Sample records for linear mixed model

  1. Analysis of baseline, average, and longitudinally measured blood pressure data using linear mixed models.

    PubMed

    Hossain, Ahmed; Beyene, Joseph

    2014-01-01

    This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a) linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures outcome, and (c) random intercept linear mixed models with longitudinal measurements. In the linear mixed models, covariates are included as fixed effects, whereas relatedness among individuals is incorporated as the variance-covariance structure of the random effect for the individuals. The overall strategy of applying linear mixed models decorrelate the data is based on Aulchenko et al.'s GRAMMAR. By analyzing systolic and diastolic blood pressure, which are used separately as outcomes, we compare the 3 methods in identifying a known genetic variant that is associated with blood pressure from chromosome 3 and simulated phenotype data. We also analyze the real phenotype data to illustrate the methods. We conclude that the linear mixed model with longitudinal measurements of diastolic blood pressure is the most accurate at identifying the known single-nucleotide polymorphism among the methods, but linear mixed models with baseline measures perform best with systolic blood pressure as the outcome.

  2. Estimation of the linear mixed integrated Ornstein–Uhlenbeck model

    PubMed Central

    Hughes, Rachael A.; Kenward, Michael G.; Sterne, Jonathan A. C.; Tilling, Kate

    2017-01-01

    ABSTRACT The linear mixed model with an added integrated Ornstein–Uhlenbeck (IOU) process (linear mixed IOU model) allows for serial correlation and estimation of the degree of derivative tracking. It is rarely used, partly due to the lack of available software. We implemented the linear mixed IOU model in Stata and using simulations we assessed the feasibility of fitting the model by restricted maximum likelihood when applied to balanced and unbalanced data. We compared different (1) optimization algorithms, (2) parameterizations of the IOU process, (3) data structures and (4) random-effects structures. Fitting the model was practical and feasible when applied to large and moderately sized balanced datasets (20,000 and 500 observations), and large unbalanced datasets with (non-informative) dropout and intermittent missingness. Analysis of a real dataset showed that the linear mixed IOU model was a better fit to the data than the standard linear mixed model (i.e. independent within-subject errors with constant variance). PMID:28515536

  3. Item Purification in Differential Item Functioning Using Generalized Linear Mixed Models

    ERIC Educational Resources Information Center

    Liu, Qian

    2011-01-01

    For this dissertation, four item purification procedures were implemented onto the generalized linear mixed model for differential item functioning (DIF) analysis, and the performance of these item purification procedures was investigated through a series of simulations. Among the four procedures, forward and generalized linear mixed model (GLMM)…

  4. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

    ERIC Educational Resources Information Center

    Ker, H. W.

    2014-01-01

    Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

  5. An R2 statistic for fixed effects in the linear mixed model.

    PubMed

    Edwards, Lloyd J; Muller, Keith E; Wolfinger, Russell D; Qaqish, Bahjat F; Schabenberger, Oliver

    2008-12-20

    Statisticians most often use the linear mixed model to analyze Gaussian longitudinal data. The value and familiarity of the R(2) statistic in the linear univariate model naturally creates great interest in extending it to the linear mixed model. We define and describe how to compute a model R(2) statistic for the linear mixed model by using only a single model. The proposed R(2) statistic measures multivariate association between the repeated outcomes and the fixed effects in the linear mixed model. The R(2) statistic arises as a 1-1 function of an appropriate F statistic for testing all fixed effects (except typically the intercept) in a full model. The statistic compares the full model with a null model with all fixed effects deleted (except typically the intercept) while retaining exactly the same covariance structure. Furthermore, the R(2) statistic leads immediately to a natural definition of a partial R(2) statistic. A mixed model in which ethnicity gives a very small p-value as a longitudinal predictor of blood pressure (BP) compellingly illustrates the value of the statistic. In sharp contrast to the extreme p-value, a very small R(2) , a measure of statistical and scientific importance, indicates that ethnicity has an almost negligible association with the repeated BP outcomes for the study.

  6. Exploring compositional variations on the surface of Mars applying mixing modeling to a telescopic spectral image

    NASA Technical Reports Server (NTRS)

    Merenyi, E.; Miller, J. S.; Singer, R. B.

    1992-01-01

    The linear mixing model approach was successfully applied to data sets of various natures. In these sets, the measured radiance could be assumed to be a linear combination of radiance contributions. The present work is an attempt to analyze a spectral image of Mars with linear mixing modeling.

  7. Convex set and linear mixing model

    NASA Technical Reports Server (NTRS)

    Xu, P.; Greeley, R.

    1993-01-01

    A major goal of optical remote sensing is to determine surface compositions of the earth and other planetary objects. For assessment of composition, single pixels in multi-spectral images usually record a mixture of the signals from various materials within the corresponding surface area. In this report, we introduce a closed and bounded convex set as a mathematical model for linear mixing. This model has a clear geometric implication because the closed and bounded convex set is a natural generalization of a triangle in n-space. The endmembers are extreme points of the convex set. Every point in the convex closure of the endmembers is a linear mixture of those endmembers, which is exactly how linear mixing is defined. With this model, some general criteria for selecting endmembers could be described. This model can lead to a better understanding of linear mixing models.

  8. Statistical Methodology for the Analysis of Repeated Duration Data in Behavioral Studies.

    PubMed

    Letué, Frédérique; Martinez, Marie-José; Samson, Adeline; Vilain, Anne; Vilain, Coriandre

    2018-03-15

    Repeated duration data are frequently used in behavioral studies. Classical linear or log-linear mixed models are often inadequate to analyze such data, because they usually consist of nonnegative and skew-distributed variables. Therefore, we recommend use of a statistical methodology specific to duration data. We propose a methodology based on Cox mixed models and written under the R language. This semiparametric model is indeed flexible enough to fit duration data. To compare log-linear and Cox mixed models in terms of goodness-of-fit on real data sets, we also provide a procedure based on simulations and quantile-quantile plots. We present two examples from a data set of speech and gesture interactions, which illustrate the limitations of linear and log-linear mixed models, as compared to Cox models. The linear models are not validated on our data, whereas Cox models are. Moreover, in the second example, the Cox model exhibits a significant effect that the linear model does not. We provide methods to select the best-fitting models for repeated duration data and to compare statistical methodologies. In this study, we show that Cox models are best suited to the analysis of our data set.

  9. Solving a mixture of many random linear equations by tensor decomposition and alternating minimization.

    DOT National Transportation Integrated Search

    2016-09-01

    We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...

  10. Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models.

    PubMed

    Wilson, Machelle D; Sethi, Sunjay; Lein, Pamela J; Keil, Kimberly P

    2017-03-01

    The Sholl technique is widely used to quantify dendritic morphology. Data from such studies, which typically sample multiple neurons per animal, are often analyzed using simple linear models. However, simple linear models fail to account for intra-class correlation that occurs with clustered data, which can lead to faulty inferences. Mixed effects models account for intra-class correlation that occurs with clustered data; thus, these models more accurately estimate the standard deviation of the parameter estimate, which produces more accurate p-values. While mixed models are not new, their use in neuroscience has lagged behind their use in other disciplines. A review of the published literature illustrates common mistakes in analyses of Sholl data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus of male and female mice using both simple linear and mixed effects models demonstrates that the p-values and standard deviations obtained using the simple linear models are biased downwards and lead to erroneous rejection of the null hypothesis in some analyses. The mixed effects approach more accurately models the true variability in the data set, which leads to correct inference. Mixed effects models avoid faulty inference in Sholl analysis of data sampled from multiple neurons per animal by accounting for intra-class correlation. Given the widespread practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to apply mixed effects models more widely. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    PubMed

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  12. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  13. A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence.

    PubMed

    Nikoloulopoulos, Aristidis K

    2017-10-01

    A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality.

  14. Model Selection with the Linear Mixed Model for Longitudinal Data

    ERIC Educational Resources Information Center

    Ryoo, Ji Hoon

    2011-01-01

    Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…

  15. Modeling containment of large wildfires using generalized linear mixed-model analysis

    Treesearch

    Mark Finney; Isaac C. Grenfell; Charles W. McHugh

    2009-01-01

    Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...

  16. MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)

    EPA Science Inventory

    We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...

  17. A multiphase non-linear mixed effects model: An application to spirometry after lung transplantation.

    PubMed

    Rajeswaran, Jeevanantham; Blackstone, Eugene H

    2017-02-01

    In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time-varying coefficients.

  18. Log-normal frailty models fitted as Poisson generalized linear mixed models.

    PubMed

    Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver

    2016-12-01

    The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Investigating the linearity assumption between lumber grade mix and yield using design of experiments (DOE)

    Treesearch

    Xiaoqiu Zuo; Urs Buehlmann; R. Edward Thomas

    2004-01-01

    Solving the least-cost lumber grade mix problem allows dimension mills to minimize the cost of dimension part production. This problem, due to its economic importance, has attracted much attention from researchers and industry in the past. Most solutions used linear programming models and assumed that a simple linear relationship existed between lumber grade mix and...

  20. A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation

    PubMed Central

    Rajeswaran, Jeevanantham; Blackstone, Eugene H.

    2014-01-01

    In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830

  1. Functional Mixed Effects Model for Small Area Estimation.

    PubMed

    Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou

    2016-09-01

    Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.

  2. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    PubMed

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  3. Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: A case study from the Marennes-Oleron Estuary, France

    EPA Science Inventory

    We investigated the use of output from Bayesian stable isotope mixing models as constraints for a linear inverse food web model of a temperate intertidal seagrass system in the Marennes-Oléron Bay, France. Linear inverse modeling (LIM) is a technique that estimates a complete net...

  4. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  5. A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.

    2012-01-01

    A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…

  6. Multivariate mixed linear model analysis of longitudinal data: an information-rich statistical technique for analyzing disease resistance data

    USDA-ARS?s Scientific Manuscript database

    The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...

  7. Modelling lactation curve for milk fat to protein ratio in Iranian buffaloes (Bubalus bubalis) using non-linear mixed models.

    PubMed

    Hossein-Zadeh, Navid Ghavi

    2016-08-01

    The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.

  8. Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.

    PubMed

    Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C

    2014-12-01

    D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.

  9. A D-vine copula-based model for repeated measurements extending linear mixed models with homogeneous correlation structure.

    PubMed

    Killiches, Matthias; Czado, Claudia

    2018-03-22

    We propose a model for unbalanced longitudinal data, where the univariate margins can be selected arbitrarily and the dependence structure is described with the help of a D-vine copula. We show that our approach is an extremely flexible extension of the widely used linear mixed model if the correlation is homogeneous over the considered individuals. As an alternative to joint maximum-likelihood a sequential estimation approach for the D-vine copula is provided and validated in a simulation study. The model can handle missing values without being forced to discard data. Since conditional distributions are known analytically, we easily make predictions for future events. For model selection, we adjust the Bayesian information criterion to our situation. In an application to heart surgery data our model performs clearly better than competing linear mixed models. © 2018, The International Biometric Society.

  10. Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models

    ERIC Educational Resources Information Center

    Wagler, Amy E.

    2014-01-01

    Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…

  11. Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth

    ERIC Educational Resources Information Center

    Jeon, Minjeong

    2012-01-01

    Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…

  12. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

    PubMed

    Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

    2017-02-01

    This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  <  0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  <  0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers.

  13. Longitudinal mathematics development of students with learning disabilities and students without disabilities: a comparison of linear, quadratic, and piecewise linear mixed effects models.

    PubMed

    Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz

    2015-04-01

    Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  14. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model

    Treesearch

    Fabian C.C. Uzoh; William W. Oliver

    2008-01-01

    A diameter increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in the United States using a multilevel linear mixed model. Stochastic variability is broken down among period, locale, plot, tree and within-tree components. Covariates acting at tree and stand level, as breast height diameter, density, site index...

  15. Extended Mixed-Efects Item Response Models with the MH-RM Algorithm

    ERIC Educational Resources Information Center

    Chalmers, R. Philip

    2015-01-01

    A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…

  16. Partially linear mixed-effects joint models for skewed and missing longitudinal competing risks outcomes.

    PubMed

    Lu, Tao; Lu, Minggen; Wang, Min; Zhang, Jun; Dong, Guang-Hui; Xu, Yong

    2017-12-18

    Longitudinal competing risks data frequently arise in clinical studies. Skewness and missingness are commonly observed for these data in practice. However, most joint models do not account for these data features. In this article, we propose partially linear mixed-effects joint models to analyze skew longitudinal competing risks data with missingness. In particular, to account for skewness, we replace the commonly assumed symmetric distributions by asymmetric distribution for model errors. To deal with missingness, we employ an informative missing data model. The joint models that couple the partially linear mixed-effects model for the longitudinal process, the cause-specific proportional hazard model for competing risks process and missing data process are developed. To estimate the parameters in the joint models, we propose a fully Bayesian approach based on the joint likelihood. To illustrate the proposed model and method, we implement them to an AIDS clinical study. Some interesting findings are reported. We also conduct simulation studies to validate the proposed method.

  17. A generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Tian, Wenli; Cao, Chengxuan

    2017-03-01

    A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.

  18. [Primary branch size of Pinus koraiensis plantation: a prediction based on linear mixed effect model].

    PubMed

    Dong, Ling-Bo; Liu, Zhao-Gang; Li, Feng-Ri; Jiang, Li-Chun

    2013-09-01

    By using the branch analysis data of 955 standard branches from 60 sampled trees in 12 sampling plots of Pinus koraiensis plantation in Mengjiagang Forest Farm in Heilongjiang Province of Northeast China, and based on the linear mixed-effect model theory and methods, the models for predicting branch variables, including primary branch diameter, length, and angle, were developed. Considering tree effect, the MIXED module of SAS software was used to fit the prediction models. The results indicated that the fitting precision of the models could be improved by choosing appropriate random-effect parameters and variance-covariance structure. Then, the correlation structures including complex symmetry structure (CS), first-order autoregressive structure [AR(1)], and first-order autoregressive and moving average structure [ARMA(1,1)] were added to the optimal branch size mixed-effect model. The AR(1) improved the fitting precision of branch diameter and length mixed-effect model significantly, but all the three structures didn't improve the precision of branch angle mixed-effect model. In order to describe the heteroscedasticity during building mixed-effect model, the CF1 and CF2 functions were added to the branch mixed-effect model. CF1 function improved the fitting effect of branch angle mixed model significantly, whereas CF2 function improved the fitting effect of branch diameter and length mixed model significantly. Model validation confirmed that the mixed-effect model could improve the precision of prediction, as compare to the traditional regression model for the branch size prediction of Pinus koraiensis plantation.

  19. Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees.

    PubMed

    Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H

    2017-10-25

    Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.

  20. Generalized linear mixed models with varying coefficients for longitudinal data.

    PubMed

    Zhang, Daowen

    2004-03-01

    The routinely assumed parametric functional form in the linear predictor of a generalized linear mixed model for longitudinal data may be too restrictive to represent true underlying covariate effects. We relax this assumption by representing these covariate effects by smooth but otherwise arbitrary functions of time, with random effects used to model the correlation induced by among-subject and within-subject variation. Due to the usually intractable integration involved in evaluating the quasi-likelihood function, the double penalized quasi-likelihood (DPQL) approach of Lin and Zhang (1999, Journal of the Royal Statistical Society, Series B61, 381-400) is used to estimate the varying coefficients and the variance components simultaneously by representing a nonparametric function by a linear combination of fixed effects and random effects. A scaled chi-squared test based on the mixed model representation of the proposed model is developed to test whether an underlying varying coefficient is a polynomial of certain degree. We evaluate the performance of the procedures through simulation studies and illustrate their application with Indonesian children infectious disease data.

  1. Overshooting thunderstorm cloud top dynamics as approximated by a linear Lagrangian parcel model with analytic exact solutions

    NASA Technical Reports Server (NTRS)

    Schlesinger, Robert E.

    1990-01-01

    Results are presented from a linear Lagrangian entraining parcel model of an overshooting thunderstorm cloud top. The model, which is similar to that of Adler and Mack (1986), gives analytic exact solutions for vertical velocity and temperature by representing mixing with Rayleigh damping instead of nonlinearly. Model results are presented for various combinations of stratospheric lapse rate, drag intensity, and mixing strength. The results are compared to those of Adler and Mack.

  2. Approximating a nonlinear advanced-delayed equation from acoustics

    NASA Astrophysics Data System (ADS)

    Teodoro, M. Filomena

    2016-10-01

    We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.

  3. Improving the Power of GWAS and Avoiding Confounding from Population Stratification with PC-Select

    PubMed Central

    Tucker, George; Price, Alkes L.; Berger, Bonnie

    2014-01-01

    Using a reduced subset of SNPs in a linear mixed model can improve power for genome-wide association studies, yet this can result in insufficient correction for population stratification. We propose a hybrid approach using principal components that does not inflate statistics in the presence of population stratification and improves power over standard linear mixed models. PMID:24788602

  4. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    Empirical models for the shielding and refection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and rejection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  5. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    Empirical models for the shielding and reflection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and reflection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  6. Strengthen forensic entomology in court--the need for data exploration and the validation of a generalised additive mixed model.

    PubMed

    Baqué, Michèle; Amendt, Jens

    2013-01-01

    Developmental data of juvenile blow flies (Diptera: Calliphoridae) are typically used to calculate the age of immature stages found on or around a corpse and thus to estimate a minimum post-mortem interval (PMI(min)). However, many of those data sets don't take into account that immature blow flies grow in a non-linear fashion. Linear models do not supply a sufficient reliability on age estimates and may even lead to an erroneous determination of the PMI(min). According to the Daubert standard and the need for improvements in forensic science, new statistic tools like smoothing methods and mixed models allow the modelling of non-linear relationships and expand the field of statistical analyses. The present study introduces into the background and application of these statistical techniques by analysing a model which describes the development of the forensically important blow fly Calliphora vicina at different temperatures. The comparison of three statistical methods (linear regression, generalised additive modelling and generalised additive mixed modelling) clearly demonstrates that only the latter provided regression parameters that reflect the data adequately. We focus explicitly on both the exploration of the data--to assure their quality and to show the importance of checking it carefully prior to conducting the statistical tests--and the validation of the resulting models. Hence, we present a common method for evaluating and testing forensic entomological data sets by using for the first time generalised additive mixed models.

  7. Linear Mixed Models: Gum and Beyond

    NASA Astrophysics Data System (ADS)

    Arendacká, Barbora; Täubner, Angelika; Eichstädt, Sascha; Bruns, Thomas; Elster, Clemens

    2014-04-01

    In Annex H.5, the Guide to the Evaluation of Uncertainty in Measurement (GUM) [1] recognizes the necessity to analyze certain types of experiments by applying random effects ANOVA models. These belong to the more general family of linear mixed models that we focus on in the current paper. Extending the short introduction provided by the GUM, our aim is to show that the more general, linear mixed models cover a wider range of situations occurring in practice and can be beneficial when employed in data analysis of long-term repeated experiments. Namely, we point out their potential as an aid in establishing an uncertainty budget and as means for gaining more insight into the measurement process. We also comment on computational issues and to make the explanations less abstract, we illustrate all the concepts with the help of a measurement campaign conducted in order to challenge the uncertainty budget in calibration of accelerometers.

  8. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    PubMed

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.

  9. Skew-t partially linear mixed-effects models for AIDS clinical studies.

    PubMed

    Lu, Tao

    2016-01-01

    We propose partially linear mixed-effects models with asymmetry and missingness to investigate the relationship between two biomarkers in clinical studies. The proposed models take into account irregular time effects commonly observed in clinical studies under a semiparametric model framework. In addition, commonly assumed symmetric distributions for model errors are substituted by asymmetric distribution to account for skewness. Further, informative missing data mechanism is accounted for. A Bayesian approach is developed to perform parameter estimation simultaneously. The proposed model and method are applied to an AIDS dataset and comparisons with alternative models are performed.

  10. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models

    PubMed Central

    Chen, Han; Wang, Chaolong; Conomos, Matthew P.; Stilp, Adrienne M.; Li, Zilin; Sofer, Tamar; Szpiro, Adam A.; Chen, Wei; Brehm, John M.; Celedón, Juan C.; Redline, Susan; Papanicolaou, George J.; Thornton, Timothy A.; Laurie, Cathy C.; Rice, Kenneth; Lin, Xihong

    2016-01-01

    Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. PMID:27018471

  11. Comparison of linear, skewed-linear, and proportional hazard models for the analysis of lambing interval in Ripollesa ewes.

    PubMed

    Casellas, J; Bach, R

    2012-06-01

    Lambing interval is a relevant reproductive indicator for sheep populations under continuous mating systems, although there is a shortage of selection programs accounting for this trait in the sheep industry. Both the historical assumption of small genetic background and its unorthodox distribution pattern have limited its implementation as a breeding objective. In this manuscript, statistical performances of 3 alternative parametrizations [i.e., symmetric Gaussian mixed linear (GML) model, skew-Gaussian mixed linear (SGML) model, and piecewise Weibull proportional hazard (PWPH) model] have been compared to elucidate the preferred methodology to handle lambing interval data. More specifically, flock-by-flock analyses were performed on 31,986 lambing interval records (257.3 ± 0.2 d) from 6 purebred Ripollesa flocks. Model performances were compared in terms of deviance information criterion (DIC) and Bayes factor (BF). For all flocks, PWPH models were clearly preferred; they generated a reduction of 1,900 or more DIC units and provided BF estimates larger than 100 (i.e., PWPH models against linear models). These differences were reduced when comparing PWPH models with different number of change points for the baseline hazard function. In 4 flocks, only 2 change points were required to minimize the DIC, whereas 4 and 6 change points were needed for the 2 remaining flocks. These differences demonstrated a remarkable degree of heterogeneity across sheep flocks that must be properly accounted for in genetic evaluation models to avoid statistical biases and suboptimal genetic trends. Within this context, all 6 Ripollesa flocks revealed substantial genetic background for lambing interval with heritabilities ranging between 0.13 and 0.19. This study provides the first evidence of the suitability of PWPH models for lambing interval analysis, clearly discarding previous parametrizations focused on mixed linear models.

  12. Longitudinal data analyses using linear mixed models in SPSS: concepts, procedures and illustrations.

    PubMed

    Shek, Daniel T L; Ma, Cecilia M S

    2011-01-05

    Although different methods are available for the analyses of longitudinal data, analyses based on generalized linear models (GLM) are criticized as violating the assumption of independence of observations. Alternatively, linear mixed models (LMM) are commonly used to understand changes in human behavior over time. In this paper, the basic concepts surrounding LMM (or hierarchical linear models) are outlined. Although SPSS is a statistical analyses package commonly used by researchers, documentation on LMM procedures in SPSS is not thorough or user friendly. With reference to this limitation, the related procedures for performing analyses based on LMM in SPSS are described. To demonstrate the application of LMM analyses in SPSS, findings based on six waves of data collected in the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) in Hong Kong are presented.

  13. Longitudinal Data Analyses Using Linear Mixed Models in SPSS: Concepts, Procedures and Illustrations

    PubMed Central

    Shek, Daniel T. L.; Ma, Cecilia M. S.

    2011-01-01

    Although different methods are available for the analyses of longitudinal data, analyses based on generalized linear models (GLM) are criticized as violating the assumption of independence of observations. Alternatively, linear mixed models (LMM) are commonly used to understand changes in human behavior over time. In this paper, the basic concepts surrounding LMM (or hierarchical linear models) are outlined. Although SPSS is a statistical analyses package commonly used by researchers, documentation on LMM procedures in SPSS is not thorough or user friendly. With reference to this limitation, the related procedures for performing analyses based on LMM in SPSS are described. To demonstrate the application of LMM analyses in SPSS, findings based on six waves of data collected in the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) in Hong Kong are presented. PMID:21218263

  14. An update on modeling dose-response relationships: Accounting for correlated data structure and heterogeneous error variance in linear and nonlinear mixed models.

    PubMed

    Gonçalves, M A D; Bello, N M; Dritz, S S; Tokach, M D; DeRouchey, J M; Woodworth, J C; Goodband, R D

    2016-05-01

    Advanced methods for dose-response assessments are used to estimate the minimum concentrations of a nutrient that maximizes a given outcome of interest, thereby determining nutritional requirements for optimal performance. Contrary to standard modeling assumptions, experimental data often present a design structure that includes correlations between observations (i.e., blocking, nesting, etc.) as well as heterogeneity of error variances; either can mislead inference if disregarded. Our objective is to demonstrate practical implementation of linear and nonlinear mixed models for dose-response relationships accounting for correlated data structure and heterogeneous error variances. To illustrate, we modeled data from a randomized complete block design study to evaluate the standardized ileal digestible (SID) Trp:Lys ratio dose-response on G:F of nursery pigs. A base linear mixed model was fitted to explore the functional form of G:F relative to Trp:Lys ratios and assess model assumptions. Next, we fitted 3 competing dose-response mixed models to G:F, namely a quadratic polynomial (QP) model, a broken-line linear (BLL) ascending model, and a broken-line quadratic (BLQ) ascending model, all of which included heteroskedastic specifications, as dictated by the base model. The GLIMMIX procedure of SAS (version 9.4) was used to fit the base and QP models and the NLMIXED procedure was used to fit the BLL and BLQ models. We further illustrated the use of a grid search of initial parameter values to facilitate convergence and parameter estimation in nonlinear mixed models. Fit between competing dose-response models was compared using a maximum likelihood-based Bayesian information criterion (BIC). The QP, BLL, and BLQ models fitted on G:F of nursery pigs yielded BIC values of 353.7, 343.4, and 345.2, respectively, thus indicating a better fit of the BLL model. The BLL breakpoint estimate of the SID Trp:Lys ratio was 16.5% (95% confidence interval [16.1, 17.0]). Problems with the estimation process rendered results from the BLQ model questionable. Importantly, accounting for heterogeneous variance enhanced inferential precision as the breadth of the confidence interval for the mean breakpoint decreased by approximately 44%. In summary, the article illustrates the use of linear and nonlinear mixed models for dose-response relationships accounting for heterogeneous residual variances, discusses important diagnostics and their implications for inference, and provides practical recommendations for computational troubleshooting.

  15. Correcting for population structure and kinship using the linear mixed model: theory and extensions.

    PubMed

    Hoffman, Gabriel E

    2013-01-01

    Population structure and kinship are widespread confounding factors in genome-wide association studies (GWAS). It has been standard practice to include principal components of the genotypes in a regression model in order to account for population structure. More recently, the linear mixed model (LMM) has emerged as a powerful method for simultaneously accounting for population structure and kinship. The statistical theory underlying the differences in empirical performance between modeling principal components as fixed versus random effects has not been thoroughly examined. We undertake an analysis to formalize the relationship between these widely used methods and elucidate the statistical properties of each. Moreover, we introduce a new statistic, effective degrees of freedom, that serves as a metric of model complexity and a novel low rank linear mixed model (LRLMM) to learn the dimensionality of the correction for population structure and kinship, and we assess its performance through simulations. A comparison of the results of LRLMM and a standard LMM analysis applied to GWAS data from the Multi-Ethnic Study of Atherosclerosis (MESA) illustrates how our theoretical results translate into empirical properties of the mixed model. Finally, the analysis demonstrates the ability of the LRLMM to substantially boost the strength of an association for HDL cholesterol in Europeans.

  16. The effect of dropout on the efficiency of D-optimal designs of linear mixed models.

    PubMed

    Ortega-Azurduy, S A; Tan, F E S; Berger, M P F

    2008-06-30

    Dropout is often encountered in longitudinal data. Optimal designs will usually not remain optimal in the presence of dropout. In this paper, we study D-optimal designs for linear mixed models where dropout is encountered. Moreover, we estimate the efficiency loss in cases where a D-optimal design for complete data is chosen instead of that for data with dropout. Two types of monotonically decreasing response probability functions are investigated to describe dropout. Our results show that the location of D-optimal design points for the dropout case will shift with respect to that for the complete and uncorrelated data case. Owing to this shift, the information collected at the D-optimal design points for the complete data case does not correspond to the smallest variance. We show that the size of the displacement of the time points depends on the linear mixed model and that the efficiency loss is moderate.

  17. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  18. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.

    PubMed

    Moerbeek, Mirjam; van Schie, Sander

    2016-07-11

    The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.

  19. A Bayesian Semiparametric Latent Variable Model for Mixed Responses

    ERIC Educational Resources Information Center

    Fahrmeir, Ludwig; Raach, Alexander

    2007-01-01

    In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…

  20. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes.

    PubMed

    Cook, James P; Mahajan, Anubha; Morris, Andrew P

    2017-02-01

    Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.

  1. Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification.

    PubMed

    Spinnato, J; Roubaud, M-C; Burle, B; Torrésani, B

    2015-06-01

    The main goal of this work is to develop a model for multisensor signals, such as magnetoencephalography or electroencephalography (EEG) signals that account for inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI-type experiments. The method involves the linear mixed effects statistical model, wavelet transform, and spatial filtering, and aims at the characterization of localized discriminant features in multisensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e., discriminant) and background noise, using a very simple Gaussian linear mixed model. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. The combination of the linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves upon earlier results on similar problems, and the three main ingredients all play an important role.

  2. A green vehicle routing problem with customer satisfaction criteria

    NASA Astrophysics Data System (ADS)

    Afshar-Bakeshloo, M.; Mehrabi, A.; Safari, H.; Maleki, M.; Jolai, F.

    2016-12-01

    This paper develops an MILP model, named Satisfactory-Green Vehicle Routing Problem. It consists of routing a heterogeneous fleet of vehicles in order to serve a set of customers within predefined time windows. In this model in addition to the traditional objective of the VRP, both the pollution and customers' satisfaction have been taken into account. Meanwhile, the introduced model prepares an effective dashboard for decision-makers that determines appropriate routes, the best mixed fleet, speed and idle time of vehicles. Additionally, some new factors evaluate the greening of each decision based on three criteria. This model applies piecewise linear functions (PLFs) to linearize a nonlinear fuzzy interval for incorporating customers' satisfaction into other linear objectives. We have presented a mixed integer linear programming formulation for the S-GVRP. This model enriches managerial insights by providing trade-offs between customers' satisfaction, total costs and emission levels. Finally, we have provided a numerical study for showing the applicability of the model.

  3. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models.

    PubMed

    Chen, Han; Wang, Chaolong; Conomos, Matthew P; Stilp, Adrienne M; Li, Zilin; Sofer, Tamar; Szpiro, Adam A; Chen, Wei; Brehm, John M; Celedón, Juan C; Redline, Susan; Papanicolaou, George J; Thornton, Timothy A; Laurie, Cathy C; Rice, Kenneth; Lin, Xihong

    2016-04-07

    Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM's constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Statistical quality assessment criteria for a linear mixing model with elliptical t-distribution errors

    NASA Astrophysics Data System (ADS)

    Manolakis, Dimitris G.

    2004-10-01

    The linear mixing model is widely used in hyperspectral imaging applications to model the reflectance spectra of mixed pixels in the SWIR atmospheric window or the radiance spectra of plume gases in the LWIR atmospheric window. In both cases it is important to detect the presence of materials or gases and then estimate their amount, if they are present. The detection and estimation algorithms available for these tasks are related but they are not identical. The objective of this paper is to theoretically investigate how the heavy tails observed in hyperspectral background data affect the quality of abundance estimates and how the F-test, used for endmember selection, is robust to the presence of heavy tails when the model fits the data.

  5. Optimization of the time series NDVI-rainfall relationship using linear mixed-effects modeling for the anti-desertification area in the Beijing and Tianjin sandstorm source region

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Sun, Tao; Fu, Anmin; Xu, Hao; Wang, Xinjie

    2018-05-01

    Degradation in drylands is a critically important global issue that threatens ecosystem and environmental in many ways. Researchers have tried to use remote sensing data and meteorological data to perform residual trend analysis and identify human-induced vegetation changes. However, complex interactions between vegetation and climate, soil units and topography have not yet been considered. Data used in the study included annual accumulated Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m normalized difference vegetation index (NDVI) from 2002 to 2013, accumulated rainfall from September to August, digital elevation model (DEM) and soil units. This paper presents linear mixed-effect (LME) modeling methods for the NDVI-rainfall relationship. We developed linear mixed-effects models that considered the random effects of sample points nested in soil units for nested two-level modeling and single-level modeling of soil units and sample points, respectively. Additionally, three functions, including the exponential function (exp), the power function (power), and the constant plus power function (CPP), were tested to remove heterogeneity, and an additional three correlation structures, including the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)] and the compound symmetry structure (CS), were used to address the spatiotemporal correlations. It was concluded that the nested two-level model considering both heteroscedasticity with (CPP) and spatiotemporal correlation with [ARMA(1,1)] showed the best performance (AMR = 0.1881, RMSE = 0.2576, adj- R 2 = 0.9593). Variations between soil units and sample points that may have an effect on the NDVI-rainfall relationship should be included in model structures, and linear mixed-effects modeling achieves this in an effective and accurate way.

  6. Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features.

    PubMed

    Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara

    2017-01-01

    In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.

  7. Linear mixed-effects models for within-participant psychology experiments: an introductory tutorial and free, graphical user interface (LMMgui).

    PubMed

    Magezi, David A

    2015-01-01

    Linear mixed-effects models (LMMs) are increasingly being used for data analysis in cognitive neuroscience and experimental psychology, where within-participant designs are common. The current article provides an introductory review of the use of LMMs for within-participant data analysis and describes a free, simple, graphical user interface (LMMgui). LMMgui uses the package lme4 (Bates et al., 2014a,b) in the statistical environment R (R Core Team).

  8. Real longitudinal data analysis for real people: building a good enough mixed model.

    PubMed

    Cheng, Jing; Edwards, Lloyd J; Maldonado-Molina, Mildred M; Komro, Kelli A; Muller, Keith E

    2010-02-20

    Mixed effects models have become very popular, especially for the analysis of longitudinal data. One challenge is how to build a good enough mixed effects model. In this paper, we suggest a systematic strategy for addressing this challenge and introduce easily implemented practical advice to build mixed effects models. A general discussion of the scientific strategies motivates the recommended five-step procedure for model fitting. The need to model both the mean structure (the fixed effects) and the covariance structure (the random effects and residual error) creates the fundamental flexibility and complexity. Some very practical recommendations help to conquer the complexity. Centering, scaling, and full-rank coding of all the predictor variables radically improve the chances of convergence, computing speed, and numerical accuracy. Applying computational and assumption diagnostics from univariate linear models to mixed model data greatly helps to detect and solve the related computational problems. Applying computational and assumption diagnostics from the univariate linear models to the mixed model data can radically improve the chances of convergence, computing speed, and numerical accuracy. The approach helps to fit more general covariance models, a crucial step in selecting a credible covariance model needed for defensible inference. A detailed demonstration of the recommended strategy is based on data from a published study of a randomized trial of a multicomponent intervention to prevent young adolescents' alcohol use. The discussion highlights a need for additional covariance and inference tools for mixed models. The discussion also highlights the need for improving how scientists and statisticians teach and review the process of finding a good enough mixed model. (c) 2009 John Wiley & Sons, Ltd.

  9. Modeling and simulation of protein elution in linear pH and salt gradients on weak, strong and mixed cation exchange resins applying an extended Donnan ion exchange model.

    PubMed

    Wittkopp, Felix; Peeck, Lars; Hafner, Mathias; Frech, Christian

    2018-04-13

    Process development and characterization based on mathematic modeling provides several advantages and has been applied more frequently over the last few years. In this work, a Donnan equilibrium ion exchange (DIX) model is applied for modelling and simulation of ion exchange chromatography of a monoclonal antibody in linear chromatography. Four different cation exchange resin prototypes consisting of weak, strong and mixed ligands are characterized using pH and salt gradient elution experiments applying the extended DIX model. The modelling results are compared with the results using a classic stoichiometric displacement model. The Donnan equilibrium model is able to describe all four prototype resins while the stoichiometric displacement model fails for the weak and mixed weak/strong ligands. Finally, in silico chromatogram simulations of pH and pH/salt dual gradients are performed to verify the results and to show the consistency of the developed model. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Analyzing longitudinal data with the linear mixed models procedure in SPSS.

    PubMed

    West, Brady T

    2009-09-01

    Many applied researchers analyzing longitudinal data share a common misconception: that specialized statistical software is necessary to fit hierarchical linear models (also known as linear mixed models [LMMs], or multilevel models) to longitudinal data sets. Although several specialized statistical software programs of high quality are available that allow researchers to fit these models to longitudinal data sets (e.g., HLM), rapid advances in general purpose statistical software packages have recently enabled analysts to fit these same models when using preferred packages that also enable other more common analyses. One of these general purpose statistical packages is SPSS, which includes a very flexible and powerful procedure for fitting LMMs to longitudinal data sets with continuous outcomes. This article aims to present readers with a practical discussion of how to analyze longitudinal data using the LMMs procedure in the SPSS statistical software package.

  11. Turbulence closure for mixing length theories

    NASA Astrophysics Data System (ADS)

    Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.

    2018-05-01

    We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.

  12. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    PubMed

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  13. Modeling Learning in Doubly Multilevel Binary Longitudinal Data Using Generalized Linear Mixed Models: An Application to Measuring and Explaining Word Learning.

    PubMed

    Cho, Sun-Joo; Goodwin, Amanda P

    2016-04-01

    When word learning is supported by instruction in experimental studies for adolescents, word knowledge outcomes tend to be collected from complex data structure, such as multiple aspects of word knowledge, multilevel reader data, multilevel item data, longitudinal design, and multiple groups. This study illustrates how generalized linear mixed models can be used to measure and explain word learning for data having such complexity. Results from this application provide deeper understanding of word knowledge than could be attained from simpler models and show that word knowledge is multidimensional and depends on word characteristics and instructional contexts.

  14. Small area estimation for semicontinuous data.

    PubMed

    Chandra, Hukum; Chambers, Ray

    2016-03-01

    Survey data often contain measurements for variables that are semicontinuous in nature, i.e. they either take a single fixed value (we assume this is zero) or they have a continuous, often skewed, distribution on the positive real line. Standard methods for small area estimation (SAE) based on the use of linear mixed models can be inefficient for such variables. We discuss SAE techniques for semicontinuous variables under a two part random effects model that allows for the presence of excess zeros as well as the skewed nature of the nonzero values of the response variable. In particular, we first model the excess zeros via a generalized linear mixed model fitted to the probability of a nonzero, i.e. strictly positive, value being observed, and then model the response, given that it is strictly positive, using a linear mixed model fitted on the logarithmic scale. Empirical results suggest that the proposed method leads to efficient small area estimates for semicontinuous data of this type. We also propose a parametric bootstrap method to estimate the MSE of the proposed small area estimator. These bootstrap estimates of the MSE are compared to the true MSE in a simulation study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province, southeast China.

    PubMed

    Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu

    2015-01-01

    A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.

  16. INCORPORATING CONCENTRATION DEPENDENCE IN STABLE ISOTOPE MIXING MODELS

    EPA Science Inventory

    Stable isotopes are frequently used to quantify the contributions of multiple sources to a mixture; e.g., C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source linear mixing model ass...

  17. [Analysis on the trend of long-term change of blood pressure in hypertensive patients treated with benazepril].

    PubMed

    Lu, Jun; Li, Li-Ming; He, Ping-Ping; Cao, Wei-Hua; Zhan, Si-Yan; Hu, Yong-Hua

    2004-06-01

    To introduce the application of mixed linear model in the analysis of secular trend of blood pressure under antihypertensive treatment. A community-based postmarketing surveillance of benazepril was conducted in 1831 essential hypertensive patients (age range from 35 to 88 years) in Shanghai. Data of blood pressure was analyzed every 3 months with mixed linear model to describe the secular trend of blood pressure and changes of age-specific and gender-specific. The changing trends of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were found to fit the curvilinear models. A piecewise model was fit for pulse pressure (PP), i.e., curvilinear model in the first 9 months and linear model after 9 months of taking medication. Both blood pressure and its velocity gradually slowed down. There were significant variation for the curve parameters of intercept, slope, and acceleration. Blood pressure in patients with higher initial levels was persistently declining in the 3-year-treatment. However blood pressures of patients with relatively low initial levels remained low when dropped down to some degree. Elderly patients showed high SBP but low DBP, so as with higher PP. The velocity and sizes of blood pressure reductions increased with the initial level of blood pressure. Mixed linear model is flexible and robust when applied to the analysis of longitudinal data but with missing values and can also make the maximum use of available information.

  18. Alfvén wave interactions in the solar wind

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.

    2012-11-01

    Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.

  19. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    ERIC Educational Resources Information Center

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  20. Elimination of trait blocks from multiple trait mixed model equations with singular (Co)variance parameter matrices

    USDA-ARS?s Scientific Manuscript database

    Transformations to multiple trait mixed model equations (MME) which are intended to improve computational efficiency in best linear unbiased prediction (BLUP) and restricted maximum likelihood (REML) are described. It is shown that traits that are expected or estimated to have zero residual variance...

  1. Linear mixing model applied to AVHRR LAC data

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.

  2. Drug awareness in adolescents attending a mental health service: analysis of longitudinal data.

    PubMed

    Arnau, Jaume; Bono, Roser; Díaz, Rosa; Goti, Javier

    2011-11-01

    One of the procedures used most recently with longitudinal data is linear mixed models. In the context of health research the increasing number of studies that now use these models bears witness to the growing interest in this type of analysis. This paper describes the application of linear mixed models to a longitudinal study of a sample of Spanish adolescents attending a mental health service, the aim being to investigate their knowledge about the consumption of alcohol and other drugs. More specifically, the main objective was to compare the efficacy of a motivational interviewing programme with a standard approach to drug awareness. The models used to analyse the overall indicator of drug awareness were as follows: (a) unconditional linear growth curve model; (b) growth model with subject-associated variables; and (c) individual curve model with predictive variables. The results showed that awareness increased over time and that the variable 'schooling years' explained part of the between-subjects variation. The effect of motivational interviewing was also significant.

  3. Time and frequency domain analysis of sampled data controllers via mixed operation equations

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1981-01-01

    Specification of the mathematical equations required to define the dynamic response of a linear continuous plant, subject to sampled data control, is complicated by the fact that the digital components of the control system cannot be modeled via linear ordinary differential equations. This complication can be overcome by introducing two new mathematical operations; namely, the operation of zero order hold and digial delay. It is shown that by direct utilization of these operations, a set of linear mixed operation equations can be written and used to define the dynamic response characteristics of the controlled system. It also is shown how these linear mixed operation equations lead, in an automatable manner, directly to a set of finite difference equations which are in a format compatible with follow on time and frequency domain analysis methods.

  4. On testing an unspecified function through a linear mixed effects model with multiple variance components

    PubMed Central

    Wang, Yuanjia; Chen, Huaihou

    2012-01-01

    Summary We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 108 simulations) and asymptotic approximation may be unreliable and conservative. PMID:23020801

  5. On testing an unspecified function through a linear mixed effects model with multiple variance components.

    PubMed

    Wang, Yuanjia; Chen, Huaihou

    2012-12-01

    We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 10(8) simulations) and asymptotic approximation may be unreliable and conservative. © 2012, The International Biometric Society.

  6. Ternary mixed crystal effects on interface optical phonon and electron-phonon coupling in zinc-blende GaN/AlxGa1-xN spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long

    2016-02-01

    The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.

  7. Correlation and simple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.

  8. Ancestral haplotype-based association mapping with generalized linear mixed models accounting for stratification.

    PubMed

    Zhang, Z; Guillaume, F; Sartelet, A; Charlier, C; Georges, M; Farnir, F; Druet, T

    2012-10-01

    In many situations, genome-wide association studies are performed in populations presenting stratification. Mixed models including a kinship matrix accounting for genetic relatedness among individuals have been shown to correct for population and/or family structure. Here we extend this methodology to generalized linear mixed models which properly model data under various distributions. In addition we perform association with ancestral haplotypes inferred using a hidden Markov model. The method was shown to properly account for stratification under various simulated scenari presenting population and/or family structure. Use of ancestral haplotypes resulted in higher power than SNPs on simulated datasets. Application to real data demonstrates the usefulness of the developed model. Full analysis of a dataset with 4600 individuals and 500 000 SNPs was performed in 2 h 36 min and required 2.28 Gb of RAM. The software GLASCOW can be freely downloaded from www.giga.ulg.ac.be/jcms/prod_381171/software. francois.guillaume@jouy.inra.fr Supplementary data are available at Bioinformatics online.

  9. Mixed models, linear dependency, and identification in age-period-cohort models.

    PubMed

    O'Brien, Robert M

    2017-07-20

    This paper examines the identification problem in age-period-cohort models that use either linear or categorically coded ages, periods, and cohorts or combinations of these parameterizations. These models are not identified using the traditional fixed effect regression model approach because of a linear dependency between the ages, periods, and cohorts. However, these models can be identified if the researcher introduces a single just identifying constraint on the model coefficients. The problem with such constraints is that the results can differ substantially depending on the constraint chosen. Somewhat surprisingly, age-period-cohort models that specify one or more of ages and/or periods and/or cohorts as random effects are identified. This is the case without introducing an additional constraint. I label this identification as statistical model identification and show how statistical model identification comes about in mixed models and why which effects are treated as fixed and which are treated as random can substantially change the estimates of the age, period, and cohort effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Competing regression models for longitudinal data.

    PubMed

    Alencar, Airlane P; Singer, Julio M; Rocha, Francisco Marcelo M

    2012-03-01

    The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretest-posttest longitudinal data. In particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE-based models may be preferable when the goal is to compare the marginal expected responses. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development of a shortleaf pine individual-tree growth equation using non-linear mixed modeling techniques

    Treesearch

    Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin

    2010-01-01

    Nonlinear mixed-modeling methods were used to estimate parameters in an individual-tree basal area growth model for shortleaf pine (Pinus echinata Mill.). Shortleaf pine individual-tree growth data were available from over 200 permanently established 0.2-acre fixed-radius plots located in naturally-occurring even-aged shortleaf pine forests on the...

  12. Identifying pleiotropic genes in genome-wide association studies from related subjects using the linear mixed model and Fisher combination function.

    PubMed

    Yang, James J; Williams, L Keoki; Buu, Anne

    2017-08-24

    A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.

  13. Analysis of lithology: Vegetation mixes in multispectral images

    NASA Technical Reports Server (NTRS)

    Adams, J. B.; Smith, M.; Adams, J. D.

    1982-01-01

    Discrimination and identification of lithologies from multispectral images is discussed. Rock/soil identification can be facilitated by removing the component of the signal in the images that is contributed by the vegetation. Mixing models were developed to predict the spectra of combinations of pure end members, and those models were refined using laboratory measurements of real mixtures. Models in use include a simple linear (checkerboard) mix, granular mixing, semi-transparent coatings, and combinations of the above. The use of interactive computer techniques that allow quick comparison of the spectrum of a pixel stack (in a multiband set) with laboratory spectra is discussed.

  14. A Comparison of Two-Stage Approaches for Fitting Nonlinear Ordinary Differential Equation (ODE) Models with Mixed Effects

    PubMed Central

    Chow, Sy-Miin; Bendezú, Jason J.; Cole, Pamela M.; Ram, Nilam

    2016-01-01

    Several approaches currently exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA), generalized local linear approximation (GLLA), and generalized orthogonal local derivative approximation (GOLD). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children’s self-regulation. PMID:27391255

  15. A Comparison of Two-Stage Approaches for Fitting Nonlinear Ordinary Differential Equation Models with Mixed Effects.

    PubMed

    Chow, Sy-Miin; Bendezú, Jason J; Cole, Pamela M; Ram, Nilam

    2016-01-01

    Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005 ), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010 ), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010 ). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children's self-regulation.

  16. Women's Endorsement of Models of Sexual Response: Correlates and Predictors.

    PubMed

    Nowosielski, Krzysztof; Wróbel, Beata; Kowalczyk, Robert

    2016-02-01

    Few studies have investigated endorsement of female sexual response models, and no single model has been accepted as a normative description of women's sexual response. The aim of the study was to establish how women from a population-based sample endorse current theoretical models of the female sexual response--the linear models and circular model (partial and composite Basson models)--as well as predictors of endorsement. Accordingly, 174 heterosexual women aged 18-55 years were included in a cross-sectional study: 74 women diagnosed with female sexual dysfunction (FSD) based on DSM-5 criteria and 100 non-dysfunctional women. The description of sexual response models was used to divide subjects into four subgroups: linear (Masters-Johnson and Kaplan models), circular (partial Basson model), mixed (linear and circular models in similar proportions, reflective of the composite Basson model), and a different model. Women were asked to choose which of the models best described their pattern of sexual response and how frequently they engaged in each model. Results showed that 28.7% of women endorsed the linear models, 19.5% the partial Basson model, 40.8% the composite Basson model, and 10.9% a different model. Women with FSD endorsed the partial Basson model and a different model more frequently than did non-dysfunctional controls. Individuals who were dissatisfied with a partner as a lover were more likely to endorse a different model. Based on the results, we concluded that the majority of women endorsed a mixed model combining the circular response with the possibility of an innate desire triggering a linear response. Further, relationship difficulties, not FSD, predicted model endorsement.

  17. Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models.

    PubMed

    Yue, Chen; Chen, Shaojie; Sair, Haris I; Airan, Raag; Caffo, Brian S

    2015-09-01

    Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.

  18. Non-linear Growth Models in Mplus and SAS

    PubMed Central

    Grimm, Kevin J.; Ram, Nilam

    2013-01-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

  19. Multi-disease analysis of maternal antibody decay using non-linear mixed models accounting for censoring.

    PubMed

    Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel

    2015-09-10

    Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Genetic mixed linear models for twin survival data.

    PubMed

    Ha, Il Do; Lee, Youngjo; Pawitan, Yudi

    2007-07-01

    Twin studies are useful for assessing the relative importance of genetic or heritable component from the environmental component. In this paper we develop a methodology to study the heritability of age-at-onset or lifespan traits, with application to analysis of twin survival data. Due to limited period of observation, the data can be left truncated and right censored (LTRC). Under the LTRC setting we propose a genetic mixed linear model, which allows general fixed predictors and random components to capture genetic and environmental effects. Inferences are based upon the hierarchical-likelihood (h-likelihood), which provides a statistically efficient and unified framework for various mixed-effect models. We also propose a simple and fast computation method for dealing with large data sets. The method is illustrated by the survival data from the Swedish Twin Registry. Finally, a simulation study is carried out to evaluate its performance.

  1. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staebler, G. M.; Candy, J.; Howard, N. T.

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.« less

  2. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...

    2016-06-29

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less

  3. On Fitting Generalized Linear Mixed-effects Models for Binary Responses using Different Statistical Packages

    PubMed Central

    Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W.; Xia, Yinglin; Tu, Xin M.

    2011-01-01

    Summary The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. PMID:21671252

  4. Determining vehicle operating speed and lateral position along horizontal curves using linear mixed-effects models.

    PubMed

    Fitzsimmons, Eric J; Kvam, Vanessa; Souleyrette, Reginald R; Nambisan, Shashi S; Bonett, Douglas G

    2013-01-01

    Despite recent improvements in highway safety in the United States, serious crashes on curves remain a significant problem. To assist in better understanding causal factors leading to this problem, this article presents and demonstrates a methodology for collection and analysis of vehicle trajectory and speed data for rural and urban curves using Z-configured road tubes. For a large number of vehicle observations at 2 horizontal curves located in Dexter and Ames, Iowa, the article develops vehicle speed and lateral position prediction models for multiple points along these curves. Linear mixed-effects models were used to predict vehicle lateral position and speed along the curves as explained by operational, vehicle, and environmental variables. Behavior was visually represented for an identified subset of "risky" drivers. Linear mixed-effect regression models provided the means to predict vehicle speed and lateral position while taking into account repeated observations of the same vehicle along horizontal curves. Speed and lateral position at point of entry were observed to influence trajectory and speed profiles. Rural horizontal curve site models are presented that indicate that the following variables were significant and influenced both vehicle speed and lateral position: time of day, direction of travel (inside or outside lane), and type of vehicle.

  5. Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning

    NASA Astrophysics Data System (ADS)

    Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana

    2018-01-01

    The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.

  6. Methodological quality and reporting of generalized linear mixed models in clinical medicine (2000-2012): a systematic review.

    PubMed

    Casals, Martí; Girabent-Farrés, Montserrat; Carrasco, Josep L

    2014-01-01

    Modeling count and binary data collected in hierarchical designs have increased the use of Generalized Linear Mixed Models (GLMMs) in medicine. This article presents a systematic review of the application and quality of results and information reported from GLMMs in the field of clinical medicine. A search using the Web of Science database was performed for published original articles in medical journals from 2000 to 2012. The search strategy included the topic "generalized linear mixed models","hierarchical generalized linear models", "multilevel generalized linear model" and as a research domain we refined by science technology. Papers reporting methodological considerations without application, and those that were not involved in clinical medicine or written in English were excluded. A total of 443 articles were detected, with an increase over time in the number of articles. In total, 108 articles fit the inclusion criteria. Of these, 54.6% were declared to be longitudinal studies, whereas 58.3% and 26.9% were defined as repeated measurements and multilevel design, respectively. Twenty-two articles belonged to environmental and occupational public health, 10 articles to clinical neurology, 8 to oncology, and 7 to infectious diseases and pediatrics. The distribution of the response variable was reported in 88% of the articles, predominantly Binomial (n = 64) or Poisson (n = 22). Most of the useful information about GLMMs was not reported in most cases. Variance estimates of random effects were described in only 8 articles (9.2%). The model validation, the method of covariate selection and the method of goodness of fit were only reported in 8.0%, 36.8% and 14.9% of the articles, respectively. During recent years, the use of GLMMs in medical literature has increased to take into account the correlation of data when modeling qualitative data or counts. According to the current recommendations, the quality of reporting has room for improvement regarding the characteristics of the analysis, estimation method, validation, and selection of the model.

  7. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.

    PubMed

    Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-04-01

    To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.

  8. Wave models for turbulent free shear flows

    NASA Technical Reports Server (NTRS)

    Liou, W. W.; Morris, P. J.

    1991-01-01

    New predictive closure models for turbulent free shear flows are presented. They are based on an instability wave description of the dominant large scale structures in these flows using a quasi-linear theory. Three model were developed to study the structural dynamics of turbulent motions of different scales in free shear flows. The local characteristics of the large scale motions are described using linear theory. Their amplitude is determined from an energy integral analysis. The models were applied to the study of an incompressible free mixing layer. In all cases, predictions are made for the development of the mean flow field. In the last model, predictions of the time dependent motion of the large scale structure of the mixing region are made. The predictions show good agreement with experimental observations.

  9. Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data

    ERIC Educational Resources Information Center

    Xu, Shu; Blozis, Shelley A.

    2011-01-01

    Mixed models are used for the analysis of data measured over time to study population-level change and individual differences in change characteristics. Linear and nonlinear functions may be used to describe a longitudinal response, individuals need not be observed at the same time points, and missing data, assumed to be missing at random (MAR),…

  10. Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach

    PubMed Central

    Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao

    2018-01-01

    When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach, and has several attractive features compared to the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, since the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration. PMID:26303591

  11. The Apollo 16 regolith - A petrographically-constrained chemical mixing model

    NASA Technical Reports Server (NTRS)

    Kempa, M. J.; Papike, J. J.; White, C.

    1980-01-01

    A mixing model for Apollo 16 regolith samples has been developed, which differs from other A-16 mixing models in that it is both petrographically constrained and statistically sound. The model was developed using three components representative of rock types present at the A-16 site, plus a representative mare basalt. A linear least-squares fitting program employing the chi-squared test and sum of components was used to determine goodness of fit. Results for surface soils indicate that either there are no significant differences between Cayley and Descartes material at the A-16 site or, if differences do exist, they have been obscured by meteoritic reworking and mixing of the lithologies.

  12. Identifying ontogenetic, environmental and individual components of forest tree growth

    PubMed Central

    Chaubert-Pereira, Florence; Caraglio, Yves; Lavergne, Christian; Guédon, Yann

    2009-01-01

    Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk. Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase. Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity. Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research. PMID:19684021

  13. Heavy neutrino mixing and single production at linear collider

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Maalampi, J.; Raidal, M.; Zrałek, M.

    1997-02-01

    We study the single production of heavy neutrinos via the processes e- e+ -> νN and e- γ -> W- N at future linear colliders. As a base of our considerations we take a wide class of models, both with vanishing and non-vanishing left-handed Majorana neutrino mass matrix mL. We perform a model independent analyses of the existing experimental data and find connections between the characteristic of heavy neutrinos (masses, mixings, CP eigenvalues) and the mL parameters. We show that with the present experimental constraints heavy neutrino masses almost up to the collision energy can be tested in the future experiments.

  14. Probe-specific mixed-model approach to detect copy number differences using multiplex ligation-dependent probe amplification (MLPA)

    PubMed Central

    González, Juan R; Carrasco, Josep L; Armengol, Lluís; Villatoro, Sergi; Jover, Lluís; Yasui, Yutaka; Estivill, Xavier

    2008-01-01

    Background MLPA method is a potentially useful semi-quantitative method to detect copy number alterations in targeted regions. In this paper, we propose a method for the normalization procedure based on a non-linear mixed-model, as well as a new approach for determining the statistical significance of altered probes based on linear mixed-model. This method establishes a threshold by using different tolerance intervals that accommodates the specific random error variability observed in each test sample. Results Through simulation studies we have shown that our proposed method outperforms two existing methods that are based on simple threshold rules or iterative regression. We have illustrated the method using a controlled MLPA assay in which targeted regions are variable in copy number in individuals suffering from different disorders such as Prader-Willi, DiGeorge or Autism showing the best performace. Conclusion Using the proposed mixed-model, we are able to determine thresholds to decide whether a region is altered. These threholds are specific for each individual, incorporating experimental variability, resulting in improved sensitivity and specificity as the examples with real data have revealed. PMID:18522760

  15. VENVAL : a plywood mill cost accounting program

    Treesearch

    Henry Spelter

    1991-01-01

    This report documents a package of computer programs called VENVAL. These programs prepare plywood mill data for a linear programming (LP) model that, in turn, calculates the optimum mix of products to make, given a set of technologies and market prices. (The software to solve a linear program is not provided and must be obtained separately.) Linear programming finds...

  16. On fitting generalized linear mixed-effects models for binary responses using different statistical packages.

    PubMed

    Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W; Xia, Yinglin; Zhu, Liang; Tu, Xin M

    2011-09-10

    The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Linear mixed-effects models to describe length-weight relationships for yellow croaker (Larimichthys Polyactis) along the north coast of China.

    PubMed

    Ma, Qiuyun; Jiao, Yan; Ren, Yiping

    2017-01-01

    In this study, length-weight relationships and relative condition factors were analyzed for Yellow Croaker (Larimichthys polyactis) along the north coast of China. Data covered six regions from north to south: Yellow River Estuary, Coastal Waters of Northern Shandong, Jiaozhou Bay, Coastal Waters of Qingdao, Haizhou Bay, and South Yellow Sea. In total 3,275 individuals were collected during six years (2008, 2011-2015). One generalized linear model, two simply linear models and nine linear mixed effect models that applied the effects from regions and/or years to coefficient a and/or the exponent b were studied and compared. Among these twelve models, the linear mixed effect model with random effects from both regions and years fit the data best, with lowest Akaike information criterion value and mean absolute error. In this model, the estimated a was 0.0192, with 95% confidence interval 0.0178~0.0308, and the estimated exponent b was 2.917 with 95% confidence interval 2.731~2.945. Estimates for a and b with the random effects in intercept and coefficient from Region and Year, ranged from 0.013 to 0.023 and from 2.835 to 3.017, respectively. Both regions and years had effects on parameters a and b, while the effects from years were shown to be much larger than those from regions. Except for Coastal Waters of Northern Shandong, a decreased from north to south. Condition factors relative to reference years of 1960, 1986, 2005, 2007, 2008~2009 and 2010 revealed that the body shape of Yellow Croaker became thinner in recent years. Furthermore relative condition factors varied among months, years, regions and length. The values of a and relative condition factors decreased, when the environmental pollution became worse, therefore, length-weight relationships could be an indicator for the environment quality. Results from this study provided basic description of current condition of Yellow Croaker along the north coast of China.

  18. A comparison of methods for estimating the random effects distribution of a linear mixed model.

    PubMed

    Ghidey, Wendimagegn; Lesaffre, Emmanuel; Verbeke, Geert

    2010-12-01

    This article reviews various recently suggested approaches to estimate the random effects distribution in a linear mixed model, i.e. (1) the smoothing by roughening approach of Shen and Louis,(1) (2) the semi-non-parametric approach of Zhang and Davidian,(2) (3) the heterogeneity model of Verbeke and Lesaffre( 3) and (4) a flexible approach of Ghidey et al. (4) These four approaches are compared via an extensive simulation study. We conclude that for the considered cases, the approach of Ghidey et al. (4) often shows to have the smallest integrated mean squared error for estimating the random effects distribution. An analysis of a longitudinal dental data set illustrates the performance of the methods in a practical example.

  19. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.

  20. Optimization Research of Generation Investment Based on Linear Programming Model

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  1. Use of non-linear mixed-effects modelling and regression analysis to predict the number of somatic coliphages by plaque enumeration after 3 hours of incubation.

    PubMed

    Mendez, Javier; Monleon-Getino, Antonio; Jofre, Juan; Lucena, Francisco

    2017-10-01

    The present study aimed to establish the kinetics of the appearance of coliphage plaques using the double agar layer titration technique to evaluate the feasibility of using traditional coliphage plaque forming unit (PFU) enumeration as a rapid quantification method. Repeated measurements of the appearance of plaques of coliphages titrated according to ISO 10705-2 at different times were analysed using non-linear mixed-effects regression to determine the most suitable model of their appearance kinetics. Although this model is adequate, to simplify its applicability two linear models were developed to predict the numbers of coliphages reliably, using the PFU counts as determined by the ISO after only 3 hours of incubation. One linear model, when the number of plaques detected was between 4 and 26 PFU after 3 hours, had a linear fit of: (1.48 × Counts 3 h + 1.97); and the other, values >26 PFU, had a fit of (1.18 × Counts 3 h + 2.95). If the number of plaques detected was <4 PFU after 3 hours, we recommend incubation for (18 ± 3) hours. The study indicates that the traditional coliphage plating technique has a reasonable potential to provide results in a single working day without the need to invest in additional laboratory equipment.

  2. Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach.

    PubMed

    Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao

    2016-01-15

    When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach and has several attractive features compared with the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, because the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Study on the Spectral Mixing Model for Mineral Pigments Based on Derivative of Ratio Spectroscopy-Take Vermilion and Stone Yellow for Example

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Hao, Y.; Liu, X.; Hou, M.; Zhao, X.

    2018-04-01

    Hyperspectral remote sensing is a completely non-invasive technology for measurement of cultural relics, and has been successfully applied in identification and analysis of pigments of Chinese historical paintings. Although the phenomenon of mixing pigments is very usual in Chinese historical paintings, the quantitative analysis of the mixing pigments in the ancient paintings is still unsolved. In this research, we took two typical mineral pigments, vermilion and stone yellow as example, made precisely mixed samples using these two kinds of pigments, and measured their spectra in the laboratory. For the mixing spectra, both fully constrained least square (FCLS) method and derivative of ratio spectroscopy (DRS) were performed. Experimental results showed that the mixing spectra of vermilion and stone yellow had strong nonlinear mixing characteristics, but at some bands linear unmixing could also achieve satisfactory results. DRS using strong linear bands can reach much higher accuracy than that of FCLS using full bands.

  4. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data

    PubMed Central

    Ying, Gui-shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-01-01

    Purpose To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. Methods We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field data in the elderly. Results When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI −0.03 to 0.32D, P=0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, P=0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller P-values, while analysis of the worse eye provided larger P-values than mixed effects models and marginal models. Conclusion In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision. PMID:28102741

  5. Quantitative genetic properties of four measures of deformity in yellowtail kingfish Seriola lalandi Valenciennes, 1833.

    PubMed

    Nguyen, N H; Whatmore, P; Miller, A; Knibb, W

    2016-02-01

    The main aim of this study was to estimate the heritability for four measures of deformity and their genetic associations with growth (body weight and length), carcass (fillet weight and yield) and flesh-quality (fillet fat content) traits in yellowtail kingfish Seriola lalandi. The observed major deformities included lower jaw, nasal erosion, deformed operculum and skinny fish on 480 individuals from 22 families at Clean Seas Tuna Ltd. They were typically recorded as binary traits (presence or absence) and were analysed separately by both threshold generalized models and standard animal mixed models. Consistency of the models was evaluated by calculating simple Pearson correlation of breeding values of full-sib families for jaw deformity. Genetic and phenotypic correlations among traits were estimated using a multitrait linear mixed model in ASReml. Both threshold and linear mixed model analysis showed that there is additive genetic variation in the four measures of deformity, with the estimates of heritability obtained from the former (threshold) models on liability scale ranging from 0.14 to 0.66 (SE 0.32-0.56) and from the latter (linear animal and sire) models on original (observed) scale, 0.01-0.23 (SE 0.03-0.16). When the estimates on the underlying liability were transformed to the observed scale (0, 1), they were generally consistent between threshold and linear mixed models. Phenotypic correlations among deformity traits were weak (close to zero). The genetic correlations among deformity traits were not significantly different from zero. Body weight and fillet carcass showed significant positive genetic correlations with jaw deformity (0.75 and 0.95, respectively). Genetic correlation between body weight and operculum was negative (-0.51, P < 0.05). The genetic correlations' estimates of body and carcass traits with other deformity were not significant due to their relatively high standard errors. Our results showed that there are prospects for genetic selection to improve deformity in yellowtail kingfish and that measures of deformity should be included in the recording scheme, breeding objectives and selection index in practical selective breeding programmes due to the antagonistic genetic correlations of deformed jaws with body and carcass performance. © 2015 John Wiley & Sons Ltd.

  6. The Development of Web-based Graphical User Interface for Unified Modeling Data with Multi (Correlated) Responses

    NASA Astrophysics Data System (ADS)

    Made Tirta, I.; Anggraeni, Dian

    2018-04-01

    Statistical models have been developed rapidly into various directions to accommodate various types of data. Data collected from longitudinal, repeated measured, clustered data (either continuous, binary, count, or ordinal), are more likely to be correlated. Therefore statistical model for independent responses, such as Generalized Linear Model (GLM), Generalized Additive Model (GAM) are not appropriate. There are several models available to apply for correlated responses including GEEs (Generalized Estimating Equations), for marginal model and various mixed effect model such as GLMM (Generalized Linear Mixed Models) and HGLM (Hierarchical Generalized Linear Models) for subject spesific models. These models are available on free open source software R, but they can only be accessed through command line interface (using scrit). On the othe hand, most practical researchers very much rely on menu based or Graphical User Interface (GUI). We develop, using Shiny framework, standard pull down menu Web-GUI that unifies most models for correlated responses. The Web-GUI has accomodated almost all needed features. It enables users to do and compare various modeling for repeated measure data (GEE, GLMM, HGLM, GEE for nominal responses) much more easily trough online menus. This paper discusses the features of the Web-GUI and illustrates the use of them. In General we find that GEE, GLMM, HGLM gave very closed results.

  7. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Theory of four-wave mixing in photorefractive media when the response of a medium is nonlinear in respect of the modulation parameter

    NASA Astrophysics Data System (ADS)

    Zozulya, A. A.

    1988-12-01

    A theoretical model is constructed for four-wave mixing in a photorefractive crystal where a transmission grating is formed by the drift-diffusion nonlinearity mechanism in the absence of an external electrostatic field and the response of the medium is nonlinear in respect of the modulation parameter. A comparison is made with a model in which the response of the medium is linear in respect of the modulation parameter. Theoretical models of four-wave and two-wave mixing are also compared with experiments.

  8. Optimal sensor placement for control of a supersonic mixed-compression inlet with variable geometry

    NASA Astrophysics Data System (ADS)

    Moore, Kenneth Thomas

    A method of using fluid dynamics models for the generation of models that are useable for control design and analysis is investigated. The problem considered is the control of the normal shock location in the VDC inlet, which is a mixed-compression, supersonic, variable-geometry inlet of a jet engine. A quasi-one-dimensional set of fluid equations incorporating bleed and moving walls is developed. An object-oriented environment is developed for simulation of flow systems under closed-loop control. A public interface between the controller and fluid classes is defined. A linear model representing the dynamics of the VDC inlet is developed from the finite difference equations, and its eigenstructure is analyzed. The order of this model is reduced using the square root balanced model reduction method to produce a reduced-order linear model that is suitable for control design and analysis tasks. A modification to this method that improves the accuracy of the reduced-order linear model for the purpose of sensor placement is presented and analyzed. The reduced-order linear model is used to develop a sensor placement method that quantifies as a function of the sensor location the ability of a sensor to provide information on the variable of interest for control. This method is used to develop a sensor placement metric for the VDC inlet. The reduced-order linear model is also used to design a closed loop control system to control the shock position in the VDC inlet. The object-oriented simulation code is used to simulate the nonlinear fluid equations under closed-loop control.

  9. Lagrangian Mixing in an Axisymmetric Hurricane Model

    DTIC Science & Technology

    2010-07-23

    The MMR r is found by tak - ing the log of the time-series 6ρ(t)−A1, where A1 is 90% of the minimum value of6ρ(t), and the slope of the linear func...Advective mixing in a nondivergent barotropic hurricane model, Atmos. Chem. Phys., 10, 475 –497, doi:10.5194/acp-10- 475 -2010, 2010. Salman, H., Ide, K

  10. Software engineering the mixed model for genome-wide association studies on large samples.

    PubMed

    Zhang, Zhiwu; Buckler, Edward S; Casstevens, Terry M; Bradbury, Peter J

    2009-11-01

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample size and number of markers used for GWAS is increasing dramatically, resulting in greater statistical power to detect those associations. The use of mixed models with increasingly large data sets depends on the availability of software for analyzing those models. While multiple software packages implement the mixed model method, no single package provides the best combination of fast computation, ability to handle large samples, flexible modeling and ease of use. Key elements of association analysis with mixed models are reviewed, including modeling phenotype-genotype associations using mixed models, population stratification, kinship and its estimation, variance component estimation, use of best linear unbiased predictors or residuals in place of raw phenotype, improving efficiency and software-user interaction. The available software packages are evaluated, and suggestions made for future software development.

  11. Advantages and pitfalls in the application of mixed-model association methods.

    PubMed

    Yang, Jian; Zaitlen, Noah A; Goddard, Michael E; Visscher, Peter M; Price, Alkes L

    2014-02-01

    Mixed linear models are emerging as a method of choice for conducting genetic association studies in humans and other organisms. The advantages of the mixed-linear-model association (MLMA) method include the prevention of false positive associations due to population or relatedness structure and an increase in power obtained through the application of a correction that is specific to this structure. An underappreciated point is that MLMA can also increase power in studies without sample structure by implicitly conditioning on associated loci other than the candidate locus. Numerous variations on the standard MLMA approach have recently been published, with a focus on reducing computational cost. These advances provide researchers applying MLMA methods with many options to choose from, but we caution that MLMA methods are still subject to potential pitfalls. Here we describe and quantify the advantages and pitfalls of MLMA methods as a function of study design and provide recommendations for the application of these methods in practical settings.

  12. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.

    PubMed

    Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H

    2016-01-01

    Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas. © 2016 by American Journal of Neuroradiology.

  13. Developing approaches for linear mixed modeling in landscape genetics through landscape-directed dispersal simulations

    USGS Publications Warehouse

    Row, Jeffrey R.; Knick, Steven T.; Oyler-McCance, Sara J.; Lougheed, Stephen C.; Fedy, Bradley C.

    2017-01-01

    Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.

  14. Alternative mathematical programming formulations for FSS synthesis

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J. A.; Levis, C. A.

    1986-01-01

    A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem.

  15. Endotoxin and gender modify lung function recovery after occupational organic dust exposure: a 30-year study.

    PubMed

    Lai, Peggy S; Hang, Jing-Qing; Valeri, Linda; Zhang, Feng-Ying; Zheng, Bu-Yong; Mehta, Amar J; Shi, Jing; Su, Li; Brown, Dan; Eisen, Ellen A; Christiani, David C

    2015-08-01

    The purpose of this study is to determine the trajectory of lung function change after exposure cessation to occupational organic dust exposure, and to identify factors that modify improvement. The Shanghai Textile Worker Study is a longitudinal study of 447 cotton workers exposed to endotoxin-containing dust and 472 silk workers exposed to non-endotoxin-containing dust. Spirometry was performed at 5-year intervals. Air sampling was performed to estimate individual cumulative exposures. The effect of work cessation on forced expiratory volume in 1 s (FEV1) was modelled using generalised additive mixed effects models to identify the trajectory of FEV1 recovery. Linear mixed effects models incorporating interaction terms were used to identify modifiers of FEV1 recovery. Loss to follow-up was accounted for with inverse probability of censoring weights. 74.2% of the original cohort still alive participated in 2011. Generalised additive mixed models identified a non-linear improvement in FEV1 for all workers after exposure cessation, with no plateau noted 25 years after retirement. Linear mixed effects models incorporating interaction terms identified prior endotoxin exposure (p=0.01) and male gender (p=0.002) as risk factors for impaired FEV1 improvement after exposure cessation. After adjusting for gender, smoking delayed the onset of FEV1 gain but did not affect the overall magnitude of change. Lung function improvement after cessation of exposure to organic dust is sustained. Endotoxin exposure and male gender are risk factors for less FEV1 improvement. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Factors associated with parasite dominance in fishes from Brazil.

    PubMed

    Amarante, Cristina Fernandes do; Tassinari, Wagner de Souza; Luque, Jose Luis; Pereira, Maria Julia Salim

    2016-06-14

    The present study used regression models to evaluate the existence of factors that may influence the numerical parasite dominance with an epidemiological approximation. A database including 3,746 fish specimens and their respective parasites were used to evaluate the relationship between parasite dominance and biotic characteristics inherent to the studied hosts and the parasite taxa. Multivariate, classical, and mixed effects linear regression models were fitted. The calculations were performed using R software (95% CI). In the fitting of the classical multiple linear regression model, freshwater and planktivorous fish species and body length, as well as the species of the taxa Trematoda, Monogenea, and Hirudinea, were associated with parasite dominance. However, the fitting of the mixed effects model showed that the body length of the host and the species of the taxa Nematoda, Trematoda, Monogenea, Hirudinea, and Crustacea were significantly associated with parasite dominance. Studies that consider specific biological aspects of the hosts and parasites should expand the knowledge regarding factors that influence the numerical dominance of fish in Brazil. The use of a mixed model shows, once again, the importance of the appropriate use of a model correlated with the characteristics of the data to obtain consistent results.

  17. An approximate generalized linear model with random effects for informative missing data.

    PubMed

    Follmann, D; Wu, M

    1995-03-01

    This paper develops a class of models to deal with missing data from longitudinal studies. We assume that separate models for the primary response and missingness (e.g., number of missed visits) are linked by a common random parameter. Such models have been developed in the econometrics (Heckman, 1979, Econometrica 47, 153-161) and biostatistics (Wu and Carroll, 1988, Biometrics 44, 175-188) literature for a Gaussian primary response. We allow the primary response, conditional on the random parameter, to follow a generalized linear model and approximate the generalized linear model by conditioning on the data that describes missingness. The resultant approximation is a mixed generalized linear model with possibly heterogeneous random effects. An example is given to illustrate the approximate approach, and simulations are performed to critique the adequacy of the approximation for repeated binary data.

  18. The Box-Cox power transformation on nursing sensitive indicators: Does it matter if structural effects are omitted during the estimation of the transformation parameter?

    PubMed Central

    2011-01-01

    Background Many nursing and health related research studies have continuous outcome measures that are inherently non-normal in distribution. The Box-Cox transformation provides a powerful tool for developing a parsimonious model for data representation and interpretation when the distribution of the dependent variable, or outcome measure, of interest deviates from the normal distribution. The objectives of this study was to contrast the effect of obtaining the Box-Cox power transformation parameter and subsequent analysis of variance with or without a priori knowledge of predictor variables under the classic linear or linear mixed model settings. Methods Simulation data from a 3 × 4 factorial treatments design, along with the Patient Falls and Patient Injury Falls from the National Database of Nursing Quality Indicators (NDNQI®) for the 3rd quarter of 2007 from a convenience sample of over one thousand US hospitals were analyzed. The effect of the nonlinear monotonic transformation was contrasted in two ways: a) estimating the transformation parameter along with factors with potential structural effects, and b) estimating the transformation parameter first and then conducting analysis of variance for the structural effect. Results Linear model ANOVA with Monte Carlo simulation and mixed models with correlated error terms with NDNQI examples showed no substantial differences on statistical tests for structural effects if the factors with structural effects were omitted during the estimation of the transformation parameter. Conclusions The Box-Cox power transformation can still be an effective tool for validating statistical inferences with large observational, cross-sectional, and hierarchical or repeated measure studies under the linear or the mixed model settings without prior knowledge of all the factors with potential structural effects. PMID:21854614

  19. The Box-Cox power transformation on nursing sensitive indicators: does it matter if structural effects are omitted during the estimation of the transformation parameter?

    PubMed

    Hou, Qingjiang; Mahnken, Jonathan D; Gajewski, Byron J; Dunton, Nancy

    2011-08-19

    Many nursing and health related research studies have continuous outcome measures that are inherently non-normal in distribution. The Box-Cox transformation provides a powerful tool for developing a parsimonious model for data representation and interpretation when the distribution of the dependent variable, or outcome measure, of interest deviates from the normal distribution. The objectives of this study was to contrast the effect of obtaining the Box-Cox power transformation parameter and subsequent analysis of variance with or without a priori knowledge of predictor variables under the classic linear or linear mixed model settings. Simulation data from a 3 × 4 factorial treatments design, along with the Patient Falls and Patient Injury Falls from the National Database of Nursing Quality Indicators (NDNQI® for the 3rd quarter of 2007 from a convenience sample of over one thousand US hospitals were analyzed. The effect of the nonlinear monotonic transformation was contrasted in two ways: a) estimating the transformation parameter along with factors with potential structural effects, and b) estimating the transformation parameter first and then conducting analysis of variance for the structural effect. Linear model ANOVA with Monte Carlo simulation and mixed models with correlated error terms with NDNQI examples showed no substantial differences on statistical tests for structural effects if the factors with structural effects were omitted during the estimation of the transformation parameter. The Box-Cox power transformation can still be an effective tool for validating statistical inferences with large observational, cross-sectional, and hierarchical or repeated measure studies under the linear or the mixed model settings without prior knowledge of all the factors with potential structural effects.

  20. Effect of correlation on covariate selection in linear and nonlinear mixed effect models.

    PubMed

    Bonate, Peter L

    2017-01-01

    The effect of correlation among covariates on covariate selection was examined with linear and nonlinear mixed effect models. Demographic covariates were extracted from the National Health and Nutrition Examination Survey III database. Concentration-time profiles were Monte Carlo simulated where only one covariate affected apparent oral clearance (CL/F). A series of univariate covariate population pharmacokinetic models was fit to the data and compared with the reduced model without covariate. The "best" covariate was identified using either the likelihood ratio test statistic or AIC. Weight and body surface area (calculated using Gehan and George equation, 1970) were highly correlated (r = 0.98). Body surface area was often selected as a better covariate than weight, sometimes as high as 1 in 5 times, when weight was the covariate used in the data generating mechanism. In a second simulation, parent drug concentration and three metabolites were simulated from a thorough QT study and used as covariates in a series of univariate linear mixed effects models of ddQTc interval prolongation. The covariate with the largest significant LRT statistic was deemed the "best" predictor. When the metabolite was formation-rate limited and only parent concentrations affected ddQTc intervals the metabolite was chosen as a better predictor as often as 1 in 5 times depending on the slope of the relationship between parent concentrations and ddQTc intervals. A correlated covariate can be chosen as being a better predictor than another covariate in a linear or nonlinear population analysis by sheer correlation These results explain why for the same drug different covariates may be identified in different analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. A geometric nonlinear degenerated shell element using a mixed formulation with independently assumed strain fields. Final Report; Ph.D. Thesis, 1989

    NASA Technical Reports Server (NTRS)

    Graf, Wiley E.

    1991-01-01

    A mixed formulation is chosen to overcome deficiencies of the standard displacement-based shell model. Element development is traced from the incremental variational principle on through to the final set of equilibrium equations. Particular attention is paid to developing specific guidelines for selecting the optimal set of strain parameters. A discussion of constraint index concepts and their predictive capability related to locking is included. Performance characteristics of the elements are assessed in a wide variety of linear and nonlinear plate/shell problems. Despite limiting the study to geometric nonlinear analysis, a substantial amount of additional insight concerning the finite element modeling of thin plate/shell structures is provided. For example, in nonlinear analysis, given the same mesh and load step size, mixed elements converge in fewer iterations than equivalent displacement-based models. It is also demonstrated that, in mixed formulations, lower order elements are preferred. Additionally, meshes used to obtain accurate linear solutions do not necessarily converge to the correct nonlinear solution. Finally, a new form of locking was identified associated with employing elements designed for biaxial bending in uniaxial bending applications.

  2. Application of linear mixed-effects model with LASSO to identify metal components associated with cardiac autonomic responses among welders: a repeated measures study

    PubMed Central

    Zhang, Jinming; Cavallari, Jennifer M; Fang, Shona C; Weisskopf, Marc G; Lin, Xihong; Mittleman, Murray A; Christiani, David C

    2017-01-01

    Background Environmental and occupational exposure to metals is ubiquitous worldwide, and understanding the hazardous metal components in this complex mixture is essential for environmental and occupational regulations. Objective To identify hazardous components from metal mixtures that are associated with alterations in cardiac autonomic responses. Methods Urinary concentrations of 16 types of metals were examined and ‘acceleration capacity’ (AC) and ‘deceleration capacity’ (DC), indicators of cardiac autonomic effects, were quantified from ECG recordings among 54 welders. We fitted linear mixed-effects models with least absolute shrinkage and selection operator (LASSO) to identify metal components that are associated with AC and DC. The Bayesian Information Criterion was used as the criterion for model selection procedures. Results Mercury and chromium were selected for DC analysis, whereas mercury, chromium and manganese were selected for AC analysis through the LASSO approach. When we fitted the linear mixed-effects models with ‘selected’ metal components only, the effect of mercury remained significant. Every 1 µg/L increase in urinary mercury was associated with −0.58 ms (−1.03, –0.13) changes in DC and 0.67 ms (0.25, 1.10) changes in AC. Conclusion Our study suggests that exposure to several metals is associated with impaired cardiac autonomic functions. Our findings should be replicated in future studies with larger sample sizes. PMID:28663305

  3. Bayesian inference for two-part mixed-effects model using skew distributions, with application to longitudinal semicontinuous alcohol data.

    PubMed

    Xing, Dongyuan; Huang, Yangxin; Chen, Henian; Zhu, Yiliang; Dagne, Getachew A; Baldwin, Julie

    2017-08-01

    Semicontinuous data featured with an excessive proportion of zeros and right-skewed continuous positive values arise frequently in practice. One example would be the substance abuse/dependence symptoms data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyze repeated measures of semicontinuous data from longitudinal studies. In this paper, we propose a flexible two-part mixed-effects model with skew distributions for correlated semicontinuous alcohol data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: (i) a model on the occurrence of positive values using a generalized logistic mixed-effects model (Part I); and (ii) a model on the intensity of positive values using a linear mixed-effects model where the model errors follow skew distributions including skew- t and skew-normal distributions (Part II). The proposed method is illustrated with an alcohol abuse/dependence symptoms data from a longitudinal observational study, and the analytic results are reported by comparing potential models under different random-effects structures. Simulation studies are conducted to assess the performance of the proposed models and method.

  4. Diagnostic tools for mixing models of stream water chemistry

    USGS Publications Warehouse

    Hooper, Richard P.

    2003-01-01

    Mixing models provide a useful null hypothesis against which to evaluate processes controlling stream water chemical data. Because conservative mixing of end‐members with constant concentration is a linear process, a number of simple mathematical and multivariate statistical methods can be applied to this problem. Although mixing models have been most typically used in the context of mixing soil and groundwater end‐members, an extension of the mathematics of mixing models is presented that assesses the “fit” of a multivariate data set to a lower dimensional mixing subspace without the need for explicitly identified end‐members. Diagnostic tools are developed to determine the approximate rank of the data set and to assess lack of fit of the data. This permits identification of processes that violate the assumptions of the mixing model and can suggest the dominant processes controlling stream water chemical variation. These same diagnostic tools can be used to assess the fit of the chemistry of one site into the mixing subspace of a different site, thereby permitting an assessment of the consistency of controlling end‐members across sites. This technique is applied to a number of sites at the Panola Mountain Research Watershed located near Atlanta, Georgia.

  5. Materiel Acquisition Management of U.S. Army Attack Helicopters

    DTIC Science & Technology

    1989-06-02

    used to evaluate the existing helicopter program periodically in order to determine utility in reference to all evaluation criteria. Defintion of... mixed integer linear programming model, the Phoenix model has demonstrated the potential to assist in the analysis of strategic and operational issues in...Fleet Max i of Aircraft per Fleet Programmed Buys .. -- Technology Unit Production mix Retirement Start-up ROTIE Flying Hour Aviation Overheadl I Aviation

  6. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets

    NASA Astrophysics Data System (ADS)

    Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.

    2018-01-01

    The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.

  7. A joint modeling and estimation method for multivariate longitudinal data with mixed types of responses to analyze physical activity data generated by accelerometers.

    PubMed

    Li, Haocheng; Zhang, Yukun; Carroll, Raymond J; Keadle, Sarah Kozey; Sampson, Joshua N; Matthews, Charles E

    2017-11-10

    A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Multiple component end-member mixing model of dilution: hydrochemical effects of construction water at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2008-12-01

    The standard dual-component and two-member linear mixing model is often used to quantify water mixing of different sources. However, it is no longer applicable whenever actual mixture concentrations are not exactly known because of dilution. For example, low-water-content (low-porosity) rock samples are leached for pore-water chemical compositions, which therefore are diluted in the leachates. A multicomponent, two-member mixing model of dilution has been developed to quantify mixing of water sources and multiple chemical components experiencing dilution in leaching. This extended mixing model was used to quantify fracture-matrix interaction in construction-water migration tests along the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain, Nevada, USA. The model effectively recovers the spatial distribution of water and chemical compositions released from the construction water, and provides invaluable data on the matrix fracture interaction. The methodology and formulations described here are applicable to many sorts of mixing-dilution problems, including dilution in petroleum reservoirs, hydrospheres, chemical constituents in rocks and minerals, monitoring of drilling fluids, and leaching, as well as to environmental science studies.

  9. Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models.

    PubMed

    Khaligh-Razavi, Seyed-Mahdi; Henriksson, Linda; Kay, Kendrick; Kriegeskorte, Nikolaus

    2017-02-01

    Studies of the primate visual system have begun to test a wide range of complex computational object-vision models. Realistic models have many parameters, which in practice cannot be fitted using the limited amounts of brain-activity data typically available. Task performance optimization (e.g. using backpropagation to train neural networks) provides major constraints for fitting parameters and discovering nonlinear representational features appropriate for the task (e.g. object classification). Model representations can be compared to brain representations in terms of the representational dissimilarities they predict for an image set. This method, called representational similarity analysis (RSA), enables us to test the representational feature space as is (fixed RSA) or to fit a linear transformation that mixes the nonlinear model features so as to best explain a cortical area's representational space (mixed RSA). Like voxel/population-receptive-field modelling, mixed RSA uses a training set (different stimuli) to fit one weight per model feature and response channel (voxels here), so as to best predict the response profile across images for each response channel. We analysed response patterns elicited by natural images, which were measured with functional magnetic resonance imaging (fMRI). We found that early visual areas were best accounted for by shallow models, such as a Gabor wavelet pyramid (GWP). The GWP model performed similarly with and without mixing, suggesting that the original features already approximated the representational space, obviating the need for mixing. However, a higher ventral-stream visual representation (lateral occipital region) was best explained by the higher layers of a deep convolutional network and mixing of its feature set was essential for this model to explain the representation. We suspect that mixing was essential because the convolutional network had been trained to discriminate a set of 1000 categories, whose frequencies in the training set did not match their frequencies in natural experience or their behavioural importance. The latter factors might determine the representational prominence of semantic dimensions in higher-level ventral-stream areas. Our results demonstrate the benefits of testing both the specific representational hypothesis expressed by a model's original feature space and the hypothesis space generated by linear transformations of that feature space.

  10. Linear score tests for variance components in linear mixed models and applications to genetic association studies.

    PubMed

    Qu, Long; Guennel, Tobias; Marshall, Scott L

    2013-12-01

    Following the rapid development of genome-scale genotyping technologies, genetic association mapping has become a popular tool to detect genomic regions responsible for certain (disease) phenotypes, especially in early-phase pharmacogenomic studies with limited sample size. In response to such applications, a good association test needs to be (1) applicable to a wide range of possible genetic models, including, but not limited to, the presence of gene-by-environment or gene-by-gene interactions and non-linearity of a group of marker effects, (2) accurate in small samples, fast to compute on the genomic scale, and amenable to large scale multiple testing corrections, and (3) reasonably powerful to locate causal genomic regions. The kernel machine method represented in linear mixed models provides a viable solution by transforming the problem into testing the nullity of variance components. In this study, we consider score-based tests by choosing a statistic linear in the score function. When the model under the null hypothesis has only one error variance parameter, our test is exact in finite samples. When the null model has more than one variance parameter, we develop a new moment-based approximation that performs well in simulations. Through simulations and analysis of real data, we demonstrate that the new test possesses most of the aforementioned characteristics, especially when compared to existing quadratic score tests or restricted likelihood ratio tests. © 2013, The International Biometric Society.

  11. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    NASA Astrophysics Data System (ADS)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-06-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  12. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  13. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    PubMed Central

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  14. Assessing the goodness-of-fit of the Laird and Ware model--an example: the Jimma Infant Survival Differential Longitudinal Study.

    PubMed

    Lesaffre, E; Asefa, M; Verbeke, G

    1999-04-15

    The Jimma Infant Survival Differential Longitudinal Study is an Ethiopian study, set up to establish risk factors affecting infant survival and to investigate socio-economic, maternal and infant-rearing factors that contribute most to the child's early survival. Here, a subgroup of about 1500 children born in Jimma town is examined for their first year's weight gain. Of special interest is the impact of certain cultural practices like uvulectomy, milk teeth extraction and butter swallowing, on child's weight gain; these have never been thoroughly investigated in any study. In this context, the linear mixed model (Laird and Ware) is employed. The purpose of this paper is to illustrate the practical issues when constructing the longitudinal model. Recently developed diagnostics will be used herefor. Finally, special attention will be paid to the two-stage interpretation of the linear mixed model.

  15. Spatial generalised linear mixed models based on distances.

    PubMed

    Melo, Oscar O; Mateu, Jorge; Melo, Carlos E

    2016-10-01

    Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.

  16. Warped linear mixed models for the genetic analysis of transformed phenotypes

    PubMed Central

    Fusi, Nicolo; Lippert, Christoph; Lawrence, Neil D.; Stegle, Oliver

    2014-01-01

    Linear mixed models (LMMs) are a powerful and established tool for studying genotype–phenotype relationships. A limitation of the LMM is that the model assumes Gaussian distributed residuals, a requirement that rarely holds in practice. Violations of this assumption can lead to false conclusions and loss in power. To mitigate this problem, it is common practice to pre-process the phenotypic values to make them as Gaussian as possible, for instance by applying logarithmic or other nonlinear transformations. Unfortunately, different phenotypes require different transformations, and choosing an appropriate transformation is challenging and subjective. Here we present an extension of the LMM that estimates an optimal transformation from the observed data. In simulations and applications to real data from human, mouse and yeast, we show that using transformations inferred by our model increases power in genome-wide association studies and increases the accuracy of heritability estimation and phenotype prediction. PMID:25234577

  17. Warped linear mixed models for the genetic analysis of transformed phenotypes.

    PubMed

    Fusi, Nicolo; Lippert, Christoph; Lawrence, Neil D; Stegle, Oliver

    2014-09-19

    Linear mixed models (LMMs) are a powerful and established tool for studying genotype-phenotype relationships. A limitation of the LMM is that the model assumes Gaussian distributed residuals, a requirement that rarely holds in practice. Violations of this assumption can lead to false conclusions and loss in power. To mitigate this problem, it is common practice to pre-process the phenotypic values to make them as Gaussian as possible, for instance by applying logarithmic or other nonlinear transformations. Unfortunately, different phenotypes require different transformations, and choosing an appropriate transformation is challenging and subjective. Here we present an extension of the LMM that estimates an optimal transformation from the observed data. In simulations and applications to real data from human, mouse and yeast, we show that using transformations inferred by our model increases power in genome-wide association studies and increases the accuracy of heritability estimation and phenotype prediction.

  18. 40 CFR 60.667 - Chemicals affected by subpart NNN.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alcohols, ethoxylated, mixed Linear alcohols, ethoxylated, and sulfated, sodium salt, mixed Linear alcohols, sulfated, sodium salt, mixed Linear alkylbenzene 123-01-3 Magnesium acetate 142-72-3 Maleic anhydride 108...

  19. 40 CFR 60.667 - Chemicals affected by subpart NNN.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alcohols, ethoxylated, mixed Linear alcohols, ethoxylated, and sulfated, sodium salt, mixed Linear alcohols, sulfated, sodium salt, mixed Linear alkylbenzene 123-01-3 Magnesium acetate 142-72-3 Maleic anhydride 108...

  20. A Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Parsakhoo, Zahra; Shao, Yaping

    2017-04-01

    Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).

  1. Statistical Methodology for the Analysis of Repeated Duration Data in Behavioral Studies

    ERIC Educational Resources Information Center

    Letué, Frédérique; Martinez, Marie-José; Samson, Adeline; Vilain, Anne; Vilain, Coriandre

    2018-01-01

    Purpose: Repeated duration data are frequently used in behavioral studies. Classical linear or log-linear mixed models are often inadequate to analyze such data, because they usually consist of nonnegative and skew-distributed variables. Therefore, we recommend use of a statistical methodology specific to duration data. Method: We propose a…

  2. Spatial Assessment of Model Errors from Four Regression Techniques

    Treesearch

    Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove

    2005-01-01

    Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...

  3. Light Scattering Study of Mixed Micelles Made from Elastin-Like Polypeptide Linear Chains and Trimers

    NASA Astrophysics Data System (ADS)

    Terrano, Daniel; Tsuper, Ilona; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    Temperature sensitive nanoparticles were generated from a construct (H20F) of three chains of elastin-like polypeptides (ELP) linked to a negatively charged foldon domain. This ELP system was mixed at different ratios with linear chains of ELP (H40L) which lacks the foldon domain. The mixed system is soluble at room temperature and at a transition temperature (Tt) will form swollen micelles with the hydrophobic linear chains hidden inside. This system was studied using depolarized dynamic light scattering (DDLS) and static light scattering (SLS) to determine the size, shape, and internal structure of the mixed micelles. The mixed micelle in equal parts of H20F and H40L show a constant apparent hydrodynamic radius of 40-45 nm at the concentration window from 25:25 to 60:60 uM (1:1 ratio). At a fixed 50 uM concentration of the H20F, varying H40L concentration from 5 to 80 uM resulted in a linear growth in the hydrodynamic radius from about 11 to about 62 nm, along with a 1000-fold increase in VH signal. A possible simple model explaining the growth of the swollen micelles is considered. Lastly, the VH signal can indicate elongation in the geometry of the particle or could possibly be a result from anisotropic properties from the core of the micelle. SLS was used to study the molecular weight, and the radius of gyration of the micelle to help identify the structure and morphology of mixed micelles and the tangible cause of the VH signal.

  4. Marginal and Random Intercepts Models for Longitudinal Binary Data with Examples from Criminology

    ERIC Educational Resources Information Center

    Long, Jeffrey D.; Loeber, Rolf; Farrington, David P.

    2009-01-01

    Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides…

  5. Measuring trends of outpatient antibiotic use in Europe: jointly modelling longitudinal data in defined daily doses and packages.

    PubMed

    Bruyndonckx, Robin; Hens, Niel; Aerts, Marc; Goossens, Herman; Molenberghs, Geert; Coenen, Samuel

    2014-07-01

    To complement analyses of the linear trend and seasonal fluctuation of European outpatient antibiotic use expressed in defined daily doses (DDD) by analyses of data in packages, to assess the agreement between both measures and to study changes in the number of DDD per package over time. Data on outpatient antibiotic use, aggregated at the level of the active substance (WHO version 2011) were collected from 2000 to 2007 for 31 countries and expressed in DDD and packages per 1000 inhabitants per day (DID and PID, respectively). Data expressed in DID and PID were analysed separately using non-linear mixed models while the agreement between these measurements was analysed through a joint non-linear mixed model. The change in DDD per package over time was studied with a linear mixed model. Total outpatient antibiotic and penicillin use in Europe and their seasonal fluctuation significantly increased in DID, but not in PID. The use of combinations of penicillins significantly increased in DID and in PID. Broad-spectrum penicillin use did not increase significantly in DID and decreased significantly in PID. For all but one subgroup, country-specific deviations moved in the same direction whether measured in DID or PID. The correlations are not perfect. The DDD per package increased significantly over time for all but one subgroup. Outpatient antibiotic use in Europe shows contrasting trends, depending on whether DID or PID is used as the measure. The increase of the DDD per package corroborates the recommendation to adopt PID to monitor outpatient antibiotic use in Europe. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Functional linear models for association analysis of quantitative traits.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY PERIODICALS, INC.

  7. Trending in Probability of Collision Measurements via a Bayesian Zero-Inflated Beta Mixed Model

    NASA Technical Reports Server (NTRS)

    Vallejo, Jonathon; Hejduk, Matt; Stamey, James

    2015-01-01

    We investigate the performance of a generalized linear mixed model in predicting the Probabilities of Collision (Pc) for conjunction events. Specifically, we apply this model to the log(sub 10) transformation of these probabilities and argue that this transformation yields values that can be considered bounded in practice. Additionally, this bounded random variable, after scaling, is zero-inflated. Consequently, we model these values using the zero-inflated Beta distribution, and utilize the Bayesian paradigm and the mixed model framework to borrow information from past and current events. This provides a natural way to model the data and provides a basis for answering questions of interest, such as what is the likelihood of observing a probability of collision equal to the effective value of zero on a subsequent observation.

  8. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model.

    PubMed

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-08-16

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target.

  9. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model

    PubMed Central

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-01-01

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target. PMID:27527065

  10. Linear stability analysis of particle-laden hypopycnal plumes

    NASA Astrophysics Data System (ADS)

    Farenzena, Bruno Avila; Silvestrini, Jorge Hugo

    2017-12-01

    Gravity-driven riverine outflows are responsible for carrying sediments to the coastal waters. The turbulent mixing in these flows is associated with shear and gravitational instabilities such as Kelvin-Helmholtz, Holmboe, and Rayleigh-Taylor. Results from temporal linear stability analysis of a two-layer stratified flow are presented, investigating the behavior of settling particles and mixing region thickness on the flow stability in the presence of ambient shear. The particles are considered suspended in the transport fluid, and its sedimentation is modeled with a constant valued settling velocity. Three scenarios, regarding the mixing region thickness, were identified: the poorly mixed environment, the strong mixed environment, and intermediate scenario. It was observed that Kelvin-Helmholtz and settling convection modes are the two fastest growing modes depending on the particles settling velocity and the total Richardson number. The second scenario presents a modified Rayleigh-Taylor instability, which is the dominant mode. The third case can have Kelvin-Helmholtz, settling convection, and modified Rayleigh-Taylor modes as the fastest growing mode depending on the combination of parameters.

  11. Investigating the Metallicity–Mixing-length Relation

    NASA Astrophysics Data System (ADS)

    Viani, Lucas S.; Basu, Sarbani; Joel Ong J., M.; Bonaca, Ana; Chaplin, William J.

    2018-05-01

    Stellar models typically use the mixing-length approximation as a way to implement convection in a simplified manner. While conventionally the value of the mixing-length parameter, α, used is the solar-calibrated value, many studies have shown that other values of α are needed to properly model stars. This uncertainty in the value of the mixing-length parameter is a major source of error in stellar models and isochrones. Using asteroseismic data, we determine the value of the mixing-length parameter required to properly model a set of about 450 stars ranging in log g, {T}eff}, and [{Fe}/{{H}}]. The relationship between the value of α required and the properties of the star is then investigated. For Eddington atmosphere, non-diffusion models, we find that the value of α can be approximated by a linear model, in the form of α /{α }ȯ =5.426{--}0.101 {log}(g)-1.071 {log}({T}eff}) +0.437([{Fe}/{{H}}]). This process is repeated using a variety of model physics, as well as compared with previous studies and results from 3D convective simulations.

  12. A Parameter Subset Selection Algorithm for Mixed-Effects Models

    DOE PAGES

    Schmidt, Kathleen L.; Smith, Ralph C.

    2016-01-01

    Mixed-effects models are commonly used to statistically model phenomena that include attributes associated with a population or general underlying mechanism as well as effects specific to individuals or components of the general mechanism. This can include individual effects associated with data from multiple experiments. However, the parameterizations used to incorporate the population and individual effects are often unidentifiable in the sense that parameters are not uniquely specified by the data. As a result, the current literature focuses on model selection, by which insensitive parameters are fixed or removed from the model. Model selection methods that employ information criteria are applicablemore » to both linear and nonlinear mixed-effects models, but such techniques are limited in that they are computationally prohibitive for large problems due to the number of possible models that must be tested. To limit the scope of possible models for model selection via information criteria, we introduce a parameter subset selection (PSS) algorithm for mixed-effects models, which orders the parameters by their significance. In conclusion, we provide examples to verify the effectiveness of the PSS algorithm and to test the performance of mixed-effects model selection that makes use of parameter subset selection.« less

  13. An extended heterogeneous car-following model accounting for anticipation driving behavior and mixed maximum speeds

    NASA Astrophysics Data System (ADS)

    Sun, Fengxin; Wang, Jufeng; Cheng, Rongjun; Ge, Hongxia

    2018-02-01

    The optimal driving speeds of the different vehicles may be different for the same headway. In the optimal velocity function of the optimal velocity (OV) model, the maximum speed vmax is an important parameter determining the optimal driving speed. A vehicle with higher maximum speed is more willing to drive faster than that with lower maximum speed in similar situation. By incorporating the anticipation driving behavior of relative velocity and mixed maximum speeds of different percentages into optimal velocity function, an extended heterogeneous car-following model is presented in this paper. The analytical linear stable condition for this extended heterogeneous traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulted from the cooperation between anticipation driving behavior and heterogeneous maximum speeds in the optimal velocity function. The analytical and numerical results all demonstrate that strengthening driver's anticipation effect can improve the stability of heterogeneous traffic flow, and increasing the lowest value in the mixed maximum speeds will result in more instability, but increasing the value or proportion of the part already having higher maximum speed will cause different stabilities at high or low traffic densities.

  14. On the repeated measures designs and sample sizes for randomized controlled trials.

    PubMed

    Tango, Toshiro

    2016-04-01

    For the analysis of longitudinal or repeated measures data, generalized linear mixed-effects models provide a flexible and powerful tool to deal with heterogeneity among subject response profiles. However, the typical statistical design adopted in usual randomized controlled trials is an analysis of covariance type analysis using a pre-defined pair of "pre-post" data, in which pre-(baseline) data are used as a covariate for adjustment together with other covariates. Then, the major design issue is to calculate the sample size or the number of subjects allocated to each treatment group. In this paper, we propose a new repeated measures design and sample size calculations combined with generalized linear mixed-effects models that depend not only on the number of subjects but on the number of repeated measures before and after randomization per subject used for the analysis. The main advantages of the proposed design combined with the generalized linear mixed-effects models are (1) it can easily handle missing data by applying the likelihood-based ignorable analyses under the missing at random assumption and (2) it may lead to a reduction in sample size, compared with the simple pre-post design. The proposed designs and the sample size calculations are illustrated with real data arising from randomized controlled trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. A unified view of convective transports by stratocumulus clouds, shallow cumulus clouds, and deep convection

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1990-01-01

    A bulk planetary boundary layer (PBL) model was developed with a simple internal vertical structure and a simple second-order closure, designed for use as a PBL parameterization in a large-scale model. The model allows the mean fields to vary with height within the PBL, and so must address the vertical profiles of the turbulent fluxes, going beyond the usual mixed-layer assumption that the fluxes of conservative variables are linear with height. This is accomplished using the same convective mass flux approach that has also been used in cumulus parameterizations. The purpose is to show that such a mass flux model can include, in a single framework, the compensating subsidence concept, downgradient mixing, and well-mixed layers.

  16. A comparative study of generalized linear mixed modelling and artificial neural network approach for the joint modelling of survival and incidence of Dengue patients in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Hapugoda, J. C.; Sooriyarachchi, M. R.

    2017-09-01

    Survival time of patients with a disease and the incidence of that particular disease (count) is frequently observed in medical studies with the data of a clustered nature. In many cases, though, the survival times and the count can be correlated in a way that, diseases that occur rarely could have shorter survival times or vice versa. Due to this fact, joint modelling of these two variables will provide interesting and certainly improved results than modelling these separately. Authors have previously proposed a methodology using Generalized Linear Mixed Models (GLMM) by joining the Discrete Time Hazard model with the Poisson Regression model to jointly model survival and count model. As Aritificial Neural Network (ANN) has become a most powerful computational tool to model complex non-linear systems, it was proposed to develop a new joint model of survival and count of Dengue patients of Sri Lanka by using that approach. Thus, the objective of this study is to develop a model using ANN approach and compare the results with the previously developed GLMM model. As the response variables are continuous in nature, Generalized Regression Neural Network (GRNN) approach was adopted to model the data. To compare the model fit, measures such as root mean square error (RMSE), absolute mean error (AME) and correlation coefficient (R) were used. The measures indicate the GRNN model fits the data better than the GLMM model.

  17. Geochemical modeling of magma mixing and magma reservoir volumes during early episodes of Kīlauea Volcano's Pu`u `Ō`ō eruption

    NASA Astrophysics Data System (ADS)

    Shamberger, Patrick J.; Garcia, Michael O.

    2007-02-01

    Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3 31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ˜3 to ˜10 12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir.

  18. Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models with Factor Structures

    ERIC Educational Resources Information Center

    Jeon, Minjeong; Rabe-Hesketh, Sophia

    2012-01-01

    In this article, the authors suggest a profile-likelihood approach for estimating complex models by maximum likelihood (ML) using standard software and minimal programming. The method works whenever setting some of the parameters of the model to known constants turns the model into a standard model. An important class of models that can be…

  19. Using a generalized linear mixed model approach to explore the role of age, motor proficiency, and cognitive styles in children's reach estimation accuracy.

    PubMed

    Caçola, Priscila M; Pant, Mohan D

    2014-10-01

    The purpose was to use a multi-level statistical technique to analyze how children's age, motor proficiency, and cognitive styles interact to affect accuracy on reach estimation tasks via Motor Imagery and Visual Imagery. Results from the Generalized Linear Mixed Model analysis (GLMM) indicated that only the 7-year-old age group had significant random intercepts for both tasks. Motor proficiency predicted accuracy in reach tasks, and cognitive styles (object scale) predicted accuracy in the motor imagery task. GLMM analysis is suitable to explore age and other parameters of development. In this case, it allowed an assessment of motor proficiency interacting with age to shape how children represent, plan, and act on the environment.

  20. Linear mixing model applied to coarse resolution satellite data

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  1. Assessment of PDF Micromixing Models Using DNS Data for a Two-Step Reaction

    NASA Astrophysics Data System (ADS)

    Tsai, Kuochen; Chakrabarti, Mitali; Fox, Rodney O.; Hill, James C.

    1996-11-01

    Although the probability density function (PDF) method is known to treat the chemical reaction terms exactly, its application to turbulent reacting flows have been overshadowed by the ability to model the molecular mixing terms satisfactorily. In this study, two PDF molecular mixing models, the linear-mean-square-estimation (LMSE or IEM) model and the generalized interaction-by-exchange-with-the-mean (GIEM) model, are compared with the DNS data in decaying turbulence with a two-step parallel-consecutive reaction and two segregated initial conditions: ``slabs" and ``blobs". Since the molecular mixing model is expected to have a strong effect on the mean values of chemical species under such initial conditions, the model evaluation is intended to answer the following questions: Can the PDF models predict the mean values of chemical species correctly with completely segregated initial conditions? (2) Is a single molecular mixing timescale sufficient for the PDF models to predict the mean values with different initial conditions? (3) Will the chemical reactions change the molecular mixing timescales of the reacting species enough to affect the accuracy of the model's prediction for the mean values of chemical species?

  2. Modeling Systematicity and Individuality in Nonlinear Second Language Development: The Case of English Grammatical Morphemes

    ERIC Educational Resources Information Center

    Murakami, Akira

    2016-01-01

    This article introduces two sophisticated statistical modeling techniques that allow researchers to analyze systematicity, individual variation, and nonlinearity in second language (L2) development. Generalized linear mixed-effects models can be used to quantify individual variation and examine systematic effects simultaneously, and generalized…

  3. POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models

    PubMed Central

    Johnson, Jacqueline L.; Muller, Keith E.; Slaughter, James C.; Gurka, Matthew J.; Gribbin, Matthew J.; Simpson, Sean L.

    2014-01-01

    The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts. PMID:25400516

  4. Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators.

    PubMed

    Arribas-Gil, Ana; De la Cruz, Rolando; Lebarbier, Emilie; Meza, Cristian

    2015-06-01

    We propose a classification method for longitudinal data. The Bayes classifier is classically used to determine a classification rule where the underlying density in each class needs to be well modeled and estimated. This work is motivated by a real dataset of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes. The proposed model, which is a semiparametric linear mixed-effects model (SLMM), is a particular case of the semiparametric nonlinear mixed-effects class of models (SNMM) in which finite dimensional (fixed effects and variance components) and infinite dimensional (an unknown function) parameters have to be estimated. In SNMM's maximum likelihood estimation is performed iteratively alternating parametric and nonparametric procedures. However, if one can make the assumption that the random effects and the unknown function interact in a linear way, more efficient estimation methods can be used. Our contribution is the proposal of a unified estimation procedure based on a penalized EM-type algorithm. The Expectation and Maximization steps are explicit. In this latter step, the unknown function is estimated in a nonparametric fashion using a lasso-type procedure. A simulation study and an application on real data are performed. © 2015, The International Biometric Society.

  5. Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution

    PubMed Central

    Matos, Larissa A.; Bandyopadhyay, Dipankar; Castro, Luis M.; Lachos, Victor H.

    2015-01-01

    In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyse these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013b) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes. PMID:26190871

  6. Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies.

    PubMed

    Koerner, Tess K; Zhang, Yang

    2017-02-27

    Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers.

  7. Isolating the cow-specific part of residual energy intake in lactating dairy cows using random regressions.

    PubMed

    Fischer, A; Friggens, N C; Berry, D P; Faverdin, P

    2018-07-01

    The ability to properly assess and accurately phenotype true differences in feed efficiency among dairy cows is key to the development of breeding programs for improving feed efficiency. The variability among individuals in feed efficiency is commonly characterised by the residual intake approach. Residual feed intake is represented by the residuals of a linear regression of intake on the corresponding quantities of the biological functions that consume (or release) energy. However, the residuals include both, model fitting and measurement errors as well as any variability in cow efficiency. The objective of this study was to isolate the individual animal variability in feed efficiency from the residual component. Two separate models were fitted, in one the standard residual energy intake (REI) was calculated as the residual of a multiple linear regression of lactation average net energy intake (NEI) on lactation average milk energy output, average metabolic BW, as well as lactation loss and gain of body condition score. In the other, a linear mixed model was used to simultaneously fit fixed linear regressions and random cow levels on the biological traits and intercept using fortnight repeated measures for the variables. This method split the predicted NEI in two parts: one quantifying the population mean intercept and coefficients, and one quantifying cow-specific deviations in the intercept and coefficients. The cow-specific part of predicted NEI was assumed to isolate true differences in feed efficiency among cows. NEI and associated energy expenditure phenotypes were available for the first 17 fortnights of lactation from 119 Holstein cows; all fed a constant energy-rich diet. Mixed models fitting cow-specific intercept and coefficients to different combinations of the aforementioned energy expenditure traits, calculated on a fortnightly basis, were compared. The variance of REI estimated with the lactation average model represented only 8% of the variance of measured NEI. Among all compared mixed models, the variance of the cow-specific part of predicted NEI represented between 53% and 59% of the variance of REI estimated from the lactation average model or between 4% and 5% of the variance of measured NEI. The remaining 41% to 47% of the variance of REI estimated with the lactation average model may therefore reflect model fitting errors or measurement errors. In conclusion, the use of a mixed model framework with cow-specific random regressions seems to be a promising method to isolate the cow-specific component of REI in dairy cows.

  8. Implementing Restricted Maximum Likelihood Estimation in Structural Equation Models

    ERIC Educational Resources Information Center

    Cheung, Mike W.-L.

    2013-01-01

    Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…

  9. Linear models for sound from supersonic reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  10. Wavelet-based functional linear mixed models: an application to measurement error-corrected distributed lag models.

    PubMed

    Malloy, Elizabeth J; Morris, Jeffrey S; Adar, Sara D; Suh, Helen; Gold, Diane R; Coull, Brent A

    2010-07-01

    Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient is necessary for estimation. Additional issues in this setting are the possibility of exposure measurement error and the need to incorporate additional potential confounders, such as meteorological or co-pollutant measures, that themselves may have effects that vary over time. To accommodate all these features, we develop wavelet-based linear mixed distributed lag models that incorporate repeated measures of functional data as covariates into a linear mixed model. A Bayesian approach to model fitting uses wavelet shrinkage to regularize functional coefficients. We show that, as long as the exposure error induces fine-scale variability in the functional exposure profile and the distributed lag function representing the exposure effect varies smoothly in time, the model corrects for the exposure measurement error without further adjustment. Both these conditions are likely to hold in the environmental applications we consider. We examine properties of the method using simulations and apply the method to data from a study examining the association between PM, measured as hourly averages for 1-7 days, and markers of acute systemic inflammation. We use the method to fully control for the effects of confounding by other time-varying predictors, such as temperature and co-pollutants.

  11. A mixing-model approach to quantifying sources of organic matter to salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Bowles, K. M.; Meile, C. D.

    2010-12-01

    Salt marshes are highly productive ecosystems, where autochthonous production controls an intricate exchange of carbon and energy among organisms. The major sources of organic carbon to these systems include 1) autochthonous production by vascular plant matter, 2) import of allochthonous plant material, and 3) phytoplankton biomass. Quantifying the relative contribution of organic matter sources to a salt marsh is important for understanding the fate and transformation of organic carbon in these systems, which also impacts the timing and magnitude of carbon export to the coastal ocean. A common approach to quantify organic matter source contributions to mixtures is the use of linear mixing models. To estimate the relative contributions of endmember materials to total organic matter in the sediment, the problem is formulated as a constrained linear least-square problem. However, the type of data that is utilized in such mixing models, the uncertainties in endmember compositions and the temporal dynamics of non-conservative entitites can have varying affects on the results. Making use of a comprehensive data set that encompasses several endmember characteristics - including a yearlong degradation experiment - we study the impact of these factors on estimates of the origin of sedimentary organic carbon in a saltmarsh located in the SE United States. We first evaluate the sensitivity of linear mixing models to the type of data employed by analyzing a series of mixing models that utilize various combinations of parameters (i.e. endmember characteristics such as δ13COC, C/N ratios or lignin content). Next, we assess the importance of using more than the minimum number of parameters required to estimate endmember contributions to the total organic matter pool. Then, we quantify the impact of data uncertainty on the outcome of the analysis using Monte Carlo simulations and accounting for the uncertainty in endmember characteristics. Finally, as biogeochemical processes can alter endmember characteristics over time, we investigate the effect of early diagenesis on chosen parameters, an analysis that entails an assessment of the organic matter age distribution. Thus, estimates of the relative contributions of phytoplankton, C3 and C4 plants to bulk sediment organic matter depend not only on environmental characteristics that impact reactivity, but also on sediment mixing processes.

  12. Mathematical optimization of high dose-rate brachytherapy—derivation of a linear penalty model from a dose-volume model

    NASA Astrophysics Data System (ADS)

    Morén, B.; Larsson, T.; Carlsson Tedgren, Å.

    2018-03-01

    High dose-rate brachytherapy is a method for cancer treatment where the radiation source is placed within the body, inside or close to a tumour. For dose planning, mathematical optimization techniques are being used in practice and the most common approach is to use a linear model which penalizes deviations from specified dose limits for the tumour and for nearby organs. This linear penalty model is easy to solve, but its weakness lies in the poor correlation of its objective value and the dose-volume objectives that are used clinically to evaluate dose distributions. Furthermore, the model contains parameters that have no clear clinical interpretation. Another approach for dose planning is to solve mixed-integer optimization models with explicit dose-volume constraints which include parameters that directly correspond to dose-volume objectives, and which are therefore tangible. The two mentioned models take the overall goals for dose planning into account in fundamentally different ways. We show that there is, however, a mathematical relationship between them by deriving a linear penalty model from a dose-volume model. This relationship has not been established before and improves the understanding of the linear penalty model. In particular, the parameters of the linear penalty model can be interpreted as dual variables in the dose-volume model.

  13. MILP model for integrated balancing and sequencing mixed-model two-sided assembly line with variable launching interval and assignment restrictions

    NASA Astrophysics Data System (ADS)

    Azmi, N. I. L. Mohd; Ahmad, R.; Zainuddin, Z. M.

    2017-09-01

    This research explores the Mixed-Model Two-Sided Assembly Line (MMTSAL). There are two interrelated problems in MMTSAL which are line balancing and model sequencing. In previous studies, many researchers considered these problems separately and only few studied them simultaneously for one-sided line. However in this study, these two problems are solved simultaneously to obtain more efficient solution. The Mixed Integer Linear Programming (MILP) model with objectives of minimizing total utility work and idle time is generated by considering variable launching interval and assignment restriction constraint. The problem is analysed using small-size test cases to validate the integrated model. Throughout this paper, numerical experiment was conducted by using General Algebraic Modelling System (GAMS) with the solver CPLEX. Experimental results indicate that integrating the problems of model sequencing and line balancing help to minimise the proposed objectives function.

  14. Water mass mixing: The dominant control on the zinc distribution in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Roshan, Saeed; Wu, Jingfeng

    2015-07-01

    Dissolved zinc (dZn) concentration was determined in the North Atlantic during the U.S. GEOTRACES 2010 and 2011 cruise (GOETRACES GA03). A relatively poor linear correlation (R2 = 0.756) was observed between dZn and silicic acid (Si), the slope of which was 0.0577 nM/µmol/kg. We attribute the relatively poor dZn-Si correlation to the following processes: (a) differential regeneration of zinc relative to silicic acid, (b) mixing of multiple water masses that have different Zn/Si, and (c) zinc sources such as sedimentary or hydrothermal. To quantitatively distinguish these possibilities, we use the results of Optimum Multi-Parameter Water Mass Analysis by Jenkins et al. (2015) to model the zinc distribution below 500 m. We hypothesized two scenarios: conservative mixing and regenerative mixing. The first scenario (conservative) could be modeled to results in a correlation with observations with a R2 = 0.846. In the second scenario, we took a Si-related regeneration into account, which could model the observations with a R2 = 0.867. Through this regenerative mixing scenario, we estimated a Zn/Si = 0.0548 nM/µmol/kg that may be more realistic than linear regression slope due to accounting for process b. However, this did not improve the model substantially (R2 = 0.867 versus0.846), which may indicate the insignificant effect of remineralization on the zinc distribution in this region. The relative weakness in the model-observation correlation (R2~0.85 for both scenarios) implies that processes (a) and (c) may be plausible. Furthermore, dZn in the upper 500 m exhibited a very poor correlation with apparent oxygen utilization, suggesting a minimal role for the organic matter-associated remineralization process.

  15. Genetic parameters and signatures of selection in two divergent laying hen lines selected for feather pecking behaviour.

    PubMed

    Grams, Vanessa; Wellmann, Robin; Preuß, Siegfried; Grashorn, Michael A; Kjaer, Jörgen B; Bessei, Werner; Bennewitz, Jörn

    2015-09-30

    Feather pecking (FP) in laying hens is a well-known and multi-factorial behaviour with a genetic background. In a selection experiment, two lines were developed for 11 generations for high (HFP) and low (LFP) feather pecking, respectively. Starting with the second generation of selection, there was a constant difference in mean number of FP bouts between both lines. We used the data from this experiment to perform a quantitative genetic analysis and to map selection signatures. Pedigree and phenotypic data were available for the last six generations of both lines. Univariate quantitative genetic analyses were conducted using mixed linear and generalized mixed linear models assuming a Poisson distribution. Selection signatures were mapped using 33,228 single nucleotide polymorphisms (SNPs) genotyped on 41 HFP and 34 LFP individuals of generation 11. For each SNP, we estimated Wright's fixation index (FST). We tested the null hypothesis that FST is driven purely by genetic drift against the alternative hypothesis that it is driven by genetic drift and selection. The mixed linear model failed to analyze the LFP data because of the large number of 0s in the observation vector. The Poisson model fitted the data well and revealed a small but continuous genetic trend in both lines. Most of the 17 genome-wide significant SNPs were located on chromosomes 3 and 4. Thirteen clusters with at least two significant SNPs within an interval of 3 Mb maximum were identified. Two clusters were mapped on chromosomes 3, 4, 8 and 19. Of the 17 genome-wide significant SNPs, 12 were located within the identified clusters. This indicates a non-random distribution of significant SNPs and points to the presence of selection sweeps. Data on FP should be analysed using generalised linear mixed models assuming a Poisson distribution, especially if the number of FP bouts is small and the distribution is heavily peaked at 0. The FST-based approach was suitable to map selection signatures that need to be confirmed by linkage or association mapping.

  16. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  17. Dynamic Latent Trait Models with Mixed Hidden Markov Structure for Mixed Longitudinal Outcomes.

    PubMed

    Zhang, Yue; Berhane, Kiros

    2016-01-01

    We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMM). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study (CHS) to jointly model questionnaire based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.

  18. Effects of hydrokinetic turbine sound on the behavior of four species of fish within an experimental mesocosm

    DOE PAGES

    Schramm, Michael P.; Bevelhimer, Mark; Scherelis, Constantin

    2017-02-04

    The development of hydrokinetic energy technologies (e.g., tidal turbines) has raised concern over the potential impacts of underwater sound produced by hydrokinetic turbines on fish species likely to encounter these turbines. To assess the potential for behavioral impacts, we exposed four species of fish to varying intensities of recorded hydrokinetic turbine sound in a semi-natural environment. Although we tested freshwater species (redhorse suckers [Moxostoma spp], freshwater drum [Aplondinotus grunniens], largemouth bass [Micropterus salmoides], and rainbow trout [Oncorhynchus mykiss]), these species are also representative of the hearing physiology and sensitivity of estuarine species that would be affected at tidal energy sites.more » Here, we evaluated changes in fish position relative to different intensities of turbine sound as well as trends in location over time with linear mixed-effects and generalized additive mixed models. We also evaluated changes in the proportion of near-source detections relative to sound intensity and exposure time with generalized linear mixed models and generalized additive models. Models indicated that redhorse suckers may respond to sustained turbine sound by increasing distance from the sound source. Freshwater drum models suggested a mixed response to turbine sound, and largemouth bass and rainbow trout models did not indicate any likely responses to turbine sound. Lastly, findings highlight the importance for future research to utilize accurate localization systems, different species, validated sound transmission distances, and to consider different types of behavioral responses to different turbine designs and to the cumulative sound of arrays of multiple turbines.« less

  19. Effects of hydrokinetic turbine sound on the behavior of four species of fish within an experimental mesocosm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, Michael P.; Bevelhimer, Mark; Scherelis, Constantin

    The development of hydrokinetic energy technologies (e.g., tidal turbines) has raised concern over the potential impacts of underwater sound produced by hydrokinetic turbines on fish species likely to encounter these turbines. To assess the potential for behavioral impacts, we exposed four species of fish to varying intensities of recorded hydrokinetic turbine sound in a semi-natural environment. Although we tested freshwater species (redhorse suckers [Moxostoma spp], freshwater drum [Aplondinotus grunniens], largemouth bass [Micropterus salmoides], and rainbow trout [Oncorhynchus mykiss]), these species are also representative of the hearing physiology and sensitivity of estuarine species that would be affected at tidal energy sites.more » Here, we evaluated changes in fish position relative to different intensities of turbine sound as well as trends in location over time with linear mixed-effects and generalized additive mixed models. We also evaluated changes in the proportion of near-source detections relative to sound intensity and exposure time with generalized linear mixed models and generalized additive models. Models indicated that redhorse suckers may respond to sustained turbine sound by increasing distance from the sound source. Freshwater drum models suggested a mixed response to turbine sound, and largemouth bass and rainbow trout models did not indicate any likely responses to turbine sound. Lastly, findings highlight the importance for future research to utilize accurate localization systems, different species, validated sound transmission distances, and to consider different types of behavioral responses to different turbine designs and to the cumulative sound of arrays of multiple turbines.« less

  20. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies

    PubMed Central

    Liu, Xiaolei; Huang, Meng; Fan, Bin; Buckler, Edward S.; Zhang, Zhiwu

    2016-01-01

    False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. PMID:26828793

  1. Permethrin Exposure Dosimetry: Biomarkers and Modifiable Factors

    DTIC Science & Technology

    2017-08-01

    metabolite; (F = 16.16, p < 0.0001). This association holds after controlling for known confounders including sex , age, time that uniform was worn...and metabolite concentrations were examined via linear mixed modeling. All models were adjusted for creatinine, age, sex , days in BCT, number of

  2. The PX-EM algorithm for fast stable fitting of Henderson's mixed model

    PubMed Central

    Foulley, Jean-Louis; Van Dyk, David A

    2000-01-01

    This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399

  3. Non-linear mixed effects modeling - from methodology and software development to driving implementation in drug development science.

    PubMed

    Pillai, Goonaseelan Colin; Mentré, France; Steimer, Jean-Louis

    2005-04-01

    Few scientific contributions have made significant impact unless there was a champion who had the vision to see the potential for its use in seemingly disparate areas-and who then drove active implementation. In this paper, we present a historical summary of the development of non-linear mixed effects (NLME) modeling up to the more recent extensions of this statistical methodology. The paper places strong emphasis on the pivotal role played by Lewis B. Sheiner (1940-2004), who used this statistical methodology to elucidate solutions to real problems identified in clinical practice and in medical research and on how he drove implementation of the proposed solutions. A succinct overview of the evolution of the NLME modeling methodology is presented as well as ideas on how its expansion helped to provide guidance for a more scientific view of (model-based) drug development that reduces empiricism in favor of critical quantitative thinking and decision making.

  4. Detection of genomic loci associated with environmental variables using generalized linear mixed models.

    PubMed

    Lobréaux, Stéphane; Melodelima, Christelle

    2015-02-01

    We tested the use of Generalized Linear Mixed Models to detect associations between genetic loci and environmental variables, taking into account the population structure of sampled individuals. We used a simulation approach to generate datasets under demographically and selectively explicit models. These datasets were used to analyze and optimize GLMM capacity to detect the association between markers and selective coefficients as environmental data in terms of false and true positive rates. Different sampling strategies were tested, maximizing the number of populations sampled, sites sampled per population, or individuals sampled per site, and the effect of different selective intensities on the efficiency of the method was determined. Finally, we apply these models to an Arabidopsis thaliana SNP dataset from different accessions, looking for loci associated with spring minimal temperature. We identified 25 regions that exhibit unusual correlations with the climatic variable and contain genes with functions related to temperature stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Lifecycle of miscible viscous fingering: onset to shutdown

    NASA Astrophysics Data System (ADS)

    Nijjer, Japinder S.; Hewitt, Duncan R.; Neufeld, Jerome A.

    2017-11-01

    When a viscous fluid is injected into a porous medium or Hele-Shaw cell that is initially saturated with a more viscous fluid, the flow can be unstable to viscous fingering. We investigate the long-time dynamics of miscible viscous fingering in a homogeneous, planar, two-dimensional porous medium using high-resolution numerical simulations. At late times, we identify a new flow regime which consists of a pair of counter-propagating fingers that diffuse and slow, leaving a linearly well-mixed interior. We derive an analytic solution for this regime, and show that, in contrast to previous suggestions, the flow always evolves to this regime irrespective of the viscosity ratio and Peclet number. As a consequence, we find the instability can only ever generate a finite amount of advective mixing. We also describe the full life-cycle of miscible viscous fingering, which can be partitioned into three regimes: an early-time linearly unstable regime, an intermediate-time non-linear regime, and a late-time exchange-flow regime. We identify, using linear stability theory, a critical Peclet number below which the flow is always stable, and derive a model for the evolution of the transversely averaged concentration in the intermediate-time regime, which extends previous empirical models.

  6. Separate-channel analysis of two-channel microarrays: recovering inter-spot information.

    PubMed

    Smyth, Gordon K; Altman, Naomi S

    2013-05-26

    Two-channel (or two-color) microarrays are cost-effective platforms for comparative analysis of gene expression. They are traditionally analysed in terms of the log-ratios (M-values) of the two channel intensities at each spot, but this analysis does not use all the information available in the separate channel observations. Mixed models have been proposed to analyse intensities from the two channels as separate observations, but such models can be complex to use and the gain in efficiency over the log-ratio analysis is difficult to quantify. Mixed models yield test statistics for the null distributions can be specified only approximately, and some approaches do not borrow strength between genes. This article reformulates the mixed model to clarify the relationship with the traditional log-ratio analysis, to facilitate information borrowing between genes, and to obtain an exact distributional theory for the resulting test statistics. The mixed model is transformed to operate on the M-values and A-values (average log-expression for each spot) instead of on the log-expression values. The log-ratio analysis is shown to ignore information contained in the A-values. The relative efficiency of the log-ratio analysis is shown to depend on the size of the intraspot correlation. A new separate channel analysis method is proposed that assumes a constant intra-spot correlation coefficient across all genes. This approach permits the mixed model to be transformed into an ordinary linear model, allowing the data analysis to use a well-understood empirical Bayes analysis pipeline for linear modeling of microarray data. This yields statistically powerful test statistics that have an exact distributional theory. The log-ratio, mixed model and common correlation methods are compared using three case studies. The results show that separate channel analyses that borrow strength between genes are more powerful than log-ratio analyses. The common correlation analysis is the most powerful of all. The common correlation method proposed in this article for separate-channel analysis of two-channel microarray data is no more difficult to apply in practice than the traditional log-ratio analysis. It provides an intuitive and powerful means to conduct analyses and make comparisons that might otherwise not be possible.

  7. Estimation of Thalamocortical and Intracortical Network Models from Joint Thalamic Single-Electrode and Cortical Laminar-Electrode Recordings in the Rat Barrel System

    PubMed Central

    Blomquist, Patrick; Devor, Anna; Indahl, Ulf G.; Ulbert, Istvan; Einevoll, Gaute T.; Dale, Anders M.

    2009-01-01

    A new method is presented for extraction of population firing-rate models for both thalamocortical and intracortical signal transfer based on stimulus-evoked data from simultaneous thalamic single-electrode and cortical recordings using linear (laminar) multielectrodes in the rat barrel system. Time-dependent population firing rates for granular (layer 4), supragranular (layer 2/3), and infragranular (layer 5) populations in a barrel column and the thalamic population in the homologous barreloid are extracted from the high-frequency portion (multi-unit activity; MUA) of the recorded extracellular signals. These extracted firing rates are in turn used to identify population firing-rate models formulated as integral equations with exponentially decaying coupling kernels, allowing for straightforward transformation to the more common firing-rate formulation in terms of differential equations. Optimal model structures and model parameters are identified by minimizing the deviation between model firing rates and the experimentally extracted population firing rates. For the thalamocortical transfer, the experimental data favor a model with fast feedforward excitation from thalamus to the layer-4 laminar population combined with a slower inhibitory process due to feedforward and/or recurrent connections and mixed linear-parabolic activation functions. The extracted firing rates of the various cortical laminar populations are found to exhibit strong temporal correlations for the present experimental paradigm, and simple feedforward population firing-rate models combined with linear or mixed linear-parabolic activation function are found to provide excellent fits to the data. The identified thalamocortical and intracortical network models are thus found to be qualitatively very different. While the thalamocortical circuit is optimally stimulated by rapid changes in the thalamic firing rate, the intracortical circuits are low-pass and respond most strongly to slowly varying inputs from the cortical layer-4 population. PMID:19325875

  8. Logit-normal mixed model for Indian monsoon precipitation

    NASA Astrophysics Data System (ADS)

    Dietz, L. R.; Chatterjee, S.

    2014-09-01

    Describing the nature and variability of Indian monsoon precipitation is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Four GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data. The logit-normal model was applied to light, moderate, and extreme rainfall. Findings indicated that physical constructs were preserved by the models, and random effects were significant in many cases. We also found GLMM estimation methods were sensitive to tuning parameters and assumptions and therefore, recommend use of multiple methods in applications. This work provides a novel use of GLMM and promotes its addition to the gamut of tools for analysis in studying climate phenomena.

  9. Spatial regression methods capture prediction uncertainty in species distribution model projections through time

    Treesearch

    Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz

    2013-01-01

    The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...

  10. Adaptation of non-linear mixed amount with zero amount response surface model for analysis of concentration-dependent synergism and safety with midazolam, alfentanil, and propofol sedation.

    PubMed

    Liou, J-Y; Ting, C-K; Teng, W-N; Mandell, M S; Tsou, M-Y

    2018-06-01

    The non-linear mixed amount with zero amounts response surface model can be used to describe drug interactions and predict loss of response to noxious stimuli and respiratory depression. We aimed to determine whether this response surface model could be used to model sedation with the triple drug combination of midazolam, alfentanil and propofol. Sedation was monitored in 56 patients undergoing gastrointestinal endoscopy (modelling group) using modified alertness/sedation scores. A total of 227 combinations of effect-site concentrations were derived from pharmacokinetic models. Accuracy and the area under the receiver operating characteristic curve were calculated. Accuracy was defined as an absolute difference <0.5 between the binary patient responses and the predicted probability of loss of responsiveness. Validation was performed with a separate group (validation group) of 47 patients. Effect-site concentration ranged from 0 to 108 ng ml -1 for midazolam, 0-156 ng ml -1 for alfentanil, and 0-2.6 μg ml -1 for propofol in both groups. Synergy was strongest with midazolam and alfentanil (24.3% decrease in U 50 , concentration for half maximal drug effect). Adding propofol, a third drug, offered little additional synergy (25.8% decrease in U 50 ). Two patients (3%) experienced respiratory depression. Model accuracy was 83% and 76%, area under the curve was 0.87 and 0.80 for the modelling and validation group, respectively. The non-linear mixed amount with zero amounts triple interaction response surface model predicts patient sedation responses during endoscopy with combinations of midazolam, alfentanil, or propofol that fall within clinical use. Our model also suggests a safety margin of alfentanil fraction <0.12 that avoids respiratory depression after loss of responsiveness. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  11. Solving large mixed linear models using preconditioned conjugate gradient iteration.

    PubMed

    Strandén, I; Lidauer, M

    1999-12-01

    Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

  12. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng

    2018-03-01

    In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.

  13. Detection of the Tawahka reserve colonization front: Sub-pixel TM analysis using linear mixing models La Mosquitia, Honduras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portigal, F.P.; Harrill, R.W.

    1996-08-01

    Disregard for environmental issues, rising population and the ravages of war have left Honduras with an environmental catastrophe. Vast regions of southern Honduras have been denuded of vegetation causing rapid desertification. This has resulted in decreasing rainfall, falling agricultural yields and food shortages. Deforestation is accelerating in La Mosquitia, a vast region virtually without roads in the northeast extending into Nicaragua. This is the home of the indigenous Garifuna, Miskito, Pech and Tawahkan people and is the largest unbroken tropical forest in Central America. Increasing demand for resources, incursion by Ladino peasant settlers, poverty and the cattle industry are pushingmore » the colonization fronts deeper into La Mosquitia. Linear mixing models are used to identify subtle evidence of the forward fringes of the Tawahka Reserve colonization front.« less

  14. Collective Interaction in a Linear Array of Supersonic Rectangular Jets: A Linear Spatial Instability Study

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    1999-01-01

    A linear spatial instability model for multiple spatially periodic supersonic rectangular jets is solved using Floquet-Bloch theory. It is assumed that in the region of interest a coherent wave can propagate. For the case studied large spatial growth rates are found. This work is motivated by an increase in mixing found in experimental measurements of spatially periodic supersonic rectangular jets with phase-locked screech and edge tone feedback locked subsonic jets. The results obtained in this paper suggests that phase-locked screech or edge tones may produce correlated spatially periodic jet flow downstream of the nozzles which creates a large span wise multi-nozzle region where a coherent wave can propagate. The large spatial growth rates for eddies obtained by model calculation herein are related to the increased mixing since eddies are the primary mechanism that transfer energy from the mean flow to the large turbulent structures. Calculations of spacial growth rates will be presented for a set of relative Mach numbers and spacings for which experimental measurements have been made. Calculations of spatial growth rates are presented for relative Mach numbers from 1.25 to 1.75 with ratios of nozzle spacing to nozzle width ratios from s/w(sub N) = 4 to s/w(sub N) = 13.7. The model may be of significant scientific and engineering value in the quest to understand and construct supersonic mixer-ejector nozzles which provide increased mixing and reduced noise.

  15. A Simulation of Alternatives for Wholesale Inventory Replenishment

    DTIC Science & Technology

    2016-03-01

    algorithmic details. The last method is a mixed-integer, linear optimization model. Comparative Inventory Simulation, a discrete event simulation model, is...simulation; event graphs; reorder point; fill-rate; backorder; discrete event simulation; wholesale inventory optimization model 15. NUMBER OF PAGES...model. Comparative Inventory Simulation, a discrete event simulation model, is designed to find fill rates achieved for each National Item

  16. The roll-up and merging of coherent structures in shallow mixing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, M. Y., E-mail: celmy@connect.ust.hk; Ghidaoui, M. S.; Kolyshkin, A. A.

    2016-09-15

    The current study seeks a fundamental explanation to the development of two-dimensional coherent structures (2DCSs) in shallow mixing layers. A nonlinear numerical model based on the depth-averaged shallow water equations is used to investigate the temporal evolution of shallow mixing layers, where the mapping from temporal to spatial results is made using the velocity at the center of the mixing layers. The flow is periodic in the streamwise direction. Transmissive boundary conditions are used in the cross-stream boundaries to prevent reflections. Numerical results are compared to linear stability analysis, mean-field theory, and secondary stability analysis. Results suggest that the onsetmore » and development of 2DCS in shallow mixing layers are the result of a sequence of instabilities governed by linear theory, mean-field theory, and secondary stability theory. The linear instability of the shearing velocity gradient gives the onset of 2DCS. When the perturbations reach a certain amplitude, the flow field of the perturbations changes from a wavy shape to a vortical (2DCS) structure because of nonlinearity. The development of the vertical 2DCS does not appear to follow weakly nonlinear theory; instead, it follows mean-field theory. After the formation of 2DCS, separate 2DCSs merge to form larger 2DCS. In this way, 2DCSs grow and shallow mixing layers develop and grow in scale. The merging of 2DCS in shallow mixing layers is shown to be caused by the secondary instability of the 2DCS. Eventually 2DCSs are dissipated by bed friction. The sequence of instabilities can cause the upscaling of the turbulent kinetic energy in shallow mixing layers.« less

  17. Genomic selection for slaughter age in pigs using the Cox frailty model.

    PubMed

    Santos, V S; Martins Filho, S; Resende, M D V; Azevedo, C F; Lopes, P S; Guimarães, S E F; Glória, L S; Silva, F F

    2015-10-19

    The aim of this study was to compare genomic selection methodologies using a linear mixed model and the Cox survival model. We used data from an F2 population of pigs, in which the response variable was the time in days from birth to the culling of the animal and the covariates were 238 markers [237 single nucleotide polymorphism (SNP) plus the halothane gene]. The data were corrected for fixed effects, and the accuracy of the method was determined based on the correlation of the ranks of predicted genomic breeding values (GBVs) in both models with the corrected phenotypic values. The analysis was repeated with a subset of SNP markers with largest absolute effects. The results were in agreement with the GBV prediction and the estimation of marker effects for both models for uncensored data and for normality. However, when considering censored data, the Cox model with a normal random effect (S1) was more appropriate. Since there was no agreement between the linear mixed model and the imputed data (L2) for the prediction of genomic values and the estimation of marker effects, the model S1 was considered superior as it took into account the latent variable and the censored data. Marker selection increased correlations between the ranks of predicted GBVs by the linear and Cox frailty models and the corrected phenotypic values, and 120 markers were required to increase the predictive ability for the characteristic analyzed.

  18. Multivariate statistical approach to estimate mixing proportions for unknown end members

    USGS Publications Warehouse

    Valder, Joshua F.; Long, Andrew J.; Davis, Arden D.; Kenner, Scott J.

    2012-01-01

    A multivariate statistical method is presented, which includes principal components analysis (PCA) and an end-member mixing model to estimate unknown end-member hydrochemical compositions and the relative mixing proportions of those end members in mixed waters. PCA, together with the Hotelling T2 statistic and a conceptual model of groundwater flow and mixing, was used in selecting samples that best approximate end members, which then were used as initial values in optimization of the end-member mixing model. This method was tested on controlled datasets (i.e., true values of estimates were known a priori) and found effective in estimating these end members and mixing proportions. The controlled datasets included synthetically generated hydrochemical data, synthetically generated mixing proportions, and laboratory analyses of sample mixtures, which were used in an evaluation of the effectiveness of this method for potential use in actual hydrological settings. For three different scenarios tested, correlation coefficients (R2) for linear regression between the estimated and known values ranged from 0.968 to 0.993 for mixing proportions and from 0.839 to 0.998 for end-member compositions. The method also was applied to field data from a study of end-member mixing in groundwater as a field example and partial method validation.

  19. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  20. Formation of parametric images using mixed-effects models: a feasibility study.

    PubMed

    Huang, Husan-Ming; Shih, Yi-Yu; Lin, Chieh

    2016-03-01

    Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Composition and structure of Pinus koraiensis mixed forest respond to spatial climatic changes.

    PubMed

    Zhang, Jingli; Zhou, Yong; Zhou, Guangsheng; Xiao, Chunwang

    2014-01-01

    Although some studies have indicated that climate changes can affect Pinus koraiensis mixed forest, the responses of composition and structure of Pinus koraiensis mixed forests to climatic changes are unknown and the key climatic factors controlling the composition and structure of Pinus koraiensis mixed forest are uncertain. Field survey was conducted in the natural Pinus koraiensis mixed forests along a latitudinal gradient and an elevational gradient in Northeast China. In order to build the mathematical models for simulating the relationships of compositional and structural attributes of the Pinus koraiensis mixed forest with climatic and non-climatic factors, stepwise linear regression analyses were performed, incorporating 14 dependent variables and the linear and quadratic components of 9 factors. All the selected new models were computed under the +2°C and +10% precipitation and +4°C and +10% precipitation scenarios. The Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month were observed to be key climatic factors controlling the stand densities and total basal areas of Pinus koraiensis mixed forest. Increased summer temperatures and precipitations strongly enhanced the stand densities and total basal areas of broadleaf trees but had little effect on Pinus koraiensis under the +2°C and +10% precipitation scenario and +4°C and +10% precipitation scenario. These results show that the Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month are key climatic factors which shape the composition and structure of Pinus koraiensis mixed forest. Although the Pinus koraiensis would persist, the current forests dominated by Pinus koraiensis in the region would all shift and become broadleaf-dominated forests due to the dramatic increase of broadleaf trees under the future global warming and increased precipitation.

  2. Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies

    PubMed Central

    Koerner, Tess K.; Zhang, Yang

    2017-01-01

    Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers. PMID:28264422

  3. Joint modelling of repeated measurement and time-to-event data: an introductory tutorial.

    PubMed

    Asar, Özgür; Ritchie, James; Kalra, Philip A; Diggle, Peter J

    2015-02-01

    The term 'joint modelling' is used in the statistical literature to refer to methods for simultaneously analysing longitudinal measurement outcomes, also called repeated measurement data, and time-to-event outcomes, also called survival data. A typical example from nephrology is a study in which the data from each participant consist of repeated estimated glomerular filtration rate (eGFR) measurements and time to initiation of renal replacement therapy (RRT). Joint models typically combine linear mixed effects models for repeated measurements and Cox models for censored survival outcomes. Our aim in this paper is to present an introductory tutorial on joint modelling methods, with a case study in nephrology. We describe the development of the joint modelling framework and compare the results with those obtained by the more widely used approaches of conducting separate analyses of the repeated measurements and survival times based on a linear mixed effects model and a Cox model, respectively. Our case study concerns a data set from the Chronic Renal Insufficiency Standards Implementation Study (CRISIS). We also provide details of our open-source software implementation to allow others to replicate and/or modify our analysis. The results for the conventional linear mixed effects model and the longitudinal component of the joint models were found to be similar. However, there were considerable differences between the results for the Cox model with time-varying covariate and the time-to-event component of the joint model. For example, the relationship between kidney function as measured by eGFR and the hazard for initiation of RRT was significantly underestimated by the Cox model that treats eGFR as a time-varying covariate, because the Cox model does not take measurement error in eGFR into account. Joint models should be preferred for simultaneous analyses of repeated measurement and survival data, especially when the former is measured with error and the association between the underlying error-free measurement process and the hazard for survival is of scientific interest. © The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  4. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  5. Alternative Models for Small Samples in Psychological Research: Applying Linear Mixed Effects Models and Generalized Estimating Equations to Repeated Measures Data

    ERIC Educational Resources Information Center

    Muth, Chelsea; Bales, Karen L.; Hinde, Katie; Maninger, Nicole; Mendoza, Sally P.; Ferrer, Emilio

    2016-01-01

    Unavoidable sample size issues beset psychological research that involves scarce populations or costly laboratory procedures. When incorporating longitudinal designs these samples are further reduced by traditional modeling techniques, which perform listwise deletion for any instance of missing data. Moreover, these techniques are limited in their…

  6. A Systematic Investigation of Within-Subject and Between-Subject Covariance Structures in Growth Mixture Models

    ERIC Educational Resources Information Center

    Liu, Junhui

    2012-01-01

    The current study investigated how between-subject and within-subject variance-covariance structures affected the detection of a finite mixture of unobserved subpopulations and parameter recovery of growth mixture models in the context of linear mixed-effects models. A simulation study was conducted to evaluate the impact of variance-covariance…

  7. A Unified Approach to Optimization

    DTIC Science & Technology

    2014-10-02

    employee scheduling, ad placement, latin squares, disjunctions of linear systems, temporal modeling with interval variables, and traveling salesman problems ...integrating technologies. A key to integrated modeling is to formulate a problem with high-levelmetaconstraints, which are inspired by the “global... problem substructure to the solver. This contrasts with the atomistic modeling style of mixed integer programming (MIP) and satisfiability (SAT) solvers

  8. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  9. Approximating a retarded-advanced differential equation that models human phonation

    NASA Astrophysics Data System (ADS)

    Teodoro, M. Filomena

    2017-11-01

    In [1, 2, 3] we have got the numerical solution of a linear mixed type functional differential equation (MTFDE) introduced initially in [4], considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering B-splines basis set. The present work introduces a numerical scheme using least squares method (LSM) and Gaussian basis functions to solve numerically a nonlinear mixed type equation with symmetric delay and advance which models human phonation. The preliminary results are promising. We obtain an accuracy comparable with the previous results.

  10. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  11. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape

    PubMed Central

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for ‘difficult’ variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables. PMID:29713298

  12. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape.

    PubMed

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for 'difficult' variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables.

  13. Phylogenetic mixtures and linear invariants for equal input models.

    PubMed

    Casanellas, Marta; Steel, Mike

    2017-04-01

    The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).

  14. Scaling Laws of Nonlinear Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Two and Three Dimensions (IFSA 1999)

    NASA Astrophysics Data System (ADS)

    Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L.

    2016-10-01

    The late-time nonlinear evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated using a statistical mechanics model based on single-mode and bubble-competition physics at all Atwood numbers (A) and full numerical simulations in two and three dimensions. It is shown that the RT mixing zone bubble and spike fronts evolve as h ~ α · A · gt2 with different values of a for the bubble and spike fronts. The RM mixing zone fronts evolve as h ~ tθ with different values of θ for bubbles and spikes. Similar analysis yields a linear growth with time of the Kelvin-Helmholtz mixing zone. The dependence of the RT and RM scaling parameters on A and the dimensionality will be discussed. The 3D predictions are found to be in good agreement with recent Linear Electric Motor (LEM) experiments.

  15. Photon-Z mixing the Weinberg-Salam model: Effective charges and the a = -3 gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baulieu, L.; Coquereaux, R.

    1982-04-15

    We study some properties of the Weinberg-Salam model connected with the photon-Z mixing. We solve the linear Dyson-Schwinger equations between full and 1PI boson propagators. The task is made easier, by the two-point function Ward identities that we derive to all orders and in any gauge. Some aspects of the renormalization of the model are also discussed. We display the exact mass-dependent one-loop two-point functions involving the photon and Z field in any linear xi-gauge. The special gauge a = xi/sup -1/ = -3 is shown to play a peculiar role. In this gauge, the Z field is multiplicatively renormalizablemore » (at the one-loop level), and one can construct both electric and weak effective charges of the theory from the photon and Z propagators, with a very simple expression similar to that of the QED Petermann, Stueckelberg, Gell-Mann and Low charge.« less

  16. Analysis of Cross-Sectional Univariate Measurements for Family Dyads Using Linear Mixed Modeling

    PubMed Central

    Knafl, George J.; Dixon, Jane K.; O'Malley, Jean P.; Grey, Margaret; Deatrick, Janet A.; Gallo, Agatha M.; Knafl, Kathleen A.

    2010-01-01

    Outcome measurements from members of the same family are likely correlated. Such intrafamilial correlation (IFC) is an important dimension of the family as a unit but is not always accounted for in analyses of family data. This article demonstrates the use of linear mixed modeling to account for IFC in the important special case of univariate measurements for family dyads collected at a single point in time. Example analyses of data from partnered parents having a child with a chronic condition on their child's adaptation to the condition and on the family's general functioning and management of the condition are provided. Analyses of this kind are reasonably straightforward to generate with popular statistical tools. Thus, it is recommended that IFC be reported as standard practice reflecting the fact that a family dyad is more than just the aggregate of two individuals. Moreover, not accounting for IFC can affect the conclusions. PMID:19307316

  17. Hierarchical Bayes approach for subgroup analysis.

    PubMed

    Hsu, Yu-Yi; Zalkikar, Jyoti; Tiwari, Ram C

    2017-01-01

    In clinical data analysis, both treatment effect estimation and consistency assessment are important for a better understanding of the drug efficacy for the benefit of subjects in individual subgroups. The linear mixed-effects model has been used for subgroup analysis to describe treatment differences among subgroups with great flexibility. The hierarchical Bayes approach has been applied to linear mixed-effects model to derive the posterior distributions of overall and subgroup treatment effects. In this article, we discuss the prior selection for variance components in hierarchical Bayes, estimation and decision making of the overall treatment effect, as well as consistency assessment of the treatment effects across the subgroups based on the posterior predictive p-value. Decision procedures are suggested using either the posterior probability or the Bayes factor. These decision procedures and their properties are illustrated using a simulated example with normally distributed response and repeated measurements.

  18. Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability

    NASA Astrophysics Data System (ADS)

    Małoszewski, P.; Zuber, A.

    1982-06-01

    Three new lumped-parameter models have been developed for the interpretation of environmental radioisotope data in groundwater systems. Two of these models combine other simpler models, i.e. the piston flow model is combined either with the exponential model (exponential distribution of transit times) or with the linear model (linear distribution of transit times). The third model is based on a new solution to the dispersion equation which more adequately represents the real systems than the conventional solution generally applied so far. The applicability of models was tested by the reinterpretation of several known case studies (Modry Dul, Cheju Island, Rasche Spring and Grafendorf). It has been shown that two of these models, i.e. the exponential-piston flow model and the dispersive model give better fitting than other simpler models. Thus, the obtained values of turnover times are more reliable, whereas the additional fitting parameter gives some information about the structure of the system. In the examples considered, in spite of a lower number of fitting parameters, the new models gave practically the same fitting as the multiparameter finite state mixing-cell models. It has been shown that in the case of a constant tracer input a prior physical knowledge of the groundwater system is indispensable for determining the turnover time. The piston flow model commonly used for age determinations by the 14C method is an approximation applicable only in the cases of low dispersion. In some cases the stable-isotope method aids in the interpretation of systems containing mixed waters of different ages. However, when 14C method is used for mixed-water systems a serious mistake may arise by neglecting the different bicarbonate contents in particular water components.

  19. Linear Instability Analysis of non-uniform Bubbly Mixing layer with Two-Fluid model

    NASA Astrophysics Data System (ADS)

    Sharma, Subash; Chetty, Krishna; Lopez de Bertodano, Martin

    We examine the inviscid instability of a non-uniform adiabatic bubbly shear layer with a Two-Fluid model. The Two-Fluid model is made well-posed with the closure relations for interfacial forces. First, a characteristic analysis is carried out to study the well posedness of the model over range of void fraction with interfacial forces for virtual mass, interfacial drag, interfacial pressure. A dispersion analysis then allow us to obtain growth rate and wavelength. Then, the well-posed two-fluid model is solved using CFD to validate the results obtained with the linear stability analysis. The effect of the void fraction and the distribution profile on stability is analyzed.

  20. Stochastic Dynamic Mixed-Integer Programming (SD-MIP)

    DTIC Science & Technology

    2015-05-05

    stochastic linear programming ( SLP ) problems. By using a combination of ideas from cutting plane theory of deterministic MIP (especially disjunctive...developed to date. b) As part of this project, we have also developed tools for very large scale Stochastic Linear Programming ( SLP ). There are...several reasons for this. First, SLP models continue to challenge many of the fastest computers to date, and many applications within the DoD (e.g

  1. Modelling non-hydrostatic processes in sill regions

    NASA Astrophysics Data System (ADS)

    Souza, A.; Xing, J.; Davies, A.; Berntsen, J.

    2007-12-01

    We use a non-hydrostatic model to compute tidally induced flow and mixing in the region of bottom topography representing the sill at the entrance to Loch Etive (Scotland). This site is chosen since detailed measurements were recently made there. With non-hydrostatic dynamics in the model our results showed that the model could reproduce the observed flow characteristics, e.g., hydraulic transition, flow separation and internal waves. However, when calculations were performed using the model in the hydrostatic form, significant artificial convective mixing occurred. This influenced the computed temperature and flow field. We will discuss in detail the effects of non-hydrostatic dynamics on flow over the sill, especially investigate non-linear and non-hydrostatic contributions to modelled internal waves and internal wave energy fluxes.

  2. Genetic overlap between diagnostic subtypes of ischemic stroke.

    PubMed

    Holliday, Elizabeth G; Traylor, Matthew; Malik, Rainer; Bevan, Steve; Falcone, Guido; Hopewell, Jemma C; Cheng, Yu-Ching; Cotlarciuc, Ioana; Bis, Joshua C; Boerwinkle, Eric; Boncoraglio, Giorgio B; Clarke, Robert; Cole, John W; Fornage, Myriam; Furie, Karen L; Ikram, M Arfan; Jannes, Jim; Kittner, Steven J; Lincz, Lisa F; Maguire, Jane M; Meschia, James F; Mosley, Thomas H; Nalls, Mike A; Oldmeadow, Christopher; Parati, Eugenio A; Psaty, Bruce M; Rothwell, Peter M; Seshadri, Sudha; Scott, Rodney J; Sharma, Pankaj; Sudlow, Cathie; Wiggins, Kerri L; Worrall, Bradford B; Rosand, Jonathan; Mitchell, Braxton D; Dichgans, Martin; Markus, Hugh S; Levi, Christopher; Attia, John; Wray, Naomi R

    2015-03-01

    Despite moderate heritability, the phenotypic heterogeneity of ischemic stroke has hampered gene discovery, motivating analyses of diagnostic subtypes with reduced sample sizes. We assessed evidence for a shared genetic basis among the 3 major subtypes: large artery atherosclerosis (LAA), cardioembolism, and small vessel disease (SVD), to inform potential cross-subtype analyses. Analyses used genome-wide summary data for 12 389 ischemic stroke cases (including 2167 LAA, 2405 cardioembolism, and 1854 SVD) and 62 004 controls from the Metastroke consortium. For 4561 cases and 7094 controls, individual-level genotype data were also available. Genetic correlations between subtypes were estimated using linear mixed models and polygenic profile scores. Meta-analysis of a combined LAA-SVD phenotype (4021 cases and 51 976 controls) was performed to identify shared risk alleles. High genetic correlation was identified between LAA and SVD using linear mixed models (rg=0.96, SE=0.47, P=9×10(-4)) and profile scores (rg=0.72; 95% confidence interval, 0.52-0.93). Between LAA and cardioembolism and SVD and cardioembolism, correlation was moderate using linear mixed models but not significantly different from zero for profile scoring. Joint meta-analysis of LAA and SVD identified strong association (P=1×10(-7)) for single nucleotide polymorphisms near the opioid receptor μ1 (OPRM1) gene. Our results suggest that LAA and SVD, which have been hitherto treated as genetically distinct, may share a substantial genetic component. Combined analyses of LAA and SVD may increase power to identify small-effect alleles influencing shared pathophysiological processes. © 2015 American Heart Association, Inc.

  3. Invasion of cooperators in lattice populations: linear and non-linear public good games.

    PubMed

    Vásárhelyi, Zsóka; Scheuring, István

    2013-08-01

    A generalized version of the N-person volunteer's dilemma (NVD) Game has been suggested recently for illustrating the problem of N-person social dilemmas. Using standard replicator dynamics it can be shown that coexistence of cooperators and defectors is typical in this model. However, the question of how a rare mutant cooperator could invade a population of defectors is still open. Here we examined the dynamics of individual based stochastic models of the NVD. We analyze the dynamics in well-mixed and viscous populations. We show in both cases that coexistence between cooperators and defectors is possible; moreover, spatial aggregation of types in viscous populations can easily lead to pure cooperation. Furthermore we analyze the invasion of cooperators in populations consisting predominantly of defectors. In accordance with analytical results, in deterministic systems, we found the invasion of cooperators successful in the well-mixed case only if their initial concentration was higher than a critical threshold, defined by the replicator dynamics of the NVD. In the viscous case, however, not the initial concentration but the initial number determines the success of invasion. We show that even a single mutant cooperator can invade with a high probability, because the local density of aggregated cooperators exceeds the threshold defined by the game. Comparing the results to models using different benefit functions (linear or sigmoid), we show that the role of the benefit function is much more important in the well-mixed than in the viscous case. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Subpixel Mapping of Hyperspectral Image Based on Linear Subpixel Feature Detection and Object Optimization

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoxin; Zhao, Liaoying; Li, Xiaorun; Chen, Shuhan

    2018-04-01

    Owing to the limitation of spatial resolution of the imaging sensor and the variability of ground surfaces, mixed pixels are widesperead in hyperspectral imagery. The traditional subpixel mapping algorithms treat all mixed pixels as boundary-mixed pixels while ignoring the existence of linear subpixels. To solve this question, this paper proposed a new subpixel mapping method based on linear subpixel feature detection and object optimization. Firstly, the fraction value of each class is obtained by spectral unmixing. Secondly, the linear subpixel features are pre-determined based on the hyperspectral characteristics and the linear subpixel feature; the remaining mixed pixels are detected based on maximum linearization index analysis. The classes of linear subpixels are determined by using template matching method. Finally, the whole subpixel mapping results are iteratively optimized by binary particle swarm optimization algorithm. The performance of the proposed subpixel mapping method is evaluated via experiments based on simulated and real hyperspectral data sets. The experimental results demonstrate that the proposed method can improve the accuracy of subpixel mapping.

  5. Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.

    PubMed

    McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2013-12-13

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.

  6. The Weight of Euro Coins: Its Distribution Might Not Be as Normal as You Would Expect

    ERIC Educational Resources Information Center

    Shkedy, Ziv; Aerts, Marc; Callaert, Herman

    2006-01-01

    Classical regression models, ANOVA models and linear mixed models are just three examples (out of many) in which the normal distribution of the response is an essential assumption of the model. In this paper we use a dataset of 2000 euro coins containing information (up to the milligram) about the weight of each coin, to illustrate that the…

  7. Longitudinal Models of Reading Achievement of Students with Learning Disabilities and without Disabilities

    ERIC Educational Resources Information Center

    Sullivan, Amanda L.; Kohli, Nidhi; Farnsworth, Elyse M.; Sadeh, Shanna; Jones, Leila

    2017-01-01

    Objective: Accurate estimation of developmental trajectories can inform instruction and intervention. We compared the fit of linear, quadratic, and piecewise mixed-effects models of reading development among students with learning disabilities relative to their typically developing peers. Method: We drew an analytic sample of 1,990 students from…

  8. Modeling Agrilus planipennis within-tree colonization patterns and development of a systematic subsampling plan

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer, Agrilus planipennis Fairmaire, an insect native to central Asia, was first detected in southeast Michigan in 2002, and has since killed millions of ash trees, Fraxinus spp., throughout eastern North America. Here, we use generalized linear mixed models to predict the presence or a...

  9. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises t...

  10. Linear mixed model for heritability estimation that explicitly addresses environmental variation.

    PubMed

    Heckerman, David; Gurdasani, Deepti; Kadie, Carl; Pomilla, Cristina; Carstensen, Tommy; Martin, Hilary; Ekoru, Kenneth; Nsubuga, Rebecca N; Ssenyomo, Gerald; Kamali, Anatoli; Kaleebu, Pontiano; Widmer, Christian; Sandhu, Manjinder S

    2016-07-05

    The linear mixed model (LMM) is now routinely used to estimate heritability. Unfortunately, as we demonstrate, LMM estimates of heritability can be inflated when using a standard model. To help reduce this inflation, we used a more general LMM with two random effects-one based on genomic variants and one based on easily measured spatial location as a proxy for environmental effects. We investigated this approach with simulated data and with data from a Uganda cohort of 4,778 individuals for 34 phenotypes including anthropometric indices, blood factors, glycemic control, blood pressure, lipid tests, and liver function tests. For the genomic random effect, we used identity-by-descent estimates from accurately phased genome-wide data. For the environmental random effect, we constructed a covariance matrix based on a Gaussian radial basis function. Across the simulated and Ugandan data, narrow-sense heritability estimates were lower using the more general model. Thus, our approach addresses, in part, the issue of "missing heritability" in the sense that much of the heritability previously thought to be missing was fictional. Software is available at https://github.com/MicrosoftGenomics/FaST-LMM.

  11. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.

    The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less

  12. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing

    DOE PAGES

    Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.

    2018-01-10

    The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less

  13. COSOLVENCY AND SOPRTION OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    Sorption of hydrophobic organic chemicals (HOCs) by two soils was measured from mixed solvents containing water plus completely miscible organic solvents (CMOSs) and partially miscible organic solvents (PMOSs). The utility of the log-linear cosolvency model for predicting HOC sor...

  14. Optimal traffic resource allocation and management.

    DOT National Transportation Integrated Search

    2010-05-01

    "In this paper, we address the problem of determining the patrol routes of state troopers for maximum coverage of : highway spots with high frequencies of crashes (hot spots). We develop a mixed integer linear programming model : for this problem und...

  15. Building out a Measurement Model to Incorporate Complexities of Testing in the Language Domain

    ERIC Educational Resources Information Center

    Wilson, Mark; Moore, Stephen

    2011-01-01

    This paper provides a summary of a novel and integrated way to think about the item response models (most often used in measurement applications in social science areas such as psychology, education, and especially testing of various kinds) from the viewpoint of the statistical theory of generalized linear and nonlinear mixed models. In addition,…

  16. Estimating the variance for heterogeneity in arm-based network meta-analysis.

    PubMed

    Piepho, Hans-Peter; Madden, Laurence V; Roger, James; Payne, Roger; Williams, Emlyn R

    2018-04-19

    Network meta-analysis can be implemented by using arm-based or contrast-based models. Here we focus on arm-based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial-by-treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi-likelihood/pseudo-likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi-likelihood/pseudo-likelihood and h-likelihood reduce bias and yield satisfactory coverage rates. Sum-to-zero restriction and baseline contrasts for random trial-by-treatment interaction effects, as well as a residual ML-like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi-likelihood/pseudo-likelihood and h-likelihood are therefore recommended. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Meta-analysis for the comparison of two diagnostic tests to a common gold standard: A generalized linear mixed model approach.

    PubMed

    Hoyer, Annika; Kuss, Oliver

    2018-05-01

    Meta-analysis of diagnostic studies is still a rapidly developing area of biostatistical research. Especially, there is an increasing interest in methods to compare different diagnostic tests to a common gold standard. Restricting to the case of two diagnostic tests, in these meta-analyses the parameters of interest are the differences of sensitivities and specificities (with their corresponding confidence intervals) between the two diagnostic tests while accounting for the various associations across single studies and between the two tests. We propose statistical models with a quadrivariate response (where sensitivity of test 1, specificity of test 1, sensitivity of test 2, and specificity of test 2 are the four responses) as a sensible approach to this task. Using a quadrivariate generalized linear mixed model naturally generalizes the common standard bivariate model of meta-analysis for a single diagnostic test. If information on several thresholds of the tests is available, the quadrivariate model can be further generalized to yield a comparison of full receiver operating characteristic (ROC) curves. We illustrate our model by an example where two screening methods for the diagnosis of type 2 diabetes are compared.

  18. Inference on the Genetic Basis of Eye and Skin Color in an Admixed Population via Bayesian Linear Mixed Models.

    PubMed

    Lloyd-Jones, Luke R; Robinson, Matthew R; Moser, Gerhard; Zeng, Jian; Beleza, Sandra; Barsh, Gregory S; Tang, Hua; Visscher, Peter M

    2017-06-01

    Genetic association studies in admixed populations are underrepresented in the genomics literature, with a key concern for researchers being the adequate control of spurious associations due to population structure. Linear mixed models (LMMs) are well suited for genome-wide association studies (GWAS) because they account for both population stratification and cryptic relatedness and achieve increased statistical power by jointly modeling all genotyped markers. Additionally, Bayesian LMMs allow for more flexible assumptions about the underlying distribution of genetic effects, and can concurrently estimate the proportion of phenotypic variance explained by genetic markers. Using three recently published Bayesian LMMs, Bayes R, BSLMM, and BOLT-LMM, we investigate an existing data set on eye ( n = 625) and skin ( n = 684) color from Cape Verde, an island nation off West Africa that is home to individuals with a broad range of phenotypic values for eye and skin color due to the mix of West African and European ancestry. We use simulations to demonstrate the utility of Bayesian LMMs for mapping loci and studying the genetic architecture of quantitative traits in admixed populations. The Bayesian LMMs provide evidence for two new pigmentation loci: one for eye color ( AHRR ) and one for skin color ( DDB1 ). Copyright © 2017 by the Genetics Society of America.

  19. Logit-normal mixed model for Indian Monsoon rainfall extremes

    NASA Astrophysics Data System (ADS)

    Dietz, L. R.; Chatterjee, S.

    2014-03-01

    Describing the nature and variability of Indian monsoon rainfall extremes is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Several GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data procured from the National Climatic Data Center. The logit-normal model was applied with fixed covariates of latitude, longitude, elevation, daily minimum and maximum temperatures with a random intercept by weather station. In general, the estimation methods concurred in their suggestion of a relationship between the El Niño Southern Oscillation (ENSO) and extreme rainfall variability estimates. This work provides a valuable starting point for extending GLMM to incorporate the intricate dependencies in extreme climate events.

  20. A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications

    PubMed Central

    Austin, Peter C.

    2017-01-01

    Summary Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log–log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata). PMID:29307954

  1. A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications.

    PubMed

    Austin, Peter C

    2017-08-01

    Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log-log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata).

  2. A Bayesian Framework for Generalized Linear Mixed Modeling Identifies New Candidate Loci for Late-Onset Alzheimer’s Disease

    PubMed Central

    Wang, Xulong; Philip, Vivek M.; Ananda, Guruprasad; White, Charles C.; Malhotra, Ankit; Michalski, Paul J.; Karuturi, Krishna R. Murthy; Chintalapudi, Sumana R.; Acklin, Casey; Sasner, Michael; Bennett, David A.; De Jager, Philip L.; Howell, Gareth R.; Carter, Gregory W.

    2018-01-01

    Recent technical and methodological advances have greatly enhanced genome-wide association studies (GWAS). The advent of low-cost, whole-genome sequencing facilitates high-resolution variant identification, and the development of linear mixed models (LMM) allows improved identification of putatively causal variants. While essential for correcting false positive associations due to sample relatedness and population stratification, LMMs have commonly been restricted to quantitative variables. However, phenotypic traits in association studies are often categorical, coded as binary case-control or ordered variables describing disease stages. To address these issues, we have devised a method for genomic association studies that implements a generalized LMM (GLMM) in a Bayesian framework, called Bayes-GLMM. Bayes-GLMM has four major features: (1) support of categorical, binary, and quantitative variables; (2) cohesive integration of previous GWAS results for related traits; (3) correction for sample relatedness by mixed modeling; and (4) model estimation by both Markov chain Monte Carlo sampling and maximal likelihood estimation. We applied Bayes-GLMM to the whole-genome sequencing cohort of the Alzheimer’s Disease Sequencing Project. This study contains 570 individuals from 111 families, each with Alzheimer’s disease diagnosed at one of four confidence levels. Using Bayes-GLMM we identified four variants in three loci significantly associated with Alzheimer’s disease. Two variants, rs140233081 and rs149372995, lie between PRKAR1B and PDGFA. The coded proteins are localized to the glial-vascular unit, and PDGFA transcript levels are associated with Alzheimer’s disease-related neuropathology. In summary, this work provides implementation of a flexible, generalized mixed-model approach in a Bayesian framework for association studies. PMID:29507048

  3. Stochastic Mixing Model with Power Law Decay of Variance

    NASA Technical Reports Server (NTRS)

    Fedotov, S.; Ihme, M.; Pitsch, H.

    2003-01-01

    Here we present a simple stochastic mixing model based on the law of large numbers (LLN). The reason why the LLN is involved in our formulation of the mixing problem is that the random conserved scalar c = c(t,x(t)) appears to behave as a sample mean. It converges to the mean value mu, while the variance sigma(sup 2)(sub c) (t) decays approximately as t(exp -1). Since the variance of the scalar decays faster than a sample mean (typically is greater than unity), we will introduce some non-linear modifications into the corresponding pdf-equation. The main idea is to develop a robust model which is independent from restrictive assumptions about the shape of the pdf. The remainder of this paper is organized as follows. In Section 2 we derive the integral equation from a stochastic difference equation describing the evolution of the pdf of a passive scalar in time. The stochastic difference equation introduces an exchange rate gamma(sub n) which we model in a first step as a deterministic function. In a second step, we generalize gamma(sub n) as a stochastic variable taking fluctuations in the inhomogeneous environment into account. In Section 3 we solve the non-linear integral equation numerically and analyze the influence of the different parameters on the decay rate. The paper finishes with a conclusion.

  4. A big data approach to the development of mixed-effects models for seizure count data.

    PubMed

    Tharayil, Joseph J; Chiang, Sharon; Moss, Robert; Stern, John M; Theodore, William H; Goldenholz, Daniel M

    2017-05-01

    Our objective was to develop a generalized linear mixed model for predicting seizure count that is useful in the design and analysis of clinical trials. This model also may benefit the design and interpretation of seizure-recording paradigms. Most existing seizure count models do not include children, and there is currently no consensus regarding the most suitable model that can be applied to children and adults. Therefore, an additional objective was to develop a model that accounts for both adult and pediatric epilepsy. Using data from SeizureTracker.com, a patient-reported seizure diary tool with >1.2 million recorded seizures across 8 years, we evaluated the appropriateness of Poisson, negative binomial, zero-inflated negative binomial, and modified negative binomial models for seizure count data based on minimization of the Bayesian information criterion. Generalized linear mixed-effects models were used to account for demographic and etiologic covariates and for autocorrelation structure. Holdout cross-validation was used to evaluate predictive accuracy in simulating seizure frequencies. For both adults and children, we found that a negative binomial model with autocorrelation over 1 day was optimal. Using holdout cross-validation, the proposed model was found to provide accurate simulation of seizure counts for patients with up to four seizures per day. The optimal model can be used to generate more realistic simulated patient data with very few input parameters. The availability of a parsimonious, realistic virtual patient model can be of great utility in simulations of phase II/III clinical trials, epilepsy monitoring units, outpatient biosensors, and mobile Health (mHealth) applications. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  5. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.

    PubMed

    Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza

    2017-09-27

    Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.

  6. Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays.

    PubMed

    Huang, Haiying; Du, Qiaosheng; Kang, Xibing

    2013-11-01

    In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results. © 2013 ISA. Published by ISA. All rights reserved.

  7. The Linear Mixing Approximation for Planetary Ices

    NASA Astrophysics Data System (ADS)

    Bethkenhagen, M.; Meyer, E. R.; Hamel, S.; Nettelmann, N.; French, M.; Scheibe, L.; Ticknor, C.; Collins, L. A.; Kress, J. D.; Fortney, J. J.; Redmer, R.

    2017-12-01

    We investigate the validity of the widely used linear mixing approximation for the equations of state (EOS) of planetary ices, which are thought to dominate the interior of the ice giant planets Uranus and Neptune. For that purpose we perform density functional theory molecular dynamics simulations using the VASP code.[1] In particular, we compute 1:1 binary mixtures of water, ammonia, and methane, as well as their 2:1:4 ternary mixture at pressure-temperature conditions typical for the interior of Uranus and Neptune.[2,3] In addition, a new ab initio EOS for methane is presented. The linear mixing approximation is verified for the conditions present inside Uranus ranging up to 10 Mbar based on the comprehensive EOS data set. We also calculate the diffusion coefficients for the ternary mixture along different Uranus interior profiles and compare them to the values of the pure compounds. We find that deviations of the linear mixing approximation from the real mixture are generally small; for the EOS they fall within about 4% uncertainty while the diffusion coefficients deviate up to 20% . The EOS of planetary ices are applied to adiabatic models of Uranus. It turns out that a deep interior of almost pure ices is consistent with the gravity field data, in which case the planet becomes rather cold (T core ˜ 4000 K). [1] G. Kresse and J. Hafner, Physical Review B 47, 558 (1993). [2] R. Redmer, T.R. Mattsson, N. Nettelmann and M. French, Icarus 211, 798 (2011). [3] N. Nettelmann, K. Wang, J. J. Fortney, S. Hamel, S. Yellamilli, M. Bethkenhagen and R. Redmer, Icarus 275, 107 (2016).

  8. Sensitivity of the s-process nucleosynthesis in AGB stars to the overshoot model

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Siess, L.

    2018-01-01

    Context. S-process elements are observed at the surface of low- and intermediate-mass stars. These observations can be explained empirically by the so-called partial mixing of protons scenario leading to the incomplete operation of the CN cycle and a significant primary production of the neutron source. This scenario has been successful in qualitatively explaining the s-process enrichment in AGB stars. Even so, it remains difficult to describe both physically and numerically the mixing mechanisms taking place at the time of the third dredged-up between the convective envelope and the underlying C-rich radiative layer Aims: We aim to present new calculations of the s-process nucleosynthesis in AGB stars testing two different numerical implementations of chemical transport. These are based on a diffusion equation which depends on the second derivative of the composition and on a numerical algorithm where the transport of species depends linearly on the chemical gradient. Methods: The s-process nucleosynthesis resulting from these different mixing schemes is calculated with our stellar evolution code STAREVOL which has been upgraded to include an extended s-process network of 411 nuclei. Our investigation focuses on a fiducial 2 M⊙, [Fe/H] = -0.5 model star, but also includes four additional stars of different masses and metallicities. Results: We show that for the same set of parameters, the linear mixing approach produces a much larger 13C-pocket and consequently a substantially higher surface s-process enrichment compared to the diffusive prescription. Within the diffusive model, a quite extreme choice of parameters is required to account for surface s-process enrichment of 1-2 dex. These extreme conditions can not, however, be excluded at this stage. Conclusions: Both the diffusive and linear prescriptions of the overshoot mixing are suited to describe the s-process nucleosynthesis in AGB stars provided the profile of the diffusion coefficient below the convective envelope is carefully chosen. Both schemes give rise to relatively similar distributions of s-process elements, but depending on the parameters adopted, some differences may be obtained. These differences are in the element distribution, and most of all in the level of surface enrichment.

  9. Puerto Rico water resources planning model program description

    USGS Publications Warehouse

    Moody, D.W.; Maddock, Thomas; Karlinger, M.R.; Lloyd, J.J.

    1973-01-01

    Because the use of the Mathematical Programming System -Extended (MPSX) to solve large linear and mixed integer programs requires the preparation of many input data cards, a matrix generator program to produce the MPSX input data from a much more limited set of data may expedite the use of the mixed integer programming optimization technique. The Model Definition and Control Program (MODCQP) is intended to assist a planner in preparing MPSX input data for the Puerto Rico Water Resources Planning Model. The model utilizes a mixed-integer mathematical program to identify a minimum present cost set of water resources projects (diversions, reservoirs, ground-water fields, desalinization plants, water treatment plants, and inter-basin transfers of water) which will meet a set of future water demands and to determine their sequence of construction. While MODCOP was specifically written to generate MPSX input data for the planning model described in this report, the program can be easily modified to reflect changes in the model's mathematical structure.

  10. Ejecta patterns of Meteor Crater, Arizona derived from the linear un-mixing of TIMS data and laboratory thermal emission spectra

    NASA Technical Reports Server (NTRS)

    Ramsey, Michael S.; Christensen, Philip R.

    1992-01-01

    Accurate interpretation of thermal infrared data depends upon the understanding and removal of complicating effects. These effects may include physical mixing of various mineralogies and particle sizes, atmospheric absorption and emission, surficial coatings, geometry effects, and differential surface temperatures. The focus is the examination of the linear spectral mixing of individual mineral or endmember spectra. Linear addition of spectra, for particles larger than the wavelength, allows for a straight-forward method of deconvolving the observed spectra, predicting a volume percent of each endmember. The 'forward analysis' of linear mixing (comparing the spectra of physical mixtures to numerical mixtures) has received much attention. The reverse approach of un-mixing thermal emission spectra was examined with remotely sensed data, but no laboratory verification exists. Understanding of the effects of spectral mixing on high resolution laboratory spectra allows for the extrapolation to lower resolution, and often more complicated, remotely gathered data. Thermal Infrared Multispectral Scanner (TIMS) data for Meteor Crater, Arizona were acquired in Sep. 1987. The spectral un-mixing of these data gives a unique test of the laboratory results. Meteor Crater (1.2 km in diameter and 180 m deep) is located in north-central Arizona, west of Canyon Diablo. The arid environment, paucity of vegetation, and low relief make the region ideal for remote data acquisition. Within the horizontal sedimentary sequence that forms the upper Colorado Plateau, the oldest unit sampled by the impact crater was the Permian Coconino Sandstone. A thin bed of the Toroweap Formation, also of Permian age, conformably overlays the Coconino. Above the Toroweap lies the Permian Kiabab Limestone which, in turn, is covered by a thin veneer of the Moenkopi Formation. The Moenkopi is Triassic in age and has two distinct sub-units in the vicinity of the crater. The lower Wupatki member is a fine-grained sandstone, while the upper Moqui member is a fissile siltstone. Ejecta from these units are preserved as inverted stratigraphy up to 2 crater radii from the rim. The mineralogical contrast between the units, relative lack of post-emplacement erosion and ejecta mixing provide a unique site to apply the un-mixing model. Selection of the aforementioned units as endmembers reveals distinct patterns in the ejecta of the crater.

  11. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon

    Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less

  12. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites

    DOE PAGES

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; ...

    2017-08-04

    Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less

  13. The Impact of Three Commonly Used Fungicides on Typhlodromus pyri (Acari: Phytoseiidae) in European Vineyards.

    PubMed

    Kemmitt, G; Valverde-Garcia, P; Hufnagl, A; Bacci, L; Zotz, A

    2015-04-01

    The impact of the fungicides mancozeb, myclobutanil, and meptyldinocap on populations of Typhlodromus pyri Scheuten was evaluated under field conditions, when applied following the good agricultural practices recommended for their use. Two complementary statistical models were used to analyze the population reduction compared to the control: a linear mixed model to estimate the mean effect of the fungicide, and a generalized linear mixed model (proportional odds mixed model) to estimate the cumulative probability for those effects being equal or less than a specific IOBC class (International Organization for Biological and Integrated Control of Noxious Animal and Plants). Findings from 27 field experiments in a range of different vine-growing regions in Europe indicated that the use of mancozeb, myclobutanil, and meptyldinocap caused minimal impact on naturally occurring populations of T. pyri. Both statistical models confirmed that although adverse effects on T. pyri can occur under certain conditions after several applications of any of the three fungicides studied, the probability of the effects occurring is low and they will not persist. These methods demonstrated how data from a series of trials could be used to evaluate the variability of the effects caused by the chemical rather than relying on the worst-case findings from a single trial. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites.

    PubMed

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; Brennan, Michael C; Morozov, Yurii V; Manser, Joseph S; Kamat, Prashant V; Schneider, William F; Kuno, Masaru

    2017-08-04

    Mixed halide hybrid perovskites, CH 3 NH 3 Pb(I 1-x Br x ) 3 , represent good candidates for low-cost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material's optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodide-rich phases. It additionally explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.Mixed halide hybrid perovskites possess tunable band gaps, however, under illumination they undergo phase separation. Using spectroscopic measurements and theoretical modelling, Draguta and Sharia et al. quantitatively rationalize the microscopic processes that occur during phase separation.

  15. An analysis of a large dataset on immigrant integration in Spain. The Statistical Mechanics perspective on Social Action

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Contucci, Pierluigi; Sandell, Rickard; Vernia, Cecilia

    2014-02-01

    How does immigrant integration in a country change with immigration density? Guided by a statistical mechanics perspective we propose a novel approach to this problem. The analysis focuses on classical integration quantifiers such as the percentage of jobs (temporary and permanent) given to immigrants, mixed marriages, and newborns with parents of mixed origin. We find that the average values of different quantifiers may exhibit either linear or non-linear growth on immigrant density and we suggest that social action, a concept identified by Max Weber, causes the observed non-linearity. Using the statistical mechanics notion of interaction to quantitatively emulate social action, a unified mathematical model for integration is proposed and it is shown to explain both growth behaviors observed. The linear theory instead, ignoring the possibility of interaction effects would underestimate the quantifiers up to 30% when immigrant densities are low, and overestimate them as much when densities are high. The capacity to quantitatively isolate different types of integration mechanisms makes our framework a suitable tool in the quest for more efficient integration policies.

  16. Optimising the selection of food items for FFQs using Mixed Integer Linear Programming.

    PubMed

    Gerdessen, Johanna C; Souverein, Olga W; van 't Veer, Pieter; de Vries, Jeanne Hm

    2015-01-01

    To support the selection of food items for FFQs in such a way that the amount of information on all relevant nutrients is maximised while the food list is as short as possible. Selection of the most informative food items to be included in FFQs was modelled as a Mixed Integer Linear Programming (MILP) model. The methodology was demonstrated for an FFQ with interest in energy, total protein, total fat, saturated fat, monounsaturated fat, polyunsaturated fat, total carbohydrates, mono- and disaccharides, dietary fibre and potassium. The food lists generated by the MILP model have good performance in terms of length, coverage and R 2 (explained variance) of all nutrients. MILP-generated food lists were 32-40 % shorter than a benchmark food list, whereas their quality in terms of R 2 was similar to that of the benchmark. The results suggest that the MILP model makes the selection process faster, more standardised and transparent, and is especially helpful in coping with multiple nutrients. The complexity of the method does not increase with increasing number of nutrients. The generated food lists appear either shorter or provide more information than a food list generated without the MILP model.

  17. Posterior propriety for hierarchical models with log-likelihoods that have norm bounds

    DOE PAGES

    Michalak, Sarah E.; Morris, Carl N.

    2015-07-17

    Statisticians often use improper priors to express ignorance or to provide good frequency properties, requiring that posterior propriety be verified. Our paper addresses generalized linear mixed models, GLMMs, when Level I parameters have Normal distributions, with many commonly-used hyperpriors. It provides easy-to-verify sufficient posterior propriety conditions based on dimensions, matrix ranks, and exponentiated norm bounds, ENBs, for the Level I likelihood. Since many familiar likelihoods have ENBs, which is often verifiable via log-concavity and MLE finiteness, our novel use of ENBs permits unification of posterior propriety results and posterior MGF/moment results for many useful Level I distributions, including those commonlymore » used with multilevel generalized linear models, e.g., GLMMs and hierarchical generalized linear models, HGLMs. Furthermore, those who need to verify existence of posterior distributions or of posterior MGFs/moments for a multilevel generalized linear model given a proper or improper multivariate F prior as in Section 1 should find the required results in Sections 1 and 2 and Theorem 3 (GLMMs), Theorem 4 (HGLMs), or Theorem 5 (posterior MGFs/moments).« less

  18. Mixing and evaporation processes in an inverse estuary inferred from δ2H and δ18O

    NASA Astrophysics Data System (ADS)

    Corlis, Nicholas J.; Herbert Veeh, H.; Dighton, John C.; Herczeg, Andrew L.

    2003-05-01

    We have measured δ2H and δ18O in Spencer Gulf, South Australia, an inverse estuary with a salinity gradient from 36‰ near its entrance to about 45‰ at its head. We show that a simple evaporation model of seawater under ambient conditions, aided by its long residence time in Spencer Gulf, can account for the major features of the non-linear distribution pattern of δ2H with respect to salinity, at least in the restricted part of the gulf. In the more exposed part of the gulf, the δ/ S pattern appears to be governed primarily by mixing processes between inflowing shelf water and outflowing high salinity gulf water. These data provide direct support for the oceanographic model of Spencer Gulf previously proposed by other workers. Although the observed δ/ S relationship here is non-linear and hence in notable contrast to the linear δ/ S relationship in the Red Sea, the slopes of δ2H vs. δ18O are comparable, indicating that the isotopic enrichments in both marginal seas are governed by similar climatic conditions with evaporation exceeding precipitation.

  19. A random distribution reacting mixing layer model

    NASA Technical Reports Server (NTRS)

    Jones, Richard A.; Marek, C. John; Myrabo, Leik N.; Nagamatsu, Henry T.

    1994-01-01

    A methodology for simulation of molecular mixing, and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Research Center Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and nonreacting shear layer present in the facility given basic assumptions about turbulence properties.

  20. Singular Perturbations and Time Scales in Modeling and Control of Dynamic Systems,

    DTIC Science & Technology

    1980-11-01

    Madanic, "Closed-Loop Stackelberg Stategies for Singularly Perturbed Linear Quadratic Problem," IEEE Transactions on Automtic Control, Vol. AC-25, No...of the state variables. On the other hand the com- (15 damped high steqenc oscillalor mode cannsome o \\s/ del are not separable. In this ’ mixed ’ case...are found to be mixed and hence is not electromechanical Interactions and the single ma- suitable for direct state separation into a slow chine

  1. A mixed-effects model approach for the statistical analysis of vocal fold viscoelastic shear properties.

    PubMed

    Xu, Chet C; Chan, Roger W; Sun, Han; Zhan, Xiaowei

    2017-11-01

    A mixed-effects model approach was introduced in this study for the statistical analysis of rheological data of vocal fold tissues, in order to account for the data correlation caused by multiple measurements of each tissue sample across the test frequency range. Such data correlation had often been overlooked in previous studies in the past decades. The viscoelastic shear properties of the vocal fold lamina propria of two commonly used laryngeal research animal species (i.e. rabbit, porcine) were measured by a linear, controlled-strain simple-shear rheometer. Along with published canine and human rheological data, the vocal fold viscoelastic shear moduli of these animal species were compared to those of human over a frequency range of 1-250Hz using the mixed-effects models. Our results indicated that tissues of the rabbit, canine and porcine vocal fold lamina propria were significantly stiffer and more viscous than those of human. Mixed-effects models were shown to be able to more accurately analyze rheological data generated from repeated measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models.

    PubMed

    Riviere, Marie-Karelle; Ueckert, Sebastian; Mentré, France

    2016-10-01

    Non-linear mixed effect models (NLMEMs) are widely used for the analysis of longitudinal data. To design these studies, optimal design based on the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. In recent years, estimation algorithms for NLMEMs have transitioned from linearization toward more exact higher-order methods. Optimal design, on the other hand, has mainly relied on first-order (FO) linearization to calculate the FIM. Although efficient in general, FO cannot be applied to complex non-linear models and with difficulty in studies with discrete data. We propose an approach to evaluate the expected FIM in NLMEMs for both discrete and continuous outcomes. We used Markov Chain Monte Carlo (MCMC) to integrate the derivatives of the log-likelihood over the random effects, and Monte Carlo to evaluate its expectation w.r.t. the observations. Our method was implemented in R using Stan, which efficiently draws MCMC samples and calculates partial derivatives of the log-likelihood. Evaluated on several examples, our approach showed good performance with relative standard errors (RSEs) close to those obtained by simulations. We studied the influence of the number of MC and MCMC samples and computed the uncertainty of the FIM evaluation. We also compared our approach to Adaptive Gaussian Quadrature, Laplace approximation, and FO. Our method is available in R-package MIXFIM and can be used to evaluate the FIM, its determinant with confidence intervals (CIs), and RSEs with CIs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Enrichment of statistical power for genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    The inheritance of most human diseases and agriculturally important traits is controlled by many genes with small effects. Identifying these genes, while simultaneously controlling false positives, is challenging. Among available statistical methods, the mixed linear model (MLM) has been the most fl...

  4. Using empirical Bayes predictors from generalized linear mixed models to test and visualize associations among longitudinal outcomes.

    PubMed

    Mikulich-Gilbertson, Susan K; Wagner, Brandie D; Grunwald, Gary K; Riggs, Paula D; Zerbe, Gary O

    2018-01-01

    Medical research is often designed to investigate changes in a collection of response variables that are measured repeatedly on the same subjects. The multivariate generalized linear mixed model (MGLMM) can be used to evaluate random coefficient associations (e.g. simple correlations, partial regression coefficients) among outcomes that may be non-normal and differently distributed by specifying a multivariate normal distribution for their random effects and then evaluating the latent relationship between them. Empirical Bayes predictors are readily available for each subject from any mixed model and are observable and hence, plotable. Here, we evaluate whether second-stage association analyses of empirical Bayes predictors from a MGLMM, provide a good approximation and visual representation of these latent association analyses using medical examples and simulations. Additionally, we compare these results with association analyses of empirical Bayes predictors generated from separate mixed models for each outcome, a procedure that could circumvent computational problems that arise when the dimension of the joint covariance matrix of random effects is large and prohibits estimation of latent associations. As has been shown in other analytic contexts, the p-values for all second-stage coefficients that were determined by naively assuming normality of empirical Bayes predictors provide a good approximation to p-values determined via permutation analysis. Analyzing outcomes that are interrelated with separate models in the first stage and then associating the resulting empirical Bayes predictors in a second stage results in different mean and covariance parameter estimates from the maximum likelihood estimates generated by a MGLMM. The potential for erroneous inference from using results from these separate models increases as the magnitude of the association among the outcomes increases. Thus if computable, scatterplots of the conditionally independent empirical Bayes predictors from a MGLMM are always preferable to scatterplots of empirical Bayes predictors generated by separate models, unless the true association between outcomes is zero.

  5. Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models.

    PubMed

    Haem, Elham; Harling, Kajsa; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf; Karlsson, Mats O

    2017-02-01

    One important aim in population pharmacokinetics (PK) and pharmacodynamics is identification and quantification of the relationships between the parameters and covariates. Lasso has been suggested as a technique for simultaneous estimation and covariate selection. In linear regression, it has been shown that Lasso possesses no oracle properties, which means it asymptotically performs as though the true underlying model was given in advance. Adaptive Lasso (ALasso) with appropriate initial weights is claimed to possess oracle properties; however, it can lead to poor predictive performance when there is multicollinearity between covariates. This simulation study implemented a new version of ALasso, called adjusted ALasso (AALasso), to take into account the ratio of the standard error of the maximum likelihood (ML) estimator to the ML coefficient as the initial weight in ALasso to deal with multicollinearity in non-linear mixed-effect models. The performance of AALasso was compared with that of ALasso and Lasso. PK data was simulated in four set-ups from a one-compartment bolus input model. Covariates were created by sampling from a multivariate standard normal distribution with no, low (0.2), moderate (0.5) or high (0.7) correlation. The true covariates influenced only clearance at different magnitudes. AALasso, ALasso and Lasso were compared in terms of mean absolute prediction error and error of the estimated covariate coefficient. The results show that AALasso performed better in small data sets, even in those in which a high correlation existed between covariates. This makes AALasso a promising method for covariate selection in nonlinear mixed-effect models.

  6. Semi-idealized modeling of lightning initiation related to vertical air motion and cloud microphysics

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Yijun; Zheng, Dong; Xu, Liangtao; Zhang, Wenjuan; Meng, Qing

    2017-10-01

    A three-dimensional charge-discharge numerical model is used, in a semi-idealized mode, to simulate a thunder-storm cell. Characteristics of the graupel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge-discharge model is available. The results show that the vertical air motion at the lightning initiation sites ( W ini) has a cubic polynomial correlation with the maximum updraft of the storm cell ( W cell-max), with the adjusted regression coefficient R 2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites ( q g-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell ( q g-cell-max) and the initiation height ( z ini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of q g-cell-max and below the upper edge of the graupel region, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of q ice (ice crystal mixing ratio) to q g (graupel mixing ratio) illustrates an exponential relationship to q g-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at lightning initiation sites.

  7. Dynamics of Transformation from Segregation to Mixed Wealth Cities

    PubMed Central

    Sahasranaman, Anand; Jensen, Henrik Jeldtoft

    2016-01-01

    We model the dynamics of a variation of the Schelling model for agents described simply by a continuously distributed variable—wealth. Agent movement is not dictated by agent choice as in the classic Schelling model, but by their wealth status. Agents move to neighborhoods where their wealth is not lesser than that of some proportion of their neighbors, the threshold level. As in the case of the classic Schelling model, we find here that wealth-based segregation occurs and persists. However, introducing uncertainty into the decision to move—that is, with some probability, if agents are allowed to move even though the threshold condition is contravened—we find that even for small proportions of such disallowed moves, the dynamics no longer yield segregation but instead sharply transition into a persistent mixed wealth distribution, consistent with empirical findings of Benenson, Hatna, and Or. We investigate the nature of this sharp transformation, and find that it is because of a non-linear relationship between allowed moves (moves where threshold condition is satisfied) and disallowed moves (moves where it is not). For small increases in disallowed moves, there is a rapid corresponding increase in allowed moves (before the rate of increase tapers off and tends to zero), and it is the effect of this non-linearity on the dynamics of the system that causes the rapid transition from a segregated to a mixed wealth state. The contravention of the tolerance condition, sanctioning disallowed moves, could be interpreted as public policy interventions to drive de-segregation. Our finding therefore suggests that it might require limited, but continually implemented, public intervention—just sufficient to enable a small, persistently sustained fraction of disallowed moves so as to trigger the dynamics that drive the transformation from a segregated to mixed equilibrium. PMID:27861578

  8. Axial displacement of external and internal implant-abutment connection evaluated by linear mixed model analysis.

    PubMed

    Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo

    2015-01-01

    To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.

  9. Predicting Endurance Time in a Repetitive Lift and Carry Task Using Linear Mixed Models

    PubMed Central

    Ham, Daniel J.; Best, Stuart A.; Carstairs, Greg L.; Savage, Robert J.; Straney, Lahn; Caldwell, Joanne N.

    2016-01-01

    Objectives Repetitive manual handling tasks account for a substantial portion of work-related injuries. However, few studies report endurance time in repetitive manual handling tasks. Consequently, there is little guidance to inform expected work time for repetitive manual handling tasks. We aimed to investigate endurance time and oxygen consumption of a repetitive lift and carry task using linear mixed models. Methods Fourteen male soldiers (age 22.4 ± 4.5 yrs, height 1.78 ± 0.04 m, body mass 76.3 ± 10.1 kg) conducted four assessment sessions that consisted of one maximal box lifting session and three lift and carry sessions. The relationships between carry mass (range 17.5–37.5 kg) and the duration of carry, and carry mass and oxygen consumption, were assessed using linear mixed models with random effects to account for between-subject variation. Results Results demonstrated that endurance time was inversely associated with carry mass (R2 = 0.24), with significant individual-level variation (R2 = 0.85). Normalising carry mass to performance in a maximal box lifting test improved the prediction of endurance time (R2 = 0.40). Oxygen consumption presented relative to total mass (body mass, external load and carried mass) was not significantly related to lift and carry mass (β1 = 0.16, SE = 0.10, 95%CI: -0.04, 0.36, p = 0.12), indicating that there was no change in oxygen consumption relative to total mass with increasing lift and carry mass. Conclusion Practically, these data can be used to guide work-rest schedules and provide insight into methods assessing the physical capacity of workers conducting repetitive manual handling tasks. PMID:27379902

  10. Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling

    USGS Publications Warehouse

    Srodon, J.; Clauer, Norbert; Eberl, D.D.D.

    2002-01-01

    K-Ar dates of illitic clays from sedimentary rocks may contain "mixed ages," i.e., may have ages that are intermediate between the ages of end-member events. Two phenomena that may cause mixed ages are: (1) long-lasting reaction during the burial illitization of smectite: and (2) physical mixing of detrital and diagenetic components. The first phenomenon was investigated by simulation of illitization reactions using a nucleation and growth mechanism. These calculations indicate that values for mixed ages are related to burial history: for an equivalent length of reaction time, fast burial followed by slow burial produces much older mixed ages than slow burial followed by fast. The type of reaction that occured in a rock can be determined from the distribution of ages with respect to the thickness of illite crystals. Dating of artificial mixtures confirms a non-linear relation between mixed ages and the proportions of the components. Vertical variation of K-Ar age dates from Gulf Coast shales can be modeled by assuming diagenetic illitization that overprints a subtle vertical trend (presumably of sedimentary origin) in detrital mineral content.

  11. Mixed H2/H∞ distributed robust model predictive control for polytopic uncertain systems subject to actuator saturation and missing measurements

    NASA Astrophysics Data System (ADS)

    Song, Yan; Fang, Xiaosheng; Diao, Qingda

    2016-03-01

    In this paper, we discuss the mixed H2/H∞ distributed robust model predictive control problem for polytopic uncertain systems subject to randomly occurring actuator saturation and packet loss. The global system is decomposed into several subsystems, and all the subsystems are connected by a fixed topology network, which is the definition for the packet loss among the subsystems. To better use the successfully transmitted information via Internet, both the phenomena of actuator saturation and packet loss resulting from the limitation of the communication bandwidth are taken into consideration. A novel distributed controller model is established to account for the actuator saturation and packet loss in a unified representation by using two sets of Bernoulli distributed white sequences with known conditional probabilities. With the nonlinear feedback control law represented by the convex hull of a group of linear feedback laws, the distributed controllers for subsystems are obtained by solving an linear matrix inequality (LMI) optimisation problem. Finally, numerical studies demonstrate the effectiveness of the proposed techniques.

  12. IMPACT: Investigating the impact of Models of Practice for Allied health Care in subacuTe settings. A protocol for a quasi-experimental mixed methods study of cost effectiveness and outcomes for patients exposed to different models of allied health care.

    PubMed

    Coker, Freya; Williams, Cylie M; Taylor, Nicholas F; Caspers, Kirsten; McAlinden, Fiona; Wilton, Anita; Shields, Nora; Haines, Terry P

    2018-05-10

    This protocol considers three allied health staffing models across public health subacute hospitals. This quasi-experimental mixed-methods study, including qualitative process evaluation, aims to evaluate the impact of additional allied health services in subacute care, in rehabilitation and geriatric evaluation management settings, on patient, health service and societal outcomes. This health services research will analyse outcomes of patients exposed to different allied health models of care at three health services. Each health service will have a control ward (routine care) and an intervention ward (additional allied health). This project has two parts. Part 1: a whole of site data extraction for included wards. Outcome measures will include: length of stay, rate of readmissions, discharge destinations, community referrals, patient feedback and staff perspectives. Part 2: Functional Independence Measure scores will be collected every 2-3 days for the duration of 60 patient admissions.Data from part 1 will be analysed by linear regression analysis for continuous outcomes using patient-level data and logistic regression analysis for binary outcomes. Qualitative data will be analysed using a deductive thematic approach. For part 2, a linear mixed model analysis will be conducted using therapy service delivery and days since admission to subacute care as fixed factors in the model and individual participant as a random factor. Graphical analysis will be used to examine the growth curve of the model and transformations. The days since admission factor will be used to examine non-linear growth trajectories to determine if they lead to better model fit. Findings will be disseminated through local reports and to the Department of Health and Human Services Victoria. Results will be presented at conferences and submitted to peer-reviewed journals. The Monash Health Human Research Ethics committee approved this multisite research (HREC/17/MonH/144 and HREC/17/MonH/547). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Multilevel modeling and panel data analysis in educational research (Case study: National examination data senior high school in West Java)

    NASA Astrophysics Data System (ADS)

    Zulvia, Pepi; Kurnia, Anang; Soleh, Agus M.

    2017-03-01

    Individual and environment are a hierarchical structure consist of units grouped at different levels. Hierarchical data structures are analyzed based on several levels, with the lowest level nested in the highest level. This modeling is commonly call multilevel modeling. Multilevel modeling is widely used in education research, for example, the average score of National Examination (UN). While in Indonesia UN for high school student is divided into natural science and social science. The purpose of this research is to develop multilevel and panel data modeling using linear mixed model on educational data. The first step is data exploration and identification relationships between independent and dependent variable by checking correlation coefficient and variance inflation factor (VIF). Furthermore, we use a simple model approach with highest level of the hierarchy (level-2) is regency/city while school is the lowest of hierarchy (level-1). The best model was determined by comparing goodness-of-fit and checking assumption from residual plots and predictions for each model. Our finding that for natural science and social science, the regression with random effects of regency/city and fixed effects of the time i.e multilevel model has better performance than the linear mixed model in explaining the variability of the dependent variable, which is the average scores of UN.

  14. A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long

    2016-01-01

    The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.

  15. Zee-Babu type model with U (1 )Lμ-Lτ gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-05-01

    We extend the Zee-Babu model, introducing local U (1 )Lμ-Lτ symmetry with several singly charged bosons. We find a predictive neutrino mass texture in a simple hypothesis in which mixings among singly charged bosons are negligible. Also, lepton-flavor violations are less constrained compared with the original model. Then, we explore the testability of the model, focusing on doubly charged boson physics at the LHC and the International Linear Collider.

  16. Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction

    NASA Astrophysics Data System (ADS)

    Shateyi, Stanford; Marewo, Gerald T.

    2018-05-01

    We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.

  17. Benevolent Ideology and Women's Economic Decision-Making: When Sexism Is Hurting Men's Wallet.

    PubMed

    Silvestre, Aude; Sarlet, Marie; Huart, Johanne; Dardenne, Benoit

    2016-01-01

    Can ideology, as a widespread "expectation creator," impact economic decisions? In two studies we investigated the influence of the Benevolent Sexism (BS) ideology (which dictates that men should provide for passive and nurtured women) on women's economic decision-making. In Study 1, using a Dictator Game in which women decided how to share amounts of money with men, results of a Generalized Linear Mixed Model analysis show that higher endorsement of BS and contextual expectations of benevolence were associated with more very unequal offers. Similarly, in an Ultimatum Game in which women received monetary offers from men, Study 2's Generalized Linear Mixed Model's results revealed that BS led women to reject more very unequal offers. If women's endorsement of BS ideology and expectations of benevolence prove contrary to reality, they may strike back at men. These findings show that BS ideology creates expectations that shape male-female relationships in a way that could be prejudicial to men.

  18. Does Marriage Moderate Genetic Effects on Delinquency and Violence?

    PubMed Central

    Li, Yi; Liu, Hexuan; Guo, Guang

    2015-01-01

    Using data from the National Longitudinal Study of Adolescent to Adult Health (N = 1,254), the authors investigated whether marriage can foster desistance from delinquency and violence by moderating genetic effects. In contrast to existing gene–environment research that typically focuses on one or a few genetic polymorphisms, they extended a recently developed mixed linear model to consider the collective influence of 580 single nucleotide polymorphisms in 64 genes related to aggression and risky behavior. The mixed linear model estimates the proportion of variance in the phenotype that is explained by the single nucleotide polymorphisms. The authors found that the proportion of variance in delinquency/violence explained was smaller among married individuals than unmarried individuals. Because selection, confounding, and heterogeneity may bias the estimate of the Gene × Marriage interaction, they conducted a series of analyses to address these issues. The findings suggest that the Gene × Marriage interaction results were not seriously affected by these issues. PMID:26549892

  19. Analysis and generation of groundwater concentration time series

    NASA Astrophysics Data System (ADS)

    Crăciun, Maria; Vamoş, Călin; Suciu, Nicolae

    2018-01-01

    Concentration time series are provided by simulated concentrations of a nonreactive solute transported in groundwater, integrated over the transverse direction of a two-dimensional computational domain and recorded at the plume center of mass. The analysis of a statistical ensemble of time series reveals subtle features that are not captured by the first two moments which characterize the approximate Gaussian distribution of the two-dimensional concentration fields. The concentration time series exhibit a complex preasymptotic behavior driven by a nonstationary trend and correlated fluctuations with time-variable amplitude. Time series with almost the same statistics are generated by successively adding to a time-dependent trend a sum of linear regression terms, accounting for correlations between fluctuations around the trend and their increments in time, and terms of an amplitude modulated autoregressive noise of order one with time-varying parameter. The algorithm generalizes mixing models used in probability density function approaches. The well-known interaction by exchange with the mean mixing model is a special case consisting of a linear regression with constant coefficients.

  20. Measuring the individual benefit of a medical or behavioral treatment using generalized linear mixed-effects models.

    PubMed

    Diaz, Francisco J

    2016-10-15

    We propose statistical definitions of the individual benefit of a medical or behavioral treatment and of the severity of a chronic illness. These definitions are used to develop a graphical method that can be used by statisticians and clinicians in the data analysis of clinical trials from the perspective of personalized medicine. The method focuses on assessing and comparing individual effects of treatments rather than average effects and can be used with continuous and discrete responses, including dichotomous and count responses. The method is based on new developments in generalized linear mixed-effects models, which are introduced in this article. To illustrate, analyses of data from the Sequenced Treatment Alternatives to Relieve Depression clinical trial of sequences of treatments for depression and data from a clinical trial of respiratory treatments are presented. The estimation of individual benefits is also explained. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. A generalized nonlinear model-based mixed multinomial logit approach for crash data analysis.

    PubMed

    Zeng, Ziqiang; Zhu, Wenbo; Ke, Ruimin; Ash, John; Wang, Yinhai; Xu, Jiuping; Xu, Xinxin

    2017-02-01

    The mixed multinomial logit (MNL) approach, which can account for unobserved heterogeneity, is a promising unordered model that has been employed in analyzing the effect of factors contributing to crash severity. However, its basic assumption of using a linear function to explore the relationship between the probability of crash severity and its contributing factors can be violated in reality. This paper develops a generalized nonlinear model-based mixed MNL approach which is capable of capturing non-monotonic relationships by developing nonlinear predictors for the contributing factors in the context of unobserved heterogeneity. The crash data on seven Interstate freeways in Washington between January 2011 and December 2014 are collected to develop the nonlinear predictors in the model. Thirteen contributing factors in terms of traffic characteristics, roadway geometric characteristics, and weather conditions are identified to have significant mixed (fixed or random) effects on the crash density in three crash severity levels: fatal, injury, and property damage only. The proposed model is compared with the standard mixed MNL model. The comparison results suggest a slight superiority of the new approach in terms of model fit measured by the Akaike Information Criterion (12.06 percent decrease) and Bayesian Information Criterion (9.11 percent decrease). The predicted crash densities for all three levels of crash severities of the new approach are also closer (on average) to the observations than the ones predicted by the standard mixed MNL model. Finally, the significance and impacts of the contributing factors are analyzed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Design optimization of single mixed refrigerant LNG process using a hybrid modified coordinate descent algorithm

    NASA Astrophysics Data System (ADS)

    Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong

    2018-01-01

    Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.

  3. Parental and Early Childhood Influences on Adolescent Obesity: A Longitudinal Study

    ERIC Educational Resources Information Center

    Chivers, Paola; Parker, Helen; Bulsara, Max; Beilin, Lawrence; Hands, Beth

    2012-01-01

    The influence of parental and early childhood factors on adolescent obesity was investigated using a longitudinal model of body mass index (BMI) from birth to 14 years. Trajectories of BMI using linear mixed model (LMM) analysis were used to investigate the influence of early parental and childhood factors on BMI at 14 years in the Raine birth…

  4. [Analysis of binary classification repeated measurement data with GEE and GLMMs using SPSS software].

    PubMed

    An, Shengli; Zhang, Yanhong; Chen, Zheng

    2012-12-01

    To analyze binary classification repeated measurement data with generalized estimating equations (GEE) and generalized linear mixed models (GLMMs) using SPSS19.0. GEE and GLMMs models were tested using binary classification repeated measurement data sample using SPSS19.0. Compared with SAS, SPSS19.0 allowed convenient analysis of categorical repeated measurement data using GEE and GLMMs.

  5. Improving the Accuracy of Mapping Urban Vegetation Carbon Density by Combining Shadow Remove, Spectral Unmixing Analysis and Spatial Modeling

    NASA Astrophysics Data System (ADS)

    Qie, G.; Wang, G.; Wang, M.

    2016-12-01

    Mixed pixels and shadows due to buildings in urban areas impede accurate estimation and mapping of city vegetation carbon density. In most of previous studies, these factors are often ignored, which thus result in underestimation of city vegetation carbon density. In this study we presented an integrated methodology to improve the accuracy of mapping city vegetation carbon density. Firstly, we applied a linear shadow remove analysis (LSRA) on remotely sensed Landsat 8 images to reduce the shadow effects on carbon estimation. Secondly, we integrated a linear spectral unmixing analysis (LSUA) with a linear stepwise regression (LSR), a logistic model-based stepwise regression (LMSR) and k-Nearest Neighbors (kNN), and utilized and compared the integrated models on shadow-removed images to map vegetation carbon density. This methodology was examined in Shenzhen City of Southeast China. A data set from a total of 175 sample plots measured in 2013 and 2014 was used to train the models. The independent variables statistically significantly contributing to improving the fit of the models to the data and reducing the sum of squared errors were selected from a total of 608 variables derived from different image band combinations and transformations. The vegetation fraction from LSUA was then added into the models as an important independent variable. The estimates obtained were evaluated using a cross-validation method. Our results showed that higher accuracies were obtained from the integrated models compared with the ones using traditional methods which ignore the effects of mixed pixels and shadows. This study indicates that the integrated method has great potential on improving the accuracy of urban vegetation carbon density estimation. Key words: Urban vegetation carbon, shadow, spectral unmixing, spatial modeling, Landsat 8 images

  6. Within crown variation in the relationship between foliage biomass and sapwood area in jack pine.

    PubMed

    Schneider, Robert; Berninger, Frank; Ung, Chhun-Huor; Mäkelä, Annikki; Swift, D Edwin; Zhang, S Y

    2011-01-01

    The relationship between sapwood area and foliage biomass is the basis for a lot of research on eco-phyisology. In this paper, foliage biomass change between two consecutive whorls is studied, using different variations in the pipe model theory. Linear and non-linear mixed-effect models relating foliage differences to sapwood area increments were tested to take into account whorl location, with the best fit statistics supporting the non-linear formulation. The estimated value of the exponent is 0.5130, which is significantly different from 1, the expected value given by the pipe model theory. When applied to crown stem sapwood taper, the model indicates that foliage biomass distribution influences the foliage biomass to sapwood area at crown base ratio. This result is interpreted as being the consequence of differences in the turnover rates of sapwood and foliage. More importantly, the model explains previously reported trends in jack pine sapwood area at crown base to tree foliage biomass ratio.

  7. Genomic similarity and kernel methods I: advancements by building on mathematical and statistical foundations.

    PubMed

    Schaid, Daniel J

    2010-01-01

    Measures of genomic similarity are the basis of many statistical analytic methods. We review the mathematical and statistical basis of similarity methods, particularly based on kernel methods. A kernel function converts information for a pair of subjects to a quantitative value representing either similarity (larger values meaning more similar) or distance (smaller values meaning more similar), with the requirement that it must create a positive semidefinite matrix when applied to all pairs of subjects. This review emphasizes the wide range of statistical methods and software that can be used when similarity is based on kernel methods, such as nonparametric regression, linear mixed models and generalized linear mixed models, hierarchical models, score statistics, and support vector machines. The mathematical rigor for these methods is summarized, as is the mathematical framework for making kernels. This review provides a framework to move from intuitive and heuristic approaches to define genomic similarities to more rigorous methods that can take advantage of powerful statistical modeling and existing software. A companion paper reviews novel approaches to creating kernels that might be useful for genomic analyses, providing insights with examples [1]. Copyright © 2010 S. Karger AG, Basel.

  8. Gyrofluid turbulence models with kinetic effects

    NASA Astrophysics Data System (ADS)

    Dorland, W.; Hammett, G. W.

    1993-03-01

    Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u∥, T∥, and T⊥ along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived that may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau damping model [G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990)], which is equivalent to a multipole approximation to the plasma dispersion function, extended to include finite Larmor radius effects (FLR). In particular, new dissipative, nonlinear terms are found that model the perpendicular phase mixing of the distribution function along contours of constant electrostatic potential. These ``FLR phase-mixing'' terms introduce a hyperviscositylike damping ∝k⊥2‖Φkk×k'‖, which should provide a physics-based damping mechanism at high k⊥ρ which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three-dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory.

  9. Adaptive convex combination approach for the identification of improper quaternion processes.

    PubMed

    Ujang, Bukhari Che; Jahanchahi, Cyrus; Took, Clive Cheong; Mandic, Danilo P

    2014-01-01

    Data-adaptive optimal modeling and identification of real-world vector sensor data is provided by combining the fractional tap-length (FT) approach with model order selection in the quaternion domain. To account rigorously for the generality of such processes, both second-order circular (proper) and noncircular (improper), the proposed approach in this paper combines the FT length optimization with both the strictly linear quaternion least mean square (QLMS) and widely linear QLMS (WL-QLMS). A collaborative approach based on QLMS and WL-QLMS is shown to both identify the type of processes (proper or improper) and to track their optimal parameters in real time. Analysis shows that monitoring the evolution of the convex mixing parameter within the collaborative approach allows us to track the improperness in real time. Further insight into the properties of those algorithms is provided by establishing a relationship between the steady-state error and optimal model order. The approach is supported by simulations on model order selection and identification of both strictly linear and widely linear quaternion-valued systems, such as those routinely used in renewable energy (wind) and human-centered computing (biomechanics).

  10. Using generalized additive (mixed) models to analyze single case designs.

    PubMed

    Shadish, William R; Zuur, Alain F; Sullivan, Kristynn J

    2014-04-01

    This article shows how to apply generalized additive models and generalized additive mixed models to single-case design data. These models excel at detecting the functional form between two variables (often called trend), that is, whether trend exists, and if it does, what its shape is (e.g., linear and nonlinear). In many respects, however, these models are also an ideal vehicle for analyzing single-case designs because they can consider level, trend, variability, overlap, immediacy of effect, and phase consistency that single-case design researchers examine when interpreting a functional relation. We show how these models can be implemented in a wide variety of ways to test whether treatment is effective, whether cases differ from each other, whether treatment effects vary over cases, and whether trend varies over cases. We illustrate diagnostic statistics and graphs, and we discuss overdispersion of data in detail, with examples of quasibinomial models for overdispersed data, including how to compute dispersion and quasi-AIC fit indices in generalized additive models. We show how generalized additive mixed models can be used to estimate autoregressive models and random effects and discuss the limitations of the mixed models compared to generalized additive models. We provide extensive annotated syntax for doing all these analyses in the free computer program R. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  11. Mapping nighttime PM2.5 from VIIRS DNB using a linear mixed-effect model

    NASA Astrophysics Data System (ADS)

    Fu, D.; Xia, X.; Duan, M.; Zhang, X.; Li, X.; Wang, J.; Liu, J.

    2018-04-01

    Estimation of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from daytime satellite aerosol products is widely reported in the literature; however, remote sensing of nighttime surface PM2.5 from space is very limited. PM2.5 shows a distinct diurnal cycle and PM2.5 concentration at 1:00 local standard time (LST) has a linear correlation coefficient (R) of 0.80 with daily-mean PM2.5. Therefore, estimation of nighttime PM2.5 is required toward an improved understanding of temporal variation of PM2.5 and its effects on air quality. Using data from the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) and hourly PM2.5 data at 35 stations in Beijing, a mixed-effect model is developed here to estimate nighttime PM2.5 from nighttime light radiance measurements based on the assumption that the DNB-PM2.5 relationship is constant spatially but varies temporally. Cross-validation showed that the model developed using all stations predict daily PM2.5 with mean determination coefficient (R2) of 0.87 ± 0.12, 0.83 ± 0.10 , 0.87 ± 0.09, 0.83 ± 0.10 in spring, summer, autumn and winter. Further analysis showed that the best model performance was achieved in urban stations with average cross-validation R2 of 0.92. In rural stations, DNB light signal is weak and was likely smeared by lunar illuminance that resulted in relatively poor estimation of PM2.5. The fixed and random parameters of the mixed-effect model in urban stations differed from those in suburban stations, which indicated that the assumption of the mixed-effect model should be carefully evaluated when used at a regional scale.

  12. Non-Linear Concentration-Response Relationships between Ambient Ozone and Daily Mortality.

    PubMed

    Bae, Sanghyuk; Lim, Youn-Hee; Kashima, Saori; Yorifuji, Takashi; Honda, Yasushi; Kim, Ho; Hong, Yun-Chul

    2015-01-01

    Ambient ozone (O3) concentration has been reported to be significantly associated with mortality. However, linearity of the relationships and the presence of a threshold has been controversial. The aim of the present study was to examine the concentration-response relationship and threshold of the association between ambient O3 concentration and non-accidental mortality in 13 Japanese and Korean cities from 2000 to 2009. We selected Japanese and Korean cities which have population of over 1 million. We constructed Poisson regression models adjusting daily mean temperature, daily mean PM10, humidity, time trend, season, year, day of the week, holidays and yearly population. The association between O3 concentration and mortality was examined using linear, spline and linear-threshold models. The thresholds were estimated for each city, by constructing linear-threshold models. We also examined the city-combined association using a generalized additive mixed model. The mean O3 concentration did not differ greatly between Korea and Japan, which were 26.2 ppb and 24.2 ppb, respectively. Seven out of 13 cities showed better fits for the spline model compared with the linear model, supporting a non-linear relationships between O3 concentration and mortality. All of the 7 cities showed J or U shaped associations suggesting the existence of thresholds. The range of city-specific thresholds was from 11 to 34 ppb. The city-combined analysis also showed a non-linear association with a threshold around 30-40 ppb. We have observed non-linear concentration-response relationship with thresholds between daily mean ambient O3 concentration and daily number of non-accidental death in Japanese and Korean cities.

  13. Solution of non-steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Senthamarai, R.; Jana Ranjani, R.

    2018-04-01

    In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.

  14. Sensitivity of Chemical Shift-Encoded Fat Quantification to Calibration of Fat MR Spectrum

    PubMed Central

    Wang, Xiaoke; Hernando, Diego; Reeder, Scott B.

    2015-01-01

    Purpose To evaluate the impact of different fat spectral models on proton density fat-fraction (PDFF) quantification using chemical shift-encoded (CSE) MRI. Material and Methods Simulations and in vivo imaging were performed. In a simulation study, spectral models of fat were compared pairwise. Comparison of magnitude fitting and mixed fitting was performed over a range of echo times and fat fractions. In vivo acquisitions from 41 patients were reconstructed using 7 published spectral models of fat. T2-corrected STEAM-MRS was used as reference. Results Simulations demonstrate that imperfectly calibrated spectral models of fat result in biases that depend on echo times and fat fraction. Mixed fitting is more robust against this bias than magnitude fitting. Multi-peak spectral models showed much smaller differences among themselves than when compared to the single-peak spectral model. In vivo studies show all multi-peak models agree better (for mixed fitting, slope ranged from 0.967–1.045 using linear regression) with reference standard than the single-peak model (for mixed fitting, slope=0.76). Conclusion It is essential to use a multi-peak fat model for accurate quantification of fat with CSE-MRI. Further, fat quantification techniques using multi-peak fat models are comparable and no specific choice of spectral model is shown to be superior to the rest. PMID:25845713

  15. Study on stress-strain response of multi-phase TRIP steel under cyclic loading

    NASA Astrophysics Data System (ADS)

    Dan, W. J.; Hu, Z. G.; Zhang, W. G.; Li, S. H.; Lin, Z. Q.

    2013-12-01

    The stress-strain response of multi-phase TRIP590 sheet steel is studied in cyclic loading condition at room temperature based on a cyclic phase transformation model and a multi-phase mixed kinematic hardening model. The cyclic martensite transformation model is proposed based on the shear-band intersection, where the repeat number, strain amplitude and cyclic frequency are used to control the phase transformation process. The multi-phase mixed kinematic hardening model is developed based on the non-linear kinematic hardening rule of per-phase. The parameters of transformation model are identified with the relationship between the austenite volume fraction and the repeat number. The parameters in Kinematic hardening model are confirmed by the experimental hysteresis loops in different strain amplitude conditions. The responses of hysteresis loop and stress amplitude are evaluated by tension-compression data.

  16. Efficient Bayesian mixed model analysis increases association power in large cohorts

    PubMed Central

    Loh, Po-Ru; Tucker, George; Bulik-Sullivan, Brendan K; Vilhjálmsson, Bjarni J; Finucane, Hilary K; Salem, Rany M; Chasman, Daniel I; Ridker, Paul M; Neale, Benjamin M; Berger, Bonnie; Patterson, Nick; Price, Alkes L

    2014-01-01

    Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts, and may not optimize power. All existing methods require time cost O(MN2) (where N = #samples and M = #SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power. Here, we present a far more efficient mixed model association method, BOLT-LMM, which requires only a small number of O(MN)-time iterations and increases power by modeling more realistic, non-infinitesimal genetic architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to nine quantitative traits in 23,294 samples from the Women’s Genome Health Study (WGHS) and observed significant increases in power, consistent with simulations. Theory and simulations show that the boost in power increases with cohort size, making BOLT-LMM appealing for GWAS in large cohorts. PMID:25642633

  17. Numerical simulation of the non-Newtonian mixing layer

    NASA Technical Reports Server (NTRS)

    Azaiez, Jalel; Homsy, G. M.

    1993-01-01

    This work is a continuing effort to advance our understanding of the effects of polymer additives on the structures of the mixing layer. In anticipation of full nonlinear simulations of the non-Newtonian mixing layer, we examined in a first stage the linear stability of the non-Newtonian mixing layer. The results of this study show that, for a fluid described by the Oldroyd-B model, viscoelasticity reduces the instability of the inviscid mixing layer in a special limit where the ratio (We/Re) is of order 1 where We is the Weissenberg number, a measure of the elasticity of the flow, and Re is the Reynolds number. In the present study, we pursue this project with numerical simulations of the non-Newtonian mixing layer. Our primary objective is to determine the effects of viscoelasticity on the roll-up structure. We also examine the origin of the numerical instabilities usually encountered in the simulations of non-Newtonian fluids.

  18. The ultrasound-enhanced bioscouring performance of four polygalacturonase enzymes obtained from rhizopus oryzae

    USDA-ARS?s Scientific Manuscript database

    An analytical and statistical method has been developed to measure the ultrasound-enhanced bioscouring performance of milligram quantities of endo- and exo-polygalacturonase enzymes obtained from Rhizopus oryzae fungi. UV-Vis spectrophotometric data and a general linear mixed models procedure indic...

  19. Investigation of micromixing by acoustically oscillated sharp-edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-01-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel. PMID:27158292

  20. Force-induced desorption of 3-star polymers: a self-avoiding walk model

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Whittington, S. G.

    2018-05-01

    We consider a simple cubic lattice self-avoiding walk model of 3-star polymers adsorbed at a surface and then desorbed by pulling with an externally applied force. We determine rigorously the free energy of the model in terms of properties of a self-avoiding walk, and show that the phase diagram includes four phases, namely a ballistic phase where the extension normal to the surface is linear in the length, an adsorbed phase and a mixed phase, in addition to the free phase where the model is neither adsorbed nor ballistic. In the adsorbed phase all three branches or arms of the star are adsorbed at the surface. In the ballistic phase two arms of the star are pulled into a ballistic phase, while the remaining arm is in a free phase. In the mixed phase two arms in the star are adsorbed while the third arm is ballistic. The phase boundaries separating the ballistic and mixed phases, and the adsorbed and mixed phases, are both first order phase transitions. The presence of the mixed phase is interesting because it does not occur for pulled, adsorbed self-avoiding walks. In an atomic force microscopy experiment it would appear as an additional phase transition as a function of force.

  1. Investigation of micromixing by acoustically oscillated sharp-edges.

    PubMed

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-03-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.

  2. A model of the saturation of coupled electron and ion scale gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staebler, Gary M.; Howard, Nathan T.; Candy, Jeffrey M.

    A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trappedmore » gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. Lastly, the shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.« less

  3. A model of the saturation of coupled electron and ion scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Howard, Nathan T.; Candy, Jeffrey M.; ...

    2017-05-09

    A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trappedmore » gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. Lastly, the shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.« less

  4. Towards enhancing and delaying disturbances in free shear flows

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Jackson, T. L.; Lasseigne, D. G.

    1994-01-01

    The family of shear flows comprising the jet, wake, and the mixing layer are subjected to perturbations in an inviscid incompressible fluid. By modeling the basic mean flows as parallel with piecewise linear variations for the velocities, complete and general solutions to the linearized equations of motion can be obtained in closed form as functions of all space variables and time when posed as an initial value problem. The results show that there is a continuous as well as the discrete spectrum that is more familiar in stability theory and therefore there can be both algebraic and exponential growth of disturbances in time. These bases make it feasible to consider control of such flows. To this end, the possibility of enhancing the disturbances in the mixing layer and delaying the onset in the jet and wake is investigated. It is found that growth of perturbations can be delayed to a considerable degree for the jet and the wake but, by comparison, cannot be enhanced in the mixing layer. By using moving coordinates, a method for demonstrating the predominant early and long time behavior of disturbances in these flows is given for continuous velocity profiles. It is shown that the early time transients are always algebraic whereas the asymptotic limit is that of an exponential normal mode. Numerical treatment of the new governing equations confirm the conclusions reached by use of the piecewise linear basic models. Although not pursued here, feedback mechanisms designed for control of the flow could be devised using the results of this work.

  5. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    NASA Technical Reports Server (NTRS)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  6. Consideration in selecting crops for the human-rated life support system: a linear programming model

    NASA Astrophysics Data System (ADS)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  7. The Quantitative-MFG Test: A Linear Mixed Effect Model to Detect Maternal-Offspring Gene Interactions.

    PubMed

    Clark, Michelle M; Blangero, John; Dyer, Thomas D; Sobel, Eric M; Sinsheimer, Janet S

    2016-01-01

    Maternal-offspring gene interactions, aka maternal-fetal genotype (MFG) incompatibilities, are neglected in complex diseases and quantitative trait studies. They are implicated in birth to adult onset diseases but there are limited ways to investigate their influence on quantitative traits. We present the quantitative-MFG (QMFG) test, a linear mixed model where maternal and offspring genotypes are fixed effects and residual correlations between family members are random effects. The QMFG handles families of any size, common or general scenarios of MFG incompatibility, and additional covariates. We develop likelihood ratio tests (LRTs) and rapid score tests and show they provide correct inference. In addition, the LRT's alternative model provides unbiased parameter estimates. We show that testing the association of SNPs by fitting a standard model, which only considers the offspring genotypes, has very low power or can lead to incorrect conclusions. We also show that offspring genetic effects are missed if the MFG modeling assumptions are too restrictive. With genome-wide association study data from the San Antonio Family Heart Study, we demonstrate that the QMFG score test is an effective and rapid screening tool. The QMFG test therefore has important potential to identify pathways of complex diseases for which the genetic etiology remains to be discovered. © 2015 John Wiley & Sons Ltd/University College London.

  8. Modelling Kepler red giants in eclipsing binaries: calibrating the mixing-length parameter with asteroseismology

    NASA Astrophysics Data System (ADS)

    Li, Tanda; Bedding, Timothy R.; Huber, Daniel; Ball, Warrick H.; Stello, Dennis; Murphy, Simon J.; Bland-Hawthorn, Joss

    2018-03-01

    Stellar models rely on a number of free parameters. High-quality observations of eclipsing binary stars observed by Kepler offer a great opportunity to calibrate model parameters for evolved stars. Our study focuses on six Kepler red giants with the goal of calibrating the mixing-length parameter of convection as well as the asteroseismic surface term in models. We introduce a new method to improve the identification of oscillation modes that exploits theoretical frequencies to guide the mode identification (`peak-bagging') stage of the data analysis. Our results indicate that the convective mixing-length parameter (α) is ≈14 per cent larger for red giants than for the Sun, in agreement with recent results from modelling the APOGEE stars. We found that the asteroseismic surface term (i.e. the frequency offset between the observed and predicted modes) correlates with stellar parameters (Teff, log g) and the mixing-length parameter. This frequency offset generally decreases as giants evolve. The two coefficients a-1 and a3 for the inverse and cubic terms that have been used to describe the surface term correction are found to correlate linearly. The effect of the surface term is also seen in the p-g mixed modes; however, established methods for correcting the effect are not able to properly correct the g-dominated modes in late evolved stars.

  9. Optimum use of air tankers in initial attack: selection, basing, and transfer rules

    Treesearch

    Francis E. Greulich; William G. O' Regan

    1982-01-01

    Fire managers face two interrelated problems in deciding the most efficient use of air tankers: where best to base them, and how best to reallocate them each day in anticipation of fire occurrence. A computerized model based on a mixed integer linear program can help in assigning air tankers throughout the fire season. The model was tested using information from...

  10. Random Effects Structure for Confirmatory Hypothesis Testing: Keep It Maximal

    ERIC Educational Resources Information Center

    Barr, Dale J.; Levy, Roger; Scheepers, Christoph; Tily, Harry J.

    2013-01-01

    Linear mixed-effects models (LMEMs) have become increasingly prominent in psycholinguistics and related areas. However, many researchers do not seem to appreciate how random effects structures affect the generalizability of an analysis. Here, we argue that researchers using LMEMs for confirmatory hypothesis testing should minimally adhere to the…

  11. UNCERTAINTY IN SOURCE PARTITIONING USING STABLE ISOTOPES

    EPA Science Inventory

    Stable isotope analyses are often used to quantify the contribution of multiple sources to a mixture, such as proportions of food sources in an animal's diet, C3 vs. C4 plant inputs to soil organic carbon, etc. Linear mixing models can be used to partition two sources with a sin...

  12. Obstetric and Parental Psychiatric Variables as Potential Predictors of Autism Severity

    ERIC Educational Resources Information Center

    Wallace, Anna E.; Anderson, George M.; Dubrow, Robert

    2008-01-01

    Associations between obstetric and parental psychiatric variables and subjects' Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) domain scores were examined using linear mixed effects models. Data for the 228 families studied were provided by the Autism Genetic Resource Exchange. Hypertension (P =…

  13. Bulk rheology and simulated episodic tremor and slip within a numerically-modeled block-dominated subduction melange

    NASA Astrophysics Data System (ADS)

    Webber, S.; Ellis, S. M.; Fagereng, A.

    2015-12-01

    We investigate the influence of melange rheology in a subduction thrust interface on stress and slip cycling constrained by observations from an exhumed subduction complex at Chrystalls Beach, New Zealand. A two-phase mélange dominated by large, competent brittle-viscous blocks surrounded by a weak non-linear viscous matrix is numerically modeled, and the evolution of bulk stress are analysed as the domain deforms. The models produce stress cycling behaviour under constant shear strain rate boundary conditions for a wide range of physical conditions that roughly corresponds to depths and strain rates calculated for instrumentally observed episodic tremor and slip (ETS) in presently-deforming subduction thrust interfaces. Stress cycling is accompanied by mixed brittle plastic-viscous deformation, and occurs as a consequence of geometric reorganisation and the progressive development and breakdown of stress bridges as blocks mutually obstruct one another. We argue that periods of low differential stress correspond to periods of rapid mixed-mode deformation and ETS. Stress cycling episodicities are a function of shear strain rate and pressure/temperature conditions at depth. The time period of stress cycling is principally controlled by the geometry (block distribution and density through time) and stress cycling amplitudes are controlled by effective stress. The duration of stress cycling events in the models (months-years) and rapid strain rates are comparable to instrumentally observed ETS. Shear strain rates are 1 - 2 orders of magnitude slower between stress cycling events, suggesting episodic return times within a single model domain are long duration (> centennial timescales), assuming constant flow stress. Finally, we derive a bulk viscous flow law for block dominated subduction mélanges for conditions 300 - 500°C and elevated pore fluid pressures. Bulk flow laws calculated for block-dominated subduction mélanges are non-linear, owing to a combination of non-linear matrix viscosity and development of tensile fractures at rapid shear strain rates. Model behaviour, including the generation of mixed-mode deformation, is highly comparable to the exhumed block-dominated melange found within the Chrystalls Beach Complex.

  14. Mixed effect Poisson log-linear models for clinical and epidemiological sleep hypnogram data

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian; Punjabi, Naresh M.

    2013-01-01

    Bayesian Poisson log-linear multilevel models scalable to epidemiological studies are proposed to investigate population variability in sleep state transition rates. Hierarchical random effects are used to account for pairings of subjects and repeated measures within those subjects, as comparing diseased to non-diseased subjects while minimizing bias is of importance. Essentially, non-parametric piecewise constant hazards are estimated and smoothed, allowing for time-varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming exponentially distributed survival times. Such re-derivation allows synthesis of two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed. Supplementary material includes the analyzed data set as well as the code for a reproducible analysis. PMID:22241689

  15. Efficiency of circulant diallels via mixed models in the selection of papaya genotypes resistant to foliar fungal diseases.

    PubMed

    Vivas, M; Silveira, S F; Viana, A P; Amaral, A T; Cardoso, D L; Pereira, M G

    2014-07-02

    Diallel crossing methods provide information regarding the performance of genitors between themselves and their hybrid combinations. However, with a large number of parents, the number of hybrid combinations that can be obtained and evaluated become limited. One option regarding the number of parents involved is the adoption of circulant diallels. However, information is lacking regarding diallel analysis using mixed models. This study aimed to evaluate the efficacy of the method of linear mixed models to estimate, for variable resistance to foliar fungal diseases, components of general and specific combining ability in a circulant table with different s values. Subsequently, 50 diallels were simulated for each s value, and the correlations and estimates of the combining abilities of the different diallel combinations were analyzed. The circulant diallel method using mixed modeling was effective in the classification of genitors regarding their combining abilities relative to the complete diallels. The numbers of crosses in which each genitor(s) will compose the circulant diallel and the estimated heritability affect the combining ability estimates. With three crosses per parent, it is possible to obtain good concordance (correlation above 0.8) between the combining ability estimates.

  16. Comparing a single case to a control group - Applying linear mixed effects models to repeated measures data.

    PubMed

    Huber, Stefan; Klein, Elise; Moeller, Korbinian; Willmes, Klaus

    2015-10-01

    In neuropsychological research, single-cases are often compared with a small control sample. Crawford and colleagues developed inferential methods (i.e., the modified t-test) for such a research design. In the present article, we suggest an extension of the methods of Crawford and colleagues employing linear mixed models (LMM). We first show that a t-test for the significance of a dummy coded predictor variable in a linear regression is equivalent to the modified t-test of Crawford and colleagues. As an extension to this idea, we then generalized the modified t-test to repeated measures data by using LMMs to compare the performance difference in two conditions observed in a single participant to that of a small control group. The performance of LMMs regarding Type I error rates and statistical power were tested based on Monte-Carlo simulations. We found that starting with about 15-20 participants in the control sample Type I error rates were close to the nominal Type I error rate using the Satterthwaite approximation for the degrees of freedom. Moreover, statistical power was acceptable. Therefore, we conclude that LMMs can be applied successfully to statistically evaluate performance differences between a single-case and a control sample. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Improved Convergence and Robustness of USM3D Solutions on Mixed Element Grids (Invited)

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.

    2015-01-01

    Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS), has been developed and implemented. It provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier Stokes (RANS) equations and a nonlinear control of the solution update. Two variants of the new methodology are assessed on four benchmark cases, namely, a zero-pressure gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the baseline solver technology.

  18. Non-linear mixing effects on mass-47 CO2 clumped isotope thermometry: Patterns and implications.

    PubMed

    Defliese, William F; Lohmann, Kyger C

    2015-05-15

    Mass-47 CO(2) clumped isotope thermometry requires relatively large (~20 mg) samples of carbonate minerals due to detection limits and shot noise in gas source isotope ratio mass spectrometry (IRMS). However, it is unreasonable to assume that natural geologic materials are homogenous on the scale required for sampling. We show that sample heterogeneities can cause offsets from equilibrium Δ(47) values that are controlled solely by end member mixing and are independent of equilibrium temperatures. A numerical model was built to simulate and quantify the effects of end member mixing on Δ(47). The model was run in multiple possible configurations to produce a dataset of mixing effects. We verified that the model accurately simulated real phenomena by comparing two artificial laboratory mixtures measured using IRMS to model output. Mixing effects were found to be dependent on end member isotopic composition in δ(13)C and δ(18)O values, and independent of end member Δ(47) values. Both positive and negative offsets from equilibrium Δ(47) can occur, and the sign is dependent on the interaction between end member isotopic compositions. The overall magnitude of mixing offsets is controlled by the amount of variability within a sample; the larger the disparity between end member compositions, the larger the mixing offset. Samples varying by less than 2 ‰ in both δ(13)C and δ(18)O values have mixing offsets below current IRMS detection limits. We recommend the use of isotopic subsampling for δ(13)C and δ(18)O values to determine sample heterogeneity, and to evaluate any potential mixing effects in samples suspected of being heterogonous. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Validation of ACG Case-mix for equitable resource allocation in Swedish primary health care.

    PubMed

    Zielinski, Andrzej; Kronogård, Maria; Lenhoff, Håkan; Halling, Anders

    2009-09-18

    Adequate resource allocation is an important factor to ensure equity in health care. Previous reimbursement models have been based on age, gender and socioeconomic factors. An explanatory model based on individual need of primary health care (PHC) has not yet been used in Sweden to allocate resources. The aim of this study was to examine to what extent the ACG case-mix system could explain concurrent costs in Swedish PHC. Diagnoses were obtained from electronic PHC records of inhabitants in Blekinge County (approx. 150,000) listed with public PHC (approx. 120,000) for three consecutive years, 2004-2006. The inhabitants were then classified into six different resource utilization bands (RUB) using the ACG case-mix system. The mean costs for primary health care were calculated for each RUB and year. Using linear regression models and log-cost as dependent variable the adjusted R2 was calculated in the unadjusted model (gender) and in consecutive models where age, listing with specific PHC and RUB were added. In an additional model the ACG groups were added. Gender, age and listing with specific PHC explained 14.48-14.88% of the variance in individual costs for PHC. By also adding information on level of co-morbidity, as measured by the ACG case-mix system, to specific PHC the adjusted R2 increased to 60.89-63.41%. The ACG case-mix system explains patient costs in primary care to a high degree. Age and gender are important explanatory factors, but most of the variance in concurrent patient costs was explained by the ACG case-mix system.

  20. A linear shock cell model for non-circular jets using conformal mapping with a pseudo-spectral hybrid scheme

    NASA Technical Reports Server (NTRS)

    Bhat, Thonse R. S.; Baty, Roy S.; Morris, Philip J.

    1990-01-01

    The shock structure in non-circular supersonic jets is predicted using a linear model. This model includes the effects of the finite thickness of the mixing layer and the turbulence in the jet shear layer. A numerical solution is obtained using a conformal mapping grid generation scheme with a hybrid pseudo-spectral discretization method. The uniform pressure perturbation at the jet exit is approximated by a Fourier-Mathieu series. The pressure at downstream locations is obtained from an eigenfunction expansion that is matched to the pressure perturbation at the jet exit. Results are presented for a circular jet and for an elliptic jet of aspect ratio 2.0. Comparisons are made with experimental data.

  1. Characterization of linear viscoelastic anti-vibration rubber mounts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodhia, B.B.; Esat, I.I.

    1996-11-01

    The aim of this paper is to identify the dynamic characteristics that are evident in linear viscoelastic rubber mountings. The characteristics under consideration included the static and dynamic stiffnesses with the variation of amplitude and frequency of the sinusoidal excitation. Test samples of various rubber mix were tested and compared to reflect magnitude of dependency on composition. In the light of the results, the validity and effectiveness of a mathematical model was investigated and a suitable technique based on the Tschoegl and Emri Algorithm, was utilized to fit the model to the experimental data. The model which was chosen, wasmore » an extension of the basic Maxwell model, which is based on linear spring and dashpot elements in series and parallel called the Wiechert model. It was found that the extent to which the filler and vulcanisate was present in the rubber sample, did have a great effect on the static stiffness characteristics, and the storage and loss moduli. The Tschoegl and Emri Algorithm was successfully utilized in modelling the frequency response of the samples.« less

  2. Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

    NASA Astrophysics Data System (ADS)

    Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei

    2014-09-01

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO- photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  3. Photoelectron angular distributions for states of any mixed character: an experiment-friendly model for atomic, molecular, and cluster anions.

    PubMed

    Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei

    2014-09-28

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  4. Using existing case-mix methods to fund trauma cases.

    PubMed

    Monakova, Julia; Blais, Irene; Botz, Charles; Chechulin, Yuriy; Picciano, Gino; Basinski, Antoni

    2010-01-01

    Policymakers frequently face the need to increase funding in isolated and frequently heterogeneous (clinically and in terms of resource consumption) patient subpopulations. This article presents a methodologic solution for testing the appropriateness of using existing grouping and weighting methodologies for funding subsets of patients in the scenario where a case-mix approach is preferable to a flat-rate based payment system. Using as an example the subpopulation of trauma cases of Ontario lead trauma hospitals, the statistical techniques of linear and nonlinear regression models, regression trees, and spline models were applied to examine the fit of the existing case-mix groups and reference weights for the trauma cases. The analyses demonstrated that for funding Ontario trauma cases, the existing case-mix systems can form the basis for rational and equitable hospital funding, decreasing the need to develop a different grouper for this subset of patients. This study confirmed that Injury Severity Score is a poor predictor of costs for trauma patients. Although our analysis used the Canadian case-mix classification system and cost weights, the demonstrated concept of using existing case-mix systems to develop funding rates for specific subsets of patient populations may be applicable internationally.

  5. Polar versus Cartesian velocity models for maneuvering target tracking with IMM

    NASA Astrophysics Data System (ADS)

    Laneuville, Dann

    This paper compares various model sets in different IMM filters for the maneuvering target tracking problem. The aim is to see whether we can improve the tracking performance of what is certainly the most widely used model set in the literature for the maneuvering target tracking problem: a Nearly Constant Velocity model and a Nearly Coordinated Turn model. Our new challenger set consists of a mixed Cartesian position and polar velocity state vector to describe the uniform motion segments and is augmented with the turn rate to obtain the second model for the maneuvering segments. This paper also gives a general procedure to discretize up to second order any non-linear continuous time model with linear diffusion. Comparative simulations on an air defence scenario with a 2D radar, show that this new approach improves significantly the tracking performance in this case.

  6. A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics

    NASA Astrophysics Data System (ADS)

    McDermott, Randall; Weinschenk, Craig

    2013-11-01

    A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.

  7. The development of neutrino-driven convection in core-collapse supernovae: 2D vs 3D

    NASA Astrophysics Data System (ADS)

    Kazeroni, R.; Krueger, B. K.; Guilet, J.; Foglizzo, T.

    2017-12-01

    A toy model is used to study the non-linear conditions for the development of neutrino-driven convection in the post-shock region of core-collapse supernovae. Our numerical simulations show that a buoyant non-linear perturbation is able to trigger self-sustained convection only in cases where convection is not linearly stabilized by advection. Several arguments proposed to interpret the impact of the dimensionality on global core-collapse supernova simulations are discussed in the light of our model. The influence of the numerical resolution is also addressed. In 3D a strong mixing to small scales induces an increase of the neutrino heating efficiency in a runaway process. This phenomenon is absent in 2D and this may indicate that the tridimensional nature of the hydrodynamics could foster explosions.

  8. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyllingstad, E.D.; Denbo, D.W.

    Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less

  9. Learning oncogenetic networks by reducing to mixed integer linear programming.

    PubMed

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  10. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE PAGES

    Li, Peng; Ji, Haoran; Wang, Chengshan; ...

    2017-03-22

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  11. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Ji, Haoran; Wang, Chengshan

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  12. Log-gamma linear-mixed effects models for multiple outcomes with application to a longitudinal glaucoma study

    PubMed Central

    Zhang, Peng; Luo, Dandan; Li, Pengfei; Sharpsten, Lucie; Medeiros, Felipe A.

    2015-01-01

    Glaucoma is a progressive disease due to damage in the optic nerve with associated functional losses. Although the relationship between structural and functional progression in glaucoma is well established, there is disagreement on how this association evolves over time. In addressing this issue, we propose a new class of non-Gaussian linear-mixed models to estimate the correlations among subject-specific effects in multivariate longitudinal studies with a skewed distribution of random effects, to be used in a study of glaucoma. This class provides an efficient estimation of subject-specific effects by modeling the skewed random effects through the log-gamma distribution. It also provides more reliable estimates of the correlations between the random effects. To validate the log-gamma assumption against the usual normality assumption of the random effects, we propose a lack-of-fit test using the profile likelihood function of the shape parameter. We apply this method to data from a prospective observation study, the Diagnostic Innovations in Glaucoma Study, to present a statistically significant association between structural and functional change rates that leads to a better understanding of the progression of glaucoma over time. PMID:26075565

  13. Internal pilots for a class of linear mixed models with Gaussian and compound symmetric data

    PubMed Central

    Gurka, Matthew J.; Coffey, Christopher S.; Muller, Keith E.

    2015-01-01

    SUMMARY An internal pilot design uses interim sample size analysis, without interim data analysis, to adjust the final number of observations. The approach helps to choose a sample size sufficiently large (to achieve the statistical power desired), but not too large (which would waste money and time). We report on recent research in cerebral vascular tortuosity (curvature in three dimensions) which would benefit greatly from internal pilots due to uncertainty in the parameters of the covariance matrix used for study planning. Unfortunately, observations correlated across the four regions of the brain and small sample sizes preclude using existing methods. However, as in a wide range of medical imaging studies, tortuosity data have no missing or mistimed data, a factorial within-subject design, the same between-subject design for all responses, and a Gaussian distribution with compound symmetry. For such restricted models, we extend exact, small sample univariate methods for internal pilots to linear mixed models with any between-subject design (not just two groups). Planning a new tortuosity study illustrates how the new methods help to avoid sample sizes that are too small or too large while still controlling the type I error rate. PMID:17318914

  14. Individual tree height increment model for managed even-aged stands of ponderosa pine throughout the western United States using linear mixed effects models

    Treesearch

    Fabian Uzoh; William W. Oliver

    2006-01-01

    A height increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in western United States. The data set used in this study came from long-term permanent research plots in even-aged, pure stands both planted and of natural origin. The data base consists of six levels-of-growing stock studies supplemented by initial...

  15. Model Validation for Propulsion - On the TFNS and LES Subgrid Models for a Bluff Body Stabilized Flame

    NASA Technical Reports Server (NTRS)

    Wey, Thomas

    2017-01-01

    This paper summarizes the reacting results of simulating a bluff body stabilized flame experiment of Volvo Validation Rig using a releasable edition of the National Combustion Code (NCC). The turbulence models selected to investigate the configuration are the sub-grid scaled kinetic energy coupled large eddy simulation (K-LES) and the time-filtered Navier-Stokes (TFNS) simulation. The turbulence chemistry interaction used is linear eddy mixing (LEM).

  16. A mixed model for the relationship between climate and human cranial form.

    PubMed

    Katz, David C; Grote, Mark N; Weaver, Timothy D

    2016-08-01

    We expand upon a multivariate mixed model from quantitative genetics in order to estimate the magnitude of climate effects in a global sample of recent human crania. In humans, genetic distances are correlated with distances based on cranial form, suggesting that population structure influences both genetic and quantitative trait variation. Studies controlling for this structure have demonstrated significant underlying associations of cranial distances with ecological distances derived from climate variables. However, to assess the biological importance of an ecological predictor, estimates of effect size and uncertainty in the original units of measurement are clearly preferable to significance claims based on units of distance. Unfortunately, the magnitudes of ecological effects are difficult to obtain with distance-based methods, while models that produce estimates of effect size generally do not scale to high-dimensional data like cranial shape and form. Using recent innovations that extend quantitative genetics mixed models to highly multivariate observations, we estimate morphological effects associated with a climate predictor for a subset of the Howells craniometric dataset. Several measurements, particularly those associated with cranial vault breadth, show a substantial linear association with climate, and the multivariate model incorporating a climate predictor is preferred in model comparison. Previous studies demonstrated the existence of a relationship between climate and cranial form. The mixed model quantifies this relationship concretely. Evolutionary questions that require population structure and phylogeny to be disentangled from potential drivers of selection may be particularly well addressed by mixed models. Am J Phys Anthropol 160:593-603, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Evaluation of the Food and Agriculture Sector Criticality Assessment Tool (FASCAT) and the Collected Data.

    PubMed

    Huff, Andrew G; Hodges, James S; Kennedy, Shaun P; Kircher, Amy

    2015-08-01

    To protect and secure food resources for the United States, it is crucial to have a method to compare food systems' criticality. In 2007, the U.S. government funded development of the Food and Agriculture Sector Criticality Assessment Tool (FASCAT) to determine which food and agriculture systems were most critical to the nation. FASCAT was developed in a collaborative process involving government officials and food industry subject matter experts (SMEs). After development, data were collected using FASCAT to quantify threats, vulnerabilities, consequences, and the impacts on the United States from failure of evaluated food and agriculture systems. To examine FASCAT's utility, linear regression models were used to determine: (1) which groups of questions posed in FASCAT were better predictors of cumulative criticality scores; (2) whether the items included in FASCAT's criticality method or the smaller subset of FASCAT items included in DHS's risk analysis method predicted similar criticality scores. Akaike's information criterion was used to determine which regression models best described criticality, and a mixed linear model was used to shrink estimates of criticality for individual food and agriculture systems. The results indicated that: (1) some of the questions used in FASCAT strongly predicted food or agriculture system criticality; (2) the FASCAT criticality formula was a stronger predictor of criticality compared to the DHS risk formula; (3) the cumulative criticality formula predicted criticality more strongly than weighted criticality formula; and (4) the mixed linear regression model did not change the rank-order of food and agriculture system criticality to a large degree. © 2015 Society for Risk Analysis.

  18. Mixing of Exciton and Charge-Transfer States in Photosystem II Reaction Centers: Modeling of Stark Spectra with Modified Redfield Theory

    PubMed Central

    Novoderezhkin, Vladimir I.; Dekker, Jan P.; van Grondelle, Rienk

    2007-01-01

    We propose an exciton model for the Photosystem II reaction center (RC) based on a quantitative simultaneous fit of the absorption, linear dichroism, circular dichroism, steady-state fluorescence, triplet-minus-singlet, and Stark spectra together with the spectra of pheophytin-modified RCs, and so-called RC5 complexes that lack one of the peripheral chlorophylls. In this model, the excited state manifold includes a primary charge-transfer (CT) state that is supposed to be strongly mixed with the pure exciton states. We generalize the exciton theory of Stark spectra by 1), taking into account the coupling to a CT state (whose static dipole cannot be treated as a small parameter in contrast to usual excited states); and 2), expressing the line shape functions in terms of the modified Redfield approach (the same as used for modeling of the linear responses). This allows a consistent modeling of the whole set of experimental data using a unified physical picture. We show that the fluorescence and Stark spectra are extremely sensitive to the assignment of the primary CT state, its energy, and coupling to the excited states. The best fit of the data is obtained supposing that the initial charge separation occurs within the special-pair PD1PD2. Additionally, the scheme with primary electron transfer from the accessory chlorophyll to pheophytin gave a reasonable quantitative fit. We show that the effectiveness of these two pathways is strongly dependent on the realization of the energetic disorder. Supposing a mixed scheme of primary charge separation with a disorder-controlled competition of the two channels, we can explain the coexistence of fast sub-ps and slow ps components of the Phe-anion formation as revealed by different ultrafast spectroscopic techniques. PMID:17526589

  19. Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake.

    PubMed

    Shah-Kulkarni, Surabhi; Ha, Mina; Kim, Byung-Mi; Kim, Eunjeong; Hong, Yun-Chul; Park, Hyesook; Kim, Yangho; Kim, Bung-Nyun; Chang, Namsoo; Oh, Se-Young; Kim, Young Ju; Kimʼs, Young Ju; Lee, Boeun; Ha, Eun-Hee

    2016-01-01

    No safe threshold level of lead exposure in children has been recognized. Also, the information on shielding effect of maternal dietary iron intake during pregnancy on the adverse effects of prenatal lead exposure on children's postnatal neurocognitive development is very limited. We examined the association of prenatal lead exposure and neurodevelopment in children at 6, 12, 24, and 36 months and the protective action of maternal dietary iron intake against the impact of lead exposure. The study participants comprise 965 pregnant women and their subsequent offspring of the total participants enrolled in the Mothers and Children's environmental health study: a prospective birth cohort study. Generalized linear model and linear mixed model analysis were performed to analyze the effect of prenatal lead exposure and mother's dietary iron intake on children's cognitive development at 6, 12, 24, and 36 months. Maternal late pregnancy lead was marginally associated with deficits in mental development index (MDI) of children at 6 months. Mothers having less than 75th percentile of dietary iron intake during pregnancy showed significant increase in the harmful effect of late pregnancy lead exposure on MDI at 6 months. Linear mixed model analyses showed the significant detrimental effect of prenatal lead exposure in late pregnancy on cognitive development up to 36 months in children of mothers having less dietary iron intake during pregnancy. Thus, our findings imply importance to reduce prenatal lead exposure and have adequate iron intake for better neurodevelopment in children.

  20. Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake

    PubMed Central

    Shah-Kulkarni, Surabhi; Ha, Mina; Kim, Byung-Mi; Kim, Eunjeong; Hong, Yun-Chul; Park, Hyesook; Kim, Yangho; Kim, Bung-Nyun; Chang, Namsoo; Oh, Se-Young; Kim, Young Ju; Lee, Boeun; Ha, Eun-Hee

    2016-01-01

    Abstract No safe threshold level of lead exposure in children has been recognized. Also, the information on shielding effect of maternal dietary iron intake during pregnancy on the adverse effects of prenatal lead exposure on children's postnatal neurocognitive development is very limited. We examined the association of prenatal lead exposure and neurodevelopment in children at 6, 12, 24, and 36 months and the protective action of maternal dietary iron intake against the impact of lead exposure. The study participants comprise 965 pregnant women and their subsequent offspring of the total participants enrolled in the Mothers and Children's environmental health study: a prospective birth cohort study. Generalized linear model and linear mixed model analysis were performed to analyze the effect of prenatal lead exposure and mother's dietary iron intake on children's cognitive development at 6, 12, 24, and 36 months. Maternal late pregnancy lead was marginally associated with deficits in mental development index (MDI) of children at 6 months. Mothers having less than 75th percentile of dietary iron intake during pregnancy showed significant increase in the harmful effect of late pregnancy lead exposure on MDI at 6 months. Linear mixed model analyses showed the significant detrimental effect of prenatal lead exposure in late pregnancy on cognitive development up to 36 months in children of mothers having less dietary iron intake during pregnancy. Thus, our findings imply importance to reduce prenatal lead exposure and have adequate iron intake for better neurodevelopment in children. PMID:26825887

  1. Analysis of longitudinal diffusion-weighted images in healthy and pathological aging: An ADNI study.

    PubMed

    Kruggel, Frithjof; Masaki, Fumitaro; Solodkin, Ana

    2017-02-15

    The widely used framework of voxel-based morphometry for analyzing neuroimages is extended here to model longitudinal imaging data by exchanging the linear model with a linear mixed-effects model. The new approach is employed for analyzing a large longitudinal sample of 756 diffusion-weighted images acquired in 177 subjects of the Alzheimer's Disease Neuroimaging initiative (ADNI). While sample- and group-level results from both approaches are equivalent, the mixed-effect model yields information at the single subject level. Interestingly, the neurobiological relevance of the relevant parameter at the individual level describes specific differences associated with aging. In addition, our approach highlights white matter areas that reliably discriminate between patients with Alzheimer's disease and healthy controls with a predictive power of 0.99 and include the hippocampal alveus, the para-hippocampal white matter, the white matter of the posterior cingulate, and optic tracts. In this context, notably the classifier includes a sub-population of patients with minimal cognitive impairment into the pathological domain. Our classifier offers promising features for an accessible biomarker that predicts the risk of conversion to Alzheimer's disease. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI Acknowledgement List.pdf. Significance statement This study assesses neuro-degenerative processes in the brain's white matter as revealed by diffusion-weighted imaging, in order to discriminate healthy from pathological aging in a large sample of elderly subjects. The analysis of time-series examinations in a linear mixed effects model allowed the discrimination of population-based aging processes from individual determinants. We demonstrate that a simple classifier based on white matter imaging data is able to predict the conversion to Alzheimer's disease with a high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Modeling the Bergeron-Findeisen Process Using PDF Methods With an Explicit Representation of Mixing

    NASA Astrophysics Data System (ADS)

    Jeffery, C.; Reisner, J.

    2005-12-01

    Currently, the accurate prediction of cloud droplet and ice crystal number concentration in cloud resolving, numerical weather prediction and climate models is a formidable challenge. The Bergeron-Findeisen process in which ice crystals grow by vapor deposition at the expense of super-cooled droplets is expected to be inhomogeneous in nature--some droplets will evaporate completely in centimeter-scale filaments of sub-saturated air during turbulent mixing while others remain unchanged [Baker et al., QJRMS, 1980]--and is unresolved at even cloud-resolving scales. Despite the large body of observational evidence in support of the inhomogeneous mixing process affecting cloud droplet number [most recently, Brenguier et al., JAS, 2000], it is poorly understood and has yet to be parameterized and incorporated into a numerical model. In this talk, we investigate the Bergeron-Findeisen process using a new approach based on simulations of the probability density function (PDF) of relative humidity during turbulent mixing. PDF methods offer a key advantage over Eulerian (spatial) models of cloud mixing and evaporation: the low probability (cm-scale) filaments of entrained air are explicitly resolved (in probability space) during the mixing event even though their spatial shape, size and location remain unknown. Our PDF approach reveals the following features of the inhomogeneous mixing process during the isobaric turbulent mixing of two parcels containing super-cooled water and ice, respectively: (1) The scavenging of super-cooled droplets is inhomogeneous in nature; some droplets evaporate completely at early times while others remain unchanged. (2) The degree of total droplet evaporation during the initial mixing period depends linearly on the mixing fractions of the two parcels and logarithmically on Damköhler number (Da)---the ratio of turbulent to evaporative time-scales. (3) Our simulations predict that the PDF of Lagrangian (time-integrated) subsaturation (S) goes as S-1 at high Da. This behavior results from a Gaussian mixing closure and requires observational validation.

  3. GWAS with longitudinal phenotypes: performance of approximate procedures

    PubMed Central

    Sikorska, Karolina; Montazeri, Nahid Mostafavi; Uitterlinden, André; Rivadeneira, Fernando; Eilers, Paul HC; Lesaffre, Emmanuel

    2015-01-01

    Analysis of genome-wide association studies with longitudinal data using standard procedures, such as linear mixed model (LMM) fitting, leads to discouragingly long computation times. There is a need to speed up the computations significantly. In our previous work (Sikorska et al: Fast linear mixed model computations for genome-wide association studies with longitudinal data. Stat Med 2012; 32.1: 165–180), we proposed the conditional two-step (CTS) approach as a fast method providing an approximation to the P-value for the longitudinal single-nucleotide polymorphism (SNP) effect. In the first step a reduced conditional LMM is fit, omitting all the SNP terms. In the second step, the estimated random slopes are regressed on SNPs. The CTS has been applied to the bone mineral density data from the Rotterdam Study and proved to work very well even in unbalanced situations. In another article (Sikorska et al: GWAS on your notebook: fast semi-parallel linear and logistic regression for genome-wide association studies. BMC Bioinformatics 2013; 14: 166), we suggested semi-parallel computations, greatly speeding up fitting many linear regressions. Combining CTS with fast linear regression reduces the computation time from several weeks to a few minutes on a single computer. Here, we explore further the properties of the CTS both analytically and by simulations. We investigate the performance of our proposal in comparison with a related but different approach, the two-step procedure. It is analytically shown that for the balanced case, under mild assumptions, the P-value provided by the CTS is the same as from the LMM. For unbalanced data and in realistic situations, simulations show that the CTS method does not inflate the type I error rate and implies only a minimal loss of power. PMID:25712081

  4. Long time stability of small-amplitude Breathers in a mixed FPU-KG model

    NASA Astrophysics Data System (ADS)

    Paleari, Simone; Penati, Tiziano

    2016-12-01

    In the limit of small couplings in the nearest neighbor interaction, and small total energy, we apply the resonant normal form result of a previous paper of ours to a finite but arbitrarily large mixed Fermi-Pasta-Ulam Klein-Gordon chain, i.e., with both linear and nonlinear terms in both the on-site and interaction potential, with periodic boundary conditions. An existence and orbital stability result for Breathers of such a normal form, which turns out to be a generalized discrete nonlinear Schrödinger model with exponentially decaying all neighbor interactions, is first proved. Exploiting such a result as an intermediate step, a long time stability theorem for the true Breathers of the KG and FPU-KG models, in the anti-continuous limit, is proven.

  5. The Effect of Primary School Size on Academic Achievement

    ERIC Educational Resources Information Center

    Gershenson, Seth; Langbein, Laura

    2015-01-01

    Evidence on optimal school size is mixed. We estimate the effect of transitory changes in school size on the academic achievement of fourth-and fifth-grade students in North Carolina using student-level longitudinal administrative data. Estimates of value-added models that condition on school-specific linear time trends and a variety of…

  6. Evaluating a Policing Strategy Intended to Disrupt an Illicit Street-Level Drug Market

    ERIC Educational Resources Information Center

    Corsaro, Nicholas; Brunson, Rod K.; McGarrell, Edmund F.

    2010-01-01

    The authors examined a strategic policing initiative that was implemented in a high crime Nashville, Tennessee neighborhood by utilizing a mixed-methodological evaluation approach in order to provide (a) a descriptive process assessment of program fidelity; (b) an interrupted time-series analysis relying upon generalized linear models; (c)…

  7. Effective Teaching Results in Increased Science Achievement for All Students

    ERIC Educational Resources Information Center

    Johnson, Carla C.; Kahle, Jane Butler; Fargo, Jamison D.

    2007-01-01

    This study of teacher effectiveness and student achievement in science demonstrated that effective teachers positively impact student learning. A general linear mixed model was used to assess change in student scores on the Discovery Inquiry Test as a function of time, race, teacher effectiveness, gender, and impact of teacher effectiveness in…

  8. Modulation of Additive and Interactive Effects in Lexical Decision by Trial History

    ERIC Educational Resources Information Center

    Masson, Michael E. J.; Kliegl, Reinhold

    2013-01-01

    Additive and interactive effects of word frequency, stimulus quality, and semantic priming have been used to test theoretical claims about the cognitive architecture of word-reading processes. Additive effects among these factors have been taken as evidence for discrete-stage models of word reading. We present evidence from linear mixed-model…

  9. Assessing the Impact of Community Marriage Policies on County Divorce Rates

    ERIC Educational Resources Information Center

    Birch, Paul James; Weed, Stan E.; Olsen, Joseph

    2004-01-01

    Community marriage initiatives (CMIs) are designed to strengthen marriage and increase marital stability by addressing relevant laws, policies, and cultural factors. We examined a specific CMI designed to lower divorce rates by establishing a shared public commitment among clergy to strengthen marriage. A mixed-effects general linear model was…

  10. Patient turnover and nursing employment in Massachusetts hospitals before and after health insurance reform: implications for the Patient Protection and Affordable Care Act.

    PubMed

    Shindul-Rothschild, Judith; Gregas, Matt

    2013-01-01

    The Affordable Care Act is modeled after Massachusetts insurance reforms enacted in 2006. A linear mixed effect model examined trends in patient turnover and nurse employment in Massachusetts, New York, and California nonfederal hospitals from 2000 to 2011. The linear mixed effect analysis found that the rate of increase in hospital admissions was significantly higher in Massachusetts hospitals (p<.001) than that in California and New York (p=.007). The rate of change in registered nurses full-time equivalent hours per patient day was significantly less (p=.02) in Massachusetts than that in California and was not different from zero. The rate of change in admissions to registered nurses full-time equivalent hours per patient day was significantly greater in Massachusetts than California (p=.001) and New York (p<.01). Nurse staffing remained flat in Massachusetts, despite a significant increase in hospital admissions. The implications of the findings for nurse employment and hospital utilization following the implementation of national health insurance reform are discussed.

  11. Experimental Effects and Individual Differences in Linear Mixed Models: Estimating the Relationship between Spatial, Object, and Attraction Effects in Visual Attention

    PubMed Central

    Kliegl, Reinhold; Wei, Ping; Dambacher, Michael; Yan, Ming; Zhou, Xiaolin

    2011-01-01

    Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. PMID:21833292

  12. Reliability of environmental sampling culture results using the negative binomial intraclass correlation coefficient.

    PubMed

    Aly, Sharif S; Zhao, Jianyang; Li, Ben; Jiang, Jiming

    2014-01-01

    The Intraclass Correlation Coefficient (ICC) is commonly used to estimate the similarity between quantitative measures obtained from different sources. Overdispersed data is traditionally transformed so that linear mixed model (LMM) based ICC can be estimated. A common transformation used is the natural logarithm. The reliability of environmental sampling of fecal slurry on freestall pens has been estimated for Mycobacterium avium subsp. paratuberculosis using the natural logarithm transformed culture results. Recently, the negative binomial ICC was defined based on a generalized linear mixed model for negative binomial distributed data. The current study reports on the negative binomial ICC estimate which includes fixed effects using culture results of environmental samples. Simulations using a wide variety of inputs and negative binomial distribution parameters (r; p) showed better performance of the new negative binomial ICC compared to the ICC based on LMM even when negative binomial data was logarithm, and square root transformed. A second comparison that targeted a wider range of ICC values showed that the mean of estimated ICC closely approximated the true ICC.

  13. Data-driven RANS for simulations of large wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Viola, F.; Ciri, U.; Rotea, M. A.; Leonardi, S.

    2015-06-01

    In the wind energy industry there is a growing need for real-time predictions of wind turbine wake flows in order to optimize power plant control and inhibit detrimental wake interactions. To this aim, a data-driven RANS approach is proposed in order to achieve very low computational costs and adequate accuracy through the data assimilation procedure. The RANS simulations are implemented with a classical Boussinesq hypothesis and a mixing length turbulence closure model, which is calibrated through the available data. High-fidelity LES simulations of a utility-scale wind turbine operating with different tip speed ratios are used as database. It is shown that the mixing length model for the RANS simulations can be calibrated accurately through the Reynolds stress of the axial and radial velocity components, and the gradient of the axial velocity in the radial direction. It is found that the mixing length is roughly invariant in the very near wake, then it increases linearly with the downstream distance in the diffusive region. The variation rate of the mixing length in the downstream direction is proposed as a criterion to detect the transition between near wake and transition region of a wind turbine wake. Finally, RANS simulations were performed with the calibrated mixing length model, and a good agreement with the LES simulations is observed.

  14. A multi-period optimization model for energy planning with CO(2) emission consideration.

    PubMed

    Mirzaesmaeeli, H; Elkamel, A; Douglas, P L; Croiset, E; Gupta, M

    2010-05-01

    A novel deterministic multi-period mixed-integer linear programming (MILP) model for the power generation planning of electric systems is described and evaluated in this paper. The model is developed with the objective of determining the optimal mix of energy supply sources and pollutant mitigation options that meet a specified electricity demand and CO(2) emission targets at minimum cost. Several time-dependent parameters are included in the model formulation; they include forecasted energy demand, fuel price variability, construction lead time, conservation initiatives, and increase in fixed operational and maintenance costs over time. The developed model is applied to two case studies. The objective of the case studies is to examine the economical, structural, and environmental effects that would result if the electricity sector was required to reduce its CO(2) emissions to a specified limit. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Mixed integer nonlinear programming model of wireless pricing scheme with QoS attribute of bandwidth and end-to-end delay

    NASA Astrophysics Data System (ADS)

    Irmeilyana, Puspita, Fitri Maya; Indrawati

    2016-02-01

    The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.

  16. Identification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping

    PubMed Central

    Font i Forcada, Carolina; Oraguzie, Nnadozie; Reyes-Chin-Wo, Sebastian; Espiau, Maria Teresa; Socias i Company, Rafael; Fernández i Martí, Angel

    2015-01-01

    To design an appropriate association study, we need to understand population structure and the structure of linkage disequilibrium within and among populations as well as in different regions of the genome in an organism. In this study, we have used a total of 98 almond accessions, from five continents located and maintained at the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA; Spain), and 40 microsatellite markers. Population structure analysis performed in ‘Structure’ grouped the accessions into two principal groups; the Mediterranean (Western-Europe) and the non-Mediterranean, with K = 3, being the best fit for our data. There was a strong subpopulation structure with linkage disequilibrium decaying with increasing genetic distance resulting in lower levels of linkage disequilibrium between more distant markers. A significant impact of population structure on linkage disequilibrium in the almond cultivar groups was observed. The mean r2 value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits, five models comprising both general linear models and mixed linear models were selected to test the marker trait associations. The mixed linear model (MLM) approach using co-ancestry values from population structure and kinship estimates (K model) as covariates identified a maximum of 16 significant associations for chemical traits and 12 for physical traits. This study reports for the first time the use of association mapping for determining marker-locus trait associations in a world-wide almond germplasm collection. It is likely that association mapping will have the most immediate and largest impact on the tier of crops such as almond with the greatest economic value. PMID:26111146

  17. Modelling and control of a microgrid including photovoltaic and wind generation

    NASA Astrophysics Data System (ADS)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  18. Identification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping.

    PubMed

    Font i Forcada, Carolina; Oraguzie, Nnadozie; Reyes-Chin-Wo, Sebastian; Espiau, Maria Teresa; Socias i Company, Rafael; Fernández i Martí, Angel

    2015-01-01

    To design an appropriate association study, we need to understand population structure and the structure of linkage disequilibrium within and among populations as well as in different regions of the genome in an organism. In this study, we have used a total of 98 almond accessions, from five continents located and maintained at the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA; Spain), and 40 microsatellite markers. Population structure analysis performed in 'Structure' grouped the accessions into two principal groups; the Mediterranean (Western-Europe) and the non-Mediterranean, with K = 3, being the best fit for our data. There was a strong subpopulation structure with linkage disequilibrium decaying with increasing genetic distance resulting in lower levels of linkage disequilibrium between more distant markers. A significant impact of population structure on linkage disequilibrium in the almond cultivar groups was observed. The mean r2 value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits, five models comprising both general linear models and mixed linear models were selected to test the marker trait associations. The mixed linear model (MLM) approach using co-ancestry values from population structure and kinship estimates (K model) as covariates identified a maximum of 16 significant associations for chemical traits and 12 for physical traits. This study reports for the first time the use of association mapping for determining marker-locus trait associations in a world-wide almond germplasm collection. It is likely that association mapping will have the most immediate and largest impact on the tier of crops such as almond with the greatest economic value.

  19. Non-linear eigensolver-based alternative to traditional SCF methods

    NASA Astrophysics Data System (ADS)

    Gavin, B.; Polizzi, E.

    2013-05-01

    The self-consistent procedure in electronic structure calculations is revisited using a highly efficient and robust algorithm for solving the non-linear eigenvector problem, i.e., H({ψ})ψ = Eψ. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm to account for the non-linearity of the Hamiltonian with the occupied eigenvectors. Using a series of numerical examples and the density functional theory-Kohn/Sham model, it will be shown that our approach can outperform the traditional SCF mixing-scheme techniques by providing a higher converge rate, convergence to the correct solution regardless of the choice of the initial guess, and a significant reduction of the eigenvalue solve time in simulations.

  20. Kelvin-Helmholtz instability of counter-rotating discs

    NASA Astrophysics Data System (ADS)

    Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.

    2015-01-01

    Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.

  1. Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.

    2016-01-01

    Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.

  2. Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frinks, Neal T.

    2016-01-01

    Several improvements to the mixed-elementUSM3Ddiscretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.

  3. Therapy preferences of patients with lung and colon cancer: a discrete choice experiment.

    PubMed

    Schmidt, Katharina; Damm, Kathrin; Vogel, Arndt; Golpon, Heiko; Manns, Michael P; Welte, Tobias; Graf von der Schulenburg, J-Matthias

    2017-01-01

    There is increasing interest in studies that examine patient preferences to measure health-related outcomes. Understanding patients' preferences can improve the treatment process and is particularly relevant for oncology. In this study, we aimed to identify the subgroup-specific treatment preferences of German patients with lung cancer (LC) or colorectal cancer (CRC). Six discrete choice experiment (DCE) attributes were established on the basis of a systematic literature review and qualitative interviews. The DCE analyses comprised generalized linear mixed-effects model and latent class mixed logit model. The study cohort comprised 310 patients (194 with LC, 108 with CRC, 8 with both types of cancer) with a median age of 63 (SD =10.66) years. The generalized linear mixed-effects model showed a significant ( P <0.05) degree of association for all of the tested attributes. "Strongly increased life expectancy" was the attribute given the greatest weight by all patient groups. Using latent class mixed logit model analysis, we identified three classes of patients. Patients who were better informed tended to prefer a more balanced relationship between length and health-related quality of life (HRQoL) than those who were less informed. Class 2 (LC patients with low HRQoL who had undergone surgery) gave a very strong weighting to increased length of life. We deduced from Class 3 patients that those with a relatively good life expectancy (CRC compared with LC) gave a greater weight to moderate effects on HRQoL than to a longer life. Overall survival was the most important attribute of therapy for patients with LC or CRC. Differences in treatment preferences between subgroups should be considered in regard to treatment and development of guidelines. Patients' preferences were not affected by sex or age, but were affected by the cancer type, HRQoL, surgery status, and the main source of information on the disease.

  4. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  5. Minimum number of clusters and comparison of analysis methods for cross sectional stepped wedge cluster randomised trials with binary outcomes: A simulation study.

    PubMed

    Barker, Daniel; D'Este, Catherine; Campbell, Michael J; McElduff, Patrick

    2017-03-09

    Stepped wedge cluster randomised trials frequently involve a relatively small number of clusters. The most common frameworks used to analyse data from these types of trials are generalised estimating equations and generalised linear mixed models. A topic of much research into these methods has been their application to cluster randomised trial data and, in particular, the number of clusters required to make reasonable inferences about the intervention effect. However, for stepped wedge trials, which have been claimed by many researchers to have a statistical power advantage over the parallel cluster randomised trial, the minimum number of clusters required has not been investigated. We conducted a simulation study where we considered the most commonly used methods suggested in the literature to analyse cross-sectional stepped wedge cluster randomised trial data. We compared the per cent bias, the type I error rate and power of these methods in a stepped wedge trial setting with a binary outcome, where there are few clusters available and when the appropriate adjustment for a time trend is made, which by design may be confounding the intervention effect. We found that the generalised linear mixed modelling approach is the most consistent when few clusters are available. We also found that none of the common analysis methods for stepped wedge trials were both unbiased and maintained a 5% type I error rate when there were only three clusters. Of the commonly used analysis approaches, we recommend the generalised linear mixed model for small stepped wedge trials with binary outcomes. We also suggest that in a stepped wedge design with three steps, at least two clusters be randomised at each step, to ensure that the intervention effect estimator maintains the nominal 5% significance level and is also reasonably unbiased.

  6. Generalization of mixed multiscale finite element methods with applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C S

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less

  7. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    DOEpatents

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  8. Micro-epidemiological structuring of Plasmodium falciparum parasite populations in regions with varying transmission intensities in Africa.

    PubMed Central

    Omedo, Irene; Mogeni, Polycarp; Bousema, Teun; Rockett, Kirk; Amambua-Ngwa, Alfred; Oyier, Isabella; C. Stevenson, Jennifer; Y. Baidjoe, Amrish; de Villiers, Etienne P.; Fegan, Greg; Ross, Amanda; Hubbart, Christina; Jeffreys, Anne; N. Williams, Thomas; Kwiatkowski, Dominic; Bejon, Philip

    2017-01-01

    Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population. PMID:28612053

  9. Advanced Statistical Analyses to Reduce Inconsistency of Bond Strength Data.

    PubMed

    Minamino, T; Mine, A; Shintani, A; Higashi, M; Kawaguchi-Uemura, A; Kabetani, T; Hagino, R; Imai, D; Tajiri, Y; Matsumoto, M; Yatani, H

    2017-11-01

    This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce variation in bond strength values should also be considered.

  10. Improved estimation of sediment source contributions by concentration-dependent Bayesian isotopic mixing model

    NASA Astrophysics Data System (ADS)

    Ram Upadhayay, Hari; Bodé, Samuel; Griepentrog, Marco; Bajracharya, Roshan Man; Blake, Will; Cornelis, Wim; Boeckx, Pascal

    2017-04-01

    The implementation of compound-specific stable isotope (CSSI) analyses of biotracers (e.g. fatty acids, FAs) as constraints on sediment-source contributions has become increasingly relevant to understand the origin of sediments in catchments. The CSSI fingerprinting of sediment utilizes CSSI signature of biotracer as input in an isotopic mixing model (IMM) to apportion source soil contributions. So far source studies relied on the linear mixing assumptions of CSSI signature of sources to the sediment without accounting for potential effects of source biotracer concentration. Here we evaluated the effect of FAs concentration in sources on the accuracy of source contribution estimations in artificial soil mixture of three well-separated land use sources. Soil samples from land use sources were mixed to create three groups of artificial mixture with known source contributions. Sources and artificial mixture were analysed for δ13C of FAs using gas chromatography-combustion-isotope ratio mass spectrometry. The source contributions to the mixture were estimated using with and without concentration-dependent MixSIAR, a Bayesian isotopic mixing model. The concentration-dependent MixSIAR provided the closest estimates to the known artificial mixture source contributions (mean absolute error, MAE = 10.9%, and standard error, SE = 1.4%). In contrast, the concentration-independent MixSIAR with post mixing correction of tracer proportions based on aggregated concentration of FAs of sources biased the source contributions (MAE = 22.0%, SE = 3.4%). This study highlights the importance of accounting the potential effect of a source FA concentration for isotopic mixing in sediments that adds realisms to mixing model and allows more accurate estimates of contributions of sources to the mixture. The potential influence of FA concentration on CSSI signature of sediments is an important underlying factor that determines whether the isotopic signature of a given source is observable even after equilibrium. Therefore inclusion of FA concentrations of the sources in the IMM formulation is standard procedure for accurate estimation of source contributions. The post model correction approach that dominates the CSSI fingerprinting causes bias, especially if the FAs concentration of sources differs substantially.

  11. Linear mixed-effects modeling approach to FMRI group analysis

    PubMed Central

    Chen, Gang; Saad, Ziad S.; Britton, Jennifer C.; Pine, Daniel S.; Cox, Robert W.

    2013-01-01

    Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance–covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance–covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. PMID:23376789

  12. Linear mixed-effects modeling approach to FMRI group analysis.

    PubMed

    Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W

    2013-06-01

    Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. Published by Elsevier Inc.

  13. Pre-natal exposures to cocaine and alcohol and physical growth patterns to age 8 years

    PubMed Central

    Lumeng, Julie C.; Cabral, Howard J.; Gannon, Katherine; Heeren, Timothy; Frank, Deborah A.

    2007-01-01

    Two hundred and two primarily African American/Caribbean children (classified by maternal report and infant meconium as 38 heavier, 74 lighter and 89 not cocaine-exposed) were measured repeatedly from birth to age 8 years to assess whether there is an independent effect of prenatal cocaine exposure on physical growth patterns. Children with fetal alcohol syndrome identifiable at birth were excluded. At birth, cocaine and alcohol exposures were significantly and independently associated with lower weight, length and head circumference in cross-sectional multiple regression analyses. The relationship over time of pre-natal exposures to weight, height, and head circumference was then examined by multiple linear regression using mixed linear models including covariates: child’s gestational age, gender, ethnicity, age at assessment, current caregiver, birth mother’s use of alcohol, marijuana and tobacco during the pregnancy and pre-pregnancy weight (for child’s weight) and height (for child’s height and head circumference). The cocaine effects did not persist beyond infancy in piecewise linear mixed models, but a significant and independent negative effect of pre-natal alcohol exposure persisted for weight, height, and head circumference. Catch-up growth in cocaine-exposed infants occurred primarily by 6 months of age for all growth parameters, with some small fluctuations in growth rates in the preschool age range but no detectable differences between heavier versus unexposed nor lighter versus unexposed thereafter. PMID:17412558

  14. Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-treatment FDG PET: an exploratory study

    PubMed Central

    Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert

    2012-01-01

    Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748

  15. A Note on Recurring Misconceptions When Fitting Nonlinear Mixed Models.

    PubMed

    Harring, Jeffrey R; Blozis, Shelley A

    2016-01-01

    Nonlinear mixed-effects (NLME) models are used when analyzing continuous repeated measures data taken on each of a number of individuals where the focus is on characteristics of complex, nonlinear individual change. Challenges with fitting NLME models and interpreting analytic results have been well documented in the statistical literature. However, parameter estimates as well as fitted functions from NLME analyses in recent articles have been misinterpreted, suggesting the need for clarification of these issues before these misconceptions become fact. These misconceptions arise from the choice of popular estimation algorithms, namely, the first-order linearization method (FO) and Gaussian-Hermite quadrature (GHQ) methods, and how these choices necessarily lead to population-average (PA) or subject-specific (SS) interpretations of model parameters, respectively. These estimation approaches also affect the fitted function for the typical individual, the lack-of-fit of individuals' predicted trajectories, and vice versa.

  16. Text-Based Recall and Extra-Textual Generations Resulting from Simplified and Authentic Texts

    ERIC Educational Resources Information Center

    Crossley, Scott A.; McNamara, Danielle S.

    2016-01-01

    This study uses a moving windows self-paced reading task to assess text comprehension of beginning and intermediate-level simplified texts and authentic texts by L2 learners engaged in a text-retelling task. Linear mixed effects (LME) models revealed statistically significant main effects for reading proficiency and text level on the number of…

  17. Civic Purpose in Late Adolescence: Factors That Prevent Decline in Civic Engagement after High School

    ERIC Educational Resources Information Center

    Malin, Heather; Han, Hyemin; Liauw, Indrawati

    2017-01-01

    This study investigated the effects of internal and demographic variables on civic development in late adolescence using the construct "civic purpose." We conducted surveys on civic engagement with 480 high school seniors, and surveyed them again 2 years later. Using multivariate regression and linear mixed models, we tested the main…

  18. Sedentary Activity and Body Composition of Middle School Girls: The Trial of Activity for Adolescent Girls

    ERIC Educational Resources Information Center

    Pratt, Charlotte; Webber, Larry S.; Baggett, Chris D.; Ward, Dianne; Pate, Russell R.; Murray, David; Lohman, Timothy; Lytle, Leslie; Elder, John P.

    2008-01-01

    This study describes the relationships between sedentary activity and body composition in 1,458 sixth-grade girls from 36 middle schools across the United States. Multivariate associations between sedentary activity and body composition were examined with regression analyses using general linear mixed models. Mean age, body mass index, and…

  19. Differences in Osteoarthritis Self-Management Support Intervention Outcomes According to Race and Health Literacy

    ERIC Educational Resources Information Center

    Sperber, Nina R.; Bosworth, Hayden B.; Coffman, Cynthia J.; Lindquist, Jennifer H.; Oddone, Eugene Z.; Weinberger, Morris; Allen, Kelli D.

    2013-01-01

    We explored whether the effects of a telephone-based osteoarthritis (OA) self-management support intervention differed by race and health literacy. Participants included 515 veterans with hip and/or knee OA. Linear mixed models assessed differential effects of the intervention compared with health education (HE) and usual care (UC) on pain…

  20. Curriculum-Based Measurement of Oral Reading: Quality of Progress Monitoring Outcomes

    ERIC Educational Resources Information Center

    Christ, Theodore J.; Zopluoglu, Cengiz; Long, Jeffery D.; Monaghen, Barbara D.

    2012-01-01

    Curriculum-based measurement of oral reading (CBM-R) is frequently used to set student goals and monitor student progress. This study examined the quality of growth estimates derived from CBM-R progress monitoring data. The authors used a linear mixed effects regression (LMER) model to simulate progress monitoring data for multiple levels of…

  1. The Development of Sensitivity to Grammatical Violations in American Sign Language: Native versus Nonnative Signers

    ERIC Educational Resources Information Center

    Novogrodsky, Rama; Henner, Jon; Caldwell-Harris, Catherine; Hoffmeister, Robert

    2017-01-01

    Factors influencing native and nonnative signers' syntactic judgment ability in American Sign Language (ASL) were explored for 421 deaf students aged 7;6-18;5. Predictors for syntactic knowledge were chronological age, age of entering a school for the deaf, gender, and additional learning disabilities. Mixed-effects linear modeling analysis…

  2. Does High School Facility Quality Affect Student Achievement? A Two-Level Hierarchical Linear Model

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Urick, Angela

    2011-01-01

    The purpose of this study is to isolate the independent effects of high school facility quality on student achievement using a large, nationally representative U.S. database of student achievement and school facility quality. Prior research on linking school facility quality to student achievement has been mixed. Studies that relate overall…

  3. Trajectory of Externalizing Child Behaviors in a KEEP Replication

    ERIC Educational Resources Information Center

    Uretsky, Mathew C.; Lee, Bethany R.; Greeno, Elizabeth J.; Barth, Richard P.

    2017-01-01

    Objective: The purpose of this study is to examine the correlates of child behavior change over time in a replication of the KEEP intervention. Method: The study sample was drawn from the treatment group of the Maryland replication of KEEP (n=65). Change over time was analyzed using multilevel linear mixed modeling. Results: Parents' use of…

  4. Using Virtual Interactive Training Agents (ViTA) with Adults with Autism and Other Developmental Disabilities

    ERIC Educational Resources Information Center

    Burke, Shanna L.; Bresnahan, Tammy; Li, Tan; Epnere, Katrina; Rizzo, Albert; Partin, Mary; Ahlness, Robert M.; Trimmer, Matthew

    2018-01-01

    Conversational virtual human (VH) agents are increasingly used to support role-play experiential learning. This project examined whether a Virtual Interactive Training Agent (ViTA) system would improve job interviewing skills in individuals with autism and developmental disabilities (N = 32). A linear mixed model was employed to evaluate adjusted…

  5. The Effects of Semantic Transparency and Base Frequency on the Recognition of English Complex Words

    ERIC Educational Resources Information Center

    Xu, Joe; Taft, Marcus

    2015-01-01

    A visual lexical decision task was used to examine the interaction between base frequency (i.e., the cumulative frequencies of morphologically related forms) and semantic transparency for a list of derived words. Linear mixed effects models revealed that high base frequency facilitates the recognition of the complex word (i.e., a "base…

  6. Components of a Flipped Classroom Influencing Student Success in an Undergraduate Business Statistics Course

    ERIC Educational Resources Information Center

    Shinaberger, Lee

    2017-01-01

    An instructor transformed an undergraduate business statistics course over 10 semesters from a traditional lecture course to a flipped classroom course. The researcher used a linear mixed model to explore the effectiveness of the evolution on student success as measured by exam performance. The results provide guidance to successfully implement a…

  7. Improving Treatment Plan Implementation in Schools: A Meta-Analysis of Single Subject Design Studies

    ERIC Educational Resources Information Center

    Noell, George H.; Gansle, Kristin A.; Mevers, Joanna Lomas; Knox, R. Maria; Mintz, Joslyn Cynkus; Dahir, Amanda

    2014-01-01

    Twenty-nine peer-reviewed journal articles that analyzed intervention implementation in schools using single-case experimental designs were meta-analyzed. These studies reported 171 separate data paths and provided 3,991 data points. The meta-analysis was accomplished by fitting data extracted from graphs in mixed linear growth models. This…

  8. A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.

    PubMed

    Ferrari, Alberto; Comelli, Mario

    2016-12-01

    In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu

    2017-03-01

    To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.

  10. Smooth random change point models.

    PubMed

    van den Hout, Ardo; Muniz-Terrera, Graciela; Matthews, Fiona E

    2011-03-15

    Change point models are used to describe processes over time that show a change in direction. An example of such a process is cognitive ability, where a decline a few years before death is sometimes observed. A broken-stick model consists of two linear parts and a breakpoint where the two lines intersect. Alternatively, models can be formulated that imply a smooth change between the two linear parts. Change point models can be extended by adding random effects to account for variability between subjects. A new smooth change point model is introduced and examples are presented that show how change point models can be estimated using functions in R for mixed-effects models. The Bayesian inference using WinBUGS is also discussed. The methods are illustrated using data from a population-based longitudinal study of ageing, the Cambridge City over 75 Cohort Study. The aim is to identify how many years before death individuals experience a change in the rate of decline of their cognitive ability. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Housing price prediction: parametric versus semi-parametric spatial hedonic models

    NASA Astrophysics Data System (ADS)

    Montero, José-María; Mínguez, Román; Fernández-Avilés, Gema

    2018-01-01

    House price prediction is a hot topic in the economic literature. House price prediction has traditionally been approached using a-spatial linear (or intrinsically linear) hedonic models. It has been shown, however, that spatial effects are inherent in house pricing. This article considers parametric and semi-parametric spatial hedonic model variants that account for spatial autocorrelation, spatial heterogeneity and (smooth and nonparametrically specified) nonlinearities using penalized splines methodology. The models are represented as a mixed model that allow for the estimation of the smoothing parameters along with the other parameters of the model. To assess the out-of-sample performance of the models, the paper uses a database containing the price and characteristics of 10,512 homes in Madrid, Spain (Q1 2010). The results obtained suggest that the nonlinear models accounting for spatial heterogeneity and flexible nonlinear relationships between some of the individual or areal characteristics of the houses and their prices are the best strategies for house price prediction.

  12. Random effects coefficient of determination for mixed and meta-analysis models

    PubMed Central

    Demidenko, Eugene; Sargent, James; Onega, Tracy

    2011-01-01

    The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, Rr2, that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If Rr2 is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of Rr2 apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects—the model can be estimated using the dummy variable approach. We derive explicit formulas for Rr2 in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine. PMID:23750070

  13. Functional mixed effects spectral analysis

    PubMed Central

    KRAFTY, ROBERT T.; HALL, MARTICA; GUO, WENSHENG

    2011-01-01

    SUMMARY In many experiments, time series data can be collected from multiple units and multiple time series segments can be collected from the same unit. This article introduces a mixed effects Cramér spectral representation which can be used to model the effects of design covariates on the second-order power spectrum while accounting for potential correlations among the time series segments collected from the same unit. The transfer function is composed of a deterministic component to account for the population-average effects and a random component to account for the unit-specific deviations. The resulting log-spectrum has a functional mixed effects representation where both the fixed effects and random effects are functions in the frequency domain. It is shown that, when the replicate-specific spectra are smooth, the log-periodograms converge to a functional mixed effects model. A data-driven iterative estimation procedure is offered for the periodic smoothing spline estimation of the fixed effects, penalized estimation of the functional covariance of the random effects, and unit-specific random effects prediction via the best linear unbiased predictor. PMID:26855437

  14. Thermodynamics versus Kinetics Dichotomy in the Linear Self-Assembly of Mixed Nanoblocks.

    PubMed

    Ruiz, L; Keten, S

    2014-06-05

    We report classical and replica exchange molecular dynamics simulations that establish the mechanisms underpinning the growth kinetics of a binary mix of nanorings that form striped nanotubes via self-assembly. A step-growth coalescence model captures the growth process of the nanotubes, which suggests that high aspect ratio nanostructures can grow by obeying the universal laws of self-similar coarsening, contrary to systems that grow through nucleation and elongation. Notably, striped patterns do not depend on specific growth mechanisms, but are governed by tempering conditions that control the likelihood of depropagation and fragmentation.

  15. The resonance of twin supersonic jets

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1989-01-01

    This paper presents an analytical study of the resonant interaction between twin supersonic jets. An instability wave model is used to describe the large scale coherent structures in the jet mixing layers. A linearized shock cell model is also given for the jets when operating off design. The problem's geometry admits four types of normal modes associated with each azimuthal mode number in the single jet. The stability of these modes is examined for both a vortex sheet model of the jet and a jet flow represented by realistic profiles. The growth rates of each mode number and type are found to vary with jet separation and mixing layer thickness and Strouhal number. Contours of equal pressure level are obtained for each mode. The region close to the symmetry axis is found to have the greatest pressure fluctuation amplitude.

  16. Association analysis for feet and legs disorders with whole-genome sequence variants in 3 dairy cattle breeds.

    PubMed

    Wu, Xiaoping; Guldbrandtsen, Bernt; Lund, Mogens Sandø; Sahana, Goutam

    2016-09-01

    Identification of genetic variants associated with feet and legs disorders (FLD) will aid in the genetic improvement of these traits by providing knowledge on genes that influence trait variations. In Denmark, FLD in cattle has been recorded since the 1990s. In this report, we used deregressed breeding values as response variables for a genome-wide association study. Bulls (5,334 Danish Holstein, 4,237 Nordic Red Dairy Cattle, and 1,180 Danish Jersey) with deregressed estimated breeding values were genotyped with the Illumina Bovine 54k single nucleotide polymorphism (SNP) genotyping array. Genotypes were imputed to whole-genome sequence variants, and then 22,751,039 SNP on 29 autosomes were used for an association analysis. A modified linear mixed-model approach (efficient mixed-model association eXpedited, EMMAX) and a linear mixed model were used for association analysis. We identified 5 (3,854 SNP), 3 (13,642 SNP), and 0 quantitative trait locus (QTL) regions associated with the FLD index in Danish Holstein, Nordic Red Dairy Cattle, and Danish Jersey populations, respectively. We did not identify any QTL that were common among the 3 breeds. In a meta-analysis of the 3 breeds, 4 QTL regions were significant, but no additional QTL region was identified compared with within-breed analyses. Comparison between top SNP locations within these QTL regions and known genes suggested that RASGRP1, LCORL, MOS, and MITF may be candidate genes for FLD in dairy cattle. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. A new approach to the solution of the linear mixing model for a single isotope: application to the case of an opportunistic predator.

    PubMed

    Hall-Aspland, S A; Hall, A P; Rogers, T L

    2005-03-01

    Mixing models are used to determine diets where the number of prey items are greater than one, however, the limitation of the linear mixing method is the lack of a unique solution when the number of potential sources is greater than the number (n) of isotopic signatures +1. Using the IsoSource program all possible combinations of each source contribution (0-100%) in preselected small increments can be examined and a range of values produced for each sample analysed. We propose the use of a Moore Penrose (M-P) pseudoinverse, which involves the inverse of a 2x2 matrix. This is easily generalized to the case of a single isotope with (p) prey sources and produces a specific solution. The Antarctic leopard seal (Hydrurga leptonyx) was used as a model species to test this method. This seal is an opportunistic predator, which preys on a wide range of species including seals, penguins, fish and krill. The M-P method was used to determine the contribution to diet from each of the four prey types based on blood and fur samples collected over three consecutive austral summers. The advantage of the M-P method was the production of a vector of fractions f for each predator isotopic value, allowing us to identify the relative variation in dietary proportions. Comparison of the calculated fractions from this method with 'means' from IsoSource allowed confidence in the new approach for the case of a single isotope, N.

  18. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  19. Blood biomarkers in male and female participants after an Ironman-distance triathlon.

    PubMed

    Danielsson, Tom; Carlsson, Jörg; Schreyer, Hendrik; Ahnesjö, Jonas; Ten Siethoff, Lasse; Ragnarsson, Thony; Tugetam, Åsa; Bergman, Patrick

    2017-01-01

    While overall physical activity is clearly associated with a better short-term and long-term health, prolonged strenuous physical activity may result in a rise in acute levels of blood-biomarkers used in clinical practice for diagnosis of various conditions or diseases. In this study, we explored the acute effects of a full Ironman-distance triathlon on biomarkers related to heart-, liver-, kidney- and skeletal muscle damage immediately post-race and after one week's rest. We also examined if sex, age, finishing time and body composition influenced the post-race values of the biomarkers. A sample of 30 subjects was recruited (50% women) to the study. The subjects were evaluated for body composition and blood samples were taken at three occasions, before the race (T1), immediately after (T2) and one week after the race (T3). Linear regression models were fitted to analyse the independent contribution of sex and finishing time controlled for weight, body fat percentage and age, on the biomarkers at the termination of the race (T2). Linear mixed models were fitted to examine if the biomarkers differed between the sexes over time (T1-T3). Being male was a significant predictor of higher post-race (T2) levels of myoglobin, CK, and creatinine levels and body weight was negatively associated with myoglobin. In general, the models were unable to explain the variation of the dependent variables. In the linear mixed models, an interaction between time (T1-T3) and sex was seen for myoglobin and creatinine, in which women had a less pronounced response to the race. Overall women appear to tolerate the effects of prolonged strenuous physical activity better than men as illustrated by their lower values of the biomarkers both post-race as well as during recovery.

  20. Consensus for linear multi-agent system with intermittent information transmissions using the time-scale theory

    NASA Astrophysics Data System (ADS)

    Taousser, Fatima; Defoort, Michael; Djemai, Mohamed

    2016-01-01

    This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.

  1. Conditional random slope: A new approach for estimating individual child growth velocity in epidemiological research.

    PubMed

    Leung, Michael; Bassani, Diego G; Racine-Poon, Amy; Goldenberg, Anna; Ali, Syed Asad; Kang, Gagandeep; Premkumar, Prasanna S; Roth, Daniel E

    2017-09-10

    Conditioning child growth measures on baseline accounts for regression to the mean (RTM). Here, we present the "conditional random slope" (CRS) model, based on a linear-mixed effects model that incorporates a baseline-time interaction term that can accommodate multiple data points for a child while also directly accounting for RTM. In two birth cohorts, we applied five approaches to estimate child growth velocities from 0 to 12 months to assess the effect of increasing data density (number of measures per child) on the magnitude of RTM of unconditional estimates, and the correlation and concordance between the CRS and four alternative metrics. Further, we demonstrated the differential effect of the choice of velocity metric on the magnitude of the association between infant growth and stunting at 2 years. RTM was minimally attenuated by increasing data density for unconditional growth modeling approaches. CRS and classical conditional models gave nearly identical estimates with two measures per child. Compared to the CRS estimates, unconditional metrics had moderate correlation (r = 0.65-0.91), but poor agreement in the classification of infants with relatively slow growth (kappa = 0.38-0.78). Estimates of the velocity-stunting association were the same for CRS and classical conditional models but differed substantially between conditional versus unconditional metrics. The CRS can leverage the flexibility of linear mixed models while addressing RTM in longitudinal analyses. © 2017 The Authors American Journal of Human Biology Published by Wiley Periodicals, Inc.

  2. Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments

    NASA Astrophysics Data System (ADS)

    Garmdare, Hamid Sattari; Lotfi, M. M.; Honarvar, Mahboobeh

    2018-03-01

    Usually, in make-to-order environments which work only in response to the customer's orders, manufacturers for maximizing the profits should offer the best price and delivery time for an order considering the existing capacity and the customer's sensitivity to both the factors. In this paper, an integrated approach for pricing, delivery time setting and scheduling of new arrival orders are proposed based on the existing capacity and accepted orders in system. In the problem, the acquired market demands dependent on the price and delivery time of both the manufacturer and its competitors. A mixed-integer non-linear programming model is presented for the problem. After converting to a pure non-linear model, it is validated through a case study. The efficiency of proposed model is confirmed by comparing it to both the literature and the current practice. Finally, sensitivity analysis for the key parameters is carried out.

  3. A note about high blood pressure in childhood

    NASA Astrophysics Data System (ADS)

    Teodoro, M. Filomena; Simão, Carla

    2017-06-01

    In medical, behavioral and social sciences it is usual to get a binary outcome. In the present work is collected information where some of the outcomes are binary variables (1='yes'/ 0='no'). In [14] a preliminary study about the caregivers perception of pediatric hypertension was introduced. An experimental questionnaire was designed to be answered by the caregivers of routine pediatric consultation attendees in the Santa Maria's hospital (HSM). The collected data was statistically analyzed, where a descriptive analysis and a predictive model were performed. Significant relations between some socio-demographic variables and the assessed knowledge were obtained. In [14] can be found a statistical data analysis using partial questionnaire's information. The present article completes the statistical approach estimating a model for relevant remaining questions of questionnaire by Generalized Linear Models (GLM). Exploring the binary outcome issue, we intend to extend this approach using Generalized Linear Mixed Models (GLMM), but the process is still ongoing.

  4. A Preclinical Population Pharmacokinetic Model for Anti-CD20/CD3 T-Cell-Dependent Bispecific Antibodies.

    PubMed

    Ferl, Gregory Z; Reyes, Arthur; Sun, Liping L; Cheu, Melissa; Oldendorp, Amy; Ramanujan, Saroja; Stefanich, Eric G

    2018-05-01

    CD20 is a cell-surface receptor expressed by healthy and neoplastic B cells and is a well-established target for biologics used to treat B-cell malignancies. Pharmacokinetic (PK) and pharmacodynamic (PD) data for the anti-CD20/CD3 T-cell-dependent bispecific antibody BTCT4465A were collected in transgenic mouse and nonhuman primate (NHP) studies. Pronounced nonlinearity in drug elimination was observed in the murine studies, and time-varying, nonlinear PK was observed in NHPs, where three empirical drug elimination terms were identified using a mixed-effects modeling approach: i) a constant nonsaturable linear clearance term (7 mL/day/kg); ii) a rapidly decaying time-varying, linear clearance term (t ½  = 1.6 h); and iii) a slowly decaying time-varying, nonlinear clearance term (t ½  = 4.8 days). The two time-varying drug elimination terms approximately track with time scales of B-cell depletion and T-cell migration/expansion within the central blood compartment. The mixed-effects NHP model was scaled to human and prospective clinical simulations were generated. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  5. Evaluation of spatial variability of soil arsenic adjacent to a disused cattle-dip site, using model-based geostatistics.

    PubMed

    Niazi, Nabeel K; Bishop, Thomas F A; Singh, Balwant

    2011-12-15

    This study investigated the spatial variability of total and phosphate-extractable arsenic (As) concentrations in soil adjacent to a cattle-dip site, employing a linear mixed model-based geostatistical approach. The soil samples in the study area (n = 102 in 8.1 m(2)) were taken at the nodes of a 0.30 × 0.35 m grid. The results showed that total As concentration (0-0.2 m depth) and phosphate-extractable As concentration (at depths of 0-0.2, 0.2-0.4, and 0.4-0.6 m) in soil adjacent to the dip varied greatly. Both total and phosphate-extractable soil As concentrations significantly (p = 0.004-0.048) increased toward the cattle-dip. Using the linear mixed model, we suggest that 5 samples are sufficient to assess a dip site for soil (As) contamination (95% confidence interval of ±475.9 mg kg(-1)), but 15 samples (95% confidence interval of ±212.3 mg kg(-1)) is desirable baseline when the ultimate goal is to evaluate the effects of phytoremediation. Such guidelines on sampling requirements are crucial for the assessment of As contamination levels at other cattle-dip sites, and to determine the effect of phytoremediation on soil As.

  6. Mixed reality temporal bone surgical dissector: mechanical design.

    PubMed

    Hochman, Jordan Brent; Sepehri, Nariman; Rampersad, Vivek; Kraut, Jay; Khazraee, Milad; Pisa, Justyn; Unger, Bertram

    2014-08-08

    The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill's passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator.

  7. Longitudinal models of reading achievement of students with learning disabilities and without disabilities.

    PubMed

    Sullivan, Amanda L; Kohli, Nidhi; Farnsworth, Elyse M; Sadeh, Shanna; Jones, Leila

    2017-09-01

    Accurate estimation of developmental trajectories can inform instruction and intervention. We compared the fit of linear, quadratic, and piecewise mixed-effects models of reading development among students with learning disabilities relative to their typically developing peers. We drew an analytic sample of 1,990 students from the nationally representative Early Childhood Longitudinal Study-Kindergarten Cohort of 1998, using reading achievement scores from kindergarten through eighth grade to estimate three models of students' reading growth. The piecewise mixed-effects models provided the best functional form of the students' reading trajectories as indicated by model fit indices. Results showed slightly different trajectories between students with learning disabilities and without disabilities, with varying but divergent rates of growth throughout elementary grades, as well as an increasing gap over time. These results highlight the need for additional research on appropriate methods for modeling reading trajectories and the implications for students' response to instruction. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.

    ERIC Educational Resources Information Center

    Shama, Gilli; Dreyfus, Tommy

    1994-01-01

    Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…

  9. Mixed H∞ and passive control for linear switched systems via hybrid control approach

    NASA Astrophysics Data System (ADS)

    Zheng, Qunxian; Ling, Youzhu; Wei, Lisheng; Zhang, Hongbin

    2018-03-01

    This paper investigates the mixed H∞ and passive control problem for linear switched systems based on a hybrid control strategy. To solve this problem, first, a new performance index is proposed. This performance index can be viewed as the mixed weighted H∞ and passivity performance. Then, the hybrid controllers are used to stabilise the switched systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. The design of state updating controllers not only depends on the pre-switching subsystem and the post-switching subsystem, but also depends on the measurable output signal. The hybrid controllers proposed in this paper can include some existing ones as special cases. Combine the multiple Lyapunov functions approach with the average dwell time technique, new sufficient conditions are obtained. Under the new conditions, the closed-loop linear switched systems are globally uniformly asymptotically stable with a mixed H∞ and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities. Finally, a numerical example and a practical example are given.

  10. Electric-field-driven electron-transfer in mixed-valence molecules.

    PubMed

    Blair, Enrique P; Corcelli, Steven A; Lent, Craig S

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate the electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.

  11. An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH

    PubMed Central

    2009-01-01

    Background Comparative genomic hybridization microarrays for the detection of constitutional chromosomal aberrations is the application of microarray technology coming fastest into routine clinical application. Through genotype-phenotype association, it is also an important technique towards the discovery of disease causing genes and genomewide functional annotation in human. When using a two-channel microarray of genomic DNA probes for array CGH, the basic setup consists in hybridizing a patient against a normal reference sample. Two major disadvantages of this setup are (1) the use of half of the resources to measure a (little informative) reference sample and (2) the possibility that deviating signals are caused by benign copy number variation in the "normal" reference instead of a patient aberration. Instead, we apply an experimental loop design that compares three patients in three hybridizations. Results We develop and compare two statistical methods (linear models of log ratios and mixed models of absolute measurements). In an analysis of 27 patients seen at our genetics center, we observed that the linear models of the log ratios are advantageous over the mixed models of the absolute intensities. Conclusion The loop design and the performance of the statistical analysis contribute to the quick adoption of array CGH as a routine diagnostic tool. They lower the detection limit of mosaicisms and improve the assignment of copy number variation for genetic association studies. PMID:19925645

  12. Deletion Diagnostics for the Generalised Linear Mixed Model with independent random effects

    PubMed Central

    Ganguli, B.; Roy, S. Sen; Naskar, M.; Malloy, E. J.; Eisen, E. A.

    2015-01-01

    The Generalised Linear Mixed Model (GLMM) is widely used for modelling environmental data. However, such data are prone to influential observations which can distort the estimated exposure-response curve particularly in regions of high exposure. Deletion diagnostics for iterative estimation schemes commonly derive the deleted estimates based on a single iteration of the full system holding certain pivotal quantities such as the information matrix to be constant. In this paper, we present an approximate formula for the deleted estimates and Cook’s distance for the GLMM which does not assume that the estimates of variance parameters are unaffected by deletion. The procedure allows the user to calculate standardised DFBETAs for mean as well as variance parameters. In certain cases, such as when using the GLMM as a device for smoothing, such residuals for the variance parameters are interesting in their own right. In general, the procedure leads to deleted estimates of mean parameters which are corrected for the effect of deletion on variance components as estimation of the two sets of parameters is interdependent. The probabilistic behaviour of these residuals is investigated and a simulation based procedure suggested for their standardisation. The method is used to identify influential individuals in an occupational cohort exposed to silica. The results show that failure to conduct post model fitting diagnostics for variance components can lead to erroneous conclusions about the fitted curve and unstable confidence intervals. PMID:26626135

  13. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded.

    PubMed

    Nakagawa, Shinichi; Johnson, Paul C D; Schielzeth, Holger

    2017-09-01

    The coefficient of determination R 2 quantifies the proportion of variance explained by a statistical model and is an important summary statistic of biological interest. However, estimating R 2 for generalized linear mixed models (GLMMs) remains challenging. We have previously introduced a version of R 2 that we called [Formula: see text] for Poisson and binomial GLMMs, but not for other distributional families. Similarly, we earlier discussed how to estimate intra-class correlation coefficients (ICCs) using Poisson and binomial GLMMs. In this paper, we generalize our methods to all other non-Gaussian distributions, in particular to negative binomial and gamma distributions that are commonly used for modelling biological data. While expanding our approach, we highlight two useful concepts for biologists, Jensen's inequality and the delta method, both of which help us in understanding the properties of GLMMs. Jensen's inequality has important implications for biologically meaningful interpretation of GLMMs, whereas the delta method allows a general derivation of variance associated with non-Gaussian distributions. We also discuss some special considerations for binomial GLMMs with binary or proportion data. We illustrate the implementation of our extension by worked examples from the field of ecology and evolution in the R environment. However, our method can be used across disciplines and regardless of statistical environments. © 2017 The Author(s).

  14. An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH.

    PubMed

    Allemeersch, Joke; Van Vooren, Steven; Hannes, Femke; De Moor, Bart; Vermeesch, Joris Robert; Moreau, Yves

    2009-11-19

    Comparative genomic hybridization microarrays for the detection of constitutional chromosomal aberrations is the application of microarray technology coming fastest into routine clinical application. Through genotype-phenotype association, it is also an important technique towards the discovery of disease causing genes and genomewide functional annotation in human. When using a two-channel microarray of genomic DNA probes for array CGH, the basic setup consists in hybridizing a patient against a normal reference sample. Two major disadvantages of this setup are (1) the use of half of the resources to measure a (little informative) reference sample and (2) the possibility that deviating signals are caused by benign copy number variation in the "normal" reference instead of a patient aberration. Instead, we apply an experimental loop design that compares three patients in three hybridizations. We develop and compare two statistical methods (linear models of log ratios and mixed models of absolute measurements). In an analysis of 27 patients seen at our genetics center, we observed that the linear models of the log ratios are advantageous over the mixed models of the absolute intensities. The loop design and the performance of the statistical analysis contribute to the quick adoption of array CGH as a routine diagnostic tool. They lower the detection limit of mosaicisms and improve the assignment of copy number variation for genetic association studies.

  15. Quasi 1D Modeling of Mixed Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.

  16. Accounting for the relationship between per diem cost and LOS when estimating hospitalization costs.

    PubMed

    Ishak, K Jack; Stolar, Marilyn; Hu, Ming-yi; Alvarez, Piedad; Wang, Yamei; Getsios, Denis; Williams, Gregory C

    2012-12-01

    Hospitalization costs in clinical trials are typically derived by multiplying the length of stay (LOS) by an average per-diem (PD) cost from external sources. This assumes that PD costs are independent of LOS. Resource utilization in early days of the stay is usually more intense, however, and thus, the PD cost for a short hospitalization may be higher than for longer stays. The shape of this relationship is unlikely to be linear, as PD costs would be expected to gradually plateau. This paper describes how to model the relationship between PD cost and LOS using flexible statistical modelling techniques. An example based on a clinical study of clevidipine for the treatment of peri-operative hypertension during hospitalizations for cardiac surgery is used to illustrate how inferences about cost-savings associated with good blood pressure (BP) control during the stay can be affected by the approach used to derive hospitalization costs.Data on the cost and LOS of hospitalizations for coronary artery bypass grafting (CABG) from the Massachusetts Acute Hospital Case Mix Database (the MA Case Mix Database) were analyzed to link LOS to PD cost, factoring in complications that may have occurred during the hospitalization or post-discharge. The shape of the relationship between LOS and PD costs in the MA Case Mix was explored graphically in a regression framework. A series of statistical models including those based on simple logarithmic transformation of LOS to more flexible models using LOcally wEighted Scatterplot Smoothing (LOESS) techniques were considered. A final model was selected, using simplicity and parsimony as guiding principles in addition traditional fit statistics (like Akaike's Information Criterion, or AIC). This mapping was applied in ECLIPSE to predict an LOS-specific PD cost, and then a total cost of hospitalization. These were then compared for patients who had good vs. poor peri-operative blood-pressure control. The MA Case Mix dataset included data from over 10,000 patients. Visual inspection of PD vs. LOS revealed a non-linear relationship. A logarithmic model and a series of LOESS and piecewise-linear models with varying connection points were tested. The logarithmic model was ultimately favoured for its fit and simplicity. Using this mapping in the ECLIPSE trials, we found that good peri-operative BP control was associated with a cost savings of $5,366 when costs were derived using the mapping, compared with savings of $7,666 obtained using the traditional approach of calculating the cost. PD costs vary systematically with LOS, with short stays being associated with high PD costs that drop gradually and level off. The shape of the relationship may differ in other settings. It is important to assess this and model the observed pattern, as this may have an impact on conclusions based on derived hospitalization costs.

  17. Accounting for the relationship between per diem cost and LOS when estimating hospitalization costs

    PubMed Central

    2012-01-01

    Background Hospitalization costs in clinical trials are typically derived by multiplying the length of stay (LOS) by an average per-diem (PD) cost from external sources. This assumes that PD costs are independent of LOS. Resource utilization in early days of the stay is usually more intense, however, and thus, the PD cost for a short hospitalization may be higher than for longer stays. The shape of this relationship is unlikely to be linear, as PD costs would be expected to gradually plateau. This paper describes how to model the relationship between PD cost and LOS using flexible statistical modelling techniques. Methods An example based on a clinical study of clevidipine for the treatment of peri-operative hypertension during hospitalizations for cardiac surgery is used to illustrate how inferences about cost-savings associated with good blood pressure (BP) control during the stay can be affected by the approach used to derive hospitalization costs. Data on the cost and LOS of hospitalizations for coronary artery bypass grafting (CABG) from the Massachusetts Acute Hospital Case Mix Database (the MA Case Mix Database) were analyzed to link LOS to PD cost, factoring in complications that may have occurred during the hospitalization or post-discharge. The shape of the relationship between LOS and PD costs in the MA Case Mix was explored graphically in a regression framework. A series of statistical models including those based on simple logarithmic transformation of LOS to more flexible models using LOcally wEighted Scatterplot Smoothing (LOESS) techniques were considered. A final model was selected, using simplicity and parsimony as guiding principles in addition traditional fit statistics (like Akaike’s Information Criterion, or AIC). This mapping was applied in ECLIPSE to predict an LOS-specific PD cost, and then a total cost of hospitalization. These were then compared for patients who had good vs. poor peri-operative blood-pressure control. Results The MA Case Mix dataset included data from over 10,000 patients. Visual inspection of PD vs. LOS revealed a non-linear relationship. A logarithmic model and a series of LOESS and piecewise-linear models with varying connection points were tested. The logarithmic model was ultimately favoured for its fit and simplicity. Using this mapping in the ECLIPSE trials, we found that good peri-operative BP control was associated with a cost savings of $5,366 when costs were derived using the mapping, compared with savings of $7,666 obtained using the traditional approach of calculating the cost. Conclusions PD costs vary systematically with LOS, with short stays being associated with high PD costs that drop gradually and level off. The shape of the relationship may differ in other settings. It is important to assess this and model the observed pattern, as this may have an impact on conclusions based on derived hospitalization costs. PMID:23198908

  18. Predicting the multi-domain progression of Parkinson's disease: a Bayesian multivariate generalized linear mixed-effect model.

    PubMed

    Wang, Ming; Li, Zheng; Lee, Eun Young; Lewis, Mechelle M; Zhang, Lijun; Sterling, Nicholas W; Wagner, Daymond; Eslinger, Paul; Du, Guangwei; Huang, Xuemei

    2017-09-25

    It is challenging for current statistical models to predict clinical progression of Parkinson's disease (PD) because of the involvement of multi-domains and longitudinal data. Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM) under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline, 18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS, and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed for both internal and external subjects using the samples from the posterior distributions of the parameter estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve. First, our prediction model identified clinical data that were differentially associated with motor, non-motor, and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing data were performed, with ~80% observed values falling within the 95% credible intervals. Multivariate general mixed models hold promise to predict clinical progression of individual outcomes in PD. The data was obtained from Dr. Xuemei Huang's NIH grant R01 NS060722 , part of NINDS PD Biomarker Program (PDBP). All data was entered within 24 h of collection to the Data Management Repository (DMR), which is publically available ( https://pdbp.ninds.nih.gov/data-management ).

  19. Elastic properties and optical absorption studies of mixed alkali borogermanate glasses

    NASA Astrophysics Data System (ADS)

    Taqiullah, S. M.; Ahmmad, Shaik Kareem; Samee, M. A.; Rahman, Syed

    2018-05-01

    First time the mixed alkali effect (MAE) has been investigated in the glass system xNa2O-(30-x)Li2O-40B2O3- 30GeO2 (0≤x≤30 mol%) through density and optical absorption studies. The present glasses were prepared by melt quench technique. The density of the present glasses varies non-linearly exhibiting mixed alkali effect. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter. From the absorption edge studies, the values of optical band gap energies for all transitions have been evaluated. It was established that the type of electronic transition in the present glass system is indirect allowed. The indirect optical band gap exhibit non-linear behavior with compositional parameter showing the mixed alkali effect.

  20. A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study.

    PubMed

    Liu, Danping; Yeung, Edwina H; McLain, Alexander C; Xie, Yunlong; Buck Louis, Germaine M; Sundaram, Rajeshwari

    2017-09-01

    Imperfect follow-up in longitudinal studies commonly leads to missing outcome data that can potentially bias the inference when the missingness is nonignorable; that is, the propensity of missingness depends on missing values in the data. In the Upstate KIDS Study, we seek to determine if the missingness of child development outcomes is nonignorable, and how a simple model assuming ignorable missingness would compare with more complicated models for a nonignorable mechanism. To correct for nonignorable missingness, the shared random effects model (SREM) jointly models the outcome and the missing mechanism. However, the computational complexity and lack of software packages has limited its practical applications. This paper proposes a novel two-step approach to handle nonignorable missing outcomes in generalized linear mixed models. We first analyse the missing mechanism with a generalized linear mixed model and predict values of the random effects; then, the outcome model is fitted adjusting for the predicted random effects to account for heterogeneity in the missingness propensity. Extensive simulation studies suggest that the proposed method is a reliable approximation to SREM, with a much faster computation. The nonignorability of missing data in the Upstate KIDS Study is estimated to be mild to moderate, and the analyses using the two-step approach or SREM are similar to the model assuming ignorable missingness. The two-step approach is a computationally straightforward method that can be conducted as sensitivity analyses in longitudinal studies to examine violations to the ignorable missingness assumption and the implications relative to health outcomes. © 2017 John Wiley & Sons Ltd.

  1. High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software

    PubMed Central

    Fabregat-Traver, Diego; Sharapov, Sodbo Zh.; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo

    2014-01-01

    To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the ’omics’ context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL. PMID:25717363

  2. High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software.

    PubMed

    Fabregat-Traver, Diego; Sharapov, Sodbo Zh; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo

    2014-01-01

    To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the 'omics' context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL.

  3. How Well Can Saliency Models Predict Fixation Selection in Scenes Beyond Central Bias? A New Approach to Model Evaluation Using Generalized Linear Mixed Models.

    PubMed

    Nuthmann, Antje; Einhäuser, Wolfgang; Schütz, Immo

    2017-01-01

    Since the turn of the millennium, a large number of computational models of visual salience have been put forward. How best to evaluate a given model's ability to predict where human observers fixate in images of real-world scenes remains an open research question. Assessing the role of spatial biases is a challenging issue; this is particularly true when we consider the tendency for high-salience items to appear in the image center, combined with a tendency to look straight ahead ("central bias"). This problem is further exacerbated in the context of model comparisons, because some-but not all-models implicitly or explicitly incorporate a center preference to improve performance. To address this and other issues, we propose to combine a-priori parcellation of scenes with generalized linear mixed models (GLMM), building upon previous work. With this method, we can explicitly model the central bias of fixation by including a central-bias predictor in the GLMM. A second predictor captures how well the saliency model predicts human fixations, above and beyond the central bias. By-subject and by-item random effects account for individual differences and differences across scene items, respectively. Moreover, we can directly assess whether a given saliency model performs significantly better than others. In this article, we describe the data processing steps required by our analysis approach. In addition, we demonstrate the GLMM analyses by evaluating the performance of different saliency models on a new eye-tracking corpus. To facilitate the application of our method, we make the open-source Python toolbox "GridFix" available.

  4. Neutron response of GafChromic® EBT2 film

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Chen; Liu, Yuan-Hao; Chen, Wei-Lin; Jiang, Shiang-Huei

    2013-03-01

    Neutron and gamma-ray mixed field dosimetry remains one of the most challenging topics in radiation dosimetry studies. However, the requirement for accurate mixed field dosimetry is increasing because of the considerable interest in high-energy radiotherapy machines, medical ion beams and BNCT epithermal neutron beams. Therefore, this study investigated the GafChromic® EBT2 film. The linearity, reproducibility, energy dependence and homogeneity of the film were tested in a 60Co medical beam, 6-MV LINAC and 10-MV LINAC. The linearity and self-developing effect of the film irradiated in an epithermal neutron beam were also examined. These basic detector characteristics showed that EBT2 film can be effectively applied in mixed field dosimetry. A general detector response model was developed to determine the neutron relative effectiveness (RE) values. The RE value of fast neutrons varies with neutron spectra. By contrast, the RE value of thermal neutrons was determined as a constant; it is only 32.5% in relation to gamma rays. No synergy effect was observed in this study. The lithium-6 capture reaction dominates the neutron response in the thermal neutron energy range, and the recoil hydrogen dose becomes the dominant component in the fast neutron energy region. Based on this study, the application of the EBT2 film in the neutron and gamma-ray mixed field is feasible.

  5. Improved quantification of important beer quality parameters based on nonlinear calibration methods applied to FT-MIR spectra.

    PubMed

    Cernuda, Carlos; Lughofer, Edwin; Klein, Helmut; Forster, Clemens; Pawliczek, Marcin; Brandstetter, Markus

    2017-01-01

    During the production process of beer, it is of utmost importance to guarantee a high consistency of the beer quality. For instance, the bitterness is an essential quality parameter which has to be controlled within the specifications at the beginning of the production process in the unfermented beer (wort) as well as in final products such as beer and beer mix beverages. Nowadays, analytical techniques for quality control in beer production are mainly based on manual supervision, i.e., samples are taken from the process and analyzed in the laboratory. This typically requires significant lab technicians efforts for only a small fraction of samples to be analyzed, which leads to significant costs for beer breweries and companies. Fourier transform mid-infrared (FT-MIR) spectroscopy was used in combination with nonlinear multivariate calibration techniques to overcome (i) the time consuming off-line analyses in beer production and (ii) already known limitations of standard linear chemometric methods, like partial least squares (PLS), for important quality parameters Speers et al. (J I Brewing. 2003;109(3):229-235), Zhang et al. (J I Brewing. 2012;118(4):361-367) such as bitterness, citric acid, total acids, free amino nitrogen, final attenuation, or foam stability. The calibration models are established with enhanced nonlinear techniques based (i) on a new piece-wise linear version of PLS by employing fuzzy rules for local partitioning the latent variable space and (ii) on extensions of support vector regression variants (-PLSSVR and ν-PLSSVR), for overcoming high computation times in high-dimensional problems and time-intensive and inappropriate settings of the kernel parameters. Furthermore, we introduce a new model selection scheme based on bagged ensembles in order to improve robustness and thus predictive quality of the final models. The approaches are tested on real-world calibration data sets for wort and beer mix beverages, and successfully compared to linear methods, showing a clear out-performance in most cases and being able to meet the model quality requirements defined by the experts at the beer company. Figure Workflow for calibration of non-Linear model ensembles from FT-MIR spectra in beer production .

  6. Hybrid Airships: Intratheater Operations Cost-Benefit Analysis

    DTIC Science & Technology

    2011-06-01

    airships (HA) in an intratheater humanitarian assistance scenario. A linear programming model was used to study various mixes of hybrid airships...i.e. 200 tons) must be moved as quickly as possible (or during sealift transit), then HA operating costs of $3,000 per hour or less also make them a ...for Future Research ................................................................................ 52 Appendix A : Examples of HA Concepts/Prototypes

  7. Predicted Hematologic and Plasma Volume Responses Following Rapid Ascent to Progressive Altitudes

    DTIC Science & Technology

    2014-06-01

    of these changes, and define baseline demographics and physiologic descriptors that are important in predicting these changes. The overall impact of... physiologic descriptors that are important in predicting these changes. Using general linear mixed models and a comprehensive relational database...accomplished using a comprehensive relational database containing individual ascent profiles, demographics, and physiologic subject descriptors as well as

  8. Solutions for Determining the Significance Region Using the Johnson-Neyman Type Procedure in Generalized Linear (Mixed) Models

    ERIC Educational Resources Information Center

    Lazar, Ann A.; Zerbe, Gary O.

    2011-01-01

    Researchers often compare the relationship between an outcome and covariate for two or more groups by evaluating whether the fitted regression curves differ significantly. When they do, researchers need to determine the "significance region," or the values of the covariate where the curves significantly differ. In analysis of covariance (ANCOVA),…

  9. The Effects of Baseline Estimation on the Reliability, Validity, and Precision of CBM-R Growth Estimates

    ERIC Educational Resources Information Center

    Van Norman, Ethan R.; Christ, Theodore J.; Zopluoglu, Cengiz

    2013-01-01

    This study examined the effect of baseline estimation on the quality of trend estimates derived from Curriculum Based Measurement of Oral Reading (CBM-R) progress monitoring data. The authors used a linear mixed effects regression (LMER) model to simulate progress monitoring data for schedules ranging from 6-20 weeks for datasets with high and low…

  10. Numerical Study of Buoyancy and Different Diffusion Effects on the Structure and Dynamics of Triple Flames

    NASA Technical Reports Server (NTRS)

    Chen, Jyh-Yuan; Echekki, Tarek

    2001-01-01

    Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames. Results of numerical simulations show that gravity strongly affects the triple flame speed through its contribution to the overall flow field. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed. Downward-propagating triple flames at relatively strong gravity effects have exhibited instabilities. These instabilities are generated without any artificial forcing of the flow. Instead disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame configurations have been performed to identify the most amplified frequency in spatially developed flows. The eigenfunction equations obtained from the linearized disturbance equations are solved using the shooting method. The linear stability analysis yields reasonably good agreements with the observed frequencies of the unstable triple flames. The frequencies and amplitudes of disturbances increase with the magnitude of the gravity vector. Moreover, disturbances appear to be most amplified just downstream of the premixed branches. The effects of mixing width and differential diffusion are investigated and their roles on the flame stability are studied.

  11. Evolutionary dynamics of general group interactions in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.

  12. Planetary Ices and the Linear Mixing Approximation

    DOE PAGES

    Bethkenhagen, M.; Meyer, Edmund Richard; Hamel, S.; ...

    2017-10-10

    Here, the validity of the widely used linear mixing approximation (LMA) for the equations of state (EOSs) of planetary ices is investigated at pressure–temperature conditions typical for the interiors of Uranus and Neptune. The basis of this study is ab initio data ranging up to 1000 GPa and 20,000 K, calculated via density functional theory molecular dynamics simulations. In particular, we determine a new EOS for methane and EOS data for the 1:1 binary mixtures of methane, ammonia, and water, as well as their 2:1:4 ternary mixture. Additionally, the self-diffusion coefficients in the ternary mixture are calculated along three different Uranus interior profiles and compared to the values of the pure compounds. We find that deviations of the LMA from the results of the real mixture are generally small; for the thermal EOSs they amount to 4% or less. The diffusion coefficients in the mixture agree with those of the pure compounds within 20% or better. Finally, a new adiabatic model of Uranus with an inner layer of almost pure ices is developed. The model is consistent with the gravity field data and results in a rather cold interior (more » $${T}_{\\mathrm{core}}\\sim 4000$$ K).« less

  13. Small area estimation of proportions with different levels of auxiliary data.

    PubMed

    Chandra, Hukum; Kumar, Sushil; Aditya, Kaustav

    2018-03-01

    Binary data are often of interest in many small areas of applications. The use of standard small area estimation methods based on linear mixed models becomes problematic for such data. An empirical plug-in predictor (EPP) under a unit-level generalized linear mixed model with logit link function is often used for the estimation of a small area proportion. However, this EPP requires the availability of unit-level population information for auxiliary data that may not be always accessible. As a consequence, in many practical situations, this EPP approach cannot be applied. Based on the level of auxiliary information available, different small area predictors for estimation of proportions are proposed. Analytic and bootstrap approaches to estimating the mean squared error of the proposed small area predictors are also developed. Monte Carlo simulations based on both simulated and real data show that the proposed small area predictors work well for generating the small area estimates of proportions and represent a practical alternative to the above approach. The developed predictor is applied to generate estimates of the proportions of indebted farm households at district-level using debt investment survey data from India. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Further Improvements to Linear Mixed Models for Genome-Wide Association Studies

    PubMed Central

    Widmer, Christian; Lippert, Christoph; Weissbrod, Omer; Fusi, Nicolo; Kadie, Carl; Davidson, Robert; Listgarten, Jennifer; Heckerman, David

    2014-01-01

    We examine improvements to the linear mixed model (LMM) that better correct for population structure and family relatedness in genome-wide association studies (GWAS). LMMs rely on the estimation of a genetic similarity matrix (GSM), which encodes the pairwise similarity between every two individuals in a cohort. These similarities are estimated from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, all available SNPs are used to estimate the GSM. In empirical studies across a wide range of synthetic and real data, we find that modifications to this approach improve GWAS performance as measured by type I error control and power. Specifically, when only population structure is present, a GSM constructed from SNPs that well predict the phenotype in combination with principal components as covariates controls type I error and yields more power than the traditional LMM. In any setting, with or without population structure or family relatedness, a GSM consisting of a mixture of two component GSMs, one constructed from all SNPs and another constructed from SNPs that well predict the phenotype again controls type I error and yields more power than the traditional LMM. Software implementing these improvements and the experimental comparisons are available at http://microsoft.com/science. PMID:25387525

  15. The Bayesian group lasso for confounded spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.

    2017-01-01

    Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.

  16. Further Improvements to Linear Mixed Models for Genome-Wide Association Studies

    NASA Astrophysics Data System (ADS)

    Widmer, Christian; Lippert, Christoph; Weissbrod, Omer; Fusi, Nicolo; Kadie, Carl; Davidson, Robert; Listgarten, Jennifer; Heckerman, David

    2014-11-01

    We examine improvements to the linear mixed model (LMM) that better correct for population structure and family relatedness in genome-wide association studies (GWAS). LMMs rely on the estimation of a genetic similarity matrix (GSM), which encodes the pairwise similarity between every two individuals in a cohort. These similarities are estimated from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, all available SNPs are used to estimate the GSM. In empirical studies across a wide range of synthetic and real data, we find that modifications to this approach improve GWAS performance as measured by type I error control and power. Specifically, when only population structure is present, a GSM constructed from SNPs that well predict the phenotype in combination with principal components as covariates controls type I error and yields more power than the traditional LMM. In any setting, with or without population structure or family relatedness, a GSM consisting of a mixture of two component GSMs, one constructed from all SNPs and another constructed from SNPs that well predict the phenotype again controls type I error and yields more power than the traditional LMM. Software implementing these improvements and the experimental comparisons are available at http://microsoft.com/science.

  17. Further improvements to linear mixed models for genome-wide association studies.

    PubMed

    Widmer, Christian; Lippert, Christoph; Weissbrod, Omer; Fusi, Nicolo; Kadie, Carl; Davidson, Robert; Listgarten, Jennifer; Heckerman, David

    2014-11-12

    We examine improvements to the linear mixed model (LMM) that better correct for population structure and family relatedness in genome-wide association studies (GWAS). LMMs rely on the estimation of a genetic similarity matrix (GSM), which encodes the pairwise similarity between every two individuals in a cohort. These similarities are estimated from single nucleotide polymorphisms (SNPs) or other genetic variants. Traditionally, all available SNPs are used to estimate the GSM. In empirical studies across a wide range of synthetic and real data, we find that modifications to this approach improve GWAS performance as measured by type I error control and power. Specifically, when only population structure is present, a GSM constructed from SNPs that well predict the phenotype in combination with principal components as covariates controls type I error and yields more power than the traditional LMM. In any setting, with or without population structure or family relatedness, a GSM consisting of a mixture of two component GSMs, one constructed from all SNPs and another constructed from SNPs that well predict the phenotype again controls type I error and yields more power than the traditional LMM. Software implementing these improvements and the experimental comparisons are available at http://microsoft.com/science.

  18. Generalized Linear Mixed Model Analysis of Urban-Rural Differences in Social and Behavioral Factors for Colorectal Cancer Screening

    PubMed Central

    Wang, Ke-Sheng; Liu, Xuefeng; Ategbole, Muyiwa; Xie, Xin; Liu, Ying; Xu, Chun; Xie, Changchun; Sha, Zhanxin

    2017-01-01

    Objective: Screening for colorectal cancer (CRC) can reduce disease incidence, morbidity, and mortality. However, few studies have investigated the urban-rural differences in social and behavioral factors influencing CRC screening. The objective of the study was to investigate the potential factors across urban-rural groups on the usage of CRC screening. Methods: A total of 38,505 adults (aged ≥40 years) were selected from the 2009 California Health Interview Survey (CHIS) data - the latest CHIS data on CRC screening. The weighted generalized linear mixed-model (WGLIMM) was used to deal with this hierarchical structure data. Weighted simple and multiple mixed logistic regression analyses in SAS ver. 9.4 were used to obtain the odds ratios (ORs) and their 95% confidence intervals (CIs). Results: The overall prevalence of CRC screening was 48.1% while the prevalence in four residence groups - urban, second city, suburban, and town/rural, were 45.8%, 46.9%, 53.7% and 50.1%, respectively. The results of WGLIMM analysis showed that there was residence effect (p<0.0001) and residence groups had significant interactions with gender, age group, education level, and employment status (p<0.05). Multiple logistic regression analysis revealed that age, race, marital status, education level, employment stats, binge drinking, and smoking status were associated with CRC screening (p<0.05). Stratified by residence regions, age and poverty level showed associations with CRC screening in all four residence groups. Education level was positively associated with CRC screening in second city and suburban. Infrequent binge drinking was associated with CRC screening in urban and suburban; while current smoking was a protective factor in urban and town/rural groups. Conclusions: Mixed models are useful to deal with the clustered survey data. Social factors and behavioral factors (binge drinking and smoking) were associated with CRC screening and the associations were affected by living areas such as urban and rural regions. PMID:28952708

  19. Generalized Linear Mixed Model Analysis of Urban-Rural Differences in Social and Behavioral Factors for Colorectal Cancer Screening

    PubMed

    Wang, Ke-Sheng; Liu, Xuefeng; Ategbole, Muyiwa; Xie, Xin; Liu, Ying; Xu, Chun; Xie, Changchun; Sha, Zhanxin

    2017-09-27

    Objective: Screening for colorectal cancer (CRC) can reduce disease incidence, morbidity, and mortality. However, few studies have investigated the urban-rural differences in social and behavioral factors influencing CRC screening. The objective of the study was to investigate the potential factors across urban-rural groups on the usage of CRC screening. Methods: A total of 38,505 adults (aged ≥40 years) were selected from the 2009 California Health Interview Survey (CHIS) data - the latest CHIS data on CRC screening. The weighted generalized linear mixed-model (WGLIMM) was used to deal with this hierarchical structure data. Weighted simple and multiple mixed logistic regression analyses in SAS ver. 9.4 were used to obtain the odds ratios (ORs) and their 95% confidence intervals (CIs). Results: The overall prevalence of CRC screening was 48.1% while the prevalence in four residence groups - urban, second city, suburban, and town/rural, were 45.8%, 46.9%, 53.7% and 50.1%, respectively. The results of WGLIMM analysis showed that there was residence effect (p<0.0001) and residence groups had significant interactions with gender, age group, education level, and employment status (p<0.05). Multiple logistic regression analysis revealed that age, race, marital status, education level, employment stats, binge drinking, and smoking status were associated with CRC screening (p<0.05). Stratified by residence regions, age and poverty level showed associations with CRC screening in all four residence groups. Education level was positively associated with CRC screening in second city and suburban. Infrequent binge drinking was associated with CRC screening in urban and suburban; while current smoking was a protective factor in urban and town/rural groups. Conclusions: Mixed models are useful to deal with the clustered survey data. Social factors and behavioral factors (binge drinking and smoking) were associated with CRC screening and the associations were affected by living areas such as urban and rural regions. Creative Commons Attribution License

  20. A k-ɛ model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Bonnet, Michel

    1990-09-01

    A k-ɛ model for turbulent mixing induced by Rayleigh-Taylor instability is described. The classical linear closure relations are supplemented with algebraic relations in order to be valid under strong gradients. Calibrations were made against two shock-tube experiments (Andronov et al. [Sov. Phys. JETP 44, 424 (1976); Sov. Phys. Dokl. 27, 393 (1982)] and Houas et al. [Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes (Stanford U.P., Stanford, CA, 1986)]) using the same set of constants. The new interpretation of the experimental data of Brouillette and Sturtevant [Physica D 37, 248 (1989)], where the mixing length is discriminated from the wall jet, requires a different numerical value for the Rayleigh-Taylor source term coefficient. A detailed physical study is given in both cases. It turns out that the spectrum is narrower in the Brouillette and Sturtevant case than in the Andronov et al. case but the small length scales are of the same magnitude.

  1. Multivariate-$t$ nonlinear mixed models with application to censored multi-outcome AIDS studies.

    PubMed

    Lin, Tsung-I; Wang, Wan-Lun

    2017-10-01

    In multivariate longitudinal HIV/AIDS studies, multi-outcome repeated measures on each patient over time may contain outliers, and the viral loads are often subject to a upper or lower limit of detection depending on the quantification assays. In this article, we consider an extension of the multivariate nonlinear mixed-effects model by adopting a joint multivariate-$t$ distribution for random effects and within-subject errors and taking the censoring information of multiple responses into account. The proposed model is called the multivariate-$t$ nonlinear mixed-effects model with censored responses (MtNLMMC), allowing for analyzing multi-outcome longitudinal data exhibiting nonlinear growth patterns with censorship and fat-tailed behavior. Utilizing the Taylor-series linearization method, a pseudo-data version of expectation conditional maximization either (ECME) algorithm is developed for iteratively carrying out maximum likelihood estimation. We illustrate our techniques with two data examples from HIV/AIDS studies. Experimental results signify that the MtNLMMC performs favorably compared to its Gaussian analogue and some existing approaches. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Influence diagnostics for count data under AB-BA crossover trials.

    PubMed

    Hao, Chengcheng; von Rosen, Dietrich; von Rosen, Tatjana

    2017-12-01

    This paper aims to develop diagnostic measures to assess the influence of data perturbations on estimates in AB-BA crossover studies with a Poisson distributed response. Generalised mixed linear models with normally distributed random effects are utilised. We show that in this special case, the model can be decomposed into two independent sub-models which allow to derive closed-form expressions to evaluate the changes in the maximum likelihood estimates under several perturbation schemes. The performance of the new influence measures is illustrated by simulation studies and the analysis of a real dataset.

  3. Origin of terminal voltage variations due to self-mixing in terahertz frequency quantum cascade lasers.

    PubMed

    Grier, Andrew; Dean, Paul; Valavanis, Alexander; Keeley, James; Kundu, Iman; Cooper, Jonathan D; Agnew, Gary; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Rakić, Aleksandar D; Li, Lianhe H; Harrison, Paul; Linfield, Edmund H; Ikonić, Zoran; Davies, A Giles; Indjin, Dragan

    2016-09-19

    We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current-voltage (I-V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated. Strong enhancement of the self-mixing voltage signal due to non-linearity of the (I-V) characteristics is predicted and confirmed experimentally in an exemplar 2.6 THz bound-to-continuum QCL.

  4. Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.

    2016-04-01

    > A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).

  5. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization.

    PubMed

    Ding, Jinliang; Chai, Tianyou; Wang, Hong

    2011-03-01

    This paper presents a novel offline modeling for product quality prediction of mineral processing which consists of a number of unit processes in series. The prediction of the product quality of the whole mineral process (i.e., the mixed concentrate grade) plays an important role and the establishment of its predictive model is a key issue for the plantwide optimization. For this purpose, a hybrid modeling approach of the mixed concentrate grade prediction is proposed, which consists of a linear model and a nonlinear model. The least-squares support vector machine is adopted to establish the nonlinear model. The inputs of the predictive model are the performance indices of each unit process, while the output is the mixed concentrate grade. In this paper, the model parameter selection is transformed into the shape control of the probability density function (PDF) of the modeling error. In this context, both the PDF-control-based and minimum-entropy-based model parameter selection approaches are proposed. Indeed, this is the first time that the PDF shape control idea is used to deal with system modeling, where the key idea is to turn model parameters so that either the modeling error PDF is controlled to follow a target PDF or the modeling error entropy is minimized. The experimental results using the real plant data and the comparison of the two approaches are discussed. The results show the effectiveness of the proposed approaches.

  6. Compositional characteristics of some Apollo 14 clastic materials.

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Duncan, A. R.; Fruchter, J. S.; Mckay, S. M.; Stoeser, J. W.; Goles, G. G.; Lindstrom, D. J.

    1972-01-01

    Eighty-two subsamples of Apollo 14 materials have been analyzed by instrumental neutron activation analysis techniques for as many as 25 elements. In many cases, it was necessary to develop new procedures to allow analyses of small specimens. Compositional relationships among Apollo 14 materials indicate that there are small but systematic differences between regolith from the valley terrain and that from Cone Crater ejecta. Fragments from 1-2 mm size fractions of regolith samples may be divided into compositional classes, and the 'soil breccias' among them are very similar to valley soils. Multicomponent linear mixing models have been used as interpretive tools in dealing with data on regolith fractions and subsamples from breccia 14321. These mixing models show systematic compositional variations with inferred age for Apollo 14 clastic materials.

  7. Instability-related delamination growth in thermoset and thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Gillespie, John W., Jr.; Carlsson, Leif A.; Rothschilds, Robert J.

    1988-01-01

    Mixed-mode crack propagation in compressively loaded thermoset and thermoplastic composite columns with an imbedded through-width delamination is investigated. Beam theory is used to analyze the geometrically nonlinear load-deformation relationship of the delaminated subregion. The elastic restraint model (ERM), combined with existing FSM modeling of the crack-tip region, yields expressions for the Mode I and Mode II components of the strain energy release rate G(I) and G(II) to predict the critical load at the onset of delamination growth. Experimental data were generated for geometries yielding a wide range of G(I)/G(II) ratios at the onset of crack growth. A linear mixed-mode crack growth criterion in conjunctuion with the ERM provides good agreement between predicted and measured critical loads for both materials studied.

  8. Analyzing Longitudinal Data with Multilevel Models: An Example with Individuals Living with Lower Extremity Intra-articular Fractures

    PubMed Central

    Kwok, Oi-Man; Underhill, Andrea T.; Berry, Jack W.; Luo, Wen; Elliott, Timothy R.; Yoon, Myeongsun

    2008-01-01

    The use and quality of longitudinal research designs has increased over the past two decades, and new approaches for analyzing longitudinal data, including multi-level modeling (MLM) and latent growth modeling (LGM), have been developed. The purpose of this paper is to demonstrate the use of MLM and its advantages in analyzing longitudinal data. Data from a sample of individuals with intra-articular fractures of the lower extremity from the University of Alabama at Birmingham’s Injury Control Research Center is analyzed using both SAS PROC MIXED and SPSS MIXED. We start our presentation with a discussion of data preparation for MLM analyses. We then provide example analyses of different growth models, including a simple linear growth model and a model with a time-invariant covariate, with interpretation for all the parameters in the models. More complicated growth models with different between- and within-individual covariance structures and nonlinear models are discussed. Finally, information related to MLM analysis such as online resources is provided at the end of the paper. PMID:19649151

  9. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.

    PubMed

    Bioglio, Livio; Génois, Mathieu; Vestergaard, Christian L; Poletto, Chiara; Barrat, Alain; Colizza, Vittoria

    2016-11-14

    The homogeneous mixing assumption is widely adopted in epidemic modelling for its parsimony and represents the building block of more complex approaches, including very detailed agent-based models. The latter assume homogeneous mixing within schools, workplaces and households, mostly for the lack of detailed information on human contact behaviour within these settings. The recent data availability on high-resolution face-to-face interactions makes it now possible to assess the goodness of this simplified scheme in reproducing relevant aspects of the infection dynamics. We consider empirical contact networks gathered in different contexts, as well as synthetic data obtained through realistic models of contacts in structured populations. We perform stochastic spreading simulations on these contact networks and in populations of the same size under a homogeneous mixing hypothesis. We adjust the epidemiological parameters of the latter in order to fit the prevalence curve of the contact epidemic model. We quantify the agreement by comparing epidemic peak times, peak values, and epidemic sizes. Good approximations of the peak times and peak values are obtained with the homogeneous mixing approach, with a median relative difference smaller than 20 % in all cases investigated. Accuracy in reproducing the peak time depends on the setting under study, while for the peak value it is independent of the setting. Recalibration is found to be linear in the epidemic parameters used in the contact data simulations, showing changes across empirical settings but robustness across groups and population sizes. An adequate rescaling of the epidemiological parameters can yield a good agreement between the epidemic curves obtained with a real contact network and a homogeneous mixing approach in a population of the same size. The use of such recalibrated homogeneous mixing approximations would enhance the accuracy and realism of agent-based simulations and limit the intrinsic biases of the homogeneous mixing.

  10. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies.

    PubMed

    Zhang, J; Feng, J-Y; Ni, Y-L; Wen, Y-J; Niu, Y; Tamba, C L; Yue, C; Song, Q; Zhang, Y-M

    2017-06-01

    Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in Arabidopsis thaliana.

  11. ZIP2DL: An Elastic-Plastic, Large-Rotation Finite-Element Stress Analysis and Crack-Growth Simulation Program

    NASA Technical Reports Server (NTRS)

    Deng, Xiaomin; Newman, James C., Jr.

    1997-01-01

    ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.

  12. Variation in ultrafiltered and LMW organic matter fluorescence properties under simulated estuarine mixing transects: 1. Mixing alone

    NASA Astrophysics Data System (ADS)

    Boyd, Thomas J.; Barham, Bethany P.; Hall, Gregory J.; Osburn, Christopher L.

    2010-09-01

    Ultrafiltered and low molecular weight dissolved organic matter (UDOM and LMW-DOM, respectively) fluorescence was studied under simulated estuarine mixing using samples collected from Delaware, Chesapeake, and San Francisco Bays (USA) transects. UDOM was concentrated by tangential flow ultrafiltration (TFF) from the marine (>33 PSU), mid-estuarine (˜16 PSU), and freshwater (<1 PSU) members. TFF permeates (<1 kDa) from the three members were used to create artificial salinity transects ranging from ˜0 to ˜36, with 4 PSU increments. UDOM from the end- or mid-members was added in equal amounts to each salinity-mix. Three-dimensional fluorescence excitation-emission matrix (EEMs) spectra were generated for each end-member permeate and UDOM through the full estuarine mixing transect. Fluorescence components such as proteinaceous, terrigenous, and marine derived humic peaks, and certain fluorescent ratios were noticeably altered by simulated estuarine mixing, suggesting that LMW DOM and UDOM undergo physicochemical alteration as they move to or from the freshwater, mid-estuarine, or coastal ocean members. LMW fluorescence components fit a decreasing linear mixing model from mid salinities to the ocean end-member, but were more highly fluorescent than mixing alone would predict in lower salinities (<8). Significant shifts were also seen in UDOM peak emission wavelengths with blue-shifting toward the ocean end-member. Humic-type components in UDOM generally showed lower fluorescent intensities at low salinities, higher at mid-salinities, and lower again toward the ocean end-member. T (believed to be proteinaceous) and N (labile organic matter) peaks behaved similarly to each other, but not to B peak fluorescence, which showed virtually no variation in permeate or UDOM mixes with salinity. PCA and PARAFAC models showed similar results suggesting trends could be modeled for DOM end- and mid-member sources. Changes in fluorescence properties due to estuarine mixing may be important when using CDOM as a proxy for DOM cycling in coastal systems.

  13. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing.more » Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.« less

  14. Random effects coefficient of determination for mixed and meta-analysis models.

    PubMed

    Demidenko, Eugene; Sargent, James; Onega, Tracy

    2012-01-01

    The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, [Formula: see text], that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If [Formula: see text] is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of [Formula: see text] apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects-the model can be estimated using the dummy variable approach. We derive explicit formulas for [Formula: see text] in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine.

  15. Study of a mixed dispersal population dynamics model

    DOE PAGES

    Chugunova, Marina; Jadamba, Baasansuren; Kao, Chiu -Yen; ...

    2016-08-27

    In this study, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and non-locally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to diemore » out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply-connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.« less

  16. Mixed Spin-1/2 and Spin-5/2 Model by Renormalization Group Theory: Recursion Equations and Thermodynamic Study

    NASA Astrophysics Data System (ADS)

    Antari, A. El; Zahir, H.; Hasnaoui, A.; Hachem, N.; Alrajhi, A.; Madani, M.; Bouziani, M. El

    2018-04-01

    Using the renormalization group approximation, specifically the Migdal-Kadanoff technique, we investigate the Blume-Capel model with mixed spins S = 1/2 and S = 5/2 on d-dimensional hypercubic lattice. The flow in the parameter space of the Hamiltonian and the thermodynamic functions are determined. The phase diagram of this model is plotted in the (anisotropy, temperature) plane for both cases d = 2 and d = 3 in which the system exhibits the first and second order phase transitions and critical end-points. The associated fixed points are drawn up in a table, and by linearizing the transformation at the vicinity of these points, we determine the critical exponents for d = 2 and d = 3. We have also presented a variation of the free energy derivative at the vicinity of the first and second order transitions. Finally, this work is completed by a discussion and comparison with other approximation.

  17. A Comparative Evaluation of the Linear Dimensional Accuracy of Four Impression Techniques using Polyether Impression Material.

    PubMed

    Manoj, Smita Sara; Cherian, K P; Chitre, Vidya; Aras, Meena

    2013-12-01

    There is much discussion in the dental literature regarding the superiority of one impression technique over the other using addition silicone impression material. However, there is inadequate information available on the accuracy of different impression techniques using polyether. The purpose of this study was to assess the linear dimensional accuracy of four impression techniques using polyether on a laboratory model that simulates clinical practice. The impression material used was Impregum Soft™, 3 M ESPE and the four impression techniques used were (1) Monophase impression technique using medium body impression material. (2) One step double mix impression technique using heavy body and light body impression materials simultaneously. (3) Two step double mix impression technique using a cellophane spacer (heavy body material used as a preliminary impression to create a wash space with a cellophane spacer, followed by the use of light body material). (4) Matrix impression using a matrix of polyether occlusal registration material. The matrix is loaded with heavy body material followed by a pick-up impression in medium body material. For each technique, thirty impressions were made of a stainless steel master model that contained three complete crown abutment preparations, which were used as the positive control. Accuracy was assessed by measuring eight dimensions (mesiodistal, faciolingual and inter-abutment) on stone dies poured from impressions of the master model. A two-tailed t test was carried out to test the significance in difference of the distances between the master model and the stone models. One way analysis of variance (ANOVA) was used for multiple group comparison followed by the Bonferroni's test for pair wise comparison. The accuracy was tested at α = 0.05. In general, polyether impression material produced stone dies that were smaller except for the dies produced from the one step double mix impression technique. The ANOVA revealed a highly significant difference for each dimension measured (except for the inter-abutment distance between the first and the second die) between any two groups of stone models obtained from the four impression techniques. Pair wise comparison for each measurement did not reveal any significant difference (except for the faciolingual distance of the third die) between the casts produced using the two step double mix impression technique and the matrix impression system. The two step double mix impression technique produced stone dies that showed the least dimensional variation. During fabrication of a cast restoration, laboratory procedures should not only compensate for the cement thickness, but also for the increase or decrease in die dimensions.

  18. Predicting the temporal and spatial probability of orographic cloud cover in the Luquillo Experimental Forest in Puerto Rico using generalized linear (mixed) models.

    Treesearch

    Wei Wu; Charlesb Hall; Lianjun Zhang

    2006-01-01

    We predicted the spatial pattern of hourly probability of cloud cover in the Luquillo Experimental Forest (LEF) in North-Eastern Puerto Rico using four different models. The probability of cloud cover (defined as “the percentage of the area covered by clouds in each pixel on the map” in this paper) at any hour and any place is a function of three topographic variables...

  19. Prediction of gene expression with cis-SNPs using mixed models and regularization methods.

    PubMed

    Zeng, Ping; Zhou, Xiang; Huang, Shuiping

    2017-05-11

    It has been shown that gene expression in human tissues is heritable, thus predicting gene expression using only SNPs becomes possible. The prediction of gene expression can offer important implications on the genetic architecture of individual functional associated SNPs and further interpretations of the molecular basis underlying human diseases. We compared three types of methods for predicting gene expression using only cis-SNPs, including the polygenic model, i.e. linear mixed model (LMM), two sparse models, i.e. Lasso and elastic net (ENET), and the hybrid of LMM and sparse model, i.e. Bayesian sparse linear mixed model (BSLMM). The three kinds of prediction methods have very different assumptions of underlying genetic architectures. These methods were evaluated using simulations under various scenarios, and were applied to the Geuvadis gene expression data. The simulations showed that these four prediction methods (i.e. Lasso, ENET, LMM and BSLMM) behaved best when their respective modeling assumptions were satisfied, but BSLMM had a robust performance across a range of scenarios. According to R 2 of these models in the Geuvadis data, the four methods performed quite similarly. We did not observe any clustering or enrichment of predictive genes (defined as genes with R 2  ≥ 0.05) across the chromosomes, and also did not see there was any clear relationship between the proportion of the predictive genes and the proportion of genes in each chromosome. However, an interesting finding in the Geuvadis data was that highly predictive genes (e.g. R 2  ≥ 0.30) may have sparse genetic architectures since Lasso, ENET and BSLMM outperformed LMM for these genes; and this observation was validated in another gene expression data. We further showed that the predictive genes were enriched in approximately independent LD blocks. Gene expression can be predicted with only cis-SNPs using well-developed prediction models and these predictive genes were enriched in some approximately independent LD blocks. The prediction of gene expression can shed some light on the functional interpretation for identified SNPs in GWASs.

  20. Benevolent Ideology and Women’s Economic Decision-Making: When Sexism Is Hurting Men’s Wallet

    PubMed Central

    Silvestre, Aude; Sarlet, Marie; Huart, Johanne; Dardenne, Benoit

    2016-01-01

    Can ideology, as a widespread “expectation creator,” impact economic decisions? In two studies we investigated the influence of the Benevolent Sexism (BS) ideology (which dictates that men should provide for passive and nurtured women) on women’s economic decision-making. In Study 1, using a Dictator Game in which women decided how to share amounts of money with men, results of a Generalized Linear Mixed Model analysis show that higher endorsement of BS and contextual expectations of benevolence were associated with more very unequal offers. Similarly, in an Ultimatum Game in which women received monetary offers from men, Study 2’s Generalized Linear Mixed Model’s results revealed that BS led women to reject more very unequal offers. If women’s endorsement of BS ideology and expectations of benevolence prove contrary to reality, they may strike back at men. These findings show that BS ideology creates expectations that shape male-female relationships in a way that could be prejudicial to men. PMID:26870955

  1. Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester.

    PubMed

    Coughtrie, A R; Borman, D J; Sleigh, P A

    2013-06-01

    Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-ω Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-∊, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-∊ models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Regularization of moving boundaries in a laplacian field by a mixed Dirichlet-Neumann boundary condition: exact results.

    PubMed

    Meulenbroek, Bernard; Ebert, Ute; Schäfer, Lothar

    2005-11-04

    The dynamics of ionization fronts that generate a conducting body are in the simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact uniformly propagating solutions of this problem in 2D and construct a single partial differential equation governing small perturbations of these solutions. For some parameter value, this equation can be solved analytically, which shows rigorously that the uniformly propagating solution is linearly convectively stable and that the asymptotic relaxation is universal and exponential in time.

  3. Terahertz emission driven by two-color laser pulses at various frequency ratios

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Sheng, Z.-M.; Li, Y.-T.; Zhang, Y.; Zhang, J.

    2017-08-01

    We present a simulation study of terahertz radiation from a gas driven by two-color laser pulses in a broad range of frequency ratios ω1/ω0 . Our particle-in-cell simulation results show that there are three series with ω1/ω0=2 n , n +1 /2 , n ±1 /3 (n is a positive integer) for high-efficiency and stable radiation generation. The radiation strength basically decreases with the increasing ω1 and scales linearly with the laser wavelength. These rules are broken when ω1/ω0<1 and much stronger radiation may be generated at any ω1/ω0 . These results can be explained with a model based on gas ionization by two linear-superposition laser fields, rather than a multiwave mixing model.

  4. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Commensurate Priors for Incorporating Historical Information in Clinical Trials Using General and Generalized Linear Models

    PubMed Central

    Hobbs, Brian P.; Sargent, Daniel J.; Carlin, Bradley P.

    2014-01-01

    Assessing between-study variability in the context of conventional random-effects meta-analysis is notoriously difficult when incorporating data from only a small number of historical studies. In order to borrow strength, historical and current data are often assumed to be fully homogeneous, but this can have drastic consequences for power and Type I error if the historical information is biased. In this paper, we propose empirical and fully Bayesian modifications of the commensurate prior model (Hobbs et al., 2011) extending Pocock (1976), and evaluate their frequentist and Bayesian properties for incorporating patient-level historical data using general and generalized linear mixed regression models. Our proposed commensurate prior models lead to preposterior admissible estimators that facilitate alternative bias-variance trade-offs than those offered by pre-existing methodologies for incorporating historical data from a small number of historical studies. We also provide a sample analysis of a colon cancer trial comparing time-to-disease progression using a Weibull regression model. PMID:24795786

  6. Regression analysis using dependent Polya trees.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  7. [Cost variation in care groups?

    PubMed

    Mohnen, S M; Molema, C C M; Steenbeek, W; van den Berg, M J; de Bruin, S R; Baan, C A; Struijs, J N

    2017-01-01

    Is the simple mean of the costs per diabetes patient a suitable tool with which to compare care groups? Do the total costs of care per diabetes patient really give the best insight into care group performance? Cross-sectional, multi-level study. The 2009 insurance claims of 104,544 diabetes patients managed by care groups in the Netherlands were analysed. The data were obtained from Vektis care information centre. For each care group we determined the mean costs per patient of all the curative care and diabetes-specific hospital care using the simple mean method, then repeated it using the 'generalized linear mixed model'. We also calculated for which proportion the differences found could be attributed to the care groups themselves. The mean costs of the total curative care per patient were €3,092 - €6,546; there were no significant differences between care groups. The mixed model method resulted in less variation (€2,884 - €3,511), and there were a few significant differences. We found a similar result for diabetes-specific hospital care and the ranking position of the care groups proved to be dependent on the method used. The care group effect was limited, although it was greater in the diabetes-specific hospital costs than in the total costs of curative care (6.7% vs. 0.4%). The method used to benchmark care groups carries considerable weight. Simply stated, determining the mean costs of care (still often done) leads to an overestimation of the differences between care groups. The generalized linear mixed model is more accurate and yields better comparisons. However, the fact remains that 'total costs of care' is a faulty indicator since care groups have little impact on them. A more informative indicator is 'costs of diabetes-specific hospital care' as these costs are more influenced by care groups.

  8. Investigation of the annealing temperature dependence of the spin pumping in Co20Fe60B20/Pt systems

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Aitoukaci, K.; Zighem, F.; Gabor, M. S.; Petrisor, T.; Mos, R. B.; Tiusan, C.

    2018-03-01

    Co20Fe60B20/Pt systems with variable thicknesses of Co20Fe60B20 and of Pt have been sputtered and then annealed at various temperatures (Ta) up to 300 °C. Microstrip line ferromagnetic resonance (MS-FMR) has been used to investigate Co20Fe60B20 and Pt thickness dependencies of the magnetic damping enhancement due to the spin pumping. Using diffusion and ballistic models for spin pumping, the spin mixing conductance and the spin diffusion length have been deduced from the Co20Fe60B20 and the Pt thickness dependencies of the Gilbert damping parameter α of the Co20Fe60B20/Pt heterostructures, respectively. Within the ballistic simple model, both the spin mixing conductance at the CoFeB/Pt interface and the spin-diffusion length of Pt increase with the increasing annealing temperature and show a strong enhancement at 300 °C annealing temperature. In contrast, the spin mixing conductance, which increases with Ta, shows a different trend to the spin diffusion length when using the diffusion model. Moreover, MS-FMR measurements revealed that the effective magnetization varies linearly with the Co20Fe60B20 inverse thickness due to the perpendicular interface anisotropy, which is found to decrease as the annealing temperature increases. It also revealed that the angular dependence of the resonance field is governed by small uniaxial anisotropy which is found to vary linearly with the Co20Fe60B20 inverse thickness of the annealed films, in contrast to that of the as grown ones.

  9. Tangent linear super-parameterization: attributable, decomposable moist processes for tropical variability studies

    NASA Astrophysics Data System (ADS)

    Mapes, B. E.; Kelly, P.; Song, S.; Hu, I. K.; Kuang, Z.

    2015-12-01

    An economical 10-layer global primitive equation solver is driven by time-independent forcing terms, derived from a training process, to produce a realisting eddying basic state with a tracer q trained to act like water vapor mixing ratio. Within this basic state, linearized anomaly moist physics in the column are applied in the form of a 20x20 matrix. The control matrix was derived from the results of Kuang (2010, 2012) who fitted a linear response function from a cloud resolving model in a state of deep convecting equilibrium. By editing this matrix in physical space and eigenspace, scaling and clipping its action, and optionally adding terms for processes that do not conserve moist statice energy (radiation, surface fluxes), we can decompose and explain the model's diverse moist process coupled variability. Recitified effects of this variability on the general circulation and climate, even in strictly zero-mean centered anomaly physic cases, also are sometimes surprising.

  10. Assessing Discriminative Performance at External Validation of Clinical Prediction Models

    PubMed Central

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.

    2016-01-01

    Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753

  11. Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

    PubMed

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W

    2016-01-01

    External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

  12. Node-Splitting Generalized Linear Mixed Models for Evaluation of Inconsistency in Network Meta-Analysis.

    PubMed

    Yu-Kang, Tu

    2016-12-01

    Network meta-analysis for multiple treatment comparisons has been a major development in evidence synthesis methodology. The validity of a network meta-analysis, however, can be threatened by inconsistency in evidence within the network. One particular issue of inconsistency is how to directly evaluate the inconsistency between direct and indirect evidence with regard to the effects difference between two treatments. A Bayesian node-splitting model was first proposed and a similar frequentist side-splitting model has been put forward recently. Yet, assigning the inconsistency parameter to one or the other of the two treatments or splitting the parameter symmetrically between the two treatments can yield different results when multi-arm trials are involved in the evaluation. We aimed to show that a side-splitting model can be viewed as a special case of design-by-treatment interaction model, and different parameterizations correspond to different design-by-treatment interactions. We demonstrated how to evaluate the side-splitting model using the arm-based generalized linear mixed model, and an example data set was used to compare results from the arm-based models with those from the contrast-based models. The three parameterizations of side-splitting make slightly different assumptions: the symmetrical method assumes that both treatments in a treatment contrast contribute to inconsistency between direct and indirect evidence, whereas the other two parameterizations assume that only one of the two treatments contributes to this inconsistency. With this understanding in mind, meta-analysts can then make a choice about how to implement the side-splitting method for their analysis. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  13. Analyses of a heterogeneous lattice hydrodynamic model with low and high-sensitivity vehicles

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    Basic lattice model is extended to study the heterogeneous traffic by considering the optimal current difference effect on a unidirectional single lane highway. Heterogeneous traffic consisting of low- and high-sensitivity vehicles is modeled and their impact on stability of mixed traffic flow has been examined through linear stability analysis. The stability of flow is investigated in five distinct regions of the neutral stability diagram corresponding to the amount of higher sensitivity vehicles present on road. In order to investigate the propagating behavior of density waves non linear analysis is performed and near the critical point, the kink antikink soliton is obtained by driving mKdV equation. The effect of fraction parameter corresponding to high sensitivity vehicles is investigated and the results indicates that the stability rise up due to the fraction parameter. The theoretical findings are verified via direct numerical simulation.

  14. An Exploratory Study of the Possible Impact of Cerebral Hemisphericity on the Performance of Select Linear, Non-Linear, and Spatial Computer Tasks.

    ERIC Educational Resources Information Center

    McCluskey, James J.

    1997-01-01

    A study of 160 undergraduate journalism students trained to design projects (stacks) using HyperCard on Macintosh computers determined that right-brain dominant subjects outperformed left-brain and mixed-brain dominant subjects, whereas left-brain dominant subjects out performed mixed-brain dominant subjects in several areas. Recommends future…

  15. Mixed models approaches for joint modeling of different types of responses.

    PubMed

    Ivanova, Anna; Molenberghs, Geert; Verbeke, Geert

    2016-01-01

    In many biomedical studies, one jointly collects longitudinal continuous, binary, and survival outcomes, possibly with some observations missing. Random-effects models, sometimes called shared-parameter models or frailty models, received a lot of attention. In such models, the corresponding variance components can be employed to capture the association between the various sequences. In some cases, random effects are considered common to various sequences, perhaps up to a scaling factor; in others, there are different but correlated random effects. Even though a variety of data types has been considered in the literature, less attention has been devoted to ordinal data. For univariate longitudinal or hierarchical data, the proportional odds mixed model (POMM) is an instance of the generalized linear mixed model (GLMM; Breslow and Clayton, 1993). Ordinal data are conveniently replaced by a parsimonious set of dummies, which in the longitudinal setting leads to a repeated set of dummies. When ordinal longitudinal data are part of a joint model, the complexity increases further. This is the setting considered in this paper. We formulate a random-effects based model that, in addition, allows for overdispersion. Using two case studies, it is shown that the combination of random effects to capture association with further correction for overdispersion can improve the model's fit considerably and that the resulting models allow to answer research questions that could not be addressed otherwise. Parameters can be estimated in a fairly straightforward way, using the SAS procedure NLMIXED.

  16. Testing higher-order Lagrangian perturbation theory against numerical simulations. 2: Hierarchical models

    NASA Technical Reports Server (NTRS)

    Melott, A. L.; Buchert, T.; Weib, A. G.

    1995-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of scales. The Lagrangian theory of gravitational instability of Friedmann-Lemaitre cosmogonies is compared with numerical simulations. We study the dynamics of hierarchical models as a second step. In the first step we analyzed the performance of the Lagrangian schemes for pancake models, the difference being that in the latter models the initial power spectrum is truncated. This work probed the quasi-linear and weakly non-linear regimes. We here explore whether the results found for pancake models carry over to hierarchical models which are evolved deeply into the non-linear regime. We smooth the initial data by using a variety of filter types and filter scales in order to determine the optimal performance of the analytical models, as has been done for the 'Zel'dovich-approximation' - hereafter TZA - in previous work. We find that for spectra with negative power-index the second-order scheme performs considerably better than TZA in terms of statistics which probe the dynamics, and slightly better in terms of low-order statistics like the power-spectrum. However, in contrast to the results found for pancake models, where the higher-order schemes get worse than TZA at late non-linear stages and on small scales, we here find that the second-order model is as robust as TZA, retaining the improvement at later stages and on smaller scales. In view of these results we expect that the second-order truncated Lagrangian model is especially useful for the modelling of standard dark matter models such as Hot-, Cold-, and Mixed-Dark-Matter.

  17. Using nonlinear forecasting to learn the magnitude and phasing of time-varying sediment suspension in the surf zone

    USGS Publications Warehouse

    Jaffe, B.E.; Rubin, D.M.

    1996-01-01

    The time-dependent response of sediment suspension to flow velocity was explored by modeling field measurements collected in the surf zone during a large storm. Linear and nonlinear models were created and tested using flow velocity as input and suspended-sediment concentration as output. A sequence of past velocities (velocity history), as well as velocity from the same instant as the suspended-sediment concentration, was used as input; this velocity history length was allowed to vary. The models also allowed for a lag between input (instantaneous velocity or end of velocity sequence) and output (suspended-sediment concentration). Predictions of concentration from instantaneous velocity or instantaneous velocity raised to a power (up to 8) using linear models were poor (correlation coefficients between predicted and observed concentrations were less than 0.10). Allowing a lag between velocity and concentration improved linear models (correlation coefficient of 0.30), with optimum lag time increasing with elevation above the seabed (from 1.5 s at 13 cm to 8.5 s at 60 cm). These lags are largely due to the time for an observed flow event to effect the bed and mix sediment upward. Using a velocity history further improved linear models (correlation coefficient of 0.43). The best linear model used 12.5 s of velocity history (approximately one wave period) to predict concentration. Nonlinear models gave better predictions than linear models, and, as with linear models, nonlinear models using a velocity history performed better than models using only instantaneous velocity as input. Including a lag time between the velocity and concentration also improved the predictions. The best model (correlation coefficient of 0.58) used 3 s (approximately a quarter wave period) of the cross-shore velocity squared, starting at 4.5 s before the observed concentration, to predict concentration. Using a velocity history increases the performance of the models by specifying a more complete description of the dynamical forcing of the flow (including accelerations and wave phase and shape) responsible for sediment suspension. Incorporating such a velocity history and a lag time into the formulation of the forcing for time-dependent models for sediment suspension in the surf zone will greatly increase our ability to predict suspended-sediment transport.

  18. Estimating radiated flux density from wildland fires using the raw output of limited bandpass detectors

    Treesearch

    Robert L. Kremens; Matthew B. Dickinson

    2015-01-01

    We have simulated the radiant emission spectra from wildland fires such as would be observed at a scale encompassing the pre-frontal fuel bed, the flaming front and the zone of post-frontal combustion and cooling. For these simulations, we developed a 'mixed-pixel' model where the fire infrared spectrum is estimated as the linear superposition of spectra of...

  19. Climate change at upper treeline: How do trees on the edge react to increasing temperatures?

    NASA Astrophysics Data System (ADS)

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-04-01

    Treeline ecotones are thought to be particularly sensitive to climate warming, and an alteration of their growth conditions may have important implications for the ecosystem services they supply in mountain regions. We use a novel approach to quantify effects of a changing climate on tree growth, using case studies in the European Alps. We compiled tree-ring data from almost 600 trees of four species at treeline in three climate regions of Switzerland. Temperature loggers installed along transects provided data for a precise interpolation of temperatures experienced by the sampled trees. To assess the influence of temperature on annual growth, we used linear mixed-effects models, allowing us to quantify effect sizes and to account for between-tree growth variability. After removing biological growth trends, we isolated temporal trends of ring-width indices. Furthermore, we fitted non-linear regression models to radial growth rates of individual years with temperature and tree age as predicting covariates for a fine-scale investigation of the temperature dependency of tree growth. For all species, climate-growth linear mixed-effects models indicated strong positive responses of ring-width indices to temperature in early summer and previous year's autumn, featuring considerable between-tree variability. All species showed positive ring-width index trends at treeline but different interactions with elevation: Larix decidua exhibited a declining ring-width index trend with decreasing elevation, whereas Picea abies, Pinus cembra and Pinus mugo showed increasing and/or stable trends. Not only reflected our findings the effects of ameliorated growth conditions, they might have also revealed suspected negative and positive feedbacks of climate change on growth, and increased the knowledge about the functional form and parameterization of the temperature dependency of tree growth.

  20. Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George

    2010-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.

Top