged in the ideal 100%. The VP-based method for non-linear least squares estimation of perfusion parameters for prostate MRI is equivalent in accuracy and robustness to noise, while being more reliably (100%) convergent and computationally about 3× (TM) and 2× (ETM) faster than the LM-based method. Copyright © 2017 Elsevier Inc. All rights reserved.
Recursive inversion of externally defined linear systems by FIR filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1989-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.
Total variation superiorized conjugate gradient method for image reconstruction
NASA Astrophysics Data System (ADS)
Zibetti, Marcelo V. W.; Lin, Chuan; Herman, Gabor T.
2018-03-01
The conjugate gradient (CG) method is commonly used for the relatively-rapid solution of least squares problems. In image reconstruction, the problem can be ill-posed and also contaminated by noise; due to this, approaches such as regularization should be utilized. Total variation (TV) is a useful regularization penalty, frequently utilized in image reconstruction for generating images with sharp edges. When a non-quadratic norm is selected for regularization, as is the case for TV, then it is no longer possible to use CG. Non-linear CG is an alternative, but it does not share the efficiency that CG shows with least squares and methods such as fast iterative shrinkage-thresholding algorithms (FISTA) are preferred for problems with TV norm. A different approach to including prior information is superiorization. In this paper it is shown that the conjugate gradient method can be superiorized. Five different CG variants are proposed, including preconditioned CG. The CG methods superiorized by the total variation norm are presented and their performance in image reconstruction is demonstrated. It is illustrated that some of the proposed variants of the superiorized CG method can produce reconstructions of superior quality to those produced by FISTA and in less computational time, due to the speed of the original CG for least squares problems. In the Appendix we examine the behavior of one of the superiorized CG methods (we call it S-CG); one of its input parameters is a positive number ɛ. It is proved that, for any given ɛ that is greater than the half-squared-residual for the least squares solution, S-CG terminates in a finite number of steps with an output for which the half-squared-residual is less than or equal to ɛ. Importantly, it is also the case that the output will have a lower value of TV than what would be provided by unsuperiorized CG for the same value ɛ of the half-squared residual.
Method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Least-squares finite element solution of 3D incompressible Navier-Stokes problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.
1992-01-01
Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.
Implementing Linear Algebra Related Algorithms on the TI-92+ Calculator.
ERIC Educational Resources Information Center
Alexopoulos, John; Abraham, Paul
2001-01-01
Demonstrates a less utilized feature of the TI-92+: its natural and powerful programming language. Shows how to implement several linear algebra related algorithms including the Gram-Schmidt process, Least Squares Approximations, Wronskians, Cholesky Decompositions, and Generalized Linear Least Square Approximations with QR Decompositions.…
The covariance matrix for the solution vector of an equality-constrained least-squares problem
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1976-01-01
Methods are given for computing the covariance matrix for the solution vector of an equality-constrained least squares problem. The methods are matched to the solution algorithms given in the book, 'Solving Least Squares Problems.'
Orthogonalizing EM: A design-based least squares algorithm.
Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z G
We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p . Supplementary materials for this article are available online.
Mizutani, Eiji; Demmel, James W
2003-01-01
This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).
Shotorban, Babak
2010-04-01
The dynamic least-squares kernel density (LSQKD) model [C. Pantano and B. Shotorban, Phys. Rev. E 76, 066705 (2007)] is used to solve the Fokker-Planck equations. In this model the probability density function (PDF) is approximated by a linear combination of basis functions with unknown parameters whose governing equations are determined by a global least-squares approximation of the PDF in the phase space. In this work basis functions are set to be Gaussian for which the mean, variance, and covariances are governed by a set of partial differential equations (PDEs) or ordinary differential equations (ODEs) depending on what phase-space variables are approximated by Gaussian functions. Three sample problems of univariate double-well potential, bivariate bistable neurodynamical system [G. Deco and D. Martí, Phys. Rev. E 75, 031913 (2007)], and bivariate Brownian particles in a nonuniform gas are studied. The LSQKD is verified for these problems as its results are compared against the results of the method of characteristics in nondiffusive cases and the stochastic particle method in diffusive cases. For the double-well potential problem it is observed that for low to moderate diffusivity the dynamic LSQKD well predicts the stationary PDF for which there is an exact solution. A similar observation is made for the bistable neurodynamical system. In both these problems least-squares approximation is made on all phase-space variables resulting in a set of ODEs with time as the independent variable for the Gaussian function parameters. In the problem of Brownian particles in a nonuniform gas, this approximation is made only for the particle velocity variable leading to a set of PDEs with time and particle position as independent variables. Solving these PDEs, a very good performance by LSQKD is observed for a wide range of diffusivities.
A program for identification of linear systems
NASA Technical Reports Server (NTRS)
Buell, J.; Kalaba, R.; Ruspini, E.; Yakush, A.
1971-01-01
A program has been written for the identification of parameters in certain linear systems. These systems appear in biomedical problems, particularly in compartmental models of pharmacokinetics. The method presented here assumes that some of the state variables are regularly modified by jump conditions. This simulates administration of drugs following some prescribed drug regime. Parameters are identified by a least-square fit of the linear differential system to a set of experimental observations. The method is especially suited when the interval of observation of the system is very long.
Understanding Least Squares through Monte Carlo Calculations
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2005-01-01
The method of least squares (LS) is considered as an important data analysis tool available to physical scientists. The mathematics of linear least squares(LLS) is summarized in a very compact matrix rotation that renders it practically "formulaic".
NASA Astrophysics Data System (ADS)
Endelt, B.
2017-09-01
Forming operation are subject to external disturbances and changing operating conditions e.g. new material batch, increasing tool temperature due to plastic work, material properties and lubrication is sensitive to tool temperature. It is generally accepted that forming operations are not stable over time and it is not uncommon to adjust the process parameters during the first half hour production, indicating that process instability is gradually developing over time. Thus, in-process feedback control scheme might not-be necessary to stabilize the process and an alternative approach is to apply an iterative learning algorithm, which can learn from previously produced parts i.e. a self learning system which gradually reduces error based on historical process information. What is proposed in the paper is a simple algorithm which can be applied to a wide range of sheet-metal forming processes. The input to the algorithm is the final flange edge geometry and the basic idea is to reduce the least-square error between the current flange geometry and a reference geometry using a non-linear least square algorithm. The ILC scheme is applied to a square deep-drawing and the Numisheet’08 S-rail benchmark problem, the numerical tests shows that the proposed control scheme is able control and stabilise both processes.
Quantum State Tomography via Linear Regression Estimation
Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan
2013-01-01
A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Norrie, D. H.; De Vries, G.
1979-01-01
Abel's integral equation is the governing equation for certain problems in physics and engineering, such as radiation from distributed sources. The finite element method for the solution of this non-linear equation is presented for problems with cylindrical symmetry and the extension to more general integral equations is indicated. The technique was applied to an axisymmetric glow discharge problem and the results show excellent agreement with previously obtained solutions
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
NASA Astrophysics Data System (ADS)
Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim
2018-01-01
The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.
Orthogonalizing EM: A design-based least squares algorithm
Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.
2016-01-01
We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558
Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F
2018-06-01
This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.
The program LOPT for least-squares optimization of energy levels
NASA Astrophysics Data System (ADS)
Kramida, A. E.
2011-02-01
The article describes a program that solves the least-squares optimization problem for finding the energy levels of a quantum-mechanical system based on a set of measured energy separations or wavelengths of transitions between those energy levels, as well as determining the Ritz wavelengths of transitions and their uncertainties. The energy levels are determined by solving the matrix equation of the problem, and the uncertainties of the Ritz wavenumbers are determined from the covariance matrix of the problem. Program summaryProgram title: LOPT Catalogue identifier: AEHM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 254 No. of bytes in distributed program, including test data, etc.: 427 839 Distribution format: tar.gz Programming language: Perl v.5 Computer: PC, Mac, Unix workstations Operating system: MS Windows (XP, Vista, 7), Mac OS X, Linux, Unix (AIX) RAM: 3 Mwords or more Word size: 32 or 64 Classification: 2.2 Nature of problem: The least-squares energy-level optimization problem, i.e., finding a set of energy level values that best fits the given set of transition intervals. Solution method: The solution of the least-squares problem is found by solving the corresponding linear matrix equation, where the matrix is constructed using a new method with variable substitution. Restrictions: A practical limitation on the size of the problem N is imposed by the execution time, which scales as N and depends on the computer. Unusual features: Properly rounds the resulting data and formats the output in a format suitable for viewing with spreadsheet editing software. Estimates numerical errors resulting from the limited machine precision. Running time: 1 s for N=100, or 60 s for N=400 on a typical PC.
Relationships between digital signal processing and control and estimation theory
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1978-01-01
Research areas associated with digital signal processing and control and estimation theory are identified. Particular attention is given to image processing, system identification problems (parameter identification, linear prediction, least squares, Kalman filtering), stability analyses (the use of the Liapunov theory, frequency domain criteria, passivity), and multiparameter systems, distributed processes, and random fields.
Recursive Inversion By Finite-Impulse-Response Filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1991-01-01
Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.
ERIC Educational Resources Information Center
Hester, Yvette
Least squares methods are sophisticated mathematical curve fitting procedures used in all classical parametric methods. The linear least squares approximation is most often associated with finding the "line of best fit" or the regression line. Since all statistical analyses are correlational and all classical parametric methods are least…
Kernel-based least squares policy iteration for reinforcement learning.
Xu, Xin; Hu, Dewen; Lu, Xicheng
2007-07-01
In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating an initial controller to ensure online performance.
Estimation of suspended-sediment rating curves and mean suspended-sediment loads
Crawford, Charles G.
1991-01-01
A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.
First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity
NASA Technical Reports Server (NTRS)
Cai, Z.; Manteuffel, T. A.; McCormick, S. F.
1996-01-01
Following our earlier work on general second-order scalar equations, here we develop a least-squares functional for the two- and three-dimensional Stokes equations, generalized slightly by allowing a pressure term in the continuity equation. By introducing a velocity flux variable and associated curl and trace equations, we are able to establish ellipticity in an H(exp 1) product norm appropriately weighted by the Reynolds number. This immediately yields optimal discretization error estimates for finite element spaces in this norm and optimal algebraic convergence estimates for multiplicative and additive multigrid methods applied to the resulting discrete systems. Both estimates are uniform in the Reynolds number. Moreover, our pressure-perturbed form of the generalized Stokes equations allows us to develop an analogous result for the Dirichlet problem for linear elasticity with estimates that are uniform in the Lame constants.
Weighted least squares phase unwrapping based on the wavelet transform
NASA Astrophysics Data System (ADS)
Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia
2007-01-01
The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.
Sparse Regression as a Sparse Eigenvalue Problem
NASA Technical Reports Server (NTRS)
Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai
2008-01-01
We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization
A new linear least squares method for T1 estimation from SPGR signals with multiple TRs
NASA Astrophysics Data System (ADS)
Chang, Lin-Ching; Koay, Cheng Guan; Basser, Peter J.; Pierpaoli, Carlo
2009-02-01
The longitudinal relaxation time, T1, can be estimated from two or more spoiled gradient recalled echo x (SPGR) images with two or more flip angles and one or more repetition times (TRs). The function relating signal intensity and the parameters are nonlinear; T1 maps can be computed from SPGR signals using nonlinear least squares regression. A widely-used linear method transforms the nonlinear model by assuming a fixed TR in SPGR images. This constraint is not desirable since multiple TRs are a clinically practical way to reduce the total acquisition time, to satisfy the required resolution, and/or to combine SPGR data acquired at different times. A new linear least squares method is proposed using the first order Taylor expansion. Monte Carlo simulations of SPGR experiments are used to evaluate the accuracy and precision of the estimated T1 from the proposed linear and the nonlinear methods. We show that the new linear least squares method provides T1 estimates comparable in both precision and accuracy to those from the nonlinear method, allowing multiple TRs and reducing computation time significantly.
NASA Astrophysics Data System (ADS)
Kryanev, A. V.; Ivanov, V. V.; Romanova, A. O.; Sevastyanov, L. A.; Udumyan, D. K.
2018-03-01
This paper considers the problem of separating the trend and the chaotic component of chaotic time series in the absence of information on the characteristics of the chaotic component. Such a problem arises in nuclear physics, biomedicine, and many other applied fields. The scheme has two stages. At the first stage, smoothing linear splines with different values of smoothing parameter are used to separate the "trend component." At the second stage, the method of least squares is used to find the unknown variance σ2 of the noise component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.K.; Surana, K.S.
1996-10-01
This paper presents a new and general procedure for designing hierarchical and non-hierarchical special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is unknown. The {lambda} element formulations presented here permit correct numerical simulation of linear as well as non-linear singular problems without a priori knowledge of the strength of the singularity. A procedure is also presented for determining the exact strength of the singularity using the converged solution. It is shown that in special instances, the general formulation of {lambda} elements can also be made hierarchical. The {lambda} elements presented here aremore » of type C{sup 0} and provide C{sup 0} inter-element continuity with p-version elements. One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Since in this case {lambda}{sub i} are known, this problem provides a good example for investigating the performance of the formulation proposed here. Least squares approach (or Least Squares Finite Element Formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical studies are presented for radially inward flow of an upper convected Maxwell fluid with inner radius r{sub i} = .1 and .01 etc. and Deborah number De = 2.« less
Numerical recovery of certain discontinuous electrical conductivities
NASA Technical Reports Server (NTRS)
Bryan, Kurt
1991-01-01
The inverse problem of recovering an electrical conductivity of the form Gamma(x) = 1 + (k-1)(sub Chi(D)) (Chi(D) is the characteristic function of D) on a region omega is a subset of 2-dimensional Euclid space from boundary data is considered, where D is a subset of omega and k is some positive constant. A linearization of the forward problem is formed and used in a least squares output method for approximately solving the inverse problem. Convergence results are proved and some numerical results presented.
Least Squares Approach to the Alignment of the Generic High Precision Tracking System
NASA Astrophysics Data System (ADS)
de Renstrom, Pawel Brückman; Haywood, Stephen
2006-04-01
A least squares method to solve a generic alignment problem of a high granularity tracking system is presented. The algorithm is based on an analytical linear expansion and allows for multiple nested fits, e.g. imposing a common vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose constraints on either implicit or explicit parameters. The method has been applied to the full simulation of a subset of the ATLAS silicon tracking system. The ultimate goal is to determine ≈35,000 degrees of freedom (DoF's). We present a limited scale exercise exploring various aspects of the solution.
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Sonnad, Vijay
1991-01-01
A p-version of the least squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady state incompressible viscous flow problems. The resulting system of symmetric and positive definite linear equations can be solved satisfactorily with the conjugate gradient method. In conjunction with the use of rapid operator application which avoids the formation of either element of global matrices, it is possible to achieve a highly compact and efficient solution scheme for the incompressible Navier-Stokes equations. Numerical results are presented for two-dimensional flow over a backward facing step. The effectiveness of simple outflow boundary conditions is also demonstrated.
LSRN: A PARALLEL ITERATIVE SOLVER FOR STRONGLY OVER- OR UNDERDETERMINED SYSTEMS*
Meng, Xiangrui; Saunders, Michael A.; Mahoney, Michael W.
2014-01-01
We describe a parallel iterative least squares solver named LSRN that is based on random normal projection. LSRN computes the min-length solution to minx∈ℝn ‖Ax − b‖2, where A ∈ ℝm × n with m ≫ n or m ≪ n, and where A may be rank-deficient. Tikhonov regularization may also be included. Since A is involved only in matrix-matrix and matrix-vector multiplications, it can be a dense or sparse matrix or a linear operator, and LSRN automatically speeds up when A is sparse or a fast linear operator. The preconditioning phase consists of a random normal projection, which is embarrassingly parallel, and a singular value decomposition of size ⌈γ min(m, n)⌉ × min(m, n), where γ is moderately larger than 1, e.g., γ = 2. We prove that the preconditioned system is well-conditioned, with a strong concentration result on the extreme singular values, and hence that the number of iterations is fully predictable when we apply LSQR or the Chebyshev semi-iterative method. As we demonstrate, the Chebyshev method is particularly efficient for solving large problems on clusters with high communication cost. Numerical results show that on a shared-memory machine, LSRN is very competitive with LAPACK’s DGELSD and a fast randomized least squares solver called Blendenpik on large dense problems, and it outperforms the least squares solver from SuiteSparseQR on sparse problems without sparsity patterns that can be exploited to reduce fill-in. Further experiments show that LSRN scales well on an Amazon Elastic Compute Cloud cluster. PMID:25419094
A New Test of Linear Hypotheses in OLS Regression under Heteroscedasticity of Unknown Form
ERIC Educational Resources Information Center
Cai, Li; Hayes, Andrew F.
2008-01-01
When the errors in an ordinary least squares (OLS) regression model are heteroscedastic, hypothesis tests involving the regression coefficients can have Type I error rates that are far from the nominal significance level. Asymptotically, this problem can be rectified with the use of a heteroscedasticity-consistent covariance matrix (HCCM)…
Simple Test Functions in Meshless Local Petrov-Galerkin Methods
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.
2016-01-01
Two meshless local Petrov-Galerkin (MLPG) methods based on two different trial functions but that use a simple linear test function were developed for beam and column problems. These methods used generalized moving least squares (GMLS) and radial basis (RB) interpolation functions as trial functions. These two methods were tested on various patch test problems. Both methods passed the patch tests successfully. Then the methods were applied to various beam vibration problems and problems involving Euler and Beck's columns. Both methods yielded accurate solutions for all problems studied. The simple linear test function offers considerable savings in computing efforts as the domain integrals involved in the weak form are avoided. The two methods based on this simple linear test function method produced accurate results for frequencies and buckling loads. Of the two methods studied, the method with radial basis trial functions is very attractive as the method is simple, accurate, and robust.
First-Order System Least-Squares for Second-Order Elliptic Problems with Discontinuous Coefficients
NASA Technical Reports Server (NTRS)
Manteuffel, Thomas A.; McCormick, Stephen F.; Starke, Gerhard
1996-01-01
The first-order system least-squares methodology represents an alternative to standard mixed finite element methods. Among its advantages is the fact that the finite element spaces approximating the pressure and flux variables are not restricted by the inf-sup condition and that the least-squares functional itself serves as an appropriate error measure. This paper studies the first-order system least-squares approach for scalar second-order elliptic boundary value problems with discontinuous coefficients. Ellipticity of an appropriately scaled least-squares bilinear form of the size of the jumps in the coefficients leading to adequate finite element approximation results. The occurrence of singularities at interface corners and cross-points is discussed. and a weighted least-squares functional is introduced to handle such cases. Numerical experiments are presented for two test problems to illustrate the performance of this approach.
A fast least-squares algorithm for population inference
2013-01-01
Background Population inference is an important problem in genetics used to remove population stratification in genome-wide association studies and to detect migration patterns or shared ancestry. An individual’s genotype can be modeled as a probabilistic function of ancestral population memberships, Q, and the allele frequencies in those populations, P. The parameters, P and Q, of this binomial likelihood model can be inferred using slow sampling methods such as Markov Chain Monte Carlo methods or faster gradient based approaches such as sequential quadratic programming. This paper proposes a least-squares simplification of the binomial likelihood model motivated by a Euclidean interpretation of the genotype feature space. This results in a faster algorithm that easily incorporates the degree of admixture within the sample of individuals and improves estimates without requiring trial-and-error tuning. Results We show that the expected value of the least-squares solution across all possible genotype datasets is equal to the true solution when part of the problem has been solved, and that the variance of the solution approaches zero as its size increases. The Least-squares algorithm performs nearly as well as Admixture for these theoretical scenarios. We compare least-squares, Admixture, and FRAPPE for a variety of problem sizes and difficulties. For particularly hard problems with a large number of populations, small number of samples, or greater degree of admixture, least-squares performs better than the other methods. On simulated mixtures of real population allele frequencies from the HapMap project, Admixture estimates sparsely mixed individuals better than Least-squares. The least-squares approach, however, performs within 1.5% of the Admixture error. On individual genotypes from the HapMap project, Admixture and least-squares perform qualitatively similarly and within 1.2% of each other. Significantly, the least-squares approach nearly always converges 1.5- to 6-times faster. Conclusions The computational advantage of the least-squares approach along with its good estimation performance warrants further research, especially for very large datasets. As problem sizes increase, the difference in estimation performance between all algorithms decreases. In addition, when prior information is known, the least-squares approach easily incorporates the expected degree of admixture to improve the estimate. PMID:23343408
A fast least-squares algorithm for population inference.
Parry, R Mitchell; Wang, May D
2013-01-23
Population inference is an important problem in genetics used to remove population stratification in genome-wide association studies and to detect migration patterns or shared ancestry. An individual's genotype can be modeled as a probabilistic function of ancestral population memberships, Q, and the allele frequencies in those populations, P. The parameters, P and Q, of this binomial likelihood model can be inferred using slow sampling methods such as Markov Chain Monte Carlo methods or faster gradient based approaches such as sequential quadratic programming. This paper proposes a least-squares simplification of the binomial likelihood model motivated by a Euclidean interpretation of the genotype feature space. This results in a faster algorithm that easily incorporates the degree of admixture within the sample of individuals and improves estimates without requiring trial-and-error tuning. We show that the expected value of the least-squares solution across all possible genotype datasets is equal to the true solution when part of the problem has been solved, and that the variance of the solution approaches zero as its size increases. The Least-squares algorithm performs nearly as well as Admixture for these theoretical scenarios. We compare least-squares, Admixture, and FRAPPE for a variety of problem sizes and difficulties. For particularly hard problems with a large number of populations, small number of samples, or greater degree of admixture, least-squares performs better than the other methods. On simulated mixtures of real population allele frequencies from the HapMap project, Admixture estimates sparsely mixed individuals better than Least-squares. The least-squares approach, however, performs within 1.5% of the Admixture error. On individual genotypes from the HapMap project, Admixture and least-squares perform qualitatively similarly and within 1.2% of each other. Significantly, the least-squares approach nearly always converges 1.5- to 6-times faster. The computational advantage of the least-squares approach along with its good estimation performance warrants further research, especially for very large datasets. As problem sizes increase, the difference in estimation performance between all algorithms decreases. In addition, when prior information is known, the least-squares approach easily incorporates the expected degree of admixture to improve the estimate.
On-line Model Structure Selection for Estimation of Plasma Boundary in a Tokamak
NASA Astrophysics Data System (ADS)
Škvára, Vít; Šmídl, Václav; Urban, Jakub
2015-11-01
Control of the plasma field in the tokamak requires reliable estimation of the plasma boundary. The plasma boundary is given by a complex mathematical model and the only available measurements are responses of induction coils around the plasma. For the purpose of boundary estimation the model can be reduced to simple linear regression with potentially infinitely many elements. The number of elements must be selected manually and this choice significantly influences the resulting shape. In this paper, we investigate the use of formal model structure estimation techniques for the problem. Specifically, we formulate a sparse least squares estimator using the automatic relevance principle. The resulting algorithm is a repetitive evaluation of the least squares problem which could be computed in real time. Performance of the resulting algorithm is illustrated on simulated data and evaluated with respect to a more detailed and computationally costly model FREEBIE.
Niazi, Ali; Zolgharnein, Javad; Afiuni-Zadeh, Somaie
2007-11-01
Ternary mixtures of thiamin, riboflavin and pyridoxal have been simultaneously determined in synthetic and real samples by applications of spectrophotometric and least-squares support vector machines. The calibration graphs were linear in the ranges of 1.0 - 20.0, 1.0 - 10.0 and 1.0 - 20.0 microg ml(-1) with detection limits of 0.6, 0.5 and 0.7 microg ml(-1) for thiamin, riboflavin and pyridoxal, respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals. The concentrations were varied between calibration graph concentrations of vitamins. The simultaneous determination of these vitamin mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares (PLS) modeling and least-squares support vector machines were used for the multivariate calibration of the spectrophotometric data. An excellent model was built using LS-SVM, with low prediction errors and superior performance in relation to PLS. The root mean square errors of prediction (RMSEP) for thiamin, riboflavin and pyridoxal with PLS and LS-SVM were 0.6926, 0.3755, 0.4322 and 0.0421, 0.0318, 0.0457, respectively. The proposed method was satisfactorily applied to the rapid simultaneous determination of thiamin, riboflavin and pyridoxal in commercial pharmaceutical preparations and human plasma samples.
NASA Astrophysics Data System (ADS)
Basin, M.; Maldonado, J. J.; Zendejo, O.
2016-07-01
This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
On Least Squares Fitting Nonlinear Submodels.
ERIC Educational Resources Information Center
Bechtel, Gordon G.
Three simplifying conditions are given for obtaining least squares (LS) estimates for a nonlinear submodel of a linear model. If these are satisfied, and if the subset of nonlinear parameters may be LS fit to the corresponding LS estimates of the linear model, then one attains the desired LS estimates for the entire submodel. Two illustrative…
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
Li, Haichen; Yaron, David J
2016-11-08
A least-squares commutator in the iterative subspace (LCIIS) approach is explored for accelerating self-consistent field (SCF) calculations. LCIIS is similar to direct inversion of the iterative subspace (DIIS) methods in that the next iterate of the density matrix is obtained as a linear combination of past iterates. However, whereas DIIS methods find the linear combination by minimizing a sum of error vectors, LCIIS minimizes the Frobenius norm of the commutator between the density matrix and the Fock matrix. This minimization leads to a quartic problem that can be solved iteratively through a constrained Newton's method. The relationship between LCIIS and DIIS is discussed. Numerical experiments suggest that LCIIS leads to faster convergence than other SCF convergence accelerating methods in a statistically significant sense, and in a number of cases LCIIS leads to stable SCF solutions that are not found by other methods. The computational cost involved in solving the quartic minimization problem is small compared to the typical cost of SCF iterations and the approach is easily integrated into existing codes. LCIIS can therefore serve as a powerful addition to SCF convergence accelerating methods in computational quantum chemistry packages.
Least-squares sequential parameter and state estimation for large space structures
NASA Technical Reports Server (NTRS)
Thau, F. E.; Eliazov, T.; Montgomery, R. C.
1982-01-01
This paper presents the formulation of simultaneous state and parameter estimation problems for flexible structures in terms of least-squares minimization problems. The approach combines an on-line order determination algorithm, with least-squares algorithms for finding estimates of modal approximation functions, modal amplitudes, and modal parameters. The approach combines previous results on separable nonlinear least squares estimation with a regression analysis formulation of the state estimation problem. The technique makes use of sequential Householder transformations. This allows for sequential accumulation of matrices required during the identification process. The technique is used to identify the modal prameters of a flexible beam.
ERIC Educational Resources Information Center
Rocconi, Louis M.
2013-01-01
This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
NASA Astrophysics Data System (ADS)
Abdelrahman, El-Sayed Mohamed; Soliman, Khalid; Essa, Khalid Sayed; Abo-Ezz, Eid Ragab; El-Araby, Tarek Mohamed
2009-06-01
This paper develops a least-squares minimisation approach to determine the depth of a buried structure from numerical second horizontal derivative anomalies obtained from self-potential (SP) data using filters of successive window lengths. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of the centre of the source in the plane of the measurement points with a free parameter (graticule spacing). The problem of depth determination from second derivative SP anomalies has been transformed into the problem of finding a solution to a non-linear equation of the form f(z)=0. Formulas have been derived for horizontal cylinders, spheres, and vertical cylinders. Procedures are also formulated to determine the electric dipole moment and the polarization angle. The proposed method was tested on synthetic noisy and real SP data. In the case of the synthetic data, the least-squares method determined the correct depths of the sources. In the case of practical data (SP anomalies over a sulfide ore deposit, Sariyer, Turkey and over a Malachite Mine, Jefferson County, Colorado, USA), the estimated depths of the buried structures are in good agreement with the results obtained from drilling and surface geology.
A Weighted Least Squares Approach To Robustify Least Squares Estimates.
ERIC Educational Resources Information Center
Lin, Chowhong; Davenport, Ernest C., Jr.
This study developed a robust linear regression technique based on the idea of weighted least squares. In this technique, a subsample of the full data of interest is drawn, based on a measure of distance, and an initial set of regression coefficients is calculated. The rest of the data points are then taken into the subsample, one after another,…
Aircraft Airframe Cost Estimation Using a Random Coefficients Model
1979-12-01
approach will also be used here. 2 Model Formulation Several different types of equations could be used for the basic form of the CER, such as linear ...5) Marcotte developed several CER’s for fighter aircraft airframes using the log- linear model . A plot of the residuals from the CER for recurring...of the natural logarithm. Ordinary Least Squares The ordinary least squares procedure starts with the equation for the general linear model . The
A spectral mimetic least-squares method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochev, Pavel; Gerritsma, Marc
We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less
A spectral mimetic least-squares method
Bochev, Pavel; Gerritsma, Marc
2014-09-01
We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less
An analysis of the least-squares problem for the DSN systematic pointing error model
NASA Technical Reports Server (NTRS)
Alvarez, L. S.
1991-01-01
A systematic pointing error model is used to calibrate antennas in the Deep Space Network. The least squares problem is described and analyzed along with the solution methods used to determine the model's parameters. Specifically studied are the rank degeneracy problems resulting from beam pointing error measurement sets that incorporate inadequate sky coverage. A least squares parameter subset selection method is described and its applicability to the systematic error modeling process is demonstrated on Voyager 2 measurement distribution.
NASA Technical Reports Server (NTRS)
Chang, Ching L.; Jiang, Bo-Nan
1990-01-01
A theoretical proof of the optimal rate of convergence for the least-squares method is developed for the Stokes problem based on the velocity-pressure-vorticity formula. The 2D Stokes problem is analyzed to define the product space and its inner product, and the a priori estimates are derived to give the finite-element approximation. The least-squares method is found to converge at the optimal rate for equal-order interpolation.
Kernel PLS-SVC for Linear and Nonlinear Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan
2003-01-01
A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.
A method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1971-01-01
A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.
On sufficient statistics of least-squares superposition of vector sets.
Konagurthu, Arun S; Kasarapu, Parthan; Allison, Lloyd; Collier, James H; Lesk, Arthur M
2015-06-01
The problem of superposition of two corresponding vector sets by minimizing their sum-of-squares error under orthogonal transformation is a fundamental task in many areas of science, notably structural molecular biology. This problem can be solved exactly using an algorithm whose time complexity grows linearly with the number of correspondences. This efficient solution has facilitated the widespread use of the superposition task, particularly in studies involving macromolecular structures. This article formally derives a set of sufficient statistics for the least-squares superposition problem. These statistics are additive. This permits a highly efficient (constant time) computation of superpositions (and sufficient statistics) of vector sets that are composed from its constituent vector sets under addition or deletion operation, where the sufficient statistics of the constituent sets are already known (that is, the constituent vector sets have been previously superposed). This results in a drastic improvement in the run time of the methods that commonly superpose vector sets under addition or deletion operations, where previously these operations were carried out ab initio (ignoring the sufficient statistics). We experimentally demonstrate the improvement our work offers in the context of protein structural alignment programs that assemble a reliable structural alignment from well-fitting (substructural) fragment pairs. A C++ library for this task is available online under an open-source license.
NASA Astrophysics Data System (ADS)
Schaffrin, Burkhard; Felus, Yaron A.
2008-06-01
The multivariate total least-squares (MTLS) approach aims at estimating a matrix of parameters, Ξ, from a linear model ( Y- E Y = ( X- E X ) · Ξ) that includes an observation matrix, Y, another observation matrix, X, and matrices of randomly distributed errors, E Y and E X . Two special cases of the MTLS approach include the standard multivariate least-squares approach where only the observation matrix, Y, is perturbed by random errors and, on the other hand, the data least-squares approach where only the coefficient matrix X is affected by random errors. In a previous contribution, the authors derived an iterative algorithm to solve the MTLS problem by using the nonlinear Euler-Lagrange conditions. In this contribution, new lemmas are developed to analyze the iterative algorithm, modify it, and compare it with a new ‘closed form’ solution that is based on the singular-value decomposition. For an application, the total least-squares approach is used to estimate the affine transformation parameters that convert cadastral data from the old to the new Israeli datum. Technical aspects of this approach, such as scaling the data and fixing the columns in the coefficient matrix are investigated. This case study illuminates the issue of “symmetry” in the treatment of two sets of coordinates for identical point fields, a topic that had already been emphasized by Teunissen (1989, Festschrift to Torben Krarup, Geodetic Institute Bull no. 58, Copenhagen, Denmark, pp 335-342). The differences between the standard least-squares and the TLS approach are analyzed in terms of the estimated variance component and a first-order approximation of the dispersion matrix of the estimated parameters.
NASA Technical Reports Server (NTRS)
Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.
1976-01-01
A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
Chun, Hyonho; Keleş, Sündüz
2010-01-01
Partial least squares regression has been an alternative to ordinary least squares for handling multicollinearity in several areas of scientific research since the 1960s. It has recently gained much attention in the analysis of high dimensional genomic data. We show that known asymptotic consistency of the partial least squares estimator for a univariate response does not hold with the very large p and small n paradigm. We derive a similar result for a multivariate response regression with partial least squares. We then propose a sparse partial least squares formulation which aims simultaneously to achieve good predictive performance and variable selection by producing sparse linear combinations of the original predictors. We provide an efficient implementation of sparse partial least squares regression and compare it with well-known variable selection and dimension reduction approaches via simulation experiments. We illustrate the practical utility of sparse partial least squares regression in a joint analysis of gene expression and genomewide binding data. PMID:20107611
On the nullspace of TLS multi-station adjustment
NASA Astrophysics Data System (ADS)
Sterle, Oskar; Kogoj, Dušan; Stopar, Bojan; Kregar, Klemen
2018-07-01
In the article we present an analytic aspect of TLS multi-station least-squares adjustment with the main focus on the datum problem. The datum problem is, compared to previously published researches, theoretically analyzed and solved, where the solution is based on nullspace derivation of the mathematical model. The importance of datum problem solution is seen in a complete description of TLS multi-station adjustment solutions from a set of all minimally constrained least-squares solutions. On a basis of known nullspace, estimable parameters are described and the geometric interpretation of all minimally constrained least squares solutions is presented. At the end a simulated example is used to analyze the results of TLS multi-station minimally constrained and inner constrained least-squares adjustment solutions.
Self organising maps for visualising and modelling
2012-01-01
The paper describes the motivation of SOMs (Self Organising Maps) and how they are generally more accessible due to the wider available modern, more powerful, cost-effective computers. Their advantages compared to Principal Components Analysis and Partial Least Squares are discussed. These allow application to non-linear data, are not so dependent on least squares solutions, normality of errors and less influenced by outliers. In addition there are a wide variety of intuitive methods for visualisation that allow full use of the map space. Modern problems in analytical chemistry include applications to cultural heritage studies, environmental, metabolomic and biological problems result in complex datasets. Methods for visualising maps are described including best matching units, hit histograms, unified distance matrices and component planes. Supervised SOMs for classification including multifactor data and variable selection are discussed as is their use in Quality Control. The paper is illustrated using four case studies, namely the Near Infrared of food, the thermal analysis of polymers, metabolomic analysis of saliva using NMR, and on-line HPLC for pharmaceutical process monitoring. PMID:22594434
Uncertainty based pressure reconstruction from velocity measurement with generalized least squares
NASA Astrophysics Data System (ADS)
Zhang, Jiacheng; Scalo, Carlo; Vlachos, Pavlos
2017-11-01
A method using generalized least squares reconstruction of instantaneous pressure field from velocity measurement and velocity uncertainty is introduced and applied to both planar and volumetric flow data. Pressure gradients are computed on a staggered grid from flow acceleration. The variance-covariance matrix of the pressure gradients is evaluated from the velocity uncertainty by approximating the pressure gradient error to a linear combination of velocity errors. An overdetermined system of linear equations which relates the pressure and the computed pressure gradients is formulated and then solved using generalized least squares with the variance-covariance matrix of the pressure gradients. By comparing the reconstructed pressure field against other methods such as solving the pressure Poisson equation, the omni-directional integration, and the ordinary least squares reconstruction, generalized least squares method is found to be more robust to the noise in velocity measurement. The improvement on pressure result becomes more remarkable when the velocity measurement becomes less accurate and more heteroscedastic. The uncertainty of the reconstructed pressure field is also quantified and compared across the different methods.
Least Squares Metric, Unidimensional Scaling of Multivariate Linear Models.
ERIC Educational Resources Information Center
Poole, Keith T.
1990-01-01
A general approach to least-squares unidimensional scaling is presented. Ordering information contained in the parameters is used to transform the standard squared error loss function into a discrete rather than continuous form. Monte Carlo tests with 38,094 ratings of 261 senators, and 1,258 representatives demonstrate the procedure's…
NASA Technical Reports Server (NTRS)
Utku, S.
1969-01-01
A general purpose digital computer program for the in-core solution of linear equilibrium problems of structural mechanics is documented. The program requires minimum input for the description of the problem. The solution is obtained by means of the displacement method and the finite element technique. Almost any geometry and structure may be handled because of the availability of linear, triangular, quadrilateral, tetrahedral, hexahedral, conical, triangular torus, and quadrilateral torus elements. The assumption of piecewise linear deflection distribution insures monotonic convergence of the deflections from the stiffer side with decreasing mesh size. The stresses are provided by the best-fit strain tensors in the least squares at the mesh points where the deflections are given. The selection of local coordinate systems whenever necessary is automatic. The core memory is used by means of dynamic memory allocation, an optional mesh-point relabelling scheme and imposition of the boundary conditions during the assembly time.
A parameter estimation subroutine package
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Nead, W. M.
1977-01-01
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. FORTRAN subroutines have been developed to facilitate analyses of a variety of parameter estimation problems. Easy to use multipurpose sets of algorithms are reported that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given, along with examples of how these routines can be used.
An Alternative Procedure for Estimating Unit Learning Curves,
1985-09-01
the model accurately describes the real-life situation, i.e., when the model is properly applied to the data, it can be a powerful tool for...predicting unit production costs. There are, however, some unique estimation problems inherent in the model . The usual method of generating predicted unit...production costs attempts to extend properties of least squares estimators to non- linear functions of these estimators. The result is biased estimates of
Analysis of Learning Curve Fitting Techniques.
1987-09-01
1986. 15. Neter, John and others. Applied Linear Regression Models. Homewood IL: Irwin, 19-33. 16. SAS User’s Guide: Basics, Version 5 Edition. SAS... Linear Regression Techniques (15:23-52). Random errors are assumed to be normally distributed when using -# ordinary least-squares, according to Johnston...lot estimated by the improvement curve formula. For a more detailed explanation of the ordinary least-squares technique, see Neter, et. al., Applied
Multiparameter linear least-squares fitting to Poisson data one count at a time
NASA Technical Reports Server (NTRS)
Wheaton, Wm. A.; Dunklee, Alfred L.; Jacobsen, Allan S.; Ling, James C.; Mahoney, William A.; Radocinski, Robert G.
1995-01-01
A standard problem in gamma-ray astronomy data analysis is the decomposition of a set of observed counts, described by Poisson statistics, according to a given multicomponent linear model, with underlying physical count rates or fluxes which are to be estimated from the data. Despite its conceptual simplicity, the linear least-squares (LLSQ) method for solving this problem has generally been limited to situations in which the number n(sub i) of counts in each bin i is not too small, conventionally more than 5-30. It seems to be widely believed that the failure of the LLSQ method for small counts is due to the failure of the Poisson distribution to be even approximately normal for small numbers. The cause is more accurately the strong anticorrelation between the data and the wieghts w(sub i) in the weighted LLSQ method when square root of n(sub i) instead of square root of bar-n(sub i) is used to approximate the uncertainties, sigma(sub i), in the data, where bar-n(sub i) = E(n(sub i)), the expected value of N(sub i). We show in an appendix that, avoiding this approximation, the correct equations for the Poisson LLSQ (PLLSQ) problems are actually identical to those for the maximum likelihood estimate using the exact Poisson distribution. We apply the method to solve a problem in high-resolution gamma-ray spectroscopy for the JPL High-Resolution Gamma-Ray Spectrometer flown on HEAO 3. Systematic error in subtracting the strong, highly variable background encountered in the low-energy gamma-ray region can be significantly reduced by closely pairing source and background data in short segments. Significant results can be built up by weighted averaging of the net fluxes obtained from the subtraction of many individual source/background pairs. Extension of the approach to complex situations, with multiple cosmic sources and realistic background parameterizations, requires a means of efficiently fitting to data from single scans in the narrow (approximately = 1.2 keV, HEAO 3) energy channels of a Ge spectrometer, where the expected number of counts obtained per scan may be very low. Such an analysis system is discussed and compared to the method previously used.
Recursive least squares estimation and its application to shallow trench isolation
NASA Astrophysics Data System (ADS)
Wang, Jin; Qin, S. Joe; Bode, Christopher A.; Purdy, Matthew A.
2003-06-01
In recent years, run-to-run (R2R) control technology has received tremendous interest in semiconductor manufacturing. One class of widely used run-to-run controllers is based on the exponentially weighted moving average (EWMA) statistics to estimate process deviations. Using an EWMA filter to smooth the control action on a linear process has been shown to provide good results in a number of applications. However, for a process with severe drifts, the EWMA controller is insufficient even when large weights are used. This problem becomes more severe when there is measurement delay, which is almost inevitable in semiconductor industry. In order to control drifting processes, a predictor-corrector controller (PCC) and a double EWMA controller have been developed. Chen and Guo (2001) show that both PCC and double-EWMA controller are in effect Integral-double-Integral (I-II) controllers, which are able to control drifting processes. However, since offset is often within the noise of the process, the second integrator can actually cause jittering. Besides, tuning the second filter is not as intuitive as a single EWMA filter. In this work, we look at an alternative way Recursive Least Squares (RLS), to estimate and control the drifting process. EWMA and double-EWMA are shown to be the least squares estimate for locally constant mean model and locally constant linear trend model. Then the recursive least squares with exponential factor is applied to shallow trench isolation etch process to predict the future etch rate. The etch process, which is a critical process in the flash memory manufacturing, is known to suffer from significant etch rate drift due to chamber seasoning. In order to handle the metrology delay, we propose a new time update scheme. RLS with the new time update method gives very good result. The estimate error variance is smaller than that from EWMA, and mean square error decrease more than 10% compared to that from EWMA.
NASA Astrophysics Data System (ADS)
Li, T.; Griffiths, W. D.; Chen, J.
2017-11-01
The Maximum Likelihood method and the Linear Least Squares (LLS) method have been widely used to estimate Weibull parameters for reliability of brittle and metal materials. In the last 30 years, many researchers focused on the bias of Weibull modulus estimation, and some improvements have been achieved, especially in the case of the LLS method. However, there is a shortcoming in these methods for a specific type of data, where the lower tail deviates dramatically from the well-known linear fit in a classic LLS Weibull analysis. This deviation can be commonly found from the measured properties of materials, and previous applications of the LLS method on this kind of dataset present an unreliable linear regression. This deviation was previously thought to be due to physical flaws ( i.e., defects) contained in materials. However, this paper demonstrates that this deviation can also be caused by the linear transformation of the Weibull function, occurring in the traditional LLS method. Accordingly, it may not be appropriate to carry out a Weibull analysis according to the linearized Weibull function, and the Non-linear Least Squares method (Non-LS) is instead recommended for the Weibull modulus estimation of casting properties.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1993-01-01
The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.
A CLASS OF RECONSTRUCTED DISCONTINUOUS GALERKIN METHODS IN COMPUTATIONAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Luo; Yidong Xia; Robert Nourgaliev
2011-05-01
A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison.more » Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness.« less
A channel estimation scheme for MIMO-OFDM systems
NASA Astrophysics Data System (ADS)
He, Chunlong; Tian, Chu; Li, Xingquan; Zhang, Ce; Zhang, Shiqi; Liu, Chaowen
2017-08-01
In view of the contradiction of the time-domain least squares (LS) channel estimation performance and the practical realization complexity, a reduced complexity channel estimation method for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) based on pilot is obtained. This approach can transform the complexity of MIMO-OFDM channel estimation problem into a simple single input single output-orthogonal frequency division multiplexing (SISO-OFDM) channel estimation problem and therefore there is no need for large matrix pseudo-inverse, which greatly reduces the complexity of algorithms. Simulation results show that the bit error rate (BER) performance of the obtained method with time orthogonal training sequences and linear minimum mean square error (LMMSE) criteria is better than that of time-domain LS estimator and nearly optimal performance.
Least-squares dual characterization for ROI assessment in emission tomography
NASA Astrophysics Data System (ADS)
Ben Bouallègue, F.; Crouzet, J. F.; Dubois, A.; Buvat, I.; Mariano-Goulart, D.
2013-06-01
Our aim is to describe an original method for estimating the statistical properties of regions of interest (ROIs) in emission tomography. Drawn upon the works of Louis on the approximate inverse, we propose a dual formulation of the ROI estimation problem to derive the ROI activity and variance directly from the measured data without any image reconstruction. The method requires the definition of an ROI characteristic function that can be extracted from a co-registered morphological image. This characteristic function can be smoothed to optimize the resolution-variance tradeoff. An iterative procedure is detailed for the solution of the dual problem in the least-squares sense (least-squares dual (LSD) characterization), and a linear extrapolation scheme is described to compensate for sampling partial volume effect and reduce the estimation bias (LSD-ex). LSD and LSD-ex are compared with classical ROI estimation using pixel summation after image reconstruction and with Huesman's method. For this comparison, we used Monte Carlo simulations (GATE simulation tool) of 2D PET data of a Hoffman brain phantom containing three small uniform high-contrast ROIs and a large non-uniform low-contrast ROI. Our results show that the performances of LSD characterization are at least as good as those of the classical methods in terms of root mean square (RMS) error. For the three small tumor regions, LSD-ex allows a reduction in the estimation bias by up to 14%, resulting in a reduction in the RMS error of up to 8.5%, compared with the optimal classical estimation. For the large non-specific region, LSD using appropriate smoothing could intuitively and efficiently handle the resolution-variance tradeoff.
Three Perspectives on Teaching Least Squares
ERIC Educational Resources Information Center
Scariano, Stephen M.; Calzada, Maria
2004-01-01
The method of Least Squares is the most widely used technique for fitting a straight line to data, and it is typically discussed in several undergraduate courses. This article focuses on three developmentally different approaches for solving the Least Squares problem that are suitable for classroom exposition.
NASA Astrophysics Data System (ADS)
Liu, L. H.; Tan, J. Y.
2007-02-01
A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.
Role of Square Flap in Post Burn Axillary Contractures.
Karki, Durga; Narayan, Ravi Prakash
2017-09-01
Post-burn contractures are a commonly encountered problem and many techniques have been described in their treatment. Z-plasties are the commonest local flap procedure done for linear bands with adjacent healthy tissue. Our aim was to assess the use of square flap technique in axillary contractures. Ten patients with type I and II axillary contractures underwent release by the square flap technique. All cases were followed up for at least one year and analysed for range of motion and aesthetic outcome. All cases achieved full range of movement postoperatively with no recurrence during follow up period and a good cosmetic outcome. Square flap was shown to be a reliable technique for mild to moderate axillary contractures of the anterior or posterior axillary folds even when there is significant adjacent scarring of chest wall or back of types I and II.
Optimal design of FIR triplet halfband filter bank and application in image coding.
Kha, H H; Tuan, H D; Nguyen, T Q
2011-02-01
This correspondence proposes an efficient semidefinite programming (SDP) method for the design of a class of linear phase finite impulse response triplet halfband filter banks whose filters have optimal frequency selectivity for a prescribed regularity order. The design problem is formulated as the minimization of the least square error subject to peak error constraints and regularity constraints. By using the linear matrix inequality characterization of the trigonometric semi-infinite constraints, it can then be exactly cast as a SDP problem with a small number of variables and, hence, can be solved efficiently. Several design examples of the triplet halfband filter bank are provided for illustration and comparison with previous works. Finally, the image coding performance of the filter bank is presented.
NASA Technical Reports Server (NTRS)
Whitlock, C. H., III
1977-01-01
Constituents with linear radiance gradients with concentration may be quantified from signals which contain nonlinear atmospheric and surface reflection effects for both homogeneous and non-homogeneous water bodies provided accurate data can be obtained and nonlinearities are constant with wavelength. Statistical parameters must be used which give an indication of bias as well as total squared error to insure that an equation with an optimum combination of bands is selected. It is concluded that the effect of error in upwelled radiance measurements is to reduce the accuracy of the least square fitting process and to increase the number of points required to obtain a satisfactory fit. The problem of obtaining a multiple regression equation that is extremely sensitive to error is discussed.
Performance and limitations of p-version finite element method for problems containing singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.K.; Surana, K.S.
1996-10-01
In this paper, the authors investigate the performance of p-version Least Squares Finite Element Formulation (LSFEF) for a hyperbolic system of equations describing a one-dimensional radial flow of an upper-convected Maxwell fluid. This problem has r{sup 2} singularity in stress and r{sup {minus}1} singularity in velocity at r = 0. By carefully controlling the inner radius r{sub j}, Deborah number DE and Reynolds number Re, this problem can be used to simulate the following four classes of problems: (a) smooth linear problems, (b) smooth non-linear problems, (c) singular linear problems and (d) singular non-linear problems. They demonstrate that in casesmore » (a) and (b) the p-version method, in particular p-version LSFEF is meritorious. However, for cases (c) and (d) p-version LSFEF, even with extreme mesh refinement and very high p-levels, either produces wrong solutions, or results in the failure of the iterative solution procedure. Even though in the numerical studies they have considered p-version LSFEF for the radial flow of the upper-convected Maxwell fluid, the findings and conclusions are equally valid for other smooth and singular problems as well, regardless of the formulation strategy chosen and element approximation functions employed.« less
Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M
2014-09-15
Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components' mixtures using easy and widely used UV spectrophotometer. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Elkhoudary, Mahmoud M.; Abdel Salam, Randa A.; Hadad, Ghada M.
2014-09-01
Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components’ mixtures using easy and widely used UV spectrophotometer.
Photon Limited Images and Their Restoration
1976-03-01
arises from noise inherent in the detected image data. In the first part of this report a model is developed which can be used to mathematically and...statistically describe an image detected at low light levels. This rodel serves to clarify some basic properties of photon noise , and provides a basis...for the analysi.s of image restoration. In the second part the problem of linear least-square restoration of imagery limited by photon noise is
Order-constrained linear optimization.
Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P
2017-11-01
Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.
A phylogenetic Kalman filter for ancestral trait reconstruction using molecular data.
Lartillot, Nicolas
2014-02-15
Correlation between life history or ecological traits and genomic features such as nucleotide or amino acid composition can be used for reconstructing the evolutionary history of the traits of interest along phylogenies. Thus far, however, such ancestral reconstructions have been done using simple linear regression approaches that do not account for phylogenetic inertia. These reconstructions could instead be seen as a genuine comparative regression problem, such as formalized by classical generalized least-square comparative methods, in which the trait of interest and the molecular predictor are represented as correlated Brownian characters coevolving along the phylogeny. Here, a Bayesian sampler is introduced, representing an alternative and more efficient algorithmic solution to this comparative regression problem, compared with currently existing generalized least-square approaches. Technically, ancestral trait reconstruction based on a molecular predictor is shown to be formally equivalent to a phylogenetic Kalman filter problem, for which backward and forward recursions are developed and implemented in the context of a Markov chain Monte Carlo sampler. The comparative regression method results in more accurate reconstructions and a more faithful representation of uncertainty, compared with simple linear regression. Application to the reconstruction of the evolution of optimal growth temperature in Archaea, using GC composition in ribosomal RNA stems and amino acid composition of a sample of protein-coding genes, confirms previous findings, in particular, pointing to a hyperthermophilic ancestor for the kingdom. The program is freely available at www.phylobayes.org.
Design Techniques for Uniform-DFT, Linear Phase Filter Banks
NASA Technical Reports Server (NTRS)
Sun, Honglin; DeLeon, Phillip
1999-01-01
Uniform-DFT filter banks are an important class of filter banks and their theory is well known. One notable characteristic is their very efficient implementation when using polyphase filters and the FFT. Separately, linear phase filter banks, i.e. filter banks in which the analysis filters have a linear phase are also an important class of filter banks and desired in many applications. Unfortunately, it has been proved that one cannot design critically-sampled, uniform-DFT, linear phase filter banks and achieve perfect reconstruction. In this paper, we present a least-squares solution to this problem and in addition prove that oversampled, uniform-DFT, linear phase filter banks (which are also useful in many applications) can be constructed for perfect reconstruction. Design examples are included illustrate the methods.
Generalized Structured Component Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun; Takane, Yoshio
2004-01-01
We propose an alternative method to partial least squares for path analysis with components, called generalized structured component analysis. The proposed method replaces factors by exact linear combinations of observed variables. It employs a well-defined least squares criterion to estimate model parameters. As a result, the proposed method…
M-estimation for robust sparse unmixing of hyperspectral images
NASA Astrophysics Data System (ADS)
Toomik, Maria; Lu, Shijian; Nelson, James D. B.
2016-10-01
Hyperspectral unmixing methods often use a conventional least squares based lasso which assumes that the data follows the Gaussian distribution. The normality assumption is an approximation which is generally invalid for real imagery data. We consider a robust (non-Gaussian) approach to sparse spectral unmixing of remotely sensed imagery which reduces the sensitivity of the estimator to outliers and relaxes the linearity assumption. The method consists of several appropriate penalties. We propose to use an lp norm with 0 < p < 1 in the sparse regression problem, which induces more sparsity in the results, but makes the problem non-convex. On the other hand, the problem, though non-convex, can be solved quite straightforwardly with an extensible algorithm based on iteratively reweighted least squares. To deal with the huge size of modern spectral libraries we introduce a library reduction step, similar to the multiple signal classification (MUSIC) array processing algorithm, which not only speeds up unmixing but also yields superior results. In the hyperspectral setting we extend the traditional least squares method to the robust heavy-tailed case and propose a generalised M-lasso solution. M-estimation replaces the Gaussian likelihood with a fixed function ρ(e) that restrains outliers. The M-estimate function reduces the effect of errors with large amplitudes or even assigns the outliers zero weights. Our experimental results on real hyperspectral data show that noise with large amplitudes (outliers) often exists in the data. This ability to mitigate the influence of such outliers can therefore offer greater robustness. Qualitative hyperspectral unmixing results on real hyperspectral image data corroborate the efficacy of the proposed method.
Nonnegative constraint quadratic program technique to enhance the resolution of γ spectra
NASA Astrophysics Data System (ADS)
Li, Jinglun; Xiao, Wuyun; Ai, Xianyun; Chen, Ye
2018-04-01
Two concepts of the nonnegative least squares problem (NNLS) and the linear complementarity problem (LCP) are introduced for the resolution enhancement of the γ spectra. The respective algorithms such as the active set method and the primal-dual interior point method are applied to solve the above two problems. In mathematics, the nonnegative constraint results in the sparsity of the optimal solution of the deconvolution, and it is this sparsity that enhances the resolution. Finally, a comparison in the peak position accuracy and the computation time is made between these two methods and the boosted L_R and Gold methods.
Robust parallel iterative solvers for linear and least-squares problems, Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Yousef
2014-01-16
The primary goal of this project is to study and develop robust iterative methods for solving linear systems of equations and least squares systems. The focus of the Minnesota team is on algorithms development, robustness issues, and on tests and validation of the methods on realistic problems. 1. The project begun with an investigation on how to practically update a preconditioner obtained from an ILU-type factorization, when the coefficient matrix changes. 2. We investigated strategies to improve robustness in parallel preconditioners in a specific case of a PDE with discontinuous coefficients. 3. We explored ways to adapt standard preconditioners formore » solving linear systems arising from the Helmholtz equation. These are often difficult linear systems to solve by iterative methods. 4. We have also worked on purely theoretical issues related to the analysis of Krylov subspace methods for linear systems. 5. We developed an effective strategy for performing ILU factorizations for the case when the matrix is highly indefinite. The strategy uses shifting in some optimal way. The method was extended to the solution of Helmholtz equations by using complex shifts, yielding very good results in many cases. 6. We addressed the difficult problem of preconditioning sparse systems of equations on GPUs. 7. A by-product of the above work is a software package consisting of an iterative solver library for GPUs based on CUDA. This was made publicly available. It was the first such library that offers complete iterative solvers for GPUs. 8. We considered another form of ILU which blends coarsening techniques from Multigrid with algebraic multilevel methods. 9. We have released a new version on our parallel solver - called pARMS [new version is version 3]. As part of this we have tested the code in complex settings - including the solution of Maxwell and Helmholtz equations and for a problem of crystal growth.10. As an application of polynomial preconditioning we considered the problem of evaluating f(A)v which arises in statistical sampling. 11. As an application to the methods we developed, we tackled the problem of computing the diagonal of the inverse of a matrix. This arises in statistical applications as well as in many applications in physics. We explored probing methods as well as domain-decomposition type methods. 12. A collaboration with researchers from Toulouse, France, considered the important problem of computing the Schur complement in a domain-decomposition approach. 13. We explored new ways of preconditioning linear systems, based on low-rank approximations.« less
Image interpolation via regularized local linear regression.
Liu, Xianming; Zhao, Debin; Xiong, Ruiqin; Ma, Siwei; Gao, Wen; Sun, Huifang
2011-12-01
The linear regression model is a very attractive tool to design effective image interpolation schemes. Some regression-based image interpolation algorithms have been proposed in the literature, in which the objective functions are optimized by ordinary least squares (OLS). However, it is shown that interpolation with OLS may have some undesirable properties from a robustness point of view: even small amounts of outliers can dramatically affect the estimates. To address these issues, in this paper we propose a novel image interpolation algorithm based on regularized local linear regression (RLLR). Starting with the linear regression model where we replace the OLS error norm with the moving least squares (MLS) error norm leads to a robust estimator of local image structure. To keep the solution stable and avoid overfitting, we incorporate the l(2)-norm as the estimator complexity penalty. Moreover, motivated by recent progress on manifold-based semi-supervised learning, we explicitly consider the intrinsic manifold structure by making use of both measured and unmeasured data points. Specifically, our framework incorporates the geometric structure of the marginal probability distribution induced by unmeasured samples as an additional local smoothness preserving constraint. The optimal model parameters can be obtained with a closed-form solution by solving a convex optimization problem. Experimental results on benchmark test images demonstrate that the proposed method achieves very competitive performance with the state-of-the-art interpolation algorithms, especially in image edge structure preservation. © 2011 IEEE
Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems
Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; ...
2012-01-01
Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less
Superresolution restoration of an image sequence: adaptive filtering approach.
Elad, M; Feuer, A
1999-01-01
This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented.
Hartzell, S.; Liu, P.
1996-01-01
A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.
Linear least-squares method for global luminescent oil film skin friction field analysis
NASA Astrophysics Data System (ADS)
Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu
2018-06-01
A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.
Nonlinear programming extensions to rational function approximations of unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1987-01-01
This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.
Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm
NASA Astrophysics Data System (ADS)
Li, Xiao; Scaglione, Anna
2013-11-01
The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.
Using ridge regression in systematic pointing error corrections
NASA Technical Reports Server (NTRS)
Guiar, C. N.
1988-01-01
A pointing error model is used in the antenna calibration process. Data from spacecraft or radio star observations are used to determine the parameters in the model. However, the regression variables are not truly independent, displaying a condition known as multicollinearity. Ridge regression, a biased estimation technique, is used to combat the multicollinearity problem. Two data sets pertaining to Voyager 1 spacecraft tracking (days 105 and 106 of 1987) were analyzed using both linear least squares and ridge regression methods. The advantages and limitations of employing the technique are presented. The problem is not yet fully resolved.
Parallel block schemes for large scale least squares computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golub, G.H.; Plemmons, R.J.; Sameh, A.
1986-04-01
Large scale least squares computations arise in a variety of scientific and engineering problems, including geodetic adjustments and surveys, medical image analysis, molecular structures, partial differential equations and substructuring methods in structural engineering. In each of these problems, matrices often arise which possess a block structure which reflects the local connection nature of the underlying physical problem. For example, such super-large nonlinear least squares computations arise in geodesy. Here the coordinates of positions are calculated by iteratively solving overdetermined systems of nonlinear equations by the Gauss-Newton method. The US National Geodetic Survey will complete this year (1986) the readjustment ofmore » the North American Datum, a problem which involves over 540 thousand unknowns and over 6.5 million observations (equations). The observation matrix for these least squares computations has a block angular form with 161 diagnonal blocks, each containing 3 to 4 thousand unknowns. In this paper parallel schemes are suggested for the orthogonal factorization of matrices in block angular form and for the associated backsubstitution phase of the least squares computations. In addition, a parallel scheme for the calculation of certain elements of the covariance matrix for such problems is described. It is shown that these algorithms are ideally suited for multiprocessors with three levels of parallelism such as the Cedar system at the University of Illinois. 20 refs., 7 figs.« less
2015-06-01
cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a nonlinear least squares (NLLS) algorithm. We show...apply the underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly efficient parallel code for applying...repeatedly solve a large system of linear equations where one has an extremely fast parallel code for applying an underlying fixed linear operator
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
Essa, Khalid S
2014-01-01
A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values.
Estimating errors in least-squares fitting
NASA Technical Reports Server (NTRS)
Richter, P. H.
1995-01-01
While least-squares fitting procedures are commonly used in data analysis and are extensively discussed in the literature devoted to this subject, the proper assessment of errors resulting from such fits has received relatively little attention. The present work considers statistical errors in the fitted parameters, as well as in the values of the fitted function itself, resulting from random errors in the data. Expressions are derived for the standard error of the fit, as a function of the independent variable, for the general nonlinear and linear fitting problems. Additionally, closed-form expressions are derived for some examples commonly encountered in the scientific and engineering fields, namely ordinary polynomial and Gaussian fitting functions. These results have direct application to the assessment of the antenna gain and system temperature characteristics, in addition to a broad range of problems in data analysis. The effects of the nature of the data and the choice of fitting function on the ability to accurately model the system under study are discussed, and some general rules are deduced to assist workers intent on maximizing the amount of information obtained form a given set of measurements.
Essa, Khalid S.
2013-01-01
A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values. PMID:25685472
NASA Technical Reports Server (NTRS)
Cai, Zhiqiang; Manteuffel, Thomas A.; McCormick, Stephen F.
1996-01-01
In this paper, we study the least-squares method for the generalized Stokes equations (including linear elasticity) based on the velocity-vorticity-pressure formulation in d = 2 or 3 dimensions. The least squares functional is defined in terms of the sum of the L(exp 2)- and H(exp -1)-norms of the residual equations, which is weighted appropriately by by the Reynolds number. Our approach for establishing ellipticity of the functional does not use ADN theory, but is founded more on basic principles. We also analyze the case where the H(exp -1)-norm in the functional is replaced by a discrete functional to make the computation feasible. We show that the resulting algebraic equations can be uniformly preconditioned by well-known techniques.
Exploratory Model Analysis of the Space Based Infrared System (SBIRS) Low Global Scheduler Problem
1999-12-01
solution. The non- linear least squares model is defined as Y = f{e,t) where: 0 =M-element parameter vector Y =N-element vector of all data t...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS EXPLORATORY MODEL ANALYSIS OF THE SPACE BASED INFRARED SYSTEM (SBIRS) LOW GLOBAL SCHEDULER...December 1999 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE EXPLORATORY MODEL ANALYSIS OF THE SPACE BASED INFRARED SYSTEM
A parameter estimation subroutine package
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Nead, M. W.
1978-01-01
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. In this report we document a library of FORTRAN subroutines that have been developed to facilitate analyses of a variety of estimation problems. Our purpose is to present an easy to use, multi-purpose set of algorithms that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given along with examples of how these routines can be used. The following outline indicates the scope of this report: Section (1) introduction with reference to background material; Section (2) examples and applications; Section (3) subroutine directory summary; Section (4) the subroutine directory user description with input, output, and usage explained; and Section (5) subroutine FORTRAN listings. The routines are compact and efficient and are far superior to the normal equation and Kalman filter data processing algorithms that are often used for least squares analyses.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
Parameter estimation using weighted total least squares in the two-compartment exchange model.
Garpebring, Anders; Löfstedt, Tommy
2018-01-01
The linear least squares (LLS) estimator provides a fast approach to parameter estimation in the linearized two-compartment exchange model. However, the LLS method may introduce a bias through correlated noise in the system matrix of the model. The purpose of this work is to present a new estimator for the linearized two-compartment exchange model that takes this noise into account. To account for the noise in the system matrix, we developed an estimator based on the weighted total least squares (WTLS) method. Using simulations, the proposed WTLS estimator was compared, in terms of accuracy and precision, to an LLS estimator and a nonlinear least squares (NLLS) estimator. The WTLS method improved the accuracy compared to the LLS method to levels comparable to the NLLS method. This improvement was at the expense of increased computational time; however, the WTLS was still faster than the NLLS method. At high signal-to-noise ratio all methods provided similar precisions while inconclusive results were observed at low signal-to-noise ratio. The proposed method provides improvements in accuracy compared to the LLS method, however, at an increased computational cost. Magn Reson Med 79:561-567, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong
Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
NASA Astrophysics Data System (ADS)
Zahari, Siti Meriam; Ramli, Norazan Mohamed; Moktar, Balkiah; Zainol, Mohammad Said
2014-09-01
In the presence of multicollinearity and multiple outliers, statistical inference of linear regression model using ordinary least squares (OLS) estimators would be severely affected and produces misleading results. To overcome this, many approaches have been investigated. These include robust methods which were reported to be less sensitive to the presence of outliers. In addition, ridge regression technique was employed to tackle multicollinearity problem. In order to mitigate both problems, a combination of ridge regression and robust methods was discussed in this study. The superiority of this approach was examined when simultaneous presence of multicollinearity and multiple outliers occurred in multiple linear regression. This study aimed to look at the performance of several well-known robust estimators; M, MM, RIDGE and robust ridge regression estimators, namely Weighted Ridge M-estimator (WRM), Weighted Ridge MM (WRMM), Ridge MM (RMM), in such a situation. Results of the study showed that in the presence of simultaneous multicollinearity and multiple outliers (in both x and y-direction), the RMM and RIDGE are more or less similar in terms of superiority over the other estimators, regardless of the number of observation, level of collinearity and percentage of outliers used. However, when outliers occurred in only single direction (y-direction), the WRMM estimator is the most superior among the robust ridge regression estimators, by producing the least variance. In conclusion, the robust ridge regression is the best alternative as compared to robust and conventional least squares estimators when dealing with simultaneous presence of multicollinearity and outliers.
Richards, Selena; Miller, Robert; Gemperline, Paul
2008-02-01
An extension to the penalty alternating least squares (P-ALS) method, called multi-way penalty alternating least squares (NWAY P-ALS), is presented. Optionally, hard constraints (no deviation from predefined constraints) or soft constraints (small deviations from predefined constraints) were applied through the application of a row-wise penalty least squares function. NWAY P-ALS was applied to the multi-batch near-infrared (NIR) data acquired from the base catalyzed esterification reaction of acetic anhydride in order to resolve the concentration and spectral profiles of l-butanol with the reaction constituents. Application of the NWAY P-ALS approach resulted in the reduction of the number of active constraints at the solution point, while the batch column-wise augmentation allowed hard constraints in the spectral profiles and resolved rank deficiency problems of the measurement matrix. The results were compared with the multi-way multivariate curve resolution (MCR)-ALS results using hard and soft constraints to determine whether any advantages had been gained through using the weighted least squares function of NWAY P-ALS over the MCR-ALS resolution.
Orthogonal Regression: A Teaching Perspective
ERIC Educational Resources Information Center
Carr, James R.
2012-01-01
A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
A Genetic Algorithm Approach to Nonlinear Least Squares Estimation
ERIC Educational Resources Information Center
Olinsky, Alan D.; Quinn, John T.; Mangiameli, Paul M.; Chen, Shaw K.
2004-01-01
A common type of problem encountered in mathematics is optimizing nonlinear functions. Many popular algorithms that are currently available for finding nonlinear least squares estimators, a special class of nonlinear problems, are sometimes inadequate. They might not converge to an optimal value, or if they do, it could be to a local rather than…
Slattery, Stuart R.
2015-12-02
In this study we analyze and extend mesh-free algorithms for three-dimensional data transfer problems in partitioned multiphysics simulations. We first provide a direct comparison between a mesh-based weighted residual method using the common-refinement scheme and two mesh-free algorithms leveraging compactly supported radial basis functions: one using a spline interpolation and one using a moving least square reconstruction. Through the comparison we assess both the conservation and accuracy of the data transfer obtained from each of the methods. We do so for a varying set of geometries with and without curvature and sharp features and for functions with and without smoothnessmore » and with varying gradients. Our results show that the mesh-based and mesh-free algorithms are complementary with cases where each was demonstrated to perform better than the other. We then focus on the mesh-free methods by developing a set of algorithms to parallelize them based on sparse linear algebra techniques. This includes a discussion of fast parallel radius searching in point clouds and restructuring the interpolation algorithms to leverage data structures and linear algebra services designed for large distributed computing environments. The scalability of our new algorithms is demonstrated on a leadership class computing facility using a set of basic scaling studies. Finally, these scaling studies show that for problems with reasonable load balance, our new algorithms for both spline interpolation and moving least square reconstruction demonstrate both strong and weak scalability using more than 100,000 MPI processes with billions of degrees of freedom in the data transfer operation.« less
NASA Astrophysics Data System (ADS)
Fukuda, Jun'ichi; Johnson, Kaj M.
2010-06-01
We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.
From Data to Images:. a Shape Based Approach for Fluorescence Tomography
NASA Astrophysics Data System (ADS)
Dorn, O.; Prieto, K. E.
2012-12-01
Fluorescence tomography is treated as a shape reconstruction problem for a coupled system of two linear transport equations in 2D. The shape evolution is designed in order to minimize the least squares data misfit cost functional either in the excitation frequency or in the emission frequency. Furthermore, a level set technique is employed for numerically modelling the evolving shapes. Numerical results are presented which demonstrate the performance of this novel technique in the situation of noisy simulated data in 2D.
KAM Torus Orbit Prediction from Two Line Element Sets
2014-03-01
should be addressed. KAM Theory, SGP4 and TLE, Periodic Orbit, Floquet Problem, Non-linear Least Squares U U U UU 138 Dr William E. Wiesel Jr . (ENY) (937) 255-3636 x4312 william.wielsel@afit.edu ...UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright- Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...ABAY, BS 1st Lieutenant, TURAF Approved: //signed// Feb 28, 2014 William E. Wiesel, PhD (Chairman) Date //signed// Feb 28, 2014 Alan L. Jennings, PhD
NASA Astrophysics Data System (ADS)
Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun
2017-09-01
Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.
NASA Astrophysics Data System (ADS)
Sein, Lawrence T.
2011-08-01
Hammett parameters σ' were determined from vertical ionization potentials, vertical electron affinities, adiabatic ionization potentials, adiabatic electron affinities, HOMO, and LUMO energies of a series of N, N' -bis (3',4'-substituted-phenyl)-1,4-quinonediimines computed at the B3LYP/6-311+G(2d,p) level on B3LYP/6-31G ∗ molecular geometries. These parameters were then least squares fit as a function of literature Hammett parameters. For N, N' -bis (4'-substituted-phenyl)-1,4-quinonediimines, the least squares fits demonstrated excellent linearity, with the square of Pearson's correlation coefficient ( r2) greater than 0.98 for all isomers. For N, N' -bis (3'-substituted-3'-aminophenyl)-1,4-quinonediimines, the least squares fits were less nearly linear, with r2 approximately 0.70 for all isomers when derived from calculated vertical ionization potentials, but those from calculated vertical electron affinities usually greater than 0.90.
Balabin, Roman M; Smirnov, Sergey V
2011-04-29
During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.
A Geometric Analysis of when Fixed Weighting Schemes Will Outperform Ordinary Least Squares
ERIC Educational Resources Information Center
Davis-Stober, Clintin P.
2011-01-01
Many researchers have demonstrated that fixed, exogenously chosen weights can be useful alternatives to Ordinary Least Squares (OLS) estimation within the linear model (e.g., Dawes, Am. Psychol. 34:571-582, 1979; Einhorn & Hogarth, Org. Behav. Human Perform. 13:171-192, 1975; Wainer, Psychol. Bull. 83:213-217, 1976). Generalizing the approach of…
Least-squares Legendre spectral element solutions to sound propagation problems.
Lin, W H
2001-02-01
This paper presents a novel algorithm and numerical results of sound wave propagation. The method is based on a least-squares Legendre spectral element approach for spatial discretization and the Crank-Nicolson [Proc. Cambridge Philos. Soc. 43, 50-67 (1947)] and Adams-Bashforth [D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (CBMS-NSF Monograph, Siam 1977)] schemes for temporal discretization to solve the linearized acoustic field equations for sound propagation. Two types of NASA Computational Aeroacoustics (CAA) Workshop benchmark problems [ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, edited by J. C. Hardin, J. R. Ristorcelli, and C. K. W. Tam, NASA Conference Publication 3300, 1995a] are considered: a narrow Gaussian sound wave propagating in a one-dimensional space without flows, and the reflection of a two-dimensional acoustic pulse off a rigid wall in the presence of a uniform flow of Mach 0.5 in a semi-infinite space. The first problem was used to examine the numerical dispersion and dissipation characteristics of the proposed algorithm. The second problem was to demonstrate the capability of the algorithm in treating sound propagation in a flow. Comparisons were made of the computed results with analytical results and results obtained by other methods. It is shown that all results computed by the present method are in good agreement with the analytical solutions and results of the first problem agree very well with those predicted by other schemes.
Local classification: Locally weighted-partial least squares-discriminant analysis (LW-PLS-DA).
Bevilacqua, Marta; Marini, Federico
2014-08-01
The possibility of devising a simple, flexible and accurate non-linear classification method, by extending the locally weighted partial least squares (LW-PLS) approach to the cases where the algorithm is used in a discriminant way (partial least squares discriminant analysis, PLS-DA), is presented. In particular, to assess which category an unknown sample belongs to, the proposed algorithm operates by identifying which training objects are most similar to the one to be predicted and building a PLS-DA model using these calibration samples only. Moreover, the influence of the selected training samples on the local model can be further modulated by adopting a not uniform distance-based weighting scheme which allows the farthest calibration objects to have less impact than the closest ones. The performances of the proposed locally weighted-partial least squares-discriminant analysis (LW-PLS-DA) algorithm have been tested on three simulated data sets characterized by a varying degree of non-linearity: in all cases, a classification accuracy higher than 99% on external validation samples was achieved. Moreover, when also applied to a real data set (classification of rice varieties), characterized by a high extent of non-linearity, the proposed method provided an average correct classification rate of about 93% on the test set. By the preliminary results, showed in this paper, the performances of the proposed LW-PLS-DA approach have proved to be comparable and in some cases better than those obtained by other non-linear methods (k nearest neighbors, kernel-PLS-DA and, in the case of rice, counterpropagation neural networks). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin
2017-11-01
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
Optical recognition of statistical patterns
NASA Astrophysics Data System (ADS)
Lee, S. H.
1981-12-01
Optical implementation of the Fukunaga-Koontz transform (FKT) and the Least-Squares Linear Mapping Technique (LSLMT) is described. The FKT is a linear transformation which performs image feature extraction for a two-class image classification problem. The LSLMT performs a transform from large dimensional feature space to small dimensional decision space for separating multiple image classes by maximizing the interclass differences while minimizing the intraclass variations. The FKT and the LSLMT were optically implemented by utilizing a coded phase optical processor. The transform was used for classifying birds and fish. After the F-K basis functions were calculated, those most useful for classification were incorporated into a computer generated hologram. The output of the optical processor, consisting of the squared magnitude of the F-K coefficients, was detected by a T.V. camera, digitized, and fed into a micro-computer for classification. A simple linear classifier based on only two F-K coefficients was able to separate the images into two classes, indicating that the F-K transform had chosen good features. Two advantages of optically implementing the FKT and LSLMT are parallel and real time processing.
Optical recognition of statistical patterns
NASA Technical Reports Server (NTRS)
Lee, S. H.
1981-01-01
Optical implementation of the Fukunaga-Koontz transform (FKT) and the Least-Squares Linear Mapping Technique (LSLMT) is described. The FKT is a linear transformation which performs image feature extraction for a two-class image classification problem. The LSLMT performs a transform from large dimensional feature space to small dimensional decision space for separating multiple image classes by maximizing the interclass differences while minimizing the intraclass variations. The FKT and the LSLMT were optically implemented by utilizing a coded phase optical processor. The transform was used for classifying birds and fish. After the F-K basis functions were calculated, those most useful for classification were incorporated into a computer generated hologram. The output of the optical processor, consisting of the squared magnitude of the F-K coefficients, was detected by a T.V. camera, digitized, and fed into a micro-computer for classification. A simple linear classifier based on only two F-K coefficients was able to separate the images into two classes, indicating that the F-K transform had chosen good features. Two advantages of optically implementing the FKT and LSLMT are parallel and real time processing.
Discrete square root smoothing.
NASA Technical Reports Server (NTRS)
Kaminski, P. G.; Bryson, A. E., Jr.
1972-01-01
The basic techniques applied in the square root least squares and square root filtering solutions are applied to the smoothing problem. Both conventional and square root solutions are obtained by computing the filtered solutions, then modifying the results to include the effect of all measurements. A comparison of computation requirements indicates that the square root information smoother (SRIS) is more efficient than conventional solutions in a large class of fixed interval smoothing problems.
Simulation of Foam Divot Weight on External Tank Utilizing Least Squares and Neural Network Methods
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Coroneos, Rula M.
2007-01-01
Simulation of divot weight in the insulating foam, associated with the external tank of the U.S. space shuttle, has been evaluated using least squares and neural network concepts. The simulation required models based on fundamental considerations that can be used to predict under what conditions voids form, the size of the voids, and subsequent divot ejection mechanisms. The quadratic neural networks were found to be satisfactory for the simulation of foam divot weight in various tests associated with the external tank. Both linear least squares method and the nonlinear neural network predicted identical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slattery, Stuart R.
In this study we analyze and extend mesh-free algorithms for three-dimensional data transfer problems in partitioned multiphysics simulations. We first provide a direct comparison between a mesh-based weighted residual method using the common-refinement scheme and two mesh-free algorithms leveraging compactly supported radial basis functions: one using a spline interpolation and one using a moving least square reconstruction. Through the comparison we assess both the conservation and accuracy of the data transfer obtained from each of the methods. We do so for a varying set of geometries with and without curvature and sharp features and for functions with and without smoothnessmore » and with varying gradients. Our results show that the mesh-based and mesh-free algorithms are complementary with cases where each was demonstrated to perform better than the other. We then focus on the mesh-free methods by developing a set of algorithms to parallelize them based on sparse linear algebra techniques. This includes a discussion of fast parallel radius searching in point clouds and restructuring the interpolation algorithms to leverage data structures and linear algebra services designed for large distributed computing environments. The scalability of our new algorithms is demonstrated on a leadership class computing facility using a set of basic scaling studies. Finally, these scaling studies show that for problems with reasonable load balance, our new algorithms for both spline interpolation and moving least square reconstruction demonstrate both strong and weak scalability using more than 100,000 MPI processes with billions of degrees of freedom in the data transfer operation.« less
Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V
2015-01-01
Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.
The long-solved problem of the best-fit straight line: application to isotopic mixing lines
NASA Astrophysics Data System (ADS)
Wehr, Richard; Saleska, Scott R.
2017-01-01
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introduce the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods - ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) - have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general - and convenient - solution is always the least biased.
NASA Astrophysics Data System (ADS)
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.
2009-08-01
In this paper, the state least-squares linear estimation problem from correlated uncertain observations coming from multiple sensors is addressed. It is assumed that, at each sensor, the state is measured in the presence of additive white noise and that the uncertainty in the observations is characterized by a set of Bernoulli random variables which are only correlated at consecutive time instants. Assuming that the statistical properties of such variables are not necessarily the same for all the sensors, a recursive filtering algorithm is proposed, and the performance of the estimators is illustrated by a numerical simulation example wherein a signal is estimated from correlated uncertain observations coming from two sensors with different uncertainty characteristics.
40 CFR 91.321 - NDIR analyzer calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of full-scale concentration. A minimum of six evenly spaced points covering at least 80 percent of..., a linear calibration may be used. To determine if this criterion is met: (1) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x is the actual chart...
40 CFR 91.321 - NDIR analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of full-scale concentration. A minimum of six evenly spaced points covering at least 80 percent of..., a linear calibration may be used. To determine if this criterion is met: (1) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x is the actual chart...
40 CFR 91.321 - NDIR analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of full-scale concentration. A minimum of six evenly spaced points covering at least 80 percent of..., a linear calibration may be used. To determine if this criterion is met: (1) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x is the actual chart...
40 CFR 91.321 - NDIR analyzer calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of full-scale concentration. A minimum of six evenly spaced points covering at least 80 percent of..., a linear calibration may be used. To determine if this criterion is met: (1) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x is the actual chart...
Least Squares Computations in Science and Engineering
1994-02-01
iterative least squares deblurring procedure. Because of the ill-posed characteristics of the deconvolution problem, in the presence of noise , direct...optimization methods. Generally, the problems are accompanied by constraints, such as bound constraints, and the observations are corrupted by noise . The...engineering. This effort has involved interaction with researchers in closed-loop active noise (vibration) control at Phillips Air Force Laboratory
Analysis of Point Based Image Registration Errors With Applications in Single Molecule Microscopy
Cohen, E. A. K.; Ober, R. J.
2014-01-01
We present an asymptotic treatment of errors involved in point-based image registration where control point (CP) localization is subject to heteroscedastic noise; a suitable model for image registration in fluorescence microscopy. Assuming an affine transform, CPs are used to solve a multivariate regression problem. With measurement errors existing for both sets of CPs this is an errors-in-variable problem and linear least squares is inappropriate; the correct method being generalized least squares. To allow for point dependent errors the equivalence of a generalized maximum likelihood and heteroscedastic generalized least squares model is achieved allowing previously published asymptotic results to be extended to image registration. For a particularly useful model of heteroscedastic noise where covariance matrices are scalar multiples of a known matrix (including the case where covariance matrices are multiples of the identity) we provide closed form solutions to estimators and derive their distribution. We consider the target registration error (TRE) and define a new measure called the localization registration error (LRE) believed to be useful, especially in microscopy registration experiments. Assuming Gaussianity of the CP localization errors, it is shown that the asymptotic distribution for the TRE and LRE are themselves Gaussian and the parameterized distributions are derived. Results are successfully applied to registration in single molecule microscopy to derive the key dependence of the TRE and LRE variance on the number of CPs and their associated photon counts. Simulations show asymptotic results are robust for low CP numbers and non-Gaussianity. The method presented here is shown to outperform GLS on real imaging data. PMID:24634573
An information geometric approach to least squares minimization
NASA Astrophysics Data System (ADS)
Transtrum, Mark; Machta, Benjamin; Sethna, James
2009-03-01
Parameter estimation by nonlinear least squares minimization is a ubiquitous problem that has an elegant geometric interpretation: all possible parameter values induce a manifold embedded within the space of data. The minimization problem is then to find the point on the manifold closest to the origin. The standard algorithm for minimizing sums of squares, the Levenberg-Marquardt algorithm, also has geometric meaning. When the standard algorithm fails to efficiently find accurate fits to the data, geometric considerations suggest improvements. Problems involving large numbers of parameters, such as often arise in biological contexts, are notoriously difficult. We suggest an algorithm based on geodesic motion that may offer improvements over the standard algorithm for a certain class of problems.
Efficient Levenberg-Marquardt minimization of the maximum likelihood estimator for Poisson deviates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, T; Chromy, B
2009-11-10
Histograms of counted events are Poisson distributed, but are typically fitted without justification using nonlinear least squares fitting. The more appropriate maximum likelihood estimator (MLE) for Poisson distributed data is seldom used. We extend the use of the Levenberg-Marquardt algorithm commonly used for nonlinear least squares minimization for use with the MLE for Poisson distributed data. In so doing, we remove any excuse for not using this more appropriate MLE. We demonstrate the use of the algorithm and the superior performance of the MLE using simulations and experiments in the context of fluorescence lifetime imaging. Scientists commonly form histograms ofmore » counted events from their data, and extract parameters by fitting to a specified model. Assuming that the probability of occurrence for each bin is small, event counts in the histogram bins will be distributed according to the Poisson distribution. We develop here an efficient algorithm for fitting event counting histograms using the maximum likelihood estimator (MLE) for Poisson distributed data, rather than the non-linear least squares measure. This algorithm is a simple extension of the common Levenberg-Marquardt (L-M) algorithm, is simple to implement, quick and robust. Fitting using a least squares measure is most common, but it is the maximum likelihood estimator only for Gaussian-distributed data. Non-linear least squares methods may be applied to event counting histograms in cases where the number of events is very large, so that the Poisson distribution is well approximated by a Gaussian. However, it is not easy to satisfy this criterion in practice - which requires a large number of events. It has been well-known for years that least squares procedures lead to biased results when applied to Poisson-distributed data; a recent paper providing extensive characterization of these biases in exponential fitting is given. The more appropriate measure based on the maximum likelihood estimator (MLE) for the Poisson distribution is also well known, but has not become generally used. This is primarily because, in contrast to non-linear least squares fitting, there has been no quick, robust, and general fitting method. In the field of fluorescence lifetime spectroscopy and imaging, there have been some efforts to use this estimator through minimization routines such as Nelder-Mead optimization, exhaustive line searches, and Gauss-Newton minimization. Minimization based on specific one- or multi-exponential models has been used to obtain quick results, but this procedure does not allow the incorporation of the instrument response, and is not generally applicable to models found in other fields. Methods for using the MLE for Poisson-distributed data have been published by the wider spectroscopic community, including iterative minimization schemes based on Gauss-Newton minimization. The slow acceptance of these procedures for fitting event counting histograms may also be explained by the use of the ubiquitous, fast Levenberg-Marquardt (L-M) fitting procedure for fitting non-linear models using least squares fitting (simple searches obtain {approx}10000 references - this doesn't include those who use it, but don't know they are using it). The benefits of L-M include a seamless transition between Gauss-Newton minimization and downward gradient minimization through the use of a regularization parameter. This transition is desirable because Gauss-Newton methods converge quickly, but only within a limited domain of convergence; on the other hand the downward gradient methods have a much wider domain of convergence, but converge extremely slowly nearer the minimum. L-M has the advantages of both procedures: relative insensitivity to initial parameters and rapid convergence. Scientists, when wanting an answer quickly, will fit data using L-M, get an answer, and move on. Only those that are aware of the bias issues will bother to fit using the more appropriate MLE for Poisson deviates. However, since there is a simple, analytical formula for the appropriate MLE measure for Poisson deviates, it is inexcusable that least squares estimators are used almost exclusively when fitting event counting histograms. There have been ways found to use successive non-linear least squares fitting to obtain similarly unbiased results, but this procedure is justified by simulation, must be re-tested when conditions change significantly, and requires two successive fits. There is a great need for a fitting routine for the MLE estimator for Poisson deviates that has convergence domains and rates comparable to the non-linear least squares L-M fitting. We show in this report that a simple way to achieve that goal is to use the L-M fitting procedure not to minimize the least squares measure, but the MLE for Poisson deviates.« less
A class of least-squares filtering and identification algorithms with systolic array architectures
NASA Technical Reports Server (NTRS)
Kalson, Seth Z.; Yao, Kung
1991-01-01
A unified approach is presented for deriving a large class of new and previously known time- and order-recursive least-squares algorithms with systolic array architectures, suitable for high-throughput-rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Exponentially weighted least-squares criteria are considered for both sliding and growing memory.
Applied Algebra: The Modeling Technique of Least Squares
ERIC Educational Resources Information Center
Zelkowski, Jeremy; Mayes, Robert
2008-01-01
The article focuses on engaging students in algebra through modeling real-world problems. The technique of least squares is explored, encouraging students to develop a deeper understanding of the method. (Contains 2 figures and a bibliography.)
Software For Least-Squares And Robust Estimation
NASA Technical Reports Server (NTRS)
Jeffreys, William H.; Fitzpatrick, Michael J.; Mcarthur, Barbara E.; Mccartney, James
1990-01-01
GAUSSFIT computer program includes full-featured programming language facilitating creation of mathematical models solving least-squares and robust-estimation problems. Programming language designed to make it easy to specify complex reduction models. Written in 100 percent C language.
A reduced successive quadratic programming strategy for errors-in-variables estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjoa, I.-B.; Biegler, L. T.; Carnegie-Mellon Univ.
Parameter estimation problems in process engineering represent a special class of nonlinear optimization problems, because the maximum likelihood structure of the objective function can be exploited. Within this class, the errors in variables method (EVM) is particularly interesting. Here we seek a weighted least-squares fit to the measurements with an underdetermined process model. Thus, both the number of variables and degrees of freedom available for optimization increase linearly with the number of data sets. Large optimization problems of this type can be particularly challenging and expensive to solve because, for general-purpose nonlinear programming (NLP) algorithms, the computational effort increases atmore » least quadratically with problem size. In this study we develop a tailored NLP strategy for EVM problems. The method is based on a reduced Hessian approach to successive quadratic programming (SQP), but with the decomposition performed separately for each data set. This leads to the elimination of all variables but the model parameters, which are determined by a QP coordination step. In this way the computational effort remains linear in the number of data sets. Moreover, unlike previous approaches to the EVM problem, global and superlinear properties of the SQP algorithm apply naturally. Also, the method directly incorporates inequality constraints on the model parameters (although not on the fitted variables). This approach is demonstrated on five example problems with up to 102 degrees of freedom. Compared to general-purpose NLP algorithms, large improvements in computational performance are observed.« less
Wang, Yin; Zhao, Nan-jing; Liu, Wen-qing; Yu, Yang; Fang, Li; Meng, De-shuo; Hu, Li; Zhang, Da-hai; Ma, Min-jun; Xiao, Xue; Wang, Yu; Liu, Jian-guo
2015-02-01
In recent years, the technology of laser induced breakdown spectroscopy has been developed rapidly. As one kind of new material composition detection technology, laser induced breakdown spectroscopy can simultaneously detect multi elements fast and simply without any complex sample preparation and realize field, in-situ material composition detection of the sample to be tested. This kind of technology is very promising in many fields. It is very important to separate, fit and extract spectral feature lines in laser induced breakdown spectroscopy, which is the cornerstone of spectral feature recognition and subsequent elements concentrations inversion research. In order to realize effective separation, fitting and extraction of spectral feature lines in laser induced breakdown spectroscopy, the original parameters for spectral lines fitting before iteration were analyzed and determined. The spectral feature line of' chromium (Cr I : 427.480 nm) in fly ash gathered from a coal-fired power station, which was overlapped with another line(FeI: 427.176 nm), was separated from the other one and extracted by using damped least squares method. Based on Gauss-Newton iteration, damped least squares method adds damping factor to step and adjust step length dynamically according to the feedback information after each iteration, in order to prevent the iteration from diverging and make sure that the iteration could converge fast. Damped least squares method helps to obtain better results of separating, fitting and extracting spectral feature lines and give more accurate intensity values of these spectral feature lines: The spectral feature lines of chromium in samples which contain different concentrations of chromium were separated and extracted. And then, the intensity values of corresponding spectral lines were given by using damped least squares method and least squares method separately. The calibration curves were plotted, which showed the relationship between spectral line intensity values and chromium concentrations in different samples. And then their respective linear correlations were compared. The experimental results showed that the linear correlation of the intensity values of spectral feature lines and the concentrations of chromium in different samples, which was obtained by damped least squares method, was better than that one obtained by least squares method. And therefore, damped least squares method was stable, reliable and suitable for separating, fitting and extracting spectral feature lines in laser induced breakdown spectroscopy.
NASA Astrophysics Data System (ADS)
Polat, Esra; Gunay, Suleyman
2013-10-01
One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.
Fixing convergence of Gaussian belief propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jason K; Bickson, Danny; Dolev, Danny
Gaussian belief propagation (GaBP) is an iterative message-passing algorithm for inference in Gaussian graphical models. It is known that when GaBP converges it converges to the correct MAP estimate of the Gaussian random vector and simple sufficient conditions for its convergence have been established. In this paper we develop a double-loop algorithm for forcing convergence of GaBP. Our method computes the correct MAP estimate even in cases where standard GaBP would not have converged. We further extend this construction to compute least-squares solutions of over-constrained linear systems. We believe that our construction has numerous applications, since the GaBP algorithm ismore » linked to solution of linear systems of equations, which is a fundamental problem in computer science and engineering. As a case study, we discuss the linear detection problem. We show that using our new construction, we are able to force convergence of Montanari's linear detection algorithm, in cases where it would originally fail. As a consequence, we are able to increase significantly the number of users that can transmit concurrently.« less
Celik, Hasan; Bouhrara, Mustapha; Reiter, David A.; Fishbein, Kenneth W.; Spencer, Richard G.
2013-01-01
We propose a new approach to stabilizing the inverse Laplace transform of a multiexponential decay signal, a classically ill-posed problem, in the context of nuclear magnetic resonance relaxometry. The method is based on extension to a second, indirectly detected, dimension, that is, use of the established framework of two-dimensional relaxometry, followed by projection onto the desired axis. Numerical results for signals comprised of discrete T1 and T2 relaxation components and experiments performed on agarose gel phantoms are presented. We find markedly improved accuracy, and stability with respect to noise, as well as insensitivity to regularization in quantifying underlying relaxation components through use of the two-dimensional as compared to the one-dimensional inverse Laplace transform. This improvement is demonstrated separately for two different inversion algorithms, nonnegative least squares and non-linear least squares, to indicate the generalizability of this approach. These results may have wide applicability in approaches to the Fredholm integral equation of the first kind. PMID:24035004
Distributed weighted least-squares estimation with fast convergence for large-scale systems.
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.
Distributed weighted least-squares estimation with fast convergence for large-scale systems☆
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods. PMID:25641976
Using absolute gravimeter data to determine vertical gravity gradients
Robertson, D.S.
2001-01-01
The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.
On the accuracy of least squares methods in the presence of corner singularities
NASA Technical Reports Server (NTRS)
Cox, C. L.; Fix, G. J.
1985-01-01
Elliptic problems with corner singularities are discussed. Finite element approximations based on variational principles of the least squares type tend to display poor convergence properties in such contexts. Moreover, mesh refinement or the use of special singular elements do not appreciably improve matters. It is shown that if the least squares formulation is done in appropriately weighted space, then optimal convergence results in unweighted spaces like L(2).
ERIC Educational Resources Information Center
Bulcock, J. W.
The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…
NASA Astrophysics Data System (ADS)
Meric, Ilker; Johansen, Geir A.; Holstad, Marie B.; Mattingly, John; Gardner, Robin P.
2012-05-01
Prompt gamma-ray neutron activation analysis (PGNAA) has been and still is one of the major methods of choice for the elemental analysis of various bulk samples. This is mostly due to the fact that PGNAA offers a rapid, non-destructive and on-line means of sample interrogation. The quantitative analysis of the prompt gamma-ray data could, on the other hand, be performed either through the single peak analysis or the so-called Monte Carlo library least-squares (MCLLS) approach, of which the latter has been shown to be more sensitive and more accurate than the former. The MCLLS approach is based on the assumption that the total prompt gamma-ray spectrum of any sample is a linear combination of the contributions from the individual constituents or libraries. This assumption leads to, through the minimization of the chi-square value, a set of linear equations which has to be solved to obtain the library multipliers, a process that involves the inversion of the covariance matrix. The least-squares solution may be extremely uncertain due to the ill-conditioning of the covariance matrix. The covariance matrix will become ill-conditioned whenever, in the subsequent calculations, two or more libraries are highly correlated. The ill-conditioning will also be unavoidable whenever the sample contains trace amounts of certain elements or elements with significantly low thermal neutron capture cross-sections. In this work, a new iterative approach, which can handle the ill-conditioning of the covariance matrix, is proposed and applied to a hydrocarbon multiphase flow problem in which the parameters of interest are the separate amounts of the oil, gas, water and salt phases. The results of the proposed method are also compared with the results obtained through the implementation of a well-known regularization method, the truncated singular value decomposition. Final calculations indicate that the proposed approach would be able to treat ill-conditioned cases appropriately.
A least-squares finite element method for incompressible Navier-Stokes problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1992-01-01
A least-squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady incompressible Navier-Stokes problems. This method leads to a minimization problem rather than to a saddle-point problem by the classic mixed method and can thus accommodate equal-order interpolations. This method has no parameter to tune. The associated algebraic system is symmetric, and positive definite. Numerical results for the cavity flow at Reynolds number up to 10,000 and the backward-facing step flow at Reynolds number up to 900 are presented.
Digital adaptive flight controller development
NASA Technical Reports Server (NTRS)
Kaufman, H.; Alag, G.; Berry, P.; Kotob, S.
1974-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Two designs are described for an example aircraft. Each of these designs uses a weighted least squares procedure to identify parameters defining the dynamics of the aircraft. The two designs differ in the way in which control law parameters are determined. One uses the solution of an optimal linear regulator problem to determine these parameters while the other uses a procedure called single stage optimization. Extensive simulation results and analysis leading to the designs are presented.
Component biomass equations for black spruce in Maine
M. M. Czapowskyj; D. J. Robison; R. D. Briggs; E. H. White; E. H. White
1985-01-01
Component biomass prediction equations are presented for young black spruce (Picea mariana B.S.P. (Mill,:)) in northern Maine. A weighted least squares model was used to construct the eq~iationsfo r small trees from 1 to 15 cm d.b.h., and an ordinary least squares model for trees less than 2 m in height. A linearized allometric model was also tested but was not used....
NASA Technical Reports Server (NTRS)
Abercromby, Kira J.; Rapp, Jason; Bedard, Donald; Seitzer, Patrick; Cardona, Tommaso; Cowardin, Heather; Barker, Ed; Lederer, Susan
2013-01-01
Constrained Linear Least Squares model is generally more accurate than the "human-in-the-loop". However, "human-in-the-loop" can remove materials that make no sense. The speed of the model in determining a "first cut" at the material ID makes it a viable option for spectral unmixing of debris objects.
NASA Astrophysics Data System (ADS)
Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.
2018-04-01
We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.
ITOUGH2(UNIX). Inverse Modeling for TOUGH2 Family of Multiphase Flow Simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, S.
1999-03-01
ITOUGH2 provides inverse modeling capabilities for the TOUGH2 family of numerical simulators for non-isothermal multiphase flows in fractured-porous media. The ITOUGH2 can be used for estimating parameters by automatic modeling calibration, for sensitivity analyses, and for uncertainity propagation analyses (linear and Monte Carlo simulations). Any input parameter to the TOUGH2 simulator can be estimated based on any type of observation for which a corresponding TOUGH2 output is calculated. ITOUGH2 solves a non-linear least-squares problem using direct or gradient-based minimization algorithms. A detailed residual and error analysis is performed, which includes the evaluation of model identification criteria. ITOUGH2 can also bemore » run in forward mode, solving subsurface flow problems related to nuclear waste isolation, oil, gas, and geothermal resevoir engineering, and vadose zone hydrology.« less
40 CFR 86.331-79 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... concentration. It is permitted to use additional concentrations. (5) Perform a linear least square regression on... least one-half hour after the oven has reached temperature for the system to equilibrate. (c) Initial...
NASA Astrophysics Data System (ADS)
Abo-Ezz, E. R.; Essa, K. S.
2016-04-01
A new linear least-squares approach is proposed to interpret magnetic anomalies of the buried structures by using a new magnetic anomaly formula. This approach depends on solving different sets of algebraic linear equations in order to invert the depth ( z), amplitude coefficient ( K), and magnetization angle ( θ) of buried structures using magnetic data. The utility and validity of the new proposed approach has been demonstrated through various reliable synthetic data sets with and without noise. In addition, the method has been applied to field data sets from USA and India. The best-fitted anomaly has been delineated by estimating the root-mean squared (rms). Judging satisfaction of this approach is done by comparing the obtained results with other available geological or geophysical information.
NASA Astrophysics Data System (ADS)
Dai, Xiaoqian; Tian, Jie; Chen, Zhe
2010-03-01
Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.
Independent contrasts and PGLS regression estimators are equivalent.
Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary
2012-05-01
We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.
eHealth, ICT and its relationship with self-reported health outcomes in the EU countries.
Tavares, Aida Isabel
2018-04-01
This work contributes to the discussion on the relationship between ICT and ehealth solutions in primary care, and self-reported health and health status in the European Union. The method used is an ordinary least squares linear model. The results show that there is no significant relation between self-reported health outcomes and ICT and ehealth indexes, except for self-reported chronic health problems. The more advanced that countries are in ICT, the larger is the share of people reporting a chronic health problem. This provides evidence on the existence of a link between chronic patients and ICT development. Copyright © 2018 Elsevier B.V. All rights reserved.
Geodesic regression for image time-series.
Niethammer, Marc; Huang, Yang; Vialard, François-Xavier
2011-01-01
Registration of image-time series has so far been accomplished (i) by concatenating registrations between image pairs, (ii) by solving a joint estimation problem resulting in piecewise geodesic paths between image pairs, (iii) by kernel based local averaging or (iv) by augmenting the joint estimation with additional temporal irregularity penalties. Here, we propose a generative model extending least squares linear regression to the space of images by using a second-order dynamic formulation for image registration. Unlike previous approaches, the formulation allows for a compact representation of an approximation to the full spatio-temporal trajectory through its initial values. The method also opens up possibilities to design image-based approximation algorithms. The resulting optimization problem is solved using an adjoint method.
2016-08-05
technique which used unobserved ”intermediate” variables to break a high-dimensional estimation problem such as least- squares (LS) optimization of a large...Least Squares (GEM-LS). The estimator is iterative and the work in this time period focused on characterizing the convergence properties of this...ap- proach by relaxing the statistical assumptions which is termed the Relaxed Approximate Graph-Structured Recursive Least Squares (RAGS-RLS). This
Stochastic Least-Squares Petrov--Galerkin Method for Parameterized Linear Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kookjin; Carlberg, Kevin; Elman, Howard C.
Here, we consider the numerical solution of parameterized linear systems where the system matrix, the solution, and the right-hand side are parameterized by a set of uncertain input parameters. We explore spectral methods in which the solutions are approximated in a chosen finite-dimensional subspace. It has been shown that the stochastic Galerkin projection technique fails to minimize any measure of the solution error. As a remedy for this, we propose a novel stochatic least-squares Petrov--Galerkin (LSPG) method. The proposed method is optimal in the sense that it produces the solution that minimizes a weightedmore » $$\\ell^2$$-norm of the residual over all solutions in a given finite-dimensional subspace. Moreover, the method can be adapted to minimize the solution error in different weighted $$\\ell^2$$-norms by simply applying a weighting function within the least-squares formulation. In addition, a goal-oriented seminorm induced by an output quantity of interest can be minimized by defining a weighting function as a linear functional of the solution. We establish optimality and error bounds for the proposed method, and extensive numerical experiments show that the weighted LSPG method outperforms other spectral methods in minimizing corresponding target weighted norms.« less
Algorithms for Nonlinear Least-Squares Problems
1988-09-01
O -,i(x) 2 , where each -,(x) is a smooth function mapping Rn to R. J - The m x n Jacobian matrix of f. ... x g - The gradient of the nonlinear least...V211f(X*)I112~ l~ l) J(xk)T J(xk) 2 + O(k - X*) For more convergence results and detailed convergence analysis for the Gauss-Newton method, see, e. g ...for a class of nonlinear least-squares problems that includes zero-residual prob- lems. The function Jt is the pseudo-inverse of Jk (see, e. g
Precision PEP-II optics measurement with an SVD-enhanced Least-Square fitting
NASA Astrophysics Data System (ADS)
Yan, Y. T.; Cai, Y.
2006-03-01
A singular value decomposition (SVD)-enhanced Least-Square fitting technique is discussed. By automatic identifying, ordering, and selecting dominant SVD modes of the derivative matrix that responds to the variations of the variables, the converging process of the Least-Square fitting is significantly enhanced. Thus the fitting speed can be fast enough for a fairly large system. This technique has been successfully applied to precision PEP-II optics measurement in which we determine all quadrupole strengths (both normal and skew components) and sextupole feed-downs as well as all BPM gains and BPM cross-plane couplings through Least-Square fitting of the phase advances and the Local Green's functions as well as the coupling ellipses among BPMs. The local Green's functions are specified by 4 local transfer matrix components R12, R34, R32, R14. These measurable quantities (the Green's functions, the phase advances and the coupling ellipse tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a high-resolution model-independent analysis (MIA). Once all of the quadrupoles and sextupole feed-downs are determined, we obtain a computer virtual accelerator which matches the real accelerator in linear optics. Thus, beta functions, linear coupling parameters, and interaction point (IP) optics characteristics can be measured and displayed.
NASA Astrophysics Data System (ADS)
Borodachev, S. M.
2016-06-01
The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.
The long-solved problem of the best-fit straight line: Application to isotopic mixing lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehr, Richard; Saleska, Scott R.
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introducemore » the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods – ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) – have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Here, using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general – and convenient – solution is always the least biased.« less
The long-solved problem of the best-fit straight line: Application to isotopic mixing lines
Wehr, Richard; Saleska, Scott R.
2017-01-03
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introducemore » the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods – ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) – have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Here, using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general – and convenient – solution is always the least biased.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... records on the basis of linear yards or square yards as provided in § 1631.31 persons furnishing... of square yards. At least one test shall be performed upon commencement of production, importation, or other receipt of such small carpet or rug and every 25,000 units or square yards thereafter. (Sec...
Code of Federal Regulations, 2011 CFR
2011-01-01
... records on the basis of linear yards or square yards as provided in § 1631.31 persons furnishing... of square yards. At least one test shall be performed upon commencement of production, importation, or other receipt of such small carpet or rug and every 25,000 units or square yards thereafter. (Sec...
Code of Federal Regulations, 2012 CFR
2012-01-01
... records on the basis of linear yards or square yards as provided in § 1631.31 persons furnishing... of square yards. At least one test shall be performed upon commencement of production, importation, or other receipt of such small carpet or rug and every 25,000 units or square yards thereafter. (Sec...
Code of Federal Regulations, 2014 CFR
2014-01-01
... records on the basis of linear yards or square yards as provided in § 1631.31 persons furnishing... of square yards. At least one test shall be performed upon commencement of production, importation, or other receipt of such small carpet or rug and every 25,000 units or square yards thereafter. (Sec...
Code of Federal Regulations, 2010 CFR
2010-01-01
... records on the basis of linear yards or square yards as provided in § 1631.31 persons furnishing... of square yards. At least one test shall be performed upon commencement of production, importation, or other receipt of such small carpet or rug and every 25,000 units or square yards thereafter. (Sec...
NASA Astrophysics Data System (ADS)
Cheng, Jian; Zhang, Fan; Liu, Tiegang
2018-06-01
In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.
Local Linear Regression for Data with AR Errors.
Li, Runze; Li, Yan
2009-07-01
In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.
Han, Jubong; Lee, K B; Lee, Jong-Man; Park, Tae Soon; Oh, J S; Oh, Pil-Jei
2016-03-01
We discuss a new method to incorporate Type B uncertainty into least-squares procedures. The new method is based on an extension of the likelihood function from which a conventional least-squares function is derived. The extended likelihood function is the product of the original likelihood function with additional PDFs (Probability Density Functions) that characterize the Type B uncertainties. The PDFs are considered to describe one's incomplete knowledge on correction factors being called nuisance parameters. We use the extended likelihood function to make point and interval estimations of parameters in the basically same way as the least-squares function used in the conventional least-squares method is derived. Since the nuisance parameters are not of interest and should be prevented from appearing in the final result, we eliminate such nuisance parameters by using the profile likelihood. As an example, we present a case study for a linear regression analysis with a common component of Type B uncertainty. In this example we compare the analysis results obtained from using our procedure with those from conventional methods. Copyright © 2015. Published by Elsevier Ltd.
Development of Super-Ensemble techniques for ocean analyses: the Mediterranean Sea case
NASA Astrophysics Data System (ADS)
Pistoia, Jenny; Pinardi, Nadia; Oddo, Paolo; Collins, Matthew; Korres, Gerasimos; Drillet, Yann
2017-04-01
Short-term ocean analyses for Sea Surface Temperature SST in the Mediterranean Sea can be improved by a statistical post-processing technique, called super-ensemble. This technique consists in a multi-linear regression algorithm applied to a Multi-Physics Multi-Model Super-Ensemble (MMSE) dataset, a collection of different operational forecasting analyses together with ad-hoc simulations produced by modifying selected numerical model parameterizations. A new linear regression algorithm based on Empirical Orthogonal Function filtering techniques is capable to prevent overfitting problems, even if best performances are achieved when we add correlation to the super-ensemble structure using a simple spatial filter applied after the linear regression. Our outcomes show that super-ensemble performances depend on the selection of an unbiased operator and the length of the learning period, but the quality of the generating MMSE dataset has the largest impact on the MMSE analysis Root Mean Square Error (RMSE) evaluated with respect to observed satellite SST. Lower RMSE analysis estimates result from the following choices: 15 days training period, an overconfident MMSE dataset (a subset with the higher quality ensemble members), and the least square algorithm being filtered a posteriori.
NASA Astrophysics Data System (ADS)
Musa, Rosliza; Ali, Zalila; Baharum, Adam; Nor, Norlida Mohd
2017-08-01
The linear regression model assumes that all random error components are identically and independently distributed with constant variance. Hence, each data point provides equally precise information about the deterministic part of the total variation. In other words, the standard deviations of the error terms are constant over all values of the predictor variables. When the assumption of constant variance is violated, the ordinary least squares estimator of regression coefficient lost its property of minimum variance in the class of linear and unbiased estimators. Weighted least squares estimation are often used to maximize the efficiency of parameter estimation. A procedure that treats all of the data equally would give less precisely measured points more influence than they should have and would give highly precise points too little influence. Optimizing the weighted fitting criterion to find the parameter estimates allows the weights to determine the contribution of each observation to the final parameter estimates. This study used polynomial model with weighted least squares estimation to investigate paddy production of different paddy lots based on paddy cultivation characteristics and environmental characteristics in the area of Kedah and Perlis. The results indicated that factors affecting paddy production are mixture fertilizer application cycle, average temperature, the squared effect of average rainfall, the squared effect of pest and disease, the interaction between acreage with amount of mixture fertilizer, the interaction between paddy variety and NPK fertilizer application cycle and the interaction between pest and disease and NPK fertilizer application cycle.
Who Will Win?: Predicting the Presidential Election Using Linear Regression
ERIC Educational Resources Information Center
Lamb, John H.
2007-01-01
This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…
Adaptive Identification by Systolic Arrays.
1987-12-01
BIBLIOGRIAPHY Anton , Howard, Elementary Linear Algebra , John Wiley & Sons, 19S4. Cristi, Roberto, A Parallel Structure Jor Adaptive Pole Placement...10 11. SYSTEM IDENTIFICATION M*YETHODS ....................... 12 A. LINEAR SYSTEM MODELING ......................... 12 B. SOLUTION OF SYSTEMS OF... LINEAR EQUATIONS ......... 13 C. QR DECOMPOSITION ................................ 14 D. RECURSIVE LEAST SQUARES ......................... 16 E. BLOCK
A Least-Squares Transport Equation Compatible with Voids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Jon; Peterson, Jacob; Morel, Jim
Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transportmore » equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares S n formulation represents an excellent alternative to existing second-order S n transport formulations« less
40 CFR 90.321 - NDIR analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x... covering at least 80 percent of the 10 to 90 range (64 percent) is required (see following table). Example...
40 CFR 90.321 - NDIR analyzer calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x... covering at least 80 percent of the 10 to 90 range (64 percent) is required (see following table). Example...
40 CFR 90.321 - NDIR analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x... covering at least 80 percent of the 10 to 90 range (64 percent) is required (see following table). Example...
40 CFR 90.321 - NDIR analyzer calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x... covering at least 80 percent of the 10 to 90 range (64 percent) is required (see following table). Example...
Large-scale computation of incompressible viscous flow by least-squares finite element method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.
Least-mean-square spatial filter for IR sensors.
Takken, E H; Friedman, D; Milton, A F; Nitzberg, R
1979-12-15
A new least-mean-square filter is defined for signal-detection problems. The technique is proposed for scanning IR surveillance systems operating in poorly characterized but primarily low-frequency clutter interference. Near-optimal detection of point-source targets is predicted both for continuous-time and sampled-data systems.
Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology to study the associations among constituents of surface water and landscapes. Common data problems in ecological studies include: s...
Two-dimensional wavefront reconstruction based on double-shearing and least squares fitting
NASA Astrophysics Data System (ADS)
Liang, Peiying; Ding, Jianping; Zhu, Yangqing; Dong, Qian; Huang, Yuhua; Zhu, Zhen
2017-06-01
The two-dimensional wavefront reconstruction method based on double-shearing and least squares fitting is proposed in this paper. Four one-dimensional phase estimates of the measured wavefront, which correspond to the two shears and the two orthogonal directions, could be calculated from the differential phase, which solves the problem of the missing spectrum, and then by using the least squares method the two-dimensional wavefront reconstruction could be done. The numerical simulations of the proposed algorithm are carried out to verify the feasibility of this method. The influence of noise generated from different shear amount and different intensity on the accuracy of the reconstruction is studied and compared with the results from the algorithm based on single-shearing and least squares fitting. Finally, a two-grating lateral shearing interference experiment is carried out to verify the wavefront reconstruction algorithm based on doubleshearing and least squares fitting.
Signal Prediction With Input Identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin
1999-01-01
A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.
Object matching using a locally affine invariant and linear programming techniques.
Li, Hongsheng; Huang, Xiaolei; He, Lei
2013-02-01
In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.
Feasibility study on the least square method for fitting non-Gaussian noise data
NASA Astrophysics Data System (ADS)
Xu, Wei; Chen, Wen; Liang, Yingjie
2018-02-01
This study is to investigate the feasibility of least square method in fitting non-Gaussian noise data. We add different levels of the two typical non-Gaussian noises, Lévy and stretched Gaussian noises, to exact value of the selected functions including linear equations, polynomial and exponential equations, and the maximum absolute and the mean square errors are calculated for the different cases. Lévy and stretched Gaussian distributions have many applications in fractional and fractal calculus. It is observed that the non-Gaussian noises are less accurately fitted than the Gaussian noise, but the stretched Gaussian cases appear to perform better than the Lévy noise cases. It is stressed that the least-squares method is inapplicable to the non-Gaussian noise cases when the noise level is larger than 5%.
A Christoffel function weighted least squares algorithm for collocation approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Akil; Jakeman, John D.; Zhou, Tao
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
Lim, Jun-Seok; Pang, Hee-Suk
2016-01-01
In this paper an [Formula: see text]-regularized recursive total least squares (RTLS) algorithm is considered for the sparse system identification. Although recursive least squares (RLS) has been successfully applied in sparse system identification, the estimation performance in RLS based algorithms becomes worse, when both input and output are contaminated by noise (the error-in-variables problem). We proposed an algorithm to handle the error-in-variables problem. The proposed [Formula: see text]-RTLS algorithm is an RLS like iteration using the [Formula: see text] regularization. The proposed algorithm not only gives excellent performance but also reduces the required complexity through the effective inversion matrix handling. Simulations demonstrate the superiority of the proposed [Formula: see text]-regularized RTLS for the sparse system identification setting.
A Christoffel function weighted least squares algorithm for collocation approximations
Narayan, Akil; Jakeman, John D.; Zhou, Tao
2016-11-28
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles
NASA Astrophysics Data System (ADS)
Hawkins, Rhys; Brodie, Ross C.; Sambridge, Malcolm
2018-02-01
This paper presents the application of a novel trans-dimensional sampling approach to a time domain airborne electromagnetic (AEM) inverse problem to solve for plausible conductivities of the subsurface. Geophysical inverse field problems, such as time domain AEM, are well known to have a large degree of non-uniqueness. Common least-squares optimisation approaches fail to take this into account and provide a single solution with linearised estimates of uncertainty that can result in overly optimistic appraisal of the conductivity of the subsurface. In this new non-linear approach, the spatial complexity of a 2D profile is controlled directly by the data. By examining an ensemble of proposed conductivity profiles it accommodates non-uniqueness and provides more robust estimates of uncertainties.
NASA Astrophysics Data System (ADS)
Kang, Pilsang; Koo, Changhoi; Roh, Hokyu
2017-11-01
Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.
NASA Technical Reports Server (NTRS)
Tiffany, S. H.; Adams, W. M., Jr.
1984-01-01
A technique which employs both linear and nonlinear methods in a multilevel optimization structure to best approximate generalized unsteady aerodynamic forces for arbitrary motion is described. Optimum selection of free parameters is made in a rational function approximation of the aerodynamic forces in the Laplace domain such that a best fit is obtained, in a least squares sense, to tabular data for purely oscillatory motion. The multilevel structure and the corresponding formulation of the objective models are presented which separate the reduction of the fit error into linear and nonlinear problems, thus enabling the use of linear methods where practical. Certain equality and inequality constraints that may be imposed are identified; a brief description of the nongradient, nonlinear optimizer which is used is given; and results which illustrate application of the method are presented.
A new least-squares transport equation compatible with voids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, J. B.; Morel, J. E.
2013-07-01
We define a new least-squares transport equation that is applicable in voids, can be solved using source iteration with diffusion-synthetic acceleration, and requires only the solution of an independent set of second-order self-adjoint equations for each direction during each source iteration. We derive the equation, discretize it using the S{sub n} method in conjunction with a linear-continuous finite-element method in space, and computationally demonstrate various of its properties. (authors)
Least squares restoration of multi-channel images
NASA Technical Reports Server (NTRS)
Chin, Roland T.; Galatsanos, Nikolas P.
1989-01-01
In this paper, a least squares filter for the restoration of multichannel imagery is presented. The restoration filter is based on a linear, space-invariant imaging model and makes use of an iterative matrix inversion algorithm. The restoration utilizes both within-channel (spatial) and cross-channel information as constraints. Experiments using color images (three-channel imagery with red, green, and blue components) were performed to evaluate the filter's performance and to compare it with other monochrome and multichannel filters.
Probability distribution functions for unit hydrographs with optimization using genetic algorithm
NASA Astrophysics Data System (ADS)
Ghorbani, Mohammad Ali; Singh, Vijay P.; Sivakumar, Bellie; H. Kashani, Mahsa; Atre, Atul Arvind; Asadi, Hakimeh
2017-05-01
A unit hydrograph (UH) of a watershed may be viewed as the unit pulse response function of a linear system. In recent years, the use of probability distribution functions (pdfs) for determining a UH has received much attention. In this study, a nonlinear optimization model is developed to transmute a UH into a pdf. The potential of six popular pdfs, namely two-parameter gamma, two-parameter Gumbel, two-parameter log-normal, two-parameter normal, three-parameter Pearson distribution, and two-parameter Weibull is tested on data from the Lighvan catchment in Iran. The probability distribution parameters are determined using the nonlinear least squares optimization method in two ways: (1) optimization by programming in Mathematica; and (2) optimization by applying genetic algorithm. The results are compared with those obtained by the traditional linear least squares method. The results show comparable capability and performance of two nonlinear methods. The gamma and Pearson distributions are the most successful models in preserving the rising and recession limbs of the unit hydographs. The log-normal distribution has a high ability in predicting both the peak flow and time to peak of the unit hydrograph. The nonlinear optimization method does not outperform the linear least squares method in determining the UH (especially for excess rainfall of one pulse), but is comparable.
NASA Astrophysics Data System (ADS)
Talebpour, Zahra; Tavallaie, Roya; Ahmadi, Seyyed Hamid; Abdollahpour, Assem
2010-09-01
In this study, a new method for the simultaneous determination of penicillin G salts in pharmaceutical mixture via FT-IR spectroscopy combined with chemometrics was investigated. The mixture of penicillin G salts is a complex system due to similar analytical characteristics of components. Partial least squares (PLS) and radial basis function-partial least squares (RBF-PLS) were used to develop the linear and nonlinear relation between spectra and components, respectively. The orthogonal signal correction (OSC) preprocessing method was used to correct unexpected information, such as spectral overlapping and scattering effects. In order to compare the influence of OSC on PLS and RBF-PLS models, the optimal linear (PLS) and nonlinear (RBF-PLS) models based on conventional and OSC preprocessed spectra were established and compared. The obtained results demonstrated that OSC clearly enhanced the performance of both RBF-PLS and PLS calibration models. Also in the case of some nonlinear relation between spectra and component, OSC-RBF-PLS gave satisfactory results than OSC-PLS model which indicated that the OSC was helpful to remove extrinsic deviations from linearity without elimination of nonlinear information related to component. The chemometric models were tested on an external dataset and finally applied to the analysis commercialized injection product of penicillin G salts.
A simple suboptimal least-squares algorithm for attitude determination with multiple sensors
NASA Technical Reports Server (NTRS)
Brozenec, Thomas F.; Bender, Douglas J.
1994-01-01
Three-axis attitude determination is equivalent to finding a coordinate transformation matrix which transforms a set of reference vectors fixed in inertial space to a set of measurement vectors fixed in the spacecraft. The attitude determination problem can be expressed as a constrained optimization problem. The constraint is that a coordinate transformation matrix must be proper, real, and orthogonal. A transformation matrix can be thought of as optimal in the least-squares sense if it maps the measurement vectors to the reference vectors with minimal 2-norm errors and meets the above constraint. This constrained optimization problem is known as Wahba's problem. Several algorithms which solve Wahba's problem exactly have been developed and used. These algorithms, while steadily improving, are all rather complicated. Furthermore, they involve such numerically unstable or sensitive operations as matrix determinant, matrix adjoint, and Newton-Raphson iterations. This paper describes an algorithm which minimizes Wahba's loss function, but without the constraint. When the constraint is ignored, the problem can be solved by a straightforward, numerically stable least-squares algorithm such as QR decomposition. Even though the algorithm does not explicitly take the constraint into account, it still yields a nearly orthogonal matrix for most practical cases; orthogonality only becomes corrupted when the sensor measurements are very noisy, on the same order of magnitude as the attitude rotations. The algorithm can be simplified if the attitude rotations are small enough so that the approximation sin(theta) approximately equals theta holds. We then compare the computational requirements for several well-known algorithms. For the general large-angle case, the QR least-squares algorithm is competitive with all other know algorithms and faster than most. If attitude rotations are small, the least-squares algorithm can be modified to run faster, and this modified algorithm is faster than all but a similarly specialized version of the QUEST algorithm. We also introduce a novel measurement averaging technique which reduces the n-measurement case to the two measurement case for our particular application, a star tracker and earth sensor mounted on an earth-pointed geosynchronous communications satellite. Using this technique, many n-measurement problems reduce to less than or equal to 3 measurements; this reduces the amount of required calculation without significant degradation in accuracy. Finally, we present the results of some tests which compare the least-squares algorithm with the QUEST and FOAM algorithms in the two-measurement case. For our example case, all three algorithms performed with similar accuracy.
Detection of ferromagnetic target based on mobile magnetic gradient tensor system
NASA Astrophysics Data System (ADS)
Gang, Y. I. N.; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren
2016-03-01
Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source-sensor displacement vector. Secondly, unit source-sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source-sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source-sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source-sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method.
NASA Technical Reports Server (NTRS)
Jurenko, Robert J.; Bush, T. Jason; Ottander, John A.
2014-01-01
A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes both quadratically constrained least squares (LSQI) and Direct Shape Mapping (DSM) algorithms to determine physical displacements. This approach is applicable to the simulation of the elastic behavior of launch vehicles and other structures that utilize multiple LTI finite element model (FEM) derived mode sets that are propagated throughout time. The time invariant nature of the elastic data for discrete segments of the launch vehicle trajectory presents a problem of how to properly transition between models while preserving motion across the transition. In addition, energy may vary between flex models when using a truncated mode set. The LSQI-DSM algorithm can accommodate significant changes in energy between FEM models and carries elastic motion across FEM model transitions. Compared with previous approaches, the LSQI-DSM algorithm shows improvements ranging from a significant reduction to a complete removal of transients across FEM model transitions as well as maintaining elastic motion from the prior state.
The Problems of Multiple Feedback Estimation.
ERIC Educational Resources Information Center
Bulcock, Jeffrey W.
The use of two-stage least squares (2SLS) for the estimation of feedback linkages is inappropriate for nonorthogonal data sets because 2SLS is extremely sensitive to multicollinearity. It is argued that what is needed is use of a different estimating criterion than the least squares criterion. Theoretically the variance normalization criterion has…
Least-Squares Approximation of an Improper Correlation Matrix by a Proper One.
ERIC Educational Resources Information Center
Knol, Dirk L.; ten Berge, Jos M. F.
1989-01-01
An algorithm, based on a solution for C. I. Mosier's oblique Procrustes rotation problem, is presented for the best least-squares fitting correlation matrix approximating a given missing value or improper correlation matrix. Results are of interest for missing value and tetrachoric correlation, indefinite matrix correlation, and constrained…
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
Mu, Lin; Wang, Junping; Ye, Xiu
2017-08-17
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1993-01-01
A comparative description is presented for the least-squares FEM (LSFEM) for 2D steady-state pure convection problems. In addition to exhibiting better control of the streamline derivative than the streamline upwinding Petrov-Galerkin method, numerical convergence rates are obtained which show the LSFEM to be virtually optimal. The LSFEM is used as a framework for an iteratively reweighted LSFEM yielding nonoscillatory and nondiffusive solutions for problems with contact discontinuities; this method is shown to convect contact discontinuities without error when using triangular and bilinear elements.
Least-squares model-based halftoning
NASA Astrophysics Data System (ADS)
Pappas, Thrasyvoulos N.; Neuhoff, David L.
1992-08-01
A least-squares model-based approach to digital halftoning is proposed. It exploits both a printer model and a model for visual perception. It attempts to produce an 'optimal' halftoned reproduction, by minimizing the squared error between the response of the cascade of the printer and visual models to the binary image and the response of the visual model to the original gray-scale image. Conventional methods, such as clustered ordered dither, use the properties of the eye only implicitly, and resist printer distortions at the expense of spatial and gray-scale resolution. In previous work we showed that our printer model can be used to modify error diffusion to account for printer distortions. The modified error diffusion algorithm has better spatial and gray-scale resolution than conventional techniques, but produces some well known artifacts and asymmetries because it does not make use of an explicit eye model. Least-squares model-based halftoning uses explicit eye models and relies on printer models that predict distortions and exploit them to increase, rather than decrease, both spatial and gray-scale resolution. We have shown that the one-dimensional least-squares problem, in which each row or column of the image is halftoned independently, can be implemented with the Viterbi's algorithm. Unfortunately, no closed form solution can be found in two dimensions. The two-dimensional least squares solution is obtained by iterative techniques. Experiments show that least-squares model-based halftoning produces more gray levels and better spatial resolution than conventional techniques. We also show that the least- squares approach eliminates the problems associated with error diffusion. Model-based halftoning can be especially useful in transmission of high quality documents using high fidelity gray-scale image encoders. As we have shown, in such cases halftoning can be performed at the receiver, just before printing. Apart from coding efficiency, this approach permits the halftoner to be tuned to the individual printer, whose characteristics may vary considerably from those of other printers, for example, write-black vs. write-white laser printers.
Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen
2016-02-01
Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.
A Hierarchical Linear Model for Estimating Gender-Based Earnings Differentials.
ERIC Educational Resources Information Center
Haberfield, Yitchak; Semyonov, Moshe; Addi, Audrey
1998-01-01
Estimates of gender earnings inequality in data from 116,431 Jewish workers were compared using a hierarchical linear model (HLM) and ordinary least squares model. The HLM allows estimation of the extent to which earnings inequality depends on occupational characteristics. (SK)
Comparing The Effectiveness of a90/95 Calculations (Preprint)
2006-09-01
Nachtsheim, John Neter, William Li, Applied Linear Statistical Models , 5th ed., McGraw-Hill/Irwin, 2005 5. Mood, Graybill and Boes, Introduction...curves is based on methods that are only valid for ordinary linear regression. Requirements for a valid Ordinary Least-Squares Regression Model There... linear . For example is a linear model ; is not. 2. Uniform variance (homoscedasticity
Jafari, Ramin; Chhabra, Shalini; Prince, Martin R; Wang, Yi; Spincemaille, Pascal
2018-04-01
To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Cooley, R.L.; Hill, M.C.
1992-01-01
Three methods of solving nonlinear least-squares problems were compared for robustness and efficiency using a series of hypothetical and field problems. A modified Gauss-Newton/full Newton hybrid method (MGN/FN) and an analogous method for which part of the Hessian matrix was replaced by a quasi-Newton approximation (MGN/QN) solved some of the problems with appreciably fewer iterations than required using only a modified Gauss-Newton (MGN) method. In these problems, model nonlinearity and a large variance for the observed data apparently caused MGN to converge more slowly than MGN/FN or MGN/QN after the sum of squared errors had almost stabilized. Other problems were solved as efficiently with MGN as with MGN/FN or MGN/QN. Because MGN/FN can require significantly more computer time per iteration and more computer storage for transient problems, it is less attractive for a general purpose algorithm than MGN/QN.
Asymptotic Analysis Of The Total Least Squares ESPRIT Algorithm'
NASA Astrophysics Data System (ADS)
Ottersten, B. E.; Viberg, M.; Kailath, T.
1989-11-01
This paper considers the problem of estimating the parameters of multiple narrowband signals arriving at an array of sensors. Modern approaches to this problem often involve costly procedures for calculating the estimates. The ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm was recently proposed as a means for obtaining accurate estimates without requiring a costly search of the parameter space. This method utilizes an array invariance to arrive at a computationally efficient multidimensional estimation procedure. Herein, the asymptotic distribution of the estimation error is derived for the Total Least Squares (TLS) version of ESPRIT. The Cramer-Rao Bound (CRB) for the ESPRIT problem formulation is also derived and found to coincide with the variance of the asymptotic distribution through numerical examples. The method is also compared to least squares ESPRIT and MUSIC as well as to the CRB for a calibrated array. Simulations indicate that the theoretic expressions can be used to accurately predict the performance of the algorithm.
Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan
2017-09-01
In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Amiri-Simkooei, A. R.
2018-01-01
Three-dimensional (3D) coordinate transformations, generally consisting of origin shifts, axes rotations, scale changes, and skew parameters, are widely used in many geomatics applications. Although in some geodetic applications simplified transformation models are used based on the assumption of small transformation parameters, in other fields of applications such parameters are indeed large. The algorithms of two recent papers on the weighted total least-squares (WTLS) problem are used for the 3D coordinate transformation. The methodology can be applied to the case when the transformation parameters are generally large of which no approximate values of the parameters are required. Direct linearization of the rotation and scale parameters is thus not required. The WTLS formulation is employed to take into consideration errors in both the start and target systems on the estimation of the transformation parameters. Two of the well-known 3D transformation methods, namely affine (12, 9, and 8 parameters) and similarity (7 and 6 parameters) transformations, can be handled using the WTLS theory subject to hard constraints. Because the method can be formulated by the standard least-squares theory with constraints, the covariance matrix of the transformation parameters can directly be provided. The above characteristics of the 3D coordinate transformation are implemented in the presence of different variance components, which are estimated using the least squares variance component estimation. In particular, the estimability of the variance components is investigated. The efficacy of the proposed formulation is verified on two real data sets.
40 CFR 1051.243 - How do I determine deterioration factors from exhaust durability testing?
Code of Federal Regulations, 2011 CFR
2011-07-01
... measure emissions at three or more points, use a linear least-squares fit of your test data for each... points. (2) Operate the vehicle or engine over a representative duty cycle for a period at least as long...
40 CFR 1051.243 - How do I determine deterioration factors from exhaust durability testing?
Code of Federal Regulations, 2014 CFR
2014-07-01
... measure emissions at three or more points, use a linear least-squares fit of your test data for each... points. (2) Operate the vehicle or engine over a representative duty cycle for a period at least as long...
40 CFR 1051.243 - How do I determine deterioration factors from exhaust durability testing?
Code of Federal Regulations, 2012 CFR
2012-07-01
... measure emissions at three or more points, use a linear least-squares fit of your test data for each... points. (2) Operate the vehicle or engine over a representative duty cycle for a period at least as long...
40 CFR 1051.243 - How do I determine deterioration factors from exhaust durability testing?
Code of Federal Regulations, 2013 CFR
2013-07-01
... measure emissions at three or more points, use a linear least-squares fit of your test data for each... points. (2) Operate the vehicle or engine over a representative duty cycle for a period at least as long...
Inverse models: A necessary next step in ground-water modeling
Poeter, E.P.; Hill, M.C.
1997-01-01
Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.
Studies of superresolution range-Doppler imaging
NASA Astrophysics Data System (ADS)
Zhu, Zhaoda; Ye, Zhenru; Wu, Xiaoqing; Yin, Jun; She, Zhishun
1993-02-01
This paper presents three superresolution imaging methods, including the linear prediction data extrapolation DFT (LPDEDFT), the dynamic optimization linear least squares (DOLLS), and the Hopfield neural network nonlinear least squares (HNNNLS). Live data of a metalized scale model B-52 aircraft, mounted on a rotating platform in a microwave anechoic chamber, have in this way been processed, as has a flying Boeing-727 aircraft. The imaging results indicate that, compared to the conventional Fourier method, either higher resolution for the same effective bandwidth of transmitted signals and total rotation angle in imaging, or equal-quality images from smaller bandwidth and total rotation, angle may be obtained by these superresolution approaches. Moreover, these methods are compared in respect of their resolution capability and computational complexity.
Solution Methods for 3D Tomographic Inversion Using A Highly Non-Linear Ray Tracer
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Ballard, S.; Young, C. J.; Chang, M.
2008-12-01
To develop 3D velocity models to improve nuclear explosion monitoring capability, we have developed a 3D tomographic modeling system that traces rays using an implementation of the Um and Thurber ray pseudo- bending approach, with full enforcement of Snell's Law in 3D at the major discontinuities. Due to the highly non-linear nature of the ray tracer, however, we are forced to substantially damp the inversion in order to converge on a reasonable model. Unfortunately the amount of damping is not known a priori and can significantly extend the number of calls of the computationally expensive ray-tracer and the least squares matrix solver. If the damping term is too small the solution step-size produces either an un-realistic model velocity change or places the solution in or near a local minimum from which extrication is nearly impossible. If the damping term is too large, convergence can be very slow or premature convergence can occur. Standard approaches involve running inversions with a suite of damping parameters to find the best model. A better solution methodology is to take advantage of existing non-linear solution techniques such as Levenberg-Marquardt (LM) or quasi-newton iterative solvers. In particular, the LM algorithm was specifically designed to find the minimum of a multi-variate function that is expressed as the sum of squares of non-linear real-valued functions. It has become a standard technique for solving non-linear least squared problems, and is widely adopted in a broad spectrum of disciplines, including the geosciences. At each iteration, the LM approach dynamically varies the level of damping to optimize convergence. When the current estimate of the solution is far from the ultimate solution LM behaves as a steepest decent method, but transitions to Gauss- Newton behavior, with near quadratic convergence, as the estimate approaches the final solution. We show typical linear solution techniques and how they can lead to local minima if the damping is set too low. We also describe the LM technique and show how it automatically determines the appropriate damping factor as it iteratively converges on the best solution. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.
Foundations for estimation by the method of least squares
NASA Technical Reports Server (NTRS)
Hauck, W. W., Jr.
1971-01-01
Least squares estimation is discussed from the point of view of a statistician. Much of the emphasis is on problems encountered in application and, more specifically, on questions involving assumptions: what assumptions are needed, when are they needed, what happens if they are not valid, and if they are invalid, how that fact can be detected.
ERIC Educational Resources Information Center
Brusco, Michael J.; Stahl, Stephanie
2005-01-01
There are two well-known methods for obtaining a guaranteed globally optimal solution to the problem of least-squares unidimensional scaling of a symmetric dissimilarity matrix: (a) dynamic programming, and (b) branch-and-bound. Dynamic programming is generally more efficient than branch-and-bound, but the former is limited to matrices with…
NASA Astrophysics Data System (ADS)
Khawaja, Taimoor Saleem
A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.
Should Pruning be a Pre-Processor of any Linear System?
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Ramakrishnan, Suja; Agarwal, Ravi P.; Shaykhian, Gholam Ali
2011-01-01
There are many real-world problems whose mathematical models turn out to be linear systems Ax = b, where A is an m x n matrix. Each equation of the linear system is an information. An information, in a physical problem, such as 4 mangoes, 6 bananas, and 5 oranges cost $10, is mathematically modeled as an equation 4x(sub 1) + 6x(sub 2) + 5x(sub 3) = 10 , where x(sub 1), x(sub 2), x(sub 3) are each cost of one mango, that of one banana, and that of one orange, respectively. All the information put together in a specified context, constitutes the physical problem and need not be all distinct. Some of these could be redundant, which cannot be readily identified by inspection. The resulting mathematical model will thus have equations corresponding to this redundant information and hence are linearly dependent and thus superfluous. Consequently, these equations once identified should be better pruned in the process of solving the system. The benefits are (i) less computation and hence less error and consequently a better quality of solution and (ii) reduced storage requirements. In literature, the pruning concept is not in vogue so far although it is most desirable. It is assumed that at least one information, i.e. one equation is known to be correct and which will be our first equation. In a numerical linear system, the system could be slightly inconsistent or inconsistent of varying degree. If the system is too inconsistent, then we should fall back on to the physical problem (PP), check the correctness of the PP derived from the material universe, modify it, if necessary, and then check the corresponding mathematical model (MM) and correct it. In nature/material universe, inconsistency is completely nonexistent. If the MM becomes inconsistent, it could be due to error introduced by the concerned measuring device and/or due to assumptions made on the PP to obtain an MM which is relatively easily solvable or simply due to human error. No measuring device can usually measure a quantity with an accuracy greater that 0.005% or, equivalently with a relative error less than 0.005%. Hence measurement error is unavoidable in a numerical linear system when the quantities are continuous (or even discrete with extremely large number). Assumptions, though not desirable, are usually made when we find the problem sufficiently difficult to be solved within the available means/tools/resources and hence distort the PP and the corresponding MM. The . error thus introduced in the system could (not always necessarily though) make the system somewhat inconsistent. If the inconsistency (contradiction) is too much then one should definitely not proceed to solve the system in terms of getting a least-squares solution or the minimum-norm least-squares solution. All these solutions will be invariably of no real-world use. If, on the other hand, inconsistency is reasonably low, i.e. the system is near-consistent or, equivalently, has near-linearly-dependent rows, then the foregoing solutions are useful. Pruning in such a near-consistent system should be performed based on the desired accuracy and on the definition of near-linear dependence. In this article, we discuss pruning over various kinds of linear systems and strongly suggest its use as a pre-processor or as a part of an algorithm. Ideally pruning should (i) be a part of the solution process (algorithm) of the system, (ii) reduce both computational error and complexity of the process, and (iii) take into account the numerical zero defined in the context. These are precisely what we achieve through our proposed O(mn2) algorithm presented in Matlab, that uses a subprogram of solving a single linear equation and that has embedded in it the pruning.
The Routine Fitting of Kinetic Data to Models
Berman, Mones; Shahn, Ezra; Weiss, Marjory F.
1962-01-01
A mathematical formalism is presented for use with digital computers to permit the routine fitting of data to physical and mathematical models. Given a set of data, the mathematical equations describing a model, initial conditions for an experiment, and initial estimates for the values of model parameters, the computer program automatically proceeds to obtain a least squares fit of the data by an iterative adjustment of the values of the parameters. When the experimental measures are linear combinations of functions, the linear coefficients for a least squares fit may also be calculated. The values of both the parameters of the model and the coefficients for the sum of functions may be unknown independent variables, unknown dependent variables, or known constants. In the case of dependence, only linear dependencies are provided for in routine use. The computer program includes a number of subroutines, each one of which performs a special task. This permits flexibility in choosing various types of solutions and procedures. One subroutine, for example, handles linear differential equations, another, special non-linear functions, etc. The use of analytic or numerical solutions of equations is possible. PMID:13867975
A path following algorithm for the graph matching problem.
Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe
2009-12-01
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.
Self-tuning regulators for multicyclic control of helicopter vibration
NASA Technical Reports Server (NTRS)
Johnson, W.
1982-01-01
A class of algorithms for the multicyclic control of helicopter vibration and loads is derived and discussed. This class is characterized by a linear, quasi-static, frequency-domain model of the helicopter response to control; identification of the helicopter model by least-squared-error or Kalman filter methods; and a minimum variance or quadratic performance function controller. Previous research on such controllers is reviewed. The derivations and discussions cover the helicopter model; the identification problem, including both off-line and on-line (recursive) algorithms; the control problem, including both open-loop and closed-loop feedback; and the various regulator configurations possible within this class. Conclusions from analysis and numerical simulations of the regulators provide guidance in the design and selection of algorithms for further development, including wind tunnel and flight tests.
Theoretical study of the incompressible Navier-Stokes equations by the least-squares method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Loh, Ching Y.; Povinelli, Louis A.
1994-01-01
Usually the theoretical analysis of the Navier-Stokes equations is conducted via the Galerkin method which leads to difficult saddle-point problems. This paper demonstrates that the least-squares method is a useful alternative tool for the theoretical study of partial differential equations since it leads to minimization problems which can often be treated by an elementary technique. The principal part of the Navier-Stokes equations in the first-order velocity-pressure-vorticity formulation consists of two div-curl systems, so the three-dimensional div-curl system is thoroughly studied at first. By introducing a dummy variable and by using the least-squares method, this paper shows that the div-curl system is properly determined and elliptic, and has a unique solution. The same technique then is employed to prove that the Stokes equations are properly determined and elliptic, and that four boundary conditions on a fixed boundary are required for three-dimensional problems. This paper also shows that under four combinations of non-standard boundary conditions the solution of the Stokes equations is unique. This paper emphasizes the application of the least-squares method and the div-curl method to derive a high-order version of differential equations and additional boundary conditions. In this paper, an elementary method (integration by parts) is used to prove Friedrichs' inequalities related to the div and curl operators which play an essential role in the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, X; Petrongolo, M; Wang, T
Purpose: A general problem of dual-energy CT (DECT) is that the decomposition is sensitive to noise in the two sets of dual-energy projection data, resulting in severely degraded qualities of decomposed images. We have previously proposed an iterative denoising method for DECT. Using a linear decomposition function, the method does not gain the full benefits of DECT on beam-hardening correction. In this work, we expand the framework of our iterative method to include non-linear decomposition models for noise suppression in DECT. Methods: We first obtain decomposed projections, which are free of beam-hardening artifacts, using a lookup table pre-measured on amore » calibration phantom. First-pass material images with high noise are reconstructed from the decomposed projections using standard filter-backprojection reconstruction. Noise on the decomposed images is then suppressed by an iterative method, which is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, we include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Analytical formulae are derived to compute the variance-covariance matrix from the measured decomposition lookup table. Results: We have evaluated the proposed method via phantom studies. Using non-linear decomposition, our method effectively suppresses the streaking artifacts of beam-hardening and obtains more uniform images than our previous approach based on a linear model. The proposed method reduces the average noise standard deviation of two basis materials by one order of magnitude without sacrificing the spatial resolution. Conclusion: We propose a general framework of iterative denoising for material decomposition of DECT. Preliminary phantom studies have shown the proposed method improves the image uniformity and reduces noise level without resolution loss. In the future, we will perform more phantom studies to further validate the performance of the purposed method. This work is supported by a Varian MRA grant.« less
Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults
NASA Astrophysics Data System (ADS)
Abdelrahman, E. M.; Essa, K. S.
2015-02-01
We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.
Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths
NASA Astrophysics Data System (ADS)
Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna
2011-06-01
We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.
Impact of view reduction in CT on radiation dose for patients
NASA Astrophysics Data System (ADS)
Parcero, E.; Flores, L.; Sánchez, M. G.; Vidal, V.; Verdú, G.
2017-08-01
Iterative methods have become a hot topic of research in computed tomography (CT) imaging because of their capacity to resolve the reconstruction problem from a limited number of projections. This allows the reduction of radiation exposure on patients during the data acquisition. The reconstruction time and the high radiation dose imposed on patients are the two major drawbacks in CT. To solve them effectively we adapted the method for sparse linear equations and sparse least squares (LSQR) with soft threshold filtering (STF) and the fast iterative shrinkage-thresholding algorithm (FISTA) to computed tomography reconstruction. The feasibility of the proposed methods is demonstrated numerically.
Logistic growth for the Nuzi cuneiform tablets: Analyzing family networks in ancient Mesopotamia
NASA Astrophysics Data System (ADS)
Ueda, Sumie; Makino, Kumi; Itoh, Yoshiaki; Tsuchiya, Takashi
2015-03-01
We reconstruct the published year of each cuneiform tablet of the Nuzi society in ancient Mesopotamia. The tablets are on land transaction, marriage, loan, slavery contracts, etc. The number of tablets seems to increase by logistic growth. It may show the dynamics of concentration of lands or other properties into few powerful families in a period of about sixty years and most of them are in about thirty years. We reconstruct family trees and social networks of Nuzi and estimate the published years of cuneiform tablets consistently with the trees and networks, formulating least squares problems with linear inequality constraints.
A Continuous Square Root in Formation Filter-Swoother with Discrete Data Update
NASA Technical Reports Server (NTRS)
Miller, J. K.
1994-01-01
A differential equation for the square root information matrix is derived and adapted to the problems of filtering and smoothing. The resulting continuous square root information filter (SRIF) performs the mapping of state and process noise by numerical integration of the SRIF matrix and admits data via a discrete least square update.
An on-line modified least-mean-square algorithm for training neurofuzzy controllers.
Tan, Woei Wan
2007-04-01
The problem hindering the use of data-driven modelling methods for training controllers on-line is the lack of control over the amount by which the plant is excited. As the operating schedule determines the information available on-line, the knowledge of the process may degrade if the setpoint remains constant for an extended period. This paper proposes an identification algorithm that alleviates "learning interference" by incorporating fuzzy theory into the normalized least-mean-square update rule. The ability of the proposed methodology to achieve faster learning is examined by employing the algorithm to train a neurofuzzy feedforward controller for controlling a liquid level process. Since the proposed identification strategy has similarities with the normalized least-mean-square update rule and the recursive least-square estimator, the on-line learning rates of these algorithms are also compared.
Multivariable frequency domain identification via 2-norm minimization
NASA Technical Reports Server (NTRS)
Bayard, David S.
1992-01-01
The author develops a computational approach to multivariable frequency domain identification, based on 2-norm minimization. In particular, a Gauss-Newton (GN) iteration is developed to minimize the 2-norm of the error between frequency domain data and a matrix fraction transfer function estimate. To improve the global performance of the optimization algorithm, the GN iteration is initialized using the solution to a particular sequentially reweighted least squares problem, denoted as the SK iteration. The least squares problems which arise from both the SK and GN iterations are shown to involve sparse matrices with identical block structure. A sparse matrix QR factorization method is developed to exploit the special block structure, and to efficiently compute the least squares solution. A numerical example involving the identification of a multiple-input multiple-output (MIMO) plant having 286 unknown parameters is given to illustrate the effectiveness of the algorithm.
NASA Technical Reports Server (NTRS)
Periaux, J.
1979-01-01
The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.
Parallel Nonnegative Least Squares Solvers for Model Order Reduction
2016-03-01
NNLS problems that arise when the Energy Conserving Sampling and Weighting hyper -reduction procedure is used when constructing a reduced-order model...ScaLAPACK and performance results are presented. nonnegative least squares, model order reduction, hyper -reduction, Energy Conserving Sampling and...optimal solution. ........................................ 20 Table 6 Reduced mesh sizes produced for each solver in the ECSW hyper -reduction step
NASA Astrophysics Data System (ADS)
Bogiatzis, P.; Ishii, M.; Davis, T. A.
2016-12-01
Seismic tomography inverse problems are among the largest high-dimensional parameter estimation tasks in Earth science. We show how combinatorics and graph theory can be used to analyze the structure of such problems, and to effectively decompose them into smaller ones that can be solved efficiently by means of the least squares method. In combination with recent high performance direct sparse algorithms, this reduction in dimensionality allows for an efficient computation of the model resolution and covariance matrices using limited resources. Furthermore, we show that a new sparse singular value decomposition method can be used to obtain the complete spectrum of the singular values. This procedure provides the means for more objective regularization and further dimensionality reduction of the problem. We apply this methodology to a moderate size, non-linear seismic tomography problem to image the structure of the crust and the upper mantle beneath Japan using local deep earthquakes recorded by the High Sensitivity Seismograph Network stations.
Wu, Yabei; Lu, Huanzhang; Zhao, Fei; Zhang, Zhiyong
2016-01-01
Shape serves as an important additional feature for space target classification, which is complementary to those made available. Since different shapes lead to different projection functions, the projection property can be regarded as one kind of shape feature. In this work, the problem of estimating the projection function from the infrared signature of the object is addressed. We show that the projection function of any rotationally symmetric object can be approximately represented as a linear combination of some base functions. Based on this fact, the signal model of the emissivity-area product sequence is constructed, which is a particular mathematical function of the linear coefficients and micro-motion parameters. Then, the least square estimator is proposed to estimate the projection function and micro-motion parameters jointly. Experiments validate the effectiveness of the proposed method. PMID:27763500
NASA Astrophysics Data System (ADS)
Marzban, Hamid Reza
2018-05-01
In this paper, we are concerned with the parameter identification of linear time-invariant systems containing multiple delays. The approach is based upon a hybrid of block-pulse functions and Legendre's polynomials. The convergence of the proposed procedure is established and an upper error bound with respect to the L2-norm associated with the hybrid functions is derived. The problem under consideration is first transformed into a system of algebraic equations. The least squares technique is then employed for identification of the desired parameters. Several multi-delay systems of varying complexity are investigated to evaluate the performance and capability of the proposed approximation method. It is shown that the proposed approach is also applicable to a class of nonlinear multi-delay systems. It is demonstrated that the suggested procedure provides accurate results for the desired parameters.
Stress Recovery and Error Estimation for Shell Structures
NASA Technical Reports Server (NTRS)
Yazdani, A. A.; Riggs, H. R.; Tessler, A.
2000-01-01
The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.
NASA Astrophysics Data System (ADS)
Syusina, O. M.; Chernitsov, A. M.; Tamarov, V. A.
2011-07-01
Simple and mathematically rigorous methods for calculating of nonlinearity coefficients are proposed. These coefficients allow us to make classification for the least squares problem as strongly or weakly nonlinear one. The advices are given on how to reduce a concrete estimation problem to weakly nonlinear one where a more efficient linear approach can be used.
Liu, Tian; Spincemaille, Pascal; de Rochefort, Ludovic; Kressler, Bryan; Wang, Yi
2009-01-01
Magnetic susceptibility differs among tissues based on their contents of iron, calcium, contrast agent, and other molecular compositions. Susceptibility modifies the magnetic field detected in the MR signal phase. The determination of an arbitrary susceptibility distribution from the induced field shifts is a challenging, ill-posed inverse problem. A method called "calculation of susceptibility through multiple orientation sampling" (COSMOS) is proposed to stabilize this inverse problem. The field created by the susceptibility distribution is sampled at multiple orientations with respect to the polarization field, B(0), and the susceptibility map is reconstructed by weighted linear least squares to account for field noise and the signal void region. Numerical simulations and phantom and in vitro imaging validations demonstrated that COSMOS is a stable and precise approach to quantify a susceptibility distribution using MRI.
NASA Technical Reports Server (NTRS)
Walker, H. F.
1979-01-01
In many pattern recognition problems, data vectors are classified although one or more of the data vector elements are missing. This problem occurs in remote sensing when the ground is obscured by clouds. Optimal linear discrimination procedures for classifying imcomplete data vectors are discussed.
Fast Dating Using Least-Squares Criteria and Algorithms.
To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier
2016-01-01
Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Fast Dating Using Least-Squares Criteria and Algorithms
To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier
2016-01-01
Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley–Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley–Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3. PMID:26424727
Bonny, Jean Marie; Boespflug-Tanguly, Odile; Zanca, Michel; Renou, Jean Pierre
2003-03-01
A solution for discrete multi-exponential analysis of T(2) relaxation decay curves obtained in current multi-echo imaging protocol conditions is described. We propose a preprocessing step to improve the signal-to-noise ratio and thus lower the signal-to-noise ratio threshold from which a high percentage of true multi-exponential detection is detected. It consists of a multispectral nonlinear edge-preserving filter that takes into account the signal-dependent Rician distribution of noise affecting magnitude MR images. Discrete multi-exponential decomposition, which requires no a priori knowledge, is performed by a non-linear least-squares procedure initialized with estimates obtained from a total least-squares linear prediction algorithm. This approach was validated and optimized experimentally on simulated data sets of normal human brains.
NASA Astrophysics Data System (ADS)
Ziegler, Benjamin; Rauhut, Guntram
2016-03-01
The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.
Ziegler, Benjamin; Rauhut, Guntram
2016-03-21
The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.
Beaton, Derek; Dunlop, Joseph; Abdi, Hervé
2016-12-01
For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena has been a core interest for psychological research. Recently, this interest has been reinvigorated by the availability of genotyping technologies (e.g., microarrays) that provide new genetic data, such as single nucleotide polymorphisms (SNPs). These SNPs-which represent pairs of nucleotide letters (e.g., AA, AG, or GG) found at specific positions on human chromosomes-are best considered as categorical variables, but this coding scheme can make difficult the multivariate analysis of their relationships with behavioral measurements, because most multivariate techniques developed for the analysis between sets of variables are designed for quantitative variables. To palliate this problem, we present a generalization of partial least squares-a technique used to extract the information common to 2 different data tables measured on the same observations-called partial least squares correspondence analysis-that is specifically tailored for the analysis of categorical and mixed ("heterogeneous") data types. Here, we formally define and illustrate-in a tutorial format-how partial least squares correspondence analysis extends to various types of data and design problems that are particularly relevant for psychological research that include genetic data. We illustrate partial least squares correspondence analysis with genetic, behavioral, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. R code is available on the Comprehensive R Archive Network and via the authors' websites. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks
Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng
2014-01-01
Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408
Fractional Gaussian model in global optimization
NASA Astrophysics Data System (ADS)
Dimri, V. P.; Srivastava, R. P.
2009-12-01
Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.
NASA Astrophysics Data System (ADS)
Alkharji, Mohammed N.
Most fracture characterization methods provide a general description of the fracture parameters as part of the reservoirs parameters; the fracture interaction and geometry within the reservoir is given less attention. T-Matrix and Linear Slip effective medium fracture models are implemented to invert the elastic tensor for the parameters and geometries of the fractures within the reservoir. The fracture inverse problem has an ill-posed, overdetermined, underconstrained rank-deficit system of equations. Least-squares inverse methods are used to solve the problem. A good starting initial model for the parameters is a key factor in the reliability of the inversion. Most methods assume that the starting parameters are close to the solution to avoid inaccurate local minimum solutions. The prior knowledge of the fracture parameters and their geometry is not available. We develop a hybrid, enumerative and Gauss-Newton, method that estimates the fracture parameters and geometry from the elastic tensor with no prior knowledge of the initial parameter values. The fracture parameters are separated into two groups. The first group contains the fracture parameters with no prior information, and the second group contains the parameters with known prior information. Different models are generated from the first group parameters by sampling the solution space over a predefined range of possible solutions for each parameter. Each model generated by the first group is fixed and used as a starting model to invert for the second group of parameters using the Gauss-Newton method. The least-squares residual between the observed elastic tensor and the estimated elastic tensor is calculated for each model. The model parameters that yield the least-squares residual corresponds to the correct fracture reservoir parameters and geometry. Two synthetic examples of fractured reservoirs with oil and gas saturations were inverted with no prior information about the fracture properties. The results showed that the hybrid algorithm successfully predicted the fracture parametrization, geometry, and the fluid content within the modeled reservoir. The method was also applied on an elastic tensor extracted from the Weyburn field in Saskatchewan, Canada. The solution suggested no presence of fractures but only a VTI system caused by the shale layering in the targeted reservoir, this interpretation is supported by other Weyburn field data.
ERIC Educational Resources Information Center
Alexander, John W., Jr.; Rosenberg, Nancy S.
This document consists of two modules. The first of these views applications of algebra and elementary calculus to curve fitting. The user is provided with information on how to: 1) construct scatter diagrams; 2) choose an appropriate function to fit specific data; 3) understand the underlying theory of least squares; 4) use a computer program to…
Approximating a retarded-advanced differential equation that models human phonation
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2017-11-01
In [1, 2, 3] we have got the numerical solution of a linear mixed type functional differential equation (MTFDE) introduced initially in [4], considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering B-splines basis set. The present work introduces a numerical scheme using least squares method (LSM) and Gaussian basis functions to solve numerically a nonlinear mixed type equation with symmetric delay and advance which models human phonation. The preliminary results are promising. We obtain an accuracy comparable with the previous results.
Practical global oceanic state estimation
NASA Astrophysics Data System (ADS)
Wunsch, Carl; Heimbach, Patrick
2007-06-01
The problem of oceanographic state estimation, by means of an ocean general circulation model (GCM) and a multitude of observations, is described and contrasted with the meteorological process of data assimilation. In practice, all such methods reduce, on the computer, to forms of least-squares. The global oceanographic problem is at the present time focussed primarily on smoothing, rather than forecasting, and the data types are unlike meteorological ones. As formulated in the consortium Estimating the Circulation and Climate of the Ocean (ECCO), an automatic differentiation tool is used to calculate the so-called adjoint code of the GCM, and the method of Lagrange multipliers used to render the problem one of unconstrained least-squares minimization. Major problems today lie less with the numerical algorithms (least-squares problems can be solved by many means) than with the issues of data and model error. Results of ongoing calculations covering the period of the World Ocean Circulation Experiment, and including among other data, satellite altimetry from TOPEX/POSEIDON, Jason-1, ERS- 1/2, ENVISAT, and GFO, a global array of profiling floats from the Argo program, and satellite gravity data from the GRACE mission, suggest that the solutions are now useful for scientific purposes. Both methodology and applications are developing in a number of different directions.
A comparison of optimization algorithms for localized in vivo B0 shimming.
Nassirpour, Sahar; Chang, Paul; Fillmer, Ariane; Henning, Anke
2018-02-01
To compare several different optimization algorithms currently used for localized in vivo B 0 shimming, and to introduce a novel, fast, and robust constrained regularized algorithm (ConsTru) for this purpose. Ten different optimization algorithms (including samples from both generic and dedicated least-squares solvers, and a novel constrained regularized inversion method) were implemented and compared for shimming in five different shimming volumes on 66 in vivo data sets from both 7 T and 9.4 T. The best algorithm was chosen to perform single-voxel spectroscopy at 9.4 T in the frontal cortex of the brain on 10 volunteers. The results of the performance tests proved that the shimming algorithm is prone to unstable solutions if it depends on the value of a starting point, and is not regularized to handle ill-conditioned problems. The ConsTru algorithm proved to be the most robust, fast, and efficient algorithm among all of the chosen algorithms. It enabled acquisition of spectra of reproducible high quality in the frontal cortex at 9.4 T. For localized in vivo B 0 shimming, the use of a dedicated linear least-squares solver instead of a generic nonlinear one is highly recommended. Among all of the linear solvers, the constrained regularized method (ConsTru) was found to be both fast and most robust. Magn Reson Med 79:1145-1156, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Full Waveform Inversion for Seismic Velocity And Anelastic Losses in Heterogeneous Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askan, A.; /Carnegie Mellon U.; Akcelik, V.
2009-04-30
We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization problem, where the constraints are the partial and ordinary differential equations governing the anelastic wave propagation from the source to the receivers in the time domain. This leads to amore » variational formulation in terms of the material model plus the state variables and their adjoints. We employ a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium is modeled by a set of standard linear solids. The least-squares optimization approach to inverse wave propagation presents the well-known difficulties of ill posedness and multiple minima. To overcome ill posedness, we include a total variation regularization functional in the objective function, which annihilates highly oscillatory material property components while preserving discontinuities in the medium. To treat multiple minima, we use a multilevel algorithm that solves a sequence of subproblems on increasingly finer grids with increasingly higher frequency source components to remain within the basin of attraction of the global minimum. We illustrate the methodology with high-resolution inversions for two-dimensional sedimentary models of the San Fernando Valley, under SH-wave excitation. We perform inversions for both the seismic velocity and the intrinsic attenuation using synthetic waveforms at the observer locations as pseudoobserved data.« less
a Unified Matrix Polynomial Approach to Modal Identification
NASA Astrophysics Data System (ADS)
Allemang, R. J.; Brown, D. L.
1998-04-01
One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.
Roux, C Z
2009-05-01
Short phylogenetic distances between taxa occur, for example, in studies on ribosomal RNA-genes with slow substitution rates. For consistently short distances, it is proved that in the completely singular limit of the covariance matrix ordinary least squares (OLS) estimates are minimum variance or best linear unbiased (BLU) estimates of phylogenetic tree branch lengths. Although OLS estimates are in this situation equal to generalized least squares (GLS) estimates, the GLS chi-square likelihood ratio test will be inapplicable as it is associated with zero degrees of freedom. Consequently, an OLS normal distribution test or an analogous bootstrap approach will provide optimal branch length tests of significance for consistently short phylogenetic distances. As the asymptotic covariances between branch lengths will be equal to zero, it follows that the product rule can be used in tree evaluation to calculate an approximate simultaneous confidence probability that all interior branches are positive.
A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants
ERIC Educational Resources Information Center
Cooper, Paul D.
2010-01-01
A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…
Revisiting the Scale-Invariant, Two-Dimensional Linear Regression Method
ERIC Educational Resources Information Center
Patzer, A. Beate C.; Bauer, Hans; Chang, Christian; Bolte, Jan; Su¨lzle, Detlev
2018-01-01
The scale-invariant way to analyze two-dimensional experimental and theoretical data with statistical errors in both the independent and dependent variables is revisited by using what we call the triangular linear regression method. This is compared to the standard least-squares fit approach by applying it to typical simple sets of example data…
A General Linear Model (GLM) was used to evaluate the deviation of predicted values from expected values for a complex environmental model. For this demonstration, we used the default level interface of the Regional Mercury Cycling Model (R-MCM) to simulate epilimnetic total mer...
Teaching the Concept of Breakdown Point in Simple Linear Regression.
ERIC Educational Resources Information Center
Chan, Wai-Sum
2001-01-01
Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…
New method for calculating a mathematical expression for streamflow recession
Rutledge, Albert T.
1991-01-01
An empirical method has been devised to calculate the master recession curve, which is a mathematical expression for streamflow recession during times of negligible direct runoff. The method is based on the assumption that the storage-delay factor, which is the time per log cycle of streamflow recession, varies linearly with the logarithm of streamflow. The resulting master recession curve can be nonlinear. The method can be executed by a computer program that reads a data file of daily mean streamflow, then allows the user to select several near-linear segments of streamflow recession. The storage-delay factor for each segment is one of the coefficients of the equation that results from linear least-squares regression. Using results for each recession segment, a mathematical expression of the storage-delay factor as a function of the log of streamflow is determined by linear least-squares regression. The master recession curve, which is a second-order polynomial expression for time as a function of log of streamflow, is then derived using the coefficients of this function.
A study of data analysis techniques for the multi-needle Langmuir probe
NASA Astrophysics Data System (ADS)
Hoang, H.; Røed, K.; Bekkeng, T. A.; Moen, J. I.; Spicher, A.; Clausen, L. B. N.; Miloch, W. J.; Trondsen, E.; Pedersen, A.
2018-06-01
In this paper we evaluate two data analysis techniques for the multi-needle Langmuir probe (m-NLP). The instrument uses several cylindrical Langmuir probes, which are positively biased with respect to the plasma potential in order to operate in the electron saturation region. Since the currents collected by these probes can be sampled at kilohertz rates, the instrument is capable of resolving the ionospheric plasma structure down to the meter scale. The two data analysis techniques, a linear fit and a non-linear least squares fit, are discussed in detail using data from the Investigation of Cusp Irregularities 2 sounding rocket. It is shown that each technique has pros and cons with respect to the m-NLP implementation. Even though the linear fitting technique seems to be better than measurements from incoherent scatter radar and in situ instruments, m-NLPs can be longer and can be cleaned during operation to improve instrument performance. The non-linear least squares fitting technique would be more reliable provided that a higher number of probes are deployed.
NASA Astrophysics Data System (ADS)
Campbell, John L.; Ganly, Brianna; Heirwegh, Christopher M.; Maxwell, John A.
2018-01-01
Multiple ionization satellites are prominent features in X-ray spectra induced by MeV energy alpha particles. It follows that the accuracy of PIXE analysis using alpha particles can be improved if these features are explicitly incorporated in the peak model description when fitting the spectra with GUPIX or other codes for least-squares fitting PIXE spectra and extracting element concentrations. A method for this incorporation is described and is tested using spectra recorded on Mars by the Curiosity rover's alpha particle X-ray spectrometer. These spectra are induced by both PIXE and X-ray fluorescence, resulting in a spectral energy range from ∼1 to ∼25 keV. This range is valuable in determining the energy-channel calibration, which departs from linearity at low X-ray energies. It makes it possible to separate the effects of the satellites from an instrumental non-linearity component. The quality of least-squares spectrum fits is significantly improved, raising the level of confidence in analytical results from alpha-induced PIXE.
NASA Astrophysics Data System (ADS)
Haddout, Soufiane
2016-06-01
In Newtonian mechanics, the non-inertial reference frames is a generalization of Newton's laws to any reference frames. While this approach simplifies some problems, there is often little physical insight into the motion, in particular into the effects of the Coriolis force. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow curved paths. In this paper, a mathematical solution based on differential equations in non-inertial reference is used to study different types of motion in rotating system. In addition, the experimental data measured on a turntable device, using a video camera in a mechanics laboratory was conducted to compare with mathematical solution in case of parabolically curved, solving non-linear least-squares problems, based on Levenberg-Marquardt's and Gauss-Newton algorithms.
Prediction of optimum sorption isotherm: comparison of linear and non-linear method.
Kumar, K Vasanth; Sivanesan, S
2005-11-11
Equilibrium parameters for Bismarck brown onto rice husk were estimated by linear least square and a trial and error non-linear method using Freundlich, Langmuir and Redlich-Peterson isotherms. A comparison between linear and non-linear method of estimating the isotherm parameters was reported. The best fitting isotherm was Langmuir isotherm and Redlich-Peterson isotherm equation. The results show that non-linear method could be a better way to obtain the parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.
NASA Astrophysics Data System (ADS)
Cornelius, Reinold R.; Voight, Barry
1995-03-01
The Materials Failure Forecasting Method for volcanic eruptions (FFM) analyses the rate of precursory phenomena. Time of eruption onset is derived from the time of "failure" implied by accelerating rate of deformation. The approach attempts to fit data, Ω, to the differential relationship Ω¨=AΩ˙, where the dot superscript represents the time derivative, and the data Ω may be any of several parameters describing the accelerating deformation or energy release of the volcanic system. Rate coefficients, A and α, may be derived from appropriate data sets to provide an estimate of time to "failure". As the method is still an experimental technique, it should be used with appropriate judgment during times of volcanic crisis. Limitations of the approach are identified and discussed. Several kinds of eruption precursory phenomena, all simulating accelerating creep during the mechanical deformation of the system, can be used with FFM. Among these are tilt data, slope-distance measurements, crater fault movements and seismicity. The use of seismic coda, seismic amplitude-derived energy release and time-integrated amplitudes or coda lengths are examined. Usage of cumulative coda length directly has some practical advantages to more rigorously derived parameters, and RSAM and SSAM technologies appear to be well suited to real-time applications. One graphical and four numerical techniques of applying FFM are discussed. The graphical technique is based on an inverse representation of rate versus time. For α = 2, the inverse rate plot is linear; it is concave upward for α < 2 and concave downward for α > 2. The eruption time is found by simple extrapolation of the data set toward the time axis. Three numerical techniques are based on linear least-squares fits to linearized data sets. The "linearized least-squares technique" is most robust and is expected to be the most practical numerical technique. This technique is based on an iterative linearization of the given rate-time series. The hindsight technique is disadvantaged by a bias favouring a too early eruption time in foresight applications. The "log rate versus log acceleration technique", utilizing a logarithmic representation of the fundamental differential equation, is disadvantaged by large data scatter after interpolation of accelerations. One further numerical technique, a nonlinear least-squares fit to rate data, requires special and more complex software. PC-oriented computer codes were developed for data manipulation, application of the three linearizing numerical methods, and curve fitting. Separate software is required for graphing purposes. All three linearizing techniques facilitate an eruption window based on a data envelope according to the linear least-squares fit, at a specific level of confidence, and an estimated rate at time of failure.
NASA Technical Reports Server (NTRS)
Chalot, F.; Hughes, T. J. R.; Johan, Z.; Shakib, F.
1991-01-01
A finite element method for the compressible Navier-Stokes equations is introduced. The discretization is based on entropy variables. The methodology is developed within the framework of a Galerkin/least-squares formulation to which a discontinuity-capturing operator is added. Results for four test cases selected among those of the Workshop on Hypersonic Flows for Reentry Problems are presented.
NASA Technical Reports Server (NTRS)
Chalot, F.; Hughes, T. J. R.; Johan, Z.; Shakib, F.
1991-01-01
An FEM for the compressible Navier-Stokes equations is introduced. The discretization is based on entropy variables. The methodology is developed within the framework of a Galerkin/least-squares formulation to which a discontinuity-capturing operator is added. Results for three test cases selected among those of the Workshop on Hypersonic Flows for Reentry Problems are presented.
ERIC Educational Resources Information Center
Knol, Dirk L.; ten Berge, Jos M. F.
An algorithm is presented for the best least-squares fitting correlation matrix approximating a given missing value or improper correlation matrix. The proposed algorithm is based on a solution for C. I. Mosier's oblique Procrustes rotation problem offered by J. M. F. ten Berge and K. Nevels (1977). It is shown that the minimization problem…
Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data
NASA Technical Reports Server (NTRS)
Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan
1997-01-01
A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.
Fitting ordinary differential equations to short time course data.
Brewer, Daniel; Barenco, Martino; Callard, Robin; Hubank, Michael; Stark, Jaroslav
2008-02-28
Ordinary differential equations (ODEs) are widely used to model many systems in physics, chemistry, engineering and biology. Often one wants to compare such equations with observed time course data, and use this to estimate parameters. Surprisingly, practical algorithms for doing this are relatively poorly developed, particularly in comparison with the sophistication of numerical methods for solving both initial and boundary value problems for differential equations, and for locating and analysing bifurcations. A lack of good numerical fitting methods is particularly problematic in the context of systems biology where only a handful of time points may be available. In this paper, we present a survey of existing algorithms and describe the main approaches. We also introduce and evaluate a new efficient technique for estimating ODEs linear in parameters particularly suited to situations where noise levels are high and the number of data points is low. It employs a spline-based collocation scheme and alternates linear least squares minimization steps with repeated estimates of the noise-free values of the variables. This is reminiscent of expectation-maximization methods widely used for problems with nuisance parameters or missing data.
Blocked Force and Loading Calculations for LaRC THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.
2007-01-01
An analytic approach is developed to predict the performance of LaRC Thunder actuators under load and under blocked conditions. The problem is treated with the Von Karman non-linear analysis combined with a simple Raleigh-Ritz calculation. From this, shape and displacement under load combined with voltage are calculated. A method is found to calculate the blocked force vs voltage and spring force vs distance. It is found that under certain conditions, the blocked force and displacement is almost linear with voltage. It is also found that the spring force is multivalued and has at least one bifurcation point. This bifurcation point is where the device collapses under load and locks to a different bending solution. This occurs at a particular critical load. It is shown this other bending solution has a reduced amplitude and is proportional to the original amplitude times the square of the aspect ratio.
Two-dimensional strain gradient damage modeling: a variational approach
NASA Astrophysics Data System (ADS)
Placidi, Luca; Misra, Anil; Barchiesi, Emilio
2018-06-01
In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.
Parallel Algorithms for Least Squares and Related Computations.
1991-03-22
for dense computations in linear algebra . The work has recently been published in a general reference book on parallel algorithms by SIAM. AFO SR...written his Ph.D. dissertation with the principal investigator. (See publication 6.) • Parallel Algorithms for Dense Linear Algebra Computations. Our...and describe and to put into perspective a selection of the more important parallel algorithms for numerical linear algebra . We give a major new
Hemmila, April; McGill, Jim; Ritter, David
2008-03-01
To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.
Enumeration of Extended m-Regular Linear Stacks.
Guo, Qiang-Hui; Sun, Lisa H; Wang, Jian
2016-12-01
The contact map of a protein fold in the two-dimensional (2D) square lattice has arc length at least 3, and each internal vertex has degree at most 2, whereas the two terminal vertices have degree at most 3. Recently, Chen, Guo, Sun, and Wang studied the enumeration of [Formula: see text]-regular linear stacks, where each arc has length at least [Formula: see text] and the degree of each vertex is bounded by 2. Since the two terminal points in a protein fold in the 2D square lattice may form contacts with at most three adjacent lattice points, we are led to the study of extended [Formula: see text]-regular linear stacks, in which the degree of each terminal point is bounded by 3. This model is closed to real protein contact maps. Denote the generating functions of the [Formula: see text]-regular linear stacks and the extended [Formula: see text]-regular linear stacks by [Formula: see text] and [Formula: see text], respectively. We show that [Formula: see text] can be written as a rational function of [Formula: see text]. For a certain [Formula: see text], by eliminating [Formula: see text], we obtain an equation satisfied by [Formula: see text] and derive the asymptotic formula of the numbers of [Formula: see text]-regular linear stacks of length [Formula: see text].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com
Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain conditions. • Integrating MsFEM and multi-element least square HDMR can significantly reduce computation complexity.« less
Estimating standard errors in feature network models.
Frank, Laurence E; Heiser, Willem J
2007-05-01
Feature network models are graphical structures that represent proximity data in a discrete space while using the same formalism that is the basis of least squares methods employed in multidimensional scaling. Existing methods to derive a network model from empirical data only give the best-fitting network and yield no standard errors for the parameter estimates. The additivity properties of networks make it possible to consider the model as a univariate (multiple) linear regression problem with positivity restrictions on the parameters. In the present study, both theoretical and empirical standard errors are obtained for the constrained regression parameters of a network model with known features. The performance of both types of standard error is evaluated using Monte Carlo techniques.
DE and NLP Based QPLS Algorithm
NASA Astrophysics Data System (ADS)
Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo
As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.
Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.
1981-01-01
To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.
A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerritsma, Marc; Bochev, Pavel
Formulation of locally conservative least-squares finite element methods (LSFEMs) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require non-standard boundary conditions (Bochev and Gunzburger, 2009 [3]), while methods that admit the no-slip condition satisfy the incompressibility equation only approximately (Bochev and Gunzburger, 2009 [4, Chapter 7]). Here we address this problem by proving a new non-standard stability bound for the velocity–vorticity–pressure Stokes system augmented with a no-slip boundary condition. This bound gives rise to a norm-equivalent least-squares functional in which the velocity can be approximatedmore » by div-conforming finite element spaces, thereby enabling a locally-conservative approximations of this variable. Here, we also provide a practical realization of the new LSFEM using high-order spectral mimetic finite element spaces (Kreeft et al., 2011) and report several numerical tests, which confirm its mimetic properties.« less
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
Zhu, Qingxin; Niu, Xinzheng
2016-01-01
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms. PMID:27436996
Zhang, Chunyuan; Zhu, Qingxin; Niu, Xinzheng
2016-01-01
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms.
A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition
Gerritsma, Marc; Bochev, Pavel
2016-03-22
Formulation of locally conservative least-squares finite element methods (LSFEMs) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require non-standard boundary conditions (Bochev and Gunzburger, 2009 [3]), while methods that admit the no-slip condition satisfy the incompressibility equation only approximately (Bochev and Gunzburger, 2009 [4, Chapter 7]). Here we address this problem by proving a new non-standard stability bound for the velocity–vorticity–pressure Stokes system augmented with a no-slip boundary condition. This bound gives rise to a norm-equivalent least-squares functional in which the velocity can be approximatedmore » by div-conforming finite element spaces, thereby enabling a locally-conservative approximations of this variable. Here, we also provide a practical realization of the new LSFEM using high-order spectral mimetic finite element spaces (Kreeft et al., 2011) and report several numerical tests, which confirm its mimetic properties.« less
Multicategory Composite Least Squares Classifiers
Park, Seo Young; Liu, Yufeng; Liu, Dacheng; Scholl, Paul
2010-01-01
Classification is a very useful statistical tool for information extraction. In particular, multicategory classification is commonly seen in various applications. Although binary classification problems are heavily studied, extensions to the multicategory case are much less so. In view of the increased complexity and volume of modern statistical problems, it is desirable to have multicategory classifiers that are able to handle problems with high dimensions and with a large number of classes. Moreover, it is necessary to have sound theoretical properties for the multicategory classifiers. In the literature, there exist several different versions of simultaneous multicategory Support Vector Machines (SVMs). However, the computation of the SVM can be difficult for large scale problems, especially for problems with large number of classes. Furthermore, the SVM cannot produce class probability estimation directly. In this article, we propose a novel efficient multicategory composite least squares classifier (CLS classifier), which utilizes a new composite squared loss function. The proposed CLS classifier has several important merits: efficient computation for problems with large number of classes, asymptotic consistency, ability to handle high dimensional data, and simple conditional class probability estimation. Our simulated and real examples demonstrate competitive performance of the proposed approach. PMID:21218128
42 CFR 433.68 - Permissible health care-related taxes.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-related tax is imposed by a unit of local government, the tax must extend to all items or services or... least squares, the slope (designated as (B) (that is. the value of the x coefficient) of two linear... linear regression, as described in paragraph (e)(2)(i) of this section, for the State's tax program, if...
42 CFR 433.68 - Permissible health care-related taxes.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-related tax is imposed by a unit of local government, the tax must extend to all items or services or... least squares, the slope (designated as (B) (that is. the value of the x coefficient) of two linear... linear regression, as described in paragraph (e)(2)(i) of this section, for the State's tax program, if...
HOLEGAGE 1.0 - Strain-Gauge Drilling Analysis Program
NASA Technical Reports Server (NTRS)
Hampton, Roy V.
1992-01-01
Interior stresses inferred from changes in surface strains as hole is drilled. Computes stresses using strain data from each drilled-hole depth layer. Planar stresses computed in three ways: least-squares fit for linear variation with depth, integral method to give incremental stress data for each layer, and/or linear fit to integral data. Written in FORTRAN 77.
40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of full-scale concentration. It is permitted to use additional concentrations. (v) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx where x is the actual chart deflection and y is the concentration. (vi) Use the equation z=y/m to find the linear chart...
Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction
Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir
2016-10-20
Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of timemore » integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.« less
Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir
Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of timemore » integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.« less
A Modified LS+AR Model to Improve the Accuracy of the Short-term Polar Motion Prediction
NASA Astrophysics Data System (ADS)
Wang, Z. W.; Wang, Q. X.; Ding, Y. Q.; Zhang, J. J.; Liu, S. S.
2017-03-01
There are two problems of the LS (Least Squares)+AR (AutoRegressive) model in polar motion forecast: the inner residual value of LS fitting is reasonable, but the residual value of LS extrapolation is poor; and the LS fitting residual sequence is non-linear. It is unsuitable to establish an AR model for the residual sequence to be forecasted, based on the residual sequence before forecast epoch. In this paper, we make solution to those two problems with two steps. First, restrictions are added to the two endpoints of LS fitting data to fix them on the LS fitting curve. Therefore, the fitting values next to the two endpoints are very close to the observation values. Secondly, we select the interpolation residual sequence of an inward LS fitting curve, which has a similar variation trend as the LS extrapolation residual sequence, as the modeling object of AR for the residual forecast. Calculation examples show that this solution can effectively improve the short-term polar motion prediction accuracy by the LS+AR model. In addition, the comparison results of the forecast models of RLS (Robustified Least Squares)+AR, RLS+ARIMA (AutoRegressive Integrated Moving Average), and LS+ANN (Artificial Neural Network) confirm the feasibility and effectiveness of the solution for the polar motion forecast. The results, especially for the polar motion forecast in the 1-10 days, show that the forecast accuracy of the proposed model can reach the world level.
Calimag-Williams, Korina; Knobel, Gaston; Goicoechea, H C; Campiglia, A D
2014-02-06
An attractive approach to handle matrix interference in samples of unknown composition is to generate second- or higher-order data formats and process them with appropriate chemometric algorithms. Several strategies exist to generate high-order data in fluorescence spectroscopy, including wavelength time matrices, excitation-emission matrices and time-resolved excitation-emission matrices. This article tackles a different aspect of generating high-order fluorescence data as it focuses on total synchronous fluorescence spectroscopy. This approach refers to recording synchronous fluorescence spectra at various wavelength offsets. Analogous to the concept of an excitation-emission data format, total synchronous data arrays fit into the category of second-order data. The main difference between them is the non-bilinear behavior of synchronous fluorescence data. Synchronous spectral profiles change with the wavelength offset used for sample excitation. The work presented here reports the first application of total synchronous fluorescence spectroscopy to the analysis of monohydroxy-polycyclic aromatic hydrocarbons in urine samples of unknown composition. Matrix interference is appropriately handled by processing the data either with unfolded-partial least squares and multi-way partial least squares, both followed by residual bi-linearization. Copyright © 2013 Elsevier B.V. All rights reserved.
Computational Issues in Damping Identification for Large Scale Problems
NASA Technical Reports Server (NTRS)
Pilkey, Deborah L.; Roe, Kevin P.; Inman, Daniel J.
1997-01-01
Two damping identification methods are tested for efficiency in large-scale applications. One is an iterative routine, and the other a least squares method. Numerical simulations have been performed on multiple degree-of-freedom models to test the effectiveness of the algorithm and the usefulness of parallel computation for the problems. High Performance Fortran is used to parallelize the algorithm. Tests were performed using the IBM-SP2 at NASA Ames Research Center. The least squares method tested incurs high communication costs, which reduces the benefit of high performance computing. This method's memory requirement grows at a very rapid rate meaning that larger problems can quickly exceed available computer memory. The iterative method's memory requirement grows at a much slower pace and is able to handle problems with 500+ degrees of freedom on a single processor. This method benefits from parallelization, and significant speedup can he seen for problems of 100+ degrees-of-freedom.
Least-squares finite element method for fluid dynamics
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1989-01-01
An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples.
A weak Galerkin least-squares finite element method for div-curl systems
NASA Astrophysics Data System (ADS)
Li, Jichun; Ye, Xiu; Zhang, Shangyou
2018-06-01
In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
Analysis and computation of a least-squares method for consistent mesh tying
Day, David; Bochev, Pavel
2007-07-10
We report in the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242]. This paper presents a theoretical and computational study of a least-squares method for mesh tying [P. Bochev, D.M. Day, A least-squares method for consistent mesh tying, Internat. J.more » Numer. Anal. Modeling 4 (2007) 342–352], applied to the partial differential equation -∇ 2φ+αφ=f. We prove optimal convergence rates for domains represented as overlapping subdomains and show that the least-squares method passes a patch test of the order of the finite element space by construction. To apply the method to subdomain configurations with gaps and overlaps we use interface perturbations to eliminate the gaps. Finally, theoretical error estimates are illustrated by numerical experiments.« less
Fang, Fang; Ni, Bing-Jie; Yu, Han-Qing
2009-06-01
In this study, weighted non-linear least-squares analysis and accelerating genetic algorithm are integrated to estimate the kinetic parameters of substrate consumption and storage product formation of activated sludge. A storage product formation equation is developed and used to construct the objective function for the determination of its production kinetics. The weighted least-squares analysis is employed to calculate the differences in the storage product concentration between the model predictions and the experimental data as the sum of squared weighted errors. The kinetic parameters for the substrate consumption and the storage product formation are estimated to be the maximum heterotrophic growth rate of 0.121/h, the yield coefficient of 0.44 mg CODX/mg CODS (COD, chemical oxygen demand) and the substrate half saturation constant of 16.9 mg/L, respectively, by minimizing the objective function using a real-coding-based accelerating genetic algorithm. Also, the fraction of substrate electrons diverted to the storage product formation is estimated to be 0.43 mg CODSTO/mg CODS. The validity of our approach is confirmed by the results of independent tests and the kinetic parameter values reported in literature, suggesting that this approach could be useful to evaluate the product formation kinetics of mixed cultures like activated sludge. More importantly, as this integrated approach could estimate the kinetic parameters rapidly and accurately, it could be applied to other biological processes.
An Inverse Problem for a Class of Conditional Probability Measure-Dependent Evolution Equations
Mirzaev, Inom; Byrne, Erin C.; Bortz, David M.
2016-01-01
We investigate the inverse problem of identifying a conditional probability measure in measure-dependent evolution equations arising in size-structured population modeling. We formulate the inverse problem as a least squares problem for the probability measure estimation. Using the Prohorov metric framework, we prove existence and consistency of the least squares estimates and outline a discretization scheme for approximating a conditional probability measure. For this scheme, we prove general method stability. The work is motivated by Partial Differential Equation (PDE) models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach. PMID:28316360
Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization.
Lu, Canyi; Lin, Zhouchen; Yan, Shuicheng
2015-02-01
This paper presents a general framework for solving the low-rank and/or sparse matrix minimization problems, which may involve multiple nonsmooth terms. The iteratively reweighted least squares (IRLSs) method is a fast solver, which smooths the objective function and minimizes it by alternately updating the variables and their weights. However, the traditional IRLS can only solve a sparse only or low rank only minimization problem with squared loss or an affine constraint. This paper generalizes IRLS to solve joint/mixed low-rank and sparse minimization problems, which are essential formulations for many tasks. As a concrete example, we solve the Schatten-p norm and l2,q-norm regularized low-rank representation problem by IRLS, and theoretically prove that the derived solution is a stationary point (globally optimal if p,q ≥ 1). Our convergence proof of IRLS is more general than previous one that depends on the special properties of the Schatten-p norm and l2,q-norm. Extensive experiments on both synthetic and real data sets demonstrate that our IRLS is much more efficient.
From least squares to multilevel modeling: A graphical introduction to Bayesian inference
NASA Astrophysics Data System (ADS)
Loredo, Thomas J.
2016-01-01
This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.
Randomly Sampled-Data Control Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Han, Kuoruey
1990-01-01
The purpose is to solve the Linear Quadratic Regulator (LQR) problem with random time sampling. Such a sampling scheme may arise from imperfect instrumentation as in the case of sampling jitter. It can also model the stochastic information exchange among decentralized controllers to name just a few. A practical suboptimal controller is proposed with the nice property of mean square stability. The proposed controller is suboptimal in the sense that the control structure is limited to be linear. Because of i. i. d. assumption, this does not seem unreasonable. Once the control structure is fixed, the stochastic discrete optimal control problem is transformed into an equivalent deterministic optimal control problem with dynamics described by the matrix difference equation. The N-horizon control problem is solved using the Lagrange's multiplier method. The infinite horizon control problem is formulated as a classical minimization problem. Assuming existence of solution to the minimization problem, the total system is shown to be mean square stable under certain observability conditions. Computer simulations are performed to illustrate these conditions.
Cao, Jiguo; Huang, Jianhua Z.; Wu, Hulin
2012-01-01
Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online. PMID:23155351
Cost Estimation of Naval Ship Acquisition.
1983-12-01
one a 9-sub- system model , the other a single total cost model . The models were developed using the linear least squares regression tech- nique with...to Linear Statistical Models , McGraw-Hill, 1961. 11. Helmer, F. T., Bibliography on Pricing Methodology and Cost Estimating, Dept. of Economics and...SUPPI.EMSaTARY NOTES IS. KWRo" (Cowaft. en tever aide of ..aesep M’ Idab~t 6 Week ONNa.) Cost estimation; Acquisition; Parametric cost estimate; linear
NASA Astrophysics Data System (ADS)
Chakrabarti, Aloknath; Mohapatra, Smrutiranjan
2013-09-01
Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates, separated by a gap of finite width, floating horizontally on water of finite depth, are investigated in the present work for a two-dimensional time-harmonic case. Within the frame of linear water wave theory, the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions. Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem. In both the problems, the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates. Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations. The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration. The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.
Asadpour-Zeynali, Karim; Maryam Sajjadi, S; Taherzadeh, Fatemeh; Rahmanian, Reza
2014-04-05
Bilinear least square (BLLS) method is one of the most suitable algorithms for second-order calibration. Original BLLS method is not applicable to the second order pH-spectral data when an analyte has more than one spectroscopically active species. Bilinear least square-residual bilinearization (BLLS-RBL) was developed to achieve the second order advantage for analysis of complex mixtures. Although the modified method is useful, the pure profiles cannot be obtained and only the linear combination will be obtained. Moreover, for prediction of analyte in an unknown sample, the original algorithm of RBL may diverge; instead of converging to the desired analyte concentrations. Therefore, Gauss Newton-RLB algorithm should be used, which is not as simple as original protocol. Also, the analyte concentration can be predicted on the basis of each of the equilibrating species of the component of interest that are not exactly the same. The aim of the present work is to tackle the non-uniqueness problem in the second order calibration of monoprotic acid mixtures and divergence of RBL. Each pH-absorbance matrix was pretreated by subtraction of the first spectrum from other spectra in the data set to produce full rank array that is called variation matrix. Then variation matrices were analyzed uniquely by original BLLS-RBL that is more parsimonious than its modified counterpart. The proposed method was performed on the simulated as well as the analysis of real data. Sunset yellow and Carmosine as monoprotic acids were determined in candy sample in the presence of unknown interference by this method. Copyright © 2013 Elsevier B.V. All rights reserved.
Passive shimming of a superconducting magnet using the L1-norm regularized least square algorithm.
Kong, Xia; Zhu, Minhua; Xia, Ling; Wang, Qiuliang; Li, Yi; Zhu, Xuchen; Liu, Feng; Crozier, Stuart
2016-02-01
The uniformity of the static magnetic field B0 is of prime importance for an MRI system. The passive shimming technique is usually applied to improve the uniformity of the static field by optimizing the layout of a series of steel shims. The steel pieces are fixed in the drawers in the inner bore of the superconducting magnet, and produce a magnetizing field in the imaging region to compensate for the inhomogeneity of the B0 field. In practice, the total mass of steel used for shimming should be minimized, in addition to the field uniformity requirement. This is because the presence of steel shims may introduce a thermal stability problem. The passive shimming procedure is typically realized using the linear programming (LP) method. The LP approach however, is generally slow and also has difficulty balancing the field quality and the total amount of steel for shimming. In this paper, we have developed a new algorithm that is better able to balance the dual constraints of field uniformity and the total mass of the shims. The least square method is used to minimize the magnetic field inhomogeneity over the imaging surface with the total mass of steel being controlled by an L1-norm based constraint. The proposed algorithm has been tested with practical field data, and the results show that, with similar computational cost and mass of shim material, the new algorithm achieves superior field uniformity (43% better for the test case) compared with the conventional linear programming approach. Copyright © 2016 Elsevier Inc. All rights reserved.
Billings, Seth D.; Boctor, Emad M.; Taylor, Russell H.
2015-01-01
We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP’s probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes. PMID:25748700
Estimating pole/zero errors in GSN-IRIS/USGS network calibration metadata
Ringler, A.T.; Hutt, C.R.; Aster, R.; Bolton, H.; Gee, L.S.; Storm, T.
2012-01-01
Mapping the digital record of a seismograph into true ground motion requires the correction of the data by some description of the instrument's response. For the Global Seismographic Network (Butler et al., 2004), as well as many other networks, this instrument response is represented as a Laplace domain pole–zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. This Laplace representation assumes that the seismometer behaves as a linear system, with any abrupt changes described adequately via multiple time-invariant epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We present an iterative three-step method to estimate the instrument response parameters (poles and zeros) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least-squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least-squares best-fit Laplace pole–zero–gain model. Third, by applying the central limit theorem, we estimate the errors in this pole–zero model by solving the inverse problem at each frequency in a two-thirds octave band centered at each best-fit pole–zero frequency. This procedure yields error estimates of the 99% confidence interval. We demonstrate the method by applying it to a number of recent Incorporated Research Institutions in Seismology/United States Geological Survey (IRIS/USGS) network calibrations (network code IU).
Simultaneous spectrophotometric determination of salbutamol and bromhexine in tablets.
Habib, I H I; Hassouna, M E M; Zaki, G A
2005-03-01
Typical anti-mucolytic drugs called salbutamol hydrochloride and bromhexine sulfate encountered in tablets were determined simultaneously either by using linear regression at zero-crossing wavelengths of the first derivation of UV-spectra or by application of multiple linear partial least squares regression method. The results obtained by the two proposed mathematical methods were compared with those obtained by the HPLC technique.
Exact least squares adaptive beamforming using an orthogonalization network
NASA Astrophysics Data System (ADS)
Yuen, Stanley M.
1991-03-01
The pros and cons of various classical and state-of-the-art methods in adaptive array processing are discussed, and the relevant concepts and historical developments are pointed out. A set of easy-to-understand equations for facilitating derivation of any least-squares-based algorithm is derived. Using this set of equations and incorporating all of the useful properties associated with various techniques, an efficient solution to the real-time adaptive beamforming problem is developed.
NASA Technical Reports Server (NTRS)
Jefferys, W. H.
1981-01-01
A least squares method proposed previously for solving a general class of problems is expanded in two ways. First, covariance matrices related to the solution are calculated and their interpretation is given. Second, improved methods of solving the normal equations related to those of Marquardt (1963) and Fletcher and Powell (1963) are developed for this approach. These methods may converge in cases where Newton's method diverges or converges slowly.
NASA Astrophysics Data System (ADS)
Syusina, O. M.; Chernitsov, A. M.; Tamarov, V. A.
2011-07-01
The method for construction of the confidence region of the motion of the small bodies of Solar system by force of defini-tion region their boundary surface in nonlinear case is proposed. In this method representation on to boundary surface of the re-gion, which obtained of nonlinear method of multiple solution of least squares problem, is realized by values of target function in vertex of confidence ellipsoid with eliminating of anomalous ones.
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1990-01-01
Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.
An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.
Yang, Yifei; Tan, Minjia; Dai, Yuewei
2017-01-01
A ship power equipments' fault monitoring signal usually provides few samples and the data's feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments.
Three-Component Decomposition of Polarimetric SAR Data Integrating Eigen-Decomposition Results
NASA Astrophysics Data System (ADS)
Lu, Da; He, Zhihua; Zhang, Huan
2018-01-01
This paper presents a novel three-component scattering power decomposition of polarimetric SAR data. There are two problems in three-component decomposition method: volume scattering component overestimation in urban areas and artificially set parameter to be a fixed value. Though volume scattering component overestimation can be partly solved by deorientation process, volume scattering still dominants some oriented urban areas. The speckle-like decomposition results introduced by artificially setting value are not conducive to further image interpretation. This paper integrates the results of eigen-decomposition to solve the aforementioned problems. Two principal eigenvectors are used to substitute the surface scattering model and the double bounce scattering model. The decomposed scattering powers are obtained using a constrained linear least-squares method. The proposed method has been verified using an ESAR PolSAR image, and the results show that the proposed method has better performance in urban area.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Analytic semigroups: Applications to inverse problems for flexible structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Rebnord, D. A.
1990-01-01
Convergence and stability results for least squares inverse problems involving systems described by analytic semigroups are presented. The practical importance of these results is demonstrated by application to several examples from problems of estimation of material parameters in flexible structures using accelerometer data.
Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin
2016-01-25
To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb's test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R² and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data.
NASA Technical Reports Server (NTRS)
Chen, Fang-Jenq
1997-01-01
Flow visualization produces data in the form of two-dimensional images. If the optical components of a camera system are perfect, the transformation equations between the two-dimensional image and the three-dimensional object space are linear and easy to solve. However, real camera lenses introduce nonlinear distortions that affect the accuracy of transformation unless proper corrections are applied. An iterative least-squares adjustment algorithm is developed to solve the nonlinear transformation equations incorporated with distortion corrections. Experimental applications demonstrate that a relative precision on the order of 40,000 is achievable without tedious laboratory calibrations of the camera.
Variable-permittivity linear inverse problem for the H(sub z)-polarized case
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Chew, W. C.
1993-01-01
The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.
Heger, Dominic; Herff, Christian; Schultz, Tanja
2014-01-01
In this paper, we show that multiple operations of the typical pattern recognition chain of an fNIRS-based BCI, including feature extraction and classification, can be unified by solving a convex optimization problem. We formulate a regularized least squares problem that learns a single affine transformation of raw HbO(2) and HbR signals. We show that this transformation can achieve competitive results in an fNIRS BCI classification task, as it significantly improves recognition of different levels of workload over previously published results on a publicly available n-back data set. Furthermore, we visualize the learned models and analyze their spatio-temporal characteristics.
Geodesic regression on orientation distribution functions with its application to an aging study.
Du, Jia; Goh, Alvina; Kushnarev, Sergey; Qiu, Anqi
2014-02-15
In this paper, we treat orientation distribution functions (ODFs) derived from high angular resolution diffusion imaging (HARDI) as elements of a Riemannian manifold and present a method for geodesic regression on this manifold. In order to find the optimal regression model, we pose this as a least-squares problem involving the sum-of-squared geodesic distances between observed ODFs and their model fitted data. We derive the appropriate gradient terms and employ gradient descent to find the minimizer of this least-squares optimization problem. In addition, we show how to perform statistical testing for determining the significance of the relationship between the manifold-valued regressors and the real-valued regressands. Experiments on both synthetic and real human data are presented. In particular, we examine aging effects on HARDI via geodesic regression of ODFs in normal adults aged 22 years old and above. © 2013 Elsevier Inc. All rights reserved.
Discrete Inverse and State Estimation Problems
NASA Astrophysics Data System (ADS)
Wunsch, Carl
2006-06-01
The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra. Provides a comprehensive introduction to discrete methods of inference from incomplete information Based upon 25 years of practical experience using real data and models Develops sequential and whole-domain analysis methods from simple least-squares Contains many examples and problems, and web-based support through MIT opencourseware
Should Pruning be a Pre-Processor of any Linear System?
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
There are many real-world problems whose mathematical models turn out to be linear systems Ax = b , where A is an m by x n matrix. Each equation of the linear system is an information. An information, in a physical problem, such as 4 mangoes, 6 bananas, and 5 oranges cost $10, is mathematically modeled as 4x(sub 1) + 6x(sub 2) + 5x (sub 3) = 10, where x(sub 1), x(sub 2), x(sub 3) are each cost of one mango, that of one banana, and that of one orange, respectively. All the information put together in a specified context, constitutes the physical problem and need not be all distinct. Some of these could be redundant, which cannot be readily identified by inspection. The resulting mathematical model will thus have equations corresponding to this redundant information and hence are linearly dependent and thus superfluous. Consequently, these equations once identified should be better pruned in the process of solving the system. The benefits are (i) less computation and hence less error and consequently a better quality of solution and (ii) reduced storage requirements. In literature, the pruning concept is not in vogue so far although it is most desirable. In a numerical linear system, the system could be slightly inconsistent or inconsistent of varying degree. If the system is too inconsistent, then we should fall back on to the physical problem (PP), check the correctness of the PP derived from the material universe, modify it, if necessary, and then check the corresponding mathematical model (MM) and correct it. In nature/material universe, inconsistency is completely nonexistent. If the MM becomes inconsistent, it could be due to error introduced by the concerned measuring device and/or due to assumptions made on the PP to obtain an MM which is relatively easily solvable or simply due to human error. No measuring device can usually measure a quantity with an accuracy greater that 0.005% or, equivalently with a relative error less than 0.005%. Hence measurement error is unavoidable in a numerical linear system when the quantities are continuous (or even discrete with extremely large number). Assumptions, though not desirable, are usually made when we find the problem sufficiently difficult to be solved within the available means/tools/resources and hence distort the PP and the corresponding MM. The error thus introduced in the system could (not always necessarily though) make the system somewhat inconsistent. If the inconsistency (contradiction) is too much then one should definitely not proceed to solve the system in terms of getting a least-squares solution or a minimum norm solution or the minimum-norm least-squares solution. All these solutions will be invariably of no real-world use. If, on the other hand, inconsistency is reasonably low, i.e. the system is near-consistent or, equivalently, has near-linearly-dependent rows, then the foregoing solutions are useful. Pruning in such a near-consistent system should be performed based on the desired accuracy and on the definition of near-linear dependence. In this article, we discuss pruning over various kinds of linear systems and strongly suggest its use as a pre-processor or as a part of an algorithm. Ideally pruning should (i) be a part of the solution process (algorithm) of the system, (ii) reduce both computational error and complexity of the process, and (iii) take into account the numerical zero defined in the context. These are precisely what we achieve through our proposed O(mn2) algorithm presented in Matlab, that uses a subprogram of solving a single linear equation and that has embedded in it the pruning.
Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection
Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem
2013-01-01
The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method. PMID:24351629
Online least squares one-class support vector machines-based abnormal visual event detection.
Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem
2013-12-12
The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.
The Increase of Energy Consumption and Carbon Dioxide (CO2) Emission in Indonesia
NASA Astrophysics Data System (ADS)
Sasana, Hadi; Putri, Annisa Eka
2018-02-01
In the last decade, the increase of energy consumption that has multiplied carbondioxide emissions becomes world problems, especially in the developing countries undergoing industrialization to be developed ones like Indonesia. This aim of this study was to analyze the effect of fossil energy consumption, population growth, and consumption of renewable energy on carbon dioxide emission. The method used was multiple linear regression analysis with Ordinary Least Square approach using time series in the period of 1990 - 2014. The result showed that fossil energy consumption and population growth have a positive influence on carbon dioxide emission in Indonesia. Meanwhile, the consumption variable of renewable energy has a negative effect on the level of carbon dioxide emissions produced.
Detailed gravity anomalies from GEOS-3 satellite altimetry data
NASA Technical Reports Server (NTRS)
Gopalapillai, G. S.; Mourad, A. G.
1978-01-01
A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data.
Nonlinear Estimation of Discrete-Time Signals Under Random Observation Delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero-Aguila, R.; Jimenez-Lopez, J. D.; Hermoso-Carazo, A.
2008-11-06
This paper presents an approximation to the nonlinear least-squares estimation problem of discrete-time stochastic signals using nonlinear observations with additive white noise which can be randomly delayed by one sampling time. The observation delay is modelled by a sequence of independent Bernoulli random variables whose values, zero or one, indicate that the real observation arrives on time or it is delayed and, hence, the available measurement to estimate the signal is not up-to-date. Assuming that the state-space model generating the signal is unknown and only the covariance functions of the processes involved in the observation equation are ready for use,more » a filtering algorithm based on linear approximations of the real observations is proposed.« less
NASA Technical Reports Server (NTRS)
Gross, Bernard
1996-01-01
Material characterization parameters obtained from naturally flawed specimens are necessary for reliability evaluation of non-deterministic advanced ceramic structural components. The least squares best fit method is applied to the three parameter uniaxial Weibull model to obtain the material parameters from experimental tests on volume or surface flawed specimens subjected to pure tension, pure bending, four point or three point loading. Several illustrative example problems are provided.
NASA Astrophysics Data System (ADS)
Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui
2017-11-01
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1's accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.
Ambiguity resolution for satellite Doppler positioning systems
NASA Technical Reports Server (NTRS)
Argentiero, P.; Marini, J.
1979-01-01
The implementation of satellite-based Doppler positioning systems frequently requires the recovery of transmitter position from a single pass of Doppler data. The least-squares approach to the problem yields conjugate solutions on either side of the satellite subtrack. It is important to develop a procedure for choosing the proper solution which is correct in a high percentage of cases. A test for ambiguity resolution which is the most powerful in the sense that it maximizes the probability of a correct decision is derived. When systematic error sources are properly included in the least-squares reduction process to yield an optimal solution the test reduces to choosing the solution which provides the smaller valuation of the least-squares loss function. When systematic error sources are ignored in the least-squares reduction, the most powerful test is a quadratic form comparison with the weighting matrix of the quadratic form obtained by computing the pseudoinverse of a reduced-rank square matrix. A formula for computing the power of the most powerful test is provided. Numerical examples are included in which the power of the test is computed for situations that are relevant to the design of a satellite-aided search and rescue system.
Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun
2014-01-01
Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.
Locally Linear Embedding of Local Orthogonal Least Squares Images for Face Recognition
NASA Astrophysics Data System (ADS)
Hafizhelmi Kamaru Zaman, Fadhlan
2018-03-01
Dimensionality reduction is very important in face recognition since it ensures that high-dimensionality data can be mapped to lower dimensional space without losing salient and integral facial information. Locally Linear Embedding (LLE) has been previously used to serve this purpose, however, the process of acquiring LLE features requires high computation and resources. To overcome this limitation, we propose a locally-applied Local Orthogonal Least Squares (LOLS) model can be used as initial feature extraction before the application of LLE. By construction of least squares regression under orthogonal constraints we can preserve more discriminant information in the local subspace of facial features while reducing the overall features into a more compact form that we called LOLS images. LLE can then be applied on the LOLS images to maps its representation into a global coordinate system of much lower dimensionality. Several experiments carried out using publicly available face datasets such as AR, ORL, YaleB, and FERET under Single Sample Per Person (SSPP) constraint demonstrates that our proposed method can reduce the time required to compute LLE features while delivering better accuracy when compared to when either LLE or OLS alone is used. Comparison against several other feature extraction methods and more recent feature-learning method such as state-of-the-art Convolutional Neural Networks (CNN) also reveal the superiority of the proposed method under SSPP constraint.
Yalavarthy, Phaneendra K; Pogue, Brian W; Dehghani, Hamid; Paulsen, Keith D
2007-06-01
Diffuse optical tomography (DOT) involves estimation of tissue optical properties using noninvasive boundary measurements. The image reconstruction procedure is a nonlinear, ill-posed, and ill-determined problem, so overcoming these difficulties requires regularization of the solution. While the methods developed for solving the DOT image reconstruction procedure have a long history, there is less direct evidence on the optimal regularization methods, or exploring a common theoretical framework for techniques which uses least-squares (LS) minimization. A generalized least-squares (GLS) method is discussed here, which takes into account the variances and covariances among the individual data points and optical properties in the image into a structured weight matrix. It is shown that most of the least-squares techniques applied in DOT can be considered as special cases of this more generalized LS approach. The performance of three minimization techniques using the same implementation scheme is compared using test problems with increasing noise level and increasing complexity within the imaging field. Techniques that use spatial-prior information as constraints can be also incorporated into the GLS formalism. It is also illustrated that inclusion of spatial priors reduces the image error by at least a factor of 2. The improvement of GLS minimization is even more apparent when the noise level in the data is high (as high as 10%), indicating that the benefits of this approach are important for reconstruction of data in a routine setting where the data variance can be known based upon the signal to noise properties of the instruments.
Ho, Yuh-Shan
2006-01-01
A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.
Diagnosing and dealing with multicollinearity.
Schroeder, M A
1990-04-01
The purpose of this article was to increase nurse researchers' awareness of the effects of collinear data in developing theoretical models for nursing practice. Collinear data distort the true value of the estimates generated from ordinary least-squares analysis. Theoretical models developed to provide the underpinnings of nursing practice need not be abandoned, however, because they fail to produce consistent estimates over repeated applications. It is also important to realize that multicollinearity is a data problem, not a problem associated with misspecification of a theorectical model. An investigator must first be aware of the problem, and then it is possible to develop an educated solution based on the degree of multicollinearity, theoretical considerations, and sources of error associated with alternative, biased, least-square regression techniques. Decisions based on theoretical and statistical considerations will further the development of theory-based nursing practice.
The Uncertainty of Long-term Linear Trend in Global SST Due to Internal Variation
NASA Astrophysics Data System (ADS)
Lian, Tao
2016-04-01
In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of local multi-scale internal variation. One can thus use the record of a specified period to arbitrarily determine the value and the sign of the long-term linear trend in regional SST, and further leading to controversial conclusions on how global SST responds to global warming in the recent history. Analyzing the linear trend coefficient estimated by the ordinary least-square method indicates that the linear trend consists of two parts: One related to the long-term change, and the other related to the multi-scale internal variation. The sign of the long-term change can be correctly reproduced only when the magnitude of the linear trend coefficient is greater than a theoretical threshold which scales the influence from the multi-scale internal variation. Otherwise, the sign of the linear trend coefficient will depend on the phase of the internal variation, or in the other words, the period being used. An improved least-square method is then proposed to reduce the theoretical threshold. When apply the new method to a global SST reconstruction from 1881 to 2013, we find that in a large part of Pacific, the southern Indian Ocean and North Atlantic, the influence from the multi-scale internal variation on the sign of the linear trend coefficient can-not be excluded. Therefore, the resulting warming or/and cooling linear trends in these regions can-not be fully assigned to global warming.
NASA Astrophysics Data System (ADS)
Belyaev, V. A.; Shapeev, V. P.
2017-10-01
New versions of the collocations and least squares method of high-order accuracy are proposed and implemented for the numerical solution of the boundary value problems for the biharmonic equation in non-canonical domains. The solution of the biharmonic equation is used for simulating the stress-strain state of an isotropic plate under the action of transverse load. The differential problem is projected into a space of fourth-degree polynomials by the CLS method. The boundary conditions for the approximate solution are put down exactly on the boundary of the computational domain. The versions of the CLS method are implemented on the grids which are constructed in two different ways. It is shown that the approximate solution of problems converges with high order. Thus it matches with high accuracy with the analytical solution of the test problems in the case of known solution in the numerical experiments on the convergence of the solution of various problems on a sequence of grids.
Frequency analysis via the method of moment functionals
NASA Technical Reports Server (NTRS)
Pearson, A. E.; Pan, J. Q.
1990-01-01
Several variants are presented of a linear-in-parameters least squares formulation for determining the transfer function of a stable linear system at specified frequencies given a finite set of Fourier series coefficients calculated from transient nonstationary input-output data. The basis of the technique is Shinbrot's classical method of moment functionals using complex Fourier based modulating functions to convert a differential equation model on a finite time interval into an algebraic equation which depends linearly on frequency-related parameters.
Forcing Regression through a Given Point Using Any Familiar Computational Routine.
1983-03-01
a linear model , Y =a + OX + e ( Model I) then adopt the principle of least squares; and use sample data to estimate the unknown parameters, a and 8...has an expected value of zero indicates that the "average" response is considered linear . If c varies widely, Model I, though conceptually correct, may...relationship is linear from the maximum observed x to x - a, then Model II should be used. To pro- ceed with the customary evaluation of Model I would be
SIRF: Simultaneous Satellite Image Registration and Fusion in a Unified Framework.
Chen, Chen; Li, Yeqing; Liu, Wei; Huang, Junzhou
2015-11-01
In this paper, we propose a novel method for image fusion with a high-resolution panchromatic image and a low-resolution multispectral (Ms) image at the same geographical location. The fusion is formulated as a convex optimization problem which minimizes a linear combination of a least-squares fitting term and a dynamic gradient sparsity regularizer. The former is to preserve accurate spectral information of the Ms image, while the latter is to keep sharp edges of the high-resolution panchromatic image. We further propose to simultaneously register the two images during the fusing process, which is naturally achieved by virtue of the dynamic gradient sparsity property. An efficient algorithm is then devised to solve the optimization problem, accomplishing a linear computational complexity in the size of the output image in each iteration. We compare our method against six state-of-the-art image fusion methods on Ms image data sets from four satellites. Extensive experimental results demonstrate that the proposed method substantially outperforms the others in terms of both spatial and spectral qualities. We also show that our method can provide high-quality products from coarsely registered real-world IKONOS data sets. Finally, a MATLAB implementation is provided to facilitate future research.
Wang, Wei; Ackland, David C; McClelland, Jodie A; Webster, Kate E; Halgamuge, Saman
2018-01-01
Quantitative gait analysis is an important tool in objective assessment and management of total knee arthroplasty (TKA) patients. Studies evaluating gait patterns in TKA patients have tended to focus on discrete data such as spatiotemporal information, joint range of motion and peak values of kinematics and kinetics, or consider selected principal components of gait waveforms for analysis. These strategies may not have the capacity to capture small variations in gait patterns associated with each joint across an entire gait cycle, and may ultimately limit the accuracy of gait classification. The aim of this study was to develop an automatic feature extraction method to analyse patterns from high-dimensional autocorrelated gait waveforms. A general linear feature extraction framework was proposed and a hierarchical partial least squares method derived for discriminant analysis of multiple gait waveforms. The effectiveness of this strategy was verified using a dataset of joint angle and ground reaction force waveforms from 43 patients after TKA surgery and 31 healthy control subjects. Compared with principal component analysis and partial least squares methods, the hierarchical partial least squares method achieved generally better classification performance on all possible combinations of waveforms, with the highest classification accuracy . The novel hierarchical partial least squares method proposed is capable of capturing virtually all significant differences between TKA patients and the controls, and provides new insights into data visualization. The proposed framework presents a foundation for more rigorous classification of gait, and may ultimately be used to evaluate the effects of interventions such as surgery and rehabilitation.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, X. R.; Wang, X.
2016-03-01
When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.
ERIC Educational Resources Information Center
Carlson, James E.
2014-01-01
Many aspects of the geometry of linear statistical models and least squares estimation are well known. Discussions of the geometry may be found in many sources. Some aspects of the geometry relating to the partitioning of variation that can be explained using a little-known theorem of Pappus and have not been discussed previously are the topic of…
Chen, C P; Wan, J Z
1999-01-01
A fast learning algorithm is proposed to find an optimal weights of the flat neural networks (especially, the functional-link network). Although the flat networks are used for nonlinear function approximation, they can be formulated as linear systems. Thus, the weights of the networks can be solved easily using a linear least-square method. This formulation makes it easier to update the weights instantly for both a new added pattern and a new added enhancement node. A dynamic stepwise updating algorithm is proposed to update the weights of the system on-the-fly. The model is tested on several time-series data including an infrared laser data set, a chaotic time-series, a monthly flour price data set, and a nonlinear system identification problem. The simulation results are compared to existing models in which more complex architectures and more costly training are needed. The results indicate that the proposed model is very attractive to real-time processes.
Prediction Analysis for Measles Epidemics
NASA Astrophysics Data System (ADS)
Sumi, Ayako; Ohtomo, Norio; Tanaka, Yukio; Sawamura, Sadashi; Olsen, Lars Folke; Kobayashi, Nobumichi
2003-12-01
A newly devised procedure of prediction analysis, which is a linearized version of the nonlinear least squares method combined with the maximum entropy spectral analysis method, was proposed. This method was applied to time series data of measles case notification in several communities in the UK, USA and Denmark. The dominant spectral lines observed in each power spectral density (PSD) can be safely assigned as fundamental periods. The optimum least squares fitting (LSF) curve calculated using these fundamental periods can essentially reproduce the underlying variation of the measles data. An extension of the LSF curve can be used to predict measles case notification quantitatively. Some discussions including a predictability of chaotic time series are presented.
Two biased estimation techniques in linear regression: Application to aircraft
NASA Technical Reports Server (NTRS)
Klein, Vladislav
1988-01-01
Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.
Partial Least Squares Regression Models for the Analysis of Kinase Signaling.
Bourgeois, Danielle L; Kreeger, Pamela K
2017-01-01
Partial least squares regression (PLSR) is a data-driven modeling approach that can be used to analyze multivariate relationships between kinase networks and cellular decisions or patient outcomes. In PLSR, a linear model relating an X matrix of dependent variables and a Y matrix of independent variables is generated by extracting the factors with the strongest covariation. While the identified relationship is correlative, PLSR models can be used to generate quantitative predictions for new conditions or perturbations to the network, allowing for mechanisms to be identified. This chapter will provide a brief explanation of PLSR and provide an instructive example to demonstrate the use of PLSR to analyze kinase signaling.
NASA Astrophysics Data System (ADS)
Rebillat, Marc; Schoukens, Maarten
2018-05-01
Linearity is a common assumption for many real-life systems, but in many cases the nonlinear behavior of systems cannot be ignored and must be modeled and estimated. Among the various existing classes of nonlinear models, Parallel Hammerstein Models (PHM) are interesting as they are at the same time easy to interpret as well as to estimate. One way to estimate PHM relies on the fact that the estimation problem is linear in the parameters and thus that classical least squares (LS) estimation algorithms can be used. In that area, this article introduces a regularized LS estimation algorithm inspired on some of the recently developed regularized impulse response estimation techniques. Another mean to estimate PHM consists in using parametric or non-parametric exponential sine sweeps (ESS) based methods. These methods (LS and ESS) are founded on radically different mathematical backgrounds but are expected to tackle the same issue. A methodology is proposed here to compare them with respect to (i) their accuracy, (ii) their computational cost, and (iii) their robustness to noise. Tests are performed on simulated systems for several values of methods respective parameters and of signal to noise ratio. Results show that, for a given set of data points, the ESS method is less demanding in computational resources than the LS method but that it is also less accurate. Furthermore, the LS method needs parameters to be set in advance whereas the ESS method is not subject to conditioning issues and can be fully non-parametric. In summary, for a given set of data points, ESS method can provide a first, automatic, and quick overview of a nonlinear system than can guide more computationally demanding and precise methods, such as the regularized LS one proposed here.
NASA Astrophysics Data System (ADS)
Darrh, A.; Downs, C. M.; Poppeliers, C.
2017-12-01
Born Scattering Inversion (BSI) of electromagnetic (EM) data is a geophysical imaging methodology for mapping weak conductivity, permeability, and/or permittivity contrasts in the subsurface. The high computational cost of full waveform inversion is reduced by adopting the First Born Approximation for scattered EM fields. This linearizes the inverse problem in terms of Born scattering amplitudes for a set of effective EM body sources within a 3D imaging volume. Estimation of scatterer amplitudes is subsequently achieved by solving the normal equations. Our present BSI numerical experiments entail Fourier transforming real-valued synthetic EM data to the frequency-domain, and minimizing the L2 residual between complex-valued observed and predicted data. We are testing the ability of BSI to resolve simple scattering models. For our initial experiments, synthetic data are acquired by three-component (3C) electric field receivers distributed on a plane above a single point electric dipole within a homogeneous and isotropic wholespace. To suppress artifacts, candidate Born scatterer locations are confined to a volume beneath the receiver array. Also, we explore two different numerical linear algebra algorithms for solving the normal equations: Damped Least Squares (DLS), and Non-Negative Least Squares (NNLS). Results from NNLS accurately recover the source location only for a large dense 3C receiver array, but fail when the array is decimated, or is restricted to horizontal component data. Using all receiver stations and all components per station, NNLS results are relatively insensitive to a sub-sampled frequency spectrum, suggesting that coarse frequency-domain sampling may be adequate for good target resolution. Results from DLS are insensitive to diminishing array density, but contain spatially oscillatory structure. DLS-generated images are consistently centered at the known point source location, despite an abundance of surrounding structure.
Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin
2016-01-01
To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb’s test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R2 and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data. PMID:26821026
Demonstration of the Web-based Interspecies Correlation Estimation (Web-ICE) modeling application
The Web-based Interspecies Correlation Estimation (Web-ICE) modeling application is available to the risk assessment community through a user-friendly internet platform (http://epa.gov/ceampubl/fchain/webice/). ICE models are log-linear least square regressions that predict acute...
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
Fisz, Jacek J
2006-12-07
The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi-linear combinations of nonlinear functions, is indicated. The VP algorithm does not distinguish the weakly nonlinear parameters from the nonlinear ones and it does not apply to the model functions which are multi-linear combinations of nonlinear functions.
State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.
1978-12-01
The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared
Methods of Fitting a Straight Line to Data: Examples in Water Resources
Hirsch, Robert M.; Gilroy, Edward J.
1984-01-01
Three methods of fitting straight lines to data are described and their purposes are discussed and contrasted in terms of their applicability in various water resources contexts. The three methods are ordinary least squares (OLS), least normal squares (LNS), and the line of organic correlation (OC). In all three methods the parameters are based on moment statistics of the data. When estimation of an individual value is the objective, OLS is the most appropriate. When estimation of many values is the objective and one wants the set of estimates to have the appropriate variance, then OC is most appropriate. When one wishes to describe the relationship between two variables and measurement error is unimportant, then OC is most appropriate. Where the error is important in descriptive problems or in calibration problems, then structural analysis techniques may be most appropriate. Finally, if the problem is one of describing some geographic trajectory, then LNS is most appropriate.
Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.
Quantum algorithm for linear regression
NASA Astrophysics Data System (ADS)
Wang, Guoming
2017-07-01
We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.
Liu, Fei; Feng, Lei; Lou, Bing-gan; Sun, Guang-ming; Wang, Lian-ping; He, Yong
2010-07-01
The combinational-stimulated bands were used to develop linear and nonlinear calibrations for the early detection of sclerotinia of oilseed rape (Brassica napus L.). Eighty healthy and 100 Sclerotinia leaf samples were scanned, and different preprocessing methods combined with successive projections algorithm (SPA) were applied to develop partial least squares (PLS) discriminant models, multiple linear regression (MLR) and least squares-support vector machine (LS-SVM) models. The results indicated that the optimal full-spectrum PLS model was achieved by direct orthogonal signal correction (DOSC), then De-trending and Raw spectra with correct recognition ratio of 100%, 95.7% and 95.7%, respectively. When using combinational-stimulated bands, the optimal linear models were SPA-MLR (DOSC) and SPA-PLS (DOSC) with correct recognition ratio of 100%. All SPA-LSSVM models using DOSC, De-trending and Raw spectra achieved perfect results with recognition of 100%. The overall results demonstrated that it was feasible to use combinational-stimulated bands for the early detection of Sclerotinia of oilseed rape, and DOSC-SPA was a powerful way for informative wavelength selection. This method supplied a new approach to the early detection and portable monitoring instrument of sclerotinia.
Nonlinear filtering properties of detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Kiyono, Ken; Tsujimoto, Yutaka
2016-11-01
Detrended fluctuation analysis (DFA) has been widely used for quantifying long-range correlation and fractal scaling behavior. In DFA, to avoid spurious detection of scaling behavior caused by a nonstationary trend embedded in the analyzed time series, a detrending procedure using piecewise least-squares fitting has been applied. However, it has been pointed out that the nonlinear filtering properties involved with detrending may induce instabilities in the scaling exponent estimation. To understand this issue, we investigate the adverse effects of the DFA detrending procedure on the statistical estimation. We show that the detrending procedure using piecewise least-squares fitting results in the nonuniformly weighted estimation of the root-mean-square deviation and that this property could induce an increase in the estimation error. In addition, for comparison purposes, we investigate the performance of a centered detrending moving average analysis with a linear detrending filter and sliding window DFA and show that these methods have better performance than the standard DFA.
NASA Astrophysics Data System (ADS)
Korkin, S.; Lyapustin, A.
2012-12-01
The Levenberg-Marquardt algorithm [1, 2] provides a numerical iterative solution to the problem of minimization of a function over a space of its parameters. In our work, the Levenberg-Marquardt algorithm retrieves optical parameters of a thin (single scattering) plane parallel atmosphere irradiated by collimated infinitely wide monochromatic beam of light. Black ground surface is assumed. Computational accuracy, sensitivity to the initial guess and the presence of noise in the signal, and other properties of the algorithm are investigated in scalar (using intensity only) and vector (including polarization) modes. We consider an atmosphere that contains a mixture of coarse and fine fractions. Following [3], the fractions are simulated using Henyey-Greenstein model. Though not realistic, this assumption is very convenient for tests [4, p.354]. In our case it yields analytical evaluation of Jacobian matrix. Assuming the MISR geometry of observation [5] as an example, the average scattering cosines and the ratio of coarse and fine fractions, the atmosphere optical depth, and the single scattering albedo, are the five parameters to be determined numerically. In our implementation of the algorithm, the system of five linear equations is solved using the fast Cramer's rule [6]. A simple subroutine developed by the authors, makes the algorithm independent from external libraries. All Fortran 90/95 codes discussed in the presentation will be available immediately after the meeting from sergey.v.korkin@nasa.gov by request. [1]. Levenberg K, A method for the solution of certain non-linear problems in least squares, Quarterly of Applied Mathematics, 1944, V.2, P.164-168. [2]. Marquardt D, An algorithm for least-squares estimation of nonlinear parameters, Journal on Applied Mathematics, 1963, V.11, N.2, P.431-441. [3]. Hovenier JW, Multiple scattering of polarized light in planetary atmospheres. Astronomy and Astrophysics, 1971, V.13, P.7 - 29. [4]. Mishchenko MI, Travis LD, and Lacis AA, Multiple scattering of light by particles, Cambridge: University Press, 2006. [5]. http://www-misr.jpl.nasa.gov/Mission/misrInstrument/ [6]. Habgood K, Arel I, Revisiting Cramer's rule for solving dense linear systems, In: Proceedings of the 2010 Spring Simulation Multiconference, Paper No 82. ISBN: 978-1-4503-0069-8. DOI: 10.1145/1878537.1878623.
Stochastic static fault slip inversion from geodetic data with non-negativity and bound constraints
NASA Astrophysics Data System (ADS)
Nocquet, J.-M.
2018-07-01
Despite surface displacements observed by geodesy are linear combinations of slip at faults in an elastic medium, determining the spatial distribution of fault slip remains a ill-posed inverse problem. A widely used approach to circumvent the illness of the inversion is to add regularization constraints in terms of smoothing and/or damping so that the linear system becomes invertible. However, the choice of regularization parameters is often arbitrary, and sometimes leads to significantly different results. Furthermore, the resolution analysis is usually empirical and cannot be made independently of the regularization. The stochastic approach of inverse problems provides a rigorous framework where the a priori information about the searched parameters is combined with the observations in order to derive posterior probabilities of the unkown parameters. Here, I investigate an approach where the prior probability density function (pdf) is a multivariate Gaussian function, with single truncation to impose positivity of slip or double truncation to impose positivity and upper bounds on slip for interseismic modelling. I show that the joint posterior pdf is similar to the linear untruncated Gaussian case and can be expressed as a truncated multivariate normal (TMVN) distribution. The TMVN form can then be used to obtain semi-analytical formulae for the single, 2-D or n-D marginal pdf. The semi-analytical formula involves the product of a Gaussian by an integral term that can be evaluated using recent developments in TMVN probabilities calculations. Posterior mean and covariance can also be efficiently derived. I show that the maximum posterior (MAP) can be obtained using a non-negative least-squares algorithm for the single truncated case or using the bounded-variable least-squares algorithm for the double truncated case. I show that the case of independent uniform priors can be approximated using TMVN. The numerical equivalence to Bayesian inversions using Monte Carlo Markov chain (MCMC) sampling is shown for a synthetic example and a real case for interseismic modelling in Central Peru. The TMVN method overcomes several limitations of the Bayesian approach using MCMC sampling. First, the need of computer power is largely reduced. Second, unlike Bayesian MCMC-based approach, marginal pdf, mean, variance or covariance are obtained independently one from each other. Third, the probability and cumulative density functions can be obtained with any density of points. Finally, determining the MAP is extremely fast.
NASA Technical Reports Server (NTRS)
Pan, Jianqiang
1992-01-01
Several important problems in the fields of signal processing and model identification, such as system structure identification, frequency response determination, high order model reduction, high resolution frequency analysis, deconvolution filtering, and etc. Each of these topics involves a wide range of applications and has received considerable attention. Using the Fourier based sinusoidal modulating signals, it is shown that a discrete autoregressive model can be constructed for the least squares identification of continuous systems. Some identification algorithms are presented for both SISO and MIMO systems frequency response determination using only transient data. Also, several new schemes for model reduction were developed. Based upon the complex sinusoidal modulating signals, a parametric least squares algorithm for high resolution frequency estimation is proposed. Numerical examples show that the proposed algorithm gives better performance than the usual. Also, the problem was studied of deconvolution and parameter identification of a general noncausal nonminimum phase ARMA system driven by non-Gaussian stationary random processes. Algorithms are introduced for inverse cumulant estimation, both in the frequency domain via the FFT algorithms and in the domain via the least squares algorithm.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2009-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.
NASA Technical Reports Server (NTRS)
Wentz, F. J.
1977-01-01
The general problem of bistatic scattering from a two scale surface was evaluated. The treatment was entirely two-dimensional and in a vector formulation independent of any particular coordinate system. The two scale scattering model was then applied to backscattering from the sea surface. In particular, the model was used in conjunction with the JONSWAP 1975 aircraft scatterometer measurements to determine the sea surface's two scale roughness distributions, namely the probability density of the large scale surface slope and the capillary wavenumber spectrum. Best fits yield, on the average, a 0.7 dB rms difference between the model computations and the vertical polarization measurements of the normalized radar cross section. Correlations between the distribution parameters and the wind speed were established from linear, least squares regressions.
Investigations on the hierarchy of reference frames in geodesy and geodynamics
NASA Technical Reports Server (NTRS)
Grafarend, E. W.; Mueller, I. I.; Papo, H. B.; Richter, B.
1979-01-01
Problems related to reference directions were investigated. Space and time variant angular parameters are illustrated in hierarchic structures or towers. Using least squares techniques, model towers of triads are presented which allow the formation of linear observation equations. Translational and rotational degrees of freedom (origin and orientation) are discussed along with and the notion of length and scale degrees of freedom. According to the notion of scale parallelism, scale factors with respect to a unit length are given. Three-dimensional geodesy was constructed from the set of three base vectors (gravity, earth-rotation and the ecliptic normal vector). Space and time variations are given with respect to a polar and singular value decomposition or in terms of changes in translation, rotation, deformation (shear, dilatation or angular and scale distortions).
Functional Relationships and Regression Analysis.
ERIC Educational Resources Information Center
Preece, Peter F. W.
1978-01-01
Using a degenerate multivariate normal model for the distribution of organismic variables, the form of least-squares regression analysis required to estimate a linear functional relationship between variables is derived. It is suggested that the two conventional regression lines may be considered to describe functional, not merely statistical,…
Gompertzian stochastic model with delay effect to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.
Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C
2008-07-21
The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.
Utilization of electrical impedance imaging for estimation of in-vivo tissue resistivities
NASA Astrophysics Data System (ADS)
Eyuboglu, B. Murat; Pilkington, Theo C.
1993-08-01
In order to determine in vivo resistivity of tissues in the thorax, the possibility of combining electrical impedance imaging (EII) techniques with (1) anatomical data extracted from high resolution images, (2) a prior knowledge of tissue resistivities, and (3) a priori noise information was assessed in this study. A Least Square Error Estimator (LSEE) and a statistically constrained Minimum Mean Square Error Estimator (MiMSEE) were implemented to estimate regional electrical resistivities from potential measurements made on the body surface. A two dimensional boundary element model of the human thorax, which consists of four different conductivity regions (the skeletal muscle, the heart, the right lung, and the left lung) was adopted to simulate the measured EII torso potentials. The calculated potentials were then perturbed by simulated instrumentation noise. The signal information used to form the statistical constraint for the MiMSEE was obtained from a prior knowledge of the physiological range of tissue resistivities. The noise constraint was determined from a priori knowledge of errors due to linearization of the forward problem and to the instrumentation noise.
Kumar, K Vasanth; Sivanesan, S
2005-08-31
Comparison analysis of linear least square method and non-linear method for estimating the isotherm parameters was made using the experimental equilibrium data of safranin onto activated carbon at two different solution temperatures 305 and 313 K. Equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm equations. All the three isotherm equations showed a better fit to the experimental equilibrium data. The results showed that non-linear method could be a better way to obtain the isotherm parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.
NASA Astrophysics Data System (ADS)
Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing
2018-05-01
We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.
Peelle's pertinent puzzle using the Monte Carlo technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawano, Toshihiko; Talou, Patrick; Burr, Thomas
2009-01-01
We try to understand the long-standing problem of the Peelle's Pertinent Puzzle (PPP) using the Monte Carlo technique. We allow the probability density functions to be any kind of form to assume the impact of distribution, and obtain the least-squares solution directly from numerical simulations. We found that the standard least squares method gives the correct answer if a weighting function is properly provided. Results from numerical simulations show that the correct answer of PPP is 1.1 {+-} 0.25 if the common error is multiplicative. The thought-provoking answer of 0.88 is also correct, if the common error is additive, andmore » if the error is proportional to the measured values. The least squares method correctly gives us the most probable case, where the additive component has a negative value. Finally, the standard method fails for PPP due to a distorted (non Gaussian) joint distribution.« less
Doppler-shift estimation of flat underwater channel using data-aided least-square approach
NASA Astrophysics Data System (ADS)
Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing
2015-06-01
In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.
Zhang, Guoqing; Zhang, Xianku; Pang, Hongshuai
2015-09-01
This research is concerned with the problem of 4 degrees of freedom (DOF) ship manoeuvring identification modelling with the full-scale trial data. To avoid the multi-innovation matrix inversion in the conventional multi-innovation least squares (MILS) algorithm, a new transformed multi-innovation least squares (TMILS) algorithm is first developed by virtue of the coupling identification concept. And much effort is made to guarantee the uniformly ultimate convergence. Furthermore, the auto-constructed TMILS scheme is derived for the ship manoeuvring motion identification by combination with a statistic index. Comparing with the existing results, the proposed scheme has the significant computational advantage and is able to estimate the model structure. The illustrative examples demonstrate the effectiveness of the proposed algorithm, especially including the identification application with full-scale trial data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Retargeted Least Squares Regression Algorithm.
Zhang, Xu-Yao; Wang, Lingfeng; Xiang, Shiming; Liu, Cheng-Lin
2015-09-01
This brief presents a framework of retargeted least squares regression (ReLSR) for multicategory classification. The core idea is to directly learn the regression targets from data other than using the traditional zero-one matrix as regression targets. The learned target matrix can guarantee a large margin constraint for the requirement of correct classification for each data point. Compared with the traditional least squares regression (LSR) and a recently proposed discriminative LSR models, ReLSR is much more accurate in measuring the classification error of the regression model. Furthermore, ReLSR is a single and compact model, hence there is no need to train two-class (binary) machines that are independent of each other. The convex optimization problem of ReLSR is solved elegantly and efficiently with an alternating procedure including regression and retargeting as substeps. The experimental evaluation over a range of databases identifies the validity of our method.
Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-05-01
We propose to apply a novel incoherent dictionary learning (IDL) algorithm for regularizing the least-squares inversion in seismic imaging. The IDL is proposed to overcome the drawback of traditional dictionary learning algorithm in losing partial texture information. Firstly, the noisy image is divided into overlapped image patches, and some random patches are extracted for dictionary learning. Then, we apply the IDL technology to minimize the coherency between atoms during dictionary learning. Finally, the sparse representation problem is solved by a sparse coding algorithm, and image is restored by those sparse coefficients. By reducing the correlation among atoms, it is possible to preserve most of the small-scale features in the image while removing much of the long-wavelength noise. The application of the IDL method to regularization of seismic images from least-squares reverse time migration shows successful performance.
A look at scalable dense linear algebra libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.
1992-01-01
We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less
A look at scalable dense linear algebra libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.
1992-08-01
We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less
Local food prices and their associations with children's weight and food security.
Morrissey, Taryn W; Jacknowitz, Alison; Vinopal, Katie
2014-03-01
Both obesity and food insecurity are important public health problems facing young children in the United States. A lack of affordable, healthy foods is one of the neighborhood factors presumed to underlie both food insecurity and obesity among children. We examine associations between local food prices and children's BMI, weight, and food security outcomes. We linked data from the Early Childhood Longitudinal Study-Birth Cohort, a nationally representative study of children from infancy to age 5, to local food price data from the Council for Community and Economic Research (C2ER) Cost-of-Living Index (n = 11,700 observations). Using ordinary least squares (OLS), linear probability, and within-child fixed effects (FE) models, we exploit the variability in food price data over time and among children who move residences focusing on a subsample of households under 300% of the Federal Poverty Level. Results from ordinary least squares and FE models indicate that higher-priced fruits and vegetables are associated with higher child BMI, and this relationship is driven by the prices of fresh (versus frozen or canned) fruits and vegetables. In the FE models, higher-priced soft drinks are associated with a lower likelihood of being overweight, and surprisingly, higher fast food prices are associated with a greater likelihood of being overweight. Policies that reduce the costs of fresh fruits and vegetables may be effective in promoting healthy weight outcomes among young children.
An Incremental Weighted Least Squares Approach to Surface Lights Fields
NASA Astrophysics Data System (ADS)
Coombe, Greg; Lastra, Anselmo
An Image-Based Rendering (IBR) approach to appearance modelling enables the capture of a wide variety of real physical surfaces with complex reflectance behaviour. The challenges with this approach are handling the large amount of data, rendering the data efficiently, and previewing the model as it is being constructed. In this paper, we introduce the Incremental Weighted Least Squares approach to the representation and rendering of spatially and directionally varying illumination. Each surface patch consists of a set of Weighted Least Squares (WLS) node centers, which are low-degree polynomial representations of the anisotropic exitant radiance. During rendering, the representations are combined in a non-linear fashion to generate a full reconstruction of the exitant radiance. The rendering algorithm is fast, efficient, and implemented entirely on the GPU. The construction algorithm is incremental, which means that images are processed as they arrive instead of in the traditional batch fashion. This human-in-the-loop process enables the user to preview the model as it is being constructed and to adapt to over-sampling and under-sampling of the surface appearance.
Faraday rotation data analysis with least-squares elliptical fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Adam D.; McHale, G. Brent; Goerz, David A.
2010-10-15
A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the methodmore » is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.« less
Time-domain least-squares migration using the Gaussian beam summation method
NASA Astrophysics Data System (ADS)
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-04-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
Time-domain least-squares migration using the Gaussian beam summation method
NASA Astrophysics Data System (ADS)
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-07-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow
NASA Astrophysics Data System (ADS)
Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar
2014-09-01
We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.
Nonnegative least-squares image deblurring: improved gradient projection approaches
NASA Astrophysics Data System (ADS)
Benvenuto, F.; Zanella, R.; Zanni, L.; Bertero, M.
2010-02-01
The least-squares approach to image deblurring leads to an ill-posed problem. The addition of the nonnegativity constraint, when appropriate, does not provide regularization, even if, as far as we know, a thorough investigation of the ill-posedness of the resulting constrained least-squares problem has still to be done. Iterative methods, converging to nonnegative least-squares solutions, have been proposed. Some of them have the 'semi-convergence' property, i.e. early stopping of the iteration provides 'regularized' solutions. In this paper we consider two of these methods: the projected Landweber (PL) method and the iterative image space reconstruction algorithm (ISRA). Even if they work well in many instances, they are not frequently used in practice because, in general, they require a large number of iterations before providing a sensible solution. Therefore, the main purpose of this paper is to refresh these methods by increasing their efficiency. Starting from the remark that PL and ISRA require only the computation of the gradient of the functional, we propose the application to these algorithms of special acceleration techniques that have been recently developed in the area of the gradient methods. In particular, we propose the application of efficient step-length selection rules and line-search strategies. Moreover, remarking that ISRA is a scaled gradient algorithm, we evaluate its behaviour in comparison with a recent scaled gradient projection (SGP) method for image deblurring. Numerical experiments demonstrate that the accelerated methods still exhibit the semi-convergence property, with a considerable gain both in the number of iterations and in the computational time; in particular, SGP appears definitely the most efficient one.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, Xin-ran; Wang, Xin
2017-04-01
When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.
On Target Localization Using Combined RSS and AoA Measurements
Beko, Marko; Dinis, Rui
2018-01-01
This work revises existing solutions for a problem of target localization in wireless sensor networks (WSNs), utilizing integrated measurements, namely received signal strength (RSS) and angle of arrival (AoA). The problem of RSS/AoA-based target localization became very popular in the research community recently, owing to its great applicability potential and relatively low implementation cost. Therefore, here, a comprehensive study of the state-of-the-art (SoA) solutions and their detailed analysis is presented. The beginning of this work starts by considering the SoA approaches based on convex relaxation techniques (more computationally complex in general), and it goes through other (less computationally complex) approaches, as well, such as the ones based on the generalized trust region sub-problems framework and linear least squares. Furthermore, a detailed analysis of the computational complexity of each solution is reviewed. Furthermore, an extensive set of simulation results is presented. Finally, the main conclusions are summarized, and a set of future aspects and trends that might be interesting for future research in this area is identified. PMID:29671832
An object correlation and maneuver detection approach for space surveillance
NASA Astrophysics Data System (ADS)
Huang, Jian; Hu, Wei-Dong; Xin, Qin; Du, Xiao-Yong
2012-10-01
Object correlation and maneuver detection are persistent problems in space surveillance and maintenance of a space object catalog. We integrate these two problems into one interrelated problem, and consider them simultaneously under a scenario where space objects only perform a single in-track orbital maneuver during the time intervals between observations. We mathematically formulate this integrated scenario as a maximum a posteriori (MAP) estimation. In this work, we propose a novel approach to solve the MAP estimation. More precisely, the corresponding posterior probability of an orbital maneuver and a joint association event can be approximated by the Joint Probabilistic Data Association (JPDA) algorithm. Subsequently, the maneuvering parameters are estimated by optimally solving the constrained non-linear least squares iterative process based on the second-order cone programming (SOCP) algorithm. The desired solution is derived according to the MAP criterions. The performance and advantages of the proposed approach have been shown by both theoretical analysis and simulation results. We hope that our work will stimulate future work on space surveillance and maintenance of a space object catalog.
NASA Technical Reports Server (NTRS)
Green, M. J.; Nachtsheim, P. R.
1972-01-01
A numerical method for the solution of large systems of nonlinear differential equations of the boundary-layer type is described. The method is a modification of the technique for satisfying asymptotic boundary conditions. The present method employs inverse interpolation instead of the Newton method to adjust the initial conditions of the related initial-value problem. This eliminates the so-called perturbation equations. The elimination of the perturbation equations not only reduces the user's preliminary work in the application of the method, but also reduces the number of time-consuming initial-value problems to be numerically solved at each iteration. For further ease of application, the solution of the overdetermined system for the unknown initial conditions is obtained automatically by applying Golub's linear least-squares algorithm. The relative ease of application of the proposed numerical method increases directly as the order of the differential-equation system increases. Hence, the method is especially attractive for the solution of large-order systems. After the method is described, it is applied to a fifth-order problem from boundary-layer theory.
Global Optimal Trajectory in Chaos and NP-Hardness
NASA Astrophysics Data System (ADS)
Latorre, Vittorio; Gao, David Yang
This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.
NASA Astrophysics Data System (ADS)
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
Sparseness- and continuity-constrained seismic imaging
NASA Astrophysics Data System (ADS)
Herrmann, Felix J.
2005-04-01
Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.
A Unified Approach to Optimization
2014-10-02
employee scheduling, ad placement, latin squares, disjunctions of linear systems, temporal modeling with interval variables, and traveling salesman problems ...integrating technologies. A key to integrated modeling is to formulate a problem with high-levelmetaconstraints, which are inspired by the “global... problem substructure to the solver. This contrasts with the atomistic modeling style of mixed integer programming (MIP) and satisfiability (SAT) solvers
Gemperline, Paul J; Cash, Eric
2003-08-15
A new algorithm for self-modeling curve resolution (SMCR) that yields improved results by incorporating soft constraints is described. The method uses least squares penalty functions to implement constraints in an alternating least squares algorithm, including nonnegativity, unimodality, equality, and closure constraints. By using least squares penalty functions, soft constraints are formulated rather than hard constraints. Significant benefits are (obtained using soft constraints, especially in the form of fewer distortions due to noise in resolved profiles. Soft equality constraints can also be used to introduce incomplete or partial reference information into SMCR solutions. Four different examples demonstrating application of the new method are presented, including resolution of overlapped HPLC-DAD peaks, flow injection analysis data, and batch reaction data measured by UV/visible and near-infrared spectroscopy (NIR). Each example was selected to show one aspect of the significant advantages of soft constraints over traditionally used hard constraints. Incomplete or partial reference information into self-modeling curve resolution models is described. The method offers a substantial improvement in the ability to resolve time-dependent concentration profiles from mixture spectra recorded as a function of time.
A Comprehensive Enzyme Kinetic Exercise for Biochemistry
ERIC Educational Resources Information Center
Barton, Janice S.
2011-01-01
This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…
Segmented Polynomial Models in Quasi-Experimental Research.
ERIC Educational Resources Information Center
Wasik, John L.
1981-01-01
The use of segmented polynomial models is explained. Examples of design matrices of dummy variables are given for the least squares analyses of time series and discontinuity quasi-experimental research designs. Linear combinations of dummy variable vectors appear to provide tests of effects in the two quasi-experimental designs. (Author/BW)
Making an Old Measurement Experiment Modern and Exciting!
ERIC Educational Resources Information Center
Schulze, Paul D.
1996-01-01
Presents a new approach for the determination of the temperature coefficient of resistance of a resistor and a thermistor. Advantages include teaching students how to linearize data in order to utilize least-squares techniques, continuously taking data over desired temperature range, using up-to-date data-acquisition techniques, teaching the use…
Introductory Linear Regression Programs in Undergraduate Chemistry.
ERIC Educational Resources Information Center
Gale, Robert J.
1982-01-01
Presented are simple programs in BASIC and FORTRAN to apply the method of least squares. They calculate gradients and intercepts and express errors as standard deviations. An introduction of undergraduate students to such programs in a chemistry class is reviewed, and issues instructors should be aware of are noted. (MP)
40 CFR 89.319 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... each range calibrated, if the deviation from a least-squares best-fit straight line is 2 percent or... ±0.3 percent of full scale on the zero, the best-fit non-linear equation which represents the data to within these limits shall be used to determine concentration. (d) Oxygen interference optimization...
40 CFR 89.319 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... each range calibrated, if the deviation from a least-squares best-fit straight line is 2 percent or... ±0.3 percent of full scale on the zero, the best-fit non-linear equation which represents the data to within these limits shall be used to determine concentration. (d) Oxygen interference optimization...
40 CFR 89.319 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... each range calibrated, if the deviation from a least-squares best-fit straight line is 2 percent or... ±0.3 percent of full scale on the zero, the best-fit non-linear equation which represents the data to within these limits shall be used to determine concentration. (d) Oxygen interference optimization...
40 CFR 89.320 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...
40 CFR 89.320 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...
40 CFR 89.320 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...
40 CFR 89.320 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...
Estimating School Efficiency: A Comparison of Methods Using Simulated Data.
ERIC Educational Resources Information Center
Bifulco, Robert; Bretschneider, Stuart
2001-01-01
Uses simulated data to assess the adequacy of two econometric and linear-programming techniques (data-envelopment analysis and corrected ordinary least squares) for measuring performance-based school reform. In complex data sets (simulated to contain measurement error and endogeneity), these methods are inadequate efficiency measures. (Contains 40…
NASA Astrophysics Data System (ADS)
Takayama, T.; Iwasaki, A.
2016-06-01
Above-ground biomass prediction of tropical rain forest using remote sensing data is of paramount importance to continuous large-area forest monitoring. Hyperspectral data can provide rich spectral information for the biomass prediction; however, the prediction accuracy is affected by a small-sample-size problem, which widely exists as overfitting in using high dimensional data where the number of training samples is smaller than the dimensionality of the samples due to limitation of require time, cost, and human resources for field surveys. A common approach to addressing this problem is reducing the dimensionality of dataset. Also, acquired hyperspectral data usually have low signal-to-noise ratio due to a narrow bandwidth and local or global shifts of peaks due to instrumental instability or small differences in considering practical measurement conditions. In this work, we propose a methodology based on fused lasso regression that select optimal bands for the biomass prediction model with encouraging sparsity and grouping, which solves the small-sample-size problem by the dimensionality reduction from the sparsity and the noise and peak shift problem by the grouping. The prediction model provided higher accuracy with root-mean-square error (RMSE) of 66.16 t/ha in the cross-validation than other methods; multiple linear analysis, partial least squares regression, and lasso regression. Furthermore, fusion of spectral and spatial information derived from texture index increased the prediction accuracy with RMSE of 62.62 t/ha. This analysis proves efficiency of fused lasso and image texture in biomass estimation of tropical forests.
Sea surface mean square slope from Ku-band backscatter data
NASA Technical Reports Server (NTRS)
Jackson, F. C.; Walton, W. T.; Hines, D. E.; Walter, B. A.; Peng, C. Y.
1992-01-01
A surface mean-square-slope parameter analysis is conducted for 14-GHz airborne radar altimeter near-nadir, quasi-specular backscatter data, which in raw form obtained by least-squares fitting of an optical scattering model to the return waveform show an approximately linear dependence over the 7-15 m/sec wind speed range. Slope data are used to draw inferences on the structure of the high-wavenumber portion of the spectrum. A directionally-integrated model height spectrum that encompasses wind speed-dependent k exp -5/2 and classical Phillips k exp -3 power laws subranges in the range of gravity waves is supported by the data.
A novel multi-target regression framework for time-series prediction of drug efficacy.
Li, Haiqing; Zhang, Wei; Chen, Ying; Guo, Yumeng; Li, Guo-Zheng; Zhu, Xiaoxin
2017-01-18
Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine (TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the problem of efficacy prediction is proposed. We employ the correlation between the values of different time sequences and add predictive targets of previous time as features to predict the value of current time. Several experiments are conducted to test the validity of our method and the results of leave-one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear regression, artificial neural networks, and partial least squares, support vector regression combined with our framework demonstrates the best performance, and appears to be more suitable for this task.
A novel multi-target regression framework for time-series prediction of drug efficacy
Li, Haiqing; Zhang, Wei; Chen, Ying; Guo, Yumeng; Li, Guo-Zheng; Zhu, Xiaoxin
2017-01-01
Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine (TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the problem of efficacy prediction is proposed. We employ the correlation between the values of different time sequences and add predictive targets of previous time as features to predict the value of current time. Several experiments are conducted to test the validity of our method and the results of leave-one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear regression, artificial neural networks, and partial least squares, support vector regression combined with our framework demonstrates the best performance, and appears to be more suitable for this task. PMID:28098186
Recent Advances in Source Localisation Using Range Measurements
2015-10-01
Range Weighted SR- LS ............................................................................................ 5 GEOLOCATION USING SEMIDEFINITE... LS ) and the squared range least squares (SR- LS ) [3]. The R- LS -based formulation is of great interest and has been known for its optimal performance...to efficiently compute an R- LS position estimate. A number of optimization tools may be applied to globally solve the R- LS problem and are usually
Ball-morph: definition, implementation, and comparative evaluation.
Whited, Brian; Rossignac, Jaroslaw Jarek
2011-06-01
We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al., from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion.
Multilayer neural networks for reduced-rank approximation.
Diamantaras, K I; Kung, S Y
1994-01-01
This paper is developed in two parts. First, the authors formulate the solution to the general reduced-rank linear approximation problem relaxing the invertibility assumption of the input autocorrelation matrix used by previous authors. The authors' treatment unifies linear regression, Wiener filtering, full rank approximation, auto-association networks, SVD and principal component analysis (PCA) as special cases. The authors' analysis also shows that two-layer linear neural networks with reduced number of hidden units, trained with the least-squares error criterion, produce weights that correspond to the generalized singular value decomposition of the input-teacher cross-correlation matrix and the input data matrix. As a corollary the linear two-layer backpropagation model with reduced hidden layer extracts an arbitrary linear combination of the generalized singular vector components. Second, the authors investigate artificial neural network models for the solution of the related generalized eigenvalue problem. By introducing and utilizing the extended concept of deflation (originally proposed for the standard eigenvalue problem) the authors are able to find that a sequential version of linear BP can extract the exact generalized eigenvector components. The advantage of this approach is that it's easier to update the model structure by adding one more unit or pruning one or more units when the application requires it. An alternative approach for extracting the exact components is to use a set of lateral connections among the hidden units trained in such a way as to enforce orthogonality among the upper- and lower-layer weights. The authors call this the lateral orthogonalization network (LON) and show via theoretical analysis-and verify via simulation-that the network extracts the desired components. The advantage of the LON-based model is that it can be applied in a parallel fashion so that the components are extracted concurrently. Finally, the authors show the application of their results to the solution of the identification problem of systems whose excitation has a non-invertible autocorrelation matrix. Previous identification methods usually rely on the invertibility assumption of the input autocorrelation, therefore they can not be applied to this case.
Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang
2018-06-01
The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.
A new implementation of the CMRH method for solving dense linear systems
NASA Astrophysics Data System (ADS)
Heyouni, M.; Sadok, H.
2008-04-01
The CMRH method [H. Sadok, Methodes de projections pour les systemes lineaires et non lineaires, Habilitation thesis, University of Lille1, Lille, France, 1994; H. Sadok, CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm, Numer. Algorithms 20 (1999) 303-321] is an algorithm for solving nonsymmetric linear systems in which the Arnoldi component of GMRES is replaced by the Hessenberg process, which generates Krylov basis vectors which are orthogonal to standard unit basis vectors rather than mutually orthogonal. The iterate is formed from these vectors by solving a small least squares problem involving a Hessenberg matrix. Like GMRES, this method requires one matrix-vector product per iteration. However, it can be implemented to require half as much arithmetic work and less storage. Moreover, numerical experiments show that this method performs accurately and reduces the residual about as fast as GMRES. With this new implementation, we show that the CMRH method is the only method with long-term recurrence which requires not storing at the same time the entire Krylov vectors basis and the original matrix as in the GMRES algorithmE A comparison with Gaussian elimination is provided.
NASA Technical Reports Server (NTRS)
Muravyov, Alexander A.
1999-01-01
In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.
NASA Astrophysics Data System (ADS)
Nair, S. P.; Righetti, R.
2015-05-01
Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.
Bao, Yidan; Kong, Wenwen; Liu, Fei; Qiu, Zhengjun; He, Yong
2012-01-01
Amino acids are quite important indices to indicate the growth status of oilseed rape under herbicide stress. Near infrared (NIR) spectroscopy combined with chemometrics was applied for fast determination of glutamic acid in oilseed rape leaves. The optimal spectral preprocessing method was obtained after comparing Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, first and second derivatives, detrending and direct orthogonal signal correction. Linear and nonlinear calibration methods were developed, including partial least squares (PLS) and least squares-support vector machine (LS-SVM). The most effective wavelengths (EWs) were determined by the successive projections algorithm (SPA), and these wavelengths were used as the inputs of PLS and LS-SVM model. The best prediction results were achieved by SPA-LS-SVM (Raw) model with correlation coefficient r = 0.9943 and root mean squares error of prediction (RMSEP) = 0.0569 for prediction set. These results indicated that NIR spectroscopy combined with SPA-LS-SVM was feasible for the fast and effective detection of glutamic acid in oilseed rape leaves. The selected EWs could be used to develop spectral sensors, and the important and basic amino acid data were helpful to study the function mechanism of herbicide. PMID:23203052