Science.gov

Sample records for linear mixed-integer models

  1. Diet planning for humans using mixed-integer linear programming.

    PubMed

    Sklan, D; Dariel, I

    1993-07-01

    Human diet planning is generally carried out by selecting the food items or groups of food items to be used in the diet and then calculating the composition. If nutrient quantities do not reach the desired nutritional requirements, foods are exchanged or quantities altered and the composition recalculated. Iterations are repeated until a suitable diet is obtained. This procedure is cumbersome and slow and often leads to compromises in composition of the final diets. A computerized model, planning diets for humans at minimum cost while supplying all nutritional requirements, maintaining nutrient relationships and preserving eating practices is presented. This is based on a mixed-integer linear-programming algorithm. Linear equations were prepared for each nutritional requirement. To produce linear equations for relationships between nutrients, linear transformations were performed. Logical definitions for interactions such as the frequency of use of foods, relationships between exchange groups and the energy content of different meals were defined, and linear equations for these associations were written. Food items generally eaten in whole units were defined as integers. The use of this program is demonstrated for planning diets using a large selection of basic foods and for clinical situations where nutritional intervention is desirable. The system presented begins from a definition of the nutritional requirements and then plans the foods accordingly, and at minimum cost. This provides an accurate, efficient and versatile method of diet formulation.

  2. Learning oncogenetic networks by reducing to mixed integer linear programming.

    PubMed

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  3. A Mixed Integer Linear Program for Airport Departure Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Jung, Yoon Chul

    2009-01-01

    Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced

  4. Mixed integer linear programming for maximum-parsimony phylogeny inference.

    PubMed

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2008-01-01

    Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.

  5. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

    2010-01-01

    Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

  6. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast.

    PubMed

    Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-06-01

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654

  7. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast

    PubMed Central

    Poos, Alexandra M.; Maicher, André; Dieckmann, Anna K.; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-01-01

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654

  8. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    PubMed Central

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  9. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization.

    PubMed

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A

    2011-09-21

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented.

  10. Mixed integer model for optimizing equipment scheduling and overburden transport in a surface coal mining operation

    SciTech Connect

    Goodman, G.V.R.

    1987-01-01

    The lack of available techniques prompted the development of a mixed integer model to optimize the scheduling of equipment and the distribution of overburden in a typical mountaintop removal operation. Using this format, a (0-1) integer model and transportation model were constructed to determine the optimal equipment schedule and optimal overburden distribution, respectively. To solve this mixed integer program, the model was partitioned into its binary and real-valued components. Each problem was successively solved and their values added to form estimates of the value of the mixed integer program. Optimal convergence was indicated when the difference between two successive estimates satisfied some pre-specific accuracy value. The performance of the mixed integer model was tested against actual field data to determine its practical applications. To provide the necessary input information, production data was obtained from a single seam, mountaintop removal operation located in the Appalachian coal field. As a means of analyzing the resultant equipment schedule, the total idle time was calculated for each machine type and each lift location. Also, the final overburden assignments were analyzed by determining the distribution of spoil material for various overburden removal productivities. Subsequent validation of the mixed integer model was conducted in two distinct areas. The first dealt with changes in algorithmic data and their effects on the optimality of the model. The second area concerned variations in problem structure, specifically those dealing with changes in problem size and other user-inputed values such as equipment productivities or required reclamation.

  11. An inexact two-stage mixed integer linear programming method for solid waste management in the City of Regina.

    PubMed

    Li, Y P; Huang, G H

    2006-11-01

    In this study, an interval-parameter two-stage mixed integer linear programming (ITMILP) model is developed for supporting long-term planning of waste management activities in the City of Regina. In the ITMILP, both two-stage stochastic programming and interval linear programming are introduced into a general mixed integer linear programming framework. Uncertainties expressed as not only probability density functions but also discrete intervals can be reflected. The model can help tackle the dynamic, interactive and uncertain characteristics of the solid waste management system in the City, and can address issues concerning plans for cost-effective waste diversion and landfill prolongation. Three scenarios are considered based on different waste management policies. The results indicate that reasonable solutions have been generated. They are valuable for supporting the adjustment or justification of the existing waste flow allocation patterns, the long-term capacity planning of the City's waste management system, and the formulation of local policies and regulations regarding waste generation and management. PMID:16678336

  12. A mixed integer bi-level DEA model for bank branch performance evaluation by Stackelberg approach

    NASA Astrophysics Data System (ADS)

    Shafiee, Morteza; Lotfi, Farhad Hosseinzadeh; Saleh, Hilda; Ghaderi, Mehdi

    2016-11-01

    One of the most complicated decision making problems for managers is the evaluation of bank performance, which involves various criteria. There are many studies about bank efficiency evaluation by network DEA in the literature review. These studies do not focus on multi-level network. Wu (Eur J Oper Res 207:856-864, 2010) proposed a bi-level structure for cost efficiency at the first time. In this model, multi-level programming and cost efficiency were used. He used a nonlinear programming to solve the model. In this paper, we have focused on multi-level structure and proposed a bi-level DEA model. We then used a liner programming to solve our model. In other hand, we significantly improved the way to achieve the optimum solution in comparison with the work by Wu (2010) by converting the NP-hard nonlinear programing into a mixed integer linear programming. This study uses a bi-level programming data envelopment analysis model that embodies internal structure with Stackelberg-game relationships to evaluate the performance of banking chain. The perspective of decentralized decisions is taken in this paper to cope with complex interactions in banking chain. The results derived from bi-level programming DEA can provide valuable insights and detailed information for managers to help them evaluate the performance of the banking chain as a whole using Stackelberg-game relationships. Finally, this model was applied in the Iranian bank to evaluate cost efficiency.

  13. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  14. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.

  15. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  16. PySP : modeling and solving stochastic mixed-integer programs in Python.

    SciTech Connect

    Woodruff, David L.; Watson, Jean-Paul

    2010-08-01

    Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its widespread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user specifies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deterministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for approximating general multi-stage, mixed-integer stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.

  17. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. PMID:26756402

  18. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/.

  19. Minimum-time control of systems with Coloumb friction: Near global optima via mixed integer linear programming

    SciTech Connect

    DRIESSEN,BRIAN; SADEGH,NADER

    2000-04-25

    This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.

  20. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    NASA Astrophysics Data System (ADS)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  1. Mixed integer programming model for optimizing the layout of an ICU vehicle

    PubMed Central

    2009-01-01

    Background This paper presents a Mixed Integer Programming (MIP) model for designing the layout of the Intensive Care Units' (ICUs) patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112). Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group"), the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final design served as a basis

  2. Mixed integer nonlinear programming model of wireless pricing scheme with QoS attribute of bandwidth and end-to-end delay

    NASA Astrophysics Data System (ADS)

    Irmeilyana, Puspita, Fitri Maya; Indrawati

    2016-02-01

    The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.

  3. Optimal fleetwide emissions reductions for passenger ferries: an application of a mixed-integer nonlinear programming model for the New York-New Jersey Harbor.

    PubMed

    Winebrake, James J; Corbett, James J; Wang, Chengfeng; Farrell, Alexander E; Woods, Pippa

    2005-04-01

    Emissions from passenger ferries operating in urban harbors may contribute significantly to emissions inventories and commuter exposure to air pollution. In particular, ferries are problematic because of high emissions of oxides of nitrogen (NOx) and particulate matter (PM) from primarily unregulated diesel engines. This paper explores technical solutions to reduce pollution from passenger ferries operating in the New York-New Jersey Harbor. The paper discusses and demonstrates a mixed-integer, non-linear programming model used to identify optimal control strategies for meeting NOx and PM reduction targets for 45 privately owned commuter ferries in the harbor. Results from the model can be used by policy-makers to craft programs aimed at achieving least-cost reduction targets.

  4. Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach

    PubMed Central

    Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R.

    2015-01-01

    Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk PMID:26002881

  5. An inexact fuzzy-chance-constrained two-stage mixed-integer linear programming approach for flood diversion planning under multiple uncertainties

    NASA Astrophysics Data System (ADS)

    Guo, P.; Huang, G. H.; Li, Y. P.

    2010-01-01

    In this study, an inexact fuzzy-chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is developed for flood diversion planning under multiple uncertainties. A concept of the distribution with fuzzy boundary interval probability is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets and probability distributions. IFCTIP integrates the inexact programming, two-stage stochastic programming, integer programming and fuzzy-stochastic programming within a general optimization framework. IFCTIP incorporates the pre-regulated water-diversion policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised targets are violated. More importantly, it can facilitate dynamic programming for decisions of capacity-expansion planning under fuzzy-stochastic conditions. IFCTIP is applied to a flood management system. Solutions from IFCTIP provide desired flood diversion plans with a minimized system cost and a maximized safety level. The results indicate that reasonable solutions are generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of flood flows.

  6. Mixed integer evolution strategies for parameter optimization.

    PubMed

    Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C

    2013-01-01

    Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems. PMID:22122384

  7. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation

    NASA Astrophysics Data System (ADS)

    Uilhoorn, F. E.

    2016-10-01

    In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.

  8. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    PubMed

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  9. Item Pool Construction Using Mixed Integer Quadratic Programming (MIQP). GMAC® Research Report RR-14-01

    ERIC Educational Resources Information Center

    Han, Kyung T.; Rudner, Lawrence M.

    2014-01-01

    This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…

  10. Mixed-Integer Formulations for Constellation Scheduling

    NASA Astrophysics Data System (ADS)

    Valicka, C.; Hart, W.; Rintoul, M.

    Remote sensing systems have expanded the set of capabilities available for and critical to national security. Cooperating, high-fidelity sensing systems and growing mission applications have exponentially increased the set of potential schedules. A definitive lack of advanced tools places an increased burden on operators, as planning and scheduling remain largely manual tasks. This is particularly true in time-critical planning activities where operators aim to accomplish a large number of missions through optimal utilization of single or multiple sensor systems. Automated scheduling through identification and comparison of alternative schedules remains a challenging problem applicable across all remote sensing systems. Previous approaches focused on a subset of sensor missions and do not consider ad-hoc tasking. We have begun development of a robust framework that leverages the Pyomo optimization modeling language for the design of a tool to assist sensor operators planning under the constraints of multiple concurrent missions and uncertainty. Our scheduling models have been formulated to address the stochastic nature of ad-hoc tasks inserted under a variety of scenarios. Operator experience is being leveraged to select appropriate model objectives. Successful development of the framework will include iterative development of high-fidelity mission models that consider and expose various schedule performance metrics. Creating this tool will aid time-critical scheduling by increasing planning efficiency, clarifying the value of alternative modalities uniquely provided by multi-sensor systems, and by presenting both sets of organized information to operators. Such a tool will help operators more quickly and fully utilize sensing systems, a high interest objective within the current remote sensing operations community. Preliminary results for mixed-integer programming formulations of a sensor scheduling problem will be presented. Assumptions regarding sensor geometry

  11. Solution of Mixed-Integer Programming Problems on the XT5

    SciTech Connect

    Hartman-Baker, Rebecca J; Busch, Ingrid Karin; Hilliard, Michael R; Middleton, Richard S; Schultze, Michael

    2009-01-01

    In this paper, we describe our experience with solving difficult mixed-integer linear programming problems (MILPs) on the petaflop Cray XT5 system at the National Center for Computational Sciences at Oak Ridge National Laboratory. We describe the algorithmic, software, and hardware needs for solving MILPs and present the results of using PICO, an open-source, parallel, mixed-integer linear programming solver developed at Sandia National Laboratories, to solve canonical MILPs as well as problems of interest arising from the logistics and supply chain management field.

  12. Optimized oral cholera vaccine distribution strategies to minimize disease incidence: A mixed integer programming model and analysis of a Bangladesh scenario.

    PubMed

    Smalley, Hannah K; Keskinocak, Pinar; Swann, Julie; Hinman, Alan

    2015-11-17

    In addition to improved sanitation, hygiene, and better access to safe water, oral cholera vaccines can help to control the spread of cholera in the short term. However, there is currently no systematic method for determining the best allocation of oral cholera vaccines to minimize disease incidence in a population where the disease is endemic and resources are limited. We present a mathematical model for optimally allocating vaccines in a region under varying levels of demographic and incidence data availability. The model addresses the questions of where, when, and how many doses of vaccines to send. Considering vaccine efficacies (which may vary based on age and the number of years since vaccination), we analyze distribution strategies which allocate vaccines over multiple years. Results indicate that, given appropriate surveillance data, targeting age groups and regions with the highest disease incidence should be the first priority, followed by other groups primarily in order of disease incidence, as this approach is the most life-saving and cost-effective. A lack of detailed incidence data results in distribution strategies which are not cost-effective and can lead to thousands more deaths from the disease. The mathematical model allows for what-if analysis for various vaccine distribution strategies by providing the ability to easily vary parameters such as numbers and sizes of regions and age groups, risk levels, vaccine price, vaccine efficacy, production capacity and budget.

  13. Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kania, Adhe; Sidarto, Kuntjoro Adji

    2016-02-01

    Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.

  14. Piece-wise mixed integer programming for optimal sizing of surge control devices in water distribution systems

    NASA Astrophysics Data System (ADS)

    Skulovich, Olya; Bent, Russell; Judi, David; Perelman, Lina Sela; Ostfeld, Avi

    2015-06-01

    Despite their potential catastrophic impact, transients are often ignored or presented ad hoc when designing water distribution systems. To address this problem, we introduce a new piece-wise function fitting model that is integrated with mixed integer programming to optimally place and size surge tanks for transient control. The key features of the algorithm are a model-driven discretization of the search space, a linear approximation nonsmooth system response surface to transients, and a mixed integer linear programming optimization. Results indicate that high quality solutions can be obtained within a reasonable number of function evaluations and demonstrate the computational effectiveness of the approach through two case studies. The work investigates one type of surge control devices (closed surge tank) for a specified set of transient events. The performance of the algorithm relies on the assumption that there exists a smooth relationship between the objective function and tank size. Results indicate the potential of the approach for the optimal surge control design in water systems.

  15. Constrained spacecraft reorientation using mixed integer convex programming

    NASA Astrophysics Data System (ADS)

    Tam, Margaret; Glenn Lightsey, E.

    2016-10-01

    A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.

  16. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  17. Mixed integer programming improves comprehensibility and plan quality in inverse optimization of prostate HDR brachytherapy.

    PubMed

    Gorissen, Bram L; den Hertog, Dick; Hoffmann, Aswin L

    2013-02-21

    Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or have long solution times. We decrease the solution time of the existing linear and quadratic dose-based programming models (LP and QP, respectively) to allow optimizing over potential catheter positions using mixed integer programming. An additional average speed-up of 75% can be obtained by stopping the solver at an early stage, without deterioration of the plan quality. For a fixed catheter configuration, the dwell time optimization model LP solves to optimality in less than 15 s, which confirms earlier results. We propose an iterative procedure for QP that allows us to prescribe the target dose as an interval, while retaining independence between the solution time and the number of dose calculation points. This iterative procedure is comparable in speed to the LP model and produces better plans than the non-iterative QP. We formulate a new dose-volume-based model that maximizes V(100%) while satisfying pre-set DVH criteria. This model optimizes both catheter positions and dwell times within a few minutes depending on prostate volume and number of catheters, optimizes dwell times within 35 s and gives better DVH statistics than dose-based models. The solutions suggest that the correlation between the objective value and the clinical plan quality is weak in the existing dose-based models. PMID:23363622

  18. Combinatorial therapy discovery using mixed integer linear programming

    PubMed Central

    Pang, Kaifang; Wan, Ying-Wooi; Choi, William T.; Donehower, Lawrence A.; Sun, Jingchun; Pant, Dhruv; Liu, Zhandong

    2014-01-01

    Motivation: Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Results: Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set. Availability: Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/. Contact: zhandong.liu@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24463180

  19. Inexact fuzzy-stochastic mixed-integer programming approach for long-term planning of waste management--Part A: methodology.

    PubMed

    Guo, P; Huang, G H

    2009-01-01

    In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada. PMID:19800164

  20. Inexact fuzzy-stochastic mixed-integer programming approach for long-term planning of waste management--Part A: methodology.

    PubMed

    Guo, P; Huang, G H

    2009-01-01

    In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada.

  1. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  2. Optimization Research of Generation Investment Based on Linear Programming Model

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  3. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  4. Final Report---Next-Generation Solvers for Mixed-Integer Nonlinear Programs: Structure, Search, and Implementation

    SciTech Connect

    Linderoth, Jeff T.; Luedtke, James R.

    2013-05-30

    The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Problems involving both discrete and nonlinear components are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems. This research project added to the understanding of this area by making a number of fundamental advances. First, the work demonstrated many novel, strong, tractable relaxations designed to deal with non-convexities arising in mathematical formulation. Second, the research implemented the ideas in software that is available to the public. Finally, the work demonstrated the importance of these ideas on practical applications and disseminated the work through scholarly journals, survey publications, and conference presentations.

  5. A Mixed-Integer Optimization Framework for De Novo Peptide Identification

    PubMed Central

    DiMaggio, Peter A.

    2009-01-01

    A novel methodology for the de novo identification of peptides by mixed-integer optimization and tandem mass spectrometry is presented in this article. The various features of the mathematical model are presented and examples are used to illustrate the key concepts of the proposed approach. Several problems are examined to illustrate the proposed method's ability to address (1) residue-dependent fragmentation properties and (2) the variability of resolution in different mass analyzers. A preprocessing algorithm is used to identify important m/z values in the tandem mass spectrum. Missing peaks, resulting from residue-dependent fragmentation characteristics, are dealt with using a two-stage algorithmic framework. A cross-correlation approach is used to resolve missing amino acid assignments and to identify the most probable peptide by comparing the theoretical spectra of the candidate sequences that were generated from the MILP sequencing stages with the experimental tandem mass spectrum. PMID:19412358

  6. A DSN optimal spacecraft scheduling model

    NASA Technical Reports Server (NTRS)

    Webb, W. A.

    1982-01-01

    A computer model is described which uses mixed-integer linear programming to provide optimal DSN spacecraft schedules given a mission set and specified scheduling requirements. A solution technique is proposed which uses Bender's Method and a heuristic starting algorithm.

  7. An optimal spacecraft scheduling model for the NASA deep space network

    NASA Technical Reports Server (NTRS)

    Webb, W. A.

    1985-01-01

    A computer model is described which uses mixed-integer linear programming to provide optimal DSN spacecraft schedules given a mission set and specified scheduling requirements. A solution technique is proposed which uses Bender's method and a heuristic starting algorithm.

  8. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming.

    PubMed

    Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin

    2006-08-01

    The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10 degrees greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.

  9. Synchronic interval Gaussian mixed-integer programming for air quality management.

    PubMed

    Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong

    2015-12-15

    To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can

  10. Synchronic interval Gaussian mixed-integer programming for air quality management.

    PubMed

    Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong

    2015-12-15

    To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can

  11. Mixed-integer programming methods for transportation and power generation problems

    NASA Astrophysics Data System (ADS)

    Damci Kurt, Pelin

    This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.

  12. A solution procedure for mixed-integer nonlinear programming formulation of supply chain planning with quantity discounts under demand uncertainty

    NASA Astrophysics Data System (ADS)

    Yin, Sisi; Nishi, Tatsushi

    2014-11-01

    Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.

  13. Toward the development of a Trust-Tech-based methodology for solving mixed integer nonlinear optimization

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Chiang, Hsiao-Dong

    Many applications of smart grid can be formulated as constrained optimization problems. Because of the discrete controls involved in power systems, these problems are essentially mixed-integer nonlinear programs. In this paper, we review the Trust-Tech-based methodology for solving mixed-integer nonlinear optimization. Specifically, we have developed a two-stage Trust-Tech-based methodology to systematically compute all the local optimal solutions for constrained mixed-integer nonlinear programming (MINLP) problems. In the first stage, for a given MINLP problem this methodology starts with the construction of a new, continuous, unconstrained problem through relaxation and the penalty function method. A corresponding dynamical system is then constructed to search for a set of local optimal solutions for the unconstrained problem. In the second stage, a reduced constrained NLP is defined for each local optimal solution by determining and fixing the values of integral variables of the MINLP problem. The Trust-Tech-based method is used to compute a set of local optimal solutions for these reduced NLP problems, from which the optimal solution of the original MINLP problem is determined. A numerical simulation of several testing problems is provided to illustrate the effectiveness of our proposed method.

  14. Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs

    DOE PAGES

    Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; Watson, Jean -Paul; Wets, Roger J.-B.; Woodruff, David L.

    2016-04-02

    We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.

  15. Comparison of penalty functions on a penalty approach to mixed-integer optimization

    NASA Astrophysics Data System (ADS)

    Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2016-06-01

    In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.

  16. Optimization of a wood dryer kiln using the mixed integer programming technique: A case study

    SciTech Connect

    Gustafsson, S.I.

    1999-07-01

    When wood is to be utilized as a raw material for furniture, buildings, etc., it must be dried from approximately 100% to 6% moisture content. This is achieved at least partly in a drying kiln. Heat for this purpose is provided by electrical means, or by steam from boilers fired with wood chips or oil. By making a close examination of monitored values from an actual drying kiln it has been possible to optimize the use of steam and electricity using the so called mixed integer programming technique. Owing to the operating schedule for the drying kiln it has been necessary to divide the drying process in very short time intervals, i.e., a number of minutes. Since a drying cycle takes about two or three weeks, a considerable mathematical problem is presented and this has to be solved.

  17. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  18. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

    DOE PAGES

    Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak

    2016-05-01

    Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less

  19. Incorporation of Fixed Installation Costs into Optimization of Groundwater Remediation with a New Efficient Surrogate Nonlinear Mixed Integer Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Shoemaker, Christine; Wan, Ying

    2016-04-01

    Optimization of nonlinear water resources management issues which have a mixture of fixed (e.g. construction cost for a well) and variable (e.g. cost per gallon of water pumped) costs has been not well addressed because prior algorithms for the resulting nonlinear mixed integer problems have required many groundwater simulations (with different configurations of decision variable), especially when the solution space is multimodal. In particular heuristic methods like genetic algorithms have often been used in the water resources area, but they require so many groundwater simulations that only small systems have been solved. Hence there is a need to have a method that reduces the number of expensive groundwater simulations. A recently published algorithm for nonlinear mixed integer programming using surrogates was shown in this study to greatly reduce the computational effort for obtaining accurate answers to problems involving fixed costs for well construction as well as variable costs for pumping because of a substantial reduction in the number of groundwater simulations required to obtain an accurate answer. Results are presented for a US EPA hazardous waste site. The nonlinear mixed integer surrogate algorithm is general and can be used on other problems arising in hydrology with open source codes in Matlab and python ("pySOT" in Bitbucket).

  20. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties.

    PubMed

    Guo, P; Huang, G H

    2010-03-01

    In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their

  1. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties

    SciTech Connect

    Guo, P.; Huang, G.H.

    2010-03-15

    In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their

  2. Non-linear Total Energy Optimisation of a Fleet of Power Plants

    NASA Astrophysics Data System (ADS)

    Nolle, Lars; Biegler-König, Friedrich; Deeskow, Peter

    In order to optimise the energy production in a fleet of power plants, it is necessary to solve a mixed integer optimisation problem. Traditionally, the continuous parts of the problem are linearized and a Simplex scheme is applied. Alternatively, heuristic "bionic" optimisation methods can be used without having to linearize the problem. Weare going to demonstrate this approach by modelling power plant blocks with fast Neural Networks and optimising the operation of multi-block power plants over one day with Simulated Annealing.

  3. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  4. Multi-objective Mixed Integer Programming approach for facility layout design by considering closeness ratings, material handling, and re-layout cost

    NASA Astrophysics Data System (ADS)

    Purnomo, Muhammad Ridwan Andi; Satrio Wiwoho, Yoga

    2016-01-01

    Facility layout becomes one of production system factor that should be managed well, as it is designated for the location of production. In managing the layout, designing the layout by considering the optimal layout condition that supports the work condition is essential. One of the method for facility layout optimization is Mixed Integer Programming (MIP). In this study, the MIP is solved using Lingo 9.0 software and considering quantitative and qualitative objectives to be achieved simultaneously: minimizing material handling cost, maximizing closeness rating, and minimizing re-layout cost. The research took place in Rekayasa Wangdi as a make to order company, focusing on the making of concrete brick dough stirring machine with 10 departments involved. The result shows an improvement in the new layout for 333,72 points of objective value compared with the initial layout. As the conclusion, the proposed MIP is proven to be used to model facility layout problem under multi objective consideration for a more realistic look.

  5. An interval-parameter mixed integer multi-objective programming for environment-oriented evacuation management

    NASA Astrophysics Data System (ADS)

    Wu, C. Z.; Huang, G. H.; Yan, X. P.; Cai, Y. P.; Li, Y. P.

    2010-05-01

    Large crowds are increasingly common at political, social, economic, cultural and sports events in urban areas. This has led to attention on the management of evacuations under such situations. In this study, we optimise an approximation method for vehicle allocation and route planning in case of an evacuation. This method, based on an interval-parameter multi-objective optimisation model, has potential for use in a flexible decision support system for evacuation management. The modeling solutions are obtained by sequentially solving two sub-models corresponding to lower- and upper-bounds for the desired objective function value. The interval solutions are feasible and stable in the given decision space, and this may reduce the negative effects of uncertainty, thereby improving decision makers' estimates under different conditions. The resulting model can be used for a systematic analysis of the complex relationships among evacuation time, cost and environmental considerations. The results of a case study used to validate the proposed model show that the model does generate useful solutions for planning evacuation management and practices. Furthermore, these results are useful for evacuation planners, not only in making vehicle allocation decisions but also for providing insight into the tradeoffs among evacuation time, environmental considerations and economic objectives.

  6. Optimal piecewise locally linear modeling

    NASA Astrophysics Data System (ADS)

    Harris, Chris J.; Hong, Xia; Feng, M.

    1999-03-01

    Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.

  7. Parameterized Linear Longitudinal Airship Model

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph

    2010-01-01

    A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics

  8. Puerto Rico water resources planning model program description

    USGS Publications Warehouse

    Moody, D.W.; Maddock, Thomas; Karlinger, M.R.; Lloyd, J.J.

    1973-01-01

    Because the use of the Mathematical Programming System -Extended (MPSX) to solve large linear and mixed integer programs requires the preparation of many input data cards, a matrix generator program to produce the MPSX input data from a much more limited set of data may expedite the use of the mixed integer programming optimization technique. The Model Definition and Control Program (MODCQP) is intended to assist a planner in preparing MPSX input data for the Puerto Rico Water Resources Planning Model. The model utilizes a mixed-integer mathematical program to identify a minimum present cost set of water resources projects (diversions, reservoirs, ground-water fields, desalinization plants, water treatment plants, and inter-basin transfers of water) which will meet a set of future water demands and to determine their sequence of construction. While MODCOP was specifically written to generate MPSX input data for the planning model described in this report, the program can be easily modified to reflect changes in the model's mathematical structure.

  9. Linearized Bekenstein varying α models

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Martins, C. J.; Oliveira, J. C.

    2004-10-01

    We study the simplest class of Bekenstein-type, varying α models, in which the two available free functions (potential and gauge kinetic function) are Taylor-expanded up to linear order. Any realistic model of this type reduces to a model in this class for a certain time interval around the present day. Nevertheless, we show that no such model is consistent with all existing observational results. We discuss possible implications of these findings, and, in particular, clarify the ambiguous statement (often found in the literature) that “the Webb results are inconsistent with Oklo.”

  10. LINEAR - DERIVATION AND DEFINITION OF A LINEAR AIRCRAFT MODEL

    NASA Technical Reports Server (NTRS)

    Duke, E. L.

    1994-01-01

    The Derivation and Definition of a Linear Model program, LINEAR, provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models. LINEAR was developed to provide a standard, documented, and verified tool to derive linear models for aircraft stability analysis and control law design. Linear system models define the aircraft system in the neighborhood of an analysis point and are determined by the linearization of the nonlinear equations defining vehicle dynamics and sensors. LINEAR numerically determines a linear system model using nonlinear equations of motion and a user supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. LINEAR is capable of extracting both linearized engine effects, such as net thrust, torque, and gyroscopic effects and including these effects in the linear system model. The point at which this linear model is defined is determined either by completely specifying the state and control variables, or by specifying an analysis point on a trajectory and directing the program to determine the control variables and the remaining state variables. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to provide easy selection of state, control, and observation variables to be used in a particular model. Thus, the order of the system model is completely under user control. Further, the program provides the flexibility of allowing alternate formulations of both the state and observation equations. Data describing the aircraft and the test case is input to the program through a terminal or formatted data files. All data can be modified interactively from case to case. The aerodynamic model can be defined in two ways: a set of nondimensional stability and control derivatives for the flight point of

  11. Multicollinearity in hierarchical linear models.

    PubMed

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model.

  12. Linear equality constraints in the general linear mixed model.

    PubMed

    Edwards, L J; Stewart, P W; Muller, K E; Helms, R W

    2001-12-01

    Scientists may wish to analyze correlated outcome data with constraints among the responses. For example, piecewise linear regression in a longitudinal data analysis can require use of a general linear mixed model combined with linear parameter constraints. Although well developed for standard univariate models, there are no general results that allow a data analyst to specify a mixed model equation in conjunction with a set of constraints on the parameters. We resolve the difficulty by precisely describing conditions that allow specifying linear parameter constraints that insure the validity of estimates and tests in a general linear mixed model. The recommended approach requires only straightforward and noniterative calculations to implement. We illustrate the convenience and advantages of the methods with a comparison of cognitive developmental patterns in a study of individuals from infancy to early adulthood for children from low-income families.

  13. A two-stage mixed-integer fuzzy programming with interval-valued membership functions approach for flood-diversion planning.

    PubMed

    Wang, S; Huang, G H

    2013-03-15

    Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints.

  14. Computing Linear Mathematical Models Of Aircraft

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.

    1991-01-01

    Derivation and Definition of Linear Aircraft Model (LINEAR) computer program provides user with powerful, and flexible, standard, documented, and verified software tool for linearization of mathematical models of aerodynamics of aircraft. Intended for use in software tool to drive linear analysis of stability and design of control laws for aircraft. Capable of both extracting such linearized engine effects as net thrust, torque, and gyroscopic effects, and including these effects in linear model of system. Designed to provide easy selection of state, control, and observation variables used in particular model. Also provides flexibility of allowing alternate formulations of both state and observation equations. Written in FORTRAN.

  15. Fractional non-linear modelling of ultracapacitors

    NASA Astrophysics Data System (ADS)

    Bertrand, Nicolas; Sabatier, Jocelyn; Briat, Olivier; Vinassa, Jean-Michel

    2010-05-01

    In this paper, it is demonstrated that an ultracapacitor exhibits a non-linear behaviour in relation to the operating voltage. A set of fractional order linear systems resulting from a frequency analysis of the ultracapacitor at various operating points is first obtained. Then, a non-linear model is deduced from the linear systems set, so that its Taylor linearization around the considered operating points (for the frequency analysis), produces the linear system set. The resulting non-linear model is validated on a Hybrid Electric Vehicle (HEV) application.

  16. Nonlinear Modeling by Assembling Piecewise Linear Models

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  17. Linear Logistic Test Modeling with R

    ERIC Educational Resources Information Center

    Baghaei, Purya; Kubinger, Klaus D.

    2015-01-01

    The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…

  18. Generalized Linear Models in Family Studies

    ERIC Educational Resources Information Center

    Wu, Zheng

    2005-01-01

    Generalized linear models (GLMs), as defined by J. A. Nelder and R. W. M. Wedderburn (1972), unify a class of regression models for categorical, discrete, and continuous response variables. As an extension of classical linear models, GLMs provide a common body of theory and methodology for some seemingly unrelated models and procedures, such as…

  19. Composite Linear Models | Division of Cancer Prevention

    Cancer.gov

    By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty examples from the literature. |

  20. Investigating data envelopment analysis model with potential improvement for integer output values

    NASA Astrophysics Data System (ADS)

    Hussain, Mushtaq Taleb; Ramli, Razamin; Khalid, Ruzelan

    2015-12-01

    The decrement of input proportions in DEA model is associated with its input reduction. This reduction is apparently good for economy since it could reduce unnecessary cost resources. However, in some situations the reduction of relevant inputs such as labour could create social problems. Such inputs should thus be maintained or increased. This paper develops an advanced radial DEA model dealing with mixed integer linear programming to improve integer output values through the combination of inputs. The model can deal with real input values and integer output values. This model is valuable for situations dealing with input combination to improve integer output values as faced by most organizations.

  1. MILP model for resource disruption in parallel processor system

    NASA Astrophysics Data System (ADS)

    Nordin, Syarifah Zyurina; Caccetta, Louis

    2015-02-01

    In this paper, we consider the existence of disruption on unrelated parallel processor scheduling system. The disruption occurs due to a resource shortage where one of the parallel processors is facing breakdown problem during the task allocation, which give impact to the initial scheduling plan. Our objective is to reschedule the original unrelated parallel processor scheduling after the resource disruption that minimizes the makespan. A mixed integer linear programming model is presented for the recovery scheduling that considers the post-disruption policy. We conduct a computational experiment with different stopping time limit to see the performance of the model by using CPLEX 12.1 solver in AIMMS 3.10 software.

  2. A MILP-Based Distribution Optimal Power Flow Model for Microgrid Operation

    SciTech Connect

    Liu, Guodong; Starke, Michael R; Zhang, Xiaohu; Tomsovic, Kevin

    2016-01-01

    This paper proposes a distribution optimal power flow (D-OPF) model for the operation of microgrids. The proposed model minimizes not only the operating cost, including fuel cost, purchasing cost and demand charge, but also several performance indices, including voltage deviation, network power loss and power factor. It co-optimizes the real and reactive power form distributed generators (DGs) and batteries considering their capacity and power factor limits. The D-OPF is formulated as a mixed-integer linear programming (MILP). Numerical simulation results show the effectiveness of the proposed model.

  3. Spaghetti Bridges: Modeling Linear Relationships

    ERIC Educational Resources Information Center

    Kroon, Cindy D.

    2016-01-01

    Mathematics and science are natural partners. One of many examples of this partnership occurs when scientific observations are made, thus providing data that can be used for mathematical modeling. Developing mathematical relationships elucidates such scientific principles. This activity describes a data-collection activity in which students employ…

  4. A Symbolic Logic for Representing Linear Models.

    ERIC Educational Resources Information Center

    Hall, Charles E.

    A set of symbols is presented along with logical operators which represent the possible manipulations of the linear model. The use of these symbols and operators is to simplify the representation of analysis of variance models, correlation models and factor analysis models. (Author)

  5. Extended Generalized Linear Latent and Mixed Model

    ERIC Educational Resources Information Center

    Segawa, Eisuke; Emery, Sherry; Curry, Susan J.

    2008-01-01

    The generalized linear latent and mixed modeling (GLLAMM framework) includes many models such as hierarchical and structural equation models. However, GLLAMM cannot currently accommodate some models because it does not allow some parameters to be random. GLLAMM is extended to overcome the limitation by adding a submodel that specifies a…

  6. Aircraft engine mathematical model - linear system approach

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ

    2016-06-01

    This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.

  7. A Vernacular for Linear Latent Growth Models

    ERIC Educational Resources Information Center

    Hancock, Gregory R.; Choi, Jaehwa

    2006-01-01

    In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…

  8. Congeneric Models and Levine's Linear Equating Procedures.

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    In 1955, R. Levine introduced two linear equating procedures for the common-item non-equivalent populations design. His procedures make the same assumptions about true scores; they differ in terms of the nature of the equating function used. In this paper, two parameterizations of a classical congeneric model are introduced to model the variables…

  9. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

    ERIC Educational Resources Information Center

    Ker, H. W.

    2014-01-01

    Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

  10. Orthogonal nilpotent superfields from linear models

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Karlsson, Anna; Mosk, Benjamin; Murli, Divyanshu

    2016-05-01

    We derive supersymmetry/supergravity models with constrained orthogonal nilpotent superfields from the linear models in the formal limit where the masses of the sgoldstino, inflatino and sinflaton tend to infinity. The case where the sinflaton mass remains finite leads to a model with a `relaxed' constraint, where the sinflaton remains an independent field. Our procedure is equivalent to a requirement that some of the components of the curvature of the moduli space tend to infinity.

  11. Managing Clustered Data Using Hierarchical Linear Modeling

    ERIC Educational Resources Information Center

    Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.

    2012-01-01

    Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…

  12. Bayesian Methods for High Dimensional Linear Models

    PubMed Central

    Mallick, Himel; Yi, Nengjun

    2013-01-01

    In this article, we present a selective overview of some recent developments in Bayesian model and variable selection methods for high dimensional linear models. While most of the reviews in literature are based on conventional methods, we focus on recently developed methods, which have proven to be successful in dealing with high dimensional variable selection. First, we give a brief overview of the traditional model selection methods (viz. Mallow’s Cp, AIC, BIC, DIC), followed by a discussion on some recently developed methods (viz. EBIC, regularization), which have occupied the minds of many statisticians. Then, we review high dimensional Bayesian methods with a particular emphasis on Bayesian regularization methods, which have been used extensively in recent years. We conclude by briefly addressing the asymptotic behaviors of Bayesian variable selection methods for high dimensional linear models under different regularity conditions. PMID:24511433

  13. Bayesian Methods for High Dimensional Linear Models.

    PubMed

    Mallick, Himel; Yi, Nengjun

    2013-06-01

    In this article, we present a selective overview of some recent developments in Bayesian model and variable selection methods for high dimensional linear models. While most of the reviews in literature are based on conventional methods, we focus on recently developed methods, which have proven to be successful in dealing with high dimensional variable selection. First, we give a brief overview of the traditional model selection methods (viz. Mallow's Cp, AIC, BIC, DIC), followed by a discussion on some recently developed methods (viz. EBIC, regularization), which have occupied the minds of many statisticians. Then, we review high dimensional Bayesian methods with a particular emphasis on Bayesian regularization methods, which have been used extensively in recent years. We conclude by briefly addressing the asymptotic behaviors of Bayesian variable selection methods for high dimensional linear models under different regularity conditions.

  14. Linear Deterministic Accumulator Models of Simple Choice

    PubMed Central

    Heathcote, Andrew; Love, Jonathon

    2012-01-01

    We examine theories of simple choice as a race among evidence accumulation processes. We focus on the class of deterministic race models, which assume that the effects of fluctuations in the parameters of the accumulation processes between-choice trials (between-choice noise) dominate the effects of fluctuations occurring while making a choice (within-choice noise) in behavioral data (i.e., response times and choices). The latter deterministic approximation, when combined with the assumption that accumulation is linear, leads to a class of models that can be readily applied to simple-choice behavior because they are computationally tractable. We develop a new and mathematically simple exemplar within the class of linear deterministic models, the Lognormal race (LNR). We then examine how the LNR, and another widely applied linear deterministic model, Brown and Heathcote’s (2008) LBA, account for a range of benchmark simple-choice effects in lexical-decision task data reported by Wagenmakers et al. (2008). Our results indicate that the LNR provides an accurate description of this data. Although the LBA model provides a slightly better account, both models support similar psychological conclusions. PMID:22936920

  15. Linear Mixed Models: Gum and Beyond

    NASA Astrophysics Data System (ADS)

    Arendacká, Barbora; Täubner, Angelika; Eichstädt, Sascha; Bruns, Thomas; Elster, Clemens

    2014-04-01

    In Annex H.5, the Guide to the Evaluation of Uncertainty in Measurement (GUM) [1] recognizes the necessity to analyze certain types of experiments by applying random effects ANOVA models. These belong to the more general family of linear mixed models that we focus on in the current paper. Extending the short introduction provided by the GUM, our aim is to show that the more general, linear mixed models cover a wider range of situations occurring in practice and can be beneficial when employed in data analysis of long-term repeated experiments. Namely, we point out their potential as an aid in establishing an uncertainty budget and as means for gaining more insight into the measurement process. We also comment on computational issues and to make the explanations less abstract, we illustrate all the concepts with the help of a measurement campaign conducted in order to challenge the uncertainty budget in calibration of accelerometers.

  16. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  17. Inverse Modeling Via Linearized Functional Minimization

    NASA Astrophysics Data System (ADS)

    Barajas-Solano, D. A.; Wohlberg, B.; Vesselinov, V. V.; Tartakovsky, D. M.

    2014-12-01

    We present a novel parameter estimation methodology for transient models of geophysical systems with uncertain, spatially distributed, heterogeneous and piece-wise continuous parameters.The methodology employs a bayesian approach to propose an inverse modeling problem for the spatial configuration of the model parameters.The likelihood of the configuration is formulated using sparse measurements of both model parameters and transient states.We propose using total variation regularization (TV) as the prior reflecting the heterogeneous, piece-wise continuity assumption on the parameter distribution.The maximum a posteriori (MAP) estimator of the parameter configuration is then computed by minimizing the negative bayesian log-posterior using a linearized functional minimization approach. The computation of the MAP estimator is a large-dimensional nonlinear minimization problem with two sources of nonlinearity: (1) the TV operator, and (2) the nonlinear relation between states and parameters provided by the model's governing equations.We propose a a hybrid linearized functional minimization (LFM) algorithm in two stages to efficiently treat both sources of nonlinearity.The relation between states and parameters is linearized, resulting in a linear minimization sub-problem equipped with the TV operator; this sub-problem is then minimized using the Alternating Direction Method of Multipliers (ADMM). The methodology is illustrated with a transient saturated groundwater flow application in a synthetic domain, stimulated by external point-wise loadings representing aquifer pumping, together with an array of discrete measurements of hydraulic conductivity and transient measurements of hydraulic head.We show that our inversion strategy is able to recover the overall large-scale features of the parameter configuration, and that the reconstruction is improved by the addition of transient information of the state variable.

  18. [From clinical judgment to linear regression model.

    PubMed

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R(2)) indicates the importance of independent variables in the outcome.

  19. User's manual for LINEAR, a FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.

    1987-01-01

    This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  20. Synaptic dynamics: linear model and adaptation algorithm.

    PubMed

    Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W

    2014-08-01

    In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and

  1. Linear transport models for adsorbing solutes

    NASA Astrophysics Data System (ADS)

    Roth, K.; Jury, W. A.

    1993-04-01

    A unified linear theory for the transport of adsorbing solutes through soils is presented and applied to analyze movement of napropamide through undisturbed soil columns. The transport characteristics of the soil are expressed in terms of the travel time distribution of the mobile phase which is then used to incorporate local interaction processes. This approach permits the analysis of all linear transport processes, not only the small subset for which a differential description is known. From a practical point of view, it allows the direct use of measured concentrations or fluxes of conservative solutes to characterize the mobile phase without first subjecting them to any model. For complicated flow regimes, this may vastly improve the identification of models and estimation of their parameters for the local adsorption processes.

  2. B-737 Linear Autoland Simulink Model

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste (Technical Monitor); Hogge, Edward F.

    2004-01-01

    The Linear Autoland Simulink model was created to be a modular test environment for testing of control system components in commercial aircraft. The input variables, physical laws, and referenced frames used are summarized. The state space theory underlying the model is surveyed and the location of the control actuators described. The equations used to realize the Dryden gust model to simulate winds and gusts are derived. A description of the pseudo-random number generation method used in the wind gust model is included. The longitudinal autopilot, lateral autopilot, automatic throttle autopilot, engine model and automatic trim devices are considered as subsystems. The experience in converting the Airlabs FORTRAN aircraft control system simulation to a graphical simulation tool (Matlab/Simulink) is described.

  3. Reduced Order ODE Model for Linear Contrails

    NASA Astrophysics Data System (ADS)

    Inamdar, A. R.; Lele, S. K.; Jacobson, M. Z.

    2015-12-01

    It is widely acknowledged that the large uncertainties in predictions of climate impact of linear contrails stem from inadequate parametrization of contrails in GCMs. But, the parameter space on which contrail dynamics and optical properties depend is very large and spanning it using high fidelity LES is prohibitively expensive. This study leverages the large dataset of LES done so far to understand the most important physical process that governs the evolution of contrails in different stages of its life and proposes a simple, low-cost and robust ODE model to capture the evolution of quantities of interest such as ice mass, vortex downwash and contrail cross-sectional dimensions. A direct consequence of modeling the contrail using parameters impacting the most important physical process is the reduction of the original parameter space to only those groupings of parameters that impact linear contrails independently. We are able to capture the most prominent features of the contrail at every stage of the life of the contrail - the induction of the jet exhaust by the trailing vortex pair, the vortex downwash and eventual destruction and the subsequent spreading of the contrail by ambient turbulence. A simplified version of GATOR-GCMOM - a GCM - is initialized using inputs from the new ODE model to test if the inclusion of the impact of the aforementioned parameter groups has significant persistent effects. Results from the GATOR-GCMOM box model calculations show which parameter groupings show persistent effects.

  4. User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.

    1988-01-01

    An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  5. Estimating population trends with a linear model

    USGS Publications Warehouse

    Bart, J.; Collins, B.; Morrison, R.I.G.

    2003-01-01

    We describe a simple and robust method for estimating trends in population size. The method may be used with Breeding Bird Survey data, aerial surveys, point counts, or any other program of repeated surveys at permanent locations. Surveys need not be made at each location during each survey period. The method differs from most existing methods in being design based, rather than model based. The only assumptions are that the nominal sampling plan is followed and that sample size is large enough for use of the t-distribution. Simulations based on two bird data sets from natural populations showed that the point estimate produced by the linear model was essentially unbiased even when counts varied substantially and 25% of the complete data set was missing. The estimating-equation approach, often used to analyze Breeding Bird Survey data, performed similarly on one data set but had substantial bias on the second data set, in which counts were highly variable. The advantages of the linear model are its simplicity, flexibility, and that it is self-weighting. A user-friendly computer program to carry out the calculations is available from the senior author.

  6. Wealth redistribution in conservative linear kinetic models

    NASA Astrophysics Data System (ADS)

    Toscani, G.

    2009-10-01

    We introduce and discuss kinetic models for wealth distribution which include both taxation and uniform redistribution. The evolution of the continuous density of wealth obeys a linear Boltzmann equation where the background density represents the action of an external subject on the taxation mechanism. The case in which the mean wealth is conserved is analyzed in full details, by recovering the analytical form of the steady states. These states are probability distributions of convergent random series of a special structure, called perpetuities. Among others, Gibbs distribution appears as steady state in case of total taxation and uniform redistribution.

  7. Linear modelling of attentional resource allocation

    NASA Technical Reports Server (NTRS)

    Pierce, B.

    1978-01-01

    Eight subjects time-shared performance of two compensatory tracking tasks under conditions when both were of constant difficulty, and when the control order of one task (designated primary) was varied over time within a trial. On line performance feedback was presented on half of the trials. The data are interpreted in terms of a linear model of the operator's attention allocation system, and suggest that this allocation is strongly suboptimal. Furthermore, the limitations in reallocating attentional resources between tasks, in response to difficulty fluctuations were not reduced by augmented performance feedback. Some characteristics of the allocation system are described, and reasons for its limitations suggested.

  8. The Piecewise Linear Reactive Flow Rate Model

    SciTech Connect

    Vitello, P; Souers, P C

    2005-07-22

    Conclusions are: (1) Early calibrations of the Piece Wise Linear reactive flow model have shown that it allows for very accurate agreement with data for a broad range of detonation wave strengths. (2) The ability to vary the rate at specific pressures has shown that corner turning involves competition between the strong wave that travels roughly in a straight line and growth at low pressure of a new wave that turns corners sharply. (3) The inclusion of a low pressure de-sensitization rate is essential to preserving the dead zone at large times as is observed.

  9. Continuum eigenmodes in some linear stellar models

    NASA Astrophysics Data System (ADS)

    Winfield, Christopher J.

    2016-10-01

    We apply parallel approaches in the study of continuous spectra to adiabatic stellar models. We seek continuum eigenmodes for the LAWE formulated as both finite difference and linear differential equations. In particular, we apply methods of Jacobi matrices and methods of subordinancy theory in these respective formulations. We find certain pressure-density conditions which admit positive-measured sets of continuous oscillation spectra under plausible conditions on density and pressure. We arrive at results of unbounded oscillations and computational or, perhaps, dynamic instability.

  10. The Piece Wise Linear Reactive Flow Model

    SciTech Connect

    Vitello, P; Souers, P C

    2005-08-18

    For non-ideal explosives a wide range of behavior is observed in experiments dealing with differing sizes and geometries. A predictive detonation model must be able to reproduce many phenomena including such effects as: variations in the detonation velocity with the radial diameter of rate sticks; slowing of the detonation velocity around gentle corners; production of dead zones for abrupt corner turning; failure of small diameter rate sticks; and failure for rate sticks with sufficiently wide cracks. Most models have been developed to explain one effect at a time. Often, changes are made in the input parameters used to fit each succeeding case with the implication that this is sufficient for the model to be valid over differing regimes. We feel that it is important to develop a model that is able to fit experiments with one set of parameters. To address this we are creating a new generation of models that are able to produce better fitting to individual data sets than prior models and to simultaneous fit distinctly different regimes of experiments. Presented here are details of our new Piece Wise Linear reactive flow model applied to LX-17.

  11. Model Selection with the Linear Mixed Model for Longitudinal Data

    ERIC Educational Resources Information Center

    Ryoo, Ji Hoon

    2011-01-01

    Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…

  12. Hybrid modeling and receding horizon control of sewer networks

    NASA Astrophysics Data System (ADS)

    Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela

    2014-11-01

    In this work, a control-oriented sewer network model is presented based on a hybrid linear modeling framework. The model equations are described independently for each network element, thus allowing the model to be applied to a broad class of networks. A parameter calibration procedure using data obtained from simulation software that solves the physically based model equations is described and validation results are given for a case study. Using the control model equations, an optimal control problem to minimize flooding and pollution is formulated to be solved by means of mixed-integer linear or quadratic programming. A receding horizon control strategy based on this optimal control problem is applied to the case study using the simulation software as a virtual reality. Results of this closed-loop simulation tests show the effectiveness of the proposed approach in fulfilling the control objectives while complying with physical and operational constraints.

  13. Distributed static linear Gaussian models using consensus.

    PubMed

    Belanovic, Pavle; Valcarcel Macua, Sergio; Zazo, Santiago

    2012-10-01

    Algorithms for distributed agreement are a powerful means for formulating distributed versions of existing centralized algorithms. We present a toolkit for this task and show how it can be used systematically to design fully distributed algorithms for static linear Gaussian models, including principal component analysis, factor analysis, and probabilistic principal component analysis. These algorithms do not rely on a fusion center, require only low-volume local (1-hop neighborhood) communications, and are thus efficient, scalable, and robust. We show how they are also guaranteed to asymptotically converge to the same solution as the corresponding existing centralized algorithms. Finally, we illustrate the functioning of our algorithms on two examples, and examine the inherent cost-performance trade-off.

  14. Numerical linearized MHD model of flapping oscillations

    NASA Astrophysics Data System (ADS)

    Korovinskiy, D. B.; Ivanov, I. B.; Semenov, V. S.; Erkaev, N. V.; Kiehas, S. A.

    2016-06-01

    Kink-like magnetotail flapping oscillations in a Harris-like current sheet with earthward growing normal magnetic field component Bz are studied by means of time-dependent 2D linearized MHD numerical simulations. The dispersion relation and two-dimensional eigenfunctions are obtained. The results are compared with analytical estimates of the double-gradient model, which are found to be reliable for configurations with small Bz up to values ˜ 0.05 of the lobe magnetic field. Coupled with previous results, present simulations confirm that the earthward/tailward growth direction of the Bz component acts as a switch between stable/unstable regimes of the flapping mode, while the mode dispersion curve is the same in both cases. It is confirmed that flapping oscillations may be triggered by a simple Gaussian initial perturbation of the Vz velocity.

  15. Testing Linear Models for Ability Parameters in Item Response Models

    ERIC Educational Resources Information Center

    Glas, Cees A. W.; Hendrawan, Irene

    2005-01-01

    Methods for testing hypotheses concerning the regression parameters in linear models for the latent person parameters in item response models are presented. Three tests are outlined: A likelihood ratio test, a Lagrange multiplier test and a Wald test. The tests are derived in a marginal maximum likelihood framework. They are explicitly formulated…

  16. Extension of the hybrid linear programming method to optimize simultaneously the design and operation of groundwater utilization systems

    NASA Astrophysics Data System (ADS)

    Bostan, Mohamad; Hadi Afshar, Mohamad; Khadem, Majed

    2015-04-01

    This article proposes a hybrid linear programming (LP-LP) methodology for the simultaneous optimal design and operation of groundwater utilization systems. The proposed model is an extension of an earlier LP-LP model proposed by the authors for the optimal operation of a set of existing wells. The proposed model can be used to optimally determine the number, configuration and pumping rates of the operational wells out of potential wells with fixed locations to minimize the total cost of utilizing a two-dimensional confined aquifer under steady-state flow conditions. The model is able to take into account the well installation, piping and pump installation costs in addition to the operational costs, including the cost of energy and maintenance. The solution to the problem is defined by well locations and their pumping rates, minimizing the total cost while satisfying a downstream demand, lower/upper bound on the pumping rates, and lower/upper bound on the water level drawdown at the wells. A discretized version of the differential equation governing the flow is first embedded into the model formulation as a set of additional constraints. The resulting mixed-integer highly constrained nonlinear optimization problem is then decomposed into two subproblems with different sets of decision variables, one with a piezometric head and the other with the operational well locations and the corresponding pumping rates. The binary variables representing the well locations are approximated by a continuous variable leading to two LP subproblems. Having started with a random value for all decision variables, the two subproblems are solved iteratively until convergence is achieved. The performance and ability of the proposed method are tested against a hypothetical problem from the literature and the results are presented and compared with those obtained using a mixed-integer nonlinear programming method. The results show the efficiency and effectiveness of the proposed method for

  17. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

    ERIC Educational Resources Information Center

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2009-01-01

    This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

  18. From linear to generalized linear mixed models: A case study in repeated measures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compared to traditional linear mixed models, generalized linear mixed models (GLMMs) can offer better correspondence between response variables and explanatory models, yielding more efficient estimates and tests in the analysis of data from designed experiments. Using proportion data from a designed...

  19. Non linear behaviour of cell tensegrity models

    NASA Astrophysics Data System (ADS)

    Alippi, A.; Bettucci, A.; Biagioni, A.; Conclusio, D.; D'Orazio, A.; Germano, M.; Passeri, D.

    2012-05-01

    Tensegrity models for the cytoskeleton structure of living cells is largely used nowadays for interpreting the biochemical response of living tissues to mechanical stresses. Microtubules, microfilaments and filaments are the microscopic cell counterparts of struts (microtubules) and cables (microfilaments and filaments) in the macroscopic world: the formers oppose to compression, the latters to tension, thus yielding an overall structure, light and highly deformable. Specific cell surface receptors, such as integrins, act as the coupling elements that transmit the outside mechanical stress state into the cell body. Reversible finite deformations of tensegrity structures have been widely demonstrated experimentally and in a number of living cell simulations. In the present paper, the bistability behaviour of two general models, the linear bar oscillator and the icosahedron, is studied, as they are both obtained from mathematical simulation, the former, and from larger scale experiments, the latter. The discontinuity in the frequency response of the oscillation amplitude and the lateral bending of the resonance curves are put in evidence, as it grows larger as the driving amplitude increases, respectively.

  20. Linearized Functional Minimization for Inverse Modeling

    SciTech Connect

    Wohlberg, Brendt; Tartakovsky, Daniel M.; Dentz, Marco

    2012-06-21

    Heterogeneous aquifers typically consist of multiple lithofacies, whose spatial arrangement significantly affects flow and transport. The estimation of these lithofacies is complicated by the scarcity of data and by the lack of a clear correlation between identifiable geologic indicators and attributes. We introduce a new inverse-modeling approach to estimate both the spatial extent of hydrofacies and their properties from sparse measurements of hydraulic conductivity and hydraulic head. Our approach is to minimize a functional defined on the vectors of values of hydraulic conductivity and hydraulic head fields defined on regular grids at a user-determined resolution. This functional is constructed to (i) enforce the relationship between conductivity and heads provided by the groundwater flow equation, (ii) penalize deviations of the reconstructed fields from measurements where they are available, and (iii) penalize reconstructed fields that are not piece-wise smooth. We develop an iterative solver for this functional that exploits a local linearization of the mapping from conductivity to head. This approach provides a computationally efficient algorithm that rapidly converges to a solution. A series of numerical experiments demonstrates the robustness of our approach.

  1. Permutation inference for the general linear model

    PubMed Central

    Winkler, Anderson M.; Ridgway, Gerard R.; Webster, Matthew A.; Smith, Stephen M.; Nichols, Thomas E.

    2014-01-01

    Permutation methods can provide exact control of false positives and allow the use of non-standard statistics, making only weak assumptions about the data. With the availability of fast and inexpensive computing, their main limitation would be some lack of flexibility to work with arbitrary experimental designs. In this paper we report on results on approximate permutation methods that are more flexible with respect to the experimental design and nuisance variables, and conduct detailed simulations to identify the best method for settings that are typical for imaging research scenarios. We present a generic framework for permutation inference for complex general linear models (glms) when the errors are exchangeable and/or have a symmetric distribution, and show that, even in the presence of nuisance effects, these permutation inferences are powerful while providing excellent control of false positives in a wide range of common and relevant imaging research scenarios. We also demonstrate how the inference on glm parameters, originally intended for independent data, can be used in certain special but useful cases in which independence is violated. Detailed examples of common neuroimaging applications are provided, as well as a complete algorithm – the “randomise” algorithm – for permutation inference with the glm. PMID:24530839

  2. Misaligned Image Integration With Local Linear Model.

    PubMed

    Baba, Tatsuya; Matsuoka, Ryo; Shirai, Keiichiro; Okuda, Masahiro

    2016-05-01

    We present a new image integration technique for a flash and long-exposure image pair to capture a dark scene without incurring blurring or noisy artifacts. Most existing methods require well-aligned images for the integration, which is often a burdensome restriction in practical use. We address this issue by locally transferring the colors of the flash images using a small fraction of the corresponding pixels in the long-exposure images. We formulate the image integration as a convex optimization problem with the local linear model. The proposed method makes it possible to integrate the color of the long-exposure image with the detail of the flash image without causing any harmful effects to its contrast, where we do not need perfect alignment between the images by virtue of our new integration principle. We show that our method successfully outperforms the state of the art in the image integration and reference-based color transfer for challenging misaligned data sets.

  3. A Linear Programming Model for Assigning Students to Attendance Centers.

    ERIC Educational Resources Information Center

    Ontjes, Robert L.

    A linear programing model and procedures for optimal assignment of students to attendance centers are presented. An example of the use of linear programing for the assignment of students to attendance centers in a particular school district is given. (CK)

  4. Analysis of linear trade models and relation to scale economies.

    PubMed

    Gomory, R E; Baumol, W J

    1997-09-01

    We discuss linear Ricardo models with a range of parameters. We show that the exact boundary of the region of equilibria of these models is obtained by solving a simple integer programming problem. We show that there is also an exact correspondence between many of the equilibria resulting from families of linear models and the multiple equilibria of economies of scale models.

  5. Inexact fuzzy-stochastic mixed integer programming approach for long-term planning of waste management---Part B: case study.

    PubMed

    Guo, P; Huang, G H

    2009-01-01

    In this study, a solid waste decision-support system was developed for the long-term planning of waste management in the City of Regina, Canada. Interactions among various system components, objectives, and constraints will be analyzed. Issues concerning planning for cost-effective diversion and prolongation of the landfill will be addressed. Decisions of system-capacity expansion and waste allocation within a multi-facility, multi-option, and multi-period context will be obtained. The obtained results would provide useful information and decision-support for the City's solid waste management and planning. In the application, four scenarios are considered. Through the above scenario analyses under different waste-management policies, useful decision support for the City's solid waste managers and decision makers was generated. Analyses for the effects of varied policies (for allowable waste flows to different facilities) under 35 and 50% diversion goals were also undertaken. Tradeoffs among system cost and constraint-violation risk were analyzed. Generally, a policy with lower allowable waste-flow levels corresponded to a lower system cost under advantageous conditions but, at the same time, a higher penalty when such allowances were violated. A policy with higher allowable flow levels corresponded to a higher cost under disadvantageous conditions. The modeling results were useful for (i) scheduling adequate time and capacity for long-term planning of the facility development and/or expansion in the city's waste management system, (ii) adjusting of the existing waste flow allocation patterns to satisfy the city's diversion goal, and (iii) generating of desired policies for managing the city's waste generation, collection and disposal. PMID:19818549

  6. Tried and True: Springing into Linear Models

    ERIC Educational Resources Information Center

    Darling, Gerald

    2012-01-01

    In eighth grade, students usually learn about forces in science class and linear relationships in math class, crucial topics that form the foundation for further study in science and engineering. An activity that links these two fundamental concepts involves measuring the distance a spring stretches as a function of how much weight is suspended…

  7. Three-Dimensional Modeling in Linear Regression.

    ERIC Educational Resources Information Center

    Herman, James D.

    Linear regression examines the relationship between one or more independent (predictor) variables and a dependent variable. By using a particular formula, regression determines the weights needed to minimize the error term for a given set of predictors. With one predictor variable, the relationship between the predictor and the dependent variable…

  8. Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis

    ERIC Educational Resources Information Center

    Luo, Wen; Azen, Razia

    2013-01-01

    Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…

  9. Polygenic Modeling with Bayesian Sparse Linear Mixed Models

    PubMed Central

    Zhou, Xiang; Carbonetto, Peter; Stephens, Matthew

    2013-01-01

    Both linear mixed models (LMMs) and sparse regression models are widely used in genetics applications, including, recently, polygenic modeling in genome-wide association studies. These two approaches make very different assumptions, so are expected to perform well in different situations. However, in practice, for a given dataset one typically does not know which assumptions will be more accurate. Motivated by this, we consider a hybrid of the two, which we refer to as a “Bayesian sparse linear mixed model” (BSLMM) that includes both these models as special cases. We address several key computational and statistical issues that arise when applying BSLMM, including appropriate prior specification for the hyper-parameters and a novel Markov chain Monte Carlo algorithm for posterior inference. We apply BSLMM and compare it with other methods for two polygenic modeling applications: estimating the proportion of variance in phenotypes explained (PVE) by available genotypes, and phenotype (or breeding value) prediction. For PVE estimation, we demonstrate that BSLMM combines the advantages of both standard LMMs and sparse regression modeling. For phenotype prediction it considerably outperforms either of the other two methods, as well as several other large-scale regression methods previously suggested for this problem. Software implementing our method is freely available from http://stephenslab.uchicago.edu/software.html. PMID:23408905

  10. Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function.

    PubMed

    Vuori, Kaarina; Strandén, Ismo; Sevón-Aimonen, Marja-Liisa; Mäntysaari, Esa A

    2006-01-01

    A method based on Taylor series expansion for estimation of location parameters and variance components of non-linear mixed effects models was considered. An attractive property of the method is the opportunity for an easily implemented algorithm. Estimation of non-linear mixed effects models can be done by common methods for linear mixed effects models, and thus existing programs can be used after small modifications. The applicability of this algorithm in animal breeding was studied with simulation using a Gompertz function growth model in pigs. Two growth data sets were analyzed: a full set containing observations from the entire growing period, and a truncated time trajectory set containing animals slaughtered prematurely, which is common in pig breeding. The results from the 50 simulation replicates with full data set indicate that the linearization approach was capable of estimating the original parameters satisfactorily. However, estimation of the parameters related to adult weight becomes unstable in the case of a truncated data set.

  11. Modeling of linear time-varying systems by linear time-invariant systems of lower order.

    NASA Technical Reports Server (NTRS)

    Nosrati, H.; Meadows, H. E.

    1973-01-01

    A method for modeling linear time-varying differential systems by linear time-invariant systems of lower order is proposed, extending the results obtained by Bierman (1972) by resolving such qualities as the model stability, various possible models of differing dimensions, and the uniqueness or nonuniqueness of the model coefficient matrix. In addition to the advantages cited by Heffes and Sarachik (1969) and Bierman, often by modeling a subsystem of a larger system it is possible to analyze the overall system behavior more easily, with resulting savings in computation time.

  12. Development of a Linear Stirling Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC s non-linear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  13. An analytically linearized helicopter model with improved modeling accuracy

    NASA Technical Reports Server (NTRS)

    Jensen, Patrick T.; Curtiss, H. C., Jr.; Mckillip, Robert M., Jr.

    1991-01-01

    An analytically linearized model for helicopter flight response including rotor blade dynamics and dynamic inflow, that was recently developed, was studied with the objective of increasing the understanding, the ease of use, and the accuracy of the model. The mathematical model is described along with a description of the UH-60A Black Hawk helicopter and flight test used to validate the model. To aid in utilization of the model for sensitivity analysis, a new, faster, and more efficient implementation of the model was developed. It is shown that several errors in the mathematical modeling of the system caused a reduction in accuracy. These errors in rotor force resolution, trim force and moment calculation, and rotor inertia terms were corrected along with improvements to the programming style and documentation. Use of a trim input file to drive the model is examined. Trim file errors in blade twist, control input phase angle, coning and lag angles, main and tail rotor pitch, and uniform induced velocity, were corrected. Finally, through direct comparison of the original and corrected model responses to flight test data, the effect of the corrections on overall model output is shown.

  14. A linear model of population dynamics

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.; Kagan, A. I.

    2016-08-01

    The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).

  15. Analysis of Modeling Assumptions used in Production Cost Models for Renewable Integration Studies

    SciTech Connect

    Stoll, Brady; Brinkman, Gregory; Townsend, Aaron; Bloom, Aaron

    2016-01-01

    Renewable energy integration studies have been published for many different regions exploring the question of how higher penetration of renewable energy will impact the electric grid. These studies each make assumptions about the systems they are analyzing; however the effect of many of these assumptions has not been yet been examined and published. In this paper we analyze the impact of modeling assumptions in renewable integration studies, including the optimization method used (linear or mixed-integer programming) and the temporal resolution of the dispatch stage (hourly or sub-hourly). We analyze each of these assumptions on a large and a small system and determine the impact of each assumption on key metrics including the total production cost, curtailment of renewables, CO2 emissions, and generator starts and ramps. Additionally, we identified the impact on these metrics if a four-hour ahead commitment step is included before the dispatch step and the impact of retiring generators to reduce the degree to which the system is overbuilt. We find that the largest effect of these assumptions is at the unit level on starts and ramps, particularly for the temporal resolution, and saw a smaller impact at the aggregate level on system costs and emissions. For each fossil fuel generator type we measured the average capacity started, average run-time per start, and average number of ramps. Linear programming results saw up to a 20% difference in number of starts and average run time of traditional generators, and up to a 4% difference in the number of ramps, when compared to mixed-integer programming. Utilizing hourly dispatch instead of sub-hourly dispatch saw no difference in coal or gas CC units for either start metric, while gas CT units had a 5% increase in the number of starts and 2% increase in the average on-time per start. The number of ramps decreased up to 44%. The smallest effect seen was on the CO2 emissions and total production cost, with a 0.8% and 0

  16. Latent log-linear models for handwritten digit classification.

    PubMed

    Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann

    2012-06-01

    We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.

  17. The identification of linear and non-linear models of a turbocharged automotive diesel engine

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Chen, S.; Backhouse, R. J.

    1989-04-01

    The identification results obtained from a study on a Leyland TL11 turbocharged, direct injection diesel engine are presented. Two sets of data corresponding to low and high engine speed tests, which were recorded from experimental trials on the engine, are analysed. The identification of both linear and non-linear difference equation models are described to represent the relationship between the fuel rack position (input) and the engine speed (output).

  18. Non-linear transformer modeling and simulation

    SciTech Connect

    Archer, W.E.; Deveney, M.F.; Nagel, R.L.

    1994-08-01

    Transformers models for simulation with Pspice and Analogy`s Saber are being developed using experimental B-H Loop and network analyzer measurements. The models are evaluated for accuracy and convergence using several test circuits. Results are presented which demonstrate the effects on circuit performance from magnetic core losses eddy currents and mechanical stress on the magnetic cores.

  19. Linear programming model for optimum resource allocation in rural systems

    SciTech Connect

    Devadas, V.

    1997-07-01

    The article presents a model for optimum resource allocation in a rural system. Making use of linear programming, the objective function of the linear programming model is to maximize the revenue of the rural system, and optimum resource allocation is made subject to a number of energy- and nonenergy-related constraints relevant to the rural system. The model also quantifies the major yields as well as the by-products of different sectors of the rural economic system.

  20. Non-linear protocell models: synchronization and chaos

    NASA Astrophysics Data System (ADS)

    Filisetti, A.; Serra, R.; Carletti, T.; Villani, M.; Poli, I.

    2010-09-01

    We consider generic protocells models allowing linear and non-linear kinetics for the main involved chemical reactions. We are interested in understanding if and how the protocell division and the metabolism do synchronise to give rise to sustainable evolution of the protocell.

  1. Linear and Nonlinear Thinking: A Multidimensional Model and Measure

    ERIC Educational Resources Information Center

    Groves, Kevin S.; Vance, Charles M.

    2015-01-01

    Building upon previously developed and more general dual-process models, this paper provides empirical support for a multidimensional thinking style construct comprised of linear thinking and multiple dimensions of nonlinear thinking. A self-report assessment instrument (Linear/Nonlinear Thinking Style Profile; LNTSP) is presented and…

  2. Derivation and definition of a linear aircraft model

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.

    1988-01-01

    A linear aircraft model for a rigid aircraft of constant mass flying over a flat, nonrotating earth is derived and defined. The derivation makes no assumptions of reference trajectory or vehicle symmetry. The linear system equations are derived and evaluated along a general trajectory and include both aircraft dynamics and observation variables.

  3. Energy-efficient container handling using hybrid model predictive control

    NASA Astrophysics Data System (ADS)

    Xin, Jianbin; Negenborn, Rudy R.; Lodewijks, Gabriel

    2015-11-01

    The performance of container terminals needs to be improved to adapt the growth of containers while maintaining sustainability. This paper provides a methodology for determining the trajectory of three key interacting machines for carrying out the so-called bay handling task, involving transporting containers between a vessel and the stacking area in an automated container terminal. The behaviours of the interacting machines are modelled as a collection of interconnected hybrid systems. Hybrid model predictive control (MPC) is proposed to achieve optimal performance, balancing the handling capacity and energy consumption. The underlying control problem is hereby formulated as a mixed-integer linear programming problem. Simulation studies illustrate that a higher penalty on energy consumption indeed leads to improved sustainability using less energy. Moreover, simulations illustrate how the proposed energy-efficient hybrid MPC controller performs under different types of uncertainties.

  4. Nonlinear Submodels Of Orthogonal Linear Models

    ERIC Educational Resources Information Center

    Bechtel, Gordon G.

    1973-01-01

    It is the purpose of this paper to suggest the orthogonal analysis of variance as a device for simplifying either the analytic or iterative problem of finding LS (least squares) estimates for the parameters of particular nonlinear models. (Author/RK)

  5. Linear functional minimization for inverse modeling

    SciTech Connect

    Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; Tartakovsky, Daniel M.

    2015-06-01

    In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulic head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.

  6. Bond models in linear and nonlinear optics

    NASA Astrophysics Data System (ADS)

    Aspnes, D. E.

    2015-08-01

    Bond models, also known as polarizable-point or mechanical models, have a long history in optics, starting with the Clausius-Mossotti relation but more accurately originating with Ewald's largely forgotten work in 1912. These models describe macroscopic phenomena such as dielectric functions and nonlinear-optical (NLO) susceptibilities in terms of the physics that takes place in real space, in real time, on the atomic scale. Their strengths lie in the insights that they provide and the questions that they raise, aspects that are often obscured by quantum-mechanical treatments. Statics versions were used extensively in the late 1960's and early 1970's to correlate NLO susceptibilities among bulk materials. Interest in NLO applications revived with the 2002 work of Powell et al., who showed that a fully anisotropic version reduced by more than a factor of 2 the relatively large number of parameters necessary to describe secondharmonic- generation (SHG) data for Si(111)/SiO2 interfaces. Attention now is focused on the exact physical meaning of these parameters, and to the extent that they represent actual physical quantities.

  7. Failure of Tube Models to Predict the Linear Rheology of Star/Linear Blends

    NASA Astrophysics Data System (ADS)

    Hall, Ryan; Desai, Priyanka; Kang, Beomgoo; Katzarova, Maria; Huang, Qifan; Lee, Sanghoon; Chang, Taihyun; Venerus, David; Mays, Jimmy; Schieber, Jay; Larson, Ronald

    We compare predictions of two of the most advanced versions of the tube model, namely the Hierarchical model by Wang et al. (J. Rheol. 54:223, 2010) and the BOB (branch-on-branch) model by Das et al. (J. Rheol. 50:207-234, 2006), against linear viscoelastic data on blends of monodisperse star and monodisperse linear polybutadiene polymers. The star was carefully synthesized/characterized by temperature gradient interaction chromatography, and rheological data in the high frequency region were obtained through time-temperature superposition. We found massive failures of both the Hierarchical and BOB models to predict the terminal relaxation behavior of the star/linear blends, despite their success in predicting the rheology of the pure star and pure linear. This failure occurred regardless of the choices made concerning constraint release, such as assuming arm retraction in fat or skinny tubes, or allowing for disentanglement relaxation to cut off the constraint release Rouse process at long times. The failures call into question whether constraint release can be described as a combination of constraint release Rouse processes and dynamic tube dilation within a canonical tube model of entanglement interactions.

  8. A review of some extensions to generalized linear models.

    PubMed

    Lindsey, J K

    Although generalized linear models are reasonably well known, they are not as widely used in medical statistics as might be appropriate, with the exception of logistic, log-linear, and some survival models. At the same time, the generalized linear modelling methodology is decidedly outdated in that more powerful methods, involving wider classes of distributions, non-linear regression, censoring and dependence among responses, are required. Limitations of the generalized linear modelling approach include the need for the iterated weighted least squares (IWLS) procedure for estimation and deviances for inferences; these restrict the class of models that can be used and do not allow direct comparisons among models from different distributions. Powerful non-linear optimization routines are now available and comparisons can more fruitfully be made using the complete likelihood function. The link function is an artefact, necessary for IWLS to function with linear models, but that disappears once the class is extended to truly non-linear models. Restricting comparisons of responses under different treatments to differences in means can be extremely misleading if the shape of the distribution is changing. This may involve changes in dispersion, or of other shape-related parameters such as the skewness in a stable distribution, with the treatments or covariates. Any exact likelihood function, defined as the probability of the observed data, takes into account the fact that all observable data are interval censored, thus directly encompassing the various types of censoring possible with duration-type data. In most situations this can now be as easily used as the traditional approximate likelihood based on densities. Finally, methods are required for incorporating dependencies among responses in models including conditioning on previous history and on random effects. One important procedure for constructing such likelihoods is based on Kalman filtering. PMID:10474135

  9. The General Linear Model and Direct Standardization: A Comparison.

    ERIC Educational Resources Information Center

    Little, Roderick J. A.; Pullum, Thomas W.

    1979-01-01

    Two methods of analyzing nonorthogonal (uneven cell sizes) cross-classified data sets are compared. The methods are direct standardization and the general linear model. The authors illustrate when direct standardization may be a desirable method of analysis. (JKS)

  10. Dilatonic non-linear sigma models and Ricci flow extensions

    NASA Astrophysics Data System (ADS)

    Carfora, M.; Marzuoli, A.

    2016-09-01

    We review our recent work describing, in terms of the Wasserstein geometry over the space of probability measures, the embedding of the Ricci flow in the renormalization group flow for dilatonic non-linear sigma models.

  11. Linear functional minimization for inverse modeling

    DOE PAGES

    Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; Tartakovsky, Daniel M.

    2015-06-01

    In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less

  12. Identifying approximate linear models for simple nonlinear systems

    NASA Technical Reports Server (NTRS)

    Horta, L. G.; Juang, J.-N.

    1985-01-01

    This paper addresses the identification (realization) of approximate linear models from response data for certain nonlinear dynamic systems. Response characteristics for several typical nonlinear joints are analyzed mathematically and represented by series expansions. The parameters of the series expansion are then compared with the modal parameters of a linear model identified by the Eigensystem Realization Algorithm. The agreement of the identified model and the analytically derived representation is excellent for the cases studied. Also laboratory data from a model which exhibited stiffening behavior was analyzed using the Eigensystem Realization algorithm and Fast Fourier Transform. The laboratory experiment demonstrated the ability of the technique to recover the model characteristics using real data.

  13. An optimization model for energy generation and distribution in a dynamic facility

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.

  14. Extending Linear Models to Non-Linear Contexts: An In-Depth Study about Two University Students' Mathematical Productions

    ERIC Educational Resources Information Center

    Esteley, Cristina; Villarreal, Monica; Alagia, Humberto

    2004-01-01

    This research report presents a study of the work of agronomy majors in which an extension of linear models to non-linear contexts can be observed. By linear models we mean the model y=a.x+b, some particular representations of direct proportionality and the diagram for the rule of three. Its presence and persistence in different types of problems…

  15. Linear models for river flow routing on large catchments

    NASA Astrophysics Data System (ADS)

    Liang, G. C.; Nash, J. E.

    1988-11-01

    Following a brief review of the place of linear input-output models in applied hydrology, the algebraic analysis of multiple input single output linear systems is presented and applied in the context of flood routing on the Changjiang (Yangtze River) in China. Two different stretches of the river and one tributary catchment are chosen and the outflows are forecast in terms of observed flows at the upper ends of the river reaches and rainfall on the intervening catchment. It is shown that very high accuracy indeed can be obtained with multiple input linear models whether applied to the total flows and rainfall or to the departures in these quantities from their seasonal expectations. The paper concludes with some analysis of the residual errors which could provide the basis of an updating procedure if the linear models were used for forecasting purposes.

  16. A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long

    2016-01-01

    The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.

  17. Generation of linear dynamic models from a digital nonlinear simulation

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.

    1979-01-01

    The results and methodology used to derive linear models from a nonlinear simulation are presented. It is shown that averaged positive and negative perturbations in the state variables can reduce numerical errors in finite difference, partial derivative approximations and, in the control inputs, can better approximate the system response in both directions about the operating point. Both explicit and implicit formulations are addressed. Linear models are derived for the F 100 engine, and comparisons of transients are made with the nonlinear simulation. The problem of startup transients in the nonlinear simulation in making these comparisons is addressed. Also, reduction of the linear models is investigated using the modal and normal techniques. Reduced-order models of the F 100 are derived and compared with the full-state models.

  18. Variance Function Partially Linear Single-Index Models1

    PubMed Central

    LIAN, HENG; LIANG, HUA; CARROLL, RAYMOND J.

    2014-01-01

    We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function. PMID:25642139

  19. Non-linear Growth Models in Mplus and SAS

    PubMed Central

    Grimm, Kevin J.; Ram, Nilam

    2013-01-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

  20. A Linearization Approach for Rational Nonlinear Models in Mathematical Physics

    NASA Astrophysics Data System (ADS)

    Robert, A. Van Gorder

    2012-04-01

    In this paper, a novel method for linearization of rational second order nonlinear models is discussed. In particular, we discuss an application of the δ expansion method (created to deal with problems in Quantum Field Theory) which will enable both the linearization and perturbation expansion of such equations. Such a method allows for one to quickly obtain the order zero perturbation theory in terms of certain special functions which are governed by linear equations. Higher order perturbation theories can then be obtained in terms of such special functions. One benefit to such a method is that it may be applied even to models without small physical parameters, as the perturbation is given in terms of the degree of nonlinearity, rather than any physical parameter. As an application, we discuss a method of linearizing the six Painlevé equations by an application of the method. In addition to highlighting the benefits of the method, we discuss certain shortcomings of the method.

  1. Computer modeling of batteries from non-linear circuit elements

    NASA Technical Reports Server (NTRS)

    Waaben, S.; Federico, J.; Moskowitz, I.

    1983-01-01

    A simple non-linear circuit model for battery behavior is given. It is based on time-dependent features of the well-known PIN change storage diode, whose behavior is described by equations similar to those associated with electrochemical cells. The circuit simulation computer program ADVICE was used to predict non-linear response from a topological description of the battery analog built from advice components. By a reasonable choice of one set of parameters, the circuit accurately simulates a wide spectrum of measured non-linear battery responses to within a few millivolts.

  2. Linear score tests for variance components in linear mixed models and applications to genetic association studies.

    PubMed

    Qu, Long; Guennel, Tobias; Marshall, Scott L

    2013-12-01

    Following the rapid development of genome-scale genotyping technologies, genetic association mapping has become a popular tool to detect genomic regions responsible for certain (disease) phenotypes, especially in early-phase pharmacogenomic studies with limited sample size. In response to such applications, a good association test needs to be (1) applicable to a wide range of possible genetic models, including, but not limited to, the presence of gene-by-environment or gene-by-gene interactions and non-linearity of a group of marker effects, (2) accurate in small samples, fast to compute on the genomic scale, and amenable to large scale multiple testing corrections, and (3) reasonably powerful to locate causal genomic regions. The kernel machine method represented in linear mixed models provides a viable solution by transforming the problem into testing the nullity of variance components. In this study, we consider score-based tests by choosing a statistic linear in the score function. When the model under the null hypothesis has only one error variance parameter, our test is exact in finite samples. When the null model has more than one variance parameter, we develop a new moment-based approximation that performs well in simulations. Through simulations and analysis of real data, we demonstrate that the new test possesses most of the aforementioned characteristics, especially when compared to existing quadratic score tests or restricted likelihood ratio tests. PMID:24328714

  3. Task rescheduling model for resource disruption problem in unrelated parallel processor system

    NASA Astrophysics Data System (ADS)

    Nordin, Syarifah Zyurina; Caccetta, Lou

    2014-07-01

    In this paper, we concentrate on the scheduling problem with interruption occurs in the parallel processor system. The situation happens when the availability of the unrelated parallel processors in the time slot decreases in certain time periods and its define as resource disruption. Our objective is to consider a recovery scheduling option for this issue to overcome the possibilities of having infeasibility of the original scheduling plan. Our approach for the recovery is task rescheduling which is to assign the tasks in the initial schedule plan to reflect the new restrictions. A recovery mixed integer linear programming model is proposed to solve the disruption problem. We also conduct a computational experiment using CPLEX 12.1 solver in AIMMS 3.10 software to analyze the performance of the model.

  4. Confirming the Lanchestrian linear-logarithmic model of attrition

    SciTech Connect

    Hartley, D.S. III.

    1990-12-01

    This paper is the fourth in a series of reports on the breakthrough research in historical validation of attrition in conflict. Significant defense policy decisions, including weapons acquisition and arms reduction, are based in part on models of conflict. Most of these models are driven by their attrition algorithms, usually forms of the Lanchester square and linear laws. None of these algorithms have been validated. The results of this paper confirm the results of earlier papers, using a large database of historical results. The homogeneous linear-logarithmic Lanchestrian attrition model is validated to the extent possible with current initial and final force size data and is consistent with the Iwo Jima data. A particular differential linear-logarithmic model is described that fits the data very well. A version of Helmbold's victory predicting parameter is also confirmed, with an associated probability function. 37 refs., 73 figs., 68 tabs.

  5. Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-01-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  6. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  7. Optical linear algebra processors: noise and error-source modeling.

    PubMed

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  8. MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)

    EPA Science Inventory

    We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...

  9. Locally Dependent Linear Logistic Test Model with Person Covariates

    ERIC Educational Resources Information Center

    Ip, Edward H.; Smits, Dirk J. M.; De Boeck, Paul

    2009-01-01

    The article proposes a family of item-response models that allow the separate and independent specification of three orthogonal components: item attribute, person covariate, and local item dependence. Special interest lies in extending the linear logistic test model, which is commonly used to measure item attributes, to tests with embedded item…

  10. Optical linear algebra processors - Noise and error-source modeling

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  11. Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables

    ERIC Educational Resources Information Center

    Henson, Robert A.; Templin, Jonathan L.; Willse, John T.

    2009-01-01

    This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…

  12. PID controller design for trailer suspension based on linear model

    NASA Astrophysics Data System (ADS)

    Kushairi, S.; Omar, A. R.; Schmidt, R.; Isa, A. A. Mat; Hudha, K.; Azizan, M. A.

    2015-05-01

    A quarter of an active trailer suspension system having the characteristics of a double wishbone type was modeled as a complex multi-body dynamic system in MSC.ADAMS. Due to the complexity of the model, a linearized version is considered in this paper. A model reduction technique is applied to the linear model, resulting in a reduced-order model. Based on this simplified model, a Proportional-Integral-Derivative (PID) controller was designed in MATLAB/Simulink environment; primarily to reduce excessive roll motions and thus improving the ride comfort. Simulation results show that the output signal closely imitates the input signal in multiple cases - demonstrating the effectiveness of the controller.

  13. The minimal linear σ model for the Goldstone Higgs

    NASA Astrophysics Data System (ADS)

    Feruglio, F.; Gavela, M. B.; Kanshin, K.; Machado, P. A. N.; Rigolin, S.; Saa, S.

    2016-06-01

    In the context of the minimal SO(5) linear σ-model, a complete renormalizable Lagrangian -including gauge bosons and fermions- is considered, with the symmetry softly broken to SO(4). The scalar sector describes both the electroweak Higgs doublet and the singlet σ. Varying the σ mass would allow to sweep from the regime of perturbative ultraviolet completion to the non-linear one assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics. We analyze the phenomenological implications and constraints from precision observables and LHC data. Furthermore, we derive the d ≤ 6 effective Lagrangian in the limit of heavy exotic fermions.

  14. A supply chain network design model for biomass co-firing in coal-fired power plants

    SciTech Connect

    Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

    2014-01-01

    We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

  15. Functional Linear Models for Association Analysis of Quantitative Traits

    PubMed Central

    Fan, Ruzong; Wang, Yifan; Mills, James L.; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao

    2014-01-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. PMID:24130119

  16. Functional linear models for association analysis of quantitative traits.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study.

  17. Piecewise linear and Boolean models of chemical reaction networks.

    PubMed

    Veliz-Cuba, Alan; Kumar, Ajit; Josić, Krešimir

    2014-12-01

    Models of biochemical networks are frequently complex and high-dimensional. Reduction methods that preserve important dynamical properties are therefore essential for their study. Interactions in biochemical networks are frequently modeled using Hill functions ([Formula: see text]). Reduced ODEs and Boolean approximations of such model networks have been studied extensively when the exponent [Formula: see text] is large. However, while the case of small constant [Formula: see text] appears in practice, it is not well understood. We provide a mathematical analysis of this limit and show that a reduction to a set of piecewise linear ODEs and Boolean networks can be mathematically justified. The piecewise linear systems have closed-form solutions that closely track those of the fully nonlinear model. The simpler, Boolean network can be used to study the qualitative behavior of the original system. We justify the reduction using geometric singular perturbation theory and compact convergence, and illustrate the results in network models of a toggle switch and an oscillator.

  18. The determination of third order linear models from a seventh order nonlinear jet engine model

    NASA Technical Reports Server (NTRS)

    Lalonde, Rick J.; Hartley, Tom T.; De Abreu-Garcia, J. Alex

    1989-01-01

    Results are presented that demonstrate how good reduced-order models can be obtained directly by recursive parameter identification using input/output (I/O) data of high-order nonlinear systems. Three different methods of obtaining a third-order linear model from a seventh-order nonlinear turbojet engine model are compared. The first method is to obtain a linear model from the original model and then reduce the linear model by standard reduction techniques such as residualization and balancing. The second method is to identify directly a third-order linear model by recursive least-squares parameter estimation using I/O data of the original model. The third method is to obtain a reduced-order model from the original model and then linearize the reduced model. Frequency responses are used as the performance measure to evaluate the reduced models. The reduced-order models along with their Bode plots are presented for comparison purposes.

  19. Non-linear calibration models for near infrared spectroscopy.

    PubMed

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-02-27

    Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.

  20. Johnson-Neyman Type Technique in Hierarchical Linear Models

    ERIC Educational Resources Information Center

    Miyazaki, Yasuo; Maier, Kimberly S.

    2005-01-01

    In hierarchical linear models we often find that group indicator variables at the cluster level are significant predictors for the regression slopes. When this is the case, the average relationship between the outcome and a key independent variable are different from group to group. In these settings, a question such as "what range of the…

  1. Linear network representation of multistate models of transport.

    PubMed

    Sandblom, J; Ring, A; Eisenman, G

    1982-05-01

    By introducing external driving forces in rate-theory models of transport we show how the Eyring rate equations can be transformed into Ohm's law with potentials that obey Kirchhoff's second law. From such a formalism the state diagram of a multioccupancy multicomponent system can be directly converted into linear network with resistors connecting nodal (branch) points and with capacitances connecting each nodal point with a reference point. The external forces appear as emf or current generators in the network. This theory allows the algebraic methods of linear network theory to be used in solving the flux equations for multistate models and is particularly useful for making proper simplifying approximation in models of complex membrane structure. Some general properties of linear network representation are also deduced. It is shown, for instance, that Maxwell's reciprocity relationships of linear networks lead directly to Onsager's relationships in the near equilibrium region. Finally, as an example of the procedure, the equivalent circuit method is used to solve the equations for a few transport models.

  2. Asymptotic behavior of coupled linear systems modeling suspension bridges

    NASA Astrophysics Data System (ADS)

    Dell'Oro, Filippo; Giorgi, Claudio; Pata, Vittorino

    2015-06-01

    We consider the coupled linear system describing the vibrations of a string-beam system related to the well-known Lazer-McKenna suspension bridge model. For ɛ > 0 and k > 0, the decay properties of the solution semigroup are discussed in dependence of the nonnegative parameters γ and h, which are responsible for the damping effects.

  3. A Methodology and Linear Model for System Planning and Evaluation.

    ERIC Educational Resources Information Center

    Meyer, Richard W.

    1982-01-01

    The two-phase effort at Clemson University to design a comprehensive library automation program is reported. Phase one was based on a version of IBM's business system planning methodology, and the second was based on a linear model designed to compare existing program systems to the phase one design. (MLW)

  4. A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION

    EPA Science Inventory

    We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...

  5. Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models

    ERIC Educational Resources Information Center

    Wagler, Amy E.

    2014-01-01

    Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…

  6. Canonical Correlation Analysis as the General Linear Model.

    ERIC Educational Resources Information Center

    Vidal, Sherry

    The concept of the general linear model (GLM) is illustrated and how canonical correlation analysis is the GLM is explained, using a heuristic data set to demonstrate how canonical correlation analysis subsumes various multivariate and univariate methods. The paper shows how each of these analyses produces a synthetic variable, like the Yhat…

  7. Mathematical modelling and linear stability analysis of laser fusion cutting

    NASA Astrophysics Data System (ADS)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich

    2016-06-01

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process' amount of dynamic behavior.

  8. Identifiability Results for Several Classes of Linear Compartment Models.

    PubMed

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology. PMID:26337290

  9. STATISTICAL BASED NON-LINEAR MODEL UPDATING USING FEATURE EXTRACTION

    SciTech Connect

    Schultz, J.F.; Hemez, F.M.

    2000-10-01

    This research presents a new method to improve analytical model fidelity for non-linear systems. The approach investigates several mechanisms to assist the analyst in updating an analytical model based on experimental data and statistical analysis of parameter effects. The first is a new approach at data reduction called feature extraction. This is an expansion of the update metrics to include specific phenomena or character of the response that is critical to model application. This is an extension of the classical linear updating paradigm of utilizing the eigen-parameters or FRFs to include such devices as peak acceleration, time of arrival or standard deviation of model error. The next expansion of the updating process is the inclusion of statistical based parameter analysis to quantify the effects of uncertain or significant effect parameters in the construction of a meta-model. This provides indicators of the statistical variation associated with parameters as well as confidence intervals on the coefficients of the resulting meta-model, Also included in this method is the investigation of linear parameter effect screening using a partial factorial variable array for simulation. This is intended to aid the analyst in eliminating from the investigation the parameters that do not have a significant variation effect on the feature metric, Finally an investigation of the model to replicate the measured response variation is examined.

  10. Estimating classification images with generalized linear and additive models.

    PubMed

    Knoblauch, Kenneth; Maloney, Laurence T

    2008-12-22

    Conventional approaches to modeling classification image data can be described in terms of a standard linear model (LM). We show how the problem can be characterized as a Generalized Linear Model (GLM) with a Bernoulli distribution. We demonstrate via simulation that this approach is more accurate in estimating the underlying template in the absence of internal noise. With increasing internal noise, however, the advantage of the GLM over the LM decreases and GLM is no more accurate than LM. We then introduce the Generalized Additive Model (GAM), an extension of GLM that can be used to estimate smooth classification images adaptively. We show that this approach is more robust to the presence of internal noise, and finally, we demonstrate that GAM is readily adapted to estimation of higher order (nonlinear) classification images and to testing their significance.

  11. Exploring pseudoscalar meson scattering in linear sigma models

    NASA Astrophysics Data System (ADS)

    Black (Speaker), Deirdre; Fariborz, Amir H.; Moussa, Sherif; Nasri, Salah; Schechter, Joseph

    2001-11-01

    The three flavor linear sigma model is studied as a toy model for understanding the role of possible light scalar mesons in the ππ, πK and πɛ elastic scattering channels. We unitarize tree level amplitudes using the K-matrix prescription and, with a sufficiently general model, obtain reasonable fits to the experimental data. The effect of unitarization is very important and leads to the emergence of a nonet of light scalars, with masses below 1 GeV. We compare with a scattering treatment using a more general non-linear sigma model approach and also comment briefly upon how our results fit in with the scalar meson puzzle. .

  12. Development of the Optimum Operation Scheduling Model of Domestic Electric Appliances for the Supply-Demand Adjustment in a Power System

    NASA Astrophysics Data System (ADS)

    Ikegami, Takashi; Iwafune, Yumiko; Ogimoto, Kazuhiko

    The high penetration of variable renewable generation such as Photovoltaic (PV) systems will cause the issue of supply-demand imbalance in a whole power system. The activation of the residential power usage, storage and generation by sophisticated scheduling and control using the Home Energy Management System (HEMS) will be needed to balance power supply and demand in the near future. In order to evaluate the applicability of the HEMS as a distributed controller for local and system-wide supply-demand balances, we developed an optimum operation scheduling model of domestic electric appliances using the mixed integer linear programming. Applying this model to several houses with dynamic electricity prices reflecting the power balance of the total power system, it was found that the adequate changes in electricity prices bring about the shift of residential power usages to control the amount of the reverse power flow due to excess PV generation.

  13. Linear systems, compartmental modeling, and estimability issues in IAQ studies

    SciTech Connect

    Evans, W.C.

    1996-12-31

    Many IAQ models are expressed as coupled systems of linear, ordinary differential equations. In this paper, the linear-systems or state-variable format for these systems will be reviewed, and some useful information will be presented which can be obtained from this formulation without explicitly solving the differential equation system. Much information concerning linear systems analysis is available in the literature of various disciplines, particularly biomathematics, wherein there is a specialization called compartmental modeling. It is important to recognize that there exists a great deal of directly usable mathematical information which can immediately be applied to IAQ modeling problems. In compartmental modeling, an issue called identifiability has long been recognized as a potential problem with experiments that are intended to extract information about a linear system`s parameters from observations of that system`s response to a forcing function. It can happen that the system`s parameters cannot be uniquely estimated from an experiment, no matter how good (noise-free) the measurements are. With a linear-systems formulation of the experimental configuration, this condition can be detected before the experiment is conducted. A related issue is termed redundancy, which refers to the inability to obtain unique parameter estimates from the data, even if the experiment is identifiable. This problem occurs for sums-of-exponentials models, fitted via nonlinear estimation to the observations. Taken together, identifiability and redundancy can be termed estimability. These difficulties can affect chamber testing in particular, since this is the context where they are attempting to estimate system parameters from observations. This paper will present an overview of these issues, with selected examples.

  14. Inverse modelling problems in linear algebra undergraduate courses

    NASA Astrophysics Data System (ADS)

    Martinez-Luaces, Victor E.

    2013-10-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different presentations will be discussed. Finally, several results will be presented and some conclusions proposed.

  15. Linear Sigma Model Toolshed for D-brane Physics

    SciTech Connect

    Hellerman, Simeon

    2001-08-23

    Building on earlier work, we construct linear sigma models for strings on curved spaces in the presence of branes. Our models include an extremely general class of brane-worldvolume gauge field configurations. We explain in an accessible manner the mathematical ideas which suggest appropriate worldsheet interactions for generating a given open string background. This construction provides an explanation for the appearance of the derived category in D-brane physic complementary to that of recent work of Douglas.

  16. Linear modeling of steady-state behavioral dynamics.

    PubMed Central

    Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert

    2002-01-01

    The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782

  17. Linear Time Invariant Models for Integrated Flight and Rotor Control

    NASA Astrophysics Data System (ADS)

    Olcer, Fahri Ersel

    2011-12-01

    Recent developments on individual blade control (IBC) and physics based reduced order models of various on-blade control (OBC) actuation concepts are opening up opportunities to explore innovative rotor control strategies for improved rotor aerodynamic performance, reduced vibration and BVI noise, and improved rotor stability, etc. Further, recent developments in computationally efficient algorithms for the extraction of Linear Time Invariant (LTI) models are providing a convenient framework for exploring integrated flight and rotor control, while accounting for the important couplings that exist between body and low frequency rotor response and high frequency rotor response. Formulation of linear time invariant (LTI) models of a nonlinear system about a periodic equilibrium using the harmonic domain representation of LTI model states has been studied in the literature. This thesis presents an alternative method and a computationally efficient scheme for implementation of the developed method for extraction of linear time invariant (LTI) models from a helicopter nonlinear model in forward flight. The fidelity of the extracted LTI models is evaluated using response comparisons between the extracted LTI models and the nonlinear model in both time and frequency domains. Moreover, the fidelity of stability properties is studied through the eigenvalue and eigenvector comparisons between LTI and LTP models by making use of the Floquet Transition Matrix. For time domain evaluations, individual blade control (IBC) and On-Blade Control (OBC) inputs that have been tried in the literature for vibration and noise control studies are used. For frequency domain evaluations, frequency sweep inputs are used to obtain frequency responses of fixed system hub loads to a single blade IBC input. The evaluation results demonstrate the fidelity of the extracted LTI models, and thus, establish the validity of the LTI model extraction process for use in integrated flight and rotor control

  18. Modeling pan evaporation for Kuwait by multiple linear regression.

    PubMed

    Almedeij, Jaber

    2012-01-01

    Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values.

  19. General mirror pairs for gauged linear sigma models

    NASA Astrophysics Data System (ADS)

    Aspinwall, Paul S.; Plesser, M. Ronen

    2015-11-01

    We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.

  20. Drawbacks of using linear mixture modeling on hyperspectral images

    NASA Astrophysics Data System (ADS)

    Rodricks, Neena; Kirkland, Laurel E.

    2004-10-01

    Hyperspectral spectroscopy can be used remotely to measure emitted radiation from minerals and rocks at a series of narrow and continuous wavelength bands resulting in a continuous spectrum for each pixel, thereby providing ample spectral information to identify and distinguish spectrally unique materials. Linear mixture modeling ("spectral unmixing"), a commonly used method, is based on the theory that the radiance in the thermal infrared region (8-12 μm) from a multi-mineral surface can be modeled as a linear combination of the endmembers. A linear mixture model can thus potentially model the minerals present on planetary surfaces. It works by scaling the endmember spectra so that the sum of the scaled endmember spectra matches the measured spectrum with the smallest "error" (difference). But one of the drawbacks of this established method is that mathematically, a fit with an inverted spectrum is valid, which effectively returns a negative abundance of a material. Current models usually address the problem by elimination of endmembers that have negative scale factors. Eliminating the negative abundance problem is not a major issue when the endmembers are known. However, identifying unknown target composition (like on Mars) can be a problem. The goal of this study is to improve the understanding and find a subsequent solution of the negative abundance problem for Mars analog field data obtained from airborne and ground spectrometers. We are using a well-defined library of spectra to test the accuracy of hyperspectral analysis for the identification of minerals on planetary surfaces.

  1. Modeling error analysis of stationary linear discrete-time filters

    NASA Technical Reports Server (NTRS)

    Patel, R.; Toda, M.

    1977-01-01

    The performance of Kalman-type, linear, discrete-time filters in the presence of modeling errors is considered. The discussion is limited to stationary performance, and bounds are obtained for the performance index, the mean-squared error of estimates for suboptimal and optimal (Kalman) filters. The computation of these bounds requires information on only the model matrices and the range of errors for these matrices. Consequently, a design can easily compare the performance of a suboptimal filter with that of the optimal filter, when only the range of errors in the elements of the model matrices is available.

  2. MAGDM linear-programming models with distinct uncertain preference structures.

    PubMed

    Xu, Zeshui S; Chen, Jian

    2008-10-01

    Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.

  3. LINEAR MODELS FOR MANAGING SOURCES OF GROUNDWATER POLLUTION.

    USGS Publications Warehouse

    Gorelick, Steven M.; Gustafson, Sven-Ake; ,

    1984-01-01

    Mathematical models for the problem of maintaining a specified groundwater quality while permitting solute waste disposal at various facilities distributed over space are discussed. The pollutants are assumed to be chemically inert and their concentrations in the groundwater are governed by linear equations for advection and diffusion. The aim is to determine a disposal policy which maximises the total amount of pollutants released during a fixed time T while meeting the condition that the concentration everywhere is below prescribed levels.

  4. Credibility analysis of risk classes by generalized linear model

    NASA Astrophysics Data System (ADS)

    Erdemir, Ovgucan Karadag; Sucu, Meral

    2016-06-01

    In this paper generalized linear model (GLM) and credibility theory which are frequently used in nonlife insurance pricing are combined for reliability analysis. Using full credibility standard, GLM is associated with limited fluctuation credibility approach. Comparison criteria such as asymptotic variance and credibility probability are used to analyze the credibility of risk classes. An application is performed by using one-year claim frequency data of a Turkish insurance company and results of credible risk classes are interpreted.

  5. Using Quartile-Quartile Lines as Linear Models

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2015-01-01

    This article introduces the notion of the quartile-quartile line as an alternative to the regression line and the median-median line to produce a linear model based on a set of data. It is based on using the first and third quartiles of a set of (x, y) data. Dynamic spreadsheets are used as exploratory tools to compare the different approaches and…

  6. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS.

    SciTech Connect

    TOMAS,R.FISCHER,W.JAIN,A.LUO,Y.PILAT,F.

    2004-07-05

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability.

  7. Linearized reduced-order models for subsurface flow simulation

    NASA Astrophysics Data System (ADS)

    Cardoso, M. A.; Durlofsky, L. J.

    2010-02-01

    A trajectory piecewise linearization (TPWL) procedure for the reduced-order modeling of two-phase flow in subsurface formations is developed and applied. The method represents new pressure and saturation states using linear expansions around states previously simulated and saved during a series of preprocessing training runs. The linearized representation is projected into a low-dimensional space, with the projection matrix constructed through proper orthogonal decomposition of the states determined during the training runs. The TPWL model is applied to two example problems, containing 24,000 and 79,200 grid blocks, which are characterized by heterogeneous permeability descriptions. Extensive test simulations are performed for both models. It is shown that the TPWL model provides accurate results when the controls (bottom hole pressures of the production wells in this case) applied in test simulations are within the general range of the controls applied in the training runs, even though the well pressure schedules for the test runs can differ significantly from those of the training runs. This indicates that the TPWL model displays a reasonable degree of robustness. Runtime speedups using the procedure are very significant-a factor of 100-2000 (depending on model size and whether or not mass balance error is computed at every time step) for the cases considered. The preprocessing overhead required by the TPWL procedure is the equivalent of about four high-fidelity simulations. Finally, the TPWL procedure is applied to a computationally demanding multiobjective optimization problem, for which the Pareto front is determined. Limited high-fidelity simulations demonstrate the accuracy and applicability of TPWL for this optimization. Future work should focus on error estimation and on stabilizing the method for large models with significant density differences between phases.

  8. Linear theory for filtering nonlinear multiscale systems with model error

    PubMed Central

    Berry, Tyrus; Harlim, John

    2014-01-01

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure

  9. The Overgeneralization of Linear Models among University Students' Mathematical Productions: A Long-Term Study

    ERIC Educational Resources Information Center

    Esteley, Cristina B.; Villarreal, Monica E.; Alagia, Humberto R.

    2010-01-01

    Over the past several years, we have been exploring and researching a phenomenon that occurs among undergraduate students that we called extension of linear models to non-linear contexts or overgeneralization of linear models. This phenomenon appears when some students use linear representations in situations that are non-linear. In a first phase,…

  10. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    PubMed

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG < 0) and endothermic (ΔH > 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.

  11. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    PubMed

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG < 0) and endothermic (ΔH > 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area. PMID:26676015

  12. [Linear mixed modeling of branch biomass for Korean pine plantation].

    PubMed

    Dong, Li-Hu; Li, Feng-Ri; Jia, Wei-Wei

    2013-12-01

    Based on the measurement of 3643 branch biomass samples of 60 Korean pine (Pinus koraiensis) trees from Mengjiagang Forest Farm, Heilongjiang Province, all subset regressions techniques were used to develop the branch biomass model (branch, foliage, and total biomass models). The optimal base model of branch biomass was developed as lnw = k1 + k2 lnL(b) + k3 lnD(b). Then, linear mixed models were developed based on PROC MIXED of SAS 9.3 software, and evaluated with AIC, BIC, Log Likelihood and Likelihood ratio tests. The results showed that the foliage and total biomass models with parameters k1, k2 and k3 as mixed effects showed the best performance. The branch biomass model with parameters k5 and k2 as mixed effects showed the best performance. Finally, we evaluated the optimal base model and the mixed model of branch biomass. Model validation confirmed that the mixed model was better than the optimal base model. The mixed model with random parameters could not only provide more accurate and precise prediction, but also showed the individual difference based on variance-covariance structure.

  13. On the Development of Parameterized Linear Analytical Longitudinal Airship Models

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric A.; Johnson, Joseph R.; Bayard, David S.; Elfes, Alberto; Quadrelli, Marco B.

    2008-01-01

    In order to explore Titan, a moon of Saturn, airships must be able to traverse the atmosphere autonomously. To achieve this, an accurate model and accurate control of the vehicle must be developed so that it is understood how the airship will react to specific sets of control inputs. This paper explains how longitudinal aircraft stability derivatives can be used with airship parameters to create a linear model of the airship solely by combining geometric and aerodynamic airship data. This method does not require system identification of the vehicle. All of the required data can be derived from computational fluid dynamics and wind tunnel testing. This alternate method of developing dynamic airship models will reduce time and cost. Results are compared to other stable airship dynamic models to validate the methods. Future work will address a lateral airship model using the same methods.

  14. Modeling of thermal storage systems in MILP distributed energy resource models

    SciTech Connect

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.

  15. Modelling human balance using switched systems with linear feedback control.

    PubMed

    Kowalczyk, Piotr; Glendinning, Paul; Brown, Martin; Medrano-Cerda, Gustavo; Dallali, Houman; Shapiro, Jonathan

    2012-02-01

    We are interested in understanding the mechanisms behind and the character of the sway motion of healthy human subjects during quiet standing. We assume that a human body can be modelled as a single-link inverted pendulum, and the balance is achieved using linear feedback control. Using these assumptions, we derive a switched model which we then investigate. Stable periodic motions (limit cycles) about an upright position are found. The existence of these limit cycles is studied as a function of system parameters. The exploration of the parameter space leads to the detection of multi-stability and homoclinic bifurcations. PMID:21697168

  16. Bayesian partial linear model for skewed longitudinal data.

    PubMed

    Tang, Yuanyuan; Sinha, Debajyoti; Pati, Debdeep; Lipsitz, Stuart; Lipshultz, Steven

    2015-07-01

    Unlike majority of current statistical models and methods focusing on mean response for highly skewed longitudinal data, we present a novel model for such data accommodating a partially linear median regression function, a skewed error distribution and within subject association structures. We provide theoretical justifications for our methods including asymptotic properties of the posterior and associated semiparametric Bayesian estimators. We also provide simulation studies to investigate the finite sample properties of our methods. Several advantages of our method compared with existing methods are demonstrated via analysis of a cardiotoxicity study of children of HIV-infected mothers.

  17. Modelling human balance using switched systems with linear feedback control.

    PubMed

    Kowalczyk, Piotr; Glendinning, Paul; Brown, Martin; Medrano-Cerda, Gustavo; Dallali, Houman; Shapiro, Jonathan

    2012-02-01

    We are interested in understanding the mechanisms behind and the character of the sway motion of healthy human subjects during quiet standing. We assume that a human body can be modelled as a single-link inverted pendulum, and the balance is achieved using linear feedback control. Using these assumptions, we derive a switched model which we then investigate. Stable periodic motions (limit cycles) about an upright position are found. The existence of these limit cycles is studied as a function of system parameters. The exploration of the parameter space leads to the detection of multi-stability and homoclinic bifurcations.

  18. Models for cultural inheritance: a general linear model.

    PubMed

    Feldman, M W; Cavalli-Sforza, L L

    1975-07-01

    A theory of cultural evolution is proposed based on a general linear mode of cultural transmission. The trait of an individual is assumed to depend on the values of the same trait in other individuals of the same, the previous or earlier generation. The transmission matrix W has as its elements the proportional contributions of each individual (i) of one generation to each individual (j) of another. In addition, there is random variation (copy error or innovation) for each individual. Means and variances of a group of N individuals change with time and will stabilize asymptotically if the matrix W is irreducible and aperiodic. The rate of convergence is geometric and is governed by the largest non-unit eigenvalue of W. Groups fragment and evolve independently if W is reducible. The means of independent groups vary at random at a predicted rate, a phenomenon termed "random cultural drift". Variances within a group tend to be small, assuming cultural homogeneity. Transmission matrices of the teacher/leader type, and of parental type have been specifically considered, as well as social hierarchies. Various limitations, extensions, and some chances of application are discussed.

  19. Linear stability analysis of swirling turbulent flows with turbulence models

    NASA Astrophysics Data System (ADS)

    Gupta, Vikrant; Juniper, Matthew

    2013-11-01

    In this paper, we consider the growth of large scale coherent structures in turbulent flows by performing linear stability analysis around a mean flow. Turbulent flows are characterized by fine-scale stochastic perturbations. The momentum transfer caused by these perturbations affects the development of larger structures. Therefore, in a linear stability analysis, it is important to include the perturbations' influence. One way to do this is to include a turbulence model in the stability analysis. This is done in the literature by using eddy viscosity models (EVMs), which are first order turbulence models. We extend this approach by using second order turbulence models, in this case explicit algebraic Reynolds stress models (EARSMs). EARSMs are more versatile than EVMs, in that they can be applied to a wider range of flows, and could also be more accurate. We verify our EARSM-based analysis by applying it to a channel flow and then comparing the results with those from an EVM-based analysis. We then apply the EARSM-based stability analysis to swirling pipe flows and Taylor-Couette flows, which demonstrates the main benefit of EARSM-based analysis. This project is supported by EPSRC and Rolls-Royce through a Dorothy Hodgkin Research Fellowship.

  20. Non-linear model for compression tests on articular cartilage.

    PubMed

    Grillo, Alfio; Guaily, Amr; Giverso, Chiara; Federico, Salvatore

    2015-07-01

    Hydrated soft tissues, such as articular cartilage, are often modeled as biphasic systems with individually incompressible solid and fluid phases, and biphasic models are employed to fit experimental data in order to determine the mechanical and hydraulic properties of the tissues. Two of the most common experimental setups are confined and unconfined compression. Analytical solutions exist for the unconfined case with the linear, isotropic, homogeneous model of articular cartilage, and for the confined case with the non-linear, isotropic, homogeneous model. The aim of this contribution is to provide an easily implementable numerical tool to determine a solution to the governing differential equations of (homogeneous and isotropic) unconfined and (inhomogeneous and isotropic) confined compression under large deformations. The large-deformation governing equations are reduced to equivalent diffusive equations, which are then solved by means of finite difference (FD) methods. The solution strategy proposed here could be used to generate benchmark tests for validating complex user-defined material models within finite element (FE) implementations, and for determining the tissue's mechanical and hydraulic properties from experimental data.

  1. Application of linear gauss pseudospectral method in model predictive control

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Zhou, Hao; Chen, Wanchun

    2014-03-01

    This paper presents a model predictive control(MPC) method aimed at solving the nonlinear optimal control problem with hard terminal constraints and quadratic performance index. The method combines the philosophies of the nonlinear approximation model predictive control, linear quadrature optimal control and Gauss Pseudospectral method. The current control is obtained by successively solving linear algebraic equations transferred from the original problem via linearization and the Gauss Pseudospectral method. It is not only of high computational efficiency since it does not need to solve nonlinear programming problem, but also of high accuracy though there are a few discrete points. Therefore, this method is suitable for on-board applications. A design of terminal impact with a specified direction is carried out to evaluate the performance of this method. Augmented PN guidance law in the three-dimensional coordinate system is applied to produce the initial guess. And various cases for target with straight-line movements are employed to demonstrate the applicability in different impact angles. Moreover, performance of the proposed method is also assessed by comparison with other guidance laws. Simulation results indicate that this method is not only of high computational efficiency and accuracy, but also applicable in the framework of guidance design.

  2. Wavefront Sensing for WFIRST with a Linear Optical Model

    NASA Technical Reports Server (NTRS)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  3. Learning Petri net models of non-linear gene interactions.

    PubMed

    Mayo, Michael

    2005-10-01

    Understanding how an individual's genetic make-up influences their risk of disease is a problem of paramount importance. Although machine-learning techniques are able to uncover the relationships between genotype and disease, the problem of automatically building the best biochemical model or "explanation" of the relationship has received less attention. In this paper, I describe a method based on random hill climbing that automatically builds Petri net models of non-linear (or multi-factorial) disease-causing gene-gene interactions. Petri nets are a suitable formalism for this problem, because they are used to model concurrent, dynamic processes analogous to biochemical reaction networks. I show that this method is routinely able to identify perfect Petri net models for three disease-causing gene-gene interactions recently reported in the literature.

  4. Repopulation Kinetics and the Linear-Quadratic Model

    NASA Astrophysics Data System (ADS)

    O'Rourke, S. F. C.; McAneney, H.; Starrett, C.; O'Sullivan, J. M.

    2009-08-01

    The standard Linear-Quadratic (LQ) survival model for radiotherapy is used to investigate different schedules of radiation treatment planning for advanced head and neck cancer. We explore how these treament protocols may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al. [1], which was concerned with the case of exponential repopulation between treatments. Treatment schedules investigated include standarized and accelerated fractionation. Calculations based on the present work show, that even with growth laws scaled to ensure that the repopulation kinetics for advanced head and neck cancer are comparable, considerable variation in the survival fraction to orders of magnitude emerged. Calculations show that application of the Gompertz model results in a significantly poorer prognosis for tumour eradication. Gaps in treatment also highlight the differences in the LQ model with the effect of repopulation kinetics included.

  5. Diagnostic Measures for Generalized Linear Models with Missing Covariates

    PubMed Central

    ZHU, HONGTU; IBRAHIM, JOSEPH G.; SHI, XIAOYAN

    2009-01-01

    In this paper, we carry out an in-depth investigation of diagnostic measures for assessing the influence of observations and model misspecification in the presence of missing covariate data for generalized linear models. Our diagnostic measures include case-deletion measures and conditional residuals. We use the conditional residuals to construct goodness-of-fit statistics for testing possible misspecifications in model assumptions, including the sampling distribution. We develop specific strategies for incorporating missing data into goodness-of-fit statistics in order to increase the power of detecting model misspecification. A resampling method is proposed to approximate the p-value of the goodness-of-fit statistics. Simulation studies are conducted to evaluate our methods and a real data set is analysed to illustrate the use of our various diagnostic measures. PMID:20037674

  6. Prediction of mean arterial blood pressure with linear stochastic models.

    PubMed

    Genc, Sahika

    2011-01-01

    A model-based approach that integrates known portion of the cardiovascular system and unknown portion through a parameter estimation to predict evolution of the mean arterial pressure is considered. The unknown portion corresponds to the neural portion that acts like a controller that takes corrective actions to regulate the arterial blood pressure at a constant level. The input to the neural part is the arterial pressure and output is the sympathetic nerve activity. In this model, heart rate is considered a proxy for sympathetic nerve activity. The neural portion is modeled as a linear discrete-time system with random coefficients. The performance of the model is tested on a case study of acute hypotensive episodes (AHEs) on PhysioNet data. TPRs and FPRs improve as more data becomes available during estimation period.

  7. Generalised Linear Modelling of daily rainfall in Southern England

    NASA Astrophysics Data System (ADS)

    Yang, C.; Chandler, R. E.; Isham, V. S.

    2003-04-01

    Recently published research has demonstrated the use of Generalised Linear Models (GLMs) for interpreting historical records of rainfall and other climate variables. Here, we present a case study illustrating the GLM approach to daily rainfall modelling, for a river catchment in the south of England. The area of interest is around 40km x 50km in size; data from 34 gauges are available, with record lengths ranging from 5 to 96 years. An initial modelling exercise revealed apparent spatial inconsistencies among the gauges, similar to those reported in other studies. However, it was subsequently found that these were mainly due to small rainfall values, and could be removed by thresholding the data prior to modelling. The capacity of GLMs for simulating realistic multi-site daily rainfall sequences is also demonstrated: a wide range of properties of observed rainfall sequences can be reproduced well using GLM simulations.

  8. A positional discriminability model of linear-order judgments.

    PubMed

    Holyoak, K J; Patterson, K K

    1981-12-01

    The process of judging the relative order of stimuli in a visual array was investigated in three experiments. In the basic paradigm, a linear array of six colored lines was presented briefly, and subject decided which of two target lines was the leftmost or rightmost (Experiment 1). The target lines appeared in all possible combinations of serial positions and reaction time (RT) was measured. Distance and semantic congruity effects were obtained, as well as a bowed serial position function. The RT pattern resembled that observed in comparable studies with memorized linear orderings. The serial position function was flattened when the background lines were homogeneously dissimilar to the target lines (Experiment 2). Both a distance effect and bowed serial position functions were obtained when subjects judged which of two target lines was below a black bar cue (Experiment 3). The results favored and analog positional discriminability model over a serial ends-inward scanning model. The positional discriminability model was proposed as a "core model" for the processes involved in judging relative order or magnitude in the domains of memory and perception.

  9. Centering, Scale Indeterminacy, and Differential Item Functioning Detection in Hierarchical Generalized Linear and Generalized Linear Mixed Models

    ERIC Educational Resources Information Center

    Cheong, Yuk Fai; Kamata, Akihito

    2013-01-01

    In this article, we discuss and illustrate two centering and anchoring options available in differential item functioning (DIF) detection studies based on the hierarchical generalized linear and generalized linear mixed modeling frameworks. We compared and contrasted the assumptions of the two options, and examined the properties of their DIF…

  10. Monthly pan evaporation modeling using linear genetic programming

    NASA Astrophysics Data System (ADS)

    Guven, Aytac; Kisi, Ozgur

    2013-10-01

    This study compares the accuracy of linear genetic programming (LGP), fuzzy genetic (FG), adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and Stephens-Stewart (SS) methods in modeling pan evaporations. Monthly climatic data including solar radiation, air temperature, relative humidity, wind speed and pan evaporation from Antalya and Mersin stations, in Turkey are used in the study. The study composed of two parts. First part of the study focuses the comparison of LGP models with those of the FG, ANFIS, ANN and SS models in estimating pan evaporations of Antalya and Mersin stations, separately. From the comparison results, the LGP models are found to be better than the other models. Comparison of LGP models with the other models in estimating pan evaporations of the Mersin Station by using both stations' inputs is focused in the second part of the study. The results indicate that the LGP models better accuracy than the FG, ANFIS, ANN and SS models. It is seen that the pan evaporations can be successfully estimated by the LGP method.

  11. Linear plasmids mobilize linear but not circular chromosomes in Streptomyces: support for the 'end first' model of conjugal transfer.

    PubMed

    Lee, Hsuan-Hsuan; Hsu, Chin-Chen; Lin, Yen-Ling; Chen, Carton W

    2011-09-01

    Gram-positive bacteria of the genus Streptomyces possess linear chromosomes and linear plasmids capped by terminal proteins covalently bound to the 5' ends of the DNA. The linearity of Streptomyces chromosomes raises the question of how they are transferred during conjugation, particularly when the mobilizing plasmids are also linear. The classical rolling circle replication model for transfer of circular plasmids and chromosomes from an internal origin cannot be applied to this situation. Instead it has been proposed that linear Streptomyces plasmids mobilize themselves and the linear chromosomes from their telomeres using terminal-protein-primed DNA synthesis. In support of this 'end first' model, we found that artificially circularized Streptomyces chromosomes could not be mobilized by linear plasmids (SLP2 and SCP1), while linear chromosomes could. In comparison, a circular plasmid (pIJ303) could mobilize both circular and linear chromosomes at the same efficiencies. Interestingly, artificially circularized SLP2 exhibited partial self-transfer capability, indicating that, being a composite replicon, it may have acquired the additional internal origin of transfer from an ancestral circular plasmid during evolution.

  12. GENERALIZED PARTIALLY LINEAR MIXED-EFFECTS MODELS INCORPORATING MISMEASURED COVARIATES

    PubMed Central

    Liang, Hua

    2009-01-01

    In this article we consider a semiparametric generalized mixed-effects model, and propose combining local linear regression, and penalized quasilikelihood and local quasilikelihood techniques to estimate both population and individual parameters and nonparametric curves. The proposed estimators take into account the local correlation structure of the longitudinal data. We establish normality for the estimators of the parameter and asymptotic expansion for the estimators of the nonparametric part. For practical implementation, we propose an appropriate algorithm. We also consider the measurement error problem in covariates in our model, and suggest a strategy for adjusting the effects of measurement errors. We apply the proposed models and methods to study the relation between virologic and immunologic responses in AIDS clinical trials, in which virologic response is classified into binary variables. A dataset from an AIDS clinical study is analyzed. PMID:20160899

  13. Linear mixing model applied to AVHRR LAC data

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.

  14. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large

  15. Linear Response Screening Models for Dense, Strongly-Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Stanton, Liam; Murillo, Michael; Benage, John; Graziani, Frank

    2011-10-01

    Needs for accurate EOS and transport models of warm/hot dense matter have increased with the advent of new experiments that are able to more accurately probe these areas of phase-space. Molecular dynamics (MD) methods are often used for this, as they are apt for strongly-coupled systems. Unfortunately, the traditional Coulomb and Yukawa pair-potentials begin to fail at lower temperatures as degeneracy effects of the electron gas arise, and a more sophisticated treatment is required. We present a class of effective ion-ion interactions derived within the framework of linear response, which go beyond screening in the long-wavelength limit. These new potentials not only improve the accuracy of screening effects without contributing to the computational complexity of the model, but they also add physics entirely missing from Yukawa models (such as the onset of Friedel oscillations). Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-490713.

  16. Accelerating transient simulation of linear reduced order models.

    SciTech Connect

    Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

    2011-10-01

    Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

  17. An Adaptive Sequential Design for Model Discrimination and Parameter Estimation in Non-Linear Nested Models

    SciTech Connect

    Tommasi, C.; May, C.

    2010-09-30

    The DKL-optimality criterion has been recently proposed for the dual problem of model discrimination and parameter estimation, for the case of two rival models. A sequential version of the DKL-optimality criterion is herein proposed in order to discriminate and efficiently estimate more than two nested non-linear models. Our sequential method is inspired by the procedure of Biswas and Chaudhuri (2002), which is however useful only in the set up of nested linear models.

  18. Decoding coalescent hidden Markov models in linear time

    PubMed Central

    Harris, Kelley; Sheehan, Sara; Kamm, John A.; Song, Yun S.

    2014-01-01

    In many areas of computational biology, hidden Markov models (HMMs) have been used to model local genomic features. In particular, coalescent HMMs have been used to infer ancient population sizes, migration rates, divergence times, and other parameters such as mutation and recombination rates. As more loci, sequences, and hidden states are added to the model, however, the runtime of coalescent HMMs can quickly become prohibitive. Here we present a new algorithm for reducing the runtime of coalescent HMMs from quadratic in the number of hidden time states to linear, without making any additional approximations. Our algorithm can be incorporated into various coalescent HMMs, including the popular method PSMC for inferring variable effective population sizes. Here we implement this algorithm to speed up our demographic inference method diCal, which is equivalent to PSMC when applied to a sample of two haplotypes. We demonstrate that the linear-time method can reconstruct a population size change history more accurately than the quadratic-time method, given similar computation resources. We also apply the method to data from the 1000 Genomes project, inferring a high-resolution history of size changes in the European population. PMID:25340178

  19. Markov-random-field modeling for linear seismic tomography.

    PubMed

    Kuwatani, Tatsu; Nagata, Kenji; Okada, Masato; Toriumi, Mitsuhiro

    2014-10-01

    We apply the Markov-random-field model to linear seismic tomography and propose a method to estimate the hyperparameters for the smoothness and the magnitude of the noise. Optimal hyperparameters can be determined analytically by minimizing the free energy function, which is defined by marginalizing the evaluation function. In synthetic inversion tests under various settings, the assumed velocity structures are successfully reconstructed, which shows the effectiveness and robustness of the proposed method. The proposed mathematical framework can be applied to inversion problems in various fields in the natural sciences.

  20. Markov-random-field modeling for linear seismic tomography

    NASA Astrophysics Data System (ADS)

    Kuwatani, Tatsu; Nagata, Kenji; Okada, Masato; Toriumi, Mitsuhiro

    2014-10-01

    We apply the Markov-random-field model to linear seismic tomography and propose a method to estimate the hyperparameters for the smoothness and the magnitude of the noise. Optimal hyperparameters can be determined analytically by minimizing the free energy function, which is defined by marginalizing the evaluation function. In synthetic inversion tests under various settings, the assumed velocity structures are successfully reconstructed, which shows the effectiveness and robustness of the proposed method. The proposed mathematical framework can be applied to inversion problems in various fields in the natural sciences.

  1. Waste management under multiple complexities: inexact piecewise-linearization-based fuzzy flexible programming.

    PubMed

    Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen

    2012-06-01

    To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. PMID:22370050

  2. Waste management under multiple complexities: inexact piecewise-linearization-based fuzzy flexible programming.

    PubMed

    Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen

    2012-06-01

    To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.

  3. Time series models based on generalized linear models: some further results.

    PubMed

    Li, W K

    1994-06-01

    This paper considers the problem of extending the classical moving average models to time series with conditional distributions given by generalized linear models. These models have the advantage of easy construction and estimation. Statistical modelling techniques are also proposed. Some simulation results and an illustrative example are reported to illustrate the methodology. The models will have potential applications in longitudinal data analysis. PMID:8068850

  4. A note on a model for quay crane scheduling with non-crossing constraints

    NASA Astrophysics Data System (ADS)

    Santini, Alberto; Alsing Friberg, Henrik; Ropke, Stefan

    2015-06-01

    This article studies the quay crane scheduling problem with non-crossing constraints, which is an operational problem that arises in container terminals. An enhancement to a mixed integer programming model for the problem is proposed and a new class of valid inequalities is introduced. Computational results show the effectiveness of these enhancements in solving the problem to optimality.

  5. Stratospheric ozone time series analysis using dynamical linear models

    NASA Astrophysics Data System (ADS)

    Laine, Marko; Kyrölä, Erkki

    2013-04-01

    We describe a hierarchical statistical state space model for ozone profile time series. The time series are from satellite measurements by the SAGE II and GOMOS instruments spanning years 1984-2012. The original data sets are combined and gridded monthly using 10 degree latitude bands, and covering 20-60 km with 1 km vertical spacing. Model components include level, trend, seasonal effect with solar activity, and quasi biennial oscillations as proxy variables. A typical feature of an atmospheric time series is that they are not stationary but exhibit both slowly varying and abrupt changes in the distributional properties. These are caused by external forcing such as changes in the solar activity or volcanic eruptions. Further, the data sampling is often nonuniform, there are data gaps, and the uncertainty of the observations can vary. When observations are combined from various sources there will be instrument and retrieval method related biases. The differences in sampling lead also to uncertainties. Standard classical ARIMA type of statistical time series methods are mostly useless for atmospheric data. A more general approach makes use of dynamical linear models and Kalman filter type of sequential algorithms. These state space models assume a linear relationship between the unknown state of the system and the observations and for the process evolution of the hidden states. They are still flexible enough to model both smooth trends and sudden changes. The above mentioned methodological challenges are discussed, together with analysis of change points in trends related to recovery of stratospheric ozone. This work is part of the ESA SPIN and ozone CCI projects.

  6. Non-Linear Slosh Damping Model Development and Validation

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  7. Acoustic FMRI noise: linear time-invariant system model.

    PubMed

    Rizzo Sierra, Carlos V; Versluis, Maarten J; Hoogduin, Johannes M; Duifhuis, Hendrikus Diek

    2008-09-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic noise is a useful step to its reduction. To study acoustic noise, the MR scanner is modeled as a linear electroacoustical system generating sound pressure signals proportional to the time derivative of the input gradient currents. The transfer function of one MR scanner is determined for two different input specifications: 1) by using the gradient waveform calculated by the scanner software and 2) by using a recording of the gradient current. Up to 4 kHz, the first method is shown as reliable as the second one, and its use is encouraged when direct measurements of gradient currents are not possible. Additionally, the linear order and average damping properties of the gradient coil system are determined by impulse response analysis. Since fMRI is often based on echo planar imaging (EPI) sequences, a useful validation of the transfer function prediction ability can be obtained by calculating the acoustic output for the EPI sequence. We found a predicted sound pressure level (SPL) for the EPI sequence of 104 dB SPL compared to a measured value of 102 dB SPL. As yet, the predicted EPI pressure waveform shows similarity as well as some differences with the directly measured EPI pressure waveform.

  8. Linear versus quadratic portfolio optimization model with transaction cost

    NASA Astrophysics Data System (ADS)

    Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah

    2014-06-01

    Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.

  9. Some generalisations of linear-graph modelling for dynamic systems

    NASA Astrophysics Data System (ADS)

    de Silva, Clarence W.; Pourazadi, Shahram

    2013-11-01

    Proper modelling of a dynamic system can benefit analysis, simulation, design, evaluation and control of the system. The linear-graph (LG) approach is suitable for modelling lumped-parameter dynamic systems. By using the concepts of graph trees, it provides a graphical representation of the system, with a direct correspondence to the physical component topology. This paper systematically extends the application of LGs to multi-domain (mixed-domain or multi-physics) dynamic systems by presenting a unified way to represent different domains - mechanical, electrical, thermal and fluid. Preservation of the structural correspondence across domains is a particular advantage of LGs when modelling mixed-domain systems. The generalisation of Thevenin and Norton equivalent circuits to mixed-domain systems, using LGs, is presented. The structure of an LG model may follow a specific pattern. Vector LGs are introduced to take advantage of such patterns, giving a general LG representation for them. Through these vector LGs, the model representation becomes simpler and rather compact, both topologically and parametrically. A new single LG element is defined to facilitate the modelling of distributed-parameter (DP) systems. Examples are presented using multi-domain systems (a motion-control system and a flow-controlled pump), a multi-body mechanical system (robot manipulator) and DP systems (structural rods) to illustrate the application and advantages of the methodologies developed in the paper.

  10. Linear models of acoustic waves in sunspot umbrae

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Leibacher, J. W.

    1984-01-01

    The two-dimensional, linear hydrodynamics of quiet solar and umbral model atmospheres in a plane-parallel, adiabatic approximation are investigated. The 5.5-8.5 mHz oscillations observed in umbral chromospheres and transition regions are interpreted as acoustic waves propagating parallel, or nearly parallel, to the temperature gradient. These waves are not totally internally reflected by the steep temperature gradient and, thus, are not trapped. Partial reflections, however, are effective in modulating the transmission as a function of frequency. The resonant transmission mechanism of Zugzda, Locans, and Staude (1983) is found to produce a spectrum of resonances in the transmission of acoustic waves in any atmosphere with a temperature minimum. Since the observed umbral oscillations display power in only a narrow range of frequencies, characteristics of the umbral models, wave propagation, and observations that would tend to suppress the higher frequency resonances are examined.

  11. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  12. Linear mixing model applied to coarse resolution satellite data

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  13. Linear-Nonlinear-Poisson models of primate choice dynamics.

    PubMed

    Corrado, Greg S; Sugrue, Leo P; Seung, H Sebastian; Newsome, William T

    2005-11-01

    The equilibrium phenomenon of matching behavior traditionally has been studied in stationary environments. Here we attempt to uncover the local mechanism of choice that gives rise to matching by studying behavior in a highly dynamic foraging environment. In our experiments, 2 rhesus monkeys (Macacca mulatta) foraged for juice rewards by making eye movements to one of two colored icons presented on a computer monitor, each rewarded on dynamic variable-interval schedules. Using a generalization of Wiener kernel analysis, we recover a compact mechanistic description of the impact of past reward on future choice in the form of a Linear-Nonlinear-Poisson model. We validate this model through rigorous predictive and generative testing. Compared to our earlier work with this same data set, this model proves to be a better description of choice behavior and is more tightly correlated with putative neural value signals. Refinements over previous models include hyperbolic (as opposed to exponential) temporal discounting of past rewards, and differential (as opposed to fractional) comparisons of option value. Through numerical simulation we find that within this class of strategies, the model parameters employed by animals are very close to those that maximize reward harvesting efficiency.

  14. Electroweak corrections and unitarity in linear moose models

    SciTech Connect

    Chivukula, R. Sekhar; Simmons, Elizabeth H.; He, H.-J.; Kurachi, Masafumi; Tanabashi, Masaharu

    2005-02-01

    We calculate the form of the corrections to the electroweak interactions in the class of Higgsless models which can be deconstructed to a chain of SU(2) gauge groups adjacent to a chain of U(1) gauge groups, and with the fermions coupled to any single SU(2) group and to any single U(1) group along the chain. The primary advantage of our technique is that the size of corrections to electroweak processes can be directly related to the spectrum of vector bosons ('KK modes'). In Higgsless models, this spectrum is constrained by unitarity. Our methods also allow for arbitrary background 5D geometry, spatially dependent gauge-couplings, and brane kinetic energy terms. We find that, due to the size of corrections to electroweak processes in any unitary theory, Higgsless models with localized fermions are disfavored by precision electroweak data. Although we stress our results as they apply to continuum Higgsless 5D models, they apply to any linear moose model including those with only a few extra vector bosons. Our calculations of electroweak corrections also apply directly to the electroweak gauge sector of 5D theories with a bulk scalar Higgs boson; the constraints arising from unitarity do not apply in this case.

  15. Contribution to experimental validation of linear and non-linear dynamic models for representing rotor-blade parametric coupled vibrations

    NASA Astrophysics Data System (ADS)

    Santos, I. F.; Saracho, C. M.; Smith, J. T.; Eiland, J.

    2004-04-01

    This work makes a theoretical and experimental contribution to the problem of rotor-blades dynamic interaction. A validation procedure of mathematical models is carried out with the help of a simple test rig, built by a mass-spring system attached to four flexible rotating blades. With this test rig, it is possible to highlight some dynamic effects and experimentally simulate the structural behaviour of a windmill in two dimensions (2-D model). Only lateral displacement of the rotor in the horizontal direction is taken into account. Gyroscopic effect due to angular vibrations of the rotor is eliminated in the test rig by attaching the rigid rotor to a flexible foundation. The blades are modelled as Euler-Bernoulli beams. Using three different approaches to describe the beam deformation one achieves: (a) a linear model; (b) a linear beam model with second order terms; (c) a fully non-linear model. Tip masses at the end of the blades emphasize the coupling between the dynamic and elastic terms. The shape functions are chosen in order to reduce the mathematical model, so that only the first bending mode of the beam is taken into account. The resulting equations of motion have five degrees of freedom and illustrate linear, non-linear and time-dependent terms in a very transparent way. Although neither gyroscopic effect due to rotor angular vibrations nor higher blade mode shapes are considered in the analysis, the equations of motion of the rotor-blades system are still general enough for the purpose of the work: validation of different linear and non-linear models with time dependent (periodic) coefficients. Experiments are carried out in the time and frequency domains while the rotor operates with different constant angular velocities.

  16. Linearization of the full activated sludge model No 1 for interaction analysis.

    PubMed

    Benhalla, Abdelhay; Houssou, Mohamed; Charif, Moussa

    2010-08-01

    This paper deals with the linearization of the full activated sludge model No 1 (ASM1) in the scope of interaction analysis. For consistency, the linearization procedure is developed and validated within the BSM1 simulation benchmark framework. It is based on reaction rate approximation by linear combinations of states. The linear rate models are identified and incorporated in the mass balance equations, yielding a linear locally equivalent to the ASM1 model. Linear models for anoxic and aerated compartments are proposed. It is observed that the presented models track very closely the nonlinear ASM1 responses to various influent data. The key feature of this linearization strategy is that the gotten linear version of the ASM1 model is linear time invariant (LTI) and that it conserves the states biological interpretation and the original ASM1 dimension. It allows, therefore, application of interaction analysis methods and makes it possible to determine motivated control configurations for the ASM1 model. PMID:20131068

  17. Linear mixed-effects modeling approach to FMRI group analysis

    PubMed Central

    Chen, Gang; Saad, Ziad S.; Britton, Jennifer C.; Pine, Daniel S.; Cox, Robert W.

    2013-01-01

    Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance–covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance–covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the

  18. Selection between Linear Factor Models and Latent Profile Models Using Conditional Covariances

    ERIC Educational Resources Information Center

    Halpin, Peter F.; Maraun, Michael D.

    2010-01-01

    A method for selecting between K-dimensional linear factor models and (K + 1)-class latent profile models is proposed. In particular, it is shown that the conditional covariances of observed variables are constant under factor models but nonlinear functions of the conditioning variable under latent profile models. The performance of a convenient…

  19. Feedbacks, climate sensitivity, and the limits of linear models

    NASA Astrophysics Data System (ADS)

    Rugenstein, M.; Knutti, R.

    2015-12-01

    The term "feedback" is used ubiquitously in climate research, but implies varied meanings in different contexts. From a specific process that locally affects a quantity, to a formal framework that attempts to determine a global response to a forcing, researchers use this term to separate, simplify, and quantify parts of the complex Earth system. We combine large (>120 member) ensemble GCM and EMIC step forcing simulations over a broad range of forcing levels with a historical and educational perspective to organize existing ideas around feedbacks and linear forcing-feedback models. With a new method overcoming internal variability and initial condition problems we quantify the non-constancy of the climate feedback parameter. Our results suggest a strong state- and forcing-dependency of feedbacks, which is not considered appropriately in many studies. A non-constant feedback factor likely explains some of the differences in estimates of equilibrium climate sensitivity from different methods and types of data. We discuss implications for the definition of the forcing term and its various adjustments. Clarifying the value and applicability of the linear forcing feedback framework and a better quantification of feedbacks on various timescales and spatial scales remains a high priority in order to better understand past and predict future changes in the climate system.

  20. Forecasting Groundwater Temperature with Linear Regression Models Using Historical Data.

    PubMed

    Figura, Simon; Livingstone, David M; Kipfer, Rolf

    2015-01-01

    Although temperature is an important determinant of many biogeochemical processes in groundwater, very few studies have attempted to forecast the response of groundwater temperature to future climate warming. Using a composite linear regression model based on the lagged relationship between historical groundwater and regional air temperature data, empirical forecasts were made of groundwater temperature in several aquifers in Switzerland up to the end of the current century. The model was fed with regional air temperature projections calculated for greenhouse-gas emissions scenarios A2, A1B, and RCP3PD. Model evaluation revealed that the approach taken is adequate only when the data used to calibrate the models are sufficiently long and contain sufficient variability. These conditions were satisfied for three aquifers, all fed by riverbank infiltration. The forecasts suggest that with respect to the reference period 1980 to 2009, groundwater temperature in these aquifers will most likely increase by 1.1 to 3.8 K by the end of the current century, depending on the greenhouse-gas emissions scenario employed. PMID:25412761

  1. Forecasting Groundwater Temperature with Linear Regression Models Using Historical Data.

    PubMed

    Figura, Simon; Livingstone, David M; Kipfer, Rolf

    2015-01-01

    Although temperature is an important determinant of many biogeochemical processes in groundwater, very few studies have attempted to forecast the response of groundwater temperature to future climate warming. Using a composite linear regression model based on the lagged relationship between historical groundwater and regional air temperature data, empirical forecasts were made of groundwater temperature in several aquifers in Switzerland up to the end of the current century. The model was fed with regional air temperature projections calculated for greenhouse-gas emissions scenarios A2, A1B, and RCP3PD. Model evaluation revealed that the approach taken is adequate only when the data used to calibrate the models are sufficiently long and contain sufficient variability. These conditions were satisfied for three aquifers, all fed by riverbank infiltration. The forecasts suggest that with respect to the reference period 1980 to 2009, groundwater temperature in these aquifers will most likely increase by 1.1 to 3.8 K by the end of the current century, depending on the greenhouse-gas emissions scenario employed.

  2. A linear geospatial streamflow modeling system for data sparse environments

    USGS Publications Warehouse

    Asante, Kwabena O.; Arlan, Guleid A.; Pervez, Md Shahriar; Rowland, James

    2008-01-01

    In many river basins around the world, inaccessibility of flow data is a major obstacle to water resource studies and operational monitoring. This paper describes a geospatial streamflow modeling system which is parameterized with global terrain, soils and land cover data and run operationally with satellite‐derived precipitation and evapotranspiration datasets. Simple linear methods transfer water through the subsurface, overland and river flow phases, and the resulting flows are expressed in terms of standard deviations from mean annual flow. In sample applications, the modeling system was used to simulate flow variations in the Congo, Niger, Nile, Zambezi, Orange and Lake Chad basins between 1998 and 2005, and the resulting flows were compared with mean monthly values from the open‐access Global River Discharge Database. While the uncalibrated model cannot predict the absolute magnitude of flow, it can quantify flow anomalies in terms of relative departures from mean flow. Most of the severe flood events identified in the flow anomalies were independently verified by the Dartmouth Flood Observatory (DFO) and the Emergency Disaster Database (EM‐DAT). Despite its limitations, the modeling system is valuable for rapid characterization of the relative magnitude of flood hazards and seasonal flow changes in data sparse settings.

  3. Optimization in generalized linear models: A case study

    NASA Astrophysics Data System (ADS)

    Silva, Eliana Costa e.; Correia, Aldina; Lopes, Isabel Cristina

    2016-06-01

    The maximum likelihood method is usually chosen to estimate the regression parameters of Generalized Linear Models (GLM) and also for hypothesis testing and goodness of fit tests. The classical method for estimating GLM parameters is the Fisher scores. In this work we propose to compute the estimates of the parameters with two alternative methods: a derivative-based optimization method, namely the BFGS method which is one of the most popular of the quasi-Newton algorithms, and the PSwarm derivative-free optimization method that combines features of a pattern search optimization method with a global Particle Swarm scheme. As a case study we use a dataset of biological parameters (phytoplankton) and chemical and environmental parameters of the water column of a Portuguese reservoir. The results show that, for this dataset, BFGS and PSwarm methods provided a better fit, than Fisher scores method, and can be good alternatives for finding the estimates for the parameters of a GLM.

  4. Preconditioning the bidomain model with almost linear complexity

    NASA Astrophysics Data System (ADS)

    Pierre, Charles

    2012-01-01

    The bidomain model is widely used in electro-cardiology to simulate spreading of excitation in the myocardium and electrocardiograms. It consists of a system of two parabolic reaction diffusion equations coupled with an ODE system. Its discretisation displays an ill-conditioned system matrix to be inverted at each time step: simulations based on the bidomain model therefore are associated with high computational costs. In this paper we propose a preconditioning for the bidomain model either for an isolated heart or in an extended framework including a coupling with the surrounding tissues (the torso). The preconditioning is based on a formulation of the discrete problem that is shown to be symmetric positive semi-definite. A block LU decomposition of the system together with a heuristic approximation (referred to as the monodomain approximation) are the key ingredients for the preconditioning definition. Numerical results are provided for two test cases: a 2D test case on a realistic slice of the thorax based on a segmented heart medical image geometry, a 3D test case involving a small cubic slab of tissue with orthotropic anisotropy. The analysis of the resulting computational cost (both in terms of CPU time and of iteration number) shows an almost linear complexity with the problem size, i.e. of type nlog α( n) (for some constant α) which is optimal complexity for such problems.

  5. A linear city model with asymmetric consumer distribution.

    PubMed

    Azar, Ofer H

    2015-01-01

    The article analyzes a linear-city model where the consumer distribution can be asymmetric, which is important because in real markets this distribution is often asymmetric. The model yields equilibrium price differences, even though the firms' costs are equal and their locations are symmetric (at the two endpoints of the city). The equilibrium price difference is proportional to the transportation cost parameter and does not depend on the good's cost. The firms' markups are also proportional to the transportation cost. The two firms' prices will be equal in equilibrium if and only if half of the consumers are located to the left of the city's midpoint, even if other characteristics of the consumer distribution are highly asymmetric. An extension analyzes what happens when the firms have different costs and how the two sources of asymmetry - the consumer distribution and the cost per unit - interact together. The model can be useful as a tool for further development by other researchers interested in applying this simple yet flexible framework for the analysis of various topics.

  6. A Linear City Model with Asymmetric Consumer Distribution

    PubMed Central

    Azar, Ofer H.

    2015-01-01

    The article analyzes a linear-city model where the consumer distribution can be asymmetric, which is important because in real markets this distribution is often asymmetric. The model yields equilibrium price differences, even though the firms’ costs are equal and their locations are symmetric (at the two endpoints of the city). The equilibrium price difference is proportional to the transportation cost parameter and does not depend on the good's cost. The firms' markups are also proportional to the transportation cost. The two firms’ prices will be equal in equilibrium if and only if half of the consumers are located to the left of the city’s midpoint, even if other characteristics of the consumer distribution are highly asymmetric. An extension analyzes what happens when the firms have different costs and how the two sources of asymmetry – the consumer distribution and the cost per unit – interact together. The model can be useful as a tool for further development by other researchers interested in applying this simple yet flexible framework for the analysis of various topics. PMID:26034984

  7. Bayesian Inference for Generalized Linear Models for Spiking Neurons

    PubMed Central

    Gerwinn, Sebastian; Macke, Jakob H.; Bethge, Matthias

    2010-01-01

    Generalized Linear Models (GLMs) are commonly used statistical methods for modelling the relationship between neural population activity and presented stimuli. When the dimension of the parameter space is large, strong regularization has to be used in order to fit GLMs to datasets of realistic size without overfitting. By imposing properly chosen priors over parameters, Bayesian inference provides an effective and principled approach for achieving regularization. Here we show how the posterior distribution over model parameters of GLMs can be approximated by a Gaussian using the Expectation Propagation algorithm. In this way, we obtain an estimate of the posterior mean and posterior covariance, allowing us to calculate Bayesian confidence intervals that characterize the uncertainty about the optimal solution. From the posterior we also obtain a different point estimate, namely the posterior mean as opposed to the commonly used maximum a posteriori estimate. We systematically compare the different inference techniques on simulated as well as on multi-electrode recordings of retinal ganglion cells, and explore the effects of the chosen prior and the performance measure used. We find that good performance can be achieved by choosing an Laplace prior together with the posterior mean estimate. PMID:20577627

  8. Comparison of Linear and Non-Linear Regression Models to Estimate Leaf Area Index of Dryland Shrubs.

    NASA Astrophysics Data System (ADS)

    Dashti, H.; Glenn, N. F.; Ilangakoon, N. T.; Mitchell, J.; Dhakal, S.; Spaete, L.

    2015-12-01

    Leaf area index (LAI) is a key parameter in global ecosystem studies. LAI is considered a forcing variable in land surface processing models since ecosystem dynamics are highly correlated to LAI. In response to environmental limitations, plants in semiarid ecosystems have smaller leaf area, making accurate estimation of LAI by remote sensing a challenging issue. Optical remote sensing (400-2500 nm) techniques to estimate LAI are based either on radiative transfer models (RTMs) or statistical approaches. Considering the complex radiation field of dry ecosystems, simple 1-D RTMs lead to poor results, and on the other hand, inversion of more complex 3-D RTMs is a demanding task which requires the specification of many variables. A good alternative to physical approaches is using methods based on statistics. Similar to many natural phenomena, there is a non-linear relationship between LAI and top of canopy electromagnetic waves reflected to optical sensors. Non-linear regression models can better capture this relationship. However, considering the problem of a few numbers of observations in comparison to the feature space (nmodels will not necessarily outperform the more simple linear models. In this study linear versus non-linear regression techniques were investigated to estimate LAI. Our study area is located in southwestern Idaho, Great Basin. Sagebrush (Artemisia tridentata spp) serves a critical role in maintaining the structure of this ecosystem. Using a leaf area meter (Accupar LP-80), LAI values were measured in the field. Linear Partial Least Square regression and non-linear, tree based Random Forest regression have been implemented to estimate the LAI of sagebrush from hyperspectral data (AVIRIS-ng) collected in late summer 2014. Cross validation of results indicate that PLS can provide comparable results to Random Forest.

  9. a Linear Model for Meandering Rivers with Arbitrarily Varying Width

    NASA Astrophysics Data System (ADS)

    Frascati, A.; Lanzoni, S.

    2011-12-01

    Alluvial rivers usually exhibit quite complex planforms, characterized by a wide variety of alternating bends, that have attracted the interest of a large number of researchers. Much less attention has been paid to another striking feature observed in alluvial rivers, namely the relatively regular spatial variations attained by the channel width. Actively meandering channels, in fact, generally undergo spatial oscillations systematically correlated with channel curvature, with cross sections wider at bends than at crossings. Some other streams have been observed to exhibit irregular width variations. Conversely, rivers flowing in highly vegetated flood plains, i.e. canaliform rivers, may exhibit an opposite behavior, owing to the combined effects of bank erodibility and floodplain depositional processes which, in turn, are strictly linked to vegetation cover. Similarly to streamline curvatures induced by bends, the presence of along channel width variations may have remarkable effects on the flow field and sediment dynamics and, thereby, on the equilibrium river bed configuration. In particular, spatial distribution of channel curvature typically determines the formation of a rhythmic bar-pool pattern in the channel bed strictly associated with the development of river meanders. Channel width variations are on the contrary characterized by a sequence of narrowing, yielding a central scour, alternated to the downstream development of a widening associated with the formation of a central bar. Here we present a morphodynamic model that predict at a linear level the spatial distribution of the flow field and the equilibrium bed configuration of an alluvial river characterized by arbitrary along channel distributions of both the channel axis curvature and the channel width. The mathematical model is averaged over the depth and describes the steady, non-uniform flow and sediment transport in sinuous channels with a noncohesive bed. The governing two-dimensional equations

  10. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

    2011-07-01

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  11. On the Relation between the Linear Factor Model and the Latent Profile Model

    ERIC Educational Resources Information Center

    Halpin, Peter F.; Dolan, Conor V.; Grasman, Raoul P. P. P.; De Boeck, Paul

    2011-01-01

    The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do not yield equivalent estimates of the…

  12. Development and validation of a general purpose linearization program for rigid aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Antoniewicz, R. F.

    1985-01-01

    A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.

  13. Development and validation of a general purpose linearization program for rigid aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Antoniewicz, R. F.

    1985-01-01

    This paper discusses a FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high-performance aircraft.

  14. Misuse of Linear Models: Understanding Community Linkages in Family Adaptation to Unexpected Death.

    ERIC Educational Resources Information Center

    Murray, Colleen I.; Galligan, Richard J.

    In research, the use of linear additive methods is expedient when prediction is the goal; however, when understanding is the goal, an exploration of non-linear multiplicative procedures is more appropriate. To compare the results of linear and non-linear models, data obtained from a survey of 35 bereaved mothers were compared using scattergrams,…

  15. Performance Models for the Spike Banded Linear System Solver

    DOE PAGES

    Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; Grama, Ananth

    2011-01-01

    With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated

  16. Fourth standard model family neutrino at future linear colliders

    SciTech Connect

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

    2005-09-01

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.

  17. Sensitivity Analysis of Parameters in Linear-Quadratic Radiobiologic Modeling

    SciTech Connect

    Fowler, Jack F.

    2009-04-01

    Purpose: Radiobiologic modeling is increasingly used to estimate the effects of altered treatment plans, especially for dose escalation. The present article shows how much the linear-quadratic (LQ) (calculated biologically equivalent dose [BED] varies when individual parameters of the LQ formula are varied by {+-}20% and by 1%. Methods: Equivalent total doses (EQD2 = normalized total doses (NTD) in 2-Gy fractions for tumor control, acute mucosal reactions, and late complications were calculated using the linear- quadratic formula with overall time: BED = nd (1 + d/ [{alpha}/{beta}]) - log{sub e}2 (T - Tk) / {alpha}Tp, where BED is BED = total dose x relative effectiveness (RE = nd (1 + d/ [{alpha}/{beta}]). Each of the five biologic parameters in turn was altered by {+-}10%, and the altered EQD2s tabulated; the difference was finally divided by 20. EQD2 or NTD is obtained by dividing BED by the RE for 2-Gy fractions, using the appropriate {alpha}/{beta} ratio. Results: Variations in tumor and acute mucosal EQD ranged from 0.1% to 0.45% per 1% change in each parameter for conventional schedules, the largest variation being caused by overall time. Variations in 'late' EQD were 0.4% to 0.6% per 1% change in the only biologic parameter, the {alpha}/{beta} ratio. For stereotactic body radiotherapy schedules, variations were larger, up to 0.6 to 0.9 for tumor and 1.6% to 1.9% for late, per 1% change in parameter. Conclusions: Robustness occurs similar to that of equivalent uniform dose (EUD), for the same reasons. Total dose, dose per fraction, and dose-rate cause their major effects, as well known.

  18. Linear System Models for Ultrasonic Imaging: Application to Signal Statistics

    PubMed Central

    Zemp, Roger J.; Abbey, Craig K.; Insana, Michael F.

    2009-01-01

    Linear equations for modeling echo signals from shift-variant systems forming ultrasonic B-mode, Doppler, and strain images are analyzed and extended. The approach is based on a solution to the homogeneous wave equation for random inhomogeneous media. When the system is shift-variant, the spatial sensitivity function—defined as a spatial weighting function that determines the scattering volume for a fixed point of time—has advantages over the point-spread function traditionally used to analyze ultrasound systems. Spatial sensitivity functions are necessary for determining statistical moments in the context of rigorous image quality assessment, and they are time-reversed copies of point-spread functions for shift variant systems. A criterion is proposed to assess the validity of a local shift-invariance assumption. The analysis reveals realistic situations in which in-phase signals are correlated to the corresponding quadrature signals, which has strong implications for assessing lesion detectability. Also revealed is an opportunity to enhance near- and far-field spatial resolution by matched filtering unfocused beams. The analysis connects several well-known approaches to modeling ultrasonic echo signals. PMID:12839176

  19. Estimating population trends with a linear model: technical comments

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.; Royle, J. Andrew

    2004-01-01

    Controversy has sometimes arisen over whether there is a need to accommodate the limitations of survey design in estimating population change from the count data collected in bird surveys. Analyses of surveys such as the North American Breeding Bird Survey (BBS) can be quite complex; it is natural to ask if the complexity is necessary, or whether the statisticians have run amok. Bart et al. (2003) propose a very simple analysis involving nothing more complicated than simple linear regression, and contrast their approach with model-based procedures. We review the assumptions implicit to their proposed method, and document that these assumptions are unlikely to be valid for surveys such as the BBS. One fundamental limitation of a purely design-based approach is the absence of controls for factors that influence detection of birds at survey sites. We show that failure to model observer effects in survey data leads to substantial bias in estimation of population trends from BBS data for the 20 species that Bart et al. (2003) used as the basis of their simulations. Finally, we note that the simulations presented in Bart et al. (2003) do not provide a useful evaluation of their proposed method, nor do they provide a valid comparison to the estimating- equations alternative they consider.

  20. Stochastic linear hybrid systems: Modeling, estimation, and application

    NASA Astrophysics Data System (ADS)

    Seah, Chze Eng

    Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

  1. Understanding cardiac alternans: A piecewise linear modeling framework

    NASA Astrophysics Data System (ADS)

    Thul, R.; Coombes, S.

    2010-12-01

    Cardiac alternans is a beat-to-beat alternation in action potential duration (APD) and intracellular calcium (Ca2+) cycling seen in cardiac myocytes under rapid pacing that is believed to be a precursor to fibrillation. The cellular mechanisms of these rhythms and the coupling between cellular Ca2+ and voltage dynamics have been extensively studied leading to the development of a class of physiologically detailed models. These have been shown numerically to reproduce many of the features of myocyte response to pacing, including alternans, and have been analyzed mathematically using various approximation techniques that allow for the formulation of a low dimensional map to describe the evolution of APDs. The seminal work by Shiferaw and Karma is of particular interest in this regard [Shiferaw, Y. and Karma, A., "Turing instability mediated by voltage and calcium diffusion in paced cardiac cells," Proc. Natl. Acad. Sci. U.S.A. 103, 5670-5675 (2006)]. Here, we establish that the key dynamical behaviors of the Shiferaw-Karma model are arranged around a set of switches. These are shown to be the main elements for organizing the nonlinear behavior of the model. Exploiting this observation, we show that a piecewise linear caricature of the Shiferaw-Karma model, with a set of appropriate switching manifolds, can be constructed that preserves the physiological interpretation of the original model while being amenable to a systematic mathematical analysis. In illustration of this point, we formulate the dynamics of Ca2+ cycling (in response to pacing) and compute the properties of periodic orbits in terms of a stroboscopic map that can be constructed without approximation. Using this, we show that alternans emerge via a period-doubling instability and track this bifurcation in terms of physiologically important parameters. We also show that when coupled to a spatially extended model for Ca2+ transport, the model supports spatially varying patterns of alternans. We analyze

  2. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    PubMed

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. PMID:26774211

  3. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    PubMed

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique.

  4. Modeling Seismoacoustic Propagation from the Nonlinear to Linear Regimes

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Preston, L. A.

    2015-12-01

    Explosions at shallow depth-of-burial can cause nonlinear material response, such as fracturing and spalling, up to the ground surface above the shot point. These motions at the surface affect the generation of acoustic waves into the atmosphere, as well as the surface-reflected compressional and shear waves. Standard source scaling models for explosions do not account for such nonlinear interactions above the shot, while some recent studies introduce a non-isotropic addition to the moment tensor to represent them (e.g., Patton and Taylor, 2011). We are using Sandia's CTH shock physics code to model the material response in the vicinity of underground explosions, up to the overlying ground surface. Across a boundary where the motions have decayed to nearly linear behavior, we couple the signals from CTH into a linear finite-difference (FD) seismoacoustic code to efficiently propagate the wavefields to greater distances. If we assume only one-way transmission of energy through the boundary, then the particle velocities there suffice as inputs for the FD code, simplifying the specification of the boundary condition. The FD algorithm we use applies the wave equations for velocity in an elastic medium and pressure in an acoustic one, and matches the normal traction and displacement across the interface. Initially we are developing and testing a 2D, axisymmetric seismoacoustic routine; CTH can use this geometry in the source region as well. The Source Physics Experiment (SPE) in Nevada has collected seismic and acoustic data on numerous explosions at different scaled depths, providing an excellent testbed for investigating explosion phenomena (Snelson et al., 2013). We present simulations for shots SPE-4' and SPE-5, illustrating the importance of nonlinear behavior up to the ground surface. Our goal is to develop the capability for accurately predicting the relative signal strengths in the air and ground for a given combination of source yield and depth. Sandia National

  5. Linear multivariate evaluation models for spatial perception of soundscape.

    PubMed

    Deng, Zhiyong; Kang, Jian; Wang, Daiwei; Liu, Aili; Kang, Joe Zhengyu

    2015-11-01

    Soundscape is a sound environment that emphasizes the awareness of auditory perception and social or cultural understandings. The case of spatial perception is significant to soundscape. However, previous studies on the auditory spatial perception of the soundscape environment have been limited. Based on 21 native binaural-recorded soundscape samples and a set of auditory experiments for subjective spatial perception (SSP), a study of the analysis among semantic parameters, the inter-aural-cross-correlation coefficient (IACC), A-weighted-equal sound-pressure-level (L(eq)), dynamic (D), and SSP is introduced to verify the independent effect of each parameter and to re-determine some of their possible relationships. The results show that the more noisiness the audience perceived, the worse spatial awareness they received, while the closer and more directional the sound source image variations, dynamics, and numbers of sound sources in the soundscape are, the better the spatial awareness would be. Thus, the sensations of roughness, sound intensity, transient dynamic, and the values of Leq and IACC have a suitable range for better spatial perception. A better spatial awareness seems to promote the preference slightly for the audience. Finally, setting SSPs as functions of the semantic parameters and Leq-D-IACC, two linear multivariate evaluation models of subjective spatial perception are proposed.

  6. Linear effects models of signaling pathways from combinatorial perturbation data

    PubMed Central

    Szczurek, Ewa; Beerenwinkel, Niko

    2016-01-01

    Motivation: Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. Results: Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiae. Availability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/∼szczurek/lem. Contact: szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307630

  7. Amplitude relations in non-linear sigma model

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Du, Yi-Jian

    2014-01-01

    In this paper, we investigate tree-level scattering amplitude relations in U( N) non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24], both on-shell amplitudes and off-shell currents with odd points have to vanish under Cayley parametrization. We prove the off-shell U(1) identity and fundamental BCJ relation for even-point currents. By taking the on-shell limits of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy U(1)-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total 2 m-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.

  8. Identifying genetically driven clinical phenotypes using linear mixed models

    PubMed Central

    Mosley, Jonathan D.; Witte, John S.; Larkin, Emma K.; Bastarache, Lisa; Shaffer, Christian M.; Karnes, Jason H.; Stein, C. Michael; Phillips, Elizabeth; Hebbring, Scott J.; Brilliant, Murray H.; Mayer, John; Ye, Zhan; Roden, Dan M.; Denny, Joshua C.

    2016-01-01

    We hypothesized that generalized linear mixed models (GLMMs), which estimate the additive genetic variance underlying phenotype variability, would facilitate rapid characterization of clinical phenotypes from an electronic health record. We evaluated 1,288 phenotypes in 29,349 subjects of European ancestry with single-nucleotide polymorphism (SNP) genotyping on the Illumina Exome Beadchip. We show that genetic liability estimates are primarily driven by SNPs identified by prior genome-wide association studies and SNPs within the human leukocyte antigen (HLA) region. We identify 44 (false discovery rate q<0.05) phenotypes associated with HLA SNP variation and show that hypothyroidism is genetically correlated with Type I diabetes (rG=0.31, s.e. 0.12, P=0.003). We also report novel SNP associations for hypothyroidism near HLA-DQA1/HLA-DQB1 at rs6906021 (combined odds ratio (OR)=1.2 (95% confidence interval (CI): 1.1–1.2), P=9.8 × 10−11) and for polymyalgia rheumatica near C6orf10 at rs6910071 (OR=1.5 (95% CI: 1.3–1.6), P=1.3 × 10−10). Phenome-wide application of GLMMs identifies phenotypes with important genetic drivers, and focusing on these phenotypes can identify novel genetic associations. PMID:27109359

  9. Complex dynamics in the Oregonator model with linear delayed feedback

    NASA Astrophysics Data System (ADS)

    Sriram, K.; Bernard, S.

    2008-06-01

    The Belousov-Zhabotinsky (BZ) reaction can display a rich dynamics when a delayed feedback is applied. We used the Oregonator model of the oscillating BZ reaction to explore the dynamics brought about by a linear delayed feedback. The time-delayed feedback can generate a succession of complex dynamics: period-doubling bifurcation route to chaos; amplitude death; fat, wrinkled, fractal, and broken tori; and mixed-mode oscillations. We observed that this dynamics arises due to a delay-driven transition, or toggling of the system between large and small amplitude oscillations, through a canard bifurcation. We used a combination of numerical bifurcation continuation techniques and other numerical methods to explore the dynamics in the strength of feedback-delay space. We observed that the period-doubling and quasiperiodic route to chaos span a low-dimensional subspace, perhaps due to the trapping of the trajectories in the small amplitude regime near the canard; and the trapped chaotic trajectories get ejected from the small amplitude regime due to a crowding effect to generate chaotic-excitable spikes. We also qualitatively explained the observed dynamics by projecting a three-dimensional phase portrait of the delayed dynamics on the two-dimensional nullclines. This is the first instance in which it is shown that the interaction of delay and canard can bring about complex dynamics.

  10. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  11. Structural Modeling of Measurement Error in Generalized Linear Models with Rasch Measures as Covariates

    ERIC Educational Resources Information Center

    Battauz, Michela; Bellio, Ruggero

    2011-01-01

    This paper proposes a structural analysis for generalized linear models when some explanatory variables are measured with error and the measurement error variance is a function of the true variables. The focus is on latent variables investigated on the basis of questionnaires and estimated using item response theory models. Latent variable…

  12. Comparing linear and non-linear Force Free Models for Flux Rope-Type Small Transients During Solar Maximum

    NASA Astrophysics Data System (ADS)

    Farrugia, Charles; Moestl, Christian; Leitner, Martin; Galvin, Antoinette; Lugaz, Noé; Yu, Wenyuan

    2016-07-01

    This work is about modeling of those small solar wind transients (STs) which have a flux rope geometry. The two models used are: (i) the linear force free solution of Lundquist in terms of Bessel functions, and (ii) the non-linear Gold-Hoyle solution describing a uniformly-twisted flux tube. The first has been used almost exclusively in modeling of both large and small flux ropes in the solar wind. The second was applied to one small transient. In recent work there have been claims that variant (ii) is more appropriate than (i) for large transients, i.e. magnetic clouds. We select by eye six flux rope STs from STEREO and Wind data, chosen purely on the basis of having a large and smooth rotation. We also choose these during solar maximum activity conditions since our current work shows that only then are these models appropriate.

  13. Ion cloud model for a linear quadrupole ion trap.

    PubMed

    Douglas, Don J; Konenkov, Nikolai V

    2012-01-01

    If large numbers of ions are stored in a linear quadrupole ion trap, space charge causes the oscillation frequencies of ions to decrease. Ions then appear at higher apparent masses when resonantly ejected for mass analysis. In principle, to calculate mass shifts requires calculating the positions of all ions, interacting with each other, at all times, with a self-consistent space charge field. Here, we propose a simpler model for the ion cloud in the case where mass shifts and frequency shifts are relatively small (ca 0.2% and 0.4%, respectively), the trapping field is much stronger (ca × 10(2)) than the space charge field and space charge only causes small perturbations to the ion motion. The self-consistent field problem need not be considered. As test ions move with times long compared to a cycle of the trapping field, the motion of individual ions can be ignored. Static positions of the ions in the cloud are used. To generate an ion cloud, trajectories of N (ca 10,000) ions are calculated for random times between 10 and 100 cycles of the trapping radio frequency field. The ions are then distributed axially randomly in a trap four times the field radius, r(0) in length. The potential and electric field from the ion cloud are calculated from the ion positions. Near the trap center (distances r< 1r(0)), the potential and electric fields from space charge are not cylindrically symmetric, but are quite symmetric for greater values of r. Trajectories of test ions, oscillation frequencies and mass shifts can then be calculated in the trapping field, including the space charge field. Mass shifts are in good agreement with experiments for reasonable values of the initial positions and speeds of the ions. Agreement with earlier analytical models for the ion cloud, based on a uniform occupation of phase space, or a thermal (Boltzmann) distribution of ions trapped in the effective potential [D. Douglas and N.V. Konenkov, Rapid Commun. Mass Spectrom. 26, 2105 (2012)] is

  14. A log-linear multidimensional Rasch model for capture-recapture.

    PubMed

    Pelle, E; Hessen, D J; van der Heijden, P G M

    2016-02-20

    In this paper, a log-linear multidimensional Rasch model is proposed for capture-recapture analysis of registration data. In the model, heterogeneity of capture probabilities is taken into account, and registrations are viewed as dichotomously scored indicators of one or more latent variables that can account for correlations among registrations. It is shown how the probability of a generic capture profile is expressed under the log-linear multidimensional Rasch model and how the parameters of the traditional log-linear model are derived from those of the log-linear multidimensional Rasch model. Finally, an application of the model to neural tube defects data is presented.

  15. Models of reduced-noise, probabilistic linear amplifiers

    NASA Astrophysics Data System (ADS)

    Combes, Joshua; Walk, Nathan; Lund, A. P.; Ralph, T. C.; Caves, Carlton M.

    2016-05-01

    We construct an amplifier that interpolates between a nondeterministic, immaculate linear amplifier and a deterministic, ideal linear amplifier and beyond to nonideal linear amplifiers. The construction involves cascading an immaculate linear amplifier that has amplitude gain g1 with a (possibly) nonideal linear amplifier that has gain g2. With respect to normally ordered moments, the device has output noise μ2(G2-1 ) where G =g1g2 is the overall amplitude gain and μ2 is a noise parameter. When μ2≥1 , our devices realize ideal (μ2=1 ) and nonideal (μ2>1 ) linear amplifiers. When 0 ≤μ2<1 , these devices work effectively only over a restricted region of phase space and with some subunity success probability p✓. We investigate the performance of our μ2 amplifiers in terms of a gain-corrected probability-fidelity product and the ratio of input to output signal-to-noise ratios corrected for success probability.

  16. Developing ontological model of computational linear algebra - preliminary considerations

    NASA Astrophysics Data System (ADS)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Lirkov, I.

    2013-10-01

    The aim of this paper is to propose a method for application of ontologically represented domain knowledge to support Grid users. The work is presented in the context provided by the Agents in Grid system, which aims at development of an agent-semantic infrastructure for efficient resource management in the Grid. Decision support within the system should provide functionality beyond the existing Grid middleware, specifically, help the user to choose optimal algorithm and/or resource to solve a problem from a given domain. The system assists the user in at least two situations. First, for users without in-depth knowledge about the domain, it should help them to select the method and the resource that (together) would best fit the problem to be solved (and match the available resources). Second, if the user explicitly indicates the method and the resource configuration, it should "verify" if her choice is consistent with the expert recommendations (encapsulated in the knowledge base). Furthermore, one of the goals is to simplify the use of the selected resource to execute the job; i.e., provide a user-friendly method of submitting jobs, without required technical knowledge about the Grid middleware. To achieve the mentioned goals, an adaptable method of expert knowledge representation for the decision support system has to be implemented. The selected approach is to utilize ontologies and semantic data processing, supported by multicriterial decision making. As a starting point, an area of computational linear algebra was selected to be modeled, however, the paper presents a general approach that shall be easily extendable to other domains.

  17. Analysis of linear trade models and relation to scale economies

    PubMed Central

    Gomory, Ralph E.; Baumol, William J.

    1997-01-01

    We discuss linear Ricardo models with a range of parameters. We show that the exact boundary of the region of equilibria of these models is obtained by solving a simple integer programming problem. We show that there is also an exact correspondence between many of the equilibria resulting from families of linear models and the multiple equilibria of economies of scale models. PMID:11038573

  18. Comparison of linear and non-linear blade model predictions in Bladed to measurement data from GE 6MW wind turbine

    NASA Astrophysics Data System (ADS)

    Collier, W.; Milian Sanz, J.

    2016-09-01

    The length and flexibility of wind turbine blades are increasing over time. Typically, the dynamic response of the blades is analysed using linear models of blade deflection, enhanced by various ad-hoc non-linear correction models. For blades undergoing large deflections, the small deflection assumption inherent to linear models becomes less valid. It has previously been demonstrated that linear and nonlinear blade models can show significantly different blade response, particularly for blade torsional deflection, leading to load prediction differences. There is a need to evaluate how load predictions from these two approaches compare to measurement data from the field. In this paper, time domain simulations in turbulent wind are carried out using the aero-elastic code Bladed with linear and non-linear blade deflection models. The turbine blade load and deflection simulation results are compared to measurement data from an onshore prototype of the GE 6MW Haliade turbine, which features 73.5m long LM blades. Both linear and non-linear blade models show a good match to measurement turbine load and blade deflections. Only the blade loads differ significantly between the two models, with other turbine loads not strongly affected. The non-linear blade model gives a better match to the measured blade root flapwise damage equivalent load, suggesting that the flapwise dynamic behaviour is better captured by the non-linear blade model. Conversely, the linear blade model shows a better match to measurements in some areas such as blade edgewise damage equivalent load.

  19. ATOPS B-737 inner-loop control system linear model construction and verification

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    Nonlinear models and block diagrams of an inner-loop control system for the ATOPS B-737 Research Aircraft are presented. Continuous time linear model representations of the nonlinear inner-loop control systems are derived. Closed-loop aircraft simulations comparing nonlinear and linear dynamic responses to step inputs are used to verify the inner-loop control system models.

  20. The Simplest Complete Model of Choice Response Time: Linear Ballistic Accumulation

    ERIC Educational Resources Information Center

    Brown, Scott D.; Heathcote, Andrew

    2008-01-01

    We propose a linear ballistic accumulator (LBA) model of decision making and reaction time. The LBA is simpler than other models of choice response time, with independent accumulators that race towards a common response threshold. Activity in the accumulators increases in a linear and deterministic manner. The simplicity of the model allows…

  1. Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint

    SciTech Connect

    Wagner, M. J.

    2012-04-01

    This paper presents the new Linear Fresnel technology performance model in NREL's System Advisor Model. The model predicts the financial and technical performance of direct-steam-generation Linear Fresnel power plants, and can be used to analyze a range of system configurations. This paper presents a brief discussion of the model formulation and motivation, and provides extensive discussion of the model performance and financial results. The Linear Fresnel technology is also compared to other concentrating solar power technologies in both qualitative and quantitative measures. The Linear Fresnel model - developed in conjunction with the Electric Power Research Institute - provides users with the ability to model a variety of solar field layouts, fossil backup configurations, thermal receiver designs, and steam generation conditions. This flexibility aims to encompass current market solutions for the DSG Linear Fresnel technology, which is seeing increasing exposure in fossil plant augmentation and stand-alone power generation applications.

  2. Linear relaxation in large two-dimensional Ising models

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wang, F.

    2016-02-01

    Critical dynamics in two-dimension Ising lattices up to 2048 ×2048 is simulated on field-programmable-gate-array- based computing devices. Linear relaxation times are measured from extremely long Monte Carlo simulations. The longest simulation has 7.1 ×1016 spin updates, which would take over 37 years to simulate on a general purpose computer. The linear relaxation time of the Ising lattices is found to follow the dynamic scaling law for correlation lengths as long as 2048. The dynamic exponent z of the system is found to be 2.179(12), which is consistent with previous studies of Ising lattices with shorter correlation lengths. It is also found that Monte Carlo simulations of critical dynamics in Ising lattices larger than 512 ×512 are very sensitive to the statistical correlations between pseudorandom numbers, making it even more difficult to study such large systems.

  3. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  4. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    SciTech Connect

    Sun Wei; Huang, Guo H.; Lv Ying; Li Gongchen

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate

  5. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2012-01-01

    In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.

  6. Optimal Scaling of Interaction Effects in Generalized Linear Models

    ERIC Educational Resources Information Center

    van Rosmalen, Joost; Koning, Alex J.; Groenen, Patrick J. F.

    2009-01-01

    Multiplicative interaction models, such as Goodman's (1981) RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are suitable only for data sets with two or three predictor variables. Here, we discuss an optimal scaling model for analyzing the content of…

  7. Modeling thermal sensation in a Mediterranean climate—a comparison of linear and ordinal models

    NASA Astrophysics Data System (ADS)

    Pantavou, Katerina; Lykoudis, Spyridon

    2014-08-01

    A simple thermo-physiological model of outdoor thermal sensation adjusted with psychological factors is developed aiming to predict thermal sensation in Mediterranean climates. Microclimatic measurements simultaneously with interviews on personal and psychological conditions were carried out in a square, a street canyon and a coastal location of the greater urban area of Athens, Greece. Multiple linear and ordinal regression were applied in order to estimate thermal sensation making allowance for all the recorded parameters or specific, empirically selected, subsets producing so-called extensive and empirical models, respectively. Meteorological, thermo-physiological and overall models - considering psychological factors as well - were developed. Predictions were improved when personal and psychological factors were taken into account as compared to meteorological models. The model based on ordinal regression reproduced extreme values of thermal sensation vote more adequately than the linear regression one, while the empirical model produced satisfactory results in relation to the extensive model. The effects of adaptation and expectation on thermal sensation vote were introduced in the models by means of the exposure time, season and preference related to air temperature and irradiation. The assessment of thermal sensation could be a useful criterion in decision making regarding public health, outdoor spaces planning and tourism.

  8. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    ERIC Educational Resources Information Center

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  9. Item Purification in Differential Item Functioning Using Generalized Linear Mixed Models

    ERIC Educational Resources Information Center

    Liu, Qian

    2011-01-01

    For this dissertation, four item purification procedures were implemented onto the generalized linear mixed model for differential item functioning (DIF) analysis, and the performance of these item purification procedures was investigated through a series of simulations. Among the four procedures, forward and generalized linear mixed model (GLMM)…

  10. Linear moose model with pairs of degenerate gauge boson triplets

    NASA Astrophysics Data System (ADS)

    Casalbuoni, Roberto; Coradeschi, Francesco; de Curtis, Stefania; Dominici, Daniele

    2008-05-01

    The possibility of a strongly interacting electroweak symmetry breaking sector, as opposed to the weakly interacting light Higgs of the standard model, is not yet ruled out by experiments. In this paper we make an extensive study of a deconstructed model (or “moose” model) providing an effective description of such a strong symmetry breaking sector, and show its compatibility with experimental data for a wide portion of the model parameter space. The model is a direct generalization of the previously proposed D-BESS model.

  11. Linear moose model with pairs of degenerate gauge boson triplets

    SciTech Connect

    Casalbuoni, Roberto; Coradeschi, Francesco; De Curtis, Stefania; Dominici, Daniele

    2008-05-01

    The possibility of a strongly interacting electroweak symmetry breaking sector, as opposed to the weakly interacting light Higgs of the standard model, is not yet ruled out by experiments. In this paper we make an extensive study of a deconstructed model (or ''moose'' model) providing an effective description of such a strong symmetry breaking sector, and show its compatibility with experimental data for a wide portion of the model parameter space. The model is a direct generalization of the previously proposed D-BESS model.

  12. Development of a Linear Stirling System Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC's nonlinear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  13. Non-linear characterisation of the physical model of an ancient masonry bridge

    NASA Astrophysics Data System (ADS)

    Zanotti Fragonara, L.; Ceravolo, R.; Matta, E.; Quattrone, A.; De Stefano, A.; Pecorelli, M.

    2012-08-01

    This paper presents the non-linear investigations carried out on a scaled model of a two-span masonry arch bridge. The model has been built in order to study the effect of the central pile settlement due to riverbank erosion. Progressive damage was induced in several steps by applying increasing settlements at the central pier. For each settlement step, harmonic shaker tests were conducted under different excitation levels, this allowing for the non-linear identification of the progressively damaged system. The shaker tests have been performed at resonance with the modal frequency of the structure, which were determined from a previous linear identification. Estimated non-linearity parameters, which result from the systematic application of restoring force based identification algorithms, can corroborate models to be used in the reassessment of existing structures. The method used for non-linear identification allows monitoring the evolution of non-linear parameters or indicators which can be used in damage and safety assessment.

  14. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  15. Linearized one-dimensional model of optical plasmatron operation

    NASA Astrophysics Data System (ADS)

    Raizer, Iu. P.

    1984-01-01

    An analysis is made of a steady-state optical discharge in a stream of gas, sustained by a focused CW CO2 laser beam. By means of a series of simplifications the complex equations of the process are reduced to a second-order ordinary inhomogeneous differential equation with variable coefficients, which is linear in each of the characteristic regions of the optic axis. The equation is solved analytically by means of Kummer functions which are transformed into combinations of Bessel functions. The positions of the discharge boundaries are determined as a function of the laser power, the flow velocity, and the focusing angle. The regime with no gas flow is also considered.

  16. Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming

    SciTech Connect

    Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-05-23

    This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.

  17. Computational models of signalling networks for non-linear control.

    PubMed

    Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M

    2013-05-01

    Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.

  18. Analysis of Power Model for Linear Plasma Device

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Deng, Baiquan; Zuo, Haoyi; Zheng, Xianjun; Cao, Xiaogang; Xue, Xiaoyan; Ou, Wei; Cao, Zhi; Gou, Fujun

    2016-08-01

    A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the device, the output heat load on the specimen and electric potential difference (between cathode and anode) have been tested under different discharge currents. This special power distribution in the radial direction of the plasma discharge channel has also been discussed and described by some improved integral equations in this paper; it can be further simplified as P ∝ α-2 in one-parameter. Besides, we have measured the power loss of the channel under different discharge currents by the calorimetric method, calculated the effective power of the device and evaluated the performances of the plasma device through the power efficiency analysis. supported by International Thermonuclear Experimental Reactor (ITER) Program (No. 2013GB114003) and National Natural Science Foundation of China (Nos. 11275135 and 11475122)

  19. Analysis of Power Model for Linear Plasma Device

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Deng, Baiquan; Zuo, Haoyi; Zheng, Xianjun; Cao, Xiaogang; Xue, Xiaoyan; Ou, Wei; Cao, Zhi; Gou, Fujun

    2016-08-01

    A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the device, the output heat load on the specimen and electric potential difference (between cathode and anode) have been tested under different discharge currents. This special power distribution in the radial direction of the plasma discharge channel has also been discussed and described by some improved integral equations in this paper; it can be further simplified as P ∝ α‑2 in one-parameter. Besides, we have measured the power loss of the channel under different discharge currents by the calorimetric method, calculated the effective power of the device and evaluated the performances of the plasma device through the power efficiency analysis. supported by International Thermonuclear Experimental Reactor (ITER) Program (No. 2013GB114003) and National Natural Science Foundation of China (Nos. 11275135 and 11475122)

  20. Bayesian modeling of censored partial linear models using scale-mixtures of normal distributions

    NASA Astrophysics Data System (ADS)

    Castro, Luis M.; Lachos, Victor H.; Ferreira, Guillermo P.; Arellano-Valle, Reinaldo B.

    2012-10-01

    Regression models where the dependent variable is censored (limited) are usually considered in statistical analysis. Particularly, the case of a truncation to the left of zero and a normality assumption for the error terms is studied in detail by [1] in the well known Tobit model. In the present article, this typical censored regression model is extended by considering a partial linear model with errors belonging to the class of scale mixture of normal distributions. We achieve a fully Bayesian inference by adopting a Metropolis algorithm within a Gibbs sampler. The likelihood function is utilized to compute not only some Bayesian model selection measures but also to develop Bayesian case-deletion influence diagnostics based on the q-divergence measures. We evaluate the performances of the proposed methods with simulated data. In addition, we present an application in order to know what type of variables affect the income of housewives.

  1. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    PubMed Central

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2014-01-01

    Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874

  2. Fitting host-parasitoid models with CV2 > 1 using hierarchical generalized linear models.

    PubMed Central

    Perry, J N; Noh, M S; Lee, Y; Alston, R D; Norowi, H M; Powell, W; Rennolls, K

    2000-01-01

    The powerful general Pacala-Hassell host-parasitoid model for a patchy environment, which allows host density-dependent heterogeneity (HDD) to be distinguished from between-patch, host density-independent heterogeneity (HDI), is reformulated within the class of the generalized linear model (GLM) family. This improves accessibility through the provision of general software within well-known statistical systems, and allows a rich variety of models to be formulated. Covariates such as age class, host density and abiotic factors may be included easily. For the case where there is no HDI, the formulation is a simple GLM. When there is HDI in addition to HDD, the formulation is a hierarchical generalized linear model. Two forms of HDI model are considered, both with between-patch variability: one has binomial variation within patches and one has extra-binomial, overdispersed variation within patches. Examples are given demonstrating parameter estimation with standard errors, and hypothesis testing. For one example given, the extra-binomial component of the HDI heterogeneity in parasitism is itself shown to be strongly density dependent. PMID:11416907

  3. SCI Identification (SCIDNT) program user's guide. [maximum likelihood method for linear rotorcraft models

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer program Linear SCIDNT which evaluates rotorcraft stability and control coefficients from flight or wind tunnel test data is described. It implements the maximum likelihood method to maximize the likelihood function of the parameters based on measured input/output time histories. Linear SCIDNT may be applied to systems modeled by linear constant-coefficient differential equations. This restriction in scope allows the application of several analytical results which simplify the computation and improve its efficiency over the general nonlinear case.

  4. Linear summation of outputs in a balanced network model of motor cortex

    PubMed Central

    Capaday, Charles; van Vreeswijk, Carl

    2015-01-01

    Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis. PMID:26097452

  5. Direct-Steam Linear Fresnel Performance Model for NREL's System Advisor Model

    SciTech Connect

    Wagner, M. J.; Zhu, G.

    2012-09-01

    This paper presents the technical formulation and demonstrated model performance results of a new direct-steam-generation (DSG) model in NREL's System Advisor Model (SAM). The model predicts the annual electricity production of a wide range of system configurations within the DSG Linear Fresnel technology by modeling hourly performance of the plant in detail. The quasi-steady-state formulation allows users to investigate energy and mass flows, operating temperatures, and pressure drops for geometries and solar field configurations of interest. The model includes tools for heat loss calculation using either empirical polynomial heat loss curves as a function of steam temperature, ambient temperature, and wind velocity, or a detailed evacuated tube receiver heat loss model. Thermal losses are evaluated using a computationally efficient nodal approach, where the solar field and headers are discretized into multiple nodes where heat losses, thermal inertia, steam conditions (including pressure, temperature, enthalpy, etc.) are individually evaluated during each time step of the simulation. This paper discusses the mathematical formulation for the solar field model and describes how the solar field is integrated with the other subsystem models, including the power cycle and optional auxiliary fossil system. Model results are also presented to demonstrate plant behavior in the various operating modes.

  6. Development and Application of a General Water Supply Model- The Risk Analysis of Water Shortage for Shihmen Reservoir in Drought Season

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chang, L.; Wu, F.

    2011-12-01

    Owing to the economic growth and population increase in the Taoyuan area, both domestic and industrial water use have increased rapidly. Increasing water demand raises the water supply loading of Shihmen reservoir and intensifies water shortage risk, especially during drought periods. In practice, to overcome such serious hydrological conditions, irrigated water is transferred for public use in the Taoyuan area. Hence, this study proposes developing a universal water supply model based on linear programming. This study applied the proposed model to assess the supply risk of water shortage during drought seasons in the Taoyuan area. First, the proposed model was designed considering the rule curve operation and agriculture water transfer in the study area and is more flexible than models based on network flow programming (NFP) or the mixed integer linear programming (MILP) because of the requirements of the cyclic flow network and integer variables for two programming. Second, a Monte Carlo analysis is integrated with the proposed water supply model to investigate the water shortage risk during drought seasons. The analysis results can be valuable quantitative references for decisions concerning the re-allocation of water supply between agricultural and public use. The simple example and field case study demonstrate the feasibility and capability of the proposed model. The risk analysis result indicates that the operation rule of drought seasons is useful in decreasing the supply risk of public water, but increases the supply risk of agricultural water.

  7. A deterministic aggregate production planning model considering quality of products

    NASA Astrophysics Data System (ADS)

    Madadi, Najmeh; Yew Wong, Kuan

    2013-06-01

    Aggregate Production Planning (APP) is a medium-term planning which is concerned with the lowest-cost method of production planning to meet customers' requirements and to satisfy fluctuating demand over a planning time horizon. APP problem has been studied widely since it was introduced and formulated in 1950s. However, in several conducted studies in the APP area, most of the researchers have concentrated on some common objectives such as minimization of cost, fluctuation in the number of workers, and inventory level. Specifically, maintaining quality at the desirable level as an objective while minimizing cost has not been considered in previous studies. In this study, an attempt has been made to develop a multi-objective mixed integer linear programming model that serves those companies aiming to incur the minimum level of operational cost while maintaining quality at an acceptable level. In order to obtain the solution to the multi-objective model, the Fuzzy Goal Programming approach and max-min operator of Bellman-Zadeh were applied to the model. At the final step, IBM ILOG CPLEX Optimization Studio software was used to obtain the experimental results based on the data collected from an automotive parts manufacturing company. The results show that incorporating quality in the model imposes some costs, however a trade-off should be done between the cost resulting from producing products with higher quality and the cost that the firm may incur due to customer dissatisfaction and sale losses.

  8. Simulation of Tropical Climate with a Linear Primitive Equation Model.

    NASA Astrophysics Data System (ADS)

    Seager, Richard; Zebiak, Stephen E.

    1995-10-01

    The tropical climate simulated with a new global atmosphere model is presented. The model is purposely designed for climate studies and is still under development. It is designed to bridge the gap between very efficient but simple models of the tropical atmosphere and sophisticated but inefficient general circulation models (GCMs). In this paper the authors examine the sensitivity of the model's climate to specific formulations of convection, boundary-layer physics, and radiation.The model uses the Betts-Miller convection scheme and a parameterization of the planetary boundary layer (PBL) that combines similarity theory for computation of surface fluxes with a simple scheme for diagnosing PBL depth. Radiative cooling is specified and land surface processes are bypassed by relaxing modeled low-level values to observed quantities. Orography is ignored. The model contains six vertical layers and has a horizontal resolution of about 3° × 5.625°.The authors compare the climate simulated with two different versions of the Betts-Miller convection scheme. More realistic simulations of rainfall are obtained with the later version, which includes the effects of convective downdrafts. These, by cooling and drying the PBL, act to restrict the areas of convection while strengthening the intertropical convergence zone. The sensitivity to choice of PBL physics is less, and quite similar results were obtained when the PBL scheme was replaced with constant exchange coefficients and PBL depth. In contrast, the amount of precipitation varied strongly with the prescribed radiative cooling. The important role that shallow convection and cloud-radiation interactions play in the spatial organization of deep convection is demonstrated, by default, in an experiment using clear-sky radiative transfer.The modeled climate, as judged qualitatively by its simulation of quantities of importance to air-sea interaction and climate, such as the low-level wind field and precipitation, is in many

  9. Genetic demixing and evolution in linear stepping stone models

    NASA Astrophysics Data System (ADS)

    Korolev, K. S.; Avlund, Mikkel; Hallatschek, Oskar; Nelson, David R.

    2010-04-01

    Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous population are reviewed and extended. The population is described by a continuous limit of the stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation with additional terms describing mutations. Although the stepping stone model was first proposed for population genetics, it is closely related to “voter models” of interest in nonequilibrium statistical mechanics. The stepping stone model can also be regarded as an approximation to the dynamics of a thin layer of actively growing pioneers at the frontier of a colony of micro-organisms undergoing a range expansion on a Petri dish. The population tends to segregate into monoallelic domains. This segregation slows down genetic drift and selection because these two evolutionary forces can only act at the boundaries between the domains; the effects of mutation, however, are not significantly affected by the segregation. Although fixation in the neutral well-mixed (or “zero-dimensional”) model occurs exponentially in time, it occurs only algebraically fast in the one-dimensional model. An unusual sublinear increase is also found in the variance of the spatially averaged allele frequency with time. If selection is weak, selective sweeps occur exponentially fast in both well-mixed and one-dimensional populations, but the time constants are different. The relatively unexplored problem of evolutionary dynamics at the edge of an expanding circular colony is studied as well. Also reviewed are how the observed patterns of genetic diversity can be used for statistical inference and the differences are highlighted between the well-mixed and one-dimensional models. Although the focus is on two alleles or variants, q -allele Potts-like models of gene segregation are considered as well. Most of the analytical results are checked with simulations and could be tested against recent spatial

  10. State-space models' dirty little secrets: even simple linear Gaussian models can have estimation problems.

    PubMed

    Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer M; Derocher, Andrew E; Lewis, Mark A; Jonsen, Ian D; Mills Flemming, Joanna

    2016-01-01

    State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results. PMID:27220686

  11. State-space models' dirty little secrets: even simple linear Gaussian models can have estimation problems.

    PubMed

    Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer M; Derocher, Andrew E; Lewis, Mark A; Jonsen, Ian D; Mills Flemming, Joanna

    2016-05-25

    State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results.

  12. Misspecification of the covariance structure in generalized linear mixed models.

    PubMed

    Chavance, M; Escolano, S

    2016-04-01

    When fitting marginal models to correlated outcomes, the so-called sandwich variance is commonly used. However, this is not the case when fitting mixed models. Using two data sets, we illustrate the problems that can be encountered. We show that the differences or the ratios between the naive and sandwich standard deviations of the fixed effects estimators provide convenient means of assessing the fit of the model, as both are consistent when the covariance structure is correctly specified, but only the latter is when that structure is misspecified. When the number of statistical units is not too small, the sandwich formula correctly estimates the variance of the fixed effects estimator even if the random effects are misspecified, and it can be used in a diagnostic tool for assessing the misspecification of the random effects. A simple comparison with the naive variance is sufficient and we propose considering a ratio of the naive and sandwich standard deviation out of the [3/4; 4/3] interval as signaling a risk of erroneous inference due to a model misspecification. We strongly advocate broader use of the sandwich variance for statistical inference about the fixed effects in mixed models.

  13. Modeling taper charge with a non-linear equation

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1985-01-01

    Work aimed at modeling the charge voltage and current characteristics of nickel-cadmium cells subject to taper charge is presented. Work reported at previous NASA Battery Workshops has shown that the voltage of cells subject to constant current charge and discharge can be modeled very accurately with the equation: voltage = A + (B/(C-X)) + De to the -Ex where A, B, D, and E are fit parameters and x is amp-hr of charge removed during discharge or returned during charge. In a constant current regime, x is also equivalent to time on charge or discharge.

  14. Analysis of the Development of the Working Alliance Using Hierarchical Linear Modeling.

    ERIC Educational Resources Information Center

    Kivlighan, Dennis M.; Shaughnessy, Peter

    1995-01-01

    Describes method of analysis of the relation between working alliance and therapeutic outcome using hierarchical linear modeling. Results revealed a significant association between linear growth function of therapist ratings of working alliance and therapeutic outcome. Discusses need to conceptualize working alliance as a temporally variant, as…

  15. The Generalized Logit-Linear Item Response Model for Binary-Designed Items

    ERIC Educational Resources Information Center

    Revuelta, Javier

    2008-01-01

    This paper introduces the generalized logit-linear item response model (GLLIRM), which represents the item-solving process as a series of dichotomous operations or steps. The GLLIRM assumes that the probability function of the item response is a logistic function of a linear composite of basic parameters which describe the operations, and the…

  16. Ammonia quantitative analysis model based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model

    PubMed Central

    Ma, Rongfei

    2015-01-01

    In this paper, ammonia quantitative analysis based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model was proposed. Al plate anodic gas-ionization sensor was used to obtain the current-voltage (I-V) data. Measurement data was processed by non-linear bistable dynamics model. Results showed that the proposed method quantitatively determined ammonia concentrations. PMID:25975362

  17. A computational methodology for learning low-complexity surrogate models of process from experiments or simulations. (Paper 679a)

    SciTech Connect

    Cozad, A.; Sahinidis, N.; Miller, D.

    2011-01-01

    Costly and/or insufficiently robust simulations or experiments can often pose difficulties when their use extends well beyond a single evaluation. This is case with the numerous evaluations of uncertainty quantification, when an algebraic model is needed for optimization, as well as numerous other areas. To overcome these difficulties, we generate an accurate set of algebraic surrogate models of disaggregated process blocks of the experiment or simulation. We developed a method that uses derivative-based and derivative-free optimization alongside machine learning and statistical techniques to generate the set of surrogate models using data sampled from experiments or detailed simulations. Our method begins by building a low-complexity surrogate model for each block from an initial sample set. The model is built using a best subset technique that leverages a mixed-integer linear problem formulation to allow for very large initial basis sets. The models are then tested, exploited, and improved through the use of derivative-free solvers to adaptively sample new simulation or experimental points. The sets of surrogate models from each disaggregated process block are then combined with heat and mass balances around each disaggregated block to generate a full algebraic model of the process. The full model can be used for cheap and accurate evaluations of the original simulation or experiment or combined with design specifications and an objective for nonlinear optimization.

  18. Computation of linear acceleration through an internal model in the macaque cerebellum.

    PubMed

    Laurens, Jean; Meng, Hui; Angelaki, Dora E

    2013-11-01

    A combination of theory and behavioral findings support a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Using unnatural motion stimuli, which induce incorrect self-motion perception and eye movements, we explored the neural correlates of an internal model that has been proposed to compensate for Einstein's equivalence principle and generate neural estimates of linear acceleration and gravity. We found that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encoded erroneous linear acceleration, as would be expected from the internal model hypothesis, even when no actual linear acceleration occurred. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized.

  19. Computation of linear acceleration through an internal model in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists. PMID:24077562

  20. Item Response Theory Using Hierarchical Generalized Linear Models

    ERIC Educational Resources Information Center

    Ravand, Hamdollah

    2015-01-01

    Multilevel models (MLMs) are flexible in that they can be employed to obtain item and person parameters, test for differential item functioning (DIF) and capture both local item and person dependence. Papers on the MLM analysis of item response data have focused mostly on theoretical issues where applications have been add-ons to simulation…

  1. Linear Model to Assess the Scale's Validity of a Test

    ERIC Educational Resources Information Center

    Tristan, Agustin; Vidal, Rafael

    2007-01-01

    Wright and Stone had proposed three features to assess the quality of the distribution of the items difficulties in a test, on the so called "most probable response map": line, stack and gap. Once a line is accepted as a design model for a test, gaps and stacks are practically eliminated, producing an evidence of the "scale validity" of the test.…

  2. Modeling of thermal storage systems in MILP distributed energy resource models

    DOE PAGES

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations aremore » based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less

  3. Vibration Model Validation for Linear Collider Detector Platforms

    SciTech Connect

    Bertsche, Kirk; Amann, J.W.; Markiewicz, T.W.; Oriunno, M.; Weidemann, A.; White, G.; /SLAC

    2012-05-16

    The ILC and CLIC reference designs incorporate reinforced-concrete platforms underneath the detectors so that the two detectors can each be moved onto and off of the beamline in a Push-Pull configuration. These platforms could potentially amplify ground vibrations, which would reduce luminosity. In this paper we compare vibration models to experimental data on reinforced concrete structures, estimate the impact on luminosity, and summarize implications for the design of a reinforced concrete platform for the ILC or CLIC detectors.

  4. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    NASA Astrophysics Data System (ADS)

    Yang, Jinxin; Jia, Li; Cui, Yaokui; Zhou, Jie; Menenti, Massimo

    2014-03-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR (Thermal Infra-Red) images over vegetable and orchard canopies. A whole thermal camera image was treated as a pixel of a satellite image to evaluate the model with the two-component system, i.e. soil and vegetation. The evaluation included two parts: evaluation of the linear mixing model and evaluation of the inversion of the model to retrieve component temperatures. For evaluation of the linear mixing model, the RMSE is 0.2 K between the observed and modelled brightness temperatures, which indicates that the linear mixing model works well under most conditions. For evaluation of the model inversion, the RMSE between the model retrieved and the observed vegetation temperatures is 1.6K, correspondingly, the RMSE between the observed and retrieved soil temperatures is 2.0K. According to the evaluation of the sensitivity of retrieved component temperatures on fractional cover, the linear mixing model gives more accurate retrieval accuracies for both soil and vegetation temperatures under intermediate fractional cover conditions.

  5. Linear system identification via backward-time observer models

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh Q.

    1992-01-01

    Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works.

  6. Model Checking Linear-Time Properties of Probabilistic Systems

    NASA Astrophysics Data System (ADS)

    Baier, Christel; Größer, Marcus; Ciesinski, Frank

    This chapter is about the verification of Markov decision processes (MDPs) which incorporate one of the fundamental models for reasoning about probabilistic and nondeterministic phenomena in reactive systems. MDPs have their roots in the field of operations research and are nowadays used in a wide variety of areas including verification, robotics, planning, controlling, reinforcement learning, economics and semantics of randomized systems. Furthermore, MDPs served as the basis for the introduction of probabilistic automata which are related to weighted automata. We describe the use of MDPs as an operational model for randomized systems, e.g., systems that employ randomized algorithms, multi-agent systems or systems with unreliable components or surroundings. In this context we outline the theory of verifying ω-regular properties of such operational models. As an integral part of this theory we use ω-automata, i.e., finite-state automata over finite alphabets that accept languages of infinite words. Additionally, basic concepts of important reduction techniques are sketched, namely partial order reduction of MDPs and quotient system reduction of the numerical problem that arises in the verification of MDPs. Furthermore we present several undecidability and decidability results for the controller synthesis problem for partially observable MDPs.

  7. Transferability of regional permafrost disturbance susceptibility modelling using generalized linear and generalized additive models

    NASA Astrophysics Data System (ADS)

    Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; van Ewijk, Karin Y.

    2016-07-01

    To effectively assess and mitigate risk of permafrost disturbance, disturbance-prone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape characteristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Peninsula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed locations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) > 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Additionally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results indicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of disturbances were

  8. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.

    2015-12-01

    We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.

  9. Non-linear dynamic modeling of an automobile hydraulic active suspension system

    NASA Astrophysics Data System (ADS)

    Mrad, R. Ben; Levitt, J. A.; Fassois, S. D.

    1994-09-01

    Motived by the strong need for realistically describing the dynamical behaviour of automotive systems through adequate mathematical models, a computer-stimulation-suitable non-linear quarter-car model of a hydraulic active suspension system is developed. Unlike previously available linear models characterised by idealised actuator and component behaviour, the developed model accounts for the dynamics of the main system components, including the suspension bushing, pump, accumulator, power and bypass valves, and hydraulic actuator, while also incorporating preliminary versions of the system controllers. Significant system characteristics, such as non-linear pressure-flow relationships, fluid compressibility, pump and valve non-linearities, leakages, as well as Coulomb friction, are also explicitly accounted for, and the underpinning assumptions are discussed. Simulation results obtained by exercising the model provide insight into the system behavior, illustrate the importance of the actuator/component dynamics and their associated non-linearities and reveal the inadequacy of the idealised linear models in capturing the system behaviour, demonstrate specific effects of valve leakage and fluid bulk modulus, are in qualitative agreement with experimental measurements, and stress the need for proper control law design and tuning. The developed model is particularly suitable for analysis, design, control law optimisation, and diagnostic strategies development.

  10. SOME STATISTICAL ISSUES RELATED TO MULTIPLE LINEAR REGRESSION MODELING OF BEACH BACTERIA CONCENTRATIONS

    EPA Science Inventory

    As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...

  11. Huffman and linear scanning methods with statistical language models.

    PubMed

    Roark, Brian; Fried-Oken, Melanie; Gibbons, Chris

    2015-03-01

    Current scanning access methods for text generation in AAC devices are limited to relatively few options, most notably row/column variations within a matrix. We present Huffman scanning, a new method for applying statistical language models to binary-switch, static-grid typing AAC interfaces, and compare it to other scanning options under a variety of conditions. We present results for 16 adults without disabilities and one 36-year-old man with locked-in syndrome who presents with complex communication needs and uses AAC scanning devices for writing. Huffman scanning with a statistical language model yielded significant typing speedups for the 16 participants without disabilities versus any of the other methods tested, including two row/column scanning methods. A similar pattern of results was found with the individual with locked-in syndrome. Interestingly, faster typing speeds were obtained with Huffman scanning using a more leisurely scan rate than relatively fast individually calibrated scan rates. Overall, the results reported here demonstrate great promise for the usability of Huffman scanning as a faster alternative to row/column scanning.

  12. Huffman and linear scanning methods with statistical language models.

    PubMed

    Roark, Brian; Fried-Oken, Melanie; Gibbons, Chris

    2015-03-01

    Current scanning access methods for text generation in AAC devices are limited to relatively few options, most notably row/column variations within a matrix. We present Huffman scanning, a new method for applying statistical language models to binary-switch, static-grid typing AAC interfaces, and compare it to other scanning options under a variety of conditions. We present results for 16 adults without disabilities and one 36-year-old man with locked-in syndrome who presents with complex communication needs and uses AAC scanning devices for writing. Huffman scanning with a statistical language model yielded significant typing speedups for the 16 participants without disabilities versus any of the other methods tested, including two row/column scanning methods. A similar pattern of results was found with the individual with locked-in syndrome. Interestingly, faster typing speeds were obtained with Huffman scanning using a more leisurely scan rate than relatively fast individually calibrated scan rates. Overall, the results reported here demonstrate great promise for the usability of Huffman scanning as a faster alternative to row/column scanning. PMID:25672825

  13. Non-linear sigma-models and string theories

    SciTech Connect

    Sen, A.

    1986-10-01

    The connection between sigma-models and string theories is discussed, as well as how the sigma-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs. (LEW)

  14. Modeling contaminant migration with linear sorption in strongly heterogeneous media

    SciTech Connect

    Bai, M.; Roegiers, J.C.; Elsworth, D.; Inyang, H.I.

    1997-11-01

    A triple-porosity model is presented to evaluate transport behavior in porous media with a structure comprising a spectrum of pore sizes, represented discretely as macro-, meso-, and micropores. Characterizations are completed to provide adequate semianalytical solutions for the validation of codes representing discrete distributions of pore geometry and to adequately describe extended tailing and multicomponent solute front breakthroughs apparent in field and laboratory data. Semianalytical solutions are derived for a one dimensional flow geometry by using Laplace transforms under the assumption that solute transport in the two interactive mobile-transport regions (i.e., macro- and mesopores) is affected by exchange with immobile solutes in the micropore region. Sensitivity analyses are conducted to identify the propensity for extensive tailing in the breakthrough response, over single-porosity approaches, and the development of multiple breakthrough fronts with reverse diffusion. Both behaviors result from the strongly heterogeneous nature of the transport processes, accommodated in the multiporosity model, and are well suited to the representation of real porous and porous-fractured disordered media.

  15. Localization of the SFT inspired nonlocal linear models and exact solutions

    NASA Astrophysics Data System (ADS)

    Vernov, S. Yu.

    2011-05-01

    A general class of gravitational models driven by a nonlocal scalar field with a linear or quadratic potential is considered. We study the action with an arbitrary analytic function ℱ(□ g ), which has both simple and double roots. The way of localization of nonlocal Einstein equations is generalized on models with linear potentials. Exact solutions in the Friedmann-Robertson-Walker and Bianchi I metrics are presented.

  16. Circuit model for characterizing the nearly linear behavior of avalanche diodes in amplifier circuits

    NASA Technical Reports Server (NTRS)

    Penfield, P., Jr.; Peterson, D. F.; Steinbrecher, D. H.

    1972-01-01

    A nonlinear circuit model for avalanche diodes is proposed. The model was derived by assuming that the bias dependence of the elements in a known small-signal equivalent-circuit model for existing diodes arises in a manner consistent with the theory of an idealized Read-type device. The model contains a nonlinear R-L branch, a controlled source, and a linear depletion capacitance. The model is used in the nearly linear sense to predict intermodulation distortion and gain compression in avalanche diode amplifiers. Computed results for amplifiers with existing diodes are shown to be in good agreement with experiment.

  17. A new adaptive multiple modelling approach for non-linear and non-stationary systems

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Gong, Yu; Hong, Xia

    2016-07-01

    This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.

  18. A Method for Generating Reduced-Order Linear Models of Multidimensional Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Hartley, Tom T.

    1998-01-01

    Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The nonlinear simulations are usually based on multidimensional computational fluid dynamics (CFD) methodologies and tend to provide high resolution results that show the fine detail of the flow. Consequently, these simulations are large, numerically intensive, and run much slower than real-time. ne linear simulations are usually based on large lumping techniques that are linearized about a steady-state operating condition. These simplistic models often run at or near real-time but do not always capture the detailed dynamics of the plant. Under a grant sponsored by the NASA Lewis Research Center, Cleveland, Ohio, a new method has been developed that can be used to generate improved linear models for control design from multidimensional steady-state CFD results. This CFD-based linear modeling technique provides a small perturbation model that can be used for control applications and real-time simulations. It is important to note the utility of the modeling procedure; all that is needed to obtain a linear model of the propulsion system is the geometry and steady-state operating conditions from a multidimensional CFD simulation or experiment. This research represents a beginning step in establishing a bridge between the controls discipline and the CFD discipline so that the control engineer is able to effectively use multidimensional CFD results in control system design and analysis.

  19. A componential model of human interaction with graphs: 1. Linear regression modeling

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert

    1994-01-01

    Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.

  20. Predicting musically induced emotions from physiological inputs: linear and neural network models

    PubMed Central

    Russo, Frank A.; Vempala, Naresh N.; Sandstrom, Gillian M.

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of “felt” emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants—heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion. PMID:23964250

  1. Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula

    SciTech Connect

    Schneider, Uwe

    2009-04-15

    A simple mechanistic model for predicting cancer induction after fractionated radiotherapy is developed. The model is based upon the linear-quadratic model. The inductions of carcinomas and sarcomas are modeled separately. The linear-quadratic model of cell kill is applied to normal tissues which are unintentionally irradiated during a cancer treatment with radiotherapy. Tumor induction is modeled such that each transformation process results in a tumor cell. The microscopic transformation parameter was chosen such that in the limit of low dose and acute exposure, the parameters of the linear-no-threshold model for tumor induction were approached. The differential equations describing carcinoma and sarcoma inductions can be solved analytically. Cancer induction in this model is a function of treatment dose, the cell kill parameters ({alpha},{beta}), the tumor induction variable ({mu}), and the repopulation parameter ({xi}). Carcinoma induction shows a bell shaped behavior as long as cell repopulation is small. Assuming large cell repopulation rates, a plateaulike function is approached. In contrast, sarcoma induction is negligible for low doses and increases with increasing dose up to a constant value. The proposed model describes carcinoma and sarcoma inductions after fractionated radiotherapy as an analytical function of four parameters. In the limit of low dose and for an instant irradiation it reproduces the results of the linear-no-threshold model. The obtained dose-response curves for cancer induction can be implemented with other models such as the organ-equivalent dose model to predict second cancers after radiotherapy.

  2. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    ERIC Educational Resources Information Center

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  3. Land Use and Soil Erosion. A National Linear Programming Model. Technical Bulletin Number 1742.

    ERIC Educational Resources Information Center

    Huang, Wen-Yuan; And Others

    This technical bulletin documents a model, the Natural Resource Linear Programming (NRLP) model, capable of measuring the effects of land use restrictions imposed as conservation measures. The primary use for the model is to examine the government expenditures required to compensate farmers for retiring potentially erodible private cropland. The…

  4. A Linear Variable-[theta] Model for Measuring Individual Differences in Response Precision

    ERIC Educational Resources Information Center

    Ferrando, Pere J.

    2011-01-01

    Models for measuring individual response precision have been proposed for binary and graded responses. However, more continuous formats are quite common in personality measurement and are usually analyzed with the linear factor analysis model. This study extends the general Gaussian person-fluctuation model to the continuous-response case and…

  5. A Hierarchical Linear Model with Factor Analysis Structure at Level 2

    ERIC Educational Resources Information Center

    Miyazaki, Yasuo; Frank, Kenneth A.

    2006-01-01

    In this article the authors develop a model that employs a factor analysis structure at Level 2 of a two-level hierarchical linear model (HLM). The model (HLM2F) imposes a structure on a deficient rank Level 2 covariance matrix [tau], and facilitates estimation of a relatively large [tau] matrix. Maximum likelihood estimators are derived via the…

  6. Combining and connecting linear, multi-input, multi-output subsystem models

    NASA Technical Reports Server (NTRS)

    Duke, E. L.

    1986-01-01

    The mathematical background for combining and connecting linear, multi-input, multi-output subsystem models into an overall system model is provided. Several examples of subsystem configurations are examined in detail. A description of a MATRIX (sub x) command file to aid in the process of combining and connecting these subsystem models is contained.

  7. Comparison of K-Means Clustering with Linear Probability Model, Linear Discriminant Function, and Logistic Regression for Predicting Two-Group Membership.

    ERIC Educational Resources Information Center

    So, Tak-Shing Harry; Peng, Chao-Ying Joanne

    This study compared the accuracy of predicting two-group membership obtained from K-means clustering with those derived from linear probability modeling, linear discriminant function, and logistic regression under various data properties. Multivariate normally distributed populations were simulated based on combinations of population proportions,…

  8. A Comparison of Linear versus Non-Linear Models of Aversive Self-Awareness, Dissociation, and Non-Suicidal Self-Injury among Young Adults

    ERIC Educational Resources Information Center

    Armey, Michael F.; Crowther, Janis H.

    2008-01-01

    Research has identified a significant increase in both the incidence and prevalence of non-suicidal self-injury (NSSI). The present study sought to test both linear and non-linear cusp catastrophe models by using aversive self-awareness, which was operationalized as a composite of aversive self-relevant affect and cognitions, and dissociation as…

  9. Introducing health gains in location-allocation models: A stochastic model for planning the delivery of long-term care

    NASA Astrophysics Data System (ADS)

    Cardoso, T.; Oliveira, M. D.; Barbosa-Póvoa, A.; Nickel, S.

    2015-05-01

    Although the maximization of health is a key objective in health care systems, location-allocation literature has not yet considered this dimension. This study proposes a multi-objective stochastic mathematical programming approach to support the planning of a multi-service network of long-term care (LTC), both in terms of services location and capacity planning. This approach is based on a mixed integer linear programming model with two objectives - the maximization of expected health gains and the minimization of expected costs - with satisficing levels in several dimensions of equity - namely, equity of access, equity of utilization, socioeconomic equity and geographical equity - being imposed as constraints. The augmented ε-constraint method is used to explore the trade-off between these conflicting objectives, with uncertainty in the demand and delivery of care being accounted for. The model is applied to analyze the (re)organization of the LTC network currently operating in the Great Lisbon region in Portugal for the 2014-2016 period. Results show that extending the network of LTC is a cost-effective investment.

  10. Waste management with recourse: an inexact dynamic programming model containing fuzzy boundary intervals in objectives and constraints.

    PubMed

    Tan, Q; Huang, G H; Cai, Y P

    2010-09-01

    The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives. PMID:20580864

  11. Waste management with recourse: an inexact dynamic programming model containing fuzzy boundary intervals in objectives and constraints.

    PubMed

    Tan, Q; Huang, G H; Cai, Y P

    2010-09-01

    The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives.

  12. Iterated non-linear model predictive control based on tubes and contractive constraints.

    PubMed

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.

  13. Iterated non-linear model predictive control based on tubes and contractive constraints.

    PubMed

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. PMID:26850752

  14. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis.

    PubMed

    Hemmati, Reza; Saboori, Hedayat

    2016-05-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics. PMID:27222741

  15. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis

    PubMed Central

    Hemmati, Reza; Saboori, Hedayat

    2016-01-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics. PMID:27222741

  16. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis.

    PubMed

    Hemmati, Reza; Saboori, Hedayat

    2016-05-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics.

  17. Linear and nonlinear quantitative structure-property relationship modelling of skin permeability.

    PubMed

    Khajeh, A; Modarress, H

    2014-01-01

    In this work, quantitative structure-property relationship (QSPR) models were developed to estimate skin permeability based on theoretically derived molecular descriptors and a diverse set of experimental data. The newly developed method combining modified particle swarm optimization (MPSO) and multiple linear regression (MLR) was used to select important descriptors and develop the linear model using a training set of 225 compounds. The adaptive neuro-fuzzy inference system (ANFIS) was used as an efficient nonlinear method to correlate the selected descriptors with experimental skin permeability data (log Kp). The linear and nonlinear models were assessed by internal and external validation. The obtained models with three descriptors show good predictive ability for the test set, with coefficients of determination for the MPSO-MLR and ANFIS models equal to 0.874 and 0.890, respectively. The QSPR study suggests that hydrophobicity (encoded as log P) is the most important factor in transdermal penetration. PMID:24090175

  18. Bi-Objective Modelling for Hazardous Materials Road-Rail Multimodal Routing Problem with Railway Schedule-Based Space-Time Constraints.

    PubMed

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing-Tianjin-Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  19. Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints

    PubMed Central

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  20. Bi-Objective Modelling for Hazardous Materials Road-Rail Multimodal Routing Problem with Railway Schedule-Based Space-Time Constraints.

    PubMed

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-07-28

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing-Tianjin-Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study.

  1. Challenging Slip-Link Models: Predicting the Linear Rheology of 1,4-Polybutadiene Blends of Well-Characterized Star and Linear 1,4-Polybutadienes

    NASA Astrophysics Data System (ADS)

    Katzarova, Maria; Desai, Priyanka; Kang, Beomgoo; Hall, Ryan; Huang, Qifan; Lee, Sanghoon; Chang, Taihyun; Venerus, David; Mays, Jimmy; Schieber, Jay; Larson, Ronald

    The discrete slip-link model (DSM) is a single-chain mean-field model for entanglement-dominated polymer dynamics. The model has been used successfully to make predictions about the linear and nonlinear rheology of monodisperse homopolymer melts, polydisperse melts, or blends. By using recent advances in coarse-graining, hierarchical modeling, and graphics processors, the model is amenable to predictions of well-entangled branched polymers. Here, the parameters of the most coarse-grained member of the hierarchy are fit to the dynamic modulus of monodisperse linear chains and applied to symmetric 4-arm polybutadiene (PBd) star-linear blends with roughly 20 entanglements per star arm, but with no parameter adjustment. Agreement with data is quantitative. This detailed model is further used to examine assumptions and approximations typically made in tube models for blending, including factorization in the time domain. Failure of these assumptions point towards possible fixes to tube models.

  2. Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model

    NASA Technical Reports Server (NTRS)

    Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.

    1997-01-01

    The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface

  3. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    NASA Astrophysics Data System (ADS)

    Alkhalifah, Tariq; Choi, Yunseok

    2012-12-01

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  4. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    SciTech Connect

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  5. Hierarchical linear model: thinking outside the traditional repeated-measures analysis-of-variance box.

    PubMed

    Lininger, Monica; Spybrook, Jessaca; Cheatham, Christopher C

    2015-04-01

    Longitudinal designs are common in the field of athletic training. For example, in the Journal of Athletic Training from 2005 through 2010, authors of 52 of the 218 original research articles used longitudinal designs. In 50 of the 52 studies, a repeated-measures analysis of variance was used to analyze the data. A possible alternative to this approach is the hierarchical linear model, which has been readily accepted in other medical fields. In this short report, we demonstrate the use of the hierarchical linear model for analyzing data from a longitudinal study in athletic training. We discuss the relevant hypotheses, model assumptions, analysis procedures, and output from the HLM 7.0 software. We also examine the advantages and disadvantages of using the hierarchical linear model with repeated measures and repeated-measures analysis of variance for longitudinal data.

  6. Estimation of linear mixed models with a mixture of distribution for the random effects.

    PubMed

    Proust, Cécile; Jacqmin-Gadda, Hélène

    2005-05-01

    The aim of this paper is to propose an algorithm to estimate linear mixed model when random effect distribution is a mixture of Gaussians. This heterogeneous linear mixed model relaxes the classical Gaussian assumption for the random effects and, when used for longitudinal data, can highlight distinct patterns of evolution. The observed likelihood is maximized using a Marquardt algorithm instead of the EM algorithm which is frequently used for mixture models. Indeed, the EM algorithm is computationally expensive and does not provide good convergence criteria nor direct estimates of the variance of the parameters. The proposed method also allows to classify subjects according to the estimated profiles by computing posterior probabilities of belonging to each component. The use of heterogeneous linear mixed model is illustrated through a study of the different patterns of cognitive evolution in the elderly. HETMIXLIN is a free Fortran90 program available on the web site: http://www.isped.u-bordeaux2.fr.

  7. Optical laboratory solution and error model simulation of a linear time-varying finite element equation

    NASA Technical Reports Server (NTRS)

    Taylor, B. K.; Casasent, D. P.

    1989-01-01

    The use of simplified error models to accurately simulate and evaluate the performance of an optical linear-algebra processor is described. The optical architecture used to perform banded matrix-vector products is reviewed, along with a linear dynamic finite-element case study. The laboratory hardware and ac-modulation technique used are presented. The individual processor error-source models and their simulator implementation are detailed. Several significant simplifications are introduced to ease the computational requirements and complexity of the simulations. The error models are verified with a laboratory implementation of the processor, and are used to evaluate its potential performance.

  8. Analysis of an inventory model for both linearly decreasing demand and holding cost

    NASA Astrophysics Data System (ADS)

    Malik, A. K.; Singh, Parth Raj; Tomar, Ajay; Kumar, Satish; Yadav, S. K.

    2016-03-01

    This study proposes the analysis of an inventory model for linearly decreasing demand and holding cost for non-instantaneous deteriorating items. The inventory model focuses on commodities having linearly decreasing demand without shortages. The holding cost doesn't remain uniform with time due to any form of variation in the time value of money. Here we consider that the holding cost decreases with respect to time. The optimal time interval for the total profit and the optimal order quantity are determined. The developed inventory model is pointed up through a numerical example. It also includes the sensitivity analysis.

  9. Based on linear spectral mixture model (LSMM) unmixing remote sensing image

    NASA Astrophysics Data System (ADS)

    Liu, Jiaodi; Cao, Weibin

    2011-06-01

    There are mixed pixels in remote sensing images ordinarily, this is a difficulty of the pixel classification (ie, unmixing) in remote sensing image processing.Linear spectral separation, estimating the value end of Genpo degree, for spatial modeling, through the non-constrained mixed pixel decomposition,with cotton, corn, tomatoes and soil four endmembers to decompose mixed pixels, Got four endmember abundance images and the RMS error image, the planting area of cotton and cotton-growing area of the measurement in the decomposition of mixed pixel block, and obtained unmixing accuracy. Experimental results show that: a simple linear mixed model modeling, and computation is greatly reduced, high precision, strong adaptability.

  10. Model Checking Techniques for Assessing Functional Form Specifications in Censored Linear Regression Models.

    PubMed

    León, Larry F; Cai, Tianxi

    2012-04-01

    In this paper we develop model checking techniques for assessing functional form specifications of covariates in censored linear regression models. These procedures are based on a censored data analog to taking cumulative sums of "robust" residuals over the space of the covariate under investigation. These cumulative sums are formed by integrating certain Kaplan-Meier estimators and may be viewed as "robust" censored data analogs to the processes considered by Lin, Wei & Ying (2002). The null distributions of these stochastic processes can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be generated by computer simulation. Each observed process can then be graphically compared with a few realizations from the Gaussian process. We also develop formal test statistics for numerical comparison. Such comparisons enable one to assess objectively whether an apparent trend seen in a residual plot reects model misspecification or natural variation. We illustrate the methods with a well known dataset. In addition, we examine the finite sample performance of the proposed test statistics in simulation experiments. In our simulation experiments, the proposed test statistics have good power of detecting misspecification while at the same time controlling the size of the test.

  11. Aboveground biomass and carbon stocks modelling using non-linear regression model

    NASA Astrophysics Data System (ADS)

    Ain Mohd Zaki, Nurul; Abd Latif, Zulkiflee; Nazip Suratman, Mohd; Zainee Zainal, Mohd

    2016-06-01

    Aboveground biomass (AGB) is an important source of uncertainty in the carbon estimation for the tropical forest due to the variation biodiversity of species and the complex structure of tropical rain forest. Nevertheless, the tropical rainforest holds the most extensive forest in the world with the vast diversity of tree with layered canopies. With the usage of optical sensor integrate with empirical models is a common way to assess the AGB. Using the regression, the linkage between remote sensing and a biophysical parameter of the forest may be made. Therefore, this paper exemplifies the accuracy of non-linear regression equation of quadratic function to estimate the AGB and carbon stocks for the tropical lowland Dipterocarp forest of Ayer Hitam forest reserve, Selangor. The main aim of this investigation is to obtain the relationship between biophysical parameter field plots with the remotely-sensed data using nonlinear regression model. The result showed that there is a good relationship between crown projection area (CPA) and carbon stocks (CS) with Pearson Correlation (p < 0.01), the coefficient of correlation (r) is 0.671. The study concluded that the integration of Worldview-3 imagery with the canopy height model (CHM) raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the lowland Dipterocarp forest.

  12. Identifying optimal regional solid waste management strategies through an inexact integer programming model containing infinite objectives and constraints.

    PubMed

    He, Li; Huang, Guo-He; Zeng, Guang-Ming; Lu, Hong-Wei

    2009-01-01

    The previous inexact mixed-integer linear programming (IMILP) method can only tackle problems with coefficients of the objective function and constraints being crisp intervals, while the existing inexact mixed-integer semi-infinite programming (IMISIP) method can only deal with single-objective programming problems as it merely allows the number of constraints to be infinite. This study proposes, an inexact mixed-integer bi-infinite programming (IMIBIP) method by incorporating the concept of functional intervals into the programming framework. Different from the existing methods, the IMIBIP can tackle the inexact programming problems that contain both infinite objectives and constraints. The developed method is applied to capacity planning of waste management systems under a variety of uncertainties. Four scenarios are considered for comparing the solutions of IMIBIP with those of IMILP. The results indicate that reasonable solutions can be generated by the IMIBIP method. Compared with IMILP, the system cost from IMIBIP would be relatively high since the fluctuating market factors are considered; however, the IMILP solutions are associated with a raised system reliability level and a reduced constraint violation risk level. PMID:18406594

  13. Does Imaging Technology Cause Cancer? Debunking the Linear No-Threshold Model of Radiation Carcinogenesis.

    PubMed

    Siegel, Jeffry A; Welsh, James S

    2016-04-01

    In the past several years, there has been a great deal of attention from the popular media focusing on the alleged carcinogenicity of low-dose radiation exposures received by patients undergoing medical imaging studies such as X-rays, computed tomography scans, and nuclear medicine scintigraphy. The media has based its reporting on the plethora of articles published in the scientific literature that claim that there is "no safe dose" of ionizing radiation, while essentially ignoring all the literature demonstrating the opposite point of view. But this reported "scientific" literature in turn bases its estimates of cancer induction on the linear no-threshold hypothesis of radiation carcinogenesis. The use of the linear no-threshold model has yielded hundreds of articles, all of which predict a definite carcinogenic effect of any dose of radiation, regardless of how small. Therefore, hospitals and professional societies have begun campaigns and policies aiming to reduce the use of certain medical imaging studies based on perceived risk:benefit ratio assumptions. However, as they are essentially all based on the linear no-threshold model of radiation carcinogenesis, the risk:benefit ratio models used to calculate the hazards of radiological imaging studies may be grossly inaccurate if the linear no-threshold hypothesis is wrong. Here, we review the myriad inadequacies of the linear no-threshold model and cast doubt on the various studies based on this overly simplistic model.

  14. INTRODUCTION TO A COMBINED MULTIPLE LINEAR REGRESSION AND ARMA MODELING APPROACH FOR BEACH BACTERIA PREDICTION

    EPA Science Inventory

    Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...

  15. The Use of Linear Models for Determining School Workload and Activity Level.

    ERIC Educational Resources Information Center

    Vicino, Frank L.

    This paper outlines the design and use of two linear models as decision-making tools in a school district. The problem to be solved was the allocation of resources for both clerical and custodial personnel. A solution was desired that could be quantified and documented and objectively serve the needs of the district. A clerical support model was…

  16. Missing Data Treatments at the Second Level of Hierarchical Linear Models

    ERIC Educational Resources Information Center

    St. Clair, Suzanne W.

    2011-01-01

    The current study evaluated the performance of traditional versus modern MDTs in the estimation of fixed-effects and variance components for data missing at the second level of an hierarchical linear model (HLM) model across 24 different study conditions. Variables manipulated in the analysis included, (a) number of Level-2 variables with missing…

  17. A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.

    2012-01-01

    A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…

  18. Avoiding Boundary Estimates in Hierarchical Linear Models through Weakly Informative Priors

    ERIC Educational Resources Information Center

    Chung, Yeojin; Rabe-Hesketh, Sophia; Gelman, Andrew; Dorie, Vincent; Liu, Jinchen

    2012-01-01

    Hierarchical or multilevel linear models are widely used for longitudinal or cross-sectional data on students nested in classes and schools, and are particularly important for estimating treatment effects in cluster-randomized trials, multi-site trials, and meta-analyses. The models can allow for variation in treatment effects, as well as…

  19. USING LINEAR AND POLYNOMIAL MODELS TO EXAMINE THE ENVIRONMENTAL STABILITY OF VIRUSES

    EPA Science Inventory

    The article presents the development of model equations for describing the fate of viral infectivity in environmental samples. Most of the models were based upon the use of a two-step linear regression approach. The first step employs regression of log base 10 transformed viral t...

  20. Augmenting Visual Analysis in Single-Case Research with Hierarchical Linear Modeling

    ERIC Educational Resources Information Center

    Davis, Dawn H.; Gagne, Phill; Fredrick, Laura D.; Alberto, Paul A.; Waugh, Rebecca E.; Haardorfer, Regine

    2013-01-01

    The purpose of this article is to demonstrate how hierarchical linear modeling (HLM) can be used to enhance visual analysis of single-case research (SCR) designs. First, the authors demonstrated the use of growth modeling via HLM to augment visual analysis of a sophisticated single-case study. Data were used from a delayed multiple baseline…

  1. Regression Is a Univariate General Linear Model Subsuming Other Parametric Methods as Special Cases.

    ERIC Educational Resources Information Center

    Vidal, Sherry

    Although the concept of the general linear model (GLM) has existed since the 1960s, other univariate analyses such as the t-test and the analysis of variance models have remained popular. The GLM produces an equation that minimizes the mean differences of independent variables as they are related to a dependent variable. From a computer printout…

  2. Applications of a linearized land-atmosphere model to SVAT modelling and remote-sensing

    NASA Astrophysics Data System (ADS)

    Gentine, P.; Entekhabi, D.; Polcher, J.

    2009-04-01

    The present study refreshes and improves the work first introduced by Lettau (1951). A linearized land-atmosphere model, forced by times series of incoming radiation at the land-surface, is solved analytically. With this model, the profiles of temperature and heat fluxes in the soil and the Atmospheric Boundary Layer (ABL) can be expressed in terms of temporal Fourier series. Moreover the surface variables (temperature, specific humidity, surface fluxes) are also derived analytically and are expressed as functions of both surface parameters (friction velocity, vegetation height, aerodynamic resistance, stomatal conductance) and frequency of the forcing of incoming radiation. This original approach has several advantages. The model only requires very little data to perform well (time series of incoming radiation at the land-surface, mean daily specific humidity and potential temperature at any given height) and allows theoretically studying the temporal and spectral response of a coupled land-atmosphere system to any forcing of incoming radiation at the land-surface. The diurnal evolution of the ABL and the soil temperature and flux profiles will be emphasized, as well as their dependency on the frequency of the forcing. This will theoretically highlight the existence and diurnal behavior of the Surface and Mixed-Layer. Moreover, this model is shown to be helpful for the conception of remote-sensing tools and for the use of data assimilation. The spectral analysis of the coupling between the land and the atmosphere helps investigate the relevance of the sensor measurements, according to the temporal resolution of the sensor as well as the penetration depth of its electromagnetic wave. This will give insight on the appropriate variables for the data assimilation, in conjunction with land-surface models (Soil Vegetation Atmopshere Transfer models). Moreover guidelines for the collection of remotely sensed data can be obtained through this simple model. The model will

  3. Mass action realizations of reaction kinetic system models on various time scales

    NASA Astrophysics Data System (ADS)

    Hangos, K. M.; Szederkényi, G.

    2011-01-01

    Complex chemical reaction networks often exhibit different dynamic behaviour on different time scales. A combined approach is proposed in this work for determining physically meaningful mass action realizations of complex chemical reaction networks that describe its dynamic behaviour on different time scales. This is achieved by appropriately reducing the detailed overall mass action kinetic scheme using quasi steady state assumptions fit to the particular time scale, and then searching for an optimal realization using mixed integer linear programing. Furthermore, the relationship between the properties (reversibility, deficiency, stability) of the obtained realizations of the same system on different time scales are also investigated and related to the same properties of the detailed overall model. It is shown that the reduced models obtained by quasi steady state assumptions may show exotic nonlinear behaviour, such as oscillations, when the original detailed is globally asymptotically stable. The proposed methods are illustrated by using a simple Michaelis-Menten type reaction kinetic example. The simplified versions of the well known Brusselator model have also been investigated and presented as a case study.

  4. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    PubMed

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. PMID:20863690

  5. A two-stage support-vector-regression optimization model for municipal solid waste management - a case study of Beijing, China.

    PubMed

    Dai, C; Li, Y P; Huang, G H

    2011-12-01

    In this study, a two-stage support-vector-regression optimization model (TSOM) is developed for the planning of municipal solid waste (MSW) management in the urban districts of Beijing, China. It represents a new effort to enhance the analysis accuracy in optimizing the MSW management system through coupling the support-vector-regression (SVR) model with an interval-parameter mixed integer linear programming (IMILP). The developed TSOM can not only predict the city's future waste generation amount, but also reflect dynamic, interactive, and uncertain characteristics of the MSW management system. Four kernel functions such as linear kernel, polynomial kernel, radial basis function, and multi-layer perception kernel are chosen based on three quantitative simulation performance criteria [i.e. prediction accuracy (PA), fitting accuracy (FA) and over all accuracy (OA)]. The SVR with polynomial kernel has accurate prediction performance for MSW generation rate, with all of the three quantitative simulation performance criteria being over 96%. Two cases are considered based on different waste management policies. The results are valuable for supporting the adjustment of the existing waste-allocation patterns to raise the city's waste diversion rate, as well as the capacity planning of waste management system to satisfy the city's increasing waste treatment/disposal demands.

  6. Modeling neuro-vascular coupling in rat cerebellum: characterization of deviations from linearity.

    PubMed

    Rasmussen, Tina; Holstein-Rathlou, Niels-Henrik; Lauritzen, Martin

    2009-03-01

    We investigated the quantitative relation between neuronal activity and blood flow by means of a general parametric mathematical model which described the neuro-vascular system as being dynamic, linear, time-invariant, and subjected to additive noise. The model was constructed from measurements by means of system identification methods and validated across experiments. We sought to cover the system response to multiple stimulation frequencies and durations by a single model. We used the model to investigate the transport delay, the linear order, the deviations from linearity, and conditions for linearizability. We exercised the model on data from rat cerebellar cortex. In anesthetized rats, stimulation of the inferior olive caused climbing fiber activity and blood flow changes. Field potential amplitudes were used as an indicator of neuronal activity and blood flow was measured by laser-Doppler flowmetry. In one set of experiments, stimulation frequencies were in the range 2-20 Hz and the stimulation durations were 60 s and 600 s. The transport delay was estimated to be nearly zero, the linear order to be two. The deviations from linearity were consistently characterized as frequency saturation and dips in blood flow responses to stimulation for 60 s, and overgrowth of blood flow responses to stimulation for 600 s. In another set of experiments, stimulation frequencies were in the range 0.5-10 Hz and the stimulation duration was 15 s. The neuro-vascular system could be approximated by the linear model when the stimulation frequencies were restricted to the range 0.5-7 Hz. In conclusion, our model could predict blood flow responses to stimuli of low frequency and short duration. PMID:19027074

  7. A note on probabilistic models over strings: the linear algebra approach.

    PubMed

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems. PMID:24135792

  8. A note on probabilistic models over strings: the linear algebra approach.

    PubMed

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  9. [Simulation of the branch biomass for Chinese fir plantation using the linear mixed effects model].

    PubMed

    Xu, Hao; Zun, Yu-jun; Wang, Xin-jie; Fang, Jing; Tu, Hong-tao; Liu, Su-zhen

    2015-10-01

    Based on data obtained from 572 branches of 45 Chinese fir trees in Jiangle Forest Farm, Fujian Province, southeast China, prediction models for branch, foliage biomass and total branch and foliage biomass of individual tree were developed by linear mixed effects (LME) method, and tested by independent samples. The results showed that the LME models provided better performance than the multiple linear regression models for the branch, foliage and total biomass prediction of Chinese fir plantation. The LME models with different combinations of the random effects parameters had different fitting precisions. The LME models including variance structures could effectively remove the heteroscedasticity in the data and improved the precision. The LME model with the exponential function as the variance structure had better fitting precisions for the total biomass and foliage biomass models, and that with the constant plus power function as the variance structure had better performance for the branch biomass model. Model validation confirmed that the LME models with the random effects and heteroscedasticity structure could significantly improve the precision of prediction, compared to the multiple linear regression models.

  10. Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.

    PubMed

    Holly, Jan E

    2004-01-01

    The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component.

  11. Robust estimation for partially linear models with large-dimensional covariates

    PubMed Central

    Zhu, LiPing; Li, RunZe; Cui, HengJian

    2014-01-01

    We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures. PMID:24955087

  12. Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.

    PubMed

    Holly, Jan E

    2004-01-01

    The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component. PMID:15735327

  13. Statistical and Practical Significance of the Likelihood Ratio Test of the Linear Logistic Test Model versus the Rasch Model

    ERIC Educational Resources Information Center

    Alexandrowicz, Rainer W.

    2011-01-01

    The linear logistic test model (LLTM) is a valuable and approved tool in educational research, as it allows for modelling cognitive components involved in a cognitive task. It allows for a rigorous assessment of fit by means of a Likelihood Ratio Test (LRT). This approach is genuine to the Rasch family of models, yet it suffers from the unsolved…

  14. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.

  15. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. PMID:26341070

  16. Two models of inventory control with supplier selection in case of multiple sourcing: a case of Isfahan Steel Company

    NASA Astrophysics Data System (ADS)

    Rabieh, Masood; Soukhakian, Mohammad Ali; Mosleh Shirazi, Ali Naghi

    2016-03-01

    Selecting the best suppliers is crucial for a company's success. Since competition is a determining factor nowadays, reducing cost and increasing quality of products are two key criteria for appropriate supplier selection. In the study, first the inventories of agglomeration plant of Isfahan Steel Company were categorized through VED and ABC methods. Then the models to supply two important kinds of raw materials (inventories) were developed, considering the following items: (1) the optimal consumption composite of the materials, (2) the total cost of logistics, (3) each supplier's terms and conditions, (4) the buyer's limitations and (5) the consumption behavior of the buyers. Among diverse developed and tested models—using the company's actual data within three pervious years—the two new innovative models of mixed-integer non-linear programming type were found to be most suitable. The results of solving two models by lingo software (based on company's data in this particular case) were equaled. Comparing the results of the new models to the actual performance of the company revealed 10.9 and 7.1 % reduction in total procurement costs of the company in two consecutive years.

  17. Reliable design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic chance-constrained model

    NASA Astrophysics Data System (ADS)

    Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman

    2013-06-01

    This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.

  18. Impact of using linear optimization models in dose planning for HDR brachytherapy

    SciTech Connect

    Holm, Aasa; Larsson, Torbjoern; Carlsson Tedgren, Aasa

    2012-02-15

    Purpose: Dose plans generated with optimization models hitherto used in high-dose-rate (HDR) brachytherapy have shown a tendency to yield longer dwell times than manually optimized plans. Concern has been raised for the corresponding undesired hot spots, and various methods to mitigate these have been developed. The hypotheses upon this work is based are (a) that one cause for the long dwell times is the use of objective functions comprising simple linear penalties and (b) that alternative penalties, as these are piecewise linear, would lead to reduced length of individual dwell times. Methods: The characteristics of the linear penalties and the piecewise linear penalties are analyzed mathematically. Experimental comparisons between the two types of penalties are carried out retrospectively for a set of prostate cancer patients. Results: When the two types of penalties are compared, significant changes can be seen in the dwell times, while most dose-volume parameters do not differ significantly. On average, total dwell times were reduced by 4.2%, with a reduction of maximum dwell times by 25%, when the alternative penalties were used. Conclusions: The use of linear penalties in optimization models for HDR brachytherapy is one cause for the undesired long dwell times that arise in mathematically optimized plans. By introducing alternative penalties, a significant reduction in dwell times can be achieved for HDR brachytherapy dose plans. Although various measures for mitigating the long dwell times are already available, the observation that linear penalties contribute to their appearance is of fundamental interest.

  19. Three-dimensional finite-difference modeling of non-linear ground notion

    SciTech Connect

    Jones, E.M.; Olsen, K.B.

    1997-08-01

    We present a hybrid finite-difference technique capable of modeling non-linear soil amplification from the 3-D finite-fault radiation pattern for earthquakes in arbitrary earth models. The method is applied to model non-linear effects in the soils of the San Fernando Valley (SFV) from the 17 January 1994 M 6.7 Northridge earthquake. 0-7 Hz particle velocities are computed for an area of 17 km by 19 km immediately above the causative fault and 5 km below the surface where peak strike-parallel, strike-perpendicular, vertical, and total velocities reach values of 71 cm/s, 145 cm/s, 152 cm/s, and 180 cm/s, respectively. Selected Green`s functions and a soil model for the SFV are used to compute the approximate stress level during the earthquake, and comparison to the values for near-surface alluvium at the U.S. Nevada Test Site suggests that the non-linear regime may have been entered. We use selected values from the simulated particle velocity distribution at 5 km depth to compute the non-linear response in a soil column below a site within the Van Norman Complex in SFV, where the strongest ground motion was recorded. Since site-specific non- linear material parameters from the SFV are currently unavailable, values are taken from analyses of observed Test Site ground motions. Preliminary results show significant reduction of spectral velocities at the surface normalized to the peak source velocity due to non-linear effects when the peak velocity increases from 32 cm/s (approximately linear case) to 64 cm/s (30-92%), 93 cm/s (7-83%), and 124 cm/s (2-70%). The largest reduction occurs for frequencies above 1 Hz.

  20. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    SciTech Connect

    Gene Golub; Kwok Ko

    2009-03-30

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  1. Peak power prediction in junior basketballers: comparing linear and allometric models.

    PubMed

    Duncan, Michael J; Hankey, Joanne; Lyons, Mark; James, Rob S; Nevill, Alan M

    2013-03-01

    Equations, commonly used to predict peak power from jump height, have relied on linear additive models that are biologically unsound beyond the range of observations because of high negative intercept values. This study explored the utility of allometric multiplicative modeling to better predict peak power in adolescent basketball players. Seventy-seven elite junior basketball players (62 adolescent boys, 15 adolescent girls, age = 16.8 ± 0.8 years) performed 3 counter movement jumps (CMJs) on a force platform. Both linear and multiplicative models were then used to determine their efficacy. Four previously published linear equations were significantly associated with actual peak power (all p < 0.01), although here were significant differences between actual and estimated peak power using the SJ and CMJ equations by Sayers (both p < 0.001). Allometric modeling was used to determine an alternative biologically sound equation which was more strongly associated with (r = 0.886, p < 0.001), and not significantly different to (p > 0.05), actual peak power and predicted 77.9% of the variance in actual peak power (adjusted R = 0.779, p < 0.001). Exponents close to 1 for body mass and CMJ height indicated that peak power could also be determined from the product of body mass and CMJ height. This equation was significantly associated (r = 0.871, p < 0.001) with, and not significantly different to, actual peak power (adjusted R = 0.756, p > 0.05) and offered a more accurate estimation of peak power than previously validated linear additive models examined in this study. The allometric model determined from this study or the multiplicative model (body mass × CMJ height) provides biologically sound models to accurately estimate peak power in elite adolescent basketballers that are more accurate than equations based on linear additive models.

  2. Modelling land-fast sea ice using a linear elastic model

    NASA Astrophysics Data System (ADS)

    Plante, Mathieu; Tremblay, Bruno

    2016-04-01

    Land-fast ice is an important component of the Arctic system, capping the coastal Arctic waters for most of the year and exerting a large influence on ocean-atmosphere heat exchanges. Yet, the accurate representation of land-fast ice in most large-scale sea ice models remains a challenge, part due to the difficult (and sometimes non-physical) parametrisation of ice fracture. In this study, a linear elastic model is developed to investigate the internal stresses induced by the wind forcing on the land-fast ice, modelled as a 2D elastic plate. The model simulates ice fracture by the implementation of a damage coefficient which causes a local reduction in internal stress. This results in a cascade propagation of damage, simulating the ice fracture that determines the position of the land-fast ice edge. The modelled land-fast ice cover is sensitive to the choice of failure criterion. The parametrised cohesion, tensile and compressive strength and the relationship with the land-fast ice stability is discussed. To estimate the large scale mechanical properties of land-fast ice, these results are compared to a set of land-fast ice break up events and ice bridge formations observed in the Siberian Arctic. These events are identified using brightness temperature imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) Terra and Aqua satellites, from which the position of the flaw lead is identifiable by the opening of polynyi adjacent to the land-fast ice edge. The shape of the land-fast ice before, during and after these events, along with the characteristic scale of the resulting ice floes, are compared to the model results to extrapolate the stress state that corresponds to these observations. The model setting that best reproduce the scale of the observed break up events is used to provide an estimation of the strength of the ice relative to the wind forcing. These results will then be used to investigate the relationship between the ice thickness and the

  3. A single-degree-of-freedom model for non-linear soil amplification

    USGS Publications Warehouse

    Erdik, Mustafa Ozder

    1979-01-01

    For proper understanding of soil behavior during earthquakes and assessment of a realistic surface motion, studies of the large-strain dynamic response of non-linear hysteretic soil systems are indispensable. Most of the presently available studies are based on the assumption that the response of a soil deposit is mainly due to the upward propagation of horizontally polarized shear waves from the underlying bedrock. Equivalent-linear procedures, currently in common use in non-linear soil response analysis, provide a simple approach and have been favorably compared with the actual recorded motions in some particular cases. Strain compatibility in these equivalent-linear approaches is maintained by selecting values of shear moduli and damping ratios in accordance with the average soil strains, in an iterative manner. Truly non-linear constitutive models with complete strain compatibility have also been employed. The equivalent-linear approaches often raise some doubt as to the reliability of their results concerning the system response in high frequency regions. In these frequency regions the equivalent-linear methods may underestimate the surface motion by as much as a factor of two or more. Although studies are complete in their methods of analysis, they inevitably provide applications pertaining only to a few specific soil systems, and do not lead to general conclusions about soil behavior. This report attempts to provide a general picture of the soil response through the use of a single-degree-of-freedom non-linear-hysteretic model. Although the investigation is based on a specific type of nonlinearity and a set of dynamic soil properties, the method described does not limit itself to these assumptions and is equally applicable to other types of nonlinearity and soil parameters.

  4. Direct use of linear time-domain aerodynamics in aeroservoelastic analysis: Aerodynamic model

    NASA Technical Reports Server (NTRS)

    Woods, J. A.; Gilbert, Michael G.

    1990-01-01

    The work presented here is the first part of a continuing effort to expand existing capabilities in aeroelasticity by developing the methodology which is necessary to utilize unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis. The ultimate objective is to define a fully integrated state-space model of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to efficiently determine the vehicle's aeroservoelastic stability. Here, the current status of developing a state-space model for linear or near-linear time-domain indicial aerodynamic forces is presented.

  5. Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1986-01-01

    The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.

  6. Kershaw closures for linear transport equations in slab geometry I: Model derivation

    NASA Astrophysics Data System (ADS)

    Schneider, Florian

    2016-10-01

    This paper provides a new class of moment models for linear kinetic equations in slab geometry. These models can be evaluated cheaply while preserving the important realizability property, that is the fact that the underlying closure is non-negative. Several comparisons with the (expensive) state-of-the-art minimum-entropy models are made, showing the similarity in approximation quality of the two classes.

  7. Genetic evaluation of calf and heifer survival in Iranian Holstein cattle using linear and threshold models.

    PubMed

    Forutan, M; Ansari Mahyari, S; Sargolzaei, M

    2015-02-01

    Calf and heifer survival are important traits in dairy cattle affecting profitability. This study was carried out to estimate genetic parameters of survival traits in female calves at different age periods, until nearly the first calving. Records of 49,583 female calves born during 1998 and 2009 were considered in five age periods as days 1-30, 31-180, 181-365, 366-760 and full period (day 1-760). Genetic components were estimated based on linear and threshold sire models and linear animal models. The models included both fixed effects (month of birth, dam's parity number, calving ease and twin/single) and random effects (herd-year, genetic effect of sire or animal and residual). Rates of death were 2.21, 3.37, 1.97, 4.14 and 12.4% for the above periods, respectively. Heritability estimates were very low ranging from 0.48 to 3.04, 0.62 to 3.51 and 0.50 to 4.24% for linear sire model, animal model and threshold sire model, respectively. Rank correlations between random effects of sires obtained with linear and threshold sire models and with linear animal and sire models were 0.82-0.95 and 0.61-0.83, respectively. The estimated genetic correlations between the five different periods were moderate and only significant for 31-180 and 181-365 (r(g) = 0.59), 31-180 and 366-760 (r(g) = 0.52), and 181-365 and 366-760 (r(g) = 0.42). The low genetic correlations in current study would suggest that survival at different periods may be affected by the same genes with different expression or by different genes. Even though the additive genetic variations of survival traits were small, it might be possible to improve these traits by traditional or genomic selection.

  8. Generating synthetic wave climates for coastal modelling: a linear mixed modelling approach

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Lark, R. M.

    2013-12-01

    Numerical coastline morphological evolution models require wave climate properties to drive morphological change through time. Wave climate properties (typically wave height, period and direction) may be temporally fixed, culled from real wave buoy data, or allowed to vary in some way defined by a Gaussian or other pdf. However, to examine sensitivity of coastline morphologies to wave climate change, it seems desirable to be able to modify wave climate time series from a current to some new state along a trajectory, but in a way consistent with, or initially conditioned by, the properties of existing data, or to generate fully synthetic data sets with realistic time series properties. For example, mean or significant wave height time series may have underlying periodicities, as revealed in numerous analyses of wave data. Our motivation is to develop a simple methodology to generate synthetic wave climate time series that can change in some stochastic way through time. We wish to use such time series in a coastline evolution model to test sensitivities of coastal landforms to changes in wave climate over decadal and centennial scales. We have worked initially on time series of significant wave height, based on data from a Waverider III buoy located off the coast of Yorkshire, England. The statistical framework for the simulation is the linear mixed model. The target variable, perhaps after transformation (Box-Cox), is modelled as a multivariate Gaussian, the mean modelled as a function of a fixed effect, and two random components, one of which is independently and identically distributed (iid) and the second of which is temporally correlated. The model was fitted to the data by likelihood methods. We considered the option of a periodic mean, the period either fixed (e.g. at 12 months) or estimated from the data. We considered two possible correlation structures for the second random effect. In one the correlation decays exponentially with time. In the second

  9. Demolition waste generation for development of a regional management chain model.

    PubMed

    Bernardo, Miguel; Gomes, Marta Castilho; de Brito, Jorge

    2016-03-01

    Even though construction and demolition waste (CDW) is the bulkiest waste stream, its estimation and composition in specific regions still faces major difficulties. Therefore new methods are required especially when it comes to make predictions limited to small areas, such as counties. This paper proposes one such method, which makes use of data collected from real demolition works and statistical information on the geographical area under study. Based on a correlation analysis between the demolition waste estimates and indicators such as population density, buildings ageing index, buildings density and land occupation type, relationships are established that can be used to determine demolition waste outputs in a given area. The derived models are presented and explained. This methodology is independent from the specific region with which it is exemplified (the Lisbon Metropolitan Area) and can therefore be applied to any region of the world, from the country to the county level. Generation of demolition waste data at the county level is the basis of the design of a systemic model for CDW management in a region. Future developments proposed include a mixed-integer linear programming formulation of such recycling network. PMID:26838607

  10. Aggregation of LoD 1 building models as an optimization problem

    NASA Astrophysics Data System (ADS)

    Guercke, R.; Götzelmann, T.; Brenner, C.; Sester, M.

    3D city models offered by digital map providers typically consist of several thousands or even millions of individual buildings. Those buildings are usually generated in an automated fashion from high resolution cadastral and remote sensing data and can be very detailed. However, not in every application such a high degree of detail is desirable. One way to remove complexity is to aggregate individual buildings, simplify the ground plan and assign an appropriate average building height. This task is computationally complex because it includes the combinatorial optimization problem of determining which subset of the original set of buildings should best be aggregated to meet the demands of an application. In this article, we introduce approaches to express different aspects of the aggregation of LoD 1 building models in the form of Mixed Integer Programming (MIP) problems. The advantage of this approach is that for linear (and some quadratic) MIP problems, sophisticated software exists to find exact solutions (global optima) with reasonable effort. We also propose two different heuristic approaches based on the region growing strategy and evaluate their potential for optimization by comparing their performance to a MIP-based approach.

  11. Development and Validation of Linear Alternator Models for the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2015-01-01

    Two models of the linear alternator of the Advanced Stirling Convertor (ASC) have been developed using the Sage 1-D modeling software package. The first model relates the piston motion to electric current by means of a motor constant. The second uses electromagnetic model components to model the magnetic circuit of the alternator. The models are tuned and validated using test data and also compared against each other. Results show both models can be tuned to achieve results within 7 of ASC test data under normal operating conditions. Using Sage enables the creation of a complete ASC model to be developed and simulations completed quickly compared to more complex multi-dimensional models. These models allow for better insight into overall Stirling convertor performance, aid with Stirling power system modeling, and in the future support NASA mission planning for Stirling-based power systems.

  12. Development and Validation of Linear Alternator Models for the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Lewandowski, Edward

    2014-01-01

    Two models of the linear alternator of the Advanced Stirling Convertor (ASC) have been developed using the Sage 1-D modeling software package. The first model relates the piston motion to electric current by means of a motor constant. The second uses electromagnetic model components to model the magnetic circuit of the alternator. The models are tuned and validated using test data and compared against each other. Results show both models can be tuned to achieve results within 7% of ASC test data under normal operating conditions. Using Sage enables the creation of a complete ASC model to be developed and simulations completed quickly compared to more complex multi-dimensional models. These models allow for better insight into overall Stirling convertor performance, aid with Stirling power system modeling, and in the future support NASA mission planning for Stirling-based power systems.

  13. Stochastic non-linear oscillator models of EEG: the Alzheimer's disease case.

    PubMed

    Ghorbanian, Parham; Ramakrishnan, Subramanian; Ashrafiuon, Hashem

    2015-01-01

    In this article, the Electroencephalography (EEG) signal of the human brain is modeled as the output of stochastic non-linear coupled oscillator networks. It is shown that EEG signals recorded under different brain states in healthy as well as Alzheimer's disease (AD) patients may be understood as distinct, statistically significant realizations of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed (EC) resting conditions in a pilot study with AD patients and age-matched healthy control subjects (CTL) are employed. An optimization scheme is then utilized to match the output of the stochastic Duffing-van der Pol double oscillator network with EEG signals recorded during each condition for AD and CTL subjects by selecting the model physical parameters and noise intensity. The selected signal characteristics are power spectral densities in major brain frequency bands Shannon and sample entropies. These measures allow matching of linear time varying frequency content as well as non-linear signal information content and complexity. The main finding of the work is that statistically significant unique models represent the EC and EO conditions for both CTL and AD subjects. However, it is also shown that the inclusion of sample entropy in the optimization process, to match the complexity of the EEG signal, enhances the stochastic non-linear oscillator model performance. PMID:25964756

  14. Stochastic non-linear oscillator models of EEG: the Alzheimer's disease case

    PubMed Central

    Ghorbanian, Parham; Ramakrishnan, Subramanian; Ashrafiuon, Hashem

    2015-01-01

    In this article, the Electroencephalography (EEG) signal of the human brain is modeled as the output of stochastic non-linear coupled oscillator networks. It is shown that EEG signals recorded under different brain states in healthy as well as Alzheimer's disease (AD) patients may be understood as distinct, statistically significant realizations of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed (EC) resting conditions in a pilot study with AD patients and age-matched healthy control subjects (CTL) are employed. An optimization scheme is then utilized to match the output of the stochastic Duffing—van der Pol double oscillator network with EEG signals recorded during each condition for AD and CTL subjects by selecting the model physical parameters and noise intensity. The selected signal characteristics are power spectral densities in major brain frequency bands Shannon and sample entropies. These measures allow matching of linear time varying frequency content as well as non-linear signal information content and complexity. The main finding of the work is that statistically significant unique models represent the EC and EO conditions for both CTL and AD subjects. However, it is also shown that the inclusion of sample entropy in the optimization process, to match the complexity of the EEG signal, enhances the stochastic non-linear oscillator model performance. PMID:25964756

  15. Linear and nonlinear methods in modeling the aqueous solubility of organic compounds.

    PubMed

    Catana, Cornel; Gao, Hua; Orrenius, Christian; Stouten, Pieter F W

    2005-01-01

    Solubility data for 930 diverse compounds have been analyzed using linear Partial Least Square (PLS) and nonlinear PLS methods, Continuum Regression (CR), and Neural Networks (NN). 1D and 2D descriptors from MOE package in combination with E-state or ISIS keys have been used. The best model was obtained using linear PLS for a combination between 22 MOE descriptors and 65 ISIS keys. It has a correlation coefficient (r2) of 0.935 and a root-mean-square error (RMSE) of 0.468 log molar solubility (log S(w)). The model validated on a test set of 177 compounds not included in the training set has r2 0.911 and RMSE 0.475 log S(w). The descriptors were ranked according to their importance, and at the top of the list have been found the 22 MOE descriptors. The CR model produced results as good as PLS, and because of the way in which cross-validation has been done it is expected to be a valuable tool in prediction besides PLS model. The statistics obtained using nonlinear methods did not surpass those got with linear ones. The good statistic obtained for linear PLS and CR recommends these models to be used in prediction when it is difficult or impossible to make experimental measurements, for virtual screening, combinatorial library design, and efficient leads optimization.

  16. Mathematical modelling in engineering: an alternative way to teach Linear Algebra

    NASA Astrophysics Data System (ADS)

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-10-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).

  17. Omaha childhood blood lead and environmental lead: a linear total exposure model

    SciTech Connect

    Angle, C.R.; Marcus, A.; Cheng, I.H.; McIntire, M.S.

    1984-10-01

    The majority of experimental and population studies of blood lead (PbB) and environmental lead, including the Omaha study, have utilized the Goldsmith-Hexter log-log or power function model. Comparison was made of the log-log model and a linear model of total exposure as they described the Omaha Study of 1074 PbBs from children ages 1-18 years as related to air (PbA), soil (PbS), and housedust (PbHD) lead. The data fit of the linear model was statistically equivalent to the power model and the predicted curves were biologically more plausible. The linear model avoids the mathematical limitations of the power model which predicts PbB zero at PbA zero. From the Omaha data, this model, ln PbB = ln (..beta../sub 0/ + B/sub 1/ PbA + B/sub 2/ PbS + ..beta../sub 3/ PbHD) predicts that PbB increases 1.92 ..mu..g/dl as PbA increases 1.0 ..mu..g/m/sup 3/. Since PbS and PbHD increase with PbA, however, the increases in total exposure predict a PbB increase of 4-5 ..mu..g/dl as PbA increases 1.0 ..mu..g/m/sup 3/.

  18. Omaha childhood blood lead and environmental lead: a linear total exposure model

    SciTech Connect

    Angle, C.R.; Marcus, A.; Cheng, I.H.; McIntire, M.S.

    1984-01-01

    The majority of experimental and population studies of blood lead (PbB) and environmental lead, including the Omaha study, have utilized the Goldsmith-Hexter log-log or power function model. Comparison was made of the log-log model and a linear model of total exposure to describe the Omaha Study of 1074 PbBs from children ages 1-18 years as related to air (PbA), soil (PbS), and housedust (PbHD) lead. The data fit of the linear model was statistically equivalent to the power model and the predicted curves were biologically more plausible. The linear model avoids the mathematical limitations of the power model which predicts PbB zero at PbA zero. From the Omaha data, the model, ln PbB = ln (Bo + B1 PbA + B2 PbS + B3 PbHD) predicts that PbB increases 1.92 micrograms/dl as PbA increases 1.0 micrograms/cu. m. Since PbS and PbHD increase with PbA, however, the increases in total exposure predict a PbB increase of 4-5 micrograms/dl as PbA increases 1.0 micrograms/cu. m.

  19. Solving Capelin Time Series Ecosystem Problem Using Hybrid ANN-GAs Model and Multiple Linear Regression Model

    NASA Astrophysics Data System (ADS)

    Eghnam, Karam M.; Sheta, Alaa F.

    2008-06-01

    Development of accurate models is necessary in critical applications such as prediction. In this paper, a solution to the stock prediction problem of the Barents Sea capelin is introduced using Artificial Neural Network (ANN) and Multiple Linear model Regression (MLR) models. The Capelin stock in the Barents Sea is one of the largest in the world. It normally maintained a fishery with annual catches of up to 3 million tons. The Capelin stock problem has an impact in the fish stock development. The proposed prediction model was developed using an ANNs with their weights adapted using Genetic Algorithm (GA). The proposed model was compared to traditional linear model the MLR. The results showed that the ANN-GA model produced an overall accuracy of 21% better than the MLR model.

  20. Examining the Linear Regimes of the Community Earth System Model (CESM)

    NASA Astrophysics Data System (ADS)

    Sun, S.; Brizius, A.; Du, H.; Foster, I.; Smith, L.

    2015-12-01

    In ensemble prediction, Gilmour et al. (2001) proposed measures of relative nonlinearity to quantify the duration of the linear regime from "twin" pairs of ensemble members. The duration of the "linear regime" is useful in forming and interpreting ensembles in numerical weather prediction. Here this method is applied to the state-of-the-art climate model CESM, focusing on how its linear durations will change as the perturbations imposed on one location differ spatially and temporally. The spatial and temporal propagations of point perturbations provide insights into model physics and facilitate interpretation of model projections in future climate scenarios. They provide insight into chaos-like behavior on short time scales, and an indication of the sensitivity and saturation (mixing) times of CESM. Starting from the same initial state, we add relatively small "twin" perturbations (that is, positive and negative perturbations of the same magnitudes) to surface variables, with the locations of the perturbations spanning from the tropics to the poles. As the location changes, the model evolves differently in terms of how the point perturbation extends out of its origin and spreads globally, indicating that different physical mechanisms have played roles in different cases. Repeating the same set of experiments by changing only the perturbation magnitudes insures the linear regime is sampled without constructing an adjoint. Further, how uncertainty growth varies with location in the model state space can be explored by repeating the experiment for different initial states. We compare the responses of the linear regime durations in terms of locations, initial states and magnitudes of the perturbations systematically, and the implications for ensemble experiments and sensitivity studies are discussed. This work is a first step towards treating state-of-the-art climate models with the tools of nonlinear dynamics.

  1. Identifying differential expression in multiple SAGE libraries: an overdispersed log-linear model approach

    PubMed Central

    Lu, Jun; Tomfohr, John K; Kepler, Thomas B

    2005-01-01

    Background In testing for differential gene expression involving multiple serial analysis of gene expression (SAGE) libraries, it is critical to account for both between and within library variation. Several methods have been proposed, including the t test, tw test, and an overdispersed logistic regression approach. The merits of these tests, however, have not been fully evaluated. Questions still remain on whether further improvements can be made. Results In this article, we introduce an overdispersed log-linear model approach to analyzing SAGE; we evaluate and compare its performance with three other tests: the two-sample t test, tw test and another based on overdispersed logistic linear regression. Analysis of simulated and real datasets show that both the log-linear and logistic overdispersion methods generally perform better than the t and tw tests; the log-linear method is further found to have better performance than the logistic method, showing equal or higher statistical power over a range of parameter values and with different data distributions. Conclusion Overdispersed log-linear models provide an attractive and reliable framework for analyzing SAGE experiments involving multiple libraries. For convenience, the implementation of this method is available through a user-friendly web-interface available at . PMID:15987513

  2. Power and Sample Size Calculations for Multivariate Linear Models with Random Explanatory Variables

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2005-01-01

    This article considers the problem of power and sample size calculations for normal outcomes within the framework of multivariate linear models. The emphasis is placed on the practical situation that not only the values of response variables for each subject are just available after the observations are made, but also the levels of explanatory…

  3. Using Hierarchical Linear Modelling to Examine Factors Predicting English Language Students' Reading Achievement

    ERIC Educational Resources Information Center

    Fung, Karen; ElAtia, Samira

    2015-01-01

    Using Hierarchical Linear Modelling (HLM), this study aimed to identify factors such as ESL/ELL/EAL status that would predict students' reading performance in an English language arts exam taken across Canada. Using data from the 2007 administration of the Pan-Canadian Assessment Program (PCAP) along with the accompanying surveys for students and…

  4. Analyzing Multilevel Data: Comparing Findings from Hierarchical Linear Modeling and Ordinary Least Squares Regression

    ERIC Educational Resources Information Center

    Rocconi, Louis M.

    2013-01-01

    This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…

  5. What Is Wrong with ANOVA and Multiple Regression? Analyzing Sentence Reading Times with Hierarchical Linear Models

    ERIC Educational Resources Information Center

    Richter, Tobias

    2006-01-01

    Most reading time studies using naturalistic texts yield data sets characterized by a multilevel structure: Sentences (sentence level) are nested within persons (person level). In contrast to analysis of variance and multiple regression techniques, hierarchical linear models take the multilevel structure of reading time data into account. They…

  6. A linear model fails to predict orientation selectivity of cells in the cat visual cortex.

    PubMed Central

    Volgushev, M; Vidyasagar, T R; Pei, X

    1996-01-01

    1. Postsynaptic potentials (PSPs) evoked by visual stimulation in simple cells in the cat visual cortex were recorded using in vivo whole-cell technique. Responses to small spots of light presented at different positions over the receptive field and responses to elongated bars of different orientations centred on the receptive field were recorded. 2. To test whether a linear model can account for orientation selectivity of cortical neurones, responses to elongated bars were compared with responses predicted by a linear model from the receptive field map obtained from flashing spots. 3. The linear model faithfully predicted the preferred orientation, but not the degree of orientation selectivity or the sharpness of orientation tuning. The ratio of optimal to non-optimal responses was always underestimated by the model. 4. Thus non-linear mechanisms, which can include suppression of non-optimal responses and/or amplification of optimal responses, are involved in the generation of orientation selectivity in the primary visual cortex. PMID:8930828

  7. The origins of quantum interference and uncertainty broadening. A linear ribbon model approach

    SciTech Connect

    Tang, J.

    1996-02-01

    As an alternative to the orthodox Schroedinger wave mechanics or Heisenberg matrix mechanics approach, a simple linear ribbon model for quantum theory is presented. A different perspective and better physical insights into the origins of quantum interference and the mechanisms for uncertainty broadening are offered. Quantum interference in the atomic scale and superconducting behaviour in the macroscopic scale are compared.

  8. Remarks on "Equivalent Linear Logistic Test Models" by Bechger, Verstralen, and Verhelst (2002)

    ERIC Educational Resources Information Center

    Fischer, Gerhard H.

    2004-01-01

    This paper discusses a new form of specifying and normalizing a Linear Logistic Test Model (LLTM) as suggested by Bechger, Verstralen, and Verhelst ("Psychometrika," 2002). It is shown that there are infinitely many ways to specify the same normalization. Moreover, the relationship between some of their results and equivalent previous results in…

  9. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    ERIC Educational Resources Information Center

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  10. Kaon condensation in the linear sigma model at finite density and temperature

    SciTech Connect

    Tran Huu Phat; Nguyen Van Long; Nguyen Tuan Anh; Le Viet Hoa

    2008-11-15

    Basing on the Cornwall-Jackiw-Tomboulis effective action approach we formulate a theoretical formalism for studying kaon condensation in the linear sigma model at finite density and temperature. We derive the renormalized effective potential in the Hartree-Fock approximation, which preserves the Goldstone theorem. This quantity is then used to consider physical properties of kaon matter.

  11. Meta-Analysis in Higher Education: An Illustrative Example Using Hierarchical Linear Modeling

    ERIC Educational Resources Information Center

    Denson, Nida; Seltzer, Michael H.

    2011-01-01

    The purpose of this article is to provide higher education researchers with an illustrative example of meta-analysis utilizing hierarchical linear modeling (HLM). This article demonstrates the step-by-step process of meta-analysis using a recently-published study examining the effects of curricular and co-curricular diversity activities on racial…

  12. Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth

    ERIC Educational Resources Information Center

    Jeon, Minjeong

    2012-01-01

    Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…

  13. An improved statistical model for linear antenna input impedance in an electrically large cavity.

    SciTech Connect

    Johnson, William Arthur; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lee, Kelvin S. H.

    2005-03-01

    This report presents a modification of a previous model for the statistical distribution of linear antenna impedance. With this modification a simple formula is determined which yields accurate results for all ratios of modal spectral width to spacing. It is shown that the reactance formula approaches the known unit Lorentzian in the lossless limit.

  14. Multidimensional Classification of Examinees Using the Mixture Random Weights Linear Logistic Test Model

    ERIC Educational Resources Information Center

    Choi, In-Hee; Wilson, Mark

    2015-01-01

    An essential feature of the linear logistic test model (LLTM) is that item difficulties are explained using item design properties. By taking advantage of this explanatory aspect of the LLTM, in a mixture extension of the LLTM, the meaning of latent classes is specified by how item properties affect item difficulties within each class. To improve…

  15. Examining Factors Affecting Science Achievement of Hong Kong in PISA 2006 Using Hierarchical Linear Modeling

    ERIC Educational Resources Information Center

    Lam, Terence Yuk Ping; Lau, Kwok Chi

    2014-01-01

    This study uses hierarchical linear modeling to examine the influence of a range of factors on the science performances of Hong Kong students in PISA 2006. Hong Kong has been consistently ranked highly in international science assessments, such as Programme for International Student Assessment and Trends in International Mathematics and Science…

  16. Graphing the Model or Modeling the Graph? Not-so-Subtle Problems in Linear IS-LM Analysis.

    ERIC Educational Resources Information Center

    Alston, Richard M.; Chi, Wan Fu

    1989-01-01

    Outlines the differences between the traditional and modern theoretical models of demand for money. States that the two models are often used interchangeably in textbooks, causing ambiguity. Argues against the use of linear specifications that imply that income velocity can increase without limit and that autonomous components of aggregate demand…

  17. The Impact of Model Misspecification on Parameter Estimation and Item-Fit Assessment in Log-Linear Diagnostic Classification Models

    ERIC Educational Resources Information Center

    Kunina-Habenicht, Olga; Rupp, Andre A.; Wilhelm, Oliver

    2012-01-01

    Using a complex simulation study we investigated parameter recovery, classification accuracy, and performance of two item-fit statistics for correct and misspecified diagnostic classification models within a log-linear modeling framework. The basic manipulated test design factors included the number of respondents (1,000 vs. 10,000), attributes (3…

  18. Delayed-exponential approximation of a linear homogeneous diffusion model of neuron.

    PubMed

    Pacut, A; Dabrowski, L

    1988-01-01

    The diffusion models of neuronal activity are general yet conceptually simple and flexible enough to be useful in a variety of modeling problems. Unfortunately, even simple diffusion models lead to tedious numerical calculations. Consequently, the existing neural net models use characteristics of a single neuron taken from the "pre-diffusion" era of neural modeling. Simplistic elements of neural nets forbid to incorporate a single learning neuron structure into the net model. The above drawback cannot be overcome without the use of the adequate structure of the single neuron as an element of a net. A linear (not necessarily homogeneous) diffusion model of a single neuron is a good candidate for such a structure, it must, however, be simplified. In the paper the structure of the diffusion model of neuron is discussed and a linear homogeneous model with reflection is analyzed. For this model an approximation is presented, which is based on the approximation of the first passage time distribution of the Ornstein-Uhlenbeck process by the delayed (shifted) exponential distribution. The resulting model has a simple structure and has a prospective application in neural modeling and in analysis of neural nets.

  19. Comparing tube models for predicting the linear rheology of branched polymer melts

    NASA Astrophysics Data System (ADS)

    Wang, Zuowei; Chen, Xue; Larson, Ronald

    2010-03-01

    The hierarchical [1,2] and bob (or branch-on-branch) [3] models are tube-based computational models developed for predicting the linear rheology of general mixtures of polydisperse branched polymers. These two models are based on a similar tube-theory framework, but differ in their numerical implementation and details of relaxation mechanisms. We present a detailed overview of the similarities and differences of these models, and examine the effects of these differences on the predictions of the linear viscoelastic properties of a set of representative branched polymer samples, in order to give a general picture of the performance of these models. Our analysis confirms that the hierarchical and bob models quantitatively predict the linear rheology of a wide range of branched polymer melts, but also indicate that there is still no unique solution to cover all types of branched polymers without case-by-case adjustment of parameters such as the dilution exponent α and the factor p^2 which defines the hopping distance of a branch point relative to the tube diameter. An updated version of the hierarchical model, which shows improved computational efficiency and refined relaxation mechanisms, is introduced and used in these analyses. [1] R. G. Larson, Macromolecules 34, 4556 (2001). [2] S. J. Park et al., Rheol. Acta 44, 319 (2005). [3] C. Das et al., J. Rheol. 50, 207 (2006).

  20. Robust estimation of motion blur kernel using a piecewise-linear model.

    PubMed

    Sungchan Oh; Gyeonghwan Kim

    2014-03-01

    Blur kernel estimation is a crucial step in the deblurring process for images. Estimation of the kernel, especially in the presence of noise, is easily perturbed, and the quality of the resulting deblurred images is hence degraded. Since every motion blur in a single exposure image can be represented by 2D parametric curves, we adopt a piecewise-linear model to approximate the curves for the reliable blur kernel estimation. The model is found to be an effective tradeoff between flexibility and robustness as it takes advantage of two extremes: (1) the generic model, represented by a discrete 2D function, which has a high degree of freedom (DOF) for the maximum flexibility but suffers from noise and (2) the linear model, which enhances robustness and simplicity but has limited expressiveness due to its low DOF. We evaluate several deblurring methods based on not only the generic model, but also the piecewise-linear model as an alternative. After analyzing the experiment results using real-world images with significant levels of noise and a benchmark data set, we conclude that the proposed model is not only robust with respect to noise, but also flexible in dealing with various types of blur.

  1. Model Order and Identifiability of Non-Linear Biological Systems in Stable Oscillation.

    PubMed

    Wigren, Torbjörn

    2015-01-01

    The paper presents a theoretical result that clarifies when it is at all possible to determine the nonlinear dynamic equations of a biological system in stable oscillation, from measured data. As it turns out the minimal order needed for this is dependent on the minimal dimension in which the stable orbit of the system does not intersect itself. This is illustrated with a simulated fourth order Hodgkin-Huxley spiking neuron model, which is identified using a non-linear second order differential equation model. The simulated result illustrates that the underlying higher order model of the spiking neuron cannot be uniquely determined given only the periodic measured data. The result of the paper is of general validity when the dynamics of biological systems in stable oscillation is identified, and illustrates the need to carefully address non-linear identifiability aspects when validating models based on periodic data. PMID:26671817

  2. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    NASA Astrophysics Data System (ADS)

    Told, D.; Cookmeyer, J.; Astfalk, P.; Jenko, F.

    2016-07-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm’s law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  3. Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.

    PubMed

    Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-08-01

    This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. PMID:27183335

  4. A non-linear finite-element model of the newborn ear canal

    PubMed Central

    Qi, Li; Liu, Hengjin; Lutfy, Justyn; Funnell, W. Robert J.; Daniel, Sam J.

    2010-01-01

    We present a three-dimensional non-linear finite-element model of a 22-day-old newborn ear canal. The geometry is based on a clinical X-ray CT scan. A non-linear hyperelastic constitutive law is applied to model large deformations. The Young’s modulus of the soft tissue is found to have a significant effect on the ear-canal volume change, which ranges from approximately 27% to 75% over the static-pressure range of ±3 kPa. The effects of Poisson’s ratio and of the ratio C10:C01 in the hyperelastic model are found to be small. The volume changes do not reach a plateau at high pressures, which implies that the newborn ear-canal wall would not be rigid in tympanometric measurements. The displacements and volume changes calculated from the model are compared with available experimental data. PMID:17225406

  5. Studies in astronomical time series analysis. IV - Modeling chaotic and random processes with linear filters

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1990-01-01

    While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.

  6. Model Order and Identifiability of Non-Linear Biological Systems in Stable Oscillation.

    PubMed

    Wigren, Torbjörn

    2015-01-01

    The paper presents a theoretical result that clarifies when it is at all possible to determine the nonlinear dynamic equations of a biological system in stable oscillation, from measured data. As it turns out the minimal order needed for this is dependent on the minimal dimension in which the stable orbit of the system does not intersect itself. This is illustrated with a simulated fourth order Hodgkin-Huxley spiking neuron model, which is identified using a non-linear second order differential equation model. The simulated result illustrates that the underlying higher order model of the spiking neuron cannot be uniquely determined given only the periodic measured data. The result of the paper is of general validity when the dynamics of biological systems in stable oscillation is identified, and illustrates the need to carefully address non-linear identifiability aspects when validating models based on periodic data.

  7. Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.

    PubMed

    Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-08-01

    This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation.

  8. Study on linear and nonlinear bottom friction parameterizations for regional tidal models using data assimilation

    NASA Astrophysics Data System (ADS)

    Zhang, Jicai; Lu, Xianqing; Wang, Ping; Wang, Ya Ping

    2011-04-01

    Data assimilation technique (adjoint method) is applied to study the similarities and the differences between the Ekman (linear) and the Quadratic (nonlinear) bottom friction parameterizations for a two-dimensional tidal model. Two methods are used to treat the bottom friction coefficient (BFC). The first method assumes that the BFC is a constant in the entire computation domain, while the second applies the spatially varying BFCs. The adjoint expressions for the linear and the nonlinear parameterizations and the optimization formulae for the two BFC methods are derived based on the typical Largrangian multiplier method. By assimilating the model-generated 'observations', identical twin experiments are performed to test and validate the inversion ability of the presented methodology. Four experiments, which employ the linear parameterization, the nonlinear parameterizations, the constant BFC and the spatially varying BFC, are carried out to simulate the M 2 tide in the Bohai Sea and the Yellow Sea by assimilating the TOPEX/Poseidon altimetry and tidal gauge data. After the assimilation, the misfit between model-produced and observed data is significantly decreased in the four experiments. The simulation results indicate that the nonlinear Quadratic parameterization is more accurate than the linear Ekman parameterization if the traditional constant BFC is used. However, when the spatially varying BFCs are used, the differences between the Ekman and the Quadratic approaches diminished, the reason of which is analyzed from the viewpoint of dissipation rate caused by bottom friction. Generally speaking, linear bottom friction parameterizations are often used in global tidal models. This study indicates that they are also applicable in regional ocean tidal models with the combination of spatially varying parameters and the adjoint method.

  9. A linear scale height Chapman model supported by GNSS occultation measurements

    NASA Astrophysics Data System (ADS)

    Olivares-Pulido, G.; Hernández-Pajares, M.; Aragón-Àngel, A.; Garcia-Rigo, A.

    2016-08-01

    Global Navigation Satellite Systems (GNSS) radio occultations allow the vertical sounding of the Earth's atmosphere, in particular, the ionosphere. The physical observables estimated with this technique permit to test theoretical models of the electron density such as, for example, the Chapman and the Vary-Chap models. The former is characterized by a constant scale height, whereas the latter considers a more general function of the scale height with respect to height. We propose to investigate the feasibility of the Vary-Chap model where the scale height varies linearly with respect to height. In order to test this hypothesis, the scale height data provided by radio occultations from a receiver on board a low Earth orbit (LEO) satellite, obtained by iterating with a local Chapman model at every point of the topside F2 layer provided by the GNSS satellite occultation, are fitted to height data by means of a linear least squares fit (LLS). Results, based on FORMOSAT-3/COSMIC GPS occultation data inverted by means of the Improved Abel transform inversion technique (which takes into account the horizontal electron content gradients) show that the scale height presents a more clear linear trend above the F2 layer peak height, hm, which is in good agreement with the expected linear temperature dependence. Moreover, the parameters of the linear fit obtained during four representative days for all seasons, depend significantly on local time and latitude, strongly suggesting that this approach can significantly contribute to build realistic models of the electron density directly derived from GNSS occultation data.

  10. A wavelet-linear genetic programming model for sodium (Na+) concentration forecasting in rivers

    NASA Astrophysics Data System (ADS)

    Ravansalar, Masoud; Rajaee, Taher; Zounemat-Kermani, Mohammad

    2016-06-01

    The prediction of water quality parameters in water resources such as rivers is of importance issue that needs to be considered in better management of irrigation systems and water supplies. In this respect, this study proposes a new hybrid wavelet-linear genetic programming (WLGP) model for prediction of monthly sodium (Na+) concentration. The 23-year monthly data used in this study, were measured from the Asi River at the Demirköprü gauging station located in Antakya, Turkey. At first, the measured discharge (Q) and Na+ datasets are initially decomposed into several sub-series using discrete wavelet transform (DWT). Then, these new sub-series are imposed to the ad hoc linear genetic programming (LGP) model as input patterns to predict monthly Na+ one month ahead. The results of the new proposed WLGP model are compared with LGP, WANN and ANN models. Comparison of the models represents the superiority of the WLGP model over the LGP, WANN and ANN models such that the Nash-Sutcliffe efficiencies (NSE) for WLGP, WANN, LGP and ANN models were 0.984, 0.904, 0.484 and 0.351, respectively. The achieved results even points to the superiority of the single LGP model than the ANN model. Continuously, the capability of the proposed WLGP model in terms of prediction of the Na+ peak values is also presented in this study.

  11. Extraction, modelling, and use of linear features for restitution of airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Lee, Changno; Bethel, James S.

    This paper presents an approach for the restitution of airborne hyperspectral imagery with linear features. The approach consisted of semi-automatic line extraction and mathematical modelling of the linear features. First, the line was approximately determined manually and refined using dynamic programming. The extracted lines could then be used as control data with the ground information of the lines, or as constraints with simple assumption for the ground information of the line. The experimental results are presented numerically in tables of RMS residuals of check points as well as visually in ortho-rectified images.

  12. Applications of multivariate modeling to neuroimaging group analysis: a comprehensive alternative to univariate general linear model.

    PubMed

    Chen, Gang; Adleman, Nancy E; Saad, Ziad S; Leibenluft, Ellen; Cox, Robert W

    2014-10-01

    All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance-covariance structure when there are more than two levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the group level with the following advantages: a) there is no limit on the number of factors as long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within-subject factors; c) when a within-subject factor is involved, three testing methodologies are provided: traditional univariate testing (UVT) with sphericity assumption (UVT-UC) and with correction when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining traditional sphericity correction methods (Greenhouse-Geisser and Huynh-Feldt) with MVT-WS. To validate the MVM methodology, we performed simulations to assess the controllability for false positives and power achievement. A real FMRI dataset was analyzed to demonstrate the capability of the MVM approach. The methodology has been implemented into an open source program 3dMVM in AFNI, and all the statistical tests can be performed through symbolic coding with variable names instead of the tedious process of dummy coding. Our data indicates that the severity of sphericity violation varies substantially across brain regions. The differences among various modeling methodologies were addressed through direct comparisons between the MVM approach and some of the GLM implementations in

  13. Extraction of battery parameters using a multi-objective genetic algorithm with a non-linear circuit model

    NASA Astrophysics Data System (ADS)

    Malik, Aimun; Zhang, Zheming; Agarwal, Ramesh K.

    2014-08-01

    There is need for a battery model that can accurately describe the battery performance for an electrical system, such as the electric drive train of electric vehicles. In this paper, both linear and non-linear equivalent circuit models (ECM) are employed as a means of extracting the battery parameters that can be used to model the performance of a battery. The linear and non-linear equivalent circuit models differ in the numbers of capacitance and resistance; the non-linear model has an added circuit; however their numerical characteristics are equivalent. A multi-objective genetic algorithm is employed to accurately extract the values of the battery model parameters. The battery model parameters are obtained for several existing industrial batteries as well as for two recently proposed high performance batteries. Once the model parameters are optimally determined, the results demonstrate that both linear and non-linear equivalent circuit models can predict with acceptable accuracy the performance of various batteries of different sizes, characteristics, capacities, and materials. However, the comparisons of results with catalog and experimental data shows that the predictions of results using the non-linear equivalent circuit model are slightly better than those predicted by the linear model, calculating voltages that are closer to the manufacturers' values.

  14. Finite-frequency model reduction of continuous-time switched linear systems with average dwell time

    NASA Astrophysics Data System (ADS)

    Ding, Da-Wei; Du, Xin

    2016-11-01

    This paper deals with the model reduction problem of continuous-time switched linear systems with finite-frequency input signals. The objective of the paper is to propose a finite-frequency model reduction method for such systems. A finite-frequency ? performance index is first defined in frequency domain, and then a finite-frequency performance analysis condition is derived by Parseval's theorem. Combined with the average dwell time approach, sufficient conditions for the existence of exponentially stable reduced-order models are derived. An algorithm is proposed to construct the desired reduced-order models. The effectiveness of the proposed method is illustrated by a numerical example.

  15. Piecewise-homogeneous model for electron side injection into linear plasma waves

    NASA Astrophysics Data System (ADS)

    Golovanov, A. A.; Kostyukov, I. Yu.

    2016-09-01

    An analytical piecewise-homogeneous model for electron side injection into linear plasma waves is developed. The dynamics of transverse betatron oscillations are studied. Based on the characteristics of the transversal motion the longitudinal motion of electrons is described. The electron parameters for which the electron trapping and subsequent acceleration are possible are estimated. The analytical results are verified by numerical simulations in the scope of the piecewise-homogeneous model. The results predicted by this model are also compared to the results given by a more realistic inhomogeneous model.

  16. Cogging force rejection method of linear motor based on internal model principle

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Zhenyu; Yang, Tianbo

    2015-02-01

    The cogging force disturbance of linear motor is one of the main factors affecting the positioning accuracy of ultraprecision moving platform. And this drawback could not be completely overcome by improving the design of motor body, such as location modification of permanent magnet array, or optimization design of the shape of teeth-slot. So the active compensation algorithms become prevalent in cogging force rejection area. This paper proposed a control structure based on internal mode principle to attenuate the cogging force of linear motor which deteriorated the accuracy of position, and this structure could make tracking and anti-disturbing performance of close-loop designed respectively. In the first place, the cogging force was seen as the intrinsic property of linear motor and its model constituting controlled object with motor ontology model was obtained by data driven recursive identification method. Then, a control structure was designed to accommodate tracking and anti-interference ability separately by using internal model principle. Finally, the proposed method was verified in a long stroke moving platform driven by linear motor. The experiment results show that, by employing this control strategy, the positioning error caused by cogging force was decreased by 70%.

  17. Linear Modeling and Evaluation of Controls on Flow Response in Western Post-Fire Watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, S.; Hogue, T. S.; Hay, L.

    2015-12-01

    This research investigates the impact of wildfires on watershed flow regimes throughout the western United States, specifically focusing on evaluation of fire events within specified subregions and determination of the impact of climate and geophysical variables in post-fire flow response. Fire events were collected through federal and state-level databases and streamflow data were collected from U.S. Geological Survey stream gages. 263 watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. For each watershed, percent changes in runoff ratio (RO), annual seven day low-flows (7Q2) and annual seven day high-flows (7Q10) were calculated from pre- to post-fire. Numerous independent variables were identified for each watershed and fire event, including topographic, land cover, climate, burn severity, and soils data. The national watersheds were divided into five regions through K-clustering and a lasso linear regression model, applying the Leave-One-Out calibration method, was calculated for each region. Nash-Sutcliffe Efficiency (NSE) was used to determine the accuracy of the resulting models. The regions encompassing the United States along and west of the Rocky Mountains, excluding the coastal watersheds, produced the most accurate linear models. The Pacific coast region models produced poor and inconsistent results, indicating that the regions need to be further subdivided. Presently, RO and HF response variables appear to be more easily modeled than LF. Results of linear regression modeling showed varying importance of watershed and fire event variables, with conflicting correlation between land cover types and soil types by region. The addition of further independent variables and constriction of current variables based on correlation indicators is ongoing and should allow for more accurate linear regression modeling.

  18. Role of symbolic computation in linear and model-based controller development

    NASA Astrophysics Data System (ADS)

    Tripathi, Sumit

    Model based controllers for articulated-mechanical-systems are gaining popularity among control system designers by virtue of their significant performance gains. However a critical precursor to deployment is availability of plant-model-equations together with a systematic means for generating them, typically by applying the postulates of physics. The complexity and tractability of first generating and then analyzing models often serves to limit the type and complexity of the example systems. However, using simpler examples alone may sometimes fail to capture important physical phenomena (e.g. gyroscopic, coriolis). Larger systems nevertheless remain intractable which restricts the exploration of non-linear controller design techniques. Hence, we examine the use of some contemporary symbolic- and numeric-computation tools to assist with the automated symbolic equation generation and subsequent analysis. The principal underlying goal of this thesis is to establish linkage between traditional approach and block diagram modeling, controller development. The inverted Furuta Pendulum example allows us to showcase the emergence of model-complexity even in relatively-simple two-jointed mechanical system. Advanced concepts, e.g. manipulator singularity and constraint system modeling, are studied with a 6 Degree of Freedom manipulator. We will focus on various aspects of model-creation, model-linearization as well as study development and performance of both model-independent and model-based controller designs.

  19. Universality of Effective Medium and Random Resistor Network models for disorder-induced linear unsaturating magnetoresistance

    NASA Astrophysics Data System (ADS)

    Lara, Silvia; Lai, Ying Tong; Love, Cameron; Ramakrishnan, Navneeth; Adam, Shaffique

    In recent years, the Effective Medium Theory (EMT) and the Random Resistor Network (RRN) have been separately used to explain disorder induced magnetoresistance that is quadratic at low fields and linear at high fields. We demonstrate that the quadratic and linear coefficients of the magnetoresistance and the transition point from the quadratic to the linear regime depend only on the inhomogeneous carrier density profile. We use this to find a mapping between the two models using dimensionless parameters that determine the magnetoresistance and show numerically that they belong to the same universality class. This work is supported by the Singapore National Research Foundation (NRF-NRFF2012-01) and the Singapore Ministry of Education and Yale-NUS College through Grant Number R-607-265-01312.

  20. Power of Latent Growth Modeling for Detecting Linear Growth: Number of Measurements and Comparison with Other Analytic Approaches

    ERIC Educational Resources Information Center

    Fan, Xitao; Fan, Xiaotao

    2005-01-01

    The authors investigated 2 issues concerning the power of latent growth modeling (LGM) in detecting linear growth: the effect of the number of repeated measurements on LGM's power in detecting linear growth and the comparison between LGM and some other approaches in terms of power for detecting linear growth. A Monte Carlo simulation design was…

  1. Modelling lactation curve for milk fat to protein ratio in Iranian buffaloes (Bubalus bubalis) using non-linear mixed models.

    PubMed

    Hossein-Zadeh, Navid Ghavi

    2016-08-01

    The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes. PMID:27600968

  2. Modelling lactation curve for milk fat to protein ratio in Iranian buffaloes (Bubalus bubalis) using non-linear mixed models.

    PubMed

    Hossein-Zadeh, Navid Ghavi

    2016-08-01

    The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.

  3. ALPS - A LINEAR PROGRAM SOLVER

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  4. Implementing EM and Viterbi algorithms for Hidden Markov Model in linear memory

    PubMed Central

    Churbanov, Alexander; Winters-Hilt, Stephen

    2008-01-01

    Background The Baum-Welch learning procedure for Hidden Markov Models (HMMs) provides a powerful tool for tailoring HMM topologies to data for use in knowledge discovery and clustering. A linear memory procedure recently proposed by Miklós, I. and Meyer, I.M. describes a memory sparse version of the Baum-Welch algorithm with modifications to the original probabilistic table topologies to make memory use independent of sequence length (and linearly dependent on state number). The original description of the technique has some errors that we amend. We then compare the corrected implementation on a variety of data sets with conventional and checkpointing implementations. Results We provide a correct recurrence relation for the emission parameter estimate and extend it to parameter estimates of the Normal distribution. To accelerate estimation of the prior state probabilities, and decrease memory use, we reverse the originally proposed forward sweep. We describe different scaling strategies necessary in all real implementations of the algorithm to prevent underflow. In this paper we also describe our approach to a linear memory implementation of the Viterbi decoding algorithm (with linearity in the sequence length, while memory use is approximately independent of state number). We demonstrate the use of the linear memory implementation on an extended Duration Hidden Markov Model (DHMM) and on an HMM with a spike detection topology. Comparing the various implementations of the Baum-Welch procedure we find that the checkpointing algorithm produces the best overall tradeoff between memory use and speed. In cases where sequence length is very large (for Baum-Welch), or state number is very large (for Viterbi), the linear memory methods outlined may offer some utility. Conclusion Our performance-optimized Java implementations of Baum-Welch algorithm are available at . The described method and implementations will aid sequence alignment, gene structure prediction, HMM

  5. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties.

    PubMed

    Xu, Wen-Sheng; Freed, Karl F

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  6. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Sheng; Freed, Karl F.

    2015-07-01

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  7. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    SciTech Connect

    Xu, Wen-Sheng; Freed, Karl F.

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  8. CS2: a Piecewise-Linear Model for Large Strain Consolidation

    NASA Astrophysics Data System (ADS)

    Fox, Patrick J.; Berles, James D.

    1997-07-01

    This paper presents a piecewise-linear finite-difference model for one-dimensional large strain consolidation called CS2. CS2 is developed using a fixed Eulerian co-ordinate system and constitutive relationships which are defined by discrete data points. The model is dimensionless such that solutions are independent of the initial height of the compressible layer and the absolute magnitude of the hydraulic conductivity of the soil. The capability of CS2 is illustrated using four example problems involving small strain, large strain, self-weight, and non-linear constitutive relationships. In each case, the performance of the model is comparable to other available analytical and numerical solutions. Using CS2, correction factors are developed for the conventional Terzaghi theory which account for the effect of vertical strain on computed values by elapsed time and maximum excess pore pressure during consolidation.

  9. Transforming the canonical piecewise-linear model into a smooth-piecewise representation.

    PubMed

    Jimenez-Fernandez, Victor M; Jimenez-Fernandez, Maribel; Vazquez-Leal, Hector; Muñoz-Aguirre, Evodio; Cerecedo-Nuñez, Hector H; Filobello-Niño, Uriel A; Castro-Gonzalez, Francisco J

    2016-01-01

    A smoothed representation (based on natural exponential and logarithmic functions) for the canonical piecewise-linear model, is presented. The result is a completely differentiable formulation that exhibits interesting properties, like preserving the parameters of the original piecewise-linear model in such a way that they can be directly inherited to the smooth model in order to determine their parameters, the capability of controlling not only the smoothness grade, but also the approximation accuracy at specific breakpoint locations, a lower or equal overshooting for high order derivatives in comparison with other approaches, and the additional advantage of being expressed in a reduced mathematical form with only two types of inverse functions (logarithmic and exponential). By numerical simulation examples, this proposal is verified and well-illustrated. PMID:27652185

  10. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  11. Minimal agent based model for financial markets II. Statistical properties of the linear and multiplicative dynamics

    NASA Astrophysics Data System (ADS)

    Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A.

    2009-02-01

    We present a detailed study of the statistical properties of the Agent Based Model introduced in paper I [Eur. Phys. J. B, DOI: 10.1140/epjb/e2009-00028-4] and of its generalization to the multiplicative dynamics. The aim of the model is to consider the minimal elements for the understanding of the origin of the stylized facts and their self-organization. The key elements are fundamentalist agents, chartist agents, herding dynamics and price behavior. The first two elements correspond to the competition between stability and instability tendencies in the market. The herding behavior governs the possibility of the agents to change strategy and it is a crucial element of this class of models. We consider a linear approximation for the price dynamics which permits a simple interpretation of the model dynamics and, for many properties, it is possible to derive analytical results. The generalized non linear dynamics results to be extremely more sensible to the parameter space and much more difficult to analyze and control. The main results for the nature and self-organization of the stylized facts are, however, very similar in the two cases. The main peculiarity of the non linear dynamics is an enhancement of the fluctuations and a more marked evidence of the stylized facts. We will also discuss some modifications of the model to introduce more realistic elements with respect to the real markets.

  12. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.

    PubMed

    Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio

    2016-01-21

    In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. Within the assumption of "small" capillary blood flow velocity oscillations the model showed that the capillary and venous compartments "respond" to this input as low pass filters, characterized by two distinct impulse response functions. In this work, we do not make the assumption of "small" perturbations of capillary blood flow velocity by solving without approximations the partial differential equation that governs the spatio-temporal behavior of hemoglobin saturation in capillary and venous blood. Preliminary comparison between the linear time-invariant model and the extended model (here identified as nonlinear model) are shown for the relevant parameters measured in CHS as a function of the oscillation frequency (CHS spectra). We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical

  13. Intermittent reservoir daily-inflow prediction using lumped and distributed data multi-linear regression models

    NASA Astrophysics Data System (ADS)

    Magar, R. B.; Jothiprakash, V.

    2011-12-01

    In this study, multi-linear regression (MLR) approach is used to construct intermittent reservoir daily inflow forecasting system. To illustrate the applicability and effect of using lumped and distributed input data in MLR approach, Koyna river watershed in Maharashtra, India is chosen as a case study. The results are also compared with autoregressive integrated moving average (ARIMA) models. MLR attempts to model the relationship between two or more independent variables over a dependent variable by fitting a linear regression equation. The main aim of the present study is to see the consequences of development and applicability of simple models, when sufficient data length is available. Out of 47 years of daily historical rainfall and reservoir inflow data, 33 years of data is used for building the model and 14 years of data is used for validating the model. Based on the observed daily rainfall and reservoir inflow, various types of time-series, cause-effect and combined models are developed using lumped and distributed input data. Model performance was evaluated using various performance criteria and it was found that as in the present case, of well correlated input data, both lumped and distributed MLR models perform equally well. For the present case study considered, both MLR and ARIMA models performed equally sound due to availability of large dataset.

  14. A covariance-adaptive approach for regularized inversion in linear models

    NASA Astrophysics Data System (ADS)

    Kotsakis, Christopher

    2007-11-01

    The optimal inversion of a linear model under the presence of additive random noise in the input data is a typical problem in many geodetic and geophysical applications. Various methods have been developed and applied for the solution of this problem, ranging from the classic principle of least-squares (LS) estimation to other more complex inversion techniques such as the Tikhonov-Philips regularization, truncated singular value decomposition, generalized ridge regression, numerical iterative methods (Landweber, conjugate gradient) and others. In this paper, a new type of optimal parameter estimator for the inversion of a linear model is presented. The proposed methodology is based on a linear transformation of the classic LS estimator and it satisfies two basic criteria. First, it provides a solution for the model parameters that is optimally fitted (in an average quadratic sense) to the classic LS parameter solution. Second, it complies with an external user-dependent constraint that specifies a priori the error covariance (CV) matrix of the estimated model parameters. The formulation of this constrained estimator offers a unified framework for the description of many regularization techniques that are systematically used in geodetic inverse problems, particularly for those methods that correspond to an eigenvalue filtering of the ill-conditioned normal matrix in the underlying linear model. Our study lies on the fact that it adds an alternative perspective on the statistical properties and the regularization mechanism of many inversion techniques commonly used in geodesy and geophysics, by interpreting them as a family of `CV-adaptive' parameter estimators that obey a common optimal criterion and differ only on the pre-selected form of their error CV matrix under a fixed model design.

  15. An hourly PM10 diagnosis model for the Bilbao metropolitan area using a linear regression methodology.

    PubMed

    González-Aparicio, I; Hidalgo, J; Baklanov, A; Padró, A; Santa-Coloma, O

    2013-07-01

    There is extensive evidence of the negative impacts on health linked to the rise of the regional background of particulate matter (PM) 10 levels. These levels are often increased over urban areas becoming one of the main air pollution concerns. This is the case on the Bilbao metropolitan area, Spain. This study describes a data-driven model to diagnose PM10 levels in Bilbao at hourly intervals. The model is built with a training period of 7-year historical data covering different urban environments (inland, city centre and coastal sites). The explanatory variables are quantitative-log [NO2], temperature, short-wave incoming radiation, wind speed and direction, specific humidity, hour and vehicle intensity-and qualitative-working days/weekends, season (winter/summer), the hour (from 00 to 23 UTC) and precipitation/no precipitation. Three different linear regression models are compared: simple linear regression; linear regression with interaction terms (INT); and linear regression with interaction terms following the Sawa's Bayesian Information Criteria (INT-BIC). Each type of model is calculated selecting two different periods: the training (it consists of 6 years) and the testing dataset (it consists of 1 year). The results of each type of model show that the INT-BIC-based model (R(2) = 0.42) is the best. Results were R of 0.65, 0.63 and 0.60 for the city centre, inland and coastal sites, respectively, a level of confidence similar to the state-of-the art methodology. The related error calculated for longer time intervals (monthly or seasonal means) diminished significantly (R of 0.75-0.80 for monthly means and R of 0.80 to 0.98 at seasonally means) with respect to shorter periods.

  16. An hourly PM10 diagnosis model for the Bilbao metropolitan area using a linear regression methodology.

    PubMed

    González-Aparicio, I; Hidalgo, J; Baklanov, A; Padró, A; Santa-Coloma, O

    2013-07-01

    There is extensive evidence of the negative impacts on health linked to the rise of the regional background of particulate matter (PM) 10 levels. These levels are often increased over urban areas becoming one of the main air pollution concerns. This is the case on the Bilbao metropolitan area, Spain. This study describes a data-driven model to diagnose PM10 levels in Bilbao at hourly intervals. The model is built with a training period of 7-year historical data covering different urban environments (inland, city centre and coastal sites). The explanatory variables are quantitative-log [NO2], temperature, short-wave incoming radiation, wind speed and direction, specific humidity, hour and vehicle intensity-and qualitative-working days/weekends, season (winter/summer), the hour (from 00 to 23 UTC) and precipitation/no precipitation. Three different linear regression models are compared: simple linear regression; linear regression with interaction terms (INT); and linear regression with interaction terms following the Sawa's Bayesian Information Criteria (INT-BIC). Each type of model is calculated selecting two different periods: the training (it consists of 6 years) and the testing dataset (it consists of 1 year). The results of each type of model show that the INT-BIC-based model (R(2) = 0.42) is the best. Results were R of 0.65, 0.63 and 0.60 for the city centre, inland and coastal sites, respectively, a level of confidence similar to the state-of-the art methodology. The related error calculated for longer time intervals (monthly or seasonal means) diminished significantly (R of 0.75-0.80 for monthly means and R of 0.80 to 0.98 at seasonally means) with respect to shorter periods. PMID:23247520

  17. Analyzing Multilevel Data: An Empirical Comparison of Parameter Estimates of Hierarchical Linear Modeling and Ordinary Least Squares Regression

    ERIC Educational Resources Information Center

    Rocconi, Louis M.

    2011-01-01

    Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…

  18. Modeling and analysis of aircraft non-linear components for harmonics analysis

    SciTech Connect

    Karimi, K.J.; Voss, J.

    1995-12-31

    Modern commercial aircraft Electric Power Systems (EPS) include many nonlinear components which produce harmonics. The addition of all the current harmonics could result in a power system with unacceptable levels of voltage distortion. It is important to be able to predict the levels of voltage distortion at early program stages to correct any potential problems and avoid costly redesigns. In this paper the nature and sources of harmonic producing equipment are described. These sources of harmonics and their effect on aircraft power system operation are described. Models for various aircraft non-linear components are developed in this paper. These component models are used in a model of the Boeing 777 EPS which is used to calculate voltage harmonics for various airplane configurations and flight conditions. A description of this model and the models used for various components are given. Tests performed to validate these models are described. Comparison of experimental results with analytical model predictions are given.

  19. Modelling and disentangling physiological mechanisms: linear and nonlinear identification techniques for analysis of cardiovascular regulation.

    PubMed

    Batzel, Jerry; Baselli, Giuseppe; Mukkamala, Ramakrishna; Chon, Ki H

    2009-04-13

    Cardiovascular (CV) regulation is the result of a number of very complex control interactions. As computational power increases and new methods for collecting experimental data emerge, the potential for exploring these interactions through modelling increases as does the potential for clinical application of such models. Understanding these interactions requires the application of a diverse set of modelling techniques. Several recent mathematical modelling techniques will be described in this review paper. Starting from Granger's causality, the problem of closed-loop identification is recalled. The main aspects of linear identification and of grey-box modelling tailored to CV regulation analysis are summarized as well as basic concepts and trends for nonlinear extensions. Sensitivity analysis is presented and discussed as a potent tool for model validation and refinement. The integration of methods and models is fostered for a further physiological comprehension and for the development of more potent and robust diagnostic tools.

  20. Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.