Sample records for linear matrix equation

  1. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  2. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    NASA Astrophysics Data System (ADS)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  3. The spectral applications of Beer-Lambert law for some biological and dosimetric materials

    NASA Astrophysics Data System (ADS)

    Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.

    2014-08-01

    The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.

  4. Three Interpretations of the Matrix Equation Ax = b

    ERIC Educational Resources Information Center

    Larson, Christine; Zandieh, Michelle

    2013-01-01

    Many of the central ideas in an introductory undergraduate linear algebra course are closely tied to a set of interpretations of the matrix equation Ax = b (A is a matrix, x and b are vectors): linear combination interpretations, systems interpretations, and transformation interpretations. We consider graphic and symbolic representations for each,…

  5. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    ERIC Educational Resources Information Center

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  6. Chosen interval methods for solving linear interval systems with special type of matrix

    NASA Astrophysics Data System (ADS)

    Szyszka, Barbara

    2013-10-01

    The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.

  7. Algebraic methods for the solution of some linear matrix equations

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.

  8. Chemical Equation Balancing.

    ERIC Educational Resources Information Center

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  9. Simple Derivation of the Lindblad Equation

    ERIC Educational Resources Information Center

    Pearle, Philip

    2012-01-01

    The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is…

  10. Solving rational matrix equations in the state space with applications to computer-aided control-system design

    NASA Technical Reports Server (NTRS)

    Packard, A. K.; Sastry, S. S.

    1986-01-01

    A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.

  11. Calculation of biochemical net reactions and pathways by using matrix operations.

    PubMed Central

    Alberty, R A

    1996-01-01

    Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633

  12. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  13. Generating Nice Linear Systems for Matrix Gaussian Elimination

    ERIC Educational Resources Information Center

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  14. An efficient implementation of a high-order filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-03-01

    A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.

  15. A new Newton-like method for solving nonlinear equations.

    PubMed

    Saheya, B; Chen, Guo-Qing; Sui, Yun-Kang; Wu, Cai-Ying

    2016-01-01

    This paper presents an iterative scheme for solving nonline ar equations. We establish a new rational approximation model with linear numerator and denominator which has generalizes the local linear model. We then employ the new approximation for nonlinear equations and propose an improved Newton's method to solve it. The new method revises the Jacobian matrix by a rank one matrix each iteration and obtains the quadratic convergence property. The numerical performance and comparison show that the proposed method is efficient.

  16. Computer programs for the solution of systems of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Sequi, W. T.

    1973-01-01

    FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.

  17. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.

  18. Planck constant as spectral parameter in integrable systems and KZB equations

    NASA Astrophysics Data System (ADS)

    Levin, A.; Olshanetsky, M.; Zotov, A.

    2014-10-01

    We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.

  19. The entrainment matrix of a superfluid nucleon mixture at finite temperatures

    NASA Astrophysics Data System (ADS)

    Leinson, Lev B.

    2018-06-01

    It is considered a closed system of non-linear equations for the entrainment matrix of a non-relativistic mixture of superfluid nucleons at arbitrary temperatures below the onset of neutron superfluidity, which takes into account the essential dependence of the superfluid energy gap in the nucleon spectra on the velocities of superfluid flows. It is assumed that the protons condense into the isotropic 1S0 state, and the neutrons are paired into the spin-triplet 3P2 state. It is derived an analytic solution to the non-linear equations for the entrainment matrix under temperatures just below the critical value for the neutron superfluidity onset. In general case of an arbitrary temperature of the superfluid mixture the non-linear equations are solved numerically and fitted by simple formulas convenient for a practical use with an arbitrary set of the Landau parameters.

  20. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  1. Simple derivation of the Lindblad equation

    NASA Astrophysics Data System (ADS)

    Pearle, Philip

    2012-07-01

    The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is ‘simple’ in that all it uses is the expression of a Hermitian matrix in terms of its orthonormal eigenvectors and real eigenvalues. Thus, it is appropriate for students who have learned the algebra of quantum theory. Where helpful, arguments are first given in a two-dimensional Hilbert space.

  2. Linear transformation and oscillation criteria for Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaowen

    2007-08-01

    Using a linear transformation similar to the Kummer transformation, some new oscillation criteria for linear Hamiltonian systems are established. These results generalize and improve the oscillation criteria due to I.S. Kumari and S. Umanaheswaram [I. Sowjaya Kumari, S. Umanaheswaram, Oscillation criteria for linear matrix Hamiltonian systems, J. Differential Equations 165 (2000) 174-198], Q. Yang et al. [Q. Yang, R. Mathsen, S. Zhu, Oscillation theorems for self-adjoint matrix Hamiltonian systems, J. Differential Equations 190 (2003) 306-329], and S. Chen and Z. Zheng [Shaozhu Chen, Zhaowen Zheng, Oscillation criteria of Yan type for linear Hamiltonian systems, Comput. Math. Appl. 46 (2003) 855-862]. These criteria also unify many of known criteria in literature and simplify the proofs.

  3. On Rank and Nullity

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2012-01-01

    This note explains how Emil Artin's proof that row rank equals column rank for a matrix with entries in a field leads naturally to the formula for the nullity of a matrix and also to an algorithm for solving any system of linear equations in any number of variables. This material could be used in any course on matrix theory or linear algebra.

  4. Thermal-Interaction Matrix For Resistive Test Structure

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser

    1990-01-01

    Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.

  5. A Chebyshev matrix method for spatial modes of the Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Danabasoglu, G.; Biringen, S.

    1989-01-01

    The Chebyshev matrix collocation method is applied to obtain the spatial modes of the Orr-Sommerfeld equation for Poiseuille flow and the Blausius boundary layer. The problem is linearized by the companion matrix technique for semi-infinite domain using a mapping transformation. The method can be easily adapted to problems with different boundary conditions requiring different transformations.

  6. ORACLS: A system for linear-quadratic-Gaussian control law design

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  7. Reduced order feedback control equations for linear time and frequency domain analysis

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1981-01-01

    An algorithm was developed which can be used to obtain the equations. In a more general context, the algorithm computes a real nonsingular similarity transformation matrix which reduces a real nonsymmetric matrix to block diagonal form, each block of which is a real quasi upper triangular matrix. The algorithm works with both defective and derogatory matrices and when and if it fails, the resultant output can be used as a guide for the reformulation of the mathematical equations that lead up to the ill conditioned matrix which could not be block diagonalized.

  8. The Matrix Pencil and its Applications to Speech Processing

    DTIC Science & Technology

    2007-03-01

    Elementary Linear Algebra ” 8th edition, pp. 278, 2000 John Wiley & Sons, Inc., New York [37] Wai C. Chu, “Speech Coding Algorithms”, New Jeresy: John...Ben; Daniel, James W.; “Applied Linear Algebra ”, pp. 342-345, 1988 Prentice Hall, Englewood Cliffs, NJ [35] Haykin, Simon “Applied Linear Adaptive...ABSTRACT Matrix Pencils facilitate the study of differential equations resulting from oscillating systems. Certain problems in linear ordinary

  9. Tensor-GMRES method for large sparse systems of nonlinear equations

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  10. A computer program to generate equations of motion matrices, L217 (EOM). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Kroll, R. I.; Clemmons, R. E.

    1979-01-01

    The equations of motion program L217 formulates the matrix coefficients for a set of second order linear differential equations that describe the motion of an airplane relative to its level equilibrium flight condition. Aerodynamic data from FLEXSTAB or Doublet Lattice (L216) programs can be used to derive the equations for quasi-steady or full unsteady aerodynamics. The data manipulation and the matrix coefficient formulation are described.

  11. A linear programming manual

    NASA Technical Reports Server (NTRS)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  12. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  13. Conditions for Stabilizability of Linear Switched Systems

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu

    2011-06-01

    This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.

  14. The Linear Parameters and the Decoupling Matrix for Linearly Coupled Motion in 6 Dimensional Phase Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzen, George

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 x 6 matrix, R. R will be called the decoupling matrix. It will be shown that of the 36 elements of the 6 x 6 decoupling matrix R, only 12 elements are independent. This may be contrasted with the results for motion in 4- dimensional phase space, wheremore » R has 4 independent elements. A set of equations is given from which the 12 elements of R can be computed from the one period transfer matrix. This set of equations also allows the linear parameters, the β i,α i, i = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix. An alternative procedure for computing the linear parameters,β i,α i, i = 1, 3, and the 12 independent elements of the decoupling matrix R is also given which depends on computing the eigenvectors of the one period transfer matrix. These results can be used in a tracking program, where the one period transfer matrix can be computed by multiplying the transfer matrices of all the elements in a period, to compute the linear parameters α i and β i, i = 1, 3, and the elements of the decoupling matrix R. The procedure presented here for studying coupled motion in 6-dimensional phase space can also be applied to coupled motion in 4-dimensional phase space, where it may be a useful alternative procedure to the procedure presented by Edwards and Teng. In particular, it gives a simpler programing procedure for computing the beta functions and the emittances for coupled motion in 4-dimensional phase space.« less

  15. The linear parameters and the decoupling matrix for linearly coupled motion in 6 dimensional phase space. Informal report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzen, G.

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 {times} 6 matrix, R. R will be called the decoupling matrix. It will be shown that of the 36 elements of the 6 {times} 6 decoupling matrix R, only 12 elements are independent. This may be contrasted with the results for motion in 4-dimensional phase space, where Rmore » has 4 independent elements. A set of equations is given from which the 12 elements of R can be computed from the one period transfer matrix. This set of equations also allows the linear parameters, {beta}{sub i}, {alpha}{sub i} = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix. An alternative procedure for computing the linear parameters, the {beta}{sub i}, {alpha}{sub i} i = 1, 3, and the 12 independent elements of the decoupling matrix R is also given which depends on computing the eigenvectors of the one period transfer matrix. These results can be used in a tracking program, where the one period transfer matrix can be computed by multiplying the transfer matrices of all the elements in a period, to compute the linear parameters {alpha}{sub i} and {beta}{sub i}, i = 1, 3, and the elements of the decoupling matrix R. The procedure presented here for studying coupled motion in 6-dimensional phase space can also be applied to coupled motion in 4-dimensional phase space, where it may be a useful alternative procedure to the procedure presented by Edwards and Teng. In particular, it gives a simpler programming procedure for computing the beta functions and the emittances for coupled motion in 4-dimensional phase space.« less

  16. Sparse matrix methods based on orthogonality and conjugacy

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1973-01-01

    A matrix having a high percentage of zero elements is called spares. In the solution of systems of linear equations or linear least squares problems involving large sparse matrices, significant saving of computer cost can be achieved by taking advantage of the sparsity. The conjugate gradient algorithm and a set of related algorithms are described.

  17. Parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Amin-Javaheri, Masoud; Orin, David E.

    1989-01-01

    The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.

  18. CPDES3: A preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in three dimensions

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.

    1988-11-01

    Many physical problems require the solution of coupled partial differential equations on three-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES3 allows each spatial operator to have 7, 15, 19, or 27 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect induces which is vectorizable on some of the newer scientific computers.

  19. CPDES2: A preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in two dimensions

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.

    1988-11-01

    Many physical problems require the solution of coupled partial differential equations on two-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect indices which is vectorizable on some of the newer scientific computers.

  20. Biomechanically based simulation of brain deformations for intraoperative image correction: coupling of elastic and fluid models

    NASA Astrophysics Data System (ADS)

    Hagemann, Alexander; Rohr, Karl; Stiehl, H. Siegfried

    2000-06-01

    In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images w.r.t. intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic, and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our approach has been tested using synthetic as well as tomographic images. It turns out from experiments, that the integrated treatment of rigid, elastic, and fluid regions significantly improves the prediction results in comparison to a pure linear elastic model.

  1. Polynomial compensation, inversion, and approximation of discrete time linear systems

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1987-01-01

    The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.

  2. A decentralized process for finding equilibria given by linear equations.

    PubMed Central

    Reiter, S

    1994-01-01

    I present a decentralized process for finding the equilibria of an economy characterized by a finite number of linear equilibrium conditions. The process finds all equilibria or, if there are none, reports that, in a finite number of steps at most equal to the number of equations. The communication and computational complexity compare favorably with other decentralized processes. The process may also be interpreted as an algorithm for solving a distributed system of linear equations. Comparisons with the Linpack program for LU (lower and upper triangular decomposition of the matrix of the equation system, a version of Gaussian elimination) are presented. PMID:11607486

  3. A fast efficient implicit scheme for the gasdynamic equations using a matrix reduction technique

    NASA Technical Reports Server (NTRS)

    Barth, T. J.; Steger, J. L.

    1985-01-01

    An efficient implicit finite-difference algorithm for the gasdynamic equations utilizing matrix reduction techniques is presented. A significant reduction in arithmetic operations is achieved without loss of the stability characteristics generality found in the Beam and Warming approximate factorization algorithm. Steady-state solutions to the conservative Euler equations in generalized coordinates are obtained for transonic flows and used to show that the method offers computational advantages over the conventional Beam and Warming scheme. Existing Beam and Warming codes can be retrofit with minimal effort. The theoretical extension of the matrix reduction technique to the full Navier-Stokes equations in Cartesian coordinates is presented in detail. Linear stability, using a Fourier stability analysis, is demonstrated and discussed for the one-dimensional Euler equations.

  4. Catmull-Rom Curve Fitting and Interpolation Equations

    ERIC Educational Resources Information Center

    Jerome, Lawrence

    2010-01-01

    Computer graphics and animation experts have been using the Catmull-Rom smooth curve interpolation equations since 1974, but the vector and matrix equations can be derived and simplified using basic algebra, resulting in a simple set of linear equations with constant coefficients. A variety of uses of Catmull-Rom interpolation are demonstrated,…

  5. Matrix algorithms for solving (in)homogeneous bound state equations

    PubMed Central

    Blank, M.; Krassnigg, A.

    2011-01-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640

  6. A Chess-Like Game for Teaching Engineering Students to Solve Large System of Simultaneous Linear Equations

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Mohammed, Ahmed Ali; Kadiam, Subhash

    2010-01-01

    Solving large (and sparse) system of simultaneous linear equations has been (and continues to be) a major challenging problem for many real-world engineering/science applications [1-2]. For many practical/large-scale problems, the sparse, Symmetrical and Positive Definite (SPD) system of linear equations can be conveniently represented in matrix notation as [A] {x} = {b} , where the square coefficient matrix [A] and the Right-Hand-Side (RHS) vector {b} are known. The unknown solution vector {x} can be efficiently solved by the following step-by-step procedures [1-2]: Reordering phase, Matrix Factorization phase, Forward solution phase, and Backward solution phase. In this research work, a Game-Based Learning (GBL) approach has been developed to help engineering students to understand crucial details about matrix reordering and factorization phases. A "chess-like" game has been developed and can be played by either a single player, or two players. Through this "chess-like" open-ended game, the players/learners will not only understand the key concepts involved in reordering algorithms (based on existing algorithms), but also have the opportunities to "discover new algorithms" which are better than existing algorithms. Implementing the proposed "chess-like" game for matrix reordering and factorization phases can be enhanced by FLASH [3] computer environments, where computer simulation with animated human voice, sound effects, visual/graphical/colorful displays of matrix tables, score (or monetary) awards for the best game players, etc. can all be exploited. Preliminary demonstrations of the developed GBL approach can be viewed by anyone who has access to the internet web-site [4]!

  7. Second-order discrete Kalman filtering equations for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.

    1991-01-01

    A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.

  8. Examination of the Chayes-Kruskal procedure for testing correlations between proportions

    USGS Publications Warehouse

    Kork, J.O.

    1977-01-01

    The Chayes-Kruskal procedure for testing correlations between proportions uses a linear approximation to the actual closure transformation to provide a null value, pij, against which an observed closed correlation coefficient, rij, can be tested. It has been suggested that a significant difference between pij and rij would indicate a nonzero covariance relationship between the ith and jth open variables. In this paper, the linear approximation to the closure transformation is described in terms of a matrix equation. Examination of the solution set of this equation shows that estimation of, or even the identification of, significant nonzero open correlations is essentially impossible even if the number of variables and the sample size are large. The method of solving the matrix equation is described in the appendix. ?? 1977 Plenum Publishing Corporation.

  9. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    PubMed

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  10. An approximately factored incremental strategy for calculating consistent discrete aerodynamic sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Korivi, V. M.; Taylor, A. C., III; Newman, P. A.; Hou, G. J.-W.; Jones, H. E.

    1992-01-01

    An incremental strategy is presented for iteratively solving very large systems of linear equations, which are associated with aerodynamic sensitivity derivatives for advanced CFD codes. It is shown that the left-hand side matrix operator and the well-known factorization algorithm used to solve the nonlinear flow equations can also be used to efficiently solve the linear sensitivity equations. Two airfoil problems are considered as an example: subsonic low Reynolds number laminar flow and transonic high Reynolds number turbulent flow.

  11. A Mathematics Software Database Update.

    ERIC Educational Resources Information Center

    Cunningham, R. S.; Smith, David A.

    1987-01-01

    Contains an update of an earlier listing of software for mathematics instruction at the college level. Topics are: advanced mathematics, algebra, calculus, differential equations, discrete mathematics, equation solving, general mathematics, geometry, linear and matrix algebra, logic, statistics and probability, and trigonometry. (PK)

  12. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    NASA Astrophysics Data System (ADS)

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  13. Sequential design of discrete linear quadratic regulators via optimal root-locus techniques

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar

    1989-01-01

    A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.

  14. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    ERIC Educational Resources Information Center

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  15. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  16. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE PAGES

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris; ...

    2018-04-23

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  17. Robust root clustering for linear uncertain systems using generalized Lyapunov theory

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1993-01-01

    Consideration is given to the problem of matrix root clustering in subregions of a complex plane for linear state space models with real parameter uncertainty. The nominal matrix root clustering theory of Gutman & Jury (1981) using the generalized Liapunov equation is extended to the perturbed matrix case, and bounds are derived on the perturbation to maintain root clustering inside a given region. The theory makes it possible to obtain an explicit relationship between the parameters of the root clustering region and the uncertainty range of the parameter space.

  18. Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.

    PubMed

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids.

  19. Algorithms for solving large sparse systems of simultaneous linear equations on vector processors

    NASA Technical Reports Server (NTRS)

    David, R. E.

    1984-01-01

    Very efficient algorithms for solving large sparse systems of simultaneous linear equations have been developed for serial processing computers. These involve a reordering of matrix rows and columns in order to obtain a near triangular pattern of nonzero elements. Then an LU factorization is developed to represent the matrix inverse in terms of a sequence of elementary Gaussian eliminations, or pivots. In this paper it is shown how these algorithms are adapted for efficient implementation on vector processors. Results obtained on the CYBER 200 Model 205 are presented for a series of large test problems which show the comparative advantages of the triangularization and vector processing algorithms.

  20. Krylov subspace methods - Theory, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Sad, Youcef

    1990-01-01

    Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.

  1. A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Walton, W. C., Jr.

    1982-01-01

    A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.

  2. The U.S. Geological Survey Modular Ground-Water Model - PCGN: A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

    USGS Publications Warehouse

    Naff, Richard L.; Banta, Edward R.

    2008-01-01

    The preconditioned conjugate gradient with improved nonlinear control (PCGN) package provides addi-tional means by which the solution of nonlinear ground-water flow problems can be controlled as compared to existing solver packages for MODFLOW. Picard iteration is used to solve nonlinear ground-water flow equations by iteratively solving a linear approximation of the nonlinear equations. The linear solution is provided by means of the preconditioned conjugate gradient algorithm where preconditioning is provided by the modi-fied incomplete Cholesky algorithm. The incomplete Cholesky scheme incorporates two levels of fill, 0 and 1, in which the pivots can be modified so that the row sums of the preconditioning matrix and the original matrix are approximately equal. A relaxation factor is used to implement the modified pivots, which determines the degree of modification allowed. The effects of fill level and degree of pivot modification are briefly explored by means of a synthetic, heterogeneous finite-difference matrix; results are reported in the final section of this report. The preconditioned conjugate gradient method is coupled with Picard iteration so as to efficiently solve the nonlinear equations associated with many ground-water flow problems. The description of this coupling of the linear solver with Picard iteration is a primary concern of this document.

  3. Chandrasekhar-type algorithms for fast recursive estimation in linear systems with constant parameters

    NASA Technical Reports Server (NTRS)

    Choudhury, A. K.; Djalali, M.

    1975-01-01

    In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.

  4. Output-Feedback Control of Unknown Linear Discrete-Time Systems With Stochastic Measurement and Process Noise via Approximate Dynamic Programming.

    PubMed

    Wang, Jun-Sheng; Yang, Guang-Hong

    2017-07-25

    This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.

  5. Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations

    PubMed Central

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids. PMID:24235888

  6. A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme

    NASA Astrophysics Data System (ADS)

    Ochsenfeld, Christian; Head-Gordon, Martin

    1997-05-01

    To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.

  7. A new lumped-parameter model for flow in unsaturated dual-porosity media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Robert W.; Hadgu, Teklu; Bodvarsson, Gudmundur S.

    A new lumped-parameter approach to simulating unsaturated flow processes in dual-porosity media such as fractured rocks or aggregated soils is presented. Fluid flow between the fracture network and the matrix blocks is described by a non-linear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. Unlike a Warren-Root-type equation, this equation is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into an existing unsaturated flow simulator, to serve as a source/sink term for fracture gridblocks. Flow processes are then simulated usingmore » only fracture gridblocks in the computational grid. This new lumped-parameter approach has been tested on two problems involving transient flow in fractured/porous media, and compared with simulations performed using explicit discretization of the matrix blocks. The new procedure seems to accurately simulate flow processes in unsaturated fractured rocks, and typically requires an order of magnitude less computational time than do simulations using fully-discretized matrix blocks. [References: 37]« less

  8. Overview of Krylov subspace methods with applications to control problems

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    An overview of projection methods based on Krylov subspaces are given with emphasis on their application to solving matrix equations that arise in control problems. The main idea of Krylov subspace methods is to generate a basis of the Krylov subspace Span and seek an approximate solution the the original problem from this subspace. Thus, the original matrix problem of size N is approximated by one of dimension m typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now just becoming popular for solving nonlinear equations. It is shown how they can be used to solve partial pole placement problems, Sylvester's equation, and Lyapunov's equation.

  9. Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane-Emden type

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H.

    2013-10-01

    In this paper, we present a new second kind Chebyshev (S2KC) operational matrix of derivatives. With the aid of S2KC, an algorithm is described to obtain numerical solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems (IVPs). The idea of obtaining such solutions is essentially based on reducing the differential equation with its initial conditions to a system of algebraic equations. Two illustrative examples concern relevant physical problems (the Lane-Emden equations of the first and second kind) are discussed to demonstrate the validity and applicability of the suggested algorithm. Numerical results obtained are comparing favorably with the analytical known solutions.

  10. Biological Applications in the Mathematics Curriculum

    ERIC Educational Resources Information Center

    Marland, Eric; Palmer, Katrina M.; Salinas, Rene A.

    2008-01-01

    In this article we provide two detailed examples of how we incorporate biological examples into two mathematics courses: Linear Algebra and Ordinary Differential Equations. We use Leslie matrix models to demonstrate the biological properties of eigenvalues and eigenvectors. For Ordinary Differential Equations, we show how using a logistic growth…

  11. Systems of Inhomogeneous Linear Equations

    NASA Astrophysics Data System (ADS)

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  12. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  13. Research on numerical algorithms for large space structures

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1981-01-01

    Numerical algorithms for analysis and design of large space structures are investigated. The sign algorithm and its application to decoupling of differential equations are presented. The generalized sign algorithm is given and its application to several problems discussed. The Laplace transforms of matrix functions and the diagonalization procedure for a finite element equation are discussed. The diagonalization of matrix polynomials is considered. The quadrature method and Laplace transforms is discussed and the identification of linear systems by the quadrature method investigated.

  14. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    PubMed

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  15. Iterative color-multiplexed, electro-optical processor.

    PubMed

    Psaltis, D; Casasent, D; Carlotto, M

    1979-11-01

    A noncoherent optical vector-matrix multiplier using a linear LED source array and a linear P-I-N photodiode detector array has been combined with a 1-D adder in a feedback loop. The resultant iterative optical processor and its use in solving simultaneous linear equations are described. Operation on complex data is provided by a novel color-multiplexing system.

  16. The Vertical Linear Fractional Initialization Problem

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    1999-01-01

    This paper presents a solution to the initialization problem for a system of linear fractional-order differential equations. The scalar problem is considered first, and solutions are obtained both generally and for a specific initialization. Next the vector fractional order differential equation is considered. In this case, the solution is obtained in the form of matrix F-functions. Some control implications of the vector case are discussed. The suggested method of problem solution is shown via an example.

  17. Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions

    NASA Astrophysics Data System (ADS)

    Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.

    2018-04-01

    A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.

  18. Linear solver performance in elastoplastic problem solution on GPU cluster

    NASA Astrophysics Data System (ADS)

    Khalevitsky, Yu. V.; Konovalov, A. V.; Burmasheva, N. V.; Partin, A. S.

    2017-12-01

    Applying the finite element method to severe plastic deformation problems involves solving linear equation systems. While the solution procedure is relatively hard to parallelize and computationally intensive by itself, a long series of large scale systems need to be solved for each problem. When dealing with fine computational meshes, such as in the simulations of three-dimensional metal matrix composite microvolume deformation, tens and hundreds of hours may be needed to complete the whole solution procedure, even using modern supercomputers. In general, one of the preconditioned Krylov subspace methods is used in a linear solver for such problems. The method convergence highly depends on the operator spectrum of a problem stiffness matrix. In order to choose the appropriate method, a series of computational experiments is used. Different methods may be preferable for different computational systems for the same problem. In this paper we present experimental data obtained by solving linear equation systems from an elastoplastic problem on a GPU cluster. The data can be used to substantiate the choice of the appropriate method for a linear solver to use in severe plastic deformation simulations.

  19. Linear quadratic regulators with eigenvalue placement in a horizontal strip

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1987-01-01

    A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.

  20. A Numerical Scheme for Ordinary Differential Equations Having Time Varying and Nonlinear Coefficients Based on the State Transition Matrix

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2002-01-01

    A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.

  1. A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations

    NASA Astrophysics Data System (ADS)

    Whiteley, J. P.

    2017-10-01

    Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.

  2. Aeroelastic analysis of a troposkien-type wind turbine blade

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.

    1981-01-01

    The linear aeroelastic equations for one curved blade of a vertical axis wind turbine in state vector form are presented. The method is based on a simple integrating matrix scheme together with the transfer matrix idea. The method is proposed as a convenient way of solving the associated eigenvalue problem for general support conditions.

  3. Matrix-Free Polynomial-Based Nonlinear Least Squares Optimized Preconditioning and its Application to Discontinuous Galerkin Discretizations of the Euler Equations

    DTIC Science & Technology

    2015-06-01

    cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a nonlinear least squares (NLLS) algorithm. We show...apply the underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly efficient parallel code for applying...repeatedly solve a large system of linear equations where one has an extremely fast parallel code for applying an underlying fixed linear operator

  4. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.

    PubMed

    Sorokin, Sergey V

    2011-03-01

    Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America

  5. A linear quadratic regulator approach to the stabilization of uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.

    1990-01-01

    This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.

  6. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.

    PubMed

    Coriani, Sonia; Høst, Stinne; Jansík, Branislav; Thøgersen, Lea; Olsen, Jeppe; Jørgensen, Poul; Reine, Simen; Pawłowski, Filip; Helgaker, Trygve; Sałek, Paweł

    2007-04-21

    A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.

  7. Blockwise conjugate gradient methods for image reconstruction in volumetric CT.

    PubMed

    Qiu, W; Titley-Peloquin, D; Soleimani, M

    2012-11-01

    Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations.

    PubMed

    Xiao, Lin; Liao, Bolin; Li, Shuai; Chen, Ke

    2018-02-01

    In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A split band-Cholesky equation solving strategy for finite element analysis of transient field problems. [in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1978-01-01

    The paper describes the split-Cholesky strategy for banded matrices arising from the large systems of equations in certain fluid mechanics problems. The basic idea is that for a banded matrix the computation can be carried out in pieces, with only a small portion of the matrix residing in core. Mesh considerations are discussed by demonstrating the manner in which the assembly of finite element equations proceeds for linear trial functions on a triangular mesh. The FORTRAN code which implements the out-of-core decomposition strategy for banded symmetric positive definite matrices (mass matrices) of a coupled initial value problem is given.

  10. An extended GS method for dense linear systems

    NASA Astrophysics Data System (ADS)

    Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi

    2009-09-01

    Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.

  11. Handling of computational in vitro/in vivo correlation problems by Microsoft Excel: IV. Generalized matrix analysis of linear compartment systems.

    PubMed

    Langenbucher, Frieder

    2005-01-01

    A linear system comprising n compartments is completely defined by the rate constants between any of the compartments and the initial condition in which compartment(s) the drug is present at the beginning. The generalized solution is the time profiles of drug amount in each compartment, described by polyexponential equations. Based on standard matrix operations, an Excel worksheet computes the rate constants and the coefficients, finally the full time profiles for a specified range of time values.

  12. Preliminary results in implementing a model of the world economy on the CYBER 205: A case of large sparse nonsymmetric linear equations

    NASA Technical Reports Server (NTRS)

    Szyld, D. B.

    1984-01-01

    A brief description of the Model of the World Economy implemented at the Institute for Economic Analysis is presented, together with our experience in converting the software to vector code. For each time period, the model is reduced to a linear system of over 2000 variables. The matrix of coefficients has a bordered block diagonal structure, and we show how some of the matrix operations can be carried out on all diagonal blocks at once.

  13. Numerical solution of system of boundary value problems using B-spline with free parameter

    NASA Astrophysics Data System (ADS)

    Gupta, Yogesh

    2017-01-01

    This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.

  14. On linearization and preconditioning for radiation diffusion coupled to material thermal conduction equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Tao, E-mail: fengtao2@mail.ustc.edu.cn; Graduate School of China Academy Engineering Physics, Beijing 100083; An, Hengbin, E-mail: an_hengbin@iapcm.ac.cn

    2013-03-01

    Jacobian-free Newton–Krylov (JFNK) method is an effective algorithm for solving large scale nonlinear equations. One of the most important advantages of JFNK method is that there is no necessity to form and store the Jacobian matrix of the nonlinear system when JFNK method is employed. However, an approximation of the Jacobian is needed for the purpose of preconditioning. In this paper, JFNK method is employed to solve a class of non-equilibrium radiation diffusion coupled to material thermal conduction equations, and two preconditioners are designed by linearizing the equations in two methods. Numerical results show that the two preconditioning methods canmore » improve the convergence behavior and efficiency of JFNK method.« less

  15. On the characteristic exponents of the general three-body problem

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1976-01-01

    A description is given of some properties of the characteristic exponents of the general three-body problem. The variational equations on which the analysis is based are obtained by linearizing the Lagrangian equations of motion in the neighborhood of a given known solution. Attention is given to the fundamental matrix of solutions, the characteristic equation, the three trivial solutions of the variational equations of the three-body problem, symmetric periodic orbits, and the half-period properties of symmetric periodic orbits.

  16. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  17. Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter.

    PubMed

    Yi, Sun; Nelson, Patrick W; Ulsoy, A Galip

    2007-04-01

    In a turning process modeled using delay differential equations (DDEs), we investigate the stability of the regenerative machine tool chatter problem. An approach using the matrix Lambert W function for the analytical solution to systems of delay differential equations is applied to this problem and compared with the result obtained using a bifurcation analysis. The Lambert W function, known to be useful for solving scalar first-order DDEs, has recently been extended to a matrix Lambert W function approach to solve systems of DDEs. The essential advantages of the matrix Lambert W approach are not only the similarity to the concept of the state transition matrix in lin ear ordinary differential equations, enabling its use for general classes of linear delay differential equations, but also the observation that we need only the principal branch among an infinite number of roots to determine the stability of a system of DDEs. The bifurcation method combined with Sturm sequences provides an algorithm for determining the stability of DDEs without restrictive geometric analysis. With this approach, one can obtain the critical values of delay, which determine the stability of a system and hence the preferred operating spindle speed without chatter. We apply both the matrix Lambert W function and the bifurcation analysis approach to the problem of chatter stability in turning, and compare the results obtained to existing methods. The two new approaches show excellent accuracy and certain other advantages, when compared to traditional graphical, computational and approximate methods.

  18. Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Adamian, A.

    1988-01-01

    An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.

  19. Prolongation structures of nonlinear evolution equations

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.; Estabrook, F. B.

    1975-01-01

    A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.

  20. ILUBCG2-11: Solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine

    NASA Astrophysics Data System (ADS)

    Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.

    1989-10-01

    The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.

  1. Generalized Distributed Consensus-based Algorithms for Uncertain Systems and Networks

    DTIC Science & Technology

    2010-01-01

    time linear systems with markovian jumping parameters and additive disturbances. SIAM Journal on Control and Optimization, 44(4):1165– 1191, 2005... time marko- vian jump linear systems , in the presence of delayed mode observations. Proceed- ings of the 2008 IEEE American Control Conference, pages...Markovian Jump Linear System state estimation . . . . 147 6 Conclusions 152 A Discrete- Time Coupled Matrix Equations 156 A.1 Properties of a special

  2. Partition of volatile organic compounds from air and from water into plant cuticular matrix: An LFER analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platts, J.A.; Abraham, M.H.

    The partitioning of organic compounds between air and foliage and between water and foliage is of considerable environmental interest. The purpose of this work is to show that partitioning into the cuticular matrix of one particular species can be satisfactorily modeled by general equations the authors have previously developed and, hence, that the same general equations could be used to model partitioning into other plant materials of the same or different species. The general equations are linear free energy relationships that employ descriptors for polarity/polarizability, hydrogen bond acidity and basicity, dispersive effects, and volume. They have been applied to themore » partition of 62 very varied organic compounds between cuticular matrix of the tomato fruit, Lycopersicon esculentum, and either air (MX{sub a}) or water (MX{sub w}). Values of log MX{sub a} covering a range of 12.4 log units are correlated with a standard deviation of 0.232 log unit, and values of log MX{sub w} covering a range of 7.6 log unit are correlated with an SD of 0.236 log unit. Possibilities are discussed for the prediction of new air-plant cuticular matrix and water-plant cuticular matrix partition values on the basis of the equations developed.« less

  3. Algebraic multigrid methods applied to problems in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Mccormick, Steve; Ruge, John

    1989-01-01

    The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.

  4. An implicit iterative algorithm with a tuning parameter for Itô Lyapunov matrix equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Wu, Ai-Guo; Sun, Hui-Jie

    2018-01-01

    In this paper, an implicit iterative algorithm is proposed for solving a class of Lyapunov matrix equations arising in Itô stochastic linear systems. A tuning parameter is introduced in this algorithm, and thus the convergence rate of the algorithm can be changed. Some conditions are presented such that the developed algorithm is convergent. In addition, an explicit expression is also derived for the optimal tuning parameter, which guarantees that the obtained algorithm achieves its fastest convergence rate. Finally, numerical examples are employed to illustrate the effectiveness of the given algorithm.

  5. Classical r-matrices for the generalised Chern–Simons formulation of 3d gravity

    NASA Astrophysics Data System (ADS)

    Osei, Prince K.; Schroers, Bernd J.

    2018-04-01

    We study the conditions for classical r-matrices to be compatible with the generalised Chern–Simons action for 3d gravity. Compatibility means solving the classical Yang–Baxter equations with a prescribed symmetric part for each of the real Lie algebras and bilinear pairings arising in the generalised Chern–Simons action. We give a new construction of r-matrices via a generalised complexification and derive a non-linear set of matrix equations determining the most general compatible r-matrix. We exhibit new families of solutions and show that they contain some known r-matrices for special parameter values.

  6. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  7. Linear spin-2 fields in most general backgrounds

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Deffayet, Cédric; Schmidt-May, Angnis; von Strauss, Mikael

    2016-04-01

    We derive the full perturbative equations of motion for the most general background solutions in ghost-free bimetric theory in its metric formulation. Clever field redefinitions at the level of fluctuations enable us to circumvent the problem of varying a square-root matrix appearing in the theory. This greatly simplifies the expressions for the linear variation of the bimetric interaction terms. We show that these field redefinitions exist and are uniquely invertible if and only if the variation of the square-root matrix itself has a unique solution, which is a requirement for the linearized theory to be well defined. As an application of our results we examine the constraint structure of ghost-free bimetric theory at the level of linear equations of motion for the first time. We identify a scalar combination of equations which is responsible for the absence of the Boulware-Deser ghost mode in the theory. The bimetric scalar constraint is in general not manifestly covariant in its nature. However, in the massive gravity limit the constraint assumes a covariant form when one of the interaction parameters is set to zero. For that case our analysis provides an alternative and almost trivial proof of the absence of the Boulware-Deser ghost. Our findings generalize previous results in the metric formulation of massive gravity and also agree with studies of its vielbein version.

  8. Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems

    NASA Technical Reports Server (NTRS)

    Lehman, L. L.

    1982-01-01

    A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.

  9. A momentum-space formulation without partial wave decomposition for scattering of two spin-half particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus

    2016-03-11

    A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in twomore » variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.« less

  10. Numerical Technology for Large-Scale Computational Electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R; Champagne, N; White, D

    The key bottleneck of implicit computational electromagnetics tools for large complex geometries is the solution of the resulting linear system of equations. The goal of this effort was to research and develop critical numerical technology that alleviates this bottleneck for large-scale computational electromagnetics (CEM). The mathematical operators and numerical formulations used in this arena of CEM yield linear equations that are complex valued, unstructured, and indefinite. Also, simultaneously applying multiple mathematical modeling formulations to different portions of a complex problem (hybrid formulations) results in a mixed structure linear system, further increasing the computational difficulty. Typically, these hybrid linear systems aremore » solved using a direct solution method, which was acceptable for Cray-class machines but does not scale adequately for ASCI-class machines. Additionally, LLNL's previously existing linear solvers were not well suited for the linear systems that are created by hybrid implicit CEM codes. Hence, a new approach was required to make effective use of ASCI-class computing platforms and to enable the next generation design capabilities. Multiple approaches were investigated, including the latest sparse-direct methods developed by our ASCI collaborators. In addition, approaches that combine domain decomposition (or matrix partitioning) with general-purpose iterative methods and special purpose pre-conditioners were investigated. Special-purpose pre-conditioners that take advantage of the structure of the matrix were adapted and developed based on intimate knowledge of the matrix properties. Finally, new operator formulations were developed that radically improve the conditioning of the resulting linear systems thus greatly reducing solution time. The goal was to enable the solution of CEM problems that are 10 to 100 times larger than our previous capability.« less

  11. Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies

    NASA Technical Reports Server (NTRS)

    Winget, J. M.; Hughes, T. J. R.

    1985-01-01

    The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.

  12. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1989. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.

  13. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (DEC VAX VERSION)

    NASA Technical Reports Server (NTRS)

    Frisch, H.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1986. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.

  14. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  15. Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Shultz, Louis A.

    1994-01-01

    The goal of this research is to develop the transfer matrix method to treat nonlinear autonomous boundary value problems with multiple branches. The application is the complete nonlinear aeroelastic analysis of multiple-branched rotor blades. Once the development is complete, it can be incorporated into the existing transfer matrix analyses. There are several difficulties to be overcome in reaching this objective. The conventional transfer matrix method is limited in that it is applicable only to linear branch chain-like structures, but consideration of multiple branch modeling is important for bearingless rotors. Also, hingeless and bearingless rotor blade dynamic characteristics (particularly their aeroelasticity problems) are inherently nonlinear. The nonlinear equations of motion and the multiple-branched boundary value problem are treated together using a direct transfer matrix method. First, the formulation is applied to a nonlinear single-branch blade to validate the nonlinear portion of the formulation. The nonlinear system of equations is iteratively solved using a form of Newton-Raphson iteration scheme developed for differential equations of continuous systems. The formulation is then applied to determine the nonlinear steady state trim and aeroelastic stability of a rotor blade in hover with two branches at the root. A comprehensive computer program is developed and is used to obtain numerical results for the (1) free vibration, (2) nonlinearly deformed steady state, (3) free vibration about the nonlinearly deformed steady state, and (4) aeroelastic stability tasks. The numerical results obtained by the present method agree with results from other methods.

  16. An efficient finite element technique for sound propagation in axisymmetric hard wall ducts carrying high subsonic Mach number flows

    NASA Technical Reports Server (NTRS)

    Tag, I. A.; Lumsdaine, E.

    1978-01-01

    The general non-linear three-dimensional equation for acoustic potential is derived by using a perturbation technique. The linearized axisymmetric equation is then solved by using a finite element algorithm based on the Galerkin formulation for a harmonic time dependence. The solution is carried out in complex number notation for the acoustic velocity potential. Linear, isoparametric, quadrilateral elements with non-uniform distribution across the duct section are implemented. The resultant global matrix is stored in banded form and solved by using a modified Gauss elimination technique. Sound pressure levels and acoustic velocities are calculated from post element solutions. Different duct geometries are analyzed and compared with experimental results.

  17. Angular-Rate Estimation Using Delayed Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.

  18. Solution of the determinantal assignment problem using the Grassmann matrices

    NASA Astrophysics Data System (ADS)

    Karcanias, Nicos; Leventides, John

    2016-02-01

    The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.

  19. Numerical study of a matrix-free trust-region SQP method for equality constrained optimization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinkenschloss, Matthias; Ridzal, Denis; Aguilo, Miguel Antonio

    2011-12-01

    This is a companion publication to the paper 'A Matrix-Free Trust-Region SQP Algorithm for Equality Constrained Optimization' [11]. In [11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-exact) solution of linear systems. In this report, we document the numerical behavior of the algorithm applied to a variety of equality constrained optimization problems, with constraints given by partial differential equations (PDEs).

  20. Some optimal considerations in attitude control systems. [evaluation of value of relative weighting between time and fuel for relay control law

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1973-01-01

    The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.

  1. A Solution Space for a System of Null-State Partial Differential Equations: Part 3

    NASA Astrophysics Data System (ADS)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the third of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Extending these results, we prove in this article that dim and entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in , whose components we find as inner products of elements in a Temperley-Lieb algebra. We gather these vectors together as columns of a symmetric matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014; Commun Math Phys, arXiv:1405.2747, 2014) is completely rigorous.

  2. Time-dependent quantum transport: An efficient method based on Liouville-von-Neumann equation for single-electron density matrix

    NASA Astrophysics Data System (ADS)

    Xie, Hang; Jiang, Feng; Tian, Heng; Zheng, Xiao; Kwok, Yanho; Chen, Shuguang; Yam, ChiYung; Yan, YiJing; Chen, Guanhua

    2012-07-01

    Basing on our hierarchical equations of motion for time-dependent quantum transport [X. Zheng, G. H. Chen, Y. Mo, S. K. Koo, H. Tian, C. Y. Yam, and Y. J. Yan, J. Chem. Phys. 133, 114101 (2010), 10.1063/1.3475566], we develop an efficient and accurate numerical algorithm to solve the Liouville-von-Neumann equation. We solve the real-time evolution of the reduced single-electron density matrix at the tight-binding level. Calculations are carried out to simulate the transient current through a linear chain of atoms, with each represented by a single orbital. The self-energy matrix is expanded in terms of multiple Lorentzian functions, and the Fermi distribution function is evaluated via the Padè spectrum decomposition. This Lorentzian-Padè decomposition scheme is employed to simulate the transient current. With sufficient Lorentzian functions used to fit the self-energy matrices, we show that the lead spectral function and the dynamics response can be treated accurately. Compared to the conventional master equation approaches, our method is much more efficient as the computational time scales cubically with the system size and linearly with the simulation time. As a result, the simulations of the transient currents through systems containing up to one hundred of atoms have been carried out. As density functional theory is also an effective one-particle theory, the Lorentzian-Padè decomposition scheme developed here can be generalized for first-principles simulation of realistic systems.

  3. Computing the Moore-Penrose Inverse of a Matrix with a Computer Algebra System

    ERIC Educational Resources Information Center

    Schmidt, Karsten

    2008-01-01

    In this paper "Derive" functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems--and to have the blueprint…

  4. On substructuring algorithms and solution techniques for the numerical approximation of partial differential equations

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.

  5. Robust parallel iterative solvers for linear and least-squares problems, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, Yousef

    2014-01-16

    The primary goal of this project is to study and develop robust iterative methods for solving linear systems of equations and least squares systems. The focus of the Minnesota team is on algorithms development, robustness issues, and on tests and validation of the methods on realistic problems. 1. The project begun with an investigation on how to practically update a preconditioner obtained from an ILU-type factorization, when the coefficient matrix changes. 2. We investigated strategies to improve robustness in parallel preconditioners in a specific case of a PDE with discontinuous coefficients. 3. We explored ways to adapt standard preconditioners formore » solving linear systems arising from the Helmholtz equation. These are often difficult linear systems to solve by iterative methods. 4. We have also worked on purely theoretical issues related to the analysis of Krylov subspace methods for linear systems. 5. We developed an effective strategy for performing ILU factorizations for the case when the matrix is highly indefinite. The strategy uses shifting in some optimal way. The method was extended to the solution of Helmholtz equations by using complex shifts, yielding very good results in many cases. 6. We addressed the difficult problem of preconditioning sparse systems of equations on GPUs. 7. A by-product of the above work is a software package consisting of an iterative solver library for GPUs based on CUDA. This was made publicly available. It was the first such library that offers complete iterative solvers for GPUs. 8. We considered another form of ILU which blends coarsening techniques from Multigrid with algebraic multilevel methods. 9. We have released a new version on our parallel solver - called pARMS [new version is version 3]. As part of this we have tested the code in complex settings - including the solution of Maxwell and Helmholtz equations and for a problem of crystal growth.10. As an application of polynomial preconditioning we considered the problem of evaluating f(A)v which arises in statistical sampling. 11. As an application to the methods we developed, we tackled the problem of computing the diagonal of the inverse of a matrix. This arises in statistical applications as well as in many applications in physics. We explored probing methods as well as domain-decomposition type methods. 12. A collaboration with researchers from Toulouse, France, considered the important problem of computing the Schur complement in a domain-decomposition approach. 13. We explored new ways of preconditioning linear systems, based on low-rank approximations.« less

  6. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Lv, Wen; Zhang, Tongtong

    2018-05-01

    We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.

  7. Optimal control of parametric oscillations of compressed flexible bars

    NASA Astrophysics Data System (ADS)

    Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

    2018-05-01

    In this paper the problem of damping of the linear systems oscillations with piece-wise constant control is solved. The motion of bar construction is reduced to the form described by Hill's differential equation using the Bubnov-Galerkin method. To calculate switching moments of the one-side control the method of sequential linear programming is used. The elements of the fundamental matrix of the Hill's equation are approximated by trigonometric series. Examples of the optimal control of the systems for various initial conditions and different number of control stages have been calculated. The corresponding phase trajectories and transient processes are represented.

  8. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-11-28

    A density matrix-based time-dependent self-consistent field (D-TDSCF) method for the calculation of dynamic polarizabilities and first hyperpolarizabilities using the Hartree-Fock and Kohn-Sham density functional theory approaches is presented. The D-TDSCF method allows us to reduce the asymptotic scaling behavior of the computational effort from cubic to linear for systems with a nonvanishing band gap. The linear scaling is achieved by combining a density matrix-based reformulation of the TDSCF equations with linear-scaling schemes for the formation of Fock- or Kohn-Sham-type matrices. In our reformulation only potentially linear-scaling matrices enter the formulation and efficient sparse algebra routines can be employed. Furthermore, the corresponding formulas for the first hyperpolarizabilities are given in terms of zeroth- and first-order one-particle reduced density matrices according to Wigner's (2n+1) rule. The scaling behavior of our method is illustrated for first exemplary calculations with systems of up to 1011 atoms and 8899 basis functions.

  9. Linear constraint relations in biochemical reaction systems: I. Classification of the calculability and the balanceability of conversion rates.

    PubMed

    van der Heijden, R T; Heijnen, J J; Hellinga, C; Romein, B; Luyben, K C

    1994-01-05

    Measurements provide the basis for process monitoring and control as well as for model development and validation. Systematic approaches to increase the accuracy and credibility of the empirical data set are therefore of great value. In (bio)chemical conversions, linear conservation relations such as the balance equations for charge, enthalpy, and/or chemical elements, can be employed to relate conversion rates. In a pactical situation, some of these rates will be measured (in effect, be calculated directly from primary measurements of, e.g., concentrations and flow rates), as others can or cannot be calculated from the measured ones. When certain measured rates can also be calculated from other measured rates, the set of equations, the accuracy and credibility of the measured rates can indeed be improved by, respectively, balancing and gross error diagnosis. The balanced conversion rates are more accurate, and form a consistent set of data, which is more suitable for further application (e.g., to calculate nonmeasured rates) than the raw measurements. Such an approach has drawn attention in previous studies. The current study deals mainly with the problem of mathematically classifying the conversion rates into balanceable and calculable rates, given the subset of measured rates. The significance of this problem is illustrated with some examples. It is shown that a simple matrix equation can be derived that contains the vector of measured conversion rates and the redundancy matrix R. Matrix R plays a predominant role in the classification problem. In supplementary articles, significance of the redundancy matrix R for an improved gross error diagnosis approach will be shown. In addition, efficient equations have been derived to calculate the balanceable and/or calculable rates. The method is completely based on matrix algebra (principally different from the graph-theoretical approach), and it is easily implemented into a computer program. (c) 1994 John Wiley & Sons, Inc.

  10. Sur les processus linéaires de naissance et de mort sous-critiques dans un environnement aléatoire.

    PubMed

    Bacaër, Nicolas

    2017-07-01

    An explicit formula is found for the rate of extinction of subcritical linear birth-and-death processes in a random environment. The formula is illustrated by numerical computations of the eigenvalue with largest real part of the truncated matrix for the master equation. The generating function of the corresponding eigenvector satisfies a Fuchsian system of singular differential equations. A particular attention is set on the case of two environments, which leads to Riemann's differential equation.

  11. Exploration of POD-Galerkin Techniques for Developing Reduced Order Models of the Euler Equations

    DTIC Science & Technology

    2015-07-01

    modes [1]. Barone et al [15, 16] proposed to stabilize the reduced system by symmetrizing the higher-order PDE with a preconditioning matrix. Rowley et...advection scalar equation. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower- order ODE system by means of POD...high-order PDEs to a lower-order ODE system by means of POD eigen-bases. For purposes of this study, a linearized version of the Euler equations is

  12. Computation of optimal output-feedback compensators for linear time-invariant systems

    NASA Technical Reports Server (NTRS)

    Platzman, L. K.

    1972-01-01

    The control of linear time-invariant systems with respect to a quadratic performance criterion was considered, subject to the constraint that the control vector be a constant linear transformation of the output vector. The optimal feedback matrix, f*, was selected to optimize the expected performance, given the covariance of the initial state. It is first shown that the expected performance criterion can be expressed as the ratio of two multinomials in the element of f. This expression provides the basis for a feasible method of determining f* in the case of single-input single-output systems. A number of iterative algorithms are then proposed for the calculation of f* for multiple input-output systems. For two of these, monotone convergence is proved, but they involve the solution of nonlinear matrix equations at each iteration. Another is proposed involving the solution of Lyapunov equations at each iteration, and the gradual increase of the magnitude of a penalty function. Experience with this algorithm will be needed to determine whether or not it does, indeed, possess desirable convergence properties, and whether it can be used to determine the globally optimal f*.

  13. Second derivative time integration methods for discontinuous Galerkin solutions of unsteady compressible flows

    NASA Astrophysics Data System (ADS)

    Nigro, A.; De Bartolo, C.; Crivellini, A.; Bassi, F.

    2017-12-01

    In this paper we investigate the possibility of using the high-order accurate A (α) -stable Second Derivative (SD) schemes proposed by Enright for the implicit time integration of the Discontinuous Galerkin (DG) space-discretized Navier-Stokes equations. These multistep schemes are A-stable up to fourth-order, but their use results in a system matrix difficult to compute. Furthermore, the evaluation of the nonlinear function is computationally very demanding. We propose here a Matrix-Free (MF) implementation of Enright schemes that allows to obtain a method without the costs of forming, storing and factorizing the system matrix, which is much less computationally expensive than its matrix-explicit counterpart, and which performs competitively with other implicit schemes, such as the Modified Extended Backward Differentiation Formulae (MEBDF). The algorithm makes use of the preconditioned GMRES algorithm for solving the linear system of equations. The preconditioner is based on the ILU(0) factorization of an approximated but computationally cheaper form of the system matrix, and it has been reused for several time steps to improve the efficiency of the MF Newton-Krylov solver. We additionally employ a polynomial extrapolation technique to compute an accurate initial guess to the implicit nonlinear system. The stability properties of SD schemes have been analyzed by solving a linear model problem. For the analysis on the Navier-Stokes equations, two-dimensional inviscid and viscous test cases, both with a known analytical solution, are solved to assess the accuracy properties of the proposed time integration method for nonlinear autonomous and non-autonomous systems, respectively. The performance of the SD algorithm is compared with the ones obtained by using an MF-MEBDF solver, in order to evaluate its effectiveness, identifying its limitations and suggesting possible further improvements.

  14. Variability simulations with a steady, linearized primitive equations model

    NASA Technical Reports Server (NTRS)

    Kinter, J. L., III; Nigam, S.

    1985-01-01

    Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.

  15. Linear-response time-dependent density-functional theory with pairing fields.

    PubMed

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  16. Faces of matrix models

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2012-08-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  17. A Flight Dynamics Model for a Multi-Actuated Flexible Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2011-01-01

    A comprehensive set of motion equations for a multi-actuated flight vehicle is presented. The dynamics are derived from a vector approach that generalizes the classical linear perturbation equations for flexible launch vehicles into a coupled three-dimensional model. The effects of nozzle and aerosurface inertial coupling, sloshing propellant, and elasticity are incorporated without restrictions on the position, orientation, or number of model elements. The present formulation is well suited to matrix implementation for large-scale linear stability and sensitivity analysis and is also shown to be extensible to nonlinear time-domain simulation through the application of a special form of Lagrange s equations in quasi-coordinates. The model is validated through frequency-domain response comparison with a high-fidelity planar implementation.

  18. Stabilisation of time-varying linear systems via Lyapunov differential equations

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Cai, Guang-Bin; Duan, Guang-Ren

    2013-02-01

    This article studies stabilisation problem for time-varying linear systems via state feedback. Two types of controllers are designed by utilising solutions to Lyapunov differential equations. The first type of feedback controllers involves the unique positive-definite solution to a parametric Lyapunov differential equation, which can be solved when either the state transition matrix of the open-loop system is exactly known, or the future information of the system matrices are accessible in advance. Different from the first class of controllers which may be difficult to implement in practice, the second type of controllers can be easily implemented by solving a state-dependent Lyapunov differential equation with a given positive-definite initial condition. In both cases, explicit conditions are obtained to guarantee the exponentially asymptotic stability of the associated closed-loop systems. Numerical examples show the effectiveness of the proposed approaches.

  19. Rotman Lens Sidewall Design and Optimization with Hybrid Hardware/Software Based Programming

    DTIC Science & Technology

    2015-01-09

    conventional MoM and stored in memory. The components of Zfar are computed as needed through a fast matrix vector multiplication ( MVM ), which...V vector. Iterative methods, e.g. BiCGSTAB, are employed for solving the linear equation. The matrix-vector multiplications ( MVMs ), which dominate...most of the computation in the solving phase, consists of calculating near and far MVMs . The far MVM comprises aggregation, translation, and

  20. SU-G-TeP1-15: Toward a Novel GPU Accelerated Deterministic Solution to the Linear Boltzmann Transport Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, R; Fallone, B; Cross Cancer Institute, Edmonton, AB

    Purpose: To develop a Graphic Processor Unit (GPU) accelerated deterministic solution to the Linear Boltzmann Transport Equation (LBTE) for accurate dose calculations in radiotherapy (RT). A deterministic solution yields the potential for major speed improvements due to the sparse matrix-vector and vector-vector multiplications and would thus be of benefit to RT. Methods: In order to leverage the massively parallel architecture of GPUs, the first order LBTE was reformulated as a second order self-adjoint equation using the Least Squares Finite Element Method (LSFEM). This produces a symmetric positive-definite matrix which is efficiently solved using a parallelized conjugate gradient (CG) solver. Themore » LSFEM formalism is applied in space, discrete ordinates is applied in angle, and the Multigroup method is applied in energy. The final linear system of equations produced is tightly coupled in space and angle. Our code written in CUDA-C was benchmarked on an Nvidia GeForce TITAN-X GPU against an Intel i7-6700K CPU. A spatial mesh of 30,950 tetrahedral elements was used with an S4 angular approximation. Results: To avoid repeating a full computationally intensive finite element matrix assembly at each Multigroup energy, a novel mapping algorithm was developed which minimized the operations required at each energy. Additionally, a parallelized memory mapping for the kronecker product between the sparse spatial and angular matrices, including Dirichlet boundary conditions, was created. Atomicity is preserved by graph-coloring overlapping nodes into separate kernel launches. The one-time mapping calculations for matrix assembly, kronecker product, and boundary condition application took 452±1ms on GPU. Matrix assembly for 16 energy groups took 556±3s on CPU, and 358±2ms on GPU using the mappings developed. The CG solver took 93±1s on CPU, and 468±2ms on GPU. Conclusion: Three computationally intensive subroutines in deterministically solving the LBTE have been formulated on GPU, resulting in two orders of magnitude speedup. Funding support from Natural Sciences and Engineering Research Council and Alberta Innovates Health Solutions. Dr. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less

  1. A computational method for solving stochastic Itô–Volterra integral equations based on stochastic operational matrix for generalized hat basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir; The Laboratory of Quantum Information Processing, Yazd University, Yazd; Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir

    2014-08-01

    In this paper, a new computational method based on the generalized hat basis functions is proposed for solving stochastic Itô–Volterra integral equations. In this way, a new stochastic operational matrix for generalized hat functions on the finite interval [0,T] is obtained. By using these basis functions and their stochastic operational matrix, such problems can be transformed into linear lower triangular systems of algebraic equations which can be directly solved by forward substitution. Also, the rate of convergence of the proposed method is considered and it has been shown that it is O(1/(n{sup 2}) ). Further, in order to show themore » accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient in comparison with the block pule functions method.« less

  2. Aztec user`s guide. Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.

    1995-10-01

    Aztec is an iterative library that greatly simplifies the parallelization process when solving the linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. Aztec is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparsemore » unstructured matrices for parallel solution. Once the distributed matrix is created, computation can be performed on any of the parallel machines running Aztec: nCUBE 2, IBM SP2 and Intel Paragon, MPI platforms as well as standard serial and vector platforms. Aztec includes a number of Krylov iterative methods such as conjugate gradient (CG), generalized minimum residual (GMRES) and stabilized biconjugate gradient (BICGSTAB) to solve systems of equations. These Krylov methods are used in conjunction with various preconditioners such as polynomial or domain decomposition methods using LU or incomplete LU factorizations within subdomains. Although the matrix A can be general, the package has been designed for matrices arising from the approximation of partial differential equations (PDEs). In particular, the Aztec package is oriented toward systems arising from PDE applications.« less

  3. Computational complexities and storage requirements of some Riccati equation solvers

    NASA Technical Reports Server (NTRS)

    Utku, Senol; Garba, John A.; Ramesh, A. V.

    1989-01-01

    The linear optimal control problem of an nth-order time-invariant dynamic system with a quadratic performance functional is usually solved by the Hamilton-Jacobi approach. This leads to the solution of the differential matrix Riccati equation with a terminal condition. The bulk of the computation for the optimal control problem is related to the solution of this equation. There are various algorithms in the literature for solving the matrix Riccati equation. However, computational complexities and storage requirements as a function of numbers of state variables, control variables, and sensors are not available for all these algorithms. In this work, the computational complexities and storage requirements for some of these algorithms are given. These expressions show the immensity of the computational requirements of the algorithms in solving the Riccati equation for large-order systems such as the control of highly flexible space structures. The expressions are also needed to compute the speedup and efficiency of any implementation of these algorithms on concurrent machines.

  4. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  5. Large planar maneuvers for articulated flexible manipulators

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Yang, Li-Farn

    1988-01-01

    An articulated flexible manipulator carried on a translational cart is maneuvered by an active controller to perform certain position control tasks. The nonlinear dynamics of the articulated flexible manipulator are derived and a transformation matrix is formulated to localize the nonlinearities within the inertia matrix. Then a feedback linearization scheme is introduced to linearize the dynamic equations for controller design. Through a pole placement technique, a robust controller design is obtained by properly assigning a set of closed-loop desired eigenvalues to meet performance requirements. Numerical simulations for the articulated flexible manipulators are given to demonstrate the feasibility and effectiveness of the proposed position control algorithms.

  6. An invariant asymptotic formula for solutions of second-order linear ODE's

    NASA Technical Reports Server (NTRS)

    Gingold, H.

    1988-01-01

    An invariant-matrix technique for the approximate solution of second-order ordinary differential equations (ODEs) of form y-double-prime = phi(x)y is developed analytically and demonstrated. A set of linear transformations for the companion matrix differential system is proposed; the diagonalization procedure employed in the final stage of the asymptotic decomposition is explained; and a scalar formulation of solutions for the ODEs is obtained. Several typical ODEs are analyzed, and it is shown that the Liouville-Green or WKB approximation is a special case of the present formula, which provides an approximation which is valid for the entire interval (0, infinity).

  7. Modeling creep behavior of fiber composites

    NASA Technical Reports Server (NTRS)

    Chen, J. L.; Sun, C. T.

    1988-01-01

    A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.

  8. A general parallel sparse-blocked matrix multiply for linear scaling SCF theory

    NASA Astrophysics Data System (ADS)

    Challacombe, Matt

    2000-06-01

    A general approach to the parallel sparse-blocked matrix-matrix multiply is developed in the context of linear scaling self-consistent-field (SCF) theory. The data-parallel message passing method uses non-blocking communication to overlap computation and communication. The space filling curve heuristic is used to achieve data locality for sparse matrix elements that decay with “separation”. Load balance is achieved by solving the bin packing problem for blocks with variable size.With this new method as the kernel, parallel performance of the simplified density matrix minimization (SDMM) for solution of the SCF equations is investigated for RHF/6-31G ∗∗ water clusters and RHF/3-21G estane globules. Sustained rates above 5.7 GFLOPS for the SDMM have been achieved for (H 2 O) 200 with 95 Origin 2000 processors. Scalability is found to be limited by load imbalance, which increases with decreasing granularity, due primarily to the inhomogeneous distribution of variable block sizes.

  9. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    NASA Astrophysics Data System (ADS)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.

  10. Linear algebraic methods applied to intensity modulated radiation therapy.

    PubMed

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  11. Angular-Rate Estimation Using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quatemion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quatemion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quatemion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  12. Angular-Rate Estimation using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  13. A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour

    NASA Technical Reports Server (NTRS)

    Leyland, Jane Anne

    1996-01-01

    Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.

  14. ML 3.0 smoothed aggregation user's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-05-01

    ML is a multigrid preconditioning package intended to solve linear systems of equations Az = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the AZTEC 2.1 and AZTECOO iterative package [15]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and non-symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less

  15. ML 3.1 smoothed aggregation user's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-10-01

    ML is a multigrid preconditioning package intended to solve linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the Aztec 2.1 and AztecOO iterative package [16]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and nonsymmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less

  16. Effective implementation of wavelet Galerkin method

    NASA Astrophysics Data System (ADS)

    Finěk, Václav; Šimunková, Martina

    2012-11-01

    It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.

  17. Flapping response characteristics of hingeless rotor blades by a gereralized harmonic balance method

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ormiston, R. A.

    1975-01-01

    Linearized equations of motion for the flapping response of flexible rotor blades in forward flight are derived in terms of generalized coordinates. The equations are solved using a matrix form of the method of linear harmonic balance, yielding response derivatives for each harmonic of the blade deformations and of the hub forces and moments. Numerical results and approximate closed-form expressions for rotor derivatives are used to illustrate the relationships between rotor parameters, modeling assumptions, and rotor response characteristics. Finally, basic hingeless rotor response derivatives are presented in tabular and graphical form for a wide range of configuration parameters and operating conditions.

  18. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  19. Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners

    DOE PAGES

    Li, Ruipeng; Saad, Yousef

    2017-08-01

    This study presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman--Morrison--Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisonsmore » with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.« less

  20. Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ruipeng; Saad, Yousef

    This study presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman--Morrison--Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisonsmore » with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.« less

  1. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  2. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  3. Unsteady Flow Simulation: A Numerical Challenge

    DTIC Science & Technology

    2003-03-01

    drive to convergence the numerical unsteady term. The time marching procedure is based on the approximate implicit Newton method for systems of non...computed through analytical derivatives of S. The linear system stemming from equation (3) is solved at each integration step by the same iterative method...significant reduction of memory usage, thanks to the reduced dimensions of the linear system matrix during the implicit marching of the solution. The

  4. User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    2000-01-01

    PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.

  5. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for two-phase flow problems with strong heterogeneities and anisotropies is studied. Here we consider both possibilities. Moreover we present a novel way for constructing the coarse grid correction operator in linear multigrid algorithms. This approach has the advantage in that it preserves the sparsity pattern of the fine grid matrix and it can be extended to systems of equations in a straightforward manner. We compare the linear and nonlinear multigrid algorithms by means of a numerical experiment.

  6. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

    NASA Astrophysics Data System (ADS)

    Alam Khan, Najeeb; Razzaq, Oyoon Abdul

    2016-03-01

    In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.

  7. Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules

    1999-01-01

    In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.

  8. Stable Numerical Approach for Fractional Delay Differential Equations

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-12-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

  9. VASP- VARIABLE DIMENSION AUTOMATIC SYNTHESIS PROGRAM

    NASA Technical Reports Server (NTRS)

    White, J. S.

    1994-01-01

    VASP is a variable dimension Fortran version of the Automatic Synthesis Program, ASP. The program is used to implement Kalman filtering and control theory. Basically, it consists of 31 subprograms for solving most modern control problems in linear, time-variant (or time-invariant) control systems. These subprograms include operations of matrix algebra, computation of the exponential of a matrix and its convolution integral, and the solution of the matrix Riccati equation. The user calls these subprograms by means of a FORTRAN main program, and so can easily obtain solutions to most general problems of extremization of a quadratic functional of the state of the linear dynamical system. Particularly, these problems include the synthesis of the Kalman filter gains and the optimal feedback gains for minimization of a quadratic performance index. VASP, as an outgrowth of the Automatic Synthesis Program, has the following improvements: more versatile programming language; more convenient input/output format; some new subprograms which consolidate certain groups of statements that are often repeated; and variable dimensioning. The pertinent difference between the two programs is that VASP has variable dimensioning and more efficient storage. The documentation for the VASP program contains a VASP dictionary and example problems. The dictionary contains a description of each subroutine and instructions on its use. The example problems include dynamic response, optimal control gain, solution of the sampled data matrix Riccati equation, matrix decomposition, and a pseudo-inverse of a matrix. This program is written in FORTRAN IV and has been implemented on the IBM 360. The VASP program was developed in 1971.

  10. Quantum algorithm for linear systems of equations.

    PubMed

    Harrow, Aram W; Hassidim, Avinatan; Lloyd, Seth

    2009-10-09

    Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b(-->), find a vector x(-->) such that Ax(-->) = b(-->). We consider the case where one does not need to know the solution x(-->) itself, but rather an approximation of the expectation value of some operator associated with x(-->), e.g., x(-->)(dagger) Mx(-->) for some matrix M. In this case, when A is sparse, N x N and has condition number kappa, the fastest known classical algorithms can find x(-->) and estimate x(-->)(dagger) Mx(-->) in time scaling roughly as N square root(kappa). Here, we exhibit a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa. Indeed, for small values of kappa [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.

  11. Tangent linear super-parameterization: attributable, decomposable moist processes for tropical variability studies

    NASA Astrophysics Data System (ADS)

    Mapes, B. E.; Kelly, P.; Song, S.; Hu, I. K.; Kuang, Z.

    2015-12-01

    An economical 10-layer global primitive equation solver is driven by time-independent forcing terms, derived from a training process, to produce a realisting eddying basic state with a tracer q trained to act like water vapor mixing ratio. Within this basic state, linearized anomaly moist physics in the column are applied in the form of a 20x20 matrix. The control matrix was derived from the results of Kuang (2010, 2012) who fitted a linear response function from a cloud resolving model in a state of deep convecting equilibrium. By editing this matrix in physical space and eigenspace, scaling and clipping its action, and optionally adding terms for processes that do not conserve moist statice energy (radiation, surface fluxes), we can decompose and explain the model's diverse moist process coupled variability. Recitified effects of this variability on the general circulation and climate, even in strictly zero-mean centered anomaly physic cases, also are sometimes surprising.

  12. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    PubMed

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  13. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    NASA Astrophysics Data System (ADS)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  14. Two-dimensional computer simulation of EMVJ and grating solar cells under AMO illumination

    NASA Technical Reports Server (NTRS)

    Gray, J. L.; Schwartz, R. J.

    1984-01-01

    A computer program, SCAP2D (Solar Cell Analysis Program in 2-Dimensions), is used to evaluate the Etched Multiple Vertical Junction (EMVJ) and grating solar cells. The aim is to demonstrate how SCAP2D can be used to evaluate cell designs. The cell designs studied are by no means optimal designs. The SCAP2D program solves the three coupled, nonlinear partial differential equations, Poisson's Equation and the hole and electron continuity equations, simultaneously in two-dimensions using finite differences to discretize the equations and Newton's Method to linearize them. The variables solved for are the electrostatic potential and the hole and electron concentrations. Each linear system of equations is solved directly by Gaussian Elimination. Convergence of the Newton Iteration is assumed when the largest correction to the electrostatic potential or hole or electron quasi-potential is less than some predetermined error. A typical problem involves 2000 nodes with a Jacobi matrix of order 6000 and a bandwidth of 243.

  15. Iterative approach as alternative to S-matrix in modal methods

    NASA Astrophysics Data System (ADS)

    Semenikhin, Igor; Zanuccoli, Mauro

    2014-12-01

    The continuously increasing complexity of opto-electronic devices and the rising demands of simulation accuracy lead to the need of solving very large systems of linear equations making iterative methods promising and attractive from the computational point of view with respect to direct methods. In particular, iterative approach potentially enables the reduction of required computational time to solve Maxwell's equations by Eigenmode Expansion algorithms. Regardless of the particular eigenmodes finding method used, the expansion coefficients are computed as a rule by scattering matrix (S-matrix) approach or similar techniques requiring order of M3 operations. In this work we consider alternatives to the S-matrix technique which are based on pure iterative or mixed direct-iterative approaches. The possibility to diminish the impact of M3 -order calculations to overall time and in some cases even to reduce the number of arithmetic operations to M2 by applying iterative techniques are discussed. Numerical results are illustrated to discuss validity and potentiality of the proposed approaches.

  16. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  17. An efficient method for model refinement in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zirak, A. R.; Khademi, M.

    2007-11-01

    Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.

  18. Global asymptotic stabilisation of rational dynamical systems based on solving BMI

    NASA Astrophysics Data System (ADS)

    Esmaili, Farhad; Kamyad, A. V.; Jahed-Motlagh, Mohammad Reza; Pariz, Naser

    2017-08-01

    In this paper, the global asymptotic stabiliser design of rational systems is studied in detail. To develop the idea, the state equations of the system are transformed to a new coordinate via polynomial transformation and the state feedback control law. This in turn is followed by the satisfaction of the linear growth condition (i.e. Lipschitz at zero). Based on a linear matrix inequality solution, the system in the new coordinate is globally asymptotically stabilised and then, leading to the global asymptotic stabilisation of the primary system. The polynomial transformation coefficients are derived by solving the bilinear matrix inequality problem. To confirm the capability of this method, three examples are highlighted.

  19. New infinite-dimensional hidden symmetries for heterotic string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Yajun

    The symmetry structures of two-dimensional heterotic string theory are studied further. A (2d+n)x(2d+n) matrix complex H-potential is constructed and the field equations are extended into a complex matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear systems, explicit formulations of new hidden symmetry transformations for the considered theory are given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras: the semidirect product of the Kac-Moody o(d,d+n-circumflex) and Virasoro algebras (without center charges). These results demonstrate that the heterotic string theory under consideration possesses more and richer symmetry structures than previously expected.

  20. On Kronecker-Capelli type theorems for infinite systems

    NASA Astrophysics Data System (ADS)

    Fedorov, Foma M.; Potapova, Sargylana V.

    2017-11-01

    On the basis of the new concept of the decrement of an infinite matrices and determinants, we studied the inconsistency of a general infinite systems of linear algebraic equations. We proved the theorem on inconsistency of a infinite system when the decrement of its matrix is nonzero.

  1. An incremental strategy for calculating consistent discrete CFD sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Korivi, Vamshi Mohan; Taylor, Arthur C., III; Newman, Perry A.; Hou, Gene W.; Jones, Henry E.

    1992-01-01

    In this preliminary study involving advanced computational fluid dynamic (CFD) codes, an incremental formulation, also known as the 'delta' or 'correction' form, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For typical problems in 2D, a direct solution method can be applied to these linear equations which are associated with aerodynamic sensitivity analysis. For typical problems in 2D, a direct solution method can be applied to these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods appear to be needed for future 3D applications; however, because direct solver methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form result in certain difficulties, such as ill-conditioning of the coefficient matrix, which can be overcome when these equations are cast in the incremental form; these and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two laminar sample problems: (1) transonic flow through a double-throat nozzle; and (2) flow over an isolated airfoil.

  2. Efficient propagation-inside-layer expansion algorithm for solving the scattering from three-dimensional nested homogeneous dielectric bodies with arbitrary shape.

    PubMed

    Bellez, Sami; Bourlier, Christophe; Kubické, Gildas

    2015-03-01

    This paper deals with the evaluation of electromagnetic scattering from a three-dimensional structure consisting of two nested homogeneous dielectric bodies with arbitrary shape. The scattering problem is formulated in terms of a set of Poggio-Miller-Chang-Harrington-Wu integral equations that are afterwards converted into a system of linear equations (impedance matrix equation) by applying the Galerkin method of moments (MoM) with Rao-Wilton-Glisson basis functions. The MoM matrix equation is then solved by deploying the iterative propagation-inside-layer expansion (PILE) method in order to obtain the unknown surface current densities, which are thereafter used to handle the radar cross-section (RCS) patterns. Some numerical results for various structures including canonical geometries are presented and compared with those of the FEKO software in order to validate the PILE-based approach as well as to show its efficiency to analyze the full-polarized RCS patterns.

  3. Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB

    NASA Technical Reports Server (NTRS)

    Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.

    2017-01-01

    Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.

  4. Convergence of the standard RLS method and UDUT factorisation of covariance matrix for solving the algebraic Riccati equation of the DLQR via heuristic approximate dynamic programming

    NASA Astrophysics Data System (ADS)

    Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.

    2015-08-01

    The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.

  5. Raney Distributions and Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Liu, Dang-Zheng

    2015-03-01

    Recent works have shown that the family of probability distributions with moments given by the Fuss-Catalan numbers permit a simple parameterized form for their density. We extend this result to the Raney distribution which by definition has its moments given by a generalization of the Fuss-Catalan numbers. Such computations begin with an algebraic equation satisfied by the Stieltjes transform, which we show can be derived from the linear differential equation satisfied by the characteristic polynomial of random matrix realizations of the Raney distribution. For the Fuss-Catalan distribution, an equilibrium problem characterizing the density is identified. The Stieltjes transform for the limiting spectral density of the singular values squared of the matrix product formed from inverse standard Gaussian matrices, and standard Gaussian matrices, is shown to satisfy a variant of the algebraic equation relating to the Raney distribution. Supported on , we show that it too permits a simple functional form upon the introduction of an appropriate choice of parameterization. As an application, the leading asymptotic form of the density as the endpoints of the support are approached is computed, and is shown to have some universal features.

  6. Spectral resolution of SU(3)-invariant solutions of the Yang-Baxter equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alishauskas, S.I.; Kulish, P.P.

    1986-11-20

    The spectral resolution of invariant R-matrices is computed on the basis of solution of the defining equation. Multiple representations in the Clebsch-Gordon series are considered by means of the classifying operator A: a linear combination of known operators of third and fourth degrees in the group generators. The matrix elements of A in a nonorthonormal basis are found. Explicit expressions are presented for the spectral resolutions for a number of representations.

  7. Spectral resolution of SU(3)-invariant solutions of the Yang-Baxter equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alishavskas, S.I.; Kulish, P.P.

    1986-11-01

    The spectral resolution of invariant R-matrices is computed on the basis of solution of the defining equation. Multiple representations in the Clebsch-Gordon series are considered by means of the classifying operator A: a linear combination of known operators of third and fourth degrees in the group generators. The matrix elements of A in a nonorthonormal basis are found. Explicit expressions are presented for the spectral resolutions for a number of representations.

  8. Tensorial Calibration. 2. Second Order Tensorial Calibration.

    DTIC Science & Technology

    1987-10-12

    index is repeated more than once only in one side of an equation, it implies a summation over the index valid range. 12 To avoid confusion of terms...and higher order tensor, the rank can be higher than the maximum dimensionality. 13 ,ON 6 LINEAR SECOND ORDER TENSORIAL CALIBRATION MODEL From...these equations are valid only if all the elements of the diagonal matrix B3 are non-zero because its inverse (-1) must be computed. This implies that M

  9. Entropy Production and Non-Equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.

  10. Development of a steady potential solver for use with linearized, unsteady aerodynamic analyses

    NASA Technical Reports Server (NTRS)

    Hoyniak, Daniel; Verdon, Joseph M.

    1991-01-01

    A full potential steady flow solver (SFLOW) developed explicitly for use with an inviscid unsteady aerodynamic analysis (LINFLO) is described. The steady solver uses the nonconservative form of the nonlinear potential flow equations together with an implicit, least squares, finite difference approximation to solve for the steady flow field. The difference equations were developed on a composite mesh which consists of a C grid embedded in a rectilinear (H grid) cascade mesh. The composite mesh is capable of resolving blade to blade and far field phenomena on the H grid, while accurately resolving local phenomena on the C grid. The resulting system of algebraic equations is arranged in matrix form using a sparse matrix package and solved by Newton's method. Steady and unsteady results are presented for two cascade configurations: a high speed compressor and a turbine with high exit Mach number.

  11. Almost output regulation of LFT systems via gain-scheduling control

    NASA Astrophysics Data System (ADS)

    Yuan, Chengzhi; Duan, Chang; Wu, Fen

    2018-05-01

    Output regulation of general uncertain systems is a meaningful yet challenging problem. In spite of the rich literature in the field, the problem has not yet been addressed adequately due to the lack of an effective design mechanism. In this paper, we propose a new design framework for almost output regulation of uncertain systems described in the general form of linear fractional transformation (LFT) with time-varying parametric uncertainties and unknown external perturbations. A novel semi-LFT gain-scheduling output regulator structure is proposed, such that the associated control synthesis conditions guaranteeing both output regulation and ? disturbance attenuation performance are formulated as a set of linear matrix inequalities (LMIs) plus parameter-dependent linear matrix equations, which can be solved separately. A numerical example has been used to demonstrate the effectiveness of the proposed approach.

  12. A Novel Approach to Solve Linearized Stellar Pulsation Equations

    NASA Astrophysics Data System (ADS)

    Bard, Christopher; Teitler, S.

    2011-01-01

    We present a new approach to modeling linearized, non-radial pulsations in differentially rotating, massive stars. As a first step in this direction, we consider adiabatic pulsations and adopt the Cowling approximation that perturbations of the gravitational potential and its radial derivative are negligible. The angular dependence of the pulsation modes is expressed as a series expansion of associated Legendre polynomials; the resulting coupled system of differential equations is then solved by finding the eigenfrequencies at which the determinant of a characteristic matrix vanishes. Our method improves on previous treatments by removing the requirement that an arbitrary normalization be applied to the eigenfunctions; this brings the benefit of improved numerical robustness.

  13. Instability of the cored barotropic disc: the linear eigenvalue formulation

    NASA Astrophysics Data System (ADS)

    Polyachenko, E. V.

    2018-05-01

    Gaseous rotating razor-thin discs are a testing ground for theories of spiral structure that try to explain appearance and diversity of disc galaxy patterns. These patterns are believed to arise spontaneously under the action of gravitational instability, but calculations of its characteristics in the gas are mostly obscured. The paper suggests a new method for finding the spiral patterns based on an expansion of small amplitude perturbations over Lagrange polynomials in small radial elements. The final matrix equation is extracted from the original hydrodynamical equations without the use of an approximate theory and has a form of the linear algebraic eigenvalue problem. The method is applied to a galactic model with the cored exponential density profile.

  14. Linear absorptive dielectrics

    NASA Astrophysics Data System (ADS)

    Tip, A.

    1998-06-01

    Starting from Maxwell's equations for a linear, nonconducting, absorptive, and dispersive medium, characterized by the constitutive equations D(x,t)=ɛ1(x)E(x,t)+∫t-∞dsχ(x,t-s)E(x,s) and H(x,t)=B(x,t), a unitary time evolution and canonical formalism is obtained. Given the complex, coordinate, and frequency-dependent, electric permeability ɛ(x,ω), no further assumptions are made. The procedure leads to a proper definition of band gaps in the periodic case and a new continuity equation for energy flow. An S-matrix formalism for scattering from lossy objects is presented in full detail. A quantized version of the formalism is derived and applied to the generation of Čerenkov and transition radiation as well as atomic decay. The last case suggests a useful generalization of the density of states to the absorptive situation.

  15. SIMD Optimization of Linear Expressions for Programmable Graphics Hardware

    PubMed Central

    Bajaj, Chandrajit; Ihm, Insung; Min, Jungki; Oh, Jinsang

    2009-01-01

    The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implementations of a wide range of general computations on commodity PCs. An important factor in such implementations is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions in the form of ȳ = Ax̄ + b̄, where A is a matrix, and x̄, ȳ and b̄ are vectors, constitute one of the most basic operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by efficiently packing arithmetic operations into four-wide SIMD instructions through reordering of the operations in linear expressions. We demonstrate that the presented technique can be used effectively for programming both vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations and solving a sparse linear system of equations using iterative methods. PMID:19946569

  16. Scilab software as an alternative low-cost computing in solving the linear equations problem

    NASA Astrophysics Data System (ADS)

    Agus, Fahrul; Haviluddin

    2017-02-01

    Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.

  17. On the matrix Fourier filtering problem for a class of models of nonlinear optical systems with a feedback

    NASA Astrophysics Data System (ADS)

    Razgulin, A. V.; Sazonova, S. V.

    2017-09-01

    A novel statement of the Fourier filtering problem based on the use of matrix Fourier filters instead of conventional multiplier filters is considered. The basic properties of the matrix Fourier filtering for the filters in the Hilbert-Schmidt class are established. It is proved that the solutions with a finite energy to the periodic initial boundary value problem for the quasi-linear functional differential diffusion equation with the matrix Fourier filtering Lipschitz continuously depend on the filter. The problem of optimal matrix Fourier filtering is formulated, and its solvability for various classes of matrix Fourier filters is proved. It is proved that the objective functional is differentiable with respect to the matrix Fourier filter, and the convergence of a version of the gradient projection method is also proved.

  18. Nonlinear Adjustment with or without Constraints, Applicable to Geodetic Models

    DTIC Science & Technology

    1989-03-01

    corrections are neglected, resulting in the familiar (linearized) observation equations. In matrix notation, the latter are expressed by V = A X + I...where A is the design matrix, x=X -x is the column-vector of parametric corrections , VzLa-L b is the column-vector of residuals, and L=L -Lb is the...X0 . corresponds to the set ua of model-surface 0 coordinates describing the initial point P. The final set of parametric corrections , X, then

  19. Fundamental Flux Equations for Fracture-Matrix Interactions with Linear Diffusion

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Zhou, Q.; Rutqvist, J.; Birkholzer, J. T.

    2017-12-01

    The conventional dual-continuum models are only applicable for late-time behavior of pressure propagation in fractured rock, while discrete-fracture-network models may explicitly deal with matrix blocks at high computational expense. To address these issues, we developed a unified-form diffusive flux equation for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular matrix blocks (squares, cubes, rectangles, and rectangular parallelepipeds) by partitioning the entire dimensionless-time domain (Zhou et al., 2017a, b). For each matrix block, this flux equation consists of the early-time solution up until a switch-over time after which the late-time solution is applied to create continuity from early to late time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the coefficients dependent on dimensionless area-to-volume ratio and aspect ratios for rectangular blocks. For the late-time solutions, one exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic blocks. The time-partitioning method was also used for calculating pressure/concentration/temperature distribution within a matrix block. The approximate solution contains an error-function solution for early times and an exponential solution for late times, with relative errors less than 0.003. These solutions form the kernel of multirate and multidimensional hydraulic, solute and thermal diffusion in fractured reservoirs.

  20. Integrability and Linear Stability of Nonlinear Waves

    NASA Astrophysics Data System (ADS)

    Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo

    2018-03-01

    It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.

  1. On integrable boundaries in the 2 dimensional O(N) σ-models

    NASA Astrophysics Data System (ADS)

    Aniceto, Inês; Bajnok, Zoltán; Gombor, Tamás; Kim, Minkyoo; Palla, László

    2017-09-01

    We make an attempt to map the integrable boundary conditions for 2 dimensional non-linear O(N) σ-models. We do it at various levels: classically, by demanding the existence of infinitely many conserved local charges and also by constructing the double row transfer matrix from the Lax connection, which leads to the spectral curve formulation of the problem; at the quantum level, we describe the solutions of the boundary Yang-Baxter equation and derive the Bethe-Yang equations. We then show how to connect the thermodynamic limit of the boundary Bethe-Yang equations to the spectral curve.

  2. Least-Squares Data Adjustment with Rank-Deficient Data Covariance Matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.G.

    2011-07-01

    A derivation of the linear least-squares adjustment formulae is required that avoids the assumption that the covariance matrix of prior parameters can be inverted. Possible proofs are of several kinds, including: (i) extension of standard results for the linear regression formulae, and (ii) minimization by differentiation of a quadratic form of the deviations in parameters and responses. In this paper, the least-squares adjustment equations are derived in both these ways, while explicitly assuming that the covariance matrix of prior parameters is singular. It will be proved that the solutions are unique and that, contrary to statements that have appeared inmore » the literature, the least-squares adjustment problem is not ill-posed. No modification is required to the adjustment formulae that have been used in the past in the case of a singular covariance matrix for the priors. In conclusion: The linear least-squares adjustment formula that has been used in the past is valid in the case of a singular covariance matrix for the covariance matrix of prior parameters. Furthermore, it provides a unique solution. Statements in the literature, to the effect that the problem is ill-posed are wrong. No regularization of the problem is required. This has been proved in the present paper by two methods, while explicitly assuming that the covariance matrix of prior parameters is singular: i) extension of standard results for the linear regression formulae, and (ii) minimization by differentiation of a quadratic form of the deviations in parameters and responses. No modification is needed to the adjustment formulae that have been used in the past. (author)« less

  3. Impact of kerogen heterogeneity on sorption of organic pollutants. 2. Sorption equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.; Yu, Z.Q.; Xiao, B.H.

    2009-08-15

    Phenanthrene and naphthalene sorption isotherms were measured for three different series of kerogen materials using completely mixed batch reactors. Sorption isotherms were nonlinear for each sorbate-sorbent system, and the Freundlich isotherm equation fit the sorption data well. The Freundlich isotherm linearity parameter n ranged from 0.192 to 0.729 for phenanthrene and from 0.389 to 0.731 for naphthalene. The n values correlated linearly with rigidity and aromaticity of the kerogen matrix, but the single-point, organic carbon-normalized distribution coefficients varied dramatically among the tested sorbents. A dual-mode sorption equation consisting of a linear partitioning domain and a Langmuir adsorption domain adequately quantifiedmore » the overall sorption equilibrium for each sorbent-sorbate system. Both models fit the data well, with r{sup 2} values of 0.965 to 0.996 for the Freundlich model and 0.963 to 0.997 for the dual-mode model for the phenanthrene sorption isotherms. The dual-mode model fitting results showed that as the rigidity and aromaticity of the kerogen matrix increased, the contribution of the linear partitioning domain to the overall sorption equilibrium decreased, whereas the contribution of the Langmuir adsorption domain increased. The present study suggested that kerogen materials found in soils and sediments should not be treated as a single, unified, carbonaceous sorbent phase.« less

  4. Continued-fraction representation of the Kraus map for non-Markovian reservoir damping

    NASA Astrophysics Data System (ADS)

    van Wonderen, A. J.; Suttorp, L. G.

    2018-04-01

    Quantum dissipation is studied for a discrete system that linearly interacts with a reservoir of harmonic oscillators at thermal equilibrium. Initial correlations between system and reservoir are assumed to be absent. The dissipative dynamics as determined by the unitary evolution of system and reservoir is described by a Kraus map consisting of an infinite number of matrices. For all Laplace-transformed Kraus matrices exact solutions are constructed in terms of continued fractions that depend on the pair correlation functions of the reservoir. By performing factorizations in the Kraus map a perturbation theory is set up that conserves in arbitrary perturbative order both positivity and probability of the density matrix. The latter is determined by an integral equation for a bitemporal matrix and a finite hierarchy for Kraus matrices. In the lowest perturbative order this hierarchy reduces to one equation for one Kraus matrix. Its solution is given by a continued fraction of a much simpler structure as compared to the non-perturbative case. In the lowest perturbative order our non-Markovian evolution equations are applied to the damped Jaynes–Cummings model. From the solution for the atomic density matrix it is found that the atom may remain in the state of maximum entropy for a significant time span that depends on the initial energy of the radiation field.

  5. Mathematical Methods for Optical Physics and Engineering

    NASA Astrophysics Data System (ADS)

    Gbur, Gregory J.

    2011-01-01

    1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.

  6. Behavior of a quasi-isotropic ply metal matrix composite under thermo-mechanical and isothermal fatigue loading. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, K.A.

    1992-12-01

    This study investigated the behavior of the SCS6/Ti-15-3 metal matrix composite with a quasi-isotropic layup when tested under static and fatigue conditions. Specimens were subjected to in-phase and out-of-phase thermo-mechanical and isothermal fatigue loading. In-phase and isothermal loading produced a fiber dominated failure while the out-of-phase loading produced a matrix dominated failure. Also, fiber domination in all three profiles was present at higher maximum applied loads and al three profiles demonstrated matrix domination at lower maximum applied loads. Thus, failure is both profile dependent and load equipment. Additional analyses, using laminated plate theory, Halpin-Tsai equations, METCAN, and the Linear Lifemore » Fraction Model (LLFM), showed: the as-received specimens contained plies where a portion of the fibers are debonded from the matrix; during fatigue cycling, the 90 deg. plies and a percentage of the 45 deg. plies failed immediately with greater damage becoming evident with additional cycles; and, the LLFM suggests that there may be a non-linear combination of fiber and matrix domination for in-phase and isothermal cycling.« less

  7. Reformulating the Schrödinger equation as a Shabat-Zakharov system

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt

    2010-02-01

    We reformulate the second-order Schrödinger equation as a set of two coupled first-order differential equations, a so-called "Shabat-Zakharov system" (sometimes called a "Zakharov-Shabat" system). There is considerable flexibility in this approach, and we emphasize the utility of introducing an "auxiliary condition" or "gauge condition" that is used to cut down the degrees of freedom. Using this formalism, we derive the explicit (but formal) general solution to the Schrödinger equation. The general solution depends on three arbitrarily chosen functions, and a path-ordered exponential matrix. If one considers path ordering to be an "elementary" process, then this represents complete quadrature, albeit formal, of the second-order linear ordinary differential equation.

  8. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  9. Thermally Induced Depolarization of the Photoluminescence of Carbon Nanodots in a Colloidal Matrix

    NASA Astrophysics Data System (ADS)

    Starukhin, A. N.; Nelson, D. K.; Kurdyukov, D. A.; Eurov, D. A.; Stovpiaga, E. Yu.; Golubev, V. G.

    2018-02-01

    The effect of temperature on fluorescence polarization in a colloidal system of carbon nanodots in glycerol under linearly polarized excitation is investigated for the first time. It is found that the experimentally obtained temperature dependence of the degree of linear polarization of fluorescence can be described by the Levshin-Perrin equation, taking into account the rotational diffusion of luminescent particles (fluorophores) in the liquid matrix. The fluorophore size determined in the context of the Levshin-Perrin model is significantly smaller than the size of carbon nanodots. This discrepancy gives evidence that small atomic groups responsible for nanodot luminescence are characterized by high segmental mobility with a large amplitude of motion with respect to the nanodot core.

  10. A high order accurate finite element algorithm for high Reynolds number flow prediction

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.

  11. Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Moses; Qin, Hong; Davidson, Ronald C.

    In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less

  12. Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams

    DOE PAGES

    Chung, Moses; Qin, Hong; Davidson, Ronald C.; ...

    2016-11-23

    In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less

  13. Quantum Linear System Algorithm for Dense Matrices.

    PubMed

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-02

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax=b. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O(κ^{2}sqrt[n]polylog(n)/ε) for an n×n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ε is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.

  14. Ocean tide models for satellite geodesy and Earth rotation

    NASA Technical Reports Server (NTRS)

    Dickman, Steven R.

    1991-01-01

    A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).

  15. MICRO-U 70.1: Training Model of an Instructional Institution, Users Manual.

    ERIC Educational Resources Information Center

    Springer, Colby H.

    MICRO-U is a student demand driven deterministic model. Student enrollment, by degree program, is used to develop an Instructional Work Load Matrix. Linear equations using Weekly Student Contact Hours (WSCH), Full Time Equivalent (FTE) students, FTE faculty, and number of disciplines determine library, central administration, and physical plant…

  16. Using Excel's Matrix Operations to Facilitate Reciprocal Cost Allocations

    ERIC Educational Resources Information Center

    Leese, Wallace R.; Kizirian, Tim

    2009-01-01

    The reciprocal method of service department cost allocation requires linear equations to be solved simultaneously. These computations are often so complex as to cause the abandonment of the reciprocal method in favor of the less sophisticated direct or step-down methods. Here is a short example demonstrating how Excel's sometimes unknown matrix…

  17. Uncertainty based pressure reconstruction from velocity measurement with generalized least squares

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng; Scalo, Carlo; Vlachos, Pavlos

    2017-11-01

    A method using generalized least squares reconstruction of instantaneous pressure field from velocity measurement and velocity uncertainty is introduced and applied to both planar and volumetric flow data. Pressure gradients are computed on a staggered grid from flow acceleration. The variance-covariance matrix of the pressure gradients is evaluated from the velocity uncertainty by approximating the pressure gradient error to a linear combination of velocity errors. An overdetermined system of linear equations which relates the pressure and the computed pressure gradients is formulated and then solved using generalized least squares with the variance-covariance matrix of the pressure gradients. By comparing the reconstructed pressure field against other methods such as solving the pressure Poisson equation, the omni-directional integration, and the ordinary least squares reconstruction, generalized least squares method is found to be more robust to the noise in velocity measurement. The improvement on pressure result becomes more remarkable when the velocity measurement becomes less accurate and more heteroscedastic. The uncertainty of the reconstructed pressure field is also quantified and compared across the different methods.

  18. Mass eigenstates in bimetric theory with matter coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt-May, Angnis, E-mail: angnis.schmidt-may@fysik.su.se

    2015-01-01

    In this paper we study the ghost-free bimetric action extended by a recently proposed coupling to matter through a composite metric. The equations of motion for this theory are derived using a method which avoids varying the square-root matrix that appears in the matter coupling. We make an ansatz for which the metrics are proportional to each other and find that it can solve the equations provided that one parameter in the action is fixed. In this case, the proportional metrics as well as the effective metric that couples to matter solve Einstein's equations of general relativity including a mattermore » source. Around these backgrounds we derive the quadratic action for perturbations and diagonalize it into generalized mass eigenstates. It turns out that matter only interacts with the massless spin-2 mode whose equation of motion has exactly the form of the linearized Einstein equations, while the field with Fierz-Pauli mass term is completely decoupled. Hence, bimetric theory, with one parameter fixed such that proportional solutions exist, is degenerate with general relativity up to linear order around these backgrounds.« less

  19. Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method

    NASA Technical Reports Server (NTRS)

    Whitaker, David L.

    1993-01-01

    A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.

  20. Code Samples Used for Complexity and Control

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents

  1. Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph

    NASA Astrophysics Data System (ADS)

    Primo, Amedeo; Tancredi, Lorenzo

    2017-08-01

    We consider the calculation of the master integrals of the three-loop massive banana graph. In the case of equal internal masses, the graph is reduced to three master integrals which satisfy an irreducible system of three coupled linear differential equations. The solution of the system requires finding a 3 × 3 matrix of homogeneous solutions. We show how the maximal cut can be used to determine all entries of this matrix in terms of products of elliptic integrals of first and second kind of suitable arguments. All independent solutions are found by performing the integration which defines the maximal cut on different contours. Once the homogeneous solution is known, the inhomogeneous solution can be obtained by use of Euler's variation of constants.

  2. New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation

    NASA Astrophysics Data System (ADS)

    Liu, Jianzhou; Wang, Li; Zhang, Juan

    2017-11-01

    The discrete coupled algebraic Riccati equation (DCARE) has wide applications in control theory and linear system. In general, for the DCARE, one discusses every term of the coupled term, respectively. In this paper, we consider the coupled term as a whole, which is different from the recent results. When applying eigenvalue inequalities to discuss the coupled term, our method has less error. In terms of the properties of special matrices and eigenvalue inequalities, we propose several upper and lower matrix bounds for the solution of DCARE. Further, we discuss the iterative algorithms for the solution of the DCARE. In the fixed point iterative algorithms, the scope of Lipschitz factor is wider than the recent results. Finally, we offer corresponding numerical examples to illustrate the effectiveness of the derived results.

  3. Discrete-time Markovian-jump linear quadratic optimal control

    NASA Technical Reports Server (NTRS)

    Chizeck, H. J.; Willsky, A. S.; Castanon, D.

    1986-01-01

    This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.

  4. Use of the maximum entropy method to retrieve the vertical atmospheric ozone profile and predict atmospheric ozone content

    NASA Technical Reports Server (NTRS)

    Turner, B. Curtis

    1992-01-01

    A method is developed for prediction of ozone levels in planetary atmospheres. This method is formulated in terms of error covariance matrices, and is associated with both direct measurements, a priori first guess profiles, and a weighting function matrix. This is described by the following linearized equation: y = A(matrix) x X + eta, where A is the weighting matrix and eta is noise. The problems to this approach are: (1) the A matrix is near singularity; (2) the number of unknowns in the profile exceeds the number of data points, therefore, the solution may not be unique; and (3) even if a unique solution exists, eta may cause the solution to be ill conditioned.

  5. AITRAC: Augmented Interactive Transient Radiation Analysis by Computer. User's information manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-10-01

    AITRAC is a program designed for on-line, interactive, DC, and transient analysis of electronic circuits. The program solves linear and nonlinear simultaneous equations which characterize the mathematical models used to predict circuit response. The program features 100 external node--200 branch capability; conversional, free-format input language; built-in junction, FET, MOS, and switch models; sparse matrix algorithm with extended-precision H matrix and T vector calculations, for fast and accurate execution; linear transconductances: beta, GM, MU, ZM; accurate and fast radiation effects analysis; special interface for user-defined equations; selective control of multiple outputs; graphical outputs in wide and narrow formats; and on-line parametermore » modification capability. The user describes the problem by entering the circuit topology and part parameters. The program then automatically generates and solves the circuit equations, providing the user with printed or plotted output. The circuit topology and/or part values may then be changed by the user, and a new analysis, requested. Circuit descriptions may be saved on disk files for storage and later use. The program contains built-in standard models for resistors, voltage and current sources, capacitors, inductors including mutual couplings, switches, junction diodes and transistors, FETS, and MOS devices. Nonstandard models may be constructed from standard models or by using the special equations interface. Time functions may be described by straight-line segments or by sine, damped sine, and exponential functions. 42 figures, 1 table. (RWR)« less

  6. A numerical solution for the diffusion equation in hydrogeologic systems

    USGS Publications Warehouse

    Ishii, A.L.; Healy, R.W.; Striegl, Robert G.

    1989-01-01

    The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)

  7. Some Applications Of Semigroups And Computer Algebra In Discrete Structures

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2009-11-01

    An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. A map (p) is defined, which is similar to an orthogonal projection in linear vector spaces. Some other important maps with properties similar to those of the generalized inverses (pseudoinverses) of linear transformations and matrices corresponding to them are also defined and investigated. Let Ax = b be an equation with matrix A and vectors x and b Boolean. Stochastic experiments for solving the equation, which involves the maps defined and use computer algebra methods, have been made. As a result, the Hamming distance between vectors Ax = p(b) and b is equal or close to the least possible. We also share our experience in using computer algebra systems for teaching discrete mathematics and linear algebra and research. Some examples for computations with binary relations using Maple are given.

  8. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  9. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions

    NASA Technical Reports Server (NTRS)

    Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.

    1995-01-01

    The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.

  10. A three-dimensional nonlinear Timoshenko beam based on the core-congruential formulation

    NASA Technical Reports Server (NTRS)

    Crivelli, Luis A.; Felippa, Carlos A.

    1992-01-01

    A three-dimensional, geometrically nonlinear two-node Timoshenkoo beam element based on the total Larangrian description is derived. The element behavior is assumed to be linear elastic, but no restrictions are placed on magnitude of finite rotations. The resulting element has twelve degrees of freedom: six translational components and six rotational-vector components. The formulation uses the Green-Lagrange strains and second Piola-Kirchhoff stresses as energy-conjugate variables and accounts for the bending-stretching and bending-torsional coupling effects without special provisions. The core-congruential formulation (CCF) is used to derived the discrete equations in a staged manner. Core equations involving the internal force vector and tangent stiffness matrix are developed at the particle level. A sequence of matrix transformations carries these equations to beam cross-sections and finally to the element nodal degrees of freedom. The choice of finite rotation measure is made in the next-to-last transformation stage, and the choice of over-the-element interpolation in the last one. The tangent stiffness matrix is found to retain symmetry if the rotational vector is chosen to measure finite rotations. An extensive set of numerical examples is presented to test and validate the present element.

  11. Full Wave Parallel Code for Modeling RF Fields in Hot Plasmas

    NASA Astrophysics Data System (ADS)

    Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo

    2015-11-01

    FAR-TECH, Inc. is developing a suite of full wave RF codes in hot plasmas. It is based on a formulation in configuration space with grid adaptation capability. The conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating the linearized Vlasov equation along unperturbed test particle orbits. For Tokamak applications a 2-D version of the code is being developed. Progress of this work will be reported. This suite of codes has the following advantages over existing spectral codes: 1) It utilizes the localized nature of plasma dielectric response to the RF field and calculates this response numerically without approximations. 2) It uses an adaptive grid to better resolve resonances in plasma and antenna structures. 3) It uses an efficient sparse matrix solver to solve the formulated linear equations. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. Work is supported by the U.S. DOE SBIR program.

  12. Exact solutions of the Navier-Stokes equations generalized for flow in porous media

    NASA Astrophysics Data System (ADS)

    Daly, Edoardo; Basser, Hossein; Rudman, Murray

    2018-05-01

    Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.

  13. A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei

    2015-12-01

    In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 ⁡ M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.

  14. Effective Methods for Solving Band SLEs after Parabolic Nonlinear PDEs

    NASA Astrophysics Data System (ADS)

    Veneva, Milena; Ayriyan, Alexander

    2018-04-01

    A class of models of heat transfer processes in a multilayer domain is considered. The governing equation is a nonlinear heat-transfer equation with different temperature-dependent densities and thermal coefficients in each layer. Homogeneous Neumann boundary conditions and ideal contact ones are applied. A finite difference scheme on a special uneven mesh with a second-order approximation in the case of a piecewise constant spatial step is built. This discretization leads to a pentadiagonal system of linear equations (SLEs) with a matrix which is neither diagonally dominant, nor positive definite. Two different methods for solving such a SLE are developed - diagonal dominantization and symbolic algorithms.

  15. Matrix decomposition graphics processing unit solver for Poisson image editing

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Wei, Li

    2012-10-01

    In recent years, gradient-domain methods have been widely discussed in the image processing field, including seamless cloning and image stitching. These algorithms are commonly carried out by solving a large sparse linear system: the Poisson equation. However, solving the Poisson equation is a computational and memory intensive task which makes it not suitable for real-time image editing. A new matrix decomposition graphics processing unit (GPU) solver (MDGS) is proposed to settle the problem. A matrix decomposition method is used to distribute the work among GPU threads, so that MDGS will take full advantage of the computing power of current GPUs. Additionally, MDGS is a hybrid solver (combines both the direct and iterative techniques) and has two-level architecture. These enable MDGS to generate identical solutions with those of the common Poisson methods and achieve high convergence rate in most cases. This approach is advantageous in terms of parallelizability, enabling real-time image processing, low memory-taken and extensive applications.

  16. A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Li, Junpu; Chen, Wen; Fu, Zhuojia

    2018-01-01

    A modified dual-level algorithm is proposed in the article. By the help of the dual level structure, the fully-populated interpolation matrix on the fine level is transformed to a local supported sparse matrix to solve the highly ill-conditioning and excessive storage requirement resulting from fully-populated interpolation matrix. The kernel-independent fast multipole method is adopted to expediting the solving process of the linear equations on the coarse level. Numerical experiments up to 2-million fine-level nodes have successfully been achieved. It is noted that the proposed algorithm merely needs to place 2-3 coarse-level nodes in each wavelength per direction to obtain the reasonable solution, which almost down to the minimum requirement allowed by the Shannon's sampling theorem. In the real human head model example, it is observed that the proposed algorithm can simulate well computationally very challenging exterior high-frequency harmonic acoustic wave propagation up to 20,000 Hz.

  17. Auto-Bäcklund transformations for a matrix partial differential equation

    NASA Astrophysics Data System (ADS)

    Gordoa, P. R.; Pickering, A.

    2018-07-01

    We derive auto-Bäcklund transformations, analogous to those of the matrix second Painlevé equation, for a matrix partial differential equation. We also then use these auto-Bäcklund transformations to derive matrix equations involving shifts in a discrete variable, a process analogous to the use of the auto-Bäcklund transformations of the matrix second Painlevé equation to derive a discrete matrix first Painlevé equation. The equations thus derived then include amongst other examples a semidiscrete matrix equation which can be considered to be an extension of this discrete matrix first Painlevé equation. The application of this technique to the auto-Bäcklund transformations of the scalar case of our partial differential equation has not been considered before, and so the results obtained here in this scalar case are also new. Other equations obtained here using this technique include a scalar semidiscrete equation which arises in the case of the second Painlevé equation, and which does not seem to have been thus derived previously.

  18. Multi-Mode Estimation for Small Fixed Wing Unmanned Aerial Vehicle Localization Based on a Linear Matrix Inequality Approach

    PubMed Central

    Elzoghby, Mostafa; Li, Fu; Arafa, Ibrahim. I.; Arif, Usman

    2017-01-01

    Information fusion from multiple sensors ensures the accuracy and robustness of a navigation system, especially in the absence of global positioning system (GPS) data which gets degraded in many cases. A way to deal with multi-mode estimation for a small fixed wing unmanned aerial vehicle (UAV) localization framework is proposed, which depends on utilizing a Luenberger observer-based linear matrix inequality (LMI) approach. The proposed estimation technique relies on the interaction between multiple measurement modes and a continuous observer. The state estimation is performed in a switching environment between multiple active sensors to exploit the available information as much as possible, especially in GPS-denied environments. Luenberger observer-based projection is implemented as a continuous observer to optimize the estimation performance. The observer gain might be chosen by solving a Lyapunov equation by means of a LMI algorithm. Convergence is achieved by utilizing the linear matrix inequality (LMI), based on Lyapunov stability which keeps the dynamic estimation error bounded by selecting the observer gain matrix (L). Simulation results are presented for a small UAV fixed wing localization problem. The results obtained using the proposed approach are compared with a single mode Extended Kalman Filter (EKF). Simulation results are presented to demonstrate the viability of the proposed strategy. PMID:28420214

  19. Fredholm-Volterra Integral Equation with a Generalized Singular Kernel and its Numerical Solutions

    NASA Astrophysics Data System (ADS)

    El-Kalla, I. L.; Al-Bugami, A. M.

    2010-11-01

    In this paper, the existence and uniqueness of solution of the Fredholm-Volterra integral equation (F-VIE), with a generalized singular kernel, are discussed and proved in the spaceL2(Ω)×C(0,T). The Fredholm integral term (FIT) is considered in position while the Volterra integral term (VIT) is considered in time. Using a numerical technique we have a system of Fredholm integral equations (SFIEs). This system of integral equations can be reduced to a linear algebraic system (LAS) of equations by using two different methods. These methods are: Toeplitz matrix method and Product Nyström method. A numerical examples are considered when the generalized kernel takes the following forms: Carleman function, logarithmic form, Cauchy kernel, and Hilbert kernel.

  20. Prediction and experimental observation of damage dependent damping in laminated composite beams

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Harris, C. E.; Highsmith, A. L.

    1987-01-01

    The equations of motion are developed for laminated composite beams with load-induced matrix cracking. The damage is accounted for by utilizing internal state variables. The net result of these variables on the field equations is the introduction of both enhanced damping, and degraded stiffness. Both quantities are history dependent and spatially variable, thus resulting in nonlinear equations of motion. It is explained briefly how these equations may be quasi-linearized for laminated polymeric composites under certain types of structural loading. The coupled heat conduction equation is developed, and it is shown that an enhanced Zener damping effect is produced by the introduction of microstructural damage. The resulting equations are utilized to demonstrate how damage dependent material properties may be obtained from dynamic experiments. Finaly, experimental results are compared to model predictions for several composite layups.

  1. Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness

    NASA Astrophysics Data System (ADS)

    AL-Shudeifat, Mohammad A.

    2015-07-01

    The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.

  2. A finite difference method for a coupled model of wave propagation in poroelastic materials.

    PubMed

    Zhang, Yang; Song, Limin; Deffenbaugh, Max; Toksöz, M Nafi

    2010-05-01

    A computational method for time-domain multi-physics simulation of wave propagation in a poroelastic medium is presented. The medium is composed of an elastic matrix saturated with a Newtonian fluid, and the method operates on a digital representation of the medium where a distinct material phase and properties are specified at each volume cell. The dynamic response to an acoustic excitation is modeled mathematically with a coupled system of equations: elastic wave equation in the solid matrix and linearized Navier-Stokes equation in the fluid. Implementation of the solution is simplified by introducing a common numerical form for both solid and fluid cells and using a rotated-staggered-grid which allows stable solutions without explicitly handling the fluid-solid boundary conditions. A stability analysis is presented which can be used to select gridding and time step size as a function of material properties. The numerical results are shown to agree with the analytical solution for an idealized porous medium of periodically alternating solid and fluid layers.

  3. Massively parallel sparse matrix function calculations with NTPoly

    NASA Astrophysics Data System (ADS)

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  4. Betatron motion with coupling of horizontal and vertical degrees of freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. A. Bogacz; V. A. Lebedev

    2002-11-21

    The Courant-Snyder parameterization of one-dimensional linear betatron motion is generalized to two-dimensional coupled linear motion. To represent the 4 x 4 symplectic transfer matrix the following ten parameters were chosen: four beta-functions, four alpha-functions and two betatron phase advances which have a meaning similar to the Courant-Snyder parameterization. Such a parameterization works equally well for weak and strong coupling and can be useful for analysis of coupled betatron motion in circular accelerators as well as in transfer lines. Similarly, the transfer matrix, the bilinear form describing the phase space ellipsoid and the second order moments are related to the eigen-vectors.more » Corresponding equations can be useful in interpreting tracking results and experimental data.« less

  5. Wavelet-like bases for thin-wire integral equations in electromagnetics

    NASA Astrophysics Data System (ADS)

    Francomano, E.; Tortorici, A.; Toscano, E.; Ala, G.; Viola, F.

    2005-03-01

    In this paper, wavelets are used in solving, by the method of moments, a modified version of the thin-wire electric field integral equation, in frequency domain. The time domain electromagnetic quantities, are obtained by using the inverse discrete fast Fourier transform. The retarded scalar electric and vector magnetic potentials are employed in order to obtain the integral formulation. The discretized model generated by applying the direct method of moments via point-matching procedure, results in a linear system with a dense matrix which have to be solved for each frequency of the Fourier spectrum of the time domain impressed source. Therefore, orthogonal wavelet-like basis transform is used to sparsify the moment matrix. In particular, dyadic and M-band wavelet transforms have been adopted, so generating different sparse matrix structures. This leads to an efficient solution in solving the resulting sparse matrix equation. Moreover, a wavelet preconditioner is used to accelerate the convergence rate of the iterative solver employed. These numerical features are used in analyzing the transient behavior of a lightning protection system. In particular, the transient performance of the earth termination system of a lightning protection system or of the earth electrode of an electric power substation, during its operation is focused. The numerical results, obtained by running a complex structure, are discussed and the features of the used method are underlined.

  6. Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems

    DOE PAGES

    Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...

    2017-03-05

    Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.

  7. MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.

    2013-01-01

    A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton-Raphson formulation, respectively.

  8. Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1983-01-01

    A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.

  9. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    NASA Astrophysics Data System (ADS)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  10. A BiCGStab2 variant of the IDR(s) method for solving linear equations

    NASA Astrophysics Data System (ADS)

    Abe, Kuniyoshi; Sleijpen, Gerard L. G.

    2012-09-01

    The hybrid Bi-Conjugate Gradient (Bi-CG) methods, such as the BiCG STABilized (BiCGSTAB), BiCGstab(l), BiCGStab2 and BiCG×MR2 methods are well-known solvers for solving a linear equation with a nonsymmetric matrix. The Induced Dimension Reduction (IDR)(s) method has recently been proposed, and it has been reported that IDR(s) is often more effective than the hybrid BiCG methods. IDR(s) combining the stabilization polynomial of BiCGstab(l) has been designed to improve the convergence of the original IDR(s) method. We therefore propose IDR(s) combining the stabilization polynomial of BiCGStab2. Numerical experiments show that our proposed variant of IDR(s) is more effective than the original IDR(s) and BiCGStab2 methods.

  11. Convergence Speed of a Dynamical System for Sparse Recovery

    NASA Astrophysics Data System (ADS)

    Balavoine, Aurele; Rozell, Christopher J.; Romberg, Justin

    2013-09-01

    This paper studies the convergence rate of a continuous-time dynamical system for L1-minimization, known as the Locally Competitive Algorithm (LCA). Solving L1-minimization} problems efficiently and rapidly is of great interest to the signal processing community, as these programs have been shown to recover sparse solutions to underdetermined systems of linear equations and come with strong performance guarantees. The LCA under study differs from the typical L1 solver in that it operates in continuous time: instead of being specified by discrete iterations, it evolves according to a system of nonlinear ordinary differential equations. The LCA is constructed from simple components, giving it the potential to be implemented as a large-scale analog circuit. The goal of this paper is to give guarantees on the convergence time of the LCA system. To do so, we analyze how the LCA evolves as it is recovering a sparse signal from underdetermined measurements. We show that under appropriate conditions on the measurement matrix and the problem parameters, the path the LCA follows can be described as a sequence of linear differential equations, each with a small number of active variables. This allows us to relate the convergence time of the system to the restricted isometry constant of the matrix. Interesting parallels to sparse-recovery digital solvers emerge from this study. Our analysis covers both the noisy and noiseless settings and is supported by simulation results.

  12. Study of modal coupling procedures for the shuttle: A matrix method for damping synthesis

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.

    1972-01-01

    The damping method was applied successfully to real structures as well as analytical models. It depends on the ability to determine an appropriate modal damping matrix for each substructure. In the past, modal damping matrices were assumed diagonal for lack of being able to determine the coupling terms which are significant in the general case of nonproportional damping. This problem was overcome by formulating the damped equations of motion as a linear perturbation of the undamped equations for light structural damping. Damped modes are defined as complex vectors derived from the complex frequency response vectors of each substructure and are obtained directly from sinusoidal vibration tests. The damped modes are used to compute first order approximations to the modal damping matrices. The perturbation approach avoids ever having to solve a complex eigenvalue problem.

  13. Elementary solutions of coupled model equations in the kinetic theory of gases

    NASA Technical Reports Server (NTRS)

    Kriese, J. T.; Siewert, C. E.; Chang, T. S.

    1974-01-01

    The method of elementary solutions is employed to solve two coupled integrodifferential equations sufficient for determining temperature-density effects in a linearized BGK model in the kinetic theory of gases. Full-range completeness and orthogonality theorems are proved for the developed normal modes and the infinite-medium Green's function is constructed as an illustration of the full-range formalism. The appropriate homogeneous matrix Riemann problem is discussed, and half-range completeness and orthogonality theorems are proved for a certain subset of the normal modes. The required existence and uniqueness theorems relevant to the H matrix, basic to the half-range analysis, are proved, and an accurate and efficient computational method is discussed. The half-space temperature-slip problem is solved analytically, and a highly accurate value of the temperature-slip coefficient is reported.

  14. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.

    1999-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are derived. These equations are then modified to allow the plate reference surface to be located a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described. The terms of the plate stiffness matrix using both classical plate theory (CPT) and first-order shear-deformation plate theory (SDPT) are presented. The effects of in-plane transverse and in-plane shear loads are included in the in-plane stability equations. Numerical results for several example problems with different loading states are presented. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPT are made. The computational effort required by the new analysis is compared to that of the analysis currently in the VICONOPT program. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.

  15. On statistical independence of a contingency matrix

    NASA Astrophysics Data System (ADS)

    Tsumoto, Shusaku; Hirano, Shoji

    2005-03-01

    A contingency table summarizes the conditional frequencies of two attributes and shows how these two attributes are dependent on each other with the information on a partition of universe generated by these attributes. Thus, this table can be viewed as a relation between two attributes with respect to information granularity. This paper focuses on several characteristics of linear and statistical independence in a contingency table from the viewpoint of granular computing, which shows that statistical independence in a contingency table is a special form of linear dependence. The discussions also show that when a contingency table is viewed as a matrix, called a contingency matrix, its rank is equal to 1.0. Thus, the degree of independence, rank plays a very important role in extracting a probabilistic model from a given contingency table. Furthermore, it is found that in some cases, partial rows or columns will satisfy the condition of statistical independence, which can be viewed as a solving process of Diophatine equations.

  16. Graph theory approach to the eigenvalue problem of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.; Bainum, P. M.

    1981-01-01

    Graph theory is used to obtain numerical solutions to eigenvalue problems of large space structures (LSS) characterized by a state vector of large dimensions. The LSS are considered as large, flexible systems requiring both orientation and surface shape control. Graphic interpretation of the determinant of a matrix is employed to reduce a higher dimensional matrix into combinations of smaller dimensional sub-matrices. The reduction is implemented by means of a Boolean equivalent of the original matrices formulated to obtain smaller dimensional equivalents of the original numerical matrix. Computation time becomes less and more accurate solutions are possible. An example is provided in the form of a free-free square plate. Linearized system equations and numerical values of a stiffness matrix are presented, featuring a state vector with 16 components.

  17. Performance optimization for rotors in hover and axial flight

    NASA Technical Reports Server (NTRS)

    Quackenbush, T. R.; Wachspress, D. A.; Kaufman, A. E.; Bliss, D. B.

    1989-01-01

    Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis.

  18. Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.

    2009-12-15

    We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), andmore » (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.« less

  19. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.

    PubMed

    Mafusire, Cosmas; Krüger, Tjaart P J

    2018-06-01

    The concept of orthonormal vector circle polynomials is revisited by deriving a set from the Cartesian gradient of Zernike polynomials in a unit circle using a matrix-based approach. The heart of this model is a closed-form matrix equation of the gradient of Zernike circle polynomials expressed as a linear combination of lower-order Zernike circle polynomials related through a gradient matrix. This is a sparse matrix whose elements are two-dimensional standard basis transverse Euclidean vectors. Using the outer product form of the Cholesky decomposition, the gradient matrix is used to calculate a new matrix, which we used to express the Cartesian gradient of the Zernike circle polynomials as a linear combination of orthonormal vector circle polynomials. Since this new matrix is singular, the orthonormal vector polynomials are recovered by reducing the matrix to its row echelon form using the Gauss-Jordan elimination method. We extend the model to derive orthonormal vector general polynomials, which are orthonormal in a general pupil by performing a similarity transformation on the gradient matrix to give its equivalent in the general pupil. The outer form of the Gram-Schmidt procedure and the Gauss-Jordan elimination method are then applied to the general pupil to generate the orthonormal vector general polynomials from the gradient of the orthonormal Zernike-based polynomials. The performance of the model is demonstrated with a simulated wavefront in a square pupil inscribed in a unit circle.

  20. Efficient sparse matrix-matrix multiplication for computing periodic responses by shooting method on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Stoykov, S.; Atanassov, E.; Margenov, S.

    2016-10-01

    Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.

  1. AZTEC. Parallel Iterative method Software for Solving Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.; Shadid, J.; Tuminaro, R.

    1995-07-01

    AZTEC is an interactive library that greatly simplifies the parrallelization process when solving the linear systems of equations Ax=b where A is a user supplied n X n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. AZTEC is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparse unstructured matricesmore » for parallel solutions.« less

  2. A stopping criterion for the iterative solution of partial differential equations

    NASA Astrophysics Data System (ADS)

    Rao, Kaustubh; Malan, Paul; Perot, J. Blair

    2018-01-01

    A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.

  3. Linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1988-01-01

    A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.

  4. Optical laboratory solution and error model simulation of a linear time-varying finite element equation

    NASA Technical Reports Server (NTRS)

    Taylor, B. K.; Casasent, D. P.

    1989-01-01

    The use of simplified error models to accurately simulate and evaluate the performance of an optical linear-algebra processor is described. The optical architecture used to perform banded matrix-vector products is reviewed, along with a linear dynamic finite-element case study. The laboratory hardware and ac-modulation technique used are presented. The individual processor error-source models and their simulator implementation are detailed. Several significant simplifications are introduced to ease the computational requirements and complexity of the simulations. The error models are verified with a laboratory implementation of the processor, and are used to evaluate its potential performance.

  5. Comparison of some optimal control methods for the design of turbine blades

    NASA Technical Reports Server (NTRS)

    Desilva, B. M. E.; Grant, G. N. C.

    1977-01-01

    This paper attempts a comparative study of some numerical methods for the optimal control design of turbine blades whose vibration characteristics are approximated by Timoshenko beam idealizations with shear and incorporating simple boundary conditions. The blade was synthesized using the following methods: (1) conjugate gradient minimization of the system Hamiltonian in function space incorporating penalty function transformations, (2) projection operator methods in a function space which includes the frequencies of vibration and the control function, (3) epsilon-technique penalty function transformation resulting in a highly nonlinear programming problem, (4) finite difference discretization of the state equations again resulting in a nonlinear program, (5) second variation methods with complex state differential equations to include damping effects resulting in systems of inhomogeneous matrix Riccatti equations some of which are stiff, (6) quasi-linear methods based on iterative linearization of the state and adjoint equation. The paper includes a discussion of some substantial computational difficulties encountered in the implementation of these techniques together with a resume of work presently in progress using a differential dynamic programming approach.

  6. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1993-01-01

    In this study involving advanced fluid flow codes, an incremental iterative formulation (also known as the delta or correction form) together with the well-known spatially-split approximate factorization algorithm, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For smaller 2D problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods are needed for larger 2D and future 3D applications, however, because direct methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioning of the coefficient matrix; this problem can be overcome when these equations are cast in the incremental form. These and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two sample airfoil problems: (1) subsonic low Reynolds number laminar flow; and (2) transonic high Reynolds number turbulent flow.

  7. Detecting, anticipating, and predicting critical transitions in spatially extended systems.

    PubMed

    Kwasniok, Frank

    2018-03-01

    A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.

  8. Detecting, anticipating, and predicting critical transitions in spatially extended systems

    NASA Astrophysics Data System (ADS)

    Kwasniok, Frank

    2018-03-01

    A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.

  9. Quantum Linear System Algorithm for Dense Matrices

    NASA Astrophysics Data System (ADS)

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-01

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .

  10. Compliance matrices for cracked bodies

    NASA Technical Reports Server (NTRS)

    Ballarini, R.

    1986-01-01

    An algorithm is developed to construct the compliance matrix for a cracked solid in the integral-equation formulation of two-dimensional linear-elastic fracture mechanics. The integral equation is reduced to a system of algebraic equations for unknown values of the dislocation-density function at discrete points on the interval from -1 to 1, using the numerical procedure described by Gerasoulis (1982). Sample numerical results are presented, and it is suggested that the algorithm is especially useful in cases where iterative solutions are required; e.g., models of fiber-reinforced concrete, rocks, or ceramics where microcracking, fiber bridging, and other nonlinear effects are treated as nonlinear springs along the crack surfaces (Ballarini et al., 1984).

  11. Generalized Knizhnik-Zamolodchikov equation for Ding-Iohara-Miki algebra

    NASA Astrophysics Data System (ADS)

    Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor

    2017-07-01

    We derive the generalization of the Knizhnik-Zamolodchikov equation (KZE) associated with the Ding-Iohara-Miki algebra Uq ,t(gl^ ^ 1) . We demonstrate that certain refined topological string amplitudes satisfy these equations and find that the braiding transformations are performed by the R matrix of Uq ,t(gl^ ^ 1) . The resulting system is the uplifting of the u^1 Wess-Zumino-Witten model. The solutions to the (q ,t ) KZE are identified with the (spectral dual of) building blocks of the Nekrasov partition function for five-dimensional linear quiver gauge theories. We also construct an elliptic version of the KZE and discuss its modular and monodromy properties, the latter being related to a dual version of the KZE.

  12. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations.

    DTIC Science & Technology

    1981-08-01

    With a third matrix-vector product, b(i) can be computed as i j ( ATAr i+l’pj)/ApjpApj), and the previous (Apj) need not be saved. Page 8 I OCR I Orthomin... Economics and Mathematical Systems, Volume 134, Springer-Verlag, Berlin, 1976. [51 Paul Concus, Gene H. Golub, and Dianne P. O’Leary. A generalized

  13. Multichannel myopic deconvolution in underwater acoustic channels via low-rank recovery

    PubMed Central

    Tian, Ning; Byun, Sung-Hoon; Sabra, Karim; Romberg, Justin

    2017-01-01

    This paper presents a technique for solving the multichannel blind deconvolution problem. The authors observe the convolution of a single (unknown) source with K different (unknown) channel responses; from these channel outputs, the authors want to estimate both the source and the channel responses. The authors show how this classical signal processing problem can be viewed as solving a system of bilinear equations, and in turn can be recast as recovering a rank-1 matrix from a set of linear observations. Results of prior studies in the area of low-rank matrix recovery have identified effective convex relaxations for problems of this type and efficient, scalable heuristic solvers that enable these techniques to work with thousands of unknown variables. The authors show how a priori information about the channels can be used to build a linear model for the channels, which in turn makes solving these systems of equations well-posed. This study demonstrates the robustness of this methodology to measurement noises and parametrization errors of the channel impulse responses with several stylized and shallow water acoustic channel simulations. The performance of this methodology is also verified experimentally using shipping noise recorded on short bottom-mounted vertical line arrays. PMID:28599565

  14. An Algebraic Approach to the Evolution of Emittances upon Crossing the Linear Coupling Difference Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner,C.

    One of the hallmarks of linear coupling is the resonant exchange of oscillation amplitude between the horizontal and vertical planes when the difference between the unperturbed tunes is close to an integer. The standard derivation of this phenomenon (known as the difference resonance) can be found, for example, in the classic papers of Guignard [1, 2]. One starts with an uncoupled lattice and adds a linear perturbation that couples the two planes. The equations of motion are expressed in hamiltonian form. As the difference between the unperturbed tunes approaches an integer, one finds that the perturbing terms in the hamiltonianmore » can be divided into terms that oscillate slowly and ones that oscillate rapidly. The rapidly oscillating terms are discarded or transformed to higher order with an appropriate canonical transformation. The resulting approximate hamiltonian gives equations of motion that clearly exhibit the exchange of oscillation amplitude between the two planes. If, instead of the hamiltonian, one is given the four-by-four matrix for one turn around a synchrotron, then one has the complete solution for the turn-by-turn (TBT) motion. However, the conditions for the phenomenon of amplitude exchange are not obvious from a casual inspection of the matrix. These conditions and those that give rise to the related sum resonance are identified in this report. The identification is made using the well known formalism of Edwards and Teng [3, 4, 5] and, in particular, the normalized coupling matrix of Sagan and Rubin [6]. The formulae obtained are general in that no particular hamiltonian or coupling elements are assumed. The only assumptions are that the one-turn matrix is symplectic and that it has distinct eigenvalues on the unit circle in the complex plane. Having identified the conditions of the one-turn matrix that give rise to the resonances, we focus on the difference resonance and apply the formulae to the evolution of the horizontal and vertical emittances of a beam distribution upon passing through the resonance. Exact and approximate expressions for the TBT evolution of the emittances are derived and applied to a number of examples.« less

  15. A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge-Kutta method

    NASA Astrophysics Data System (ADS)

    Dehghan, Mehdi; Mohammadi, Vahid

    2017-08-01

    In this research, we investigate the numerical solution of nonlinear Schrödinger equations in two and three dimensions. The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ωi, we require to solve a small linear system of algebraic equations with a conditionally positive definite matrix of order 1 (interpolation matrix). This scheme is efficient and its computational cost is same as the moving least squares (MLS) approximation. A challengeable issue is choosing suitable shape parameter for interpolation matrix in this way. In order to overcome this matter, an algorithm which was established by Sarra (2012), will be applied. This algorithm computes the condition number of the local interpolation matrix using the singular value decomposition (SVD) for obtaining the smallest and largest singular values of that matrix. Moreover, an explicit method based on Runge-Kutta formula of fourth-order accuracy will be applied for approximating the time variable. It also decreases the computational costs at each time step since we will not solve a nonlinear system. On the other hand, to compare RBF-FD method with another meshless technique, the moving kriging least squares (MKLS) approximation is considered for the studied model. Our results demonstrate the ability of the present approach for solving the applicable model which is investigated in the current research work.

  16. An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients

    NASA Technical Reports Server (NTRS)

    Coutsias, Evangelos A.; Torres, David; Hagstrom, Thomas

    1994-01-01

    We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers.

  17. Scalable Parallel Computation for Extended MHD Modeling of Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Glasser, Alan H.

    2008-11-01

    Parallel solution of a linear system is scalable if simultaneously doubling the number of dependent variables and the number of processors results in little or no increase in the computation time to solution. Two approaches have this property for parabolic systems: multigrid and domain decomposition. Since extended MHD is primarily a hyperbolic rather than a parabolic system, additional steps must be taken to parabolize the linear system to be solved by such a method. Such physics-based preconditioning (PBP) methods have been pioneered by Chac'on, using finite volumes for spatial discretization, multigrid for solution of the preconditioning equations, and matrix-free Newton-Krylov methods for the accurate solution of the full nonlinear preconditioned equations. The work described here is an extension of these methods using high-order spectral element methods and FETI-DP domain decomposition. Application of PBP to a flux-source representation of the physics equations is discussed. The resulting scalability will be demonstrated for simple wave and for ideal and Hall MHD waves.

  18. A new preconditioner update strategy for the solution of sequences of linear systems in structural mechanics: application to saddle point problems in elasticity

    NASA Astrophysics Data System (ADS)

    Mercier, Sylvain; Gratton, Serge; Tardieu, Nicolas; Vasseur, Xavier

    2017-12-01

    Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method. We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.

  19. State-Dependent Riccati Equation Regulation of Systems with State and Control Nonlinearities

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Cox, David E. (Technical Monitor)

    2004-01-01

    The state-dependent Riccati equations (SDRE) is the basis of a technique for suboptimal feedback control of a nonlinear quadratic regulator (NQR) problem. It is an extension of the Riccati equation used for feedback control of linear problems, with the addition of nonlinearities in the state dynamics of the system resulting in a state-dependent gain matrix as the solution of the equation. In this paper several variations on the SDRE-based method will be considered for the feedback control problem with control nonlinearities. The control nonlinearities may result in complications in the numerical implementation of the control, which the different versions of the SDRE method must try to overcome. The control methods will be applied to three test problems and their resulting performance analyzed.

  20. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.

    Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less

  1. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    DOE PAGES

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...

    2016-05-03

    Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less

  2. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  3. Multi-color incomplete Cholesky conjugate gradient methods for vector computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, E.L.

    1986-01-01

    This research is concerned with the solution on vector computers of linear systems of equations. Ax = b, where A is a large, sparse symmetric positive definite matrix with non-zero elements lying only along a few diagonals of the matrix. The system is solved using the incomplete Cholesky conjugate gradient method (ICCG). Multi-color orderings are used of the unknowns in the linear system to obtain p-color matrices for which a no-fill block ICCG method is implemented on the CYBER 205 with O(N/p) length vector operations in both the decomposition of A and, more importantly, in the forward and back solvesmore » necessary at each iteration of the method. (N is the number of unknowns and p is a small constant). A p-colored matrix is a matrix that can be partitioned into a p x p block matrix where the diagonal blocks are diagonal matrices. The matrix is stored by diagonals and matrix multiplication by diagonals is used to carry out the decomposition of A and the forward and back solves. Additionally, if the vectors across adjacent blocks line up, then some of the overhead associated with vector startups can be eliminated in the matrix vector multiplication necessary at each conjugate gradient iteration. Necessary and sufficient conditions are given to determine which multi-color orderings of the unknowns correspond to p-color matrices, and a process is indicated for choosing multi-color orderings.« less

  4. Evaluation of the effect of vibration nonlinearity on convergence behavior of adaptive higher harmonic controllers

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.; Mookerjee, P.; Bar-Shalom, Y.

    1983-01-01

    Effect of nonlinearity on convergence of the local linear and global linear adaptive controllers is evaluated. A nonlinear helicopter vibration model is selected for the evaluation which has sufficient nonlinearity, including multiple minimum, to assess the vibration reduction capability of the adaptive controllers. The adaptive control algorithms are based upon a linear transfer matrix assumption and the presence of nonlinearity has a significant effect on algorithm behavior. Simulation results are presented which demonstrate the importance of the caution property in the global linear controller. Caution is represented by a time varying rate weighting term in the local linear controller and this improves the algorithm convergence. Nonlinearity in some cases causes Kalman filter divergence. Two forms of the Kalman filter covariance equation are investigated.

  5. Squeezing resulting from a fourth-order interaction in a degenerate parametric amplifier with absorption losses

    NASA Astrophysics Data System (ADS)

    Garca Fernández, P.; Colet, P.; Toral, R.; San Miguel, M.; Bermejo, F. J.

    1991-05-01

    The squeezing properties of a model of a degenerate parametric amplifier with absorption losses and an added fourth-order nonlinearity have been analyzed. The approach used consists of obtaining the Langevin equation for the optical field from the Heisenberg equation provided that a linearization procedure is valid. The steady states of the deterministic equations have been obtained and their local stability has been analyzed. The stationary covariance matrix has been calculated below and above threshold. Below threshold, a squeezed vacuum state is obtained and the nonlinear effects in the fluctuations have been taken into account by a Gaussian decoupling. In the case above threshold, a phase-squeezed coherent state is obtained and numerical simulations allowed to compute the time interval, depending on the loss parameter, on which the system jumps from one stable state to the other. Finally, the variances numerically determined have been compared with those obtained from the linearized theory and the limits of validity of the linear theory have been analyzed. It has become clear that the nonlinear contribution may perhaps be profitably used for the construction of above-threshold squeezing devices.

  6. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M. S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.

  7. A Strassen-Newton algorithm for high-speed parallelizable matrix inversion

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Ferguson, Helaman R. P.

    1988-01-01

    Techniques are described for computing matrix inverses by algorithms that are highly suited to massively parallel computation. The techniques are based on an algorithm suggested by Strassen (1969). Variations of this scheme use matrix Newton iterations and other methods to improve the numerical stability while at the same time preserving a very high level of parallelism. One-processor Cray-2 implementations of these schemes range from one that is up to 55 percent faster than a conventional library routine to one that is slower than a library routine but achieves excellent numerical stability. The problem of computing the solution to a single set of linear equations is discussed, and it is shown that this problem can also be solved efficiently using these techniques.

  8. Subsonic panel method for designing wing surfaces from pressure distribution

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.; Hawk, J. D.

    1983-01-01

    An iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical distribution of pressure. The calculations are initialized by using a surface panel method to analyze a baseline wing or wing-fuselage configuration. A first-order expansion to the baseline panel method equations is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter. In every iteration cycle, the matrix is used both to calculate the geometry perturbation and to analyze the perturbed geometry. The distribution of potential on the perturbed geometry is established by simple linear extrapolation from the baseline solution. The extrapolated potential is converted to pressure by Bernoulli's equation. Not only is the accuracy of the approach good for very large perturbations, but the computing cost of each complete iteration cycle is substantially less than one analysis solution by a conventional panel method.

  9. An algorithmic approach to solving polynomial equations associated with quantum circuits

    NASA Astrophysics Data System (ADS)

    Gerdt, V. P.; Zinin, M. V.

    2009-12-01

    In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.

  10. An analysis of hypercritical states in elastic and inelastic systems

    NASA Astrophysics Data System (ADS)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  11. Equations for normal-mode statistics of sound scattering by a rough elastic boundary in an underwater waveguide, including backscattering.

    PubMed

    Morozov, Andrey K; Colosi, John A

    2017-09-01

    Underwater sound scattering by a rough sea surface, ice, or a rough elastic bottom is studied. The study includes both the scattering from the rough boundary and the elastic effects in the solid layer. A coupled mode matrix is approximated by a linear function of one random perturbation parameter such as the ice-thickness or a perturbation of the surface position. A full two-way coupled mode solution is used to derive the stochastic differential equation for the second order statistics in a Markov approximation.

  12. HFEM3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Chester J

    Software solves the three-dimensional Poisson equation div(k(grad(u)) = f, by the finite element method for the case when material properties, k, are distributed over hierarchy of edges, facets and tetrahedra in the finite element mesh. Method is described in Weiss, CJ, Finite element analysis for model parameters distributed on a hierarchy of geometric simplices, Geophysics, v82, E155-167, doi:10.1190/GEO2017-0058.1 (2017). A standard finite element method for solving Poisson’s equation is augmented by including in the 3D stiffness matrix additional 2D and 1D stiffness matrices representing the contributions from material properties associated with mesh faces and edges, respectively. The resulting linear systemmore » is solved iteratively using the conjugate gradient method with Jacobi preconditioning. To minimize computer storage for program execution, the linear solver computes matrix-vector contractions element-by-element over the mesh, without explicit storage of the global stiffness matrix. Program output vtk compliant for visualization and rendering by 3rd party software. Program uses dynamic memory allocation and as such there are no hard limits on problem size outside of those imposed by the operating system and configuration on which the software is run. Dimension, N, of the finite element solution vector is constrained by the the addressable space in 32-vs-64 bit operating systems. Total storage requirements for the problem. Total working space required for the program is approximately 13*N double precision words.« less

  13. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  14. An alternative to the breeder's and Lande's equations.

    PubMed

    Houchmandzadeh, Bahram

    2014-01-10

    The breeder's equation is a cornerstone of quantitative genetics, widely used in evolutionary modeling. Noting the mean phenotype in parental, selected parents, and the progeny by E(Z0), E(ZW), and E(Z1), this equation relates response to selection R = E(Z1) - E(Z0) to the selection differential S = E(ZW) - E(Z0) through a simple proportionality relation R = h(2)S, where the heritability coefficient h(2) is a simple function of genotype and environment factors variance. The validity of this relation relies strongly on the normal (Gaussian) distribution of the parent genotype, which is an unobservable quantity and cannot be ascertained. In contrast, we show here that if the fitness (or selection) function is Gaussian with mean μ, an alternative, exact linear equation of the form R' = j(2)S' can be derived, regardless of the parental genotype distribution. Here R' = E(Z1) - μ and S' = E(ZW) - μ stand for the mean phenotypic lag with respect to the mean of the fitness function in the offspring and selected populations. The proportionality coefficient j(2) is a simple function of selection function and environment factors variance, but does not contain the genotype variance. To demonstrate this, we derive the exact functional relation between the mean phenotype in the selected and the offspring population and deduce all cases that lead to a linear relation between them. These results generalize naturally to the concept of G matrix and the multivariate Lande's equation Δ(z) = GP(-1)S. The linearity coefficient of the alternative equation are not changed by Gaussian selection.

  15. Phase diagram of matrix compressed sensing

    NASA Astrophysics Data System (ADS)

    Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka

    2016-12-01

    In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.

  16. Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis

    NASA Astrophysics Data System (ADS)

    Jiao, Yujian; Wang, Li-Lian; Huang, Can

    2016-01-01

    The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points. We show that in the Caputo case, it suffices to compute F-PSDM of order μ ∈ (0 , 1) to compute that of any order k + μ with integer k ≥ 0, while in the modified RL case, it is only necessary to evaluate a fractional integral matrix of order μ ∈ (0 , 1). Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial basis functions with remarkable properties: (i) the matrix generated from the new basis yields the exact inverse of F-PSDM at "interior" JGL points; (ii) the matrix of the highest fractional derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation schemes using the new basis can be solved by an iterative solver within a few iterations. Notably, the inverse can be computed in a very stable manner, so this offers optimal preconditioners for usual fractional collocation methods for fractional differential equations (FDEs). It is also noteworthy that the choice of certain special JGL points with parameters related to the order of the equations can ease the implementation. We highlight that the use of the Bateman's fractional integral formulas and fast transforms between Jacobi polynomials with different parameters, is essential for our algorithm development.

  17. A least-squares finite element method for 3D incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.

  18. Filtering of non-linear instabilities

    NASA Technical Reports Server (NTRS)

    Khosla, P. K.; Rubin, S. G.

    1978-01-01

    For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown that these problems can be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate filtering can reduce the intensity of these oscillations and possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and nonconservation differencing. The entire spectrum of filtered equations retains a three point character as well as second order spatial accuracy. Burgers equation was considered as a model.

  19. Nonalgebraic integrability of one reversible dynamical system of the Cremona type

    NASA Astrophysics Data System (ADS)

    Rerikh, K. V.

    1998-05-01

    A reversible dynamical system (RDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions [the Chew-Low-type equations with crossing-symmetry matrix A(l,1)], are considered. This RDS is split into one- and two-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous three-point functional equation. Nonalgebraic integrability of RDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a nonresonant fixed point.

  20. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.

    PubMed

    Hasegawa, Chihiro; Duffull, Stephen B

    2018-02-01

    Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.

  1. On the parallel solution of parabolic equations

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented.

  2. Short-wavelength buckling and shear failures for compression-loaded composite laminates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.

    1985-01-01

    The short-wavelength buckling (or the microbuckling) and the interlaminar and inplane shear failures of multi-directional composite laminates loaded in uniaxial compression are investigated. A laminate model is presented that idealizes each lamina. The fibers in the lamina are modeled as a plate, and the matrix in the lamina is modeled as an elastic foundation. The out-of-plane w displacement for each plate is expressed as a trigonometric series in the half-wavelength of the mode shape for laminate short-wavelength buckling. Nonlinear strain-displacement relations are used. The model is applied to symmetric laminates having linear material behavior. The laminates are loaded in uniform end shortening and are simply supported. A linear analysis is used to determine the laminate stress, strain, and mode shape when short-wavelength buckling occurs. The equations for the laminate compressive stress at short-wavelength buckling are dominated by matrix contributions.

  3. Using the Multiplicative Schwarz Alternating Algorithm (MSAA) for Solving the Large Linear System of Equations Related to Global Gravity Field Recovery up to Degree and Order 120

    NASA Astrophysics Data System (ADS)

    Safari, A.; Sharifi, M. A.; Amjadiparvar, B.

    2010-05-01

    The GRACE mission has substantiated the low-low satellite-to-satellite tracking (LL-SST) concept. The LL-SST configuration can be combined with the previously realized high-low SST concept in the CHAMP mission to provide a much higher accuracy. The line of sight (LOS) acceleration difference between the GRACE satellite pair is the mostly used observable for mapping the global gravity field of the Earth in terms of spherical harmonic coefficients. In this paper, mathematical formulae for LOS acceleration difference observations have been derived and the corresponding linear system of equations has been set up for spherical harmonic up to degree and order 120. The total number of unknowns is 14641. Such a linear equation system can be solved with iterative solvers or direct solvers. However, the runtime of direct methods or that of iterative solvers without a suitable preconditioner increases tremendously. This is the reason why we need a more sophisticated method to solve the linear system of problems with a large number of unknowns. Multiplicative variant of the Schwarz alternating algorithm is a domain decomposition method, which allows it to split the normal matrix of the system into several smaller overlaped submatrices. In each iteration step the multiplicative variant of the Schwarz alternating algorithm solves linear systems with the matrices obtained from the splitting successively. It reduces both runtime and memory requirements drastically. In this paper we propose the Multiplicative Schwarz Alternating Algorithm (MSAA) for solving the large linear system of gravity field recovery. The proposed algorithm has been tested on the International Association of Geodesy (IAG)-simulated data of the GRACE mission. The achieved results indicate the validity and efficiency of the proposed algorithm in solving the linear system of equations from accuracy and runtime points of view. Keywords: Gravity field recovery, Multiplicative Schwarz Alternating Algorithm, Low-Low Satellite-to-Satellite Tracking

  4. Sparse matrix-vector multiplication on network-on-chip

    NASA Astrophysics Data System (ADS)

    Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.

    2010-12-01

    In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.

  5. Numerical stability in problems of linear algebra.

    NASA Technical Reports Server (NTRS)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  6. Pseudo-Linear Attitude Determination of Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2004-01-01

    This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler s equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate. The performance of the two filters is examined using simulated data.

  7. Methodology for Sensitivity Analysis, Approximate Analysis, and Design Optimization in CFD for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1996-01-01

    An incremental iterative formulation together with the well-known spatially split approximate-factorization algorithm, is presented for solving the large, sparse systems of linear equations that are associated with aerodynamic sensitivity analysis. This formulation is also known as the 'delta' or 'correction' form. For the smaller two dimensional problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. However, iterative methods are needed for larger two-dimensional and three dimensional applications because direct methods require more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome when these equations are cast in the incremental form. The methodology is successfully implemented and tested using an upwind cell-centered finite-volume formulation applied in two dimensions to the thin-layer Navier-Stokes equations for external flow over an airfoil. In three dimensions this methodology is demonstrated with a marching-solution algorithm for the Euler equations to calculate supersonic flow over the High-Speed Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with the incremental iterative method from a marching Euler code are used in a design-improvement study of the HSCT configuration that involves thickness. camber, and planform design variables.

  8. Quantum Effects at a Proton Relaxation at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Kalytka, V. A.; Korovkin, M. V.

    2016-11-01

    Quantum effects during migratory polarization in multi-well crystals (including multi-well silicates and crystalline hydrates) are investigated in a variable electric field at low temperatures by direct quantum-mechanical calculations. Based on analytical solution of the quantum Liouville kinetic equation in the linear approximation for the polarizing field, the non-stationary density matrix is calculated for an ensemble of non-interacting protons moving in the field of one-dimensional multi-well crystal potential relief of rectangular shape. An expression for the complex dielectric constant convenient for a comparison with experiment and calculation of relaxer parameters is derived using the nonequilibrium polarization density matrix. The density matrix apparatus can be used for analytical investigation of the quantum mechanism of spontaneous polarization of a ferroelectric material (KDP and DKDP).

  9. Big geo data surface approximation using radial basis functions: A comparative study

    NASA Astrophysics Data System (ADS)

    Majdisova, Zuzana; Skala, Vaclav

    2017-12-01

    Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for big scattered datasets in n-dimensional space. It is a non-separable approximation, as it is based on the distance between two points. This method leads to the solution of an overdetermined linear system of equations. In this paper the RBF approximation methods are briefly described, a new approach to the RBF approximation of big datasets is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with respect to the accuracy of the computation. The proposed approach uses symmetry of a matrix, partitioning the matrix into blocks and data structures for storage of the sparse matrix. The experiments are performed for synthetic and real datasets.

  10. The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices

    NASA Astrophysics Data System (ADS)

    Dehghan, Mehdi; Hajarian, Masoud

    2012-08-01

    A matrix P is called a symmetric orthogonal if P = P T = P -1. A matrix X is said to be a generalised bisymmetric with respect to P if X = X T = PXP. It is obvious that any symmetric matrix is also a generalised bisymmetric matrix with respect to I (identity matrix). By extending the idea of the Jacobi and the Gauss-Seidel iterations, this article proposes two new iterative methods, respectively, for computing the generalised bisymmetric (containing symmetric solution as a special case) and skew-symmetric solutions of the generalised Sylvester matrix equation ? (including Sylvester and Lyapunov matrix equations as special cases) which is encountered in many systems and control applications. When the generalised Sylvester matrix equation has a unique generalised bisymmetric (skew-symmetric) solution, the first (second) iterative method converges to the generalised bisymmetric (skew-symmetric) solution of this matrix equation for any initial generalised bisymmetric (skew-symmetric) matrix. Finally, some numerical results are given to illustrate the effect of the theoretical results.

  11. A comparison between different finite elements for elastic and aero-elastic analyses.

    PubMed

    Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani

    2017-11-01

    In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.

  12. Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.

    PubMed

    Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray

    2017-07-11

    Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.

  13. Activation product transport in fusion reactors. [RAPTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, A.C.

    1983-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the depositionmore » and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs.« less

  14. Nonlinear programming extensions to rational function approximations of unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1987-01-01

    This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.

  15. Final Report - Subcontract B623760

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, R.

    2017-11-17

    During my visit to LLNL during July 17{27, 2017, I worked on linear system solvers. The two level hierarchical solver that initiated our study was developed to solve linear systems arising from hp adaptive finite element calculations, and is implemented in the PLTMG software package, version 12. This preconditioner typically requires 3-20% of the space used by the stiffness matrix for higher order elements. It has multigrid like convergence rates for a wide variety of PDEs (self-adjoint positive de nite elliptic equations, convection dominated convection-diffusion equations, and highly indefinite Helmholtz equations, among others). The convergence rate is not independent ofmore » the polynomial degree p as p ! 1, but but remains strong for p 9, which is the highest polynomial degree allowed in PLTMG, due to limitations of the numerical quadrature rules implemented in the software package. A more complete description of the method and some numerical experiments illustrating its effectiveness appear in. Like traditional geometric multilevel methods, this scheme relies on knowledge of the underlying finite element space in order to construct the smoother and the coarse grid correction.« less

  16. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

    NASA Astrophysics Data System (ADS)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

    2017-11-01

    Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

  17. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David Michael

    1997-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. The formulation uses the principle of virtual work. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are then derived after the application of several simplifying assumptions. These equations are then modified to allow the reference surface of the plate to be located at a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described as well. The terms of the plate stiffness matrix using both Classical Plate Theory (CPT) and first-order Shear-Deformation Plate Theory (SDPT) are presented. The necessary steps to include the effects of in-plane transverse and in-plane shear loads in the in-plane stability equations are also outlined. Numerical results are presented using the newly implemented capability. Comparisons of results for several example problems with different loading states are made. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPF are also made. Results comparing the computational effort required by the new analysis to that of the analysis currently in the VICONOPT program are presented. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.

  18. An Alternative to the Breeder’s and Lande’s Equations

    PubMed Central

    Houchmandzadeh, Bahram

    2013-01-01

    The breeder’s equation is a cornerstone of quantitative genetics, widely used in evolutionary modeling. Noting the mean phenotype in parental, selected parents, and the progeny by E(Z0), E(ZW), and E(Z1), this equation relates response to selection R = E(Z1) − E(Z0) to the selection differential S = E(ZW) − E(Z0) through a simple proportionality relation R = h2S, where the heritability coefficient h2 is a simple function of genotype and environment factors variance. The validity of this relation relies strongly on the normal (Gaussian) distribution of the parent genotype, which is an unobservable quantity and cannot be ascertained. In contrast, we show here that if the fitness (or selection) function is Gaussian with mean μ, an alternative, exact linear equation of the form R′ = j2S′ can be derived, regardless of the parental genotype distribution. Here R′ = E(Z1) − μ and S′ = E(ZW) − μ stand for the mean phenotypic lag with respect to the mean of the fitness function in the offspring and selected populations. The proportionality coefficient j2 is a simple function of selection function and environment factors variance, but does not contain the genotype variance. To demonstrate this, we derive the exact functional relation between the mean phenotype in the selected and the offspring population and deduce all cases that lead to a linear relation between them. These results generalize naturally to the concept of G matrix and the multivariate Lande’s equation Δz¯=GP−1S. The linearity coefficient of the alternative equation are not changed by Gaussian selection. PMID:24212080

  19. A systematic linear space approach to solving partially described inverse eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Hu, Sau-Lon James; Li, Haujun

    2008-06-01

    Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.

  20. Optical Linear Algebra for Computational Light Transport

    NASA Astrophysics Data System (ADS)

    O'Toole, Matthew

    Active illumination refers to optical techniques that use controllable lights and cameras to analyze the way light propagates through the world. These techniques confer many unique imaging capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering media), but at a significant cost; they often require long acquisition and processing times, rely on predictive models for light transport, and cease to function when exposed to bright ambient sunlight. We develop a mathematical framework for describing and analyzing such imaging techniques. This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant energy through an unknown environment with the so-called light transport matrix. Performing active illumination on a scene equates to applying a numerical operator on this unknown matrix. The brute-force approach to active illumination follows a two-step procedure: (1) optically measure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is infeasible in general, because the light transport matrix is often much too large to measure, store, and analyze directly. Using principles from optical linear algebra, we evaluate these matrix operators in the optical domain, without ever measuring the light transport matrix in the first place. Specifically, we explore numerical algorithms that can be implemented partially or fully with programmable optics. These optical algorithms provide solutions to many longstanding problems in computer vision and graphics, including the ability to (1) photo-realistically change the illumination conditions of a given photo with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence of complex transport properties and strong ambient illumination, and (3) overcome the multipath interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-new imaging regime---optical probing---that provides unprecedented control over which light paths contribute to a photo.

  1. Full three-body problem in effective-field-theory models of gravity

    NASA Astrophysics Data System (ADS)

    Battista, Emmanuele; Esposito, Giampiero

    2014-10-01

    Recent work in the literature has studied the restricted three-body problem within the framework of effective-field-theory models of gravity. This paper extends such a program by considering the full three-body problem, when the Newtonian potential is replaced by a more general central potential which depends on the mutual separations of the three bodies. The general form of the equations of motion is written down, and they are studied when the interaction potential reduces to the quantum-corrected central potential considered recently in the literature. A recursive algorithm is found for solving the associated variational equations, which describe small departures from given periodic solutions of the equations of motion. Our scheme involves repeated application of a 2×2 matrix of first-order linear differential operators.

  2. Nonlinear vibration of viscoelastic beams described using fractional order derivatives

    NASA Astrophysics Data System (ADS)

    Lewandowski, Roman; Wielentejczyk, Przemysław

    2017-07-01

    The problem of non-linear, steady state vibration of beams, harmonically excited by harmonic forces is investigated in the paper. The viscoelastic material of the beams is described using the Zener rheological model with fractional derivatives. The constitutive equation, which contains derivatives of both stress and strain, significantly complicates the solution to the problem. The von Karman theory is applied to take into account geometric nonlinearities. Amplitude equations are obtained using the finite element method together with the harmonic balance method, and solved using the continuation method. The tangent matrix of the amplitude equations is determined in an explicit form. The stability of the steady-state solution is also examined. A parametric study is carried out to determine the influence of viscoelastic properties of the material on the beam's responses.

  3. Self-Consistent Sources for Integrable Equations Via Deformations of Binary Darboux Transformations

    NASA Astrophysics Data System (ADS)

    Chvartatskyi, Oleksandr; Dimakis, Aristophanes; Müller-Hoissen, Folkert

    2016-08-01

    We reveal the origin and structure of self-consistent source extensions of integrable equations from the perspective of binary Darboux transformations. They arise via a deformation of the potential that is central in this method. As examples, we obtain in particular matrix versions of self-consistent source extensions of the KdV, Boussinesq, sine-Gordon, nonlinear Schrödinger, KP, Davey-Stewartson, two-dimensional Toda lattice and discrete KP equation. We also recover a (2+1)-dimensional version of the Yajima-Oikawa system from a deformation of the pKP hierarchy. By construction, these systems are accompanied by a hetero binary Darboux transformation, which generates solutions of such a system from a solution of the source-free system and additionally solutions of an associated linear system and its adjoint. The essence of all this is encoded in universal equations in the framework of bidifferential calculus.

  4. Online gaming for learning optimal team strategies in real time

    NASA Astrophysics Data System (ADS)

    Hudas, Gregory; Lewis, F. L.; Vamvoudakis, K. G.

    2010-04-01

    This paper first presents an overall view for dynamical decision-making in teams, both cooperative and competitive. Strategies for team decision problems, including optimal control, zero-sum 2-player games (H-infinity control) and so on are normally solved for off-line by solving associated matrix equations such as the Riccati equation. However, using that approach, players cannot change their objectives online in real time without calling for a completely new off-line solution for the new strategies. Therefore, in this paper we give a method for learning optimal team strategies online in real time as team dynamical play unfolds. In the linear quadratic regulator case, for instance, the method learns the Riccati equation solution online without ever solving the Riccati equation. This allows for truly dynamical team decisions where objective functions can change in real time and the system dynamics can be time-varying.

  5. Filtering of non-linear instabilities. [from finite difference solution of fluid dynamics equations

    NASA Technical Reports Server (NTRS)

    Khosla, P. K.; Rubin, S. G.

    1979-01-01

    For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown here that these problems can in fact be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate 'filtering' can reduce the intensity of these oscillations and in some cases possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and non-conservation differencing. The entire spectrum of filtered equations retains a three-point character as well as second-order spatial accuracy. Burgers equation has been considered as a model. Several filters are examined in detail, and smooth solutions have been obtained for extremely large cell Reynolds numbers.

  6. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1980-01-01

    Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

  7. Operator bases, S-matrices, and their partition functions

    NASA Astrophysics Data System (ADS)

    Henning, Brian; Lu, Xiaochuan; Melia, Tom; Murayama, Hitoshi

    2017-10-01

    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce a partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most na¨ıve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.

  8. Analytical development of disturbed matrix eigenvalue problem applied to mixed convection stability analysis in Darcy media

    NASA Astrophysics Data System (ADS)

    Hamed, Haikel Ben; Bennacer, Rachid

    2008-08-01

    This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh-Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).

  9. A new fast direct solver for the boundary element method

    NASA Astrophysics Data System (ADS)

    Huang, S.; Liu, Y. J.

    2017-09-01

    A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.

  10. A new approach for the calculation of response spectral density of a linear stationary random multidegree of freedom system

    NASA Astrophysics Data System (ADS)

    Sharan, A. M.; Sankar, S.; Sankar, T. S.

    1982-08-01

    A new approach for the calculation of response spectral density for a linear stationary random multidegree of freedom system is presented. The method is based on modifying the stochastic dynamic equations of the system by using a set of auxiliary variables. The response spectral density matrix obtained by using this new approach contains the spectral densities and the cross-spectral densities of the system generalized displacements and velocities. The new method requires significantly less computation time as compared to the conventional method for calculating response spectral densities. Two numerical examples are presented to compare quantitatively the computation time.

  11. Output Consensus of Heterogeneous Linear Multi-Agent Systems by Distributed Event-Triggered/Self-Triggered Strategy.

    PubMed

    Hu, Wenfeng; Liu, Lu; Feng, Gang

    2016-09-02

    This paper addresses the output consensus problem of heterogeneous linear multi-agent systems. We first propose a novel distributed event-triggered control scheme. It is shown that, with the proposed control scheme, the output consensus problem can be solved if two matrix equations are satisfied. Then, we further propose a novel self-triggered control scheme, with which continuous monitoring is avoided. By introducing a fixed timer into both event- and self-triggered control schemes, Zeno behavior can be ruled out for each agent. The effectiveness of the event- and self-triggered control schemes is illustrated by an example.

  12. A Flexible CUDA LU-based Solver for Small, Batched Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Gawande, Nitin A.; Villa, Oreste

    This chapter presents the implementation of a batched CUDA solver based on LU factorization for small linear systems. This solver may be used in applications such as reactive flow transport models, which apply the Newton-Raphson technique to linearize and iteratively solve the sets of non linear equations that represent the reactions for ten of thousands to millions of physical locations. The implementation exploits somewhat counterintuitive GPGPU programming techniques: it assigns the solution of a matrix (representing a system) to a single CUDA thread, does not exploit shared memory and employs dynamic memory allocation on the GPUs. These techniques enable ourmore » implementation to simultaneously solve sets of systems with over 100 equations and to employ LU decomposition with complete pivoting, providing the higher numerical accuracy required by certain applications. Other currently available solutions for batched linear solvers are limited by size and only support partial pivoting, although they may result faster in certain conditions. We discuss the code of our implementation and present a comparison with the other implementations, discussing the various tradeoffs in terms of performance and flexibility. This work will enable developers that need batched linear solvers to choose whichever implementation is more appropriate to the features and the requirements of their applications, and even to implement dynamic switching approaches that can choose the best implementation depending on the input data.« less

  13. Development of MCAERO wing design panel method with interactive graphics module

    NASA Technical Reports Server (NTRS)

    Hawk, J. D.; Bristow, D. R.

    1984-01-01

    A reliable and efficient iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical pressure distribution. The design process is initialized by using MCAERO (MCAIR 3-D Subsonic Potential Flow Analysis Code) to analyze a baseline configuration. A second program DMCAERO is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter by applying a first-order expansion to the baseline equations in MCAERO. This matrix is calculated only once but is used in each iteration cycle to calculate the geometry perturbation and to analyze the perturbed geometry. The potential on the new geometry is calculated by linear extrapolation from the baseline solution. This extrapolated potential is converted to velocity by numerical differentiation, and velocity is converted to pressure by using Bernoulli's equation. There is an interactive graphics option which allows the user to graphically display the results of the design process and to interactively change either the geometry or the prescribed pressure distribution.

  14. Ward identities and combinatorics of rainbow tensor models

    NASA Astrophysics Data System (ADS)

    Itoyama, H.; Mironov, A.; Morozov, A.

    2017-06-01

    We discuss the notion of renormalization group (RG) completion of non-Gaussian Lagrangians and its treatment within the framework of Bogoliubov-Zimmermann theory in application to the matrix and tensor models. With the example of the simplest non-trivial RGB tensor theory (Aristotelian rainbow), we introduce a few methods, which allow one to connect calculations in the tensor models to those in the matrix models. As a byproduct, we obtain some new factorization formulas and sum rules for the Gaussian correlators in the Hermitian and complex matrix theories, square and rectangular. These sum rules describe correlators as solutions to finite linear systems, which are much simpler than the bilinear Hirota equations and the infinite Virasoro recursion. Search for such relations can be a way to solving the tensor models, where an explicit integrability is still obscure.

  15. System identification of analytical models of damped structures

    NASA Technical Reports Server (NTRS)

    Fuh, J.-S.; Chen, S.-Y.; Berman, A.

    1984-01-01

    A procedure is presented for identifying linear nonproportionally damped system. The system damping is assumed to be representable by a real symmetric matrix. Analytical mass, stiffness and damping matrices which constitute an approximate representation of the system are assumed to be available. Given also are an incomplete set of measured natural frequencies, damping ratios and complex mode shapes of the structure, normally obtained from test data. A method is developed to find the smallest changes in the analytical model so that the improved model can exactly predict the measured modal parameters. The present method uses the orthogonality relationship to improve mass and damping matrices and the dynamic equation to find the improved stiffness matrix.

  16. The Influence of Preferential Flow on Pressure Propagation and Landslide Triggering of the Rocca Pitigliana Landslide

    NASA Astrophysics Data System (ADS)

    Shao, W.; Bogaard, T.; Bakker, M.; Berti, M.; Savenije, H. H. G.

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately.

  17. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-13

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  18. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  19. Reactive transport in fractured porous media

    NASA Astrophysics Data System (ADS)

    Adler, P.; Jasinski, L.; Thovert, J.-F.; Mourzenko, V. V.

    2012-04-01

    Reactive flow through geological formations occurs in many situations due to human intervention or during natural processes. For instance, chemical dissolution and precipitation play a major role in diagenesis or in the formation of karsts. The quantitative description of the injection of a reacting fluid from a well into a fractured porous medium is also a subject of high interest. It can be provoked, as in the acidization stimulation technique for increasing well productivity, or accidental, in CO2 sequestration. Ideally, one wishes to analyze the improvements or damages caused by the fluid to the well itself and to its immediate surroundings. To this end, a coupled system of equations has to be solved. It includes the description of the flow in the porous matrix and in the fracture network by Darcy-like equations, and the description of the reactive solute transport and of the reactions which occur in the two structures. In addition, constitutive equations are required for the evolution of these two structures, such as evolution laws for permeability and reactivity as functions of porosity. Our discrete fracture numerical model involves three major steps. First, an unstructured tetrahedral mesh of the fractures and of the porous matrix is built. Second, the Darcy equations are discretized and solved, in a finite volume formulation. Third, the evolution of the solute concentration has to be calculated. This is the most difficult point if one wants to avoid numerical diffusion and accurately describe the transfers between the fractures and the matrix. A non linear flux limiting scheme of the Superbee type coupled with a systematic use of triple control volumes proved to be the most efficient. Various simple model situations have been considered, for validation purposes or to illustrate some physical points. In particular, it is shown that even when the matrix permeability is small and the flow is predominantly carried by the fracture network, convective exchanges still exist between the fractures and the matrix which can widely exceed diffusive ones and strongly affect the solute transport and its residence time distribution. Finally, simulations of passive and reactive solute transport have been performed in large samples containing percolating or non percolating fracture networks. Various parameters have been systematically investigated, including the transmissivity of the fractures, the flow regime characterized by Péclet numbers in the fractures and in the matrix, and the Damköhler numbers of the reaction process in the matrix and fractures. The passive transport behavior and the effect of the gradual clogging of the fractures and/or matrix pore space in the case of a precipitation process are analyzed.

  20. Reactive flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Jasinski, L.; Thovert, J.; Mourzenko, V.; Adler, P. M.

    2011-12-01

    Reactive flow through geological formations occurs in many situations due to human intervention or during natural processes. For instance, chemical dissolution and precipitation play a major role in diagenesis or in the formation of karsts. The quantitative description of the injection of a reacting fluid from a well into a fractured porous medium is also a subject of high interest. It can be provoked, as in the acidization stimulation technique for increasing well productivity, or accidental, in CO2 sequestration. Ideally, one wishes to analyze the improvements or damages caused by the fluid to the well itself and to its immediate surroundings. To this end, a coupled system of equations has to be solved. It includes the description of the flow in the porous matrix and in the fracture network by Darcy-like equations, and the description of the reactive solute transport and of the reactions which occur in the two structures. In addition, constitutive equations are required for the evolution of these two structures, such as evolution laws for permeability and reactivity as functions of porosity. Our discrete fracture numerical model involves three major steps. First, an unstructured tetrahedral mesh of the fractures and of the porous matrix is built. Second, the Darcy equations are discretized and solved, in a finite volume formulation. Third, the evolution of the solute concentration has to be calculated. This is the most difficult point if one wants to avoid numerical diffusion and accurately describe the transfers between the fractures and the matrix. A non linear flux limiting scheme of the Superbee type coupled with a systematic use of triple control volumes proved to be the most efficient. Various simple model situations have been considered, for validation purposes or to illustrate some physical points. In particular, it is shown that even when the matrix permeability is small and the flow is predominantly carried by the fracture network, convective exchanges still exist between the fractures and the matrix which can widely exceed diffusive ones and strongly affect the solute transport and its residence time distribution. Finally, simulations of passive and reactive solute transport have been performed in large samples containing percolating or non percolating fracture networks. Various parameters have been systematically investigated, including the transmissivity of the fractures, the flow regime characterized by Péclet numbers in the fractures and in the matrix, and the Damköhler numbers of the reaction process in the matrix and fractures. The passive transport behavior and the effect of the gradual clogging of the fractures and/or matrix pore space in the case of a precipitation process are analyzed.

  1. Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form

    NASA Astrophysics Data System (ADS)

    Gituliar, Oleksandr; Magerya, Vitaly

    2017-10-01

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂x J(x , ɛ) = A(x , ɛ) J(x , ɛ) finds a basis transformation T(x , ɛ) , i.e., J(x , ɛ) = T(x , ɛ) J‧(x , ɛ) , such that the system turns into the epsilon form : ∂xJ‧(x , ɛ) = ɛ S(x) J‧(x , ɛ) , where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ɛ. That makes the construction of the transformation T(x , ɛ) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals. Program Files doi:http://dx.doi.org/10.17632/zj6zn9vfkh.1 Licensing provisions: MIT Programming language:Python 2.7 Nature of problem: Feynman master integrals may be calculated from solutions of a linear system of differential equations with rational coefficients. Such a system can be easily solved as an ɛ-series when its epsilon form is known. Hence, a tool which is able to find the epsilon form transformations can be used to evaluate Feynman master integrals. Solution method: The solution method is based on the Lee algorithm (Lee, 2015) which consists of three main steps: fuchsification, normalization, and factorization. During the fuchsification step a given system of differential equations is transformed into the Fuchsian form with the help of the Moser method (Moser, 1959). Next, during the normalization step the system is transformed to the form where eigenvalues of all residues are proportional to the dimensional regulator ɛ. Finally, the system is factorized to the epsilon form by finding an unknown transformation which satisfies a system of linear equations. Additional comments including Restrictions and Unusual features: Systems of single-variable differential equations are considered. A system needs to be reducible to Fuchsian form and eigenvalues of its residues must be of the form n + m ɛ, where n is integer. Performance depends upon the input matrix, its size, number of singular points and their degrees. It takes around an hour to reduce an example 74 × 74 matrix with 20 singular points on a PC with a 1.7 GHz Intel Core i5 CPU. An additional slowdown is to be expected for matrices with complex and/or irrational singular point locations, as these are particularly difficult for symbolic algebra software to handle.

  2. Computing Generalized Matrix Inverse on Spiking Neural Substrate.

    PubMed

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  3. Real time estimation of ship motions using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Triantafyllou, M. S.; Bodson, M.; Athans, M.

    1983-01-01

    The estimation of the heave, pitch, roll, sway, and yaw motions of a DD-963 destroyer is studied, using Kalman filtering techniques, for application in VTOL aircraft landing. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A detailed numerical application for a DD-963 destroyer is presented and simulations of the estimations obtained from Kalman filters are discussed.

  4. Numerical Manifold Method for the Forced Vibration of Thin Plates during Bending

    PubMed Central

    Jun, Ding; Song, Chen; Wei-Bin, Wen; Shao-Ming, Luo; Xia, Huang

    2014-01-01

    A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived according to the principle of minimum instantaneous potential energy. The method for the initialization of the dynamic equation and its solution process were provided. Moreover, the analysis showed that the calculated stiffness matrix exhibited favorable performance. Numerical results showed that the generalized degrees of freedom were significantly fewer and that the calculation accuracy was higher for the manifold method than for the conventional finite element method. PMID:24883403

  5. Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem

    NASA Astrophysics Data System (ADS)

    Badia, Santiago; Martín, Alberto F.; Planas, Ramon

    2014-10-01

    The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.

  6. On the non-linear spectroscopy including saturated absorption and four-wave mixing in two and multi-level atoms: a computational study

    NASA Astrophysics Data System (ADS)

    Patel, M.; De Jager, G.; Nkosi, Z.; Wyngaard, A.; Govender, K.

    2017-10-01

    In this paper we report on the study of two and multi-level atoms interacting with multiple laser beams. The semi-classical approach is used to describe the system in which the atoms are treated quantum mechanically via the density matrix operator, while the laser beams are treated classically using Maxwells equations. We present results of a two level atom interacting with single and multiple laser beams and demonstrate Rabi oscillations between the levels. The effects of laser modulation on the dynamics of the atom (atomic populations and coherences) are examined by solving the optical Bloch equations. Plots of the density matrix elements as a function of time are presented for various parameters such as laser intensity, detuning, modulation etc. In addition, phase-space plots and Fourier analysis of the density matrix elements are provided. The atomic polarization, estimated from the coherence terms of the density matrix elements, is used in the numerical solution of Maxwells equations to determine the behaviour of the laser beams as they propagate through the atomic ensemble. The effects of saturation and hole-burning are demonstrated in the case of two counter propagating beams with one being a strong beam and the other being very weak. The above work is extended to include four-wave mixing in four level atoms in a diamond configuration. Two co-propagating beams of different wavelengths drive the atoms from a ground state |1〉 to an excited state |3〉 via an intermediate state |2〉. The atoms then move back to the ground state via another intermediate state |4〉, resulting in the generation of two additional correlated photon beams. The characteristics of these additional photons are studied.

  7. Permitted and forbidden sets in symmetric threshold-linear networks.

    PubMed

    Hahnloser, Richard H R; Seung, H Sebastian; Slotine, Jean-Jacques

    2003-03-01

    The richness and complexity of recurrent cortical circuits is an inexhaustible source of inspiration for thinking about high-level biological computation. In past theoretical studies, constraints on the synaptic connection patterns of threshold-linear networks were found that guaranteed bounded network dynamics, convergence to attractive fixed points, and multistability, all fundamental aspects of cortical information processing. However, these conditions were only sufficient, and it remained unclear which were the minimal (necessary) conditions for convergence and multistability. We show that symmetric threshold-linear networks converge to a set of attractive fixed points if and only if the network matrix is copositive. Furthermore, the set of attractive fixed points is nonconnected (the network is multiattractive) if and only if the network matrix is not positive semidefinite. There are permitted sets of neurons that can be coactive at a stable steady state and forbidden sets that cannot. Permitted sets are clustered in the sense that subsets of permitted sets are permitted and supersets of forbidden sets are forbidden. By viewing permitted sets as memories stored in the synaptic connections, we provide a formulation of long-term memory that is more general than the traditional perspective of fixed-point attractor networks. There is a close correspondence between threshold-linear networks and networks defined by the generalized Lotka-Volterra equations.

  8. Constitutive relations in optics in terms of geometric algebra

    NASA Astrophysics Data System (ADS)

    Dargys, A.

    2015-11-01

    To analyze the electromagnetic wave propagation in a medium the Maxwell equations should be supplemented by constitutive relations. At present the classification of linear constitutive relations is well established in tensorial-matrix and exterior p-form calculus. Here the constitutive relations are found in the context of Clifford geometric algebra. For this purpose Cl1,3 algebra that conforms with relativistic 4D Minkowskian spacetime is used. It is shown that the classification of linear optical phenomena with the help of constitutive relations in this case comes from the structure of Cl1,3 algebra itself. Concrete expressions for constitutive relations which follow from this algebra are presented. They can be applied in calculating the propagation properties of electromagnetic waves in any anisotropic, linear and nondissipative medium.

  9. An empirical investigation of methods for nonsymmetric linear systems

    NASA Technical Reports Server (NTRS)

    Sherman, A. H.

    1981-01-01

    The present investigation is concerned with a comparison of methods for solving linear algebraic systems which arise from finite difference discretizations of the elliptic convection-diffusion equation in a planar region Omega with Dirichlet boundary conditions. Such linear systems are typically of the form Ax = b where A is an N x N sparse nonsymmetric matrix. In a discussion of discretizations, it is assumed that a regular rectilinear mesh of width h has been imposed on Omega. The discretizations considered include central differences, upstream differences, and modified upstream differences. Six methods for solving Ax = b are considered. Three variants of Gaussian elimination have been chosen as representatives of state-of-the-art software for direct methods under different assumptions about pivoting. Three iterative methods are also included.

  10. Linear and Nonlinear Optical Properties of Spherical Quantum Dots: Effects of Hydrogenic Impurity and Conduction Band Non-Parabolicity

    NASA Astrophysics Data System (ADS)

    Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.

    2012-03-01

    Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.

  11. Optical Data Processing for Missile Guidance.

    DTIC Science & Technology

    1984-11-21

    and architectures for back -substitution and the solution of triangular systems of LAEs (linear algebraic equations). Most recently, a parallel QR...Calculation of I1 is quite difficult since the o T exact Z matrix is quite ill-conditioned. The two VC choices considered in our system are E - I and E I - 0...shown in fig. 1. It These operations are most commonly referred to as shows the ship in water with a sky and shoreline back - segmentation and also

  12. Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium

    NASA Astrophysics Data System (ADS)

    Bayones, F. S.; Abd-Alla, A. M.

    2018-03-01

    In this paper the linear theory of the thermoelasticity has been employed to study the effect of the rotation in a thermoelastic half-space containing heat source on the boundary of the half-space. It is assumed that the medium under consideration is traction free, homogeneous, isotropic, as well as without energy dissipation. The normal mode analysis has been applied in the basic equations of coupled thermoelasticity and finally the resulting equations are written in the form of a vector- matrix differential equation which is then solved by eigenvalue approach. Numerical results for the displacement components, stresses, and temperature are given and illustrated graphically. Comparison was made with the results obtained in the presence and absence of the rotation. The results indicate that the effect of rotation, non-dimensional thermal wave and time are very pronounced.

  13. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.

    2014-04-08

    The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a Uð2Þ element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Othermore » components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.« less

  14. Recursive mass matrix factorization and inversion: An operator approach to open- and closed-chain multibody dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.

    1988-01-01

    This report advances a linear operator approach for analyzing the dynamics of systems of joint-connected rigid bodies.It is established that the mass matrix M for such a system can be factored as M=(I+H phi L)D(I+H phi L) sup T. This yields an immediate inversion M sup -1=(I-H psi L) sup T D sup -1 (I-H psi L), where H and phi are given by known link geometric parameters, and L, psi and D are obtained recursively by a spatial discrete-step Kalman filter and by the corresponding Riccati equation associated with this filter. The factors (I+H phi L) and (I-H psi L) are lower triangular matrices which are inverses of each other, and D is a diagonal matrix. This factorization and inversion of the mass matrix leads to recursive algortihms for forward dynamics based on spatially recursive filtering and smoothing. The primary motivation for advancing the operator approach is to provide a better means to formulate, analyze and understand spatial recursions in multibody dynamics. This is achieved because the linear operator notation allows manipulation of the equations of motion using a very high-level analytical framework (a spatial operator algebra) that is easy to understand and use. Detailed lower-level recursive algorithms can readily be obtained for inspection from the expressions involving spatial operators. The report consists of two main sections. In Part 1, the problem of serial chain manipulators is analyzed and solved. Extensions to a closed-chain system formed by multiple manipulators moving a common task object are contained in Part 2. To retain ease of exposition in the report, only these two types of multibody systems are considered. However, the same methods can be easily applied to arbitrary multibody systems formed by a collection of joint-connected regid bodies.

  15. Synchronization of an Inertial Neural Network With Time-Varying Delays and Its Application to Secure Communication.

    PubMed

    Lakshmanan, Shanmugam; Prakash, Mani; Lim, Chee Peng; Rakkiyappan, Rajan; Balasubramaniam, Pagavathigounder; Nahavandi, Saeid

    2018-01-01

    In this paper, synchronization of an inertial neural network with time-varying delays is investigated. Based on the variable transformation method, we transform the second-order differential equations into the first-order differential equations. Then, using suitable Lyapunov-Krasovskii functionals and Jensen's inequality, the synchronization criteria are established in terms of linear matrix inequalities. Moreover, a feedback controller is designed to attain synchronization between the master and slave models, and to ensure that the error model is globally asymptotically stable. Numerical examples and simulations are presented to indicate the effectiveness of the proposed method. Besides that, an image encryption algorithm is proposed based on the piecewise linear chaotic map and the chaotic inertial neural network. The chaotic signals obtained from the inertial neural network are utilized for the encryption process. Statistical analyses are provided to evaluate the effectiveness of the proposed encryption algorithm. The results ascertain that the proposed encryption algorithm is efficient and reliable for secure communication applications.

  16. Gust alleviation - Criteria and control laws

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.

    1979-01-01

    The relationships between criteria specified for aircraft gust alleviation and the form of the control laws that result from the criteria are considered. Open-loop gust alleviation based on the linearized, small perturbation equations of aircraft motion is discussed, and an approximate solution of the open-loop control law is presented for the case in which the number of degrees of freedom of the aircraft exceeds the rank of the control effectiveness matrix. Excessive actuator lag is compensated for by taking into account actuator dynamics in the equations of motion, resulting in the specification of a general load network. Criteria for gust alleviation when output motions are gust alleviated and the closed-loop control law derived from them are examined and linear optimal control law is derived. Comparisons of the control laws reveal that the effectiveness of an open-loop control law is greatest at low aircraft frequencies but deteriorates as the natural frequency of the actuators is approached, while closed-loop methods are found to be more effective at higher frequencies.

  17. Inverse solutions for electrical impedance tomography based on conjugate gradients methods

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2002-01-01

    A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.

  18. Exact representation of the asymptotic drift speed and diffusion matrix for a class of velocity-jump processes

    NASA Astrophysics Data System (ADS)

    Mascia, Corrado

    2016-01-01

    This paper examines a class of linear hyperbolic systems which generalizes the Goldstein-Kac model to an arbitrary finite number of speeds vi with transition rates μij. Under the basic assumptions that the transition matrix is symmetric and irreducible, and the differences vi -vj generate all the space, the system exhibits a large-time behavior described by a parabolic advection-diffusion equation. The main contribution is to determine explicit formulas for the asymptotic drift speed and diffusion matrix in term of the kinetic parameters vi and μij, establishing a complete connection between microscopic and macroscopic coefficients. It is shown that the drift speed is the arithmetic mean of the velocities vi. The diffusion matrix has a more complicate representation, based on the graph with vertices the velocities vi and arcs weighted by the transition rates μij. The approach is based on an exhaustive analysis of the dispersion relation and on the application of a variant of the Kirchoff's matrix tree Theorem from graph theory.

  19. A unified model for transfer alignment at random misalignment angles based on second-order EKF

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Mei, Chunbo; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo

    2017-04-01

    In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles.

  20. Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.

    PubMed

    Keller, Ole

    2005-08-01

    On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.

  1. Mechanical characterization and modeling of non-linear deformation and fracture of a fiber reinforced metal matrix composite

    NASA Technical Reports Server (NTRS)

    Jansson, S.

    1991-01-01

    The nonlinear anisotropic mechanical behavior of an aluminum alloy metal matrix composite reinforced with continuous alumina fibers was determined experimentally. The mechanical behavior of the composite were modeled by assuming that the composite has a periodical microstructure. The resulting unit cell problem was solved with the finite element method. Excellent agreement was found between theoretically predicted and measured stress-strain responses for various tensile and shear loadings. The stress-strain responses for transverse and inplane shear were found to be identical and this will provide a simplification of the constitutive equations for the composite. The composite has a very low ductility in transverse tension and a limited ductility in transverse shear that was correlated to high hydrostatic stresses that develop in the matrix. The shape of the initial yield surface was calculated and good agreement was found between the calculated shape and the experimentally determined shape.

  2. GeV-scale hot sterile neutrino oscillations: a numerical solution

    NASA Astrophysics Data System (ADS)

    Ghiglieri, J.; Laine, M.

    2018-02-01

    The scenario of baryogenesis through GeV-scale sterile neutrino oscillations is governed by non-linear differential equations for the time evolution of a sterile neutrino density matrix and Standard Model lepton and baryon asymmetries. By employing up-to-date rate coefficients and a non-perturbatively estimated Chern-Simons diffusion rate, we present a numerical solution of this system, incorporating the full momentum and helicity dependences of the density matrix. The density matrix deviates significantly from kinetic equilibrium, with the IR modes equilibrating much faster than the UV modes. For equivalent input parameters, our final results differ moderately (˜50%) from recent benchmarks in the literature. The possibility of producing an observable baryon asymmetry is nevertheless confirmed. We illustrate the dependence of the baryon asymmetry on the sterile neutrino mass splitting and on the CP-violating phase measurable in active neutrino oscillation experiments.

  3. On the equivalence of dynamically orthogonal and bi-orthogonal methods: Theory and numerical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em, E-mail: george_karniadakis@brown.edu

    2014-08-01

    The Karhunen–Lòeve (KL) decomposition provides a low-dimensional representation for random fields as it is optimal in the mean square sense. Although for many stochastic systems of practical interest, described by stochastic partial differential equations (SPDEs), solutions possess this low-dimensional character, they also have a strongly time-dependent form and to this end a fixed-in-time basis may not describe the solution in an efficient way. Motivated by this limitation of standard KL expansion, Sapsis and Lermusiaux (2009) [26] developed the dynamically orthogonal (DO) field equations which allow for the simultaneous evolution of both the spatial basis where uncertainty ‘lives’ but also themore » stochastic characteristics of uncertainty. Recently, Cheng et al. (2013) [28] introduced an alternative approach, the bi-orthogonal (BO) method, which performs the exact same tasks, i.e. it evolves the spatial basis and the stochastic characteristics of uncertainty. In the current work we examine the relation of the two approaches and we prove theoretically and illustrate numerically their equivalence, in the sense that one method is an exact reformulation of the other. We show this by deriving a linear and invertible transformation matrix described by a matrix differential equation that connects the BO and the DO solutions. We also examine a pathology of the BO equations that occurs when two eigenvalues of the solution cross, resulting in an instantaneous, infinite-speed, internal rotation of the computed spatial basis. We demonstrate that despite the instantaneous duration of the singularity this has important implications on the numerical performance of the BO approach. On the other hand, it is observed that the BO is more stable in nonlinear problems involving a relatively large number of modes. Several examples, linear and nonlinear, are presented to illustrate the DO and BO methods as well as their equivalence.« less

  4. Expendable launch vehicle studies

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.

  5. Parallel computation using boundary elements in solid mechanics

    NASA Technical Reports Server (NTRS)

    Chien, L. S.; Sun, C. T.

    1990-01-01

    The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.

  6. Nonlinear Equations of Motion for Cantilever Rotor Blades in Hover with Pitch Link Flexibility, Twist, Precone, Droop, Sweep, Torque Offset, and Blade Root Offset

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1976-01-01

    Nonlinear equations of motion for a cantilever rotor blade are derived for the hovering flight condition. The blade is assumed to have twist, precone, droop, sweep, torque offset and blade root offset, and the elastic axis and the axes of center of mass, tension, and aerodynamic center coincident at the quarter chord. The blade is cantilevered in bending, but has a torsional root spring to simulate pitch link flexibility. Aerodynamic forces acting on the blade are derived from strip theory based on quasi-steady two-dimensional airfoil theory. The equations are hybrid, consisting of one integro-differential equation for root torsion and three integro-partial differential equations for flatwise and chordwise bending and elastic torsion. The equations are specialized for a uniform blade and reduced to nonlinear ordinary differential equations by Galerkin's method. They are linearized for small perturbation motions about the equilibrium operating condition. Modal analysis leads to formulation of a standard eigenvalue problem where the elements of the stability matrix depend on the solution of the equilibrium equations. Two different forms of the root torsion equation are derived that yield virtually identical numerical results. This provides a reasonable check for the accuracy of the equations.

  7. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hafez; Borazjani, Iman

    2017-02-01

    The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for non-linear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form a preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the diagonal of the Jacobian further improves the performance by 42-74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal and full Jacobian, respectivley, when the stretching factor was increased. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80-90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.

  8. An analysis of fiber-matrix interface failure stresses for a range of ply stress states

    NASA Technical Reports Server (NTRS)

    Crews, J. H.; Naik, R. A.; Lubowinski, S. J.

    1993-01-01

    A graphite/bismaleimide laminate was prepared without the usual fiber treatment and was tested over a wide range of stress states to measure its ply cracking strength. These tests were conducted using off-axis flexure specimens and produced fiber-matrix interface failure data over a correspondingly wide range of interface stress states. The absence of fiber treatment, weakened the fiber-matrix interfaces and allowed these tests to be conducted at load levels that did not yield the matrix. An elastic micromechanics computer code was used to calculate the fiber-matrix interface stresses at failure. Two different fiber-array models (square and diamond) were used in these calculations to analyze the effects of fiber arrangement as well as stress state on the critical interface stresses at failure. This study showed that both fiber-array models were needed to analyze interface stresses over the range of stress states. A linear equation provided a close fit to these critical stress combinations and, thereby, provided a fiber-matrix interface failure criterion. These results suggest that prediction procedures for laminate ply cracking can be based on micromechanics stress analyses and appropriate fiber-matrix interface failure criteria. However, typical structural laminates may require elastoplastic stress analysis procedures that account for matrix yielding, especially for shear-dominated ply stress states.

  9. Solution of matrix equations using sparse techniques

    NASA Technical Reports Server (NTRS)

    Baddourah, Majdi

    1994-01-01

    The solution of large systems of matrix equations is key to the solution of a large number of scientific and engineering problems. This talk describes the sparse matrix solver developed at Langley which can routinely solve in excess of 263,000 equations in 40 seconds on one Cray C-90 processor. It appears that for large scale structural analysis applications, sparse matrix methods have a significant performance advantage over other methods.

  10. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations.

    PubMed

    Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K

    2011-11-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.

  11. Time integration algorithms for the two-dimensional Euler equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Slack, David C.; Whitaker, D. L.; Walters, Robert W.

    1994-01-01

    Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.

  12. A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations

    NASA Astrophysics Data System (ADS)

    Lin, Zeng; Wang, Dongdong

    2017-10-01

    Due to the nonlocal property of the fractional derivative, the finite element analysis of fractional diffusion equation often leads to a dense and non-symmetric stiffness matrix, in contrast to the conventional finite element formulation with a particularly desirable symmetric and banded stiffness matrix structure for the typical diffusion equation. This work first proposes a finite element formulation that preserves the symmetry and banded stiffness matrix characteristics for the fractional diffusion equation. The key point of the proposed formulation is the symmetric weak form construction through introducing a fractional weight function. It turns out that the stiffness part of the present formulation is identical to its counterpart of the finite element method for the conventional diffusion equation and thus the stiffness matrix formulation becomes trivial. Meanwhile, the fractional derivative effect in the discrete formulation is completely transferred to the force vector, which is obviously much easier and efficient to compute than the dense fractional derivative stiffness matrix. Subsequently, it is further shown that for the general fractional advection-diffusion-reaction equation, the symmetric and banded structure can also be maintained for the diffusion stiffness matrix, although the total stiffness matrix is not symmetric in this case. More importantly, it is demonstrated that under certain conditions this symmetric diffusion stiffness matrix formulation is capable of producing very favorable numerical solutions in comparison with the conventional non-symmetric diffusion stiffness matrix finite element formulation. The effectiveness of the proposed methodology is illustrated through a series of numerical examples.

  13. A new state space model for the NASA/JPL 70-meter antenna servo controls

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1987-01-01

    A control axis referenced model of the NASA/JPL 70-m antenna structure is combined with the dynamic equations of servo components to produce a comprehansive state variable (matrix) model of the coupled system. An interactive Fortran program for generating the linear system model and computing its salient parameters is described. Results are produced in a state variable, block diagram, and in factored transfer function forms to facilitate design and analysis by classical as well as modern control methods.

  14. Vibration analysis of rotor blades with pendulum absorbers

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Hammond, C. E.

    1979-01-01

    A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.

  15. Exceptional point in a simple textbook example

    NASA Astrophysics Data System (ADS)

    Fernández, Francisco M.

    2018-07-01

    We propose to introduce the concept of exceptional points in intermediate courses on mathematics and classical mechanics by means of simple textbook examples. The first one is an ordinary second-order differential equation with constant coefficients. The second one is the well-known damped harmonic oscillator. From a strict mathematical viewpoint both are the same problem that enables one to connect the occurrence of linearly dependent exponential solutions with a defective matrix which cannot be diagonalized but can be transformed into a Jordan canonical form.

  16. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Transient heat conduction in laser diodes

    NASA Astrophysics Data System (ADS)

    Enders, P.; Galley, J.

    1988-11-01

    The dynamics of heat transfer in stripe GaAlAs laser diodes is investigated by solving the linear diffusion equation for a quasitwo-dimensional multilayer structure. The calculations are rationalized drastically by the transfer matrix method and also using for the first time the asymptotes of the decay constants. Special attention is given to the convergence of the Fourier series. A comparison with experimental results reveals however that this is essentially the Stefan problem (with moving boundary conditions).

  17. Indirect measurements of hydrogen: The deficit method for a many-component system

    NASA Astrophysics Data System (ADS)

    Levine, Timothy E.; Yu, Ning; Kodali, Padma; Walter, Kevin C.; Nastasi, Michael; Tesmer, Joseph R.; Maggiore, Carl J.; Mayer, James W.

    We have developed a simple technique for determining hydrogen atomic fraction from the ion backscattering spectrometry (IBS) signals of the remaining species. This technique uses the surface heights of various IBS signals in the form of a linear matrix equation. We apply this technique to in situ analysis of ion-beam-induced densification of sol-gel zirconia thin films, where hydrogen is the most volatile species during irradiation. Attendant errors are discussed with an emphasis on stopping powers and Bragg's rule.

  18. The use of Lyapunov differential inequalities for estimating the transients of mechanical systems

    NASA Astrophysics Data System (ADS)

    Alyshev, A. S.; Dudarenko, N. A.; Melnikov, V. G.; Melnikov, G. I.

    2018-05-01

    In this paper we consider an autonomous mechanical system in a finite neighborhood of the zero of the phase space of states. The system is given as a matrix differential equation in the Cauchy form with the right-hand side of the polynomial structure. We propose a method for constructing a sequence of linear inhomogeneous differential inequalities for Lyapunov functions. As a result, we obtain estimates of transient processes in the form of functional inequalities.

  19. Research in Computational Aeroscience Applications Implemented on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Wigton, Larry

    1996-01-01

    Improving the numerical linear algebra routines for use in new Navier-Stokes codes, specifically Tim Barth's unstructured grid code, with spin-offs to TRANAIR is reported. A fast distance calculation routine for Navier-Stokes codes using the new one-equation turbulence models is written. The primary focus of this work was devoted to improving matrix-iterative methods. New algorithms have been developed which activate the full potential of classical Cray-class computers as well as distributed-memory parallel computers.

  20. Estimating the Inertia Matrix of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Keim, Jason; Shields, Joel

    2007-01-01

    A paper presents a method of utilizing some flight data, aboard a spacecraft that includes reaction wheels for attitude control, to estimate the inertia matrix of the spacecraft. The required data are digitized samples of (1) the spacecraft attitude in an inertial reference frame as measured, for example, by use of a star tracker and (2) speeds of rotation of the reaction wheels, the moments of inertia of which are deemed to be known. Starting from the classical equations for conservation of angular momentum of a rigid body, the inertia-matrix-estimation problem is formulated as a constrained least-squares minimization problem with explicit bounds on the inertia matrix incorporated as linear matrix inequalities. The explicit bounds reflect physical bounds on the inertia matrix and reduce the volume of data that must be processed to obtain a solution. The resulting minimization problem is a semidefinite optimization problem that can be solved efficiently, with guaranteed convergence to the global optimum, by use of readily available algorithms. In a test case involving a model attitude platform rotating on an air bearing, it is shown that, relative to a prior method, the present method produces better estimates from few data.

  1. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.

  2. Universal shocks in the Wishart random-matrix ensemble.

    PubMed

    Blaizot, Jean-Paul; Nowak, Maciej A; Warchoł, Piotr

    2013-05-01

    We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple inviscid Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution, through the method of characteristics, presents singularities that we relate to the precursors of shock formation in the Burgers equation. The finite N effects appear as a viscosity term in the Burgers equation. Using a scaling analysis of the complete equation for the characteristic polynomial, in the vicinity of the shocks, we recover in a simple way the universal Bessel oscillations (so-called hard-edge singularities) familiar in random-matrix theory.

  3. CORDIC-based digital signal processing (DSP) element for adaptive signal processing

    NASA Astrophysics Data System (ADS)

    Bolstad, Gregory D.; Neeld, Kenneth B.

    1995-04-01

    The High Performance Adaptive Weight Computation (HAWC) processing element is a CORDIC based application specific DSP element that, when connected in a linear array, can perform extremely high throughput (100s of GFLOPS) matrix arithmetic operations on linear systems of equations in real time. In particular, it very efficiently performs the numerically intense computation of optimal least squares solutions for large, over-determined linear systems. Most techniques for computing solutions to these types of problems have used either a hard-wired, non-programmable systolic array approach, or more commonly, programmable DSP or microprocessor approaches. The custom logic methods can be efficient, but are generally inflexible. Approaches using multiple programmable generic DSP devices are very flexible, but suffer from poor efficiency and high computation latencies, primarily due to the large number of DSP devices that must be utilized to achieve the necessary arithmetic throughput. The HAWC processor is implemented as a highly optimized systolic array, yet retains some of the flexibility of a programmable data-flow system, allowing efficient implementation of algorithm variations. This provides flexible matrix processing capabilities that are one to three orders of magnitude less expensive and more dense than the current state of the art, and more importantly, allows a realizable solution to matrix processing problems that were previously considered impractical to physically implement. HAWC has direct applications in RADAR, SONAR, communications, and image processing, as well as in many other types of systems.

  4. Research on fast algorithm of small UAV navigation in non-linear matrix reductionism method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Fang, Jiancheng; Sheng, Wei; Cao, Juanjuan

    2008-10-01

    The low Reynolds numbers of small UAV will result in unfavorable aerodynamic conditions to support controlled flight. And as operated near ground, the small UAV will be affected seriously by low-frequency interference caused by atmospheric disturbance. Therefore, the GNC system needs high frequency of attitude estimation and control to realize the steady of the UAV. In company with the dimensional of small UAV dwindling away, its GNC system is more and more taken embedded designing technology to reach the purpose of compactness, light weight and low power consumption. At the same time, the operational capability of GNC system also gets limit in a certain extent. Therefore, a kind of high speed navigation algorithm design becomes the imminence demand of GNC system. Aiming at such requirement, a kind of non-linearity matrix reduction approach is adopted in this paper to create a new high speed navigation algorithm which holds the radius of meridian circle and prime vertical circle as constant and linearizes the position matrix calculation formulae of navigation equation. Compared with normal navigation algorithm, this high speed navigation algorithm decreases 17.3% operand. Within small UAV"s mission radius (20km), the accuracy of position error is less than 0.13m. The results of semi-physical experiments and small UAV's auto pilot testing proved that this algorithm can realize high frequency attitude estimation and control. It will avoid low-frequency interference caused by atmospheric disturbance properly.

  5. Modelling polarization dependent absorption: The vectorial Lambert-Beer law

    NASA Astrophysics Data System (ADS)

    Franssens, G.

    2014-07-01

    The scalar Lambert-Beer law, describing the absorption of unpolarized light travelling through a linear non-scattering medium, is simple, well-known, and mathematically trivial. However, when we take the polarization of light into account and consider a medium with polarization dependent absorption, we now need a Vectorial Lambert-Beer Law (VLBL) to quantify this interaction. Such a generalization of the scalar Lambert-Beer law appears not to be readily available. A careful study of this topic reveals that it is not a trivial problem. We will see that the VLBL is not and cannot be a straightforward vectorized version of its scalar counterpart. The aim of the work is to present the general form of the VLBL and to explain how it arises. A reasonable starting point to derive the VLBL is the Vectorial Radiative Transfer Equation (VRTE), which models the absorption and scattering of (partially) polarized light travelling through a linear medium. When we turn off scattering, the VRTE becomes an infinitesimal model for the VLBL holding in the medium. By integrating this equation, we expect to find the VLBL. Surprisingly, this is not the end of the story. It turns out that light propagation through a medium with polarization-dependent absorption is mathematically not that trivial. The trickiness behind the VLBL can be understood in the following terms. The matrix in the VLBL, relating any input Stokes vector to the corresponding output Stokes vector, must necessarily be a Mueller matrix. The subset of invertible Mueller matrices forms a Lie group. It is known that this Lie group contains the ortho-chronous Lorentz group as a subgroup. The group manifold of this subgroup has a (well-known) non-trivial topology. Consequently, the manifold of the Lie group of Mueller matrices also has (at least the same, but likely a more general) non-trivial topology (the full extent of which is not yet known). The type of non-trivial topology, possessed by the manifold of (invertible) Mueller matrices and which stems from the ortho-chronous Lorentz group, already implies (by a theorem from Lie group theory) that the infinitesimal VRTE model for the VLBL is not guaranteed to produce in general the correct finite model (i.e., the VLBL itself) upon integration. What happens is that the non-trivial topology acts as an obstruction that prevents the (matrix) exponential function to reach the correct Mueller matrix (for the medium at hand), because it is too far away from the identity matrix. This means that, for certain media, the VLBL obtained by integrating the VRTE may be different from the VLBL that one would actually measure. Basically, we have here an example of a physical problem that cannot be completely described by a differential equation! The following more concrete example further illustrates the problem. Imagine a slab of matter, showing polarization dependent absorption but negligible scattering, and consider its Mueller matrix for forward propagating plane waves. Will the measured Mueller matrix of such a slab always have positive determinant? There is no apparent mathematical nor physical reason why this (or any) Mueller matrix must have positive determinant. On the other hand, our VRTE model with scattering turned off will always generate a Mueller matrix with positive determinant. This particular example also presents a nice challenge and opportunity for the experimenter: demonstrate the existence of a medium of the envisioned type having a Mueller matrix with non-positive determinant! Lie group theory not only explains when and why we cannot trust a differential equation, but also offers a way out of such a situation if it arises. Applied to our problem, Lie group theory in addition yields the general form of the VLBL. More details will be given in the presentation.

  6. The Physics of Polarization

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  7. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  8. Experimental and numerical analysis of the constitutive equation of rubber composites reinforced with random ceramic particle

    NASA Astrophysics Data System (ADS)

    Luo, D. M.; Xie, Y.; Su, X. R.; Zhou, Y. L.

    2018-01-01

    Based on the four classical models of Mooney-Rivlin (M-R), Yeoh, Ogden and Neo-Hookean (N-H) model, a strain energy constitutive equation with large deformation for rubber composites reinforced with random ceramic particles is proposed from the angle of continuum mechanics theory in this paper. By decoupling the interaction between matrix and random particles, the strain energy of each phase is obtained to derive the explicit constitutive equation for rubber composites. The tests results of uni-axial tensile, pure shear and equal bi-axial tensile are simulated by the non-linear finite element method on the ANSYS platform. The results from finite element method are compared with those from experiment, and the material parameters are determined by fitting the results from different test conditions, and the influence of radius of random ceramic particles on the effective mechanical properties are analyzed.

  9. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  10. Real time estimation of the heaving and pitching motions of a ship, using a Kalman filter

    NASA Technical Reports Server (NTRS)

    Triantafyllou, M.; Athans, M.

    1981-01-01

    In the present study the estimation of the heave and pitch motion of a ship is considered, using Kalman filtering techniques. A significant part of the study is devoted to constructing appropriate models for the sea and the ship. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A numerical application is considered for a DD-963 destroyer.

  11. Dynamic stability analysis of torsional vibrations of a shaft system connected by a Hooke's joint through a continuous system model

    NASA Astrophysics Data System (ADS)

    Bulut, Gökhan

    2014-08-01

    Stability of parametrically excited torsional vibrations of a shaft system composed of two torsionally elastic shafts interconnected through a Hooke's joint is studied. The shafts are considered to be continuous (distributed-parameter) systems and an approximate discrete model for the torsional vibrations of the shaft system is derived via a finite element scheme. The stability of the solutions of the linearized equations of motion, consisting of a set of Mathieu-Hill type equations, is examined by means of a monodromy matrix method and the results are presented in the form of a Strutt-Ince diagram visualizing the effects of the system parameters on the stability of the shaft system.

  12. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES

    PubMed Central

    Wan, Xiaohai; Li, Zhilin

    2012-01-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size. PMID:22701346

  13. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.

    PubMed

    Wan, Xiaohai; Li, Zhilin

    2012-06-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size.

  14. A mathematical model for simulating noise suppression of lined ejectors

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.

    1994-01-01

    A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.

  15. Low-dimensional Representation of Error Covariance

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan

    2000-01-01

    Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.

  16. A unique set of micromechanics equations for high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1985-01-01

    A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated.

  17. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    PubMed Central

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  18. Operator bases, S-matrices, and their partition functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Brian; Lu, Xiaochuan; Melia, Tom

    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less

  19. Operator bases, S-matrices, and their partition functions

    DOE PAGES

    Henning, Brian; Lu, Xiaochuan; Melia, Tom; ...

    2017-10-27

    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less

  20. Stability analysis of a time-periodic 2-dof MEMS structure

    NASA Astrophysics Data System (ADS)

    Kniffka, Till Jochen; Welte, Johannes; Ecker, Horst

    2012-11-01

    Microelectromechanical systems (MEMS) are becoming important for all kinds of industrial applications. Among them are filters in communication devices, due to the growing demand for efficient and accurate filtering of signals. In recent developments single degree of freedom (1-dof) oscillators, that are operated at a parametric resonances, are employed for such tasks. Typically vibration damping is low in such MEM systems. While parametric excitation (PE) is used so far to take advantage of a parametric resonance, this contribution suggests to also exploit parametric anti-resonances in order to improve the damping behavior of such systems. Modeling aspects of a 2-dof MEM system and first results of the analysis of the non-linear and the linearized system are the focus of this paper. In principle the investigated system is an oscillating mechanical system with two degrees of freedom x = [x1x2]T that can be described by Mx+Cx+K1x+K3(x2)x+Fes(x,V(t)) = 0. The system is inherently non-linear because of the cubic mechanical stiffness K3 of the structure, but also because of electrostatic forces (1+cos(ωt))Fes(x) that act on the system. Electrostatic forces are generated by comb drives and are proportional to the applied time-periodic voltage V(t). These drives also provide the means to introduce time-periodic coefficients, i.e. parametric excitation (1+cos(ωt)) with frequency ω. For a realistic MEM system the coefficients of the non-linear set of differential equations need to be scaled for efficient numerical treatment. The final mathematical model is a set of four non-linear time-periodic homogeneous differential equations of first order. Numerical results are obtained from two different methods. The linearized time-periodic (LTP) system is studied by calculating the Monodromy matrix of the system. The eigenvalues of this matrix decide on the stability of the LTP-system. To study the unabridged non-linear system, the bifurcation software ManLab is employed. Continuation analysis including stability evaluations are executed and show the frequency ranges for which the 2-dof system becomes unstable due to parametric resonances. Moreover, the existence of frequency intervals are shown where enhanced damping for the system is observed for this MEMS. The results from the stability studies are confirmed by simulation results.

  1. Effects of the oceans on polar motion: Extended investigations

    NASA Technical Reports Server (NTRS)

    Dickman, Steven R.

    1986-01-01

    A method was found for expressing the tide current velocities in terms of the tide height (with all variables expanded in spherical harmonics). All time equations were then combined into a single, nondifferential matrix equation involving only the unknown tide height. The pole tide was constrained so that no tidewater flows across continental boundaries. The constraint was derived for the case of turbulent oceans; with the tide velocities expressed in terms of the tide height. The two matrix equations were combined. Simple matrix inversion then yielded the constrained solution. Programs to construct and invert the matrix equations were written. Preliminary results were obtained and are discussed.

  2. Computation of steady and unsteady quasi-one-dimensional viscous/inviscid interacting internal flows at subsonic, transonic, and supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Swafford, Timothy W.; Huddleston, David H.; Busby, Judy A.; Chesser, B. Lawrence

    1992-01-01

    Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations.

  3. Numerical solutions to the time-dependent Bloch equations revisited.

    PubMed

    Murase, Kenya; Tanki, Nobuyoshi

    2011-01-01

    The purpose of this study was to demonstrate a simple and fast method for solving the time-dependent Bloch equations. First, the time-dependent Bloch equations were reduced to a homogeneous linear differential equation, and then a simple equation was derived to solve it using a matrix operation. The validity of this method was investigated by comparing with the analytical solutions in the case of constant radiofrequency irradiation. There was a good agreement between them, indicating the validity of this method. As a further example, this method was applied to the time-dependent Bloch equations in the two-pool exchange model for chemical exchange saturation transfer (CEST) or amide proton transfer (APT) magnetic resonance imaging (MRI), and the Z-spectra and asymmetry spectra were calculated from their solutions. They were also calculated using the fourth/fifth-order Runge-Kutta-Fehlberg (RKF) method for comparison. There was also a good agreement between them, and this method was much faster than the RKF method. In conclusion, this method will be useful for analyzing the complex CEST or APT contrast mechanism and/or investigating the optimal conditions for CEST or APT MRI. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Cotton-type and joint invariants for linear elliptic systems.

    PubMed

    Aslam, A; Mahomed, F M

    2013-01-01

    Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.

  5. Cotton-Type and Joint Invariants for Linear Elliptic Systems

    PubMed Central

    Aslam, A.; Mahomed, F. M.

    2013-01-01

    Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results. PMID:24453871

  6. Dynamics and thermodynamics of linear quantum open systems.

    PubMed

    Martinez, Esteban A; Paz, Juan Pablo

    2013-03-29

    We analyze the evolution of the quantum state of networks of quantum oscillators coupled with arbitrary external environments. We show that the reduced density matrix of the network always obeys a local master equation with a simple analytical solution. We use this to study the emergence of thermodynamical laws in the long time regime demonstrating two main results: First, we show that it is impossible to build a quantum absorption refrigerator using linear networks (thus, nonlinearity is an essential resource for such refrigerators recently studied by Levy and Kosloff [Phys. Rev. Lett. 108, 070604 (2012)] and Levy et al. [Phys. Rev. B 85, 061126 (2012)]). Then, we show that the third law imposes constraints on the low frequency behavior of the environmental spectral densities.

  7. Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Li, Junmin

    2017-07-01

    In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.

  8. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Li, Meng; Gu, Xian-Ming; Huang, Chengming; Fei, Mingfa; Zhang, Guoyu

    2018-04-01

    In this paper, a fast linearized conservative finite element method is studied for solving the strongly coupled nonlinear fractional Schrödinger equations. We prove that the scheme preserves both the mass and energy, which are defined by virtue of some recursion relationships. Using the Sobolev inequalities and then employing the mathematical induction, the discrete scheme is proved to be unconditionally convergent in the sense of L2-norm and H α / 2-norm, which means that there are no any constraints on the grid ratios. Then, the prior bound of the discrete solution in L2-norm and L∞-norm are also obtained. Moreover, we propose an iterative algorithm, by which the coefficient matrix is independent of the time level, and thus it leads to Toeplitz-like linear systems that can be efficiently solved by Krylov subspace solvers with circulant preconditioners. This method can reduce the memory requirement of the proposed linearized finite element scheme from O (M2) to O (M) and the computational complexity from O (M3) to O (Mlog ⁡ M) in each iterative step, where M is the number of grid nodes. Finally, numerical results are carried out to verify the correction of the theoretical analysis, simulate the collision of two solitary waves, and show the utility of the fast numerical solution techniques.

  9. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa

    2017-12-01

    Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.

  10. Use of digital control theory state space formalism for feedback at SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himel, T.; Hendrickson, L.; Rouse, F.

    The algorithms used in the database-driven SLC fast-feedback system are based on the state space formalism of digital control theory. These are implemented as a set of matrix equations which use a Kalman filter to estimate a vector of states from a vector of measurements, and then apply a gain matrix to determine the actuator settings from the state vector. The matrices used in the calculation are derived offline using Linear Quadratic Gaussian minimization. For a given noise spectrum, this procedure minimizes the rms of the states (e.g., the position or energy of the beam). The offline program also allowsmore » simulation of the loop's response to arbitrary inputs, and calculates its frequency response. 3 refs., 3 figs.« less

  11. Existence conditions for unknown input functional observers

    NASA Astrophysics Data System (ADS)

    Fernando, T.; MacDougall, S.; Sreeram, V.; Trinh, H.

    2013-01-01

    This article presents necessary and sufficient conditions for the existence and design of an unknown input Functional observer. The existence of the observer can be verified by computing a nullspace of a known matrix and testing some matrix rank conditions. The existence of the observer does not require the satisfaction of the observer matching condition (i.e. Equation (16) in Hou and Muller 1992, 'Design of Observers for Linear Systems with Unknown Inputs', IEEE Transactions on Automatic Control, 37, 871-875), is not limited to estimating scalar functionals and allows for arbitrary pole placement. The proposed observer always exists when a state observer exists for the unknown input system, and furthermore, the proposed observer can exist even in some instances when an unknown input state observer does not exist.

  12. Oscillation of two-dimensional linear second-order differential systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, M.K.; Kaper, H.G.

    This article is concerned with the oscillatory behavior at infinity of the solution y: (a, infinity) ..-->.. R/sup 2/ of a system of two second-order differential equations, y''(t) + Q(t) y(t) = 0, t epsilon(a, infinity); Q is a continuous matrix-valued function on (a, infinity) whose values are real symmetric matrices of order 2. It is shown that the solution is oscillatory at infinity if the largest eigenvalue of the matrix integral/sub a//sup t/ Q(s) ds tends to infinity as t ..-->.. infinity. This proves a conjecture of D. Hinton and R.T. Lewis for the two-dimensional case. Furthermore, it ismore » shown that considerably weaker forms of the condition still suffice for oscillatory behavior at infinity. 7 references.« less

  13. The Existence of the Solution to One Kind of Algebraic Riccati Equation

    NASA Astrophysics Data System (ADS)

    Liu, Jianming

    2018-03-01

    The matrix equation ATX + XA + XRX + Q = O is called algebraic Riccati equation, which is very important in the fields of automatic control and other engineering applications. Many researchers have studied the solutions to various algebraic Riccati equations and most of them mainly applied the matrix methods, while few used the functional analysis theories. This paper mainly studies the existence of the solution to the following kind of algebraic Riccati equation from the functional view point: ATX + XA + XRX ‑λX + Q = O Here, X, A, R, Q ∈ n×n , Q is a symmetric matrix, and R is a positive or negative semi-definite matrix, λ is arbitrary constants. This paper uses functional approach such as fixed point theorem and contraction mapping thinking so as to provide two sufficient conditions for the solvability about this kind of Riccati equation and to arrive at some relevant conclusions.

  14. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  15. Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons.

    PubMed

    Yang, Xujun; Li, Chuandong; Song, Qiankun; Chen, Jiyang; Huang, Junjian

    2018-05-04

    This paper talks about the stability and synchronization problems of fractional-order quaternion-valued neural networks (FQVNNs) with linear threshold neurons. On account of the non-commutativity of quaternion multiplication resulting from Hamilton rules, the FQVNN models are separated into four real-valued neural network (RVNN) models. Consequently, the dynamic analysis of FQVNNs can be realized by investigating the real-valued ones. Based on the method of M-matrix, the existence and uniqueness of the equilibrium point of the FQVNNs are obtained without detailed proof. Afterwards, several sufficient criteria ensuring the global Mittag-Leffler stability for the unique equilibrium point of the FQVNNs are derived by applying the Lyapunov direct method, the theory of fractional differential equation, the theory of matrix eigenvalue, and some inequality techniques. In the meanwhile, global Mittag-Leffler synchronization for the drive-response models of the addressed FQVNNs are investigated explicitly. Finally, simulation examples are designed to verify the feasibility and availability of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Matrix Pseudospectral Method for (Visco)Elastic Tides Modeling of Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Zabranova, Eliska; Hanyk, Ladidslav; Matyska, Ctirad

    2010-05-01

    We deal with the equations and boundary conditions describing deformation and gravitational potential of prestressed spherically symmetric elastic bodies by decomposing governing equations into a series of boundary value problems (BVP) for ordinary differential equations (ODE) of the second order. In contrast to traditional Runge-Kutta integration techniques, highly accurate pseudospectral schemes are employed to directly discretize the BVP on Chebyshev grids and a set of linear algebraic equations with an almost block diagonal matrix is derived. As a consequence of keeping the governing ODEs of the second order instead of the usual first-order equations, the resulting algebraic system is half-sized but derivatives of the model parameters are required. Moreover, they can be easily evaluated for models, where structural parametres are piecewise polynomially dependent. Both accuracy and efficiency of the method are tested by evaluating the tidal Love numbers for the Earth's model PREM. Finally, we also derive complex Love numbers for models with the Maxwell viscoelastic rheology, where viscosity is a depth-dependent function. The method is applied to evaluation of the tidal Love numbers for models of Mars and Venus. The Love numbers of the two Martian models - the former optimized to cosmochemical data and the latter to the moment of inertia (Sohl and Spohn, 1997) - are h2=0.172 (0.212) and k2=0.093 (0.113). For Venus, the value of k2=0.295 (Konopliv and Yoder, 1996), obtained from the gravity-field analysis, is consistent with the results for our model with the liquid-core radius of 3110 km (Zábranová et al., 2009). Together with rapid evaluation of free oscillation periods by an analogous method, this combined matrix approach could by employed as an efficient numerical tool in structural studies of planetary bodies. REFERENCES Konopliv, A. S. and Yoder, C. F., 1996. Venusian k2 tidal Love number from Magellan and PVO tracking data, Geophys. Res. Lett., 23, 1857-1860. Sohl, F., and Spohn, T., 1997. The interior structure of Mars: Implications from SNC meteorites, J. Geophys. Res., 102, 1613-1635. Zabranova, E., Hanyk L. and Matyska, C.: Matrix Pseudospectral Method for Elastic Tides Modeling. In: Holota P. (Ed.): Mission and Passion: Science. A volume dedicated to Milan Bursa on the occasion of his 80th birthday. Published by the Czech National Committee of Geodesy and Geophysics. Prague, 2009, pp. 243-260.

  17. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals.

    PubMed

    Zuehlsdorff, T J; Hine, N D M; Payne, M C; Haynes, P D

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

  18. An innovations approach to decoupling of multibody dynamics and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1989-01-01

    The problem of hinged multibody dynamics is solved using an extension of the innovations approach of linear filtering and prediction theory to the problem of mechanical system modeling and control. This approach has been used quite effectively to diagonalize the equations for filtering and prediction for linear state space systems. It has similar advantages in the study of dynamics and control of multibody systems. The innovations approach advanced here consists of expressing the equations of motion in terms of two closely related processes: (1) the innovations process e, a sequence of moments, obtained from the applied moments T by means of a spatially recursive Kalman filter that goes from the tip of the manipulator to its base; (2) a residual process, a sequence of velocities, obtained from the joint-angle velocities by means of an outward smoothing operations. The innovations e and the applied moments T are related by means of the relationships e = (I - L)T and T = (I + K)e. The operation (I - L) is a causal lower triangular matrix which is generated by a spatially recursive Kalman filter and the corresponding discrete-step Riccati equation. Hence, the innovations and the applied moments can be obtained from each other by means of a causal operation which is itself casually invertible.

  19. Protection Relaying Scheme Based on Fault Reactance Operation Type

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi

    The theories of operation of existing relays are roughly divided into two types: one is the current differential types based on Kirchhoff's first law and the other is impedance types based on second law. We can apply the Kirchhoff's laws to strictly formulate fault phenomena, so the circuit equations are represented non linear simultaneous equations with variables fault point k and fault resistance Rf. This method has next two defect. 1) heavy computational burden for the iterative calculation on N-R method, 2) relay operator can not easily understand principle of numerical matrix operation. The new protection relay principles we proposed this paper focuses on the fact that the reactance component on fault point is almost zero. Two reactance Xf(S), Xf(R) on branch both ends are calculated by operation of solving linear equations. If signs of Xf(S) and Xf(R) are not same, it can be judged that the fault point exist in the branch. This reactance Xf corresponds to difference of branch reactance between actual fault point and imaginaly fault point. And so relay engineer can to understand fault location by concept of “distance". The simulation results using this new method indicates the highly precise estimation of fault locations compared with the inspected fault locations on operating transmission lines.

  20. A constrained regularization method for inverting data represented by linear algebraic or integral equations

    NASA Astrophysics Data System (ADS)

    Provencher, Stephen W.

    1982-09-01

    CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.

  1. A monolithic Lagrangian approach for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Ryzhakov, P. B.; Rossi, R.; Idelsohn, S. R.; Oñate, E.

    2010-11-01

    Current work presents a monolithic method for the solution of fluid-structure interaction problems involving flexible structures and free-surface flows. The technique presented is based upon the utilization of a Lagrangian description for both the fluid and the structure. A linear displacement-pressure interpolation pair is used for the fluid whereas the structure utilizes a standard displacement-based formulation. A slight fluid compressibility is assumed that allows to relate the mechanical pressure to the local volume variation. The method described features a global pressure condensation which in turn enables the definition of a purely displacement-based linear system of equations. A matrix-free technique is used for the solution of such linear system, leading to an efficient implementation. The result is a robust method which allows dealing with FSI problems involving arbitrary variations in the shape of the fluid domain. The method is completely free of spurious added-mass effects.

  2. Spatial variation analyses of Thematic Mapper data for the identification of linear features in agricultural landscapes

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.

    1984-01-01

    A need exists for digitized information pertaining to linear features such as roads, streams, water bodies and agricultural field boundaries as component parts of a data base. For many areas where this data may not yet exist or is in need of updating, these features may be extracted from remotely sensed digital data. This paper examines two approaches for identifying linear features, one utilizing raw data and the other classified data. Each approach uses a series of data enhancement procedures including derivation of standard deviation values, principal component analysis and filtering procedures using a high-pass window matrix. Just as certain bands better classify different land covers, so too do these bands exhibit high spectral contrast by which boundaries between land covers can be delineated. A few applications for this kind of data are briefly discussed, including its potential in a Universal Soil Loss Equation Model.

  3. Factorizing the factorization - a spectral-element solver for elliptic equations with linear operation count

    NASA Astrophysics Data System (ADS)

    Huismann, Immo; Stiller, Jörg; Fröhlich, Jochen

    2017-10-01

    The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.

  4. The proper weighting function for retrieving temperatures from satellite measured radiances

    NASA Technical Reports Server (NTRS)

    Arking, A.

    1976-01-01

    One class of methods for converting satellite measured radiances into atmospheric temperature profiles, involves a linearization of the radiative transfer equation: delta r = the sum of (W sub i) (delta T sub i) where (i=1...s) and where delta T sub i is the deviation of the temperature in layer i from that of a reference atmosphere, delta R is the difference in the radiance at satellite altitude from the corresponding radiance for the reference atmosphere, and W sub i is the discrete (or vector) form of the T-weighting (i.e., temperature weighting) function W(P), where P is pressure. The top layer of the atmosphere corresponds to i = 1, the bottom layer to i = s - 1, and i = s refers to the surface. Linearization in temperature (or some function of temperature) is at the heart of all linear or matrix methods. The weighting function that should be used is developed.

  5. State variable modeling of the integrated engine and aircraft dynamics

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Sprinţu, Iuliana

    2014-12-01

    This study explores the dynamic characteristics of the combined aircraft-engine system, based on the general theory of the state variables for linear and nonlinear systems, with details leading first to the separate formulation of the longitudinal and the lateral directional state variable models, followed by the merging of the aircraft and engine models into a single state variable model. The linearized equations were expressed in a matrix form and the engine dynamics was included in terms of variation of thrust following a deflection of the throttle. The linear model of the shaft dynamics for a two-spool jet engine was derived by extending the one-spool model. The results include the discussion of the thrust effect upon the aircraft response when the thrust force associated with the engine has a sizable moment arm with respect to the aircraft center of gravity for creating a compensating moment.

  6. Control logic to track the outputs of a command generator or randomly forced target

    NASA Technical Reports Server (NTRS)

    Trankle, T. L.; Bryson, A. E., Jr.

    1977-01-01

    A procedure is presented for synthesizing time-invariant control logic to cause the outputs of a linear plant to track the outputs of an unforced (or randomly forced) linear dynamic system. The control logic uses feed-forward of the reference system state variables and feedback of the plant state variables. The feed-forward gains are obtained from the solution of a linear algebraic matrix equation of the Liapunov type. The feedback gains are the usual regulator gains, determined to stabilize (or augment the stability of) the plant, possibly including integral control. The method is applied here to the design of control logic for a second-order servomechanism to follow a linearly increasing (ramp) signal, an unstable third-order system with two controls to track two separate ramp signals, and a sixth-order system with two controls to track a constant signal and an exponentially decreasing signal (aircraft landing-flare or glide-slope-capture with constant velocity).

  7. From integrability to conformal symmetry: Bosonic superconformal Toda theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo-Yu Hou; Liu Chao

    In this paper the authors study the conformal integrable models obtained from conformal reductions of WZNW theory associated with second order constraints. These models are called bosonic superconformal Toda models due to their conformal spectra and their resemblance to the usual Toda theories. From the reduction procedure they get the equations of motion and the linearized Lax equations in a generic Z gradation of the underlying Lie algebra. Then, in the special case of principal gradation, they derive the classical r matrix, fundamental Poisson relation, exchange algebra of chiral operators and find out the classical vertex operators. The result showsmore » that their model is very similar to the ordinary Toda theories in that one can obtain various conformal properties of the model from its integrability.« less

  8. Fast computation of an optimal controller for large-scale adaptive optics.

    PubMed

    Massioni, Paolo; Kulcsár, Caroline; Raynaud, Henri-François; Conan, Jean-Marc

    2011-11-01

    The linear quadratic Gaussian regulator provides the minimum-variance control solution for a linear time-invariant system. For adaptive optics (AO) applications, under the hypothesis of a deformable mirror with instantaneous response, such a controller boils down to a minimum-variance phase estimator (a Kalman filter) and a projection onto the mirror space. The Kalman filter gain can be computed by solving an algebraic Riccati matrix equation, whose computational complexity grows very quickly with the size of the telescope aperture. This "curse of dimensionality" makes the standard solvers for Riccati equations very slow in the case of extremely large telescopes. In this article, we propose a way of computing the Kalman gain for AO systems by means of an approximation that considers the turbulence phase screen as the cropped version of an infinite-size screen. We demonstrate the advantages of the methods for both off- and on-line computational time, and we evaluate its performance for classical AO as well as for wide-field tomographic AO with multiple natural guide stars. Simulation results are reported.

  9. Dynamics of f(R) gravity models and asymmetry of time

    NASA Astrophysics Data System (ADS)

    Verma, Murli Manohar; Yadav, Bal Krishna

    We solve the field equations of modified gravity for f(R) model in metric formalism. Further, we obtain the fixed points of the dynamical system in phase-space analysis of f(R) models, both with and without the effects of radiation. The stability of these points is studied against the perturbations in a smooth spatial background by applying the conditions on the eigenvalues of the matrix obtained in the linearized first-order differential equations. Following this, these fixed points are used for analyzing the dynamics of the system during the radiation, matter and acceleration-dominated phases of the universe. Certain linear and quadratic forms of f(R) are determined from the geometrical and physical considerations and the behavior of the scale factor is found for those forms. Further, we also determine the Hubble parameter H(t), the Ricci scalar R and the scale factor a(t) for these cosmic phases. We show the emergence of an asymmetry of time from the dynamics of the scalar field exclusively owing to the f(R) gravity in the Einstein frame that may lead to an arrow of time at a classical level.

  10. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    DOE PAGES

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; ...

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  11. Finite elements and the method of conjugate gradients on a concurrent processor

    NASA Technical Reports Server (NTRS)

    Lyzenga, G. A.; Raefsky, A.; Hager, G. H.

    1985-01-01

    An algorithm for the iterative solution of finite element problems on a concurrent processor is presented. The method of conjugate gradients is used to solve the system of matrix equations, which is distributed among the processors of a MIMD computer according to an element-based spatial decomposition. This algorithm is implemented in a two-dimensional elastostatics program on the Caltech Hypercube concurrent processor. The results of tests on up to 32 processors show nearly linear concurrent speedup, with efficiencies over 90 percent for sufficiently large problems.

  12. Finite elements and the method of conjugate gradients on a concurrent processor

    NASA Technical Reports Server (NTRS)

    Lyzenga, G. A.; Raefsky, A.; Hager, B. H.

    1984-01-01

    An algorithm for the iterative solution of finite element problems on a concurrent processor is presented. The method of conjugate gradients is used to solve the system of matrix equations, which is distributed among the processors of a MIMD computer according to an element-based spatial decomposition. This algorithm is implemented in a two-dimensional elastostatics program on the Caltech Hypercube concurrent processor. The results of tests on up to 32 processors show nearly linear concurrent speedup, with efficiencies over 90% for sufficiently large problems.

  13. Stress-intensity factors of r-cracks in fiber-reinforced composites under thermal and mechanical loading

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    1993-02-01

    The plane stress/plane strain problem of radial matrix cracking in fiber-reinforced composites, due to thermal mismatch and externally applied stress is solved numerically in the framework of linear elasticity, using Erdogan's integral equation technique. It is shown that, in order to obtain the results of the combined loading case, the solutions of purely thermal and purely mechanical loading can simply be superimposed. Stress-intensity factors are calculated for various lengths and distances of the crack from the interface for each of these loading conditions.

  14. Nonlinear properties of gated graphene in a strong electromagnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am; Moulopoulos, K., E-mail: cos@ucy.ac.cy

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  15. Corrigendum: New Form of Kane's Equations of Motion for Constrained Systems

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Bajodah, Abdulrahman H.; Hodges, Dewey H.; Chen, Ye-Hwa

    2007-01-01

    A correction to the previously published article "New Form of Kane's Equations of Motion for Constrained Systems" is presented. Misuse of the transformation matrix between time rates of change of the generalized coordinates and generalized speeds (sometimes called motion variables) resulted in a false conclusion concerning the symmetry of the generalized inertia matrix. The generalized inertia matrix (sometimes referred to as the mass matrix) is in fact symmetric and usually positive definite when one forms nonminimal Kane's equations for holonomic or simple nonholonomic systems, systems subject to nonlinear nonholonomic constraints, and holonomic or simple nonholonomic systems subject to impulsive constraints according to Refs. 1, 2, and 3, respectively. The mass matrix is of course symmetric when one forms minimal equations for holonomic or simple nonholonomic systems using Kane s method as set forth in Ref. 4.

  16. Computationally efficient modeling and simulation of large scale systems

    NASA Technical Reports Server (NTRS)

    Jain, Jitesh (Inventor); Cauley, Stephen F. (Inventor); Li, Hong (Inventor); Koh, Cheng-Kok (Inventor); Balakrishnan, Venkataramanan (Inventor)

    2010-01-01

    A method of simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof. A matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure are obtained where the element values for each matrix include inductance L and inverse capacitance P. An adjacency matrix A associated with the interconnect structure is obtained. Numerical integration is used to solve first and second equations, each including as a factor the product of the inverse matrix X.sup.1 and at least one other matrix, with first equation including X.sup.1Y, X.sup.1A, and X.sup.1P, and the second equation including X.sup.1A and X.sup.1P.

  17. A matrix equation solution by an optimization technique

    NASA Technical Reports Server (NTRS)

    Johnson, M. J.; Mittra, R.

    1972-01-01

    The computer solution of matrix equations is often difficult to accomplish due to an ill-conditioned matrix or high noise levels. Two methods of solution are compared for matrices of various degrees of ill-conditioning and for various noise levels in the right hand side vector. One method employs the usual Gaussian elimination. The other solves the equation by an optimization technique and employs a function minimization subroutine.

  18. FaCSI: A block parallel preconditioner for fluid-structure interaction in hemodynamics

    NASA Astrophysics Data System (ADS)

    Deparis, Simone; Forti, Davide; Grandperrin, Gwenol; Quarteroni, Alfio

    2016-12-01

    Modeling Fluid-Structure Interaction (FSI) in the vascular system is mandatory to reliably compute mechanical indicators in vessels undergoing large deformations. In order to cope with the computational complexity of the coupled 3D FSI problem after discretizations in space and time, a parallel solution is often mandatory. In this paper we propose a new block parallel preconditioner for the coupled linearized FSI system obtained after space and time discretization. We name it FaCSI to indicate that it exploits the Factorized form of the linearized FSI matrix, the use of static Condensation to formally eliminate the interface degrees of freedom of the fluid equations, and the use of a SIMPLE preconditioner for saddle-point problems. FaCSI is built upon a block Gauss-Seidel factorization of the FSI Jacobian matrix and it uses ad-hoc preconditioners for each physical component of the coupled problem, namely the fluid, the structure and the geometry. In the fluid subproblem, after operating static condensation of the interface fluid variables, we use a SIMPLE preconditioner on the reduced fluid matrix. Moreover, to efficiently deal with a large number of processes, FaCSI exploits efficient single field preconditioners, e.g., based on domain decomposition or the multigrid method. We measure the parallel performances of FaCSI on a benchmark cylindrical geometry and on a problem of physiological interest, namely the blood flow through a patient-specific femoropopliteal bypass. We analyze the dependence of the number of linear solver iterations on the cores count (scalability of the preconditioner) and on the mesh size (optimality).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sechin, Ivan, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru; ITEP, B. Cheremushkinskaya Str. 25, Moscow 117218; Zotov, Andrei, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru

    In this paper we propose versions of the associative Yang-Baxter equation and higher order R-matrix identities which can be applied to quantum dynamical R-matrices. As is known quantum non-dynamical R-matrices of Baxter-Belavin type satisfy this equation. Together with unitarity condition and skew-symmetry it provides the quantum Yang-Baxter equation and a set of identities useful for different applications in integrable systems. The dynamical R-matrices satisfy the Gervais-Neveu-Felder (or dynamical Yang-Baxter) equation. Relation between the dynamical and non-dynamical cases is described by the IRF (interaction-round-a-face)-Vertex transformation. An alternative approach to quantum (semi-)dynamical R-matrices and related quantum algebras was suggested by Arutyunov, Chekhov,more » and Frolov (ACF) in their study of the quantum Ruijsenaars-Schneider model. The purpose of this paper is twofold. First, we prove that the ACF elliptic R-matrix satisfies the associative Yang-Baxter equation with shifted spectral parameters. Second, we directly prove a simple relation of the IRF-Vertex type between the Baxter-Belavin and the ACF elliptic R-matrices predicted previously by Avan and Rollet. It provides the higher order R-matrix identities and an explanation of the obtained equations through those for non-dynamical R-matrices. As a by-product we also get an interpretation of the intertwining transformation as matrix extension of scalar theta function likewise R-matrix is interpreted as matrix extension of the Kronecker function. Relations to the Gervais-Neveu-Felder equation and identities for the Felder’s elliptic R-matrix are also discussed.« less

  20. Quantum spectral curve for ( q, t)-matrix model

    NASA Astrophysics Data System (ADS)

    Zenkevich, Yegor

    2018-02-01

    We derive quantum spectral curve equation for ( q, t)-matrix model, which turns out to be a certain difference equation. We show that in Nekrasov-Shatashvili limit this equation reproduces the Baxter TQ equation for the quantum XXZ spin chain. This chain is spectral dual to the Seiberg-Witten integrable system associated with the AGT dual gauge theory.

  1. Preconditioned conjugate residual methods for the solution of spectral equations

    NASA Technical Reports Server (NTRS)

    Wong, Y. S.; Zang, T. A.; Hussaini, M. Y.

    1986-01-01

    Conjugate residual methods for the solution of spectral equations are described. An inexact finite-difference operator is introduced as a preconditioner in the iterative procedures. Application of these techniques is limited to problems for which the symmetric part of the coefficient matrix is positive definite. Although the spectral equation is a very ill-conditioned and full matrix problem, the computational effort of the present iterative methods for solving such a system is comparable to that for the sparse matrix equations obtained from the application of either finite-difference or finite-element methods to the same problems. Numerical experiments are shown for a self-adjoint elliptic partial differential equation with Dirichlet boundary conditions, and comparison with other solution procedures for spectral equations is presented.

  2. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  3. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  4. Covariance expressions for eigenvalue and eigenvector problems

    NASA Astrophysics Data System (ADS)

    Liounis, Andrew J.

    There are a number of important scientific and engineering problems whose solutions take the form of an eigenvalue--eigenvector problem. Some notable examples include solutions to linear systems of ordinary differential equations, controllability of linear systems, finite element analysis, chemical kinetics, fitting ellipses to noisy data, and optimal estimation of attitude from unit vectors. In many of these problems, having knowledge of the eigenvalue and eigenvector Jacobians is either necessary or is nearly as important as having the solution itself. For instance, Jacobians are necessary to find the uncertainty in a computed eigenvalue or eigenvector estimate. This uncertainty, which is usually represented as a covariance matrix, has been well studied for problems similar to the eigenvalue and eigenvector problem, such as singular value decomposition. There has been substantially less research on the covariance of an optimal estimate originating from an eigenvalue-eigenvector problem. In this thesis we develop two general expressions for the Jacobians of eigenvalues and eigenvectors with respect to the elements of their parent matrix. The expressions developed make use of only the parent matrix and the eigenvalue and eigenvector pair under consideration. In addition, they are applicable to any general matrix (including complex valued matrices, eigenvalues, and eigenvectors) as long as the eigenvalues are simple. Alongside this, we develop expressions that determine the uncertainty in a vector estimate obtained from an eigenvalue-eigenvector problem given the uncertainty of the terms of the matrix. The Jacobian expressions developed are numerically validated with forward finite, differencing and the covariance expressions are validated using Monte Carlo analysis. Finally, the results from this work are used to determine covariance expressions for a variety of estimation problem examples and are also applied to the design of a dynamical system.

  5. Mixed finite-difference scheme for analysis of simply supported thick plates.

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1973-01-01

    A mixed finite-difference scheme is presented for the stress and free vibration analysis of simply supported nonhomogeneous and layered orthotropic thick plates. The analytical formulation is based on the linear, three-dimensional theory of orthotropic elasticity and a Fourier approach is used to reduce the governing equations to six first-order ordinary differential equations in the thickness coordinate. The governing equations possess a symmetric coefficient matrix and are free of derivatives of the elastic characteristics of the plate. In the finite difference discretization two interlacing grids are used for the different fundamental unknowns in such a way as to reduce both the local discretization error and the bandwidth of the resulting finite-difference field equations. Numerical studies are presented for the effects of reducing the interior and boundary discretization errors and of mesh refinement on the accuracy and convergence of solutions. It is shown that the proposed scheme, in addition to a number of other advantages, leads to highly accurate results, even when a small number of finite difference intervals is used.

  6. Modeling of thermal degradation kinetics of the C-glucosyl xanthone mangiferin in an aqueous model solution as a function of pH and temperature and protective effect of honeybush extract matrix.

    PubMed

    Beelders, Theresa; de Beer, Dalene; Kidd, Martin; Joubert, Elizabeth

    2018-01-01

    Mangiferin, a C-glucosyl xanthone, abundant in mango and honeybush, is increasingly targeted for its bioactive properties and thus to enhance functional properties of food. The thermal degradation kinetics of mangiferin at pH3, 4, 5, 6 and 7 were each modeled at five temperatures ranging between 60 and 140°C. First-order reaction models were fitted to the data using non-linear regression to determine the reaction rate constant at each pH-temperature combination. The reaction rate constant increased with increasing temperature and pH. Comparison of the reaction rate constants at 100°C revealed an exponential relationship between the reaction rate constant and pH. The data for each pH were also modeled with the Arrhenius equation using non-linear and linear regression to determine the activation energy and pre-exponential factor. Activation energies decreased slightly with increasing pH. Finally, a multi-linear model taking into account both temperature and pH was developed for mangiferin degradation. Sterilization (121°C for 4min) of honeybush extracts dissolved at pH4, 5 and 7 did not cause noticeable degradation of mangiferin, although the multi-linear model predicted 34% degradation at pH7. The extract matrix is postulated to exert a protective effect as changes in potential precursor content could not fully explain the stability of mangiferin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Lin, Lin; Shao, Meiyue

    We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate themore » density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.« less

  8. A new lumped-parameter approach to simulating flow processes in unsaturated dual-porosity media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.

    We have developed a new lumped-parameter dual-porosity approach to simulating unsaturated flow processes in fractured rocks. Fluid flow between the fracture network and the matrix blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of the Warren-Root equation, but unlike the Warren-Root equation, is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into a computational module, compatible with the TOUGH simulator, to serve as a source/sink term for fracture elements.more » The new approach achieves accuracy comparable to simulations in which the matrix blocks are discretized, but typically requires an order of magnitude less computational time.« less

  9. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  10. Fuzzy attitude control of solar sail via linear matrix inequalities

    NASA Astrophysics Data System (ADS)

    Baculi, Joshua; Ayoubi, Mohammad A.

    2017-09-01

    This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.

  11. Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics.

    PubMed

    De Michele, Carlo; Accatino, Francesco

    2014-01-01

    Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna-forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.

  12. Stability analysis of the phytoplankton effect model on changes in nitrogen concentration on integrated multi-trophic aquaculture systems

    NASA Astrophysics Data System (ADS)

    Widowati; Putro, S. P.; Silfiana

    2018-05-01

    Integrated Multi-Trophic Aquaculture (IMTA) is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The interaction between phytoplankton and nitrogen as waste in fish cultivation including ammonia, nitrite, and nitrate studied in the form of mathematical models. The form model is non-linear systems of differential equations with the four variables. The analytical analysis was used to study the dynamic behavior of this model. Local stability analysis is performed at the equilibrium point with the first step linearized model by using Taylor series, then determined the Jacobian matrix. If all eigenvalues have negative real parts, then the equilibrium of the system is locally asymptotic stable. Some numerical simulations were also demonstrated to verify our analytical result.

  13. PIFCGT: A PIF autopilot design program for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    This report documents the PIFCGT computer program. In FORTRAN, PIFCGT is a computer design aid for determing Proportional-Integral-Filter (PIF) control laws for aircraft autopilots implemented with a Command Generator Tracker (CGT). The program uses Linear-Quadratic-Regulator synthesis algorithms to determine feedback gains, and includes software to solve the feedforward matrix equation which is useful in determining the command generator tracker feedforward gains. The program accepts aerodynamic stability derivatives and computes the corresponding aerodynamic linear model. The nine autopilot modes that can be designed include four maneuver modes (ROLL SEL, PITCH SEL, HDG SEL, ALT SEL), four final approach models (APR GS, APR LOCI, APR LOCR, APR LOCP), and a BETA HOLD mode. The program has been compiled and executed on a CDC computer.

  14. Numerical solutions for Helmholtz equations using Bernoulli polynomials

    NASA Astrophysics Data System (ADS)

    Bicer, Kubra Erdem; Yalcinbas, Salih

    2017-07-01

    This paper reports a new numerical method based on Bernoulli polynomials for the solution of Helmholtz equations. The method uses matrix forms of Bernoulli polynomials and their derivatives by means of collocation points. Aim of this paper is to solve Helmholtz equations using this matrix relations.

  15. Efficient model reduction of parametrized systems by matrix discrete empirical interpolation

    NASA Astrophysics Data System (ADS)

    Negri, Federico; Manzoni, Andrea; Amsallem, David

    2015-12-01

    In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.

  16. Closed-form eigensolutions of nonviscously, nonproportionally damped systems based on continuous damping sensitivity

    NASA Astrophysics Data System (ADS)

    Lázaro, Mario

    2018-01-01

    In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.

  17. Semi-automatic sparse preconditioners for high-order finite element methods on non-uniform meshes

    NASA Astrophysics Data System (ADS)

    Austin, Travis M.; Brezina, Marian; Jamroz, Ben; Jhurani, Chetan; Manteuffel, Thomas A.; Ruge, John

    2012-05-01

    High-order finite elements often have a higher accuracy per degree of freedom than the classical low-order finite elements. However, in the context of implicit time-stepping methods, high-order finite elements present challenges to the construction of efficient simulations due to the high cost of inverting the denser finite element matrix. There are many cases where simulations are limited by the memory required to store the matrix and/or the algorithmic components of the linear solver. We are particularly interested in preconditioned Krylov methods for linear systems generated by discretization of elliptic partial differential equations with high-order finite elements. Using a preconditioner like Algebraic Multigrid can be costly in terms of memory due to the need to store matrix information at the various levels. We present a novel method for defining a preconditioner for systems generated by high-order finite elements that is based on a much sparser system than the original high-order finite element system. We investigate the performance for non-uniform meshes on a cube and a cubed sphere mesh, showing that the sparser preconditioner is more efficient and uses significantly less memory. Finally, we explore new methods to construct the sparse preconditioner and examine their effectiveness for non-uniform meshes. We compare results to a direct use of Algebraic Multigrid as a preconditioner and to a two-level additive Schwarz method.

  18. Efficient multitasking of Choleski matrix factorization on CRAY supercomputers

    NASA Technical Reports Server (NTRS)

    Overman, Andrea L.; Poole, Eugene L.

    1991-01-01

    A Choleski method is described and used to solve linear systems of equations that arise in large scale structural analysis. The method uses a novel variable-band storage scheme and is structured to exploit fast local memory caches while minimizing data access delays between main memory and vector registers. Several parallel implementations of this method are described for the CRAY-2 and CRAY Y-MP computers demonstrating the use of microtasking and autotasking directives. A portable parallel language, FORCE, is used for comparison with the microtasked and autotasked implementations. Results are presented comparing the matrix factorization times for three representative structural analysis problems from runs made in both dedicated and multi-user modes on both computers. CPU and wall clock timings are given for the parallel implementations and are compared to single processor timings of the same algorithm.

  19. A computer package for the design and eigenproblem solution of damped linear multidegree of freedom systems

    NASA Technical Reports Server (NTRS)

    Ahmadian, M.; Inman, D. J.

    1982-01-01

    Systems described by the matrix differental equation are considered. An interactive design routine is presented for positive definite mass, damping, and stiffness matrices. Designing is accomplished by adjusting the mass, damping, and stiffness matrices to obtain a desired oscillation behavior. The algorithm also features interactively modifying the physical structure of the system, obtaining the matrix structure and a number of other system properties. In case of a general system, where the M, C, and K matrices lack any special properties, a routine for the eigenproblem solution of the system is developed. The latent roots are obtained by computing the characteristic polynomial of the system and solving for its roots. The above routines are prepared in FORTRAN IV and prove to be usable for the machines with low core memory.

  20. Influence of stress interaction on the behavior of off-axis unidirectional composites

    NASA Technical Reports Server (NTRS)

    Pindera, M. J.; Herakovich, C. T.

    1980-01-01

    The yield function for plane stress of a transversely isotropic composite lamina consisting of stiff, linearly elastic fibers and a von Mises matrix material is formulated in terms of Hill's elastic stress concentration factors and a single plastic constraint parameter. The above are subsequently evaluated on the basis of observed average lamina and constituent response for the Avco 5505 boron epoxy system. It is shown that inclusion of residual stresses in the yield function together with the incorporation of Dubey and Hillier's concept of generalized yield stress for anisotropic media in the constitutive equation correctly predicts the trends observed in experiments. The incorporation of the strong axial stress interaction necessary to predict the correct trends in the shear response is directly traced to the high residual axial stresses in the matrix induced during fabrication of the composite.

  1. Efficient algorithms for computing a strong rank-revealing QR factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, M.; Eisenstat, S.C.

    1996-07-01

    Given an m x n matrix M with m {ge} n, it is shown that there exists a permutation {Pi} and an integer k such that the QR factorization given by equation (1) reveals the numerical rank of M: the k x k upper-triangular matrix A{sub k} is well conditioned, norm of (C{sub k}){sub 2} is small, and B{sub k} is linearly dependent on A{sub k} with coefficients bounded by a low-degree polynomial in n. Existing rank-revealing QR (RRQR) algorithms are related to such factorizations and two algorithms are presented for computing them. The new algorithms are nearly as efficientmore » as QR with column pivoting for most problems and take O(mn{sup 2}) floating-point operations in the worst case.« less

  2. Mathematical Analysis of Vehicle Delivery Scale of Bike-Sharing Rental Nodes

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; Liu, J.; Liu, L.

    2018-04-01

    Aiming at the lack of scientific and reasonable judgment of vehicles delivery scale and insufficient optimization of scheduling decision, based on features of the bike-sharing usage, this paper analyses the applicability of the discrete time and state of the Markov chain, and proves its properties to be irreducible, aperiodic and positive recurrent. Based on above analysis, the paper has reached to the conclusion that limit state (steady state) probability of the bike-sharing Markov chain only exists and is independent of the initial probability distribution. Then this paper analyses the difficulty of the transition probability matrix parameter statistics and the linear equations group solution in the traditional solving algorithm of the bike-sharing Markov chain. In order to improve the feasibility, this paper proposes a "virtual two-node vehicle scale solution" algorithm which considered the all the nodes beside the node to be solved as a virtual node, offered the transition probability matrix, steady state linear equations group and the computational methods related to the steady state scale, steady state arrival time and scheduling decision of the node to be solved. Finally, the paper evaluates the rationality and accuracy of the steady state probability of the proposed algorithm by comparing with the traditional algorithm. By solving the steady state scale of the nodes one by one, the proposed algorithm is proved to have strong feasibility because it lowers the level of computational difficulty and reduces the number of statistic, which will help the bike-sharing companies to optimize the scale and scheduling of nodes.

  3. A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method

    NASA Astrophysics Data System (ADS)

    Chen, Leilei; Zheng, Changjun; Chen, Haibo

    2013-09-01

    This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.

  4. Mean, covariance, and effective dimension of stochastic distributed delay dynamics

    NASA Astrophysics Data System (ADS)

    René, Alexandre; Longtin, André

    2017-11-01

    Dynamical models are often required to incorporate both delays and noise. However, the inherently infinite-dimensional nature of delay equations makes formal solutions to stochastic delay differential equations (SDDEs) challenging. Here, we present an approach, similar in spirit to the analysis of functional differential equations, but based on finite-dimensional matrix operators. This results in a method for obtaining both transient and stationary solutions that is directly amenable to computation, and applicable to first order differential systems with either discrete or distributed delays. With fewer assumptions on the system's parameters than other current solution methods and no need to be near a bifurcation, we decompose the solution to a linear SDDE with arbitrary distributed delays into natural modes, in effect the eigenfunctions of the differential operator, and show that relatively few modes can suffice to approximate the probability density of solutions. Thus, we are led to conclude that noise makes these SDDEs effectively low dimensional, which opens the possibility of practical definitions of probability densities over their solution space.

  5. Application of symbolic/numeric matrix solution techniques to the NASTRAN program

    NASA Technical Reports Server (NTRS)

    Buturla, E. M.; Burroughs, S. H.

    1977-01-01

    The matrix solving algorithm of any finite element algorithm is extremely important since solution of the matrix equations requires a large amount of elapse time due to null calculations and excessive input/output operations. An alternate method of solving the matrix equations is presented. A symbolic processing step followed by numeric solution yields the solution very rapidly and is especially useful for nonlinear problems.

  6. Modified Chebyshev Picard Iteration for Efficient Numerical Integration of Ordinary Differential Equations

    NASA Astrophysics Data System (ADS)

    Macomber, B.; Woollands, R. M.; Probe, A.; Younes, A.; Bai, X.; Junkins, J.

    2013-09-01

    Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories. Unlike other step-by-step differential equation solvers, the Runge-Kutta family of numerical integrators for example, MCPI approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to parallel computation. Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration; the integrations of the Picard iteration are then done analytically. Due to the orthogonality of the Chebyshev basis functions, the least square approximations are computed without matrix inversion; the coefficients are computed robustly from discrete inner products. As a consequence of discrete sampling and weighting adopted for the inner product definition, Runge phenomena errors are minimized near the ends of the approximation intervals. The MCPI algorithm utilizes a vector-matrix framework for computational efficiency. Additionally, all Chebyshev coefficients and integrand function evaluations are independent, meaning they can be simultaneously computed in parallel for further decreased computational cost. Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional order of magnitude is achievable in parallel architectures. This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide variety of ODE systems. Library users will not have to concern themselves with the underlying mathematics behind the MCPI method. Inputs are the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired time interval of integration, and the output is a time history of the system states over the interval of interest. Examples from the field of astrodynamics are presented to compare the output from the MCPI library to current state-of-practice numerical integration methods. It is shown that MCPI is capable of out-performing the state-of-practice in terms of computational cost and accuracy.

  7. Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation

    NASA Astrophysics Data System (ADS)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-04-01

    Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.

  8. Electronic transmission in non-linear potential profile of GaAs/AlxGa1-xAs biased quantum well structure

    NASA Astrophysics Data System (ADS)

    Meghoufel, F. Z.; Bentata, S.; Terkhi, S.; Bendahma, F.; Cherid, S.

    2013-05-01

    We study the effect of the nonlinearity on electrons transmission properties in a double barriers structure GaAs/AlxGa1-xAs superlattices. The nonlinearity is introduced as an effective potential in the Schrödinger equation and translates the electronic Colombian repulsion. We have used the transfer matrix formalism and the plane wave functions approximation to solve numerically the equation and calculate the electronic transmission coefficient. We have shown the occurrence of two allowed states within the same well instead of a single, translating the presence of two resonant states at two different energies. The first allowed state intensity strongly decreases with increasing the nonlinear parameter, whereas the second one called the degeneracy state increases. Both the two states evolve towards higher resonances energies.

  9. Exponential Boundary Observers for Pressurized Water Pipe

    NASA Astrophysics Data System (ADS)

    Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel

    2015-11-01

    This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.

  10. An efficient formulation and implementation of the analytic energy gradient method to the single and double excitation coupled-cluster wave function - Application to Cl2O2

    NASA Technical Reports Server (NTRS)

    Rendell, Alistair P.; Lee, Timothy J.

    1991-01-01

    The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.

  11. The second hyperpolarizability of systems described by the space-fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Nottage, Onassis; Kounta, Moussa

    2018-01-01

    The static second hyperpolarizability is derived from the space-fractional Schrödinger equation in the particle-centric view. The Thomas-Reiche-Kuhn sum rule matrix elements and the three-level ansatz determines the maximum second hyperpolarizability for a space-fractional quantum system. The total oscillator strength is shown to decrease as the space-fractional parameter α decreases, which reduces the optical response of a quantum system in the presence of an external field. This damped response is caused by the wavefunction dependent position and momentum commutation relation. Although the maximum response is damped, we show that the one-dimensional quantum harmonic oscillator is no longer a linear system for α ≠ 1, where the second hyperpolarizability becomes negative before ultimately damping to zero at the lower fractional limit of α → 1 / 2.

  12. A Performance Comparison of the Parallel Preconditioners for Iterative Methods for Large Sparse Linear Systems Arising from Partial Differential Equations on Structured Grids

    NASA Astrophysics Data System (ADS)

    Ma, Sangback

    In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The results show that in general ILU(0) in the Multi-Color ordering ahd ILU(0) in the Wavefront ordering outperform the other methods but for symmetric and nearly symmetric 5-point matrices Multi-Color Block SOR gives the best performance, except for a few cases with a small number of processors.

  13. Minimal parameter solution of the orthogonal matrix differential equation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1990-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  14. Minimal parameter solution of the orthogonal matrix differential equation

    NASA Technical Reports Server (NTRS)

    Baritzhack, Itzhack Y.; Markley, F. Landis

    1988-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed employing the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  15. On supporting students' understanding of solving linear equation by using flowchart

    NASA Astrophysics Data System (ADS)

    Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi

    2017-05-01

    The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.

  16. Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

    PubMed Central

    Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce

    2009-01-01

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods. PMID:18567005

  17. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the dependent variables versus time. (Lantz-PTT)

  18. Key-Generation Algorithms for Linear Piece In Hand Matrix Method

    NASA Astrophysics Data System (ADS)

    Tadaki, Kohtaro; Tsujii, Shigeo

    The linear Piece In Hand (PH, for short) matrix method with random variables was proposed in our former work. It is a general prescription which can be applicable to any type of multivariate public-key cryptosystems for the purpose of enhancing their security. Actually, we showed, in an experimental manner, that the linear PH matrix method with random variables can certainly enhance the security of HFE against the Gröbner basis attack, where HFE is one of the major variants of multivariate public-key cryptosystems. In 1998 Patarin, Goubin, and Courtois introduced the plus method as a general prescription which aims to enhance the security of any given MPKC, just like the linear PH matrix method with random variables. In this paper we prove the equivalence between the plus method and the primitive linear PH matrix method, which is introduced by our previous work to explain the notion of the PH matrix method in general in an illustrative manner and not for a practical use to enhance the security of any given MPKC. Based on this equivalence, we show that the linear PH matrix method with random variables has the substantial advantage over the plus method with respect to the security enhancement. In the linear PH matrix method with random variables, the three matrices, including the PH matrix, play a central role in the secret-key and public-key. In this paper, we clarify how to generate these matrices and thus present two probabilistic polynomial-time algorithms to generate these matrices. In particular, the second one has a concise form, and is obtained as a byproduct of the proof of the equivalence between the plus method and the primitive linear PH matrix method.

  19. Unpacking the Complexity of Linear Equations from a Cognitive Load Theory Perspective

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Phan, Huy P.

    2016-01-01

    The degree of element interactivity determines the complexity and therefore the intrinsic cognitive load of linear equations. The unpacking of linear equations at the level of operational and relational lines allows the classification of linear equations in a hierarchical level of complexity. Mapping similar operational and relational lines across…

  20. Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation

    NASA Astrophysics Data System (ADS)

    Nayak, M. K.; Shaw, Sachin; Pandey, V. S.; Chamkha, Ali J.

    2018-02-01

    In the present study, the main concern is to investigate the magnetohydrodynamic nanofluid flow subject to porous matrix and convective heating past a permeable linear stretching sheet. In addition, the influence of velocity slip, viscous dissipation, Joule heating and non-linear thermal radiation are considered. A new micro-convection model known as the Patel model is implemented for considerable enhancement of the thermal conductivity and hence, the heat transfer capability of nanofluids. Moreover, a convective heat transfer model is introduced where the bottom surface of the sheet gets heated due to a convection mechanism from a hot fluid of particular temperature. The numerical results of the transformed governing differential equations have been obtained by using fourth-order Runge-Kutta method along with shooting approach and secant method is used for better approximation. In the present analysis, base fluids such as water and Ethylene glycol and Copper, Silver and Aluminum oxide nanoparticles are considered. Results of the present investigation show that inclusion of porous matrix contributes to slow down the fluid velocity and diminution of wall shear stress (axial as well as transverse). Drag force due to magnetic field strength, velocity slip and imposed fluid suction impede the fluid motion and upsurge the heat transfer rate from the surface. In addition, rise in viscous dissipation widens the thermal boundary layer.

  1. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  2. Schwarz maps of algebraic linear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  3. Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Kaporin, I. E.

    2012-02-01

    In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.

  4. Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Tveit, Svenn

    2018-05-01

    We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.

  5. Investigation on Constrained Matrix Factorization for Hyperspectral Image Analysis

    DTIC Science & Technology

    2005-07-25

    analysis. Keywords: matrix factorization; nonnegative matrix factorization; linear mixture model ; unsupervised linear unmixing; hyperspectral imagery...spatial resolution permits different materials present in the area covered by a single pixel. The linear mixture model says that a pixel reflectance in...in r. In the linear mixture model , r is considered as the linear mixture of m1, m2, …, mP as nMαr += (1) where n is included to account for

  6. Quasi-stationary states of an electron with linearly dependent effective mass in an open nanostructure within transmission coefficient and S-matrix methods

    NASA Astrophysics Data System (ADS)

    Seti, Julia; Tkach, Mykola; Voitsekhivska, Oxana

    2018-03-01

    The exact solutions of the Schrödinger equation for a double-barrier open semiconductor plane nanostructure are obtained by using two different approaches, within the model of the rectangular potential profile and the continuous position-dependent effective mass of the electron. The transmission coefficient and scattering matrix are calculated for the double-barrier nanostructure. The resonance energies and resonance widths of the electron quasi-stationary states are analyzed as a function of the size of the near-interface region between wells and barriers, where the effective mass linearly depends on the coordinate. It is established that, in both methods, the increasing size affects in a qualitatively similar way the spectral characteristics of the states, shifting the resonance energies into the low- or high-energy region and increasing the resonance widths. It is shown that the relative difference of resonance energies and widths of a certain state, obtained in the model of position-dependent effective mass and in the widespread abrupt model in physically correct range of near-interface sizes, does not exceed 0.5% and 5%, respectively, independently of the other geometrical characteristics of the structure.

  7. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.

    PubMed

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-28

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  8. Porosity Defect Remodeling and Tensile Analysis of Cast Steel

    PubMed Central

    Sun, Linfeng; Liao, Ridong; Lu, Wei; Fu, Sibo

    2016-01-01

    Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain. PMID:28787919

  9. New algorithms for field-theoretic block copolymer simulations: Progress on using adaptive-mesh refinement and sparse matrix solvers in SCFT calculations

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Jamroz, Ben; Crockett, Robert; Pletzer, Alexander

    2012-02-01

    Self-consistent field theory (SCFT) for dense polymer melts has been highly successful in describing complex morphologies in block copolymers. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. The modified diffusion equations that arise as a consequence of the coarse-graining procedure in the SCF theory can be efficiently solved with a pseudo-spectral (PS) method that uses fast-Fourier transforms on uniform Cartesian grids. However, PS methods can be difficult to apply in many block copolymer SCFT simulations (eg. confinement, interface adsorption) in which small spatial regions might require finer resolution than most of the simulation grid. Progress on using new solver algorithms to address these problems will be presented. The Tech-X Chompst project aims at marrying the best of adaptive mesh refinement with linear matrix solver algorithms. The Tech-X code PolySwift++ is an SCFT simulation platform that leverages ongoing development in coupling Chombo, a package for solving PDEs via block-structured AMR calculations and embedded boundaries, with PETSc, a toolkit that includes a large assortment of sparse linear solvers.

  10. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: influence of matrix porosity, matrix permeability, and fracture coating minerals.

    PubMed

    Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A

    2007-08-15

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  11. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals

    NASA Astrophysics Data System (ADS)

    Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.

    2007-08-01

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  12. Angle-domain inverse scattering migration/inversion in isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  13. Release from or through a wax matrix system. I. Basic release properties of the wax matrix system.

    PubMed

    Yonezawa, Y; Ishida, S; Sunada, H

    2001-11-01

    Release properties from a wax matrix tablet was examined. To obtain basic release properties, the wax matrix tablet was prepared from a physical mixture of drug and wax powder (hydrogenated caster oil) at a fixed mixing ratio. Properties of release from the single flat-faced surface or curved side surface of the wax matrix tablet were examined. The applicability of the square-root time law and of Higuchi equations was confirmed. The release rate constant obtained as g/min(1/2) changed with the release direction. However, the release rate constant obtained as g/cm2 x min(1/2) was almost the same. Hence it was suggested that the release property was almost the same and the wax matrix structure was uniform independent of release surface or direction at a fixed mixing ratio. However, these equations could not explain the entire release process. The applicability of a semilogarithmic equation was not as good compared with the square-root time law or Higuchi equation. However, it was revealed that the semilogarithmic equation was available to simulate the entire release process, even though the fit was somewhat poor. Hence it was suggested that the semilogarithmic equation was sufficient to describe the release process. The release rate constant was varied with release direction. However, these release rate constants were expressed by a function of the effective surface area and initial amount, independent of the release direction.

  14. Use of residence time distribution for evaluation of gaseous pollutant volatilization from stored swine manure.

    PubMed

    Liao, C M

    1997-01-01

    A quantification analysis for evaluation of gaseous pollutant volatilization as a result of mass transfer from stored swine manure is presented from the viewpoint of residence time distribution. The method is based on evaluating the moments of concentration vs. time curves of both air and gaseous pollutants. The concept of moments of concentration histories is applicable to characterize the dispersal of the supplied air or gaseous pollutant in a ventilated system. The mean age or residence time of airflow can be calculated from an inverse system state matrix [B]-1 of a linear dynamic equation describing the dynamics of gaseous pollutant in a ventilated airspace. The sum elements in an arbitrary row i in matrix [B]-1 is equal to the mean age of airflow in airspace i. The mean age of gaseous pollutant in airspace i can be obtained from the area under the concentration profile divided by the equilibrium concentration reading in that space caused by gaseous pollutant sources. Matrix [B]-1 can also be represented in terms of the inverse local airflow rate matrix ([W]-1), transition probability matrix ([P]), and air volume matrix ([V]) as, [B]-1 = [W]-1[P][V]. Finally the mean age of airflow in a ventilated airspace can be interpreted by the physical characteristics of matrices [W] and [P]. The practical use of the concepts is also applied in a typical pig unit.

  15. Acta Aeronautica et Astronautica Sinica (Selected Articles),

    DTIC Science & Technology

    1986-05-09

    Let us assume the third vibration mode. Then, the matrix form of the coupled linear equations is obtained as follows: 30 L. -i .- *’ v j h 1. - Y I - u5...F When higher vibration modes are considered, the same m~ethod can be used. From eqn. (31,we have the transfer functions: A c,37 + Cse+ C,s+ C, $+ C’s... vibration modes of the gyro at point 1 with respect to x. Then, transfer function, .WO (s) is s)=W, 1( I )W, 1 ( s ) 2( 1 )W,( S T- ( I s ) l, 3 7+1,s+1 1 ls

  16. Cast Reinforced Metal Composites: Proceedings of the International Symposium on Advances in Cast Reinforced Metal Composites Held in Conjunction with the 1988 World Materials Congress, Chicago, Illinois, USA, 24-30 September 1988

    DTIC Science & Technology

    1988-01-01

    to l0- mm of Hg and the boundaries, and the absorption of vibrational deflection was of the order of 10-6. energy during the microplastic deformation...matrix inter- 377 face due to void formation or microplastic de- This plot confirms that for all composite sys- formation than within the mica itself...dispersed Al alloys correlates with of energy in microplastic deformation of mica wt.% graphite by the following linear equation itself (Fig. 4

  17. Generalizations of Tikhonov's regularized method of least squares to non-Euclidean vector norms

    NASA Astrophysics Data System (ADS)

    Volkov, V. V.; Erokhin, V. I.; Kakaev, V. V.; Onufrei, A. Yu.

    2017-09-01

    Tikhonov's regularized method of least squares and its generalizations to non-Euclidean norms, including polyhedral, are considered. The regularized method of least squares is reduced to mathematical programming problems obtained by "instrumental" generalizations of the Tikhonov lemma on the minimal (in a certain norm) solution of a system of linear algebraic equations with respect to an unknown matrix. Further studies are needed for problems concerning the development of methods and algorithms for solving reduced mathematical programming problems in which the objective functions and admissible domains are constructed using polyhedral vector norms.

  18. Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure

    NASA Astrophysics Data System (ADS)

    Ghahraman, Solookinejad; M, Panahi; E, Ahmadi; Seyyed, Hossein Asadpour

    2016-07-01

    In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical approach, the third-order susceptibility of probe light is explored numerically. It is realized that the enhanced Kerr nonlinearity with zero linear absorption can be provided by selecting the appropriate quantities of controllable parameters, such as Rabi frequency and elliptical parameter of elliptical polarized coupling field. Our results may be useful applications in future all-optical system devices in nanostructures.

  19. An algorithm for the solution of dynamic linear programs

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1989-01-01

    The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation scheme.

  20. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    NASA Astrophysics Data System (ADS)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

Top